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INTRODUCTION

The behavior of the off-energy functions of the arcs determines the extent of
the emittance growth in the arc and the amount of residual dispersion at the IP.
For a perfect machine, with no field and alignment errors, the emittance growth
in the arc is about 30% in the horizontal plane and 6% in the vertical plane. A
nine-parameter linear optical correction system is provided in the beginning of
Final Focus to correct optical errors introduced by nominal misalignment and
field errors in the arcs. This report is an analytical attempt to estimate the

perturbations of eta-functions after orbit correction.

There are many factors affecting the off-energy functions in the SLC arcs. In
this report we will concentrate on the effects caused by the orbit errors created
by misalignments. Because the dipole, quadrupole and sextupole components
are all present in all arc magnets, any orbit error will introduce both bending
and gradient errors which modify the dispersion functions. It will be shown
that the ‘non-dispersive’ property of a ‘magnet mover’ is not true whenever the

vertical off-energy function is non-zero.

Although the lattice structures of the two arcs are not exactly identical, the
properties in their overall behavior are very similar. In the following discussion
the north arc will be used as an example for numerical estimation. The same
analysis can be applied to the south arc, and the result should be similar to that
of the north. In this report the term off-energy functions, dispersion functions

and eta functions will be used interchangeably.

I. The Unperturbed Off-Energy Functions.

The north arc of the SLC consists of 22 regular achromats and one special
section, the north reverse bend insertion. Each regular achromat consists of 10
basic FODO cells, and each cell is composed of two combined function magnets,

each having superimposed dipole, quadrupole and sextupole fields. To follow



the terrain of the SLC site, selective achromats are rolled to guide the particle

in the vertical plane in addition to the more or less constant horizontal bending.

In every achromat, the horizontal off-energy function is a periodic solution

of the differential equation(1):(2),

Ns" + Kz(s)ns = Ga(s) (1)

where Gz(s) is the curvature function, and K, (s) is the focusing function defined

as,

1 dB 1
) Kz(s)zB_pd_zy—i_p_z (2)

D=

The solution as shown in Fig. 1 is a periodic function with maximum value of
47.42 mm in the middle of a focus magnet and a minimum value of 22.73 mm

in the middle of a defocus magnet.

For those achromats which have no roll, because there is no bending in
the vertical plane, the vertical off-energy function is zero everywhere. If the
achromat as a whole is rolled with respect to the beam axis by an angle 4,
there will be vertical dispersion created in that achromat due to the mismatch
created at the boundary from one achromat to another. The transition from

one achromat to another is illustrated in Fig. 2.

Before entering the first achromat of the north arc, the beam coordinate
system is the same as that of the Linac designated as (X,Y). The first achromat
of the north arc is rolled —10° with respect to the longitudinal direction Z,
and the new beam coordinate system is designated as (X1,Y1). There are two
ways of finding the vertical dispersion function in achromat one. The first is
to continue using (X,Y’) as a coordinate system, expressing magnetic fields in
(X,Y) and solving the coupled equation of motion in the (X,Y) frame. The
second approach is to recognize the fact that if we use the (X1,Y1) frame as the

new coordinate system, there is no vertical bending and, therefore, again no new



dispersion to be generated within (X;,Y;). However, the initial conditions of the
dispersion function now appear both in horizontal and vertical planes. They will
propagate along the first achromat as free betatron oscillation. It is much easier
to solve two independent betatron oscillations than solving a coupled equation

of motion. Here we adopt the second approach.

Again, using the north arc as an example, the horizontal dispersion function
at the end of the defocus magnet, which is upstream of the entrance of the first

a.chroma.t, iS
7]:'5 D 18.31 my a,d ? 1’]; D 0

In the (X1,Y;) frame, the initial conditions of the dispersion functions at
the entrance of the first F magnets can be found from the upstream magnet by

a rotation of angle 4,

('7::1) _ (cos0 sinf )(nz) (4)
nilr — sinf  cosd /D

where 6 is the roll angle. The same equations apply to (17;1 ,n;l) pair. Putting
the roll of 6; = ~10° in Eqs. (3) and (4), we obtain

(’7::1) _ <34.1 mm) (ﬂgl) _ ( 6.0 mm ) (5)
na/p  \18.0 mrad/’ Myp/r  \3.18 mrad

In the (X3,Y1) frame, the horizontal dispersion function is still very well
matched and will be more or less the same as there is no roll; the vertical
dispersion function will be the free betatron oscillation generated by initial con-
ditions given in Eq. (5). The amplitude of the oscillation can be found through
the following expression (1),

a2=&+ﬂ (771’—'6—!""71)2 (6)
By y Ny 28, ™



Therefore the maximum amplitude of the vertical off-energy function is approx-

imately

Nyl,maez ~ \/'Eymaz a =~ 42.0mm

Consequently, this vertical dispersion function will oscillate between -42 mm and

42 mm three times within the first achromat, as shown in the ny plot of Fig. 1a.

At the end of first achromat, a local right-handed beam following coordinate
system can be established, which is the same as used in TRANSPORT®) for
calculating transfer matrix and will be called (X1, Y1), see Fig. 2. For definition
and explanation for the coordinate system, please read Type code 20 in the
TRANSPORT manual. For a perfect machine, the phase advance within one
achromat, from (X,Y) frame to (X1,Y1) frame is 6r which means that the
transfer matrix for the dispersion function is simply a unit matrix. Therefore,
at the end of first achromat, in the (X1,Y) frame, the dispersion function will
reproduce its condition at the entrance to the first achromat, i.e., a vector in

horizontal plane.

If the second achromat has no roll with respect to the (X1,Y) frame, there
will be no vertical dispersion in the second achromat following the first one. On
the other hand, if the second achromat has relative roll with respect to (X, V1)

frame, then there will be a mismatch resulting in residual off-energy function in

the second achromat as well.

To summarize, the unperturbed horizontal off-energy function in the north
arc is a periodic function with a FODO cell as a fundamental period. The
unperturbed vertical dispersion function is a free betatron oscillation created by
the roll in the beginning of each achromat. The amplitude is about 42 mm for
10° of roll. The design rolls and the maximum amplitudes of vertical dispersions
of the north arc are tabulated in Table I. Both horizontal and vertical off-energy

functions of the arc are plotted in Fig. 1 which are taken from the SLC Design



Handbook.(4)

From Table I, It is worth pointing out that in the north arc, there are
nine achromats with zero unperturbed vertical dispensions, six with maximum
vertical dispersion around 20 ~ 30 mm and eight achromats with maximum
ny around 40 mm. This information will be used to estimate the effects on on

anomalous eta err Ors.



Table 1.

Rolls and Design Vertical Off-Energy Functions of the North Arc(4).

Achromat No. | Roll (Degree) | n, (mm)l
1 -10 42
2 -8.6 40
3 0 0
4 0 0
5 0 0
6 0 0]
7 5.4 22
8 0 0
9 -4.26 16
10 0.44 0
11 / -0.50 0
12 ' 7.15 30
13 0.68 0
14 -7.26 30
15 -9.33 40
16 -6.30 30
17 -9.44 40
18 -6.86 30
19 -8.63 40
20 -9.66 40
21 0 0
22 10.75 42
23 9.37 40




I1. The Perturbed Off-Energy Functions with Coupling

Consider that a particle of momentum p, is launched into the arc and de-
termines some ‘central’trajectory (corresponding to a ‘closed orbit’ in a ring).
Notice that the CT (central trajectory) is not necessarily the same as the de-
sign trajectory. Let’s now consider the trajectories that are displaced from the
CT and let z and y be the amount of the lateral displacement. If we keep only
terms to first order in z, y, and Ap/p,, the equations of motion for the transverse

displacements of a nearby particle with respect to the CT are

" = G; (AP/PO) —K;z —Qy

y" . Gy (AP/PO) - Ky y — Qz (7)

The curvature function G(s) is proportional to the transverse field:

[
G, = —By ;Gy= —— B 8
? Po ¥ Po ’ ()

The focussing strength K, and K, are proportional to the quadrupole strength:
Kz = — X/ Ky - ""'Kz (9)

and the coupling term Q is proportional to the skew quadrupole strength:

e OB
QZET; (10)

The fields and derivatives are all to be evaluated at the CT.

The off-energy function is a particular trajectory for which z = 7, (&p/po)
and y = ny(Ap/p,) - - with suitable initial conditions. Using Eq. (7), we see
that n will satisfy

77z" + Kegng = Gy — Q@ny



n' + Kymy = Gy — Qng (11)

The eta-functions are ‘betatron-like’oscillations driven by (a) curvature and (b)

by coupling from the eta-function in the other coordinate.

Now, suppose that in any one achromat the design trajectory is defined by
Gz = Go,Gy = 0, K; = K, and @ = 0. (Local coordinates are used.) And,
with respect to this trajectory, the off-energy functions are oz and 7,y. Now the
CT of the real machine will have different fields and derivatives and a different

n. Let’s define the perturbed orbit functions with respect to the CT by

Gz - Go + 663 Gy = 5@,]
K =K, + 6K Q = 6Q (12)
They will give a perturbed off-energy function

Nz =MNoz + Mz; Ny = Noy + 7, (13)

The overlineon 6G, § K and 6Q is to emphasize that they apply to values taken on

the disturbed CT. Note that we have chosen to write the change in 7 as 7 (rather

than as 67).

If we now insert (12) and (13) into (11), we find that the anomaly 7 satisfies

ﬁz" + K, ﬁx= §G, — oz 6K 4 — Noy 56 = [z
ﬁy" + Ky 7= 563/ — TNoy 5Ky — oz 6Q = fy (14)
with 6K, = 6K = —57?,,. The perturbation 7, is again a betatron-like

oscillation, driven now by f, which is a sum of three parts: a perturbed field



term 6G, a perturbed gradient term 7, 6K and a coupling term 7, 6§Q, and

similarly for 7,,.

If we are given a set of field perturbations we can solve Eq. (14) to get the

anomaly 7.

III.Excitation of Eta by Trajectory Errors

We want to consider now the field perturbations that arise when the CT does
not go through the center of a magnet. At a point whose horizontal and vertical
distances from the ideal axis of an arc magnet are X and Y, the magnetic field

of the Arc magnet is given by

By = B, + K,X + %S(Xz—Yz)

B; = Kk, Y + 8 XY (15)
with

dB d’B
o = y S = y

dx’ T dX?

(16)

are the quadrupole and sextupole components. At the design energy of 50 GeV,
the field values are B, = 5.97KG, x, = +7.02KG/em and S = 1.63KG/cm?
for focus and —2.70KG/em? for defocus magnets. If the CT passes through such
a magnet at the displacement 6z, §y from the axis, the disturbed field functions,

to first order in 8z and 6y, are

P—y=Bo+I€oE

B; = k, by
oB _

10



JB
(Gy)er =88y (17)

making use of Eqs. (8) and (9), we find that

6G; = K, bz
5G, = — K5y
6K, = ubz = — 6K,
6Q = — uby (18)

where p = (e/p,) S is the normalized sextupole strength. Here we want to
remind the reader that the coordinate of a particle from magnet centerline X is
made up by the distance of the particle to CT, z, and the distance from CT to
magnet centerline §z. In other words, X =8z +zand Y =6y +y

The driving functions f; and fy of Eq. (14) due to orbit errors 6z and by

are

f: = (Ko—"loz M)E + ﬂoyl‘@

fy _(Ko — Nog ﬂ') E Tt 'loyl"'E (19)

The expression for f; differs from the corresponding expression of CN-333(2)

by the new coupling term noyufy. (In that report, we considered only plane

geometries, so 17,y was taken to be zero.)

We call your attention to the strange asymmetry between the expressions
for fz and fy. The second term in f, arises from the coupling from 7,; to Ny.
And, the third term in f, comes from the gradient change - - which is in the

second term of f;!

11



Now the sextupole strengths p of the arc magnet have been chosen to make
an achromatic system for which, it turns out, the expression (Ko — noz ) that
appears in Eq. (19) is, when averaged over a magnet very closely equal to zero.
[See the discussions in CN-333(2) and CN—343(5).] So, for the arc magnets, the

resulting driving terms for % reduce to

fz = (ﬂoyﬂ) E

fy = (noyn) bz (20)

Our important conclusion is that alignment errors will drive errors in both
nz and ny in any region of the arcs in which the design vertical eta, 1,y is not
zero. Since the design of the arcs calls for rolled achromats in which there is a
rather large 7,4, we must expect to find an anomalous eta driven by alignment
errors. We note that a similar conclusion has been reached by T. Fieguth, S.

Kheifets and J. Murray using computer tracking, see CN-343(5).

In the next Section we estimate the magnitude of the anomalous eta expected

from random alignment errors.

IV. Anomalous Eta after Steering Corrections

We now estimate the magnitude of the anomalous eta expected from random
alignment errors in the arcs. We will carry out the analysis in detail for 7z The
extention to 7, is straightforward. From Eqgs. (14) and (20) the anomalous eta

satisfies
7'z + Ks Mz = Noy K 5y (21)

when 8y stands for the displacement of the disturbed central trajectory (CT)
from the magnet axis. We now make the following approximations. We treat

the effect of each magnet as an impulsive perturbation placed at its center, and

12



take that the magnet produces, using Eq. (21), a slope change in 77, of
Ay = Moys M m 4 (22)

where m is the (mean) trajectory displacement in the i-th magnet, u, is its

sextupole strength, 5,,; is the typical value of the undisturbed vertical eta in

the magnet, and £ is the magnet length.

Such an impulsive perturbation produces downstream a free oscillation of

77, described by

Tai = gi \/B, sin(da — &) (23)

where (; and ¢ are taken at the observation point. The invariant amplitude a;

produced by (22) is

Az = \/’Ezi Aﬁ,z,’ = \/'Ezi Noys Ki 6_% £ (24)

The a,; are, of course, random variables, so we can only inquire about stochastic
quantities. We ask in particular for a representative value for the total amplitude

a at the end of the arc - - which we take as the root-mean-square of the expected

a.

The statistical analysis in this case is rather complex, because the size of
the a,; is correlated with their phases ¢;. It is, however, possible to show that
so long as the §y; are not correlated with magnet position, the total amplitude

is still the usual random walk with a resulting root-mean-square given by

(az)rms = VN €(B nayi H?)% 6Yrms (25)

The quantity in the brackets is quite deterministic - - being given by the arc

design. It only remains to determine its average value throughout the arc.

13



It is probably more useful to give some typical value of 7, at the end of
the arc rather than a;. We chose to take as our measure the rms value of

the peak value of 77, in the last achromat - - written as (fiz)rms. In terms of

(az)rma

(iz)rms = \,/,E,B (az)rms (26)

Since the arc cells are symmetric ﬁ, e ﬁy and we can drop the subscript. Then

Eq. (25) becomes

(ﬁz)rms =Y Nﬁ £ (B 'Igy “2)% Yrms (27)

The nature of the bracket becomes more evident if we transform it somewhat.

We defer the details to Appendix A, where it is shown that

2 vk _ Sa(foy)rma
<ﬂ$ noy u )2- (Zﬁ)% (28)

where ¢; is a property of a cell, namely the rms value of VB Byu:

(z = (ﬂzﬂylﬂ)iu; (29)

and floy is the peak value of 7,y in each achromat. (The rms value of floy is then

an average over all achromats.) Eq. (27) then becomes

A N N —_—
(ﬁz)fmﬂ = V ? 14 Sz (noy)rms 6yrms (30)

This is the final form of our result.

Following through the same analysis for the anomalous vertical eta 7y, the

only changes are that g, becomes fy, and 6y becomes 6z, so we get that

A N A
(ﬁy)"ms e V Y g Sy (noy)rma OZyme (31)

14



with

& = (B2 “2>§eu (32)

Notice that ¢y has a significantly different form from ¢;, see Eq. (29).

V. Numerical Estimates

We will make here only some rough estimates of the parameters. We obtain

¢z and ¢, from the following table.

Magnet| Bz By u  B.fyu? Plu?
(m) (m) (m=%) (m™) (m™4)

F 7.5 1.8 9.8 1300 311

D 1.8 7.5 -16.3 3590 14950

rms 49 m=2 87T m™2

So,

¢z ~ 49m 2 and ¢ ~ 8Tm™? (33)

From the SLC Blue Book(*) we can read from the graphs a rough value for the

peak 7,y in each achromat. Taking the rms of these values we find that

(floy)rms =~ 28 mm (34)

(More accurate calculations of these numbers could of course be made!)

For the arcs N = 450 and £ = 2.5m. If we assume the standard alignment
tolerance of 107*m the rms displacements 8z and 8y are 1.5 x 10~*m. (See A.

Chao and W. Weng: CN—254.(6)). We then get the following estimates for the

expected anomalous eta:

(Mz)rms ~ 8 mm, (ﬁy)"m = 14 mm (35)

15



If expressed in terms of the percentage deviation from the designed maximum

etas, they are

(Ms)rms/fox = 19% and (ﬁy)rms/ oy = 33% (36)

VI. Discussion

We wish to make several observations about our results.

1. Because of the rolled achromats in the arcs, we expect a perturbation to the
dispersion function 5, due to residual alignment errors, which is not small
- - particularly for ny. Typical values of the design eta are of the order of
20 to 45 mm, and, of course, 1, is designed to be zero through much of the
arcs and especially at the end. Our estimated 7y of 14 mm will constitute a
major perturbation to 7y on leaving the arcs. These results agree reasonably

with results of simulations that have been reported by the BDTF.(8)

2. Our calculation is a perturbation treatment which is valid only if the size of
the anomaly 7 is sensibly less than the undistrubed 5. Actually, we require
mainly that 7, is somewhat less than (foy)rms = 28 mm - - see Eq. (34).
The calculated anomaly barely satisfies this requirement. It would not do
so if the anomaly 7, were, by a fluctuation, to be twice the rms value. It is
also evident that the approximation deteriorates if the tolerances are worse
than assumed. We point out also, that when the anomalous eta gets too
large the second-order contributions always act to make the anomaly still
worse. The anomalous part will increase the driving term Ny, and there is
a positive feedback. This observation is consistant with recent simulation
results reported by K. Brown and R. Servranckx.(?) Fig. 3 shows the pertur-
bation on 1, and 5, under 100 um random misalignments, and Fig. 4 shows
the results with 300 ym misalignments. The perturbed off-energy functions

shown in Figs. 3 and 4 are taken from the end of each achromat, errors

16



inside the magnets should be larger. The results shown in Figs.3 and 4 are
from one particular seed of misalignment. For different seeds the pattern

can vary, but the general features, interpretated statistically, remain.

. The calculated 7, is larger than %, by the factor ¢z/¢y = 1.8 (This effect
comes about because the driving term is proportional to 7,y and hence to

By while the sensitivity of 7 to the perturbation is proportional to /B for
7, and to \/E for Ny. Now f; and B, oscillate out of phase so ﬂz is always

larger than 3,8y, and so, also, is its average.) This result is also in accord

with recent simulation studies.

. The anomalous vertical eta, through synchrotron radiation, may contribute
a significant increase in the vertical emmittance which cannot be restored by
the optical correction system provided for at the Final Focus. A preliminary
estimate indicates that the expected vertical emmittance might nearly be

doubled. This effect should be studied further.

. Our analyses assume that the residual misalignment 6z and fy are pure

random numbers. We know that the beam steering procedure in the arcs

certainly modifies the distribution of magnet position errors so that they are
forced to be correlated in such a way that the central trajectory is constrained
to have small displacements. We have looked at this matter briefly and
believe that the residual misalignments 8z, §y which remain after steering

are effectively random for their effect on the anomalous eta.

. The fact that magnet displacements can generate an anomalous eta opens
the possibility that the magnet movers might be exploited for the correction
of n within the arcs. Such a correction system should be able to affect beta

function and eta-function orthogonally without damaging the orbit.

. Another possible source for generating Moy is the error of phase advance
in one achromat created by systematic gradient error in the arc. Such an

error will make the transfer matrix within one achromat differ from unity

17



and consequently makes the cancellation of roll at the end of the achro-
mat incomplete. The resultant eta error and the effect on anomalous eta

perturbation should be studied further.
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APPENDIX A

We wish to transform the quantity ﬂzngyuz to a more convenient form in
order to facilitate finding its average. Notice that 8; and u oscillate with a cell
period’ while 7,y oscillates with a period of 3% cells in each achromat and has
a different amplitude in each achromat. To find the average, it is convenient,
first to find the average over any one achromat, and then to average over the

achromats.

In any one achromat, say the k-th achromat, we can write that

oy = (:7;__!/” B, cos (¢ — 0y) (4.1)
'3!/

where (foy)x is the peak value of 7oy and 6 is the phase of its oscillation. Both
constants are determined by the achromat roll pattern up to the k-th achromat.

ﬁy = fB; = f is the same in all achromats.

Since there are 3 betatron oscillations in one achromat and ten cells, it is easy
to show that the correlation between the cosine factor and the value of Bz, By
and p averages to zero, so that we can take the mean square of cos(¢; — 0;) equal
to one-half. Since (#oy)x and § are constant in the k-th achromat, the average
for that achromat becomes

(ﬁz By M2> (ﬁoy)zk

(Bz noy 1Pk = 2 (A.2)

The quantity 8z 8yu? has a period of one cell, and so its average is just the cell

average - - a number that is characteristic of the cell and which we write as ¢2,

§22: = (B By ll'z) (A.3)

The arc rms for the bracket is then just ¢/ \/2ﬁ times the rms value of the

20



individual achromat amplitudes (fjoy)x. Define

(Moy)rms = | Z (’loy)?c ]%

k

Putting it together we get Eq. (27) in the body of the report.

21
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Achromat 2
~

Fig. 2 The rolls and coordinate
systems of achromat 1 and 2
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ETAS IN MILLIMETERS
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Fig.3 The perturbed off-energy functions

with 100 microns misalignment. (Ref.

7)
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ETAS IN MILLIMETERS
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Fig.4 The perturbed off-energy functions

with 300 microns misalignment. (Ref. 7)

29



