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Abstract. Concise introduction in renormdynamics with solvable models of

(non)perturbative QCD and exotic states of fractals, fluctons, solitons, strings,

unparticles...

We say that we find New Physics (NP) when either we find a phenomenon which is forbidden

by SM in principle - this is the qualitative level of NP - or we find a significant deviation between

precision calculations in SM of an observable quantity and a corresponding experimental value.

In QFT existence of a given theory means, that we can control its behavior at some scales (short

or large distances) by renormalization theory [3]. If the theory exists, then we want to solve it, which

means to determine what happens on other (large or short) scales. This is the problem (and content)

of Renormdynamics. The result of the Renormdynamics, the solution of its discrete or continuous

motion equations, is the effective QFT on a given scale (different from the initial one).

We will call Renormdynamics Functions (RDF) functions gn = fn(t) which are solutions of the

RD motion equations

ġn = βn(g), 1 ≤ n ≤ N. (1)

In the simplest case of one coupling constant the function g = f (t) is constant, g = gc when β(gc) = 0,
or is invertible (monotone). Indeed,

ġ = f ′(t) = f ′( f −1(g)) = β(g). (2)

Each monotone interval ends by UV and IR fixed points and describes corresponding phase of the

system. Note that the simplest case of the classical dynamics, the Hamiltonian system with one

degree of freedom, is already two-dimensional, so we have no analog of one charge renormdynamics.

In the string theory, the connection between conformal invariance of the effective theory on the

parametric world sheet and the motion equations of the fields on the embedding space is well known

[8]. A more recent topic in this direction is AdS/CFT Duality [10]. In this approach for QCD coupling

constant the following expression was obtained [2]

αAdS (Q2) = α(0)e−Q2/4k2

. (3)

A corresponding β-function is

β(αAdS ) =
dαAdS

d ln Q2
= − Q2

4k2
αAdS (Q2) = αAdS (Q2) ln

αAdS (Q2)

α(0)
≤ 0 (4)
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So, this renormdynamics of QCD interpolates between the IR fixed point α(0), which we take as

α(0) = 2, and the UV fixed point α(∞) = 0. For the QCD running coupling considered in [4]

α(q2) =
4π

9 ln(
q2+m2

g

Λ2 )
, (5)

where mg = 0.88GeV, Λ = 0.28GeV, the β−function of renormdynamics is

β(α) = −α
2

k
(1 − c exp(− k

α
)), k =

4π

9
= 1.40, c =

m2
g

Λ2
= (3.143)2 = 9.88, (6)

for a nontrivial (IR) fixed point we have αIR = k/ ln c = 0.61. For α(m) = 2, at valence quark scale m
we predict the gluon (or valence quark) mass as

mg = Λe
k

2α(m) = 1.42Λ = mN/3, Λ = 220MeV. (7)

It is nice to have a nonperturbative β−function like (6), but it is more important to see which kind of

nonperturbative corrections we need to have a phenomenological coupling constant dynamics. It was

noted [18] that in valence quark parameterization αs(m) = 2, at a valence quark scale m.
In the 1870’s G. J. Stoney [17], the physicist who coined the term "electron" and measured the

value of elementary charge e, introduced as universal units of Nature for L,T,M :

lS =
e
c2

√
G, tS =

e
c3

√
G, mS =

e√
G

(8)

M. Planck introduced [15] as universal units of Nature for L, T, M:

mP =

√
hc
G
=

mS√
α
, lP =

h
cmP

=
lS√
α
= 11.7lS , tP =

lP

c
=

tS√
α

(9)

Stoney’s fundamental constants are more fundamental just because they are less than Planck’s con-

stants :) Due to the value of α−1 = 137, we can consider relativity theory and quantum mechanics as

deformations of the classical mechanics when deformation parameter c = 137 (in units e = 1, � = 1)

and � = 137 (in units e = 1, c = 1), correspondingly. These deformations have an analytic sense of

p-adic convergent series. The number 137 has a very interesting geometric sense, 137 = 112 + 42. So,√
137 is the hypotenuse length of a triangle with other sides of lengths 11 and 4. The Babylonians

used a base 60 number system which is still used for measuring time - 60 seconds in a minute, 60

minutes in an hour - and for measuring angle - 360 degrees in a full turn. The base 60 number system

has its origin in the ratio of the Sumerian mina (m) and Akkadian shekel (s), m/s � 60 = 3 · 4 · 5. We

also can consider base 137 system for fundamental theories. For the nuclear physics strong coupling

phenomena description we may take as a base p = 13. For the hadronic physics, valence scale QCD,

and graphen strong coupling phenomena description we may take as a base p = 2. For the weak

coupling physics SM mZ scale and MSSM unification scale phenomena description we may take as a

base p = 29. There are different opinions about the number of fundamental constants [5]. According

to Okun, there are three fundamental dimensionless constants in Nature: Planck’s constant, �; the

velocity of light, c; and Newton’s constant, G. According to Veneziano, there are only two: the string

length Ls and c. According to Duff, there are no fundamental constants at all.

Usually Ls = lp, so, the fundamental area is L2
s = 137l2s . The value ss = l2s− Stoney area, is more

like on a fundamental area :) In mathematics we have two kind of structures, discrete and continuous.
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If a physical quantity has discrete values, it might have no dimension. If the values are continuous -

the quantity might have a dimension, a unit of measure. These structures may depend on scale, e.g.

on macroscopic scale condensed state of matter (and time) is well described as continuous medium,

so we use dimensional units of length (and time). On the scale of atoms, the matter has a discrete

structure, so we may count lattice sites and may not use a unit of length. If at small (e.g. at Plank)

scale space (and/or time) is discrete, then we do not need a unit of length (time) for measuring, there

is a fundamental length and we can just count.

Let us consider the following discrete dynamics:

S n+1 + S n−1 = Φ(S n), (10)

which is obviously a (discrete) time (n) invertible in this implicit form. In the explicit form

S n+1 = F(S n, S n−1) = Φ(S n) − S n−1 (11)

it is not obviously time invertible. If we take two step time lattice-make simplest discrete RD step

and from one component-scalar S(n) construct two component-spinor Ψ(n), we obtain explicit time

invertible dynamics

Ψn+1 = Ω(Ψn), Ψn+1 =

(
S n+2

S n+1

)
, Ψn =

(
S n

S n−1

)
. (12)

This dynamical mechanism of origin spin which connects time inversion symmetry and spin was

invented when the theory of quanputers [12] was constructed. This mechanism indicates that with

time inversion symmetry we can have only composed scalar fields. With the discovery of the Higgs

particle with mass 125 GeV, a nice number mW/mH � 80/120 = 2/3 appears, which, at least for

me, indicates for composed nature of W and H, with the same mass of about 40 GeV two and three

valence constituents respectively. The fermion constituents ψa
n of W and scalar constituents ϕa

n of H
compose scalar super multiplet (ϕa

n, ψ
a
n) with a flavor index n and color index a. Another notation

is (h, sh)-(He, She:). The 40 GeV constituents may be a good candidates for dark matter particles.

Coupling constant unification at α−1
u = 29.0 and scale 1016GeV in MSSM [13] has a relict on the SM

scale: α−1
2 (m) = 29.0 at m = 41GeV. If we extrapolate the SM value of α−1(mZ) to electron mass scale,

we find α−1(me) = 137.0 Recent discovery of the second Higgs particle with mass MH = 750GeV
indicates an interesting structure. It is curious that MH/mh = 750/125 = 6!

In the Standard Model of Particle Physics (SM), the values of the coupling constants and masses

of particles depend on the scale according to the renormdynamic motion equations. One charge a, one

mass m RD equations are

α̇ = β(α), ṁ = γ(α)m. (13)

For the electron and nucleon masses, electrodynamic and pion-nucleon fine structure constants we

have an empirical relation: me/α � mN/απN . We take the relation m/α = const as an integral of

renormdynamics motion equations for m and α, find exact form of the β function in the minimal mass

parameterization

γ(α) = γ1α + γ2α
2 + ... = γ1A,

A = f −1(α) = α + γ2/γ1α
2 + γ3/γ1α

3 + ...,
α = f (A) = A + f2A2 + f3A3 + ... (14)

From the integral of motion, in the minimal mass parameterization: γ(α) = γ1α, we obtain

(lnα). = (ln m). ⇒ β(α)/α = γ(α) = γ1α⇒ β(α) = β2α
2, β2 = γ1 (15)
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so, we have the following algebraic-diofant equations for the flavor and color content of the theory

β2 = γ1, βn = 0, n ≥ 3, (16)

and prediction for the dimension of space-time: D = 4. Solutions of the motion equations are

α(t) =
α0

1 − α0β2t
, m(t) = m0|α−1

0 − β2t|−γ1/β2 =
m0

α0

α(t). (17)

In the multidimensional renormdynamics, when we have several (N) coupling constants and masses,

we assume that there is maximal number (N − 1) of integrals of motion Hn. If the number of integrals

is N, we do not have dynamics, we have only statics - finite field theory, αn = const, n = 1, ...,N. The

idea of reduction to the one dimensional renormdynamics is simple:

dαn

dt
= βn(α1, ..., α(N−1), αN) ⇒ dαn

dα
= Bn(α1, ..., α(N−1), α), α = αN ,

Bn(α1, ..., α(N−1), α) = βn(α1, ..., α(N−1), α)/βN(α1, ..., α(N−1), α),

αn =
∑
k≥1

fnkα
k, n = 1, 2, ...,N − 1. (18)

Generally speaking, the integrals of motion may explicitly depend on time, Hn = Hn(α, t), 1 ≤ n ≤ N.
Introducing extra coupling constant αN+1 = t, βN+1 = 1, we may reduce N-dimensional case with

time dependent integrals, to the N + 1−dimensional case of time independent integrals. The motion

equations can be derived from the integrals of motion:

0 = Ḣn = ∂tHn +
∂Hn

∂αm
α̇m ⇒ α̇n = βn(α) =

det An

det A
, A−1

nm =
∂Hn

∂αm
. (19)

When the number of time dependent integrals are M < N, we may derive for M coupling constants

RD equations and the remaining N − M coupling constants maybe considered as control parameters.

Defining some N − M criteria of optimality, we may find corresponding optimal trajectories.

Solitons are particlelike states, solutions of motion equations and they quantum extensions. Ex-

amples are solitons of the sine-Gordon motion equation or barions-skirmions of the Skyrme model

[16]. In particle theory, the skyrmion was described by Tony Skyrme in 1962 and consists of a quan-

tum superposition of baryons and resonance states. Skyrmions as topological objects are important in

solid state physics. Researchers could read and write skyrmions using scanning tunneling microscopy.

The topological charge, representing the existence and non-existence of skyrmions, can represent the

bit states "1" and "0".

QCD consists of quarks and gluons. Quarks possess both color (r, g, b) and flavor (u, d, s, etc.),

while gluons possess color (r, g, b) and anti-color (r̄, ḡ, b̄), but not flavor. An open string (a string

with two endpoints) is ideally suited to account for such quantum numbers at its two ends. For

quarks, one end represents color and the other end - flavor. For gluons, one end represents color

and the other - anti-color. In string theory, there are branes (higher dimensional extended objects

that are generalized membranes) to which the endpoints of an open string are confined. Applying

this idea to QCD, we introduce Nc colored branes and Nf flavored branes at which open strings

corresponding to quarks and gluons terminate. The energy of a string is given by the sum of the

classical energy stored inside the string and the excitation energies of vibration and rotation. Because

the classical energy of a string is proportional to its length and because gluons are massless, Nc

colored branes should lie on top of each other. On the other hand, quarks possess intrinsic masses,

and therefore the endpoints of a quark string, namely, a flavored brane and a colored brane should be

separated from each other by a nonvanishing distance U. Then, the intrinsic quark mass mq can be
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represented as mq = U×(string tension), where the string tension is the energy stored inside a unit

length of string and is represented: string tension=1/(2πα′) in terms of α′ , historically called the

Regge slope. To describe QCD, we have to prepare Dp-branes and Dq-branes with p, q≥3 for colored

branes and flavored branes, respectively, and these branes should be located in the space of more than

five dimensions. To evaluate the amplitude for a certain process to occur in the above picture, we have

to sum up all the possible two-dimensional world sheets with the weight exp(iS ), where the action S
is given by S=(energy)×(time)=(area of the string’s world sheet)/2πα′, following the Feynman path

integral formulation.

Cumulative Effect: Production of particles from nuclei in a region, kinematically forbidden for

reactions with free nucleons is connected to the existence of Fluctons - droplets of dense cold nuclear

matter. The size of fluctons is the same as nucleon one. The density of fluctons is several times more

than the nucleon one. So, it seems that there are violation of the baryon number conservation and Pauli

principle inside fluctons. The Pauli principle can be saved (small violation remains) if we suppose

that small nucleons inside fluctons have a small color charge as indicate numerical experiments [1]:

αs beyond the critical size (and value) decreases toward zero - IR freedom.

Classical fields have canonical, rational for integer D, (mass-)dimensions. E.g. in electrodynamics

L =
∫

dDx(ψ̄(γ(∂ − eA) − m)ψ − 1

4
F2),

dψ = [ψ] = (D − 1)/2, dA = (D − 2)/2, de = (4 − D)/2. (20)

Quantum corrections introduce (anomaly) corrections to the canonical dimensions, so the fields and

coupling constants become fractals [11]. At fixed points of RD, the fractals are self similar and their

compositions present at low energy unparticles, [7]. We will illustrate the qualitative picture of the

(un)particle(like) objects with the simplest model of a scalar field given by the following Lagrangian

L = L(Φ,M, λ) =
1

2
(∂μΦ) − 1

2
M2Φ2 − V(Φ), μ = 0, 1, 2, ...,D (21)

where we usually take the self interaction in the form

V(Φ) = λΦn, n = −2, 1, 2, 3, 4, 6. (22)

In renormalizable case,

n =
2D

D − 2
= 2 + ε(D), ε(D) =

4

D − 2
, D =

2n
n − 2

= 2 + ε(n), ε(n) =
4

n − 2
, (23)

sometimes we consider also intermediate values of n and D and other forms of V.
In the free (self non interacting) field (particle) approximation: λ = 0, but in external gravitational

field we have

L =
√−gL(Φ,M, 0), g = detgμν(x). (24)

Now we will see a nice composite particle mechanism :) Let us take a substitute: Φ = ϕk, than we

find

L(g,Φ,M) = L((kϕk−1)4g, ϕ,M/k), gμν(x) ⇒ (kϕk−1)4/Dgμν(x). (25)

Indeed

L(g,Φ,M) =
√−g(k2ϕ2(k−1) 1

2
(∂μϕ)2 − 1

2
M2ϕ2k) =

√
−g(kϕk−1)4(

1

2
(∂μϕ)2) − 1

2
(

M
k

)2ϕ2). (26)
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Now, having an experience with constituent - composite particle relation, we turn attention on the

self-interaction term,

L =
√
−g(kϕk−1)4(... − λ

k2
ϕN), N = kn − 2(k − 1). (27)

Most natural value of n for stable systems (1+1 → 1+1, 2 → 2) is n = 4. In this case, N = 2k+2 and

only natural value of constituents for which we have a renormalizable interaction is k = 2 ⇒ N = 6

with corresponding space-time dimension D = 3. The most natural value for fission-fusion interaction

(1 ↔ 2) is n = 3 ⇒ N = k + 2, for which we have realistic values k = 2 and N = 4,D = 4

:) Other interesting values of naturally interpretable monomial (polynomial) interactions generally

corresponds to the non-integer, fractional-fractal dimensions of space(time) D, with fractal-flucton-

unparticle interpretations of the corresponding states of matter.

The size of particle-like states (solutions of the motion equations) is defined as l ∼ M−1, because

at the boundary region, the linear part of the motion equations dominates and the Yukawa-like asymp-

totic Φ(r) ∼ e−Mr acts. In a pion-nucleon model for nucleon size we have lN ∼ m−1
π � 1.43 fm. The

amplitude of the state (at maximum) A ∼ λ−α, α = 1/(n − 2). Indeed, the motion equation does not

contain the coupling constant after a scaling substitution Φ = λ−αφ, so a particle-like solution φ does

not contain λ and corresponding solution Φ = λ−αφ ∼ λ−α,
�Φ + M2Φ + λnΦn−1 = λ−α(�φ + M2φ + λ1−(n−2)αnφn−1) = 0. (28)

At not so low energies from string theory we may extract the following scalar field theory

L =
√−g(

1

2
(∂μΦ)2 − 1

2
M2Φ2 − λΦ3), μ = 0, 1, ...,D − 1, D = 6 + ε, (29)

where ε ∈ [0, 20]. The one-loop β−function is β(a) = (D − 6)a − β2a2, a ∼ λ2 and it has stable UV

fixed point at a = (D−6)/β2 and IR fixed point a = 0. Beyond this point we have an unparticleΦ = φ2

with Lagrangian

L =
√−g′(1

2
(∂μφ)2 − 1

2
(

M
2

)2φ2 − λ

4
φ4), μ = 0, 1, ..., d − 1, d = 4 − ε, ε ∈ [0, 1]. (30)

The one-loop β−function is β(λ) = (d − 4)λ+ bλ2 and it has stable IR fixed point at λ = (4− d)/b.
The UV fixed point is λ = 0. At this point we have reduction from higher dimensional Φ3 to lower

dimensional φ4. Another possibilities is an unparticle Φ = ϕ4 with Lagrangian

L =
√−g′′(1

2
(∂μϕ)2 − 1

2
(

M
4

)2ϕ2 − λ

6
ϕ6), μ = 0, 1, ..., d − 1. (31)

The one loop β−function is β(λ) = (d − 3)λ+ cλ2, d = 3− ε, ε ∈ [0, 2]. The IR fixed point is λ = ε/c.
UV fixed point is λ = 0. Similar consideration gives reduction from higher energy φ4 model to lower

energy ϕ6 one. Some technical questions remain. One of them concern to the substitution Φ = φ2. It

restricts Φ as Φ ≥ 0. Formulation of positivity condition is not so easy. We will take another path, we

define the interaction as Φ3 = (Φ2)3/2 ≥ 0. Then the substitution Φ2 = φ4 will work. By the way, by

this definition we made also another improvement: the potential becomes bounded from below. For

the reduction the substitution Φ2 = φ4 also works,

L =
√−g(

1

8Φ2
)(∂μΦ

2)2 − 1

2
M2Φ2 − λ(Φ2)n/2, n = 3, 4. (32)

Note that by substitution

(
Φ

Φ0

)2 = φ2k, φ2 = exp(ln(Φ2/Φ2
0)/k) = 1 +

1

k
ln(
Φ

Φ0

)2 + O(K−2), φ = ±1 + O(k−1) (33)
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we reduce the field theory to a discrete theory, to a system of bits. Also, changing dimension of space

D and nonlinearity n restricted by condition

n =
2D

D − 2
, D =

2n
n − 2

,
1

n
+

1

D
=

1

2
(34)

we assume that they are functions of scale or coupling constant, due to monotonic property of the

coupling constant. We have the following relation

βn = − 4

(D − 2)2
βD, βn = μ

dn
dμ
=

dn
dλ
βλ, βD = μ

dD
dμ
=

dD
dλ

βλ. (35)
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