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My talk will be in two parts. First, I shall describe
in some detail the general idea and the method of
structure analysis of Green’s functions . Then the
current results will be sketched comparatively briefly,
since they are still far from having the form of simple
statements, e.g., of analyticity, about observable
quantities. There are many steps necessary.

Axiomatic field theory consists in studying the
implications of essentially the following three postu-
lates :

I. Relativistic invariance.

II. Vanishing of the commutator or anticommu-
tator of any two local field quantities for
space-like distances :

[¥:(0), ¥2()]2 =0 if (x—y)*<0 (D

ITI. Existence of a unique vacuum and of positive
energy states only, with positive norm, and of
eigenstates corresponding to discrete eigenvalues
(specific to the theory) of the total mass operator.
Also irreducibility of the ingoing (and, as a
consequence of TCP, also of the outgoing) fields
with those masses.

In the following we discuss, in order to keep the
formalism as transparent as possible, a theory with
a scalar hermitian irreducible field A(x) and with
one kind of neutral spinless particles of mass m only.
The generalization of the method and all the results
to more complicated cases (even with so-called
“ composite particles ”) is straightforward.

The most manageable c-number formulation of
the axioms seems to be in terms of Green’s functions.
Let J(x) be a real function of x. The operator ?

J{J} =T exp [i [dxA(x)J(x)]

defined e.g. by its formal power series expansion
in J, is the generating functional of time-ordered

operator products, whose vacuum expectation values
are called Feynman amplitudes (z-functions). One
easily proves
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The convenient, but perhaps not crucial, assump-
tion that in every physically sensible local field theory
there should (besides many other local fields) also
exist an irreducible set of local fields with their time-
ordered products can be argued as follows (in essence
an old argument) : Assume the existence of a local
Lagrangian density. The common opinion that the
commutator condition, Eq. (1), means that two meas-
urements, or local disturbances, do not interfere with
each other if separated by a space-like interval tacitly
assumes (cf. the discussion of the measuring process
by Bohr and Rosenfeld) the possibility of adding
a classical source term to the Lagrangian :

L(A)->L(A)+A4T

With the help of e.g. Schwinger’s functional differential
equation one proves that under this change, scattering
amplitudes undergo the change

<ﬂout[ain>__)<ﬁout| g’{J}Iam>

to be calculated in terms of undisturbed system,
provided the source is coupled to the renormalized
field. The physically suggestive postulate that for
infinitely differentiable and for J(x) decreasing
sufficiently fast at infinity (in space and time) this
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change should be finite and uniquely determined by
the source leads to the existence of J{J} and of
time-ordered products as distributions. It is very
satisfying that this holds for all terms of the respective
(renormalized) perturbation-theorctic expansions.

The usual asymptotic condition ), written sym-
bolically as

A(x)_)Aout, in(x) lf Xo— i o

for the operator J{J} is equivalent to the formula

)
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where ) is the vacuum, S the scattering operator
Aout(x) = S+Ain(x)s

and K, the Klein-Gordon operator

2
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From Eq. (1) and Eq. (2) one finds
g-xy = H(XO—yO)fo fT+ 7y+0(y0_x0)9'y 7+ ?x

or

fT+ 7xy = _G(XO_yO)g-x-l- 7y—9(y0_x0)7y+ g’x .
(%)

Insertion of Eq. (4) into Eq. (5) gives, upon taking
all possible matrix elements, an infinite system of
coupled nonlinear integral equations, with arbitrarily
many terms each, for z-functions. The occurrence
of the step function 6(x,) = 4(14 sign x,) in the
nonlinear equations (together with other reasons)
makes their analysis cumbersome.

A more suitable system of equations is obtained
from Eq. (5) for the Hermitian functional »

R{J}=—-iJ " T.=iF."T. (6)
One finds ¥

= Rx,y = ie(xo_yo)[Rsty] (7)
and from Eq. (4) and Eq. (6)

0
Rx{‘]} = :€Xp I:J\duAin(u)Kum} . <Rx{J}> . (8)

The expansion coefficients of R, in

R.{J} = A(x)+
* 1
+ ; ;j---jdyl---dynR(x,yl,~--,y,,)J(y1)~--J(y,.) ©)

are the retarded multiple commutators

R(x’ yl»"‘s yn) =
=i’ Z'B(xo“J’1o)9(J’1o“‘J’zo)-—'e(yn—Lo—yno) X

perm

X [[[A(X), A(yl)]a A()’z)], erey A(yn)]

whose vacuum expectation values are the Lorentz-
invariant real r-functions. Eq. (7) can also be written
as the retardedness condition

R 0  unless xo>yq (7a)

X,y =
and the “ unitarity condition ”
R, ,—R, .= i[Rx, Ry]. (7b)

The vacuum expectation values of Egs. (7a, b),
evaluated with Eq. (8), give, upon expansion in
powers of J, the retardedness condition and an
infinite system of nonlinear integral equations for
r-functions, respectively. It is easy to prove the
equivalence of these conditions for r-functions to
the axiomatic requirements, formulated before, spe-
cialized for the present model.

We are going to show that the Bethe-Salpeter
structure (here, because of some generalization,
called many-particle structure) of r-functions, known
from perturbation theory, is necessary for Eq. (7b)
to be solved, and sufficient to allow us to give to
Eq. (7b) a most interesting and also practically useful
“reduced ” form.

Before writing out Eq. (7b), we need some pre-
parations. With Eq. (74) and

[Ain(y), Rx] =i Idy,A(y - y,)Ky'Rx, y’ (10)

from Eq. (8) it is not difficult to prove that the functions

7(1’19 erey pn) =
= j...jdyl...dynei(x_y‘)‘” Fe I (Y s Vi)

(11)
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are, for n> 1, singular like
const. x [m* —(p; +...+ p,+ig)*] "
with respect to the coordinate x, and like
const. x [m*—(p, +ie)*] "

with respect to y,, with & an infinitesimal positive
timelike vector. Perturbation theory suggests, how-
ever, not to amputate the corresponding 4g. but
instead use

A'gel(x— ) = 1(x, ) = i0(xo — yo)X[A(x), AW ]>

functions. This amputation, a division by 4'g.(p) in
momentum space, is unique even when Z’Ret(p) has
(under our assumptions, necessarily real) “ CDD ”
zeros > if the boundary condition that also the am-
putated functions should be retarded is imposed.
Indicating such amputation by barring the respective
index, defining

R, =R~ Ap(x) = [dyd'rex=p)J(y) ~ (12)

(therefore, R’, is built up, as in Eq. (8), only by
r-functions with at least three coordinates, i.e. n=2
in Eq. (11)), and using Eq. (10), we obtain for the
vacuum expectation value of Eq. (7b) the form
(sufficient because of Eq. (8)):

A'get(x — )Rz [ A re0— Y)+ A0 —y) | —
—[A e —=X)+ A(u = x) [<R5, DA ety —0) +
+ A Re(x =) = A gty —X) + A(x = y) —

- iA,Ret(.x - Ll)([R’; 5 R’;]>A ,Ret(y - U) =0 (13)

where the commutator is to be evaluated with Eq. (8),
and repeated coordinates are integrated over.

The case J = 0 of Eq. (13) is the starting equation
of an earlier investigation® of the one-particle
propagation function. The main result was that
the proper self energy part can be calculated from
its absorptive part with not more than one subtraction
(in contrast to the perturbation theoretical two),
and that the amputated vertex (in our model, with
four coordinates) has to vanish at infinite off-shell
momentum, with three momenta on the mass shell
with equal frequency sign. Furthermore, at zeros
of Z'Ret(p), which are at most of first order, the un-

amputated vertices, with all momenta but one on
the mass shell, as before, vanish (in the limiting
case of first order). This suggests that Z'Ret(p) is
a genuine factor, especialy since in some cases the
analyticity of the vertex at the point in question can
be proven. We conjecture that Z’Ret(p) is a factor,
in this sense, at all coordinates off the mass shell,
as it is in perturbation theory.

Let functionals (R}, y..z» be defined by the equations

Ry =Ry y >+ (R (RG> (14a)

which can be solved for these functionals by iteration
(rigorously, since it terminates for any finite order
of J). From Eq. (14a)

Ry y.zy = Ry, D HCR DR, > (14D)

easily follows. These functionals are called “ one-
particle irreducible between x and the set y..z”.
One can prove » that the corresponding r'-functions,
in contrast to the r-functions, are not one-particle
singular (i.e. like const.x [m®—(p+ie)®]™") with
respect to the momentum p that is a partial sum of
the momenta to the latest and some other coordinates,
but not to any of the coordinates y...z. (Note that
there is a distinction in Eq. (14a, b) between the
coordinates y...z displayed and those introduced by
further functional differentiation.) Intuitively, the
irreducible functions, if expanded perturbation-theo-
retically, are described by double graphs ™ that cannot
be separated into two parts by cutting only one line
such that the two distinguished coordinate groups
are on different parts.

Eqgs. (14a, b) are now substituted into Eq. (13) in
such a way that in all terms the one-particle reducibility
next to x is exhibited. Thereupon, using Eq. (13)
once again, one obtains

A'rax— [R5 —<RG D— ([R5, RS, =

|J=0
— (R A(r—s)XR5 5 | KRy, >+
J=E0
+[ A get(x — ) — A'geett — X) + A(x —u) —

where the irreducible commutator is to be eveluated
with Eq. (8) such that all contraction coordinates are
distinguished coordinates in the sense of Eq. (144, b).



214 Session S 2

The last term in the first square bracket precisely can-
cels the one-particle intermediate state contributions to
the commutator. J = 0 gives the equation mentioned
before. For J # 0, the amputation of A'g.(x—u)
and removal of (R, ,> are not in general possible
if A'ge(p) has zeros, since the retarded boundary
condition is not available here. On the basis of the
earlier conjecture about singularity-free amputability
of A'p.(p), however, one shows that the first square
bracket in Eq. (15) must vanish.

In the “one-particle reduced ” nonlinear system
thus obtained not only all one-particle singularities
(as proved independently) and one-particle inter-
mediate states have been eliminated, but also many
nonsingular terms have been cancelled. For that
reason structure analysis goes beyond an identification
and elimination of singularities. This becomes fully
obvious in the more interesting but less simple two-
particle case to be discussed now.

In order to find the successful ¢ ansatz *” analogous
to Eq. (14a, b) for this case, one uses perturbation
theory as a source of inspiration (and only as such).
Inspection of double graphs ® ! suggests the definition
for generalized retarded functions :

F(X g X, Vi Yi) = CR(X oo X, Yoo i)

with
51

———— R,/
8J(y1)..-0J (1) vl

R(Xyo. Xy, Yy i) =

|J=0

and

Rxl...xk {J} =

5 N R
= o570 {H’E}? {J_’E}b:o_
51(

- m(T exp [4 [ dzJ(z)R.{J}] x

xTexp [ [duJ@RT}]__ - (16)

These relativistically invariant real functions cor-
respond to double graphs into which more than
one retarded line enters, as obtained by implementing
many-particle cuts in ordinary double graphs.
r(xy...Xy, y1-..y;) vanishes unless each y, is earlier
than some x,. From Eq. (8) and Eq. (16) we obtain

R, . {J) =

= 1exp [JduAln(u)K

i | Revenlitp - @

Perturbation theory now suggests the ansatz

F = (1+FE)F, (184)

where F is the two-by-two matrix with the elements
(for merely technical reasons, x>y, and z,>u, is
always understood, also in the integrations)

Fiy =<R% Fi, =<R%5

X¥, zu xyu, z

(19)
F71‘<nyzu F22'—<quvz>a

where the superscript ¢ means “ connected part ”, e.g.

<chy,zu> = <ny,zu>_<Rx,z><Ry,u>—<Rx,u><Ry,z> )

and from now on barring a coordinate means ampu-
tation of the full one particle reducibility, not of
A’ alone. F; is the same matrix as Eq. (19), but
with R or R replaced by R’ (always connected).
E is the matrix with the elements

Ell = <R ><R) u>+<Rx u><R} z>
E12 = <Rx,z><Ryu> + <qu><Ry,z>
Ey =0

EZ 2 = <Rx,z><Ru,y>

which, when applied to F or F; from the right or left,
reverses the amputation. x, y are the left, z, u the
right hand side coordinates of F etc.

First set J = 0 in Eq. (18a). Then it can in prin-
ciple be solved for the irreducible functions by the
Fredholm method. Of course, we do not know
enough about r-functions to find out if the classical
method applies. Here we have to rely provisionally
upon the assumption that it does, and that the am-
biguity due to the possible vanishing of Fredholm
denominators is resolved by imposing the condition
that the irreducible functions have the same retarded-
ness properties as the corresponding original functions.
(The formal iteration solution of (18a) has this
property.) The uniqueness of F; from Eq. (18a)
implies to within interchange of integrations)

F = F(1+EF) (18b)
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It is satisfying that the two forms (18a), (18b) of the
“retarded inhomogeneous Bethe-Salpeter equation ”
imply each other, because there is no reason to
prefer one of them to the other. The case J =+ 0
can easily be reduced to the former problem.

However, to give these equations a sense, we have
to find out what they imply for the irreducible
functions, on the basis of Eq. (13) or Eq. (15).
(Note that one- and two-particle reducibilities can
be eliminated in an arbitrary order, they never inter-
fere.) First, on the basis of the foregoing discussion,
Eq. (18a, b) are immediately generalized to an arbi-
trary number of distinguished coordinates instead
of the pair z, u, similar to Eq. (14a, b).

Actually, now one must deal with four systems
instead of one. Define the matrix F with the elements

Fll = <RCEE,E Fu = <Rc;z_r;,;>

(20)
Fm =<{R:m Fzz ={R%5
and correspondingly F,- and E. Then we have
F = (1+FE)F, (21a)
from Eq. (18b) and
F =F,(1+EF) (21b)

from Eq. (18a). Of the four systems, easily derivable
from the definitions of Eq. (16) etc., I give only Qle
first, relevant for the 11-element of the matrix F—F :

<ny,zu> - <Ryz,xu> - l<[ny ’ Rz,u]> - i<[ny,u ) Rz]> -

—'%<{Rx9 Rz,yu}> —%<{Rx,u ’ Rz,y}> =0. (22)

The others look very similar. Insertion of Eq. (18b)
and Eq. (2la) into these systems and eight more,

<ny,zu> - i<[Rx_v,: ) Ru]> —%<{Rx,z > Ru,y}) =0 (23)

and seven very similar ones, gives the result :

The solution F of Eq. (18) (unique for given F))
satisfies Eq. (22) etc. and Eq. (23) etc. if and only
if the irreducible functionals F; satisfy the same
(amputated) systems, with all brackets replaced by
“irreducible brackets ”, and the right hand sides
being replaced by functionals x) to x%, that have
to satisfy twelve linear homogeneous equations.

Irreducible brackets are here defined by integral
equations of the type (we take the simplest example) :

(RzzR:5)% = {(RzzRz5) +

+{(RzRs5)DAURGR.)D  (24)

which can be solved by iteration that terminates for
any finite order of J and any finite momentum trans-
ferred between the pair x, u (and further coordinates
introduced by differentiation) and y, z (same). One
can prove ') that the irreducible brackets do not
permit a two-particle cut (consisting of two one-
particle cuts in the earlier sense) that separates x, y
and z, u from each other (note that in the example
Eq. (24) such cuts would be entirely nonsingular)
and do not have two-particle intermediate states for
such a separation.

It seems difficult to discuss the terms x% to x}, on
the basis of the homogeneous equations which they
must satisfy. These terms are the analogs of the
square brackets in Eq. (15). One class of solutions
(suggested to me by S. Mandelstam), however, can
be found: the two-particle generalizations of the
Wigner R-functions that were the solution in the one-
particle case, exemplified by an unstable particle in
perturbation theory. With the help of a perturbation
theoretically verified conjecture, similar to the earlier
one, the functions with more than four coordinates of
this class, which perhaps exhausts all cases of physical
interest, become simple and quite tractable.

Though the actual calculations would, with the
present technique, become prohibitively lengthy,
there is no doubt about how the generalizations of
these structure decompositions to higher particle
numbers, or to multiple decompositions (between
several coordinate groups) look. In each case in
the absorptive part of the irreducible functions
(or functionals) intermediate states with the particle
number for which irreductibility is imposed do not
appear, nor anywhere reducibilities (as defined by the
Bethe-Salpeter equation) in the same number of
particle lines, whether or not they can give rise to a
singularity. This latter point, together with the
elimination of the whole continuum to the particle
number in question, shows that structure analysis
goes quite beyond an elimination of threshold sin-
gularities only.
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If the conjecture about the occurrence of “ CDD ”
R-functions is correct, the foregoing picture is modified
in a very simple way that can be read off from perturba-
tion theory. The absence of the characteristic
singularities for the irreducible functions has so far
been proven only for the one-particle case, as men-
tioned earlier, but is not as essential as is the absence
of certain intermediate states in the absorptive parts.
(In simple cases, this already suffices to exclude
those singularities.)

How can such results be utilized for problems
of current interest such as analytic and other pro-
perties of elastic scattering amplitudes? We have
gained little if we had only reduced the original
problem to a more complicated one with higher
mass thresholds. This reduction step, however,
is useful if a less precise knowledge of the irreducible
functions, obtained by a rather incomplete analysis
of their nonlinear system, already gives new informa-
tion about the original functions due to their decom-
positions. This is indeed the case: assume four
functions r,(xy, zu), r;(xyu, z), r{X, yzu), and r;(xu, yz)
to be given such that they have the /inear properties
following from the eight systems Eq. (23) etc. (written
for irreducible functions as explained earlier), and
their absorptive parts have the [linear properties
following from Eq. (22) etc. in the same sense.
(“ Linear properties ” means here: the function
consists of two, respectively four, terms with as well
the retardedness properties (if any) following from
the two factors in the bracket, as the momentum-
space support resulting by insertion of intermediate
states between the factors, under omission of two-
particle intermediate states for partitions x, y to z, u.
Also, commutators and anticommutators of the same
factors must have the correct momentum-space
support relationship.) Then the four functions in F,
obtained uniquely from e.g. Eq. (18a), satisfy the
original systems Eq. (22) etc. and Eq. (23) etc., with
the brackets given uniquely by Eq. (24) etc.
This means : these functions have the same “linear
properties ” as before, but with the specification that
in the elastic region (masses 4m” to 9m* or 16m?,
depending on selection rules) the brackets to the
partition x, y to z, u (like the third term in Eq. (22))
are given correctly by the four-point functions under
discussion, as required by Eq. (8), (17) and
picking out two-particle intermediate states. This
has the consequence that in this region “ unitarity ”

(even off-shell) is satisfied, besides fulfillment of
the “linear conditions ” everywhere.

To satisfy the known properties of the scattering
amplitudes, upon reduction of the foregoing functions
to the mass shell, momentum transfer analyticity
also has to be secured. This is done by imposing on
the irreducible functions entering Eq. (18a) four more
conditions, the first of which is derived from the
system (xo> yg, 20> Ug)

<Rx)’,2u> - 17<{Rx,z’ Ry,u}> - %<{Rx,zu9 Ry}> -
- %<{Rx9 Ry,zu}> _%<{Rx,u7 Ry.z}> =0

in the usual way.

All these conditions for the irreducible functions
certainly have no fewer solutions than Wightman’s

-“linear program ” for the four-point function and

have, in any case, the multitude of perturbation
theoretical ones. Thus, the linear problem, as well
as the nonlinear “ unitarity ” problem up to a higher
mass threshold, are solved in terms of the linear
problem with the higher mass threshold. The
foregoing discussion shows that this is the general
solution up to the not yet entirely solved “ R-function
problem ”.

TCP invariance and crossing symmetry are not
yet satisfied by our solution. The first can be satisfied
by also discussing “ advanced functions ” and setting
up systems very similar to those discussed before,
that contain retarded and advanced functions simul-
taneously. To satisfy crossing symmetry, however,
we have not yet found a better way than by an iterative
procedure, to be explained here for the simpler case
of the ordinary Bethe-Salpeter equation

G = (1+GE)G, (25)

Assume an irreducible and crossing-symmetric kernel
G} is given. (To find the most general such kernel
is easy, once the solution of the “linear” problem
is known). Then solve

Gi=G/+(G-G)~ (26)
where cr means “ crossed ”, for instance by iteration :
G;l‘('l — G?-I-(G"—G?)cr

where G" is the solution of Eq. (25) with the kernel
G;. The convergence of this process can be made
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plausible if a hard core is built up, since then the
wave function (solution G") is insensitive to a change
of the short-range forces.

Comparison of the method presented here with
the nonlinear integral-equation method of Chew and
Mandelstam shows that no nonlinear equations
need be solved here (apart from Eq. (26) for which
the iteration solution seems to be safe), but instead
one needs to solve the comparatively simple Bethe-
Salpeter equation which (up to crossing symmetry)
is the natural solution of the unitarity problem. The
CDD-ambiguity is exhibited even before an equation
has been written down. The disadvantage of the
present method is that it uses off-shell quantities.
However, these off-shell functions have to be analyzed
anyway, at least in the axiomatic scheme.

Unfortunately, the complete solution of the “ linear
problem ” might not be known even after some lapse
of time. It is hoped that the methods explained
here will lead to new results. Of special interest
are the consequences of the structure decompositions
for analytical continuations of the original functions,
possibily evaluated on the mass shell. In simple
cases, it is known that the irreducible functions no
longer have the singularities characteristic to the
particle number considered, for instance the one-

nucleon pole for meson-nucleon scattering. It can
be expected that now cuts can also be removed,
though our only rudimentary knowledge about most
functions makes proofs difficult. However, the
fact that in rigorous proofs always the lowest masses
make trouble and have here been separately dealt
with gives hope for technical improvements.

It is comparatively simple to extend structure
analysis to the generalized retarded functions of
Steinmann, Ruelle, Araki, and Burgoyne, which seem
to be going to play an important role in rigorous
proofs.

Structure-analytical considerations give so far only
moderate support to the assumption that perturbation
theory cannot mislead as far as analytical properties
are concerned. Vertices are here replaced by higher-
and-higher irreducible ones, and never by points,
and the “linear problem ” in any stage admits also
non-perturbation theoretical singularities. A careful
analysis will be nzcded to ascertain that there is no
“residual effect ” on the analytic properties of the
original functions. In addition perturbation theory
(at least if understood in Landau’s ® sense) does not
lead to the CDD singularities of the irreducible
functions. Of course, we understand them very
little in local field theory.
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DISCUSSION

BrEIT : Would it be possible to use these CDD
singularities as a definition of an unstable particle?

SiManziK : 1 do not think so. The characteristics
of the function in which one inserts a CDD pole
into the denominator are not those of an unstable
particle because unstable particles correspond to
poles in other Riemann sheets. These functions

just have zeros along the real axis. I have not
investigated this problem in full, but at first sight
there seems to be no connection. In perturbation
theory these “ particles >> show up in the bare Hamil-
tonian, if you wish, but they do not necessarily
produce the dynamical characteristics of an unstable
particle.
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LeaMANN : I would like to make one remark on
this point. I agree that this has not been investi-
gated in relativistic theories, but I would say that,
in simple models like the Lee model and the charged
scalar theory without recoil, I think the zeros on
the real axis and the poles in the second Riemann
sheet are really closely related.

SyMANzIK : In the more general case here, I do not
think the connection is so simple, but I do not know.

LEHMANN : There is the question of how many
solutions we may expect from these equations which
do not follow from a definite Hamiltonian but from
general principles. Sometimes the view has been
expressed that there are only a few solutions for
given stable particles and the idea is more or less
that they correspond to the renormalizable Lagran-
gians, but I think that in connection with these
ambiguities this view has very little support. Even
the statement that there are only a few renormalizable
Lagrangians is, I believe, wrong because you can
certainly add many fields which correspond to particles
with unstable masses and couple them all with trilinear
terms. You would then have many solutions corres-
ponding to as many parameters as you please.

SYMANZIK : But actually, all these additions should
be required to satisfy the unitarity conditions which
are extremely strong ones. There are characteristic
differences between what is permitted in perturbation
theory and what is permitted in reality.

LEHMANN : Sure, but is there reason to believe
that the presence of an arbitrary number of unstable
particles conflicts with the unitarity?

SyMmANzIK : I believe that there are such indications.

LEHMANN : You mean there are conditions, but
it is not clear how strong they are and what they
really lead to later on.

SymMaNzIK :  Yes.

OPPENHEIMER : It would seem not so much that
one has a small number of solutions as that one is
well along on a program of understanding in physical
terms all the singularities which can appear, and this
question of more or less arbitrary zeros will have
to be worked out a little more before this program
is reasonably complete. In this program, uniqueness

is not what one is seeking but, rather, some connec-
tion with the physics and the analytic behavior of
these r-functions.

SYMANZIK : Yes. The questions of the arbitrariness
of the x, to x,, for the problem here has no relevance.
One can try to find the most general solution of the
unitary equations in a certain sector of momentum
space without listing the most general solutions of
the linear homogeneous system. The interesting
point here for me is that one can have everything
together—unitarity and analytic properties in one.
One does not have to separate them as one does
in the Chew-Mandelstam approach. Unfortunately,
I forgot to mention one thing, namely, crossing
symmetry. These solutions I presented here are
not crossing symmetric. Crossing symmetry can be
preserved in an iafinite iteration process for which
I refer to the paper.

TayLor : I did not fully understand the separation
between the linear and nonlinear problems. You
discussed the satisfaction of the nonlinear problem
for the nonlinear equations in which you had subtract-
ed the singularities from the one- and two-particle
states and you said that these nonlinear equations
can then be satisfied essentially up to where inelastic
processes come in. Is this a difficult thing to satisfy
or is this automatically satisfied in principle by
removing one- or two-particles singularities?

Symanzik : The trick is to exhibit the low mass
structure explicitly and to remove everything that
has to do with low masses from the problem. For the
remaining problem, all masses are essentially higher;
at least, the characteristics of them are higher. Tech-
nically this problem is precisely the four-point function
problem of Wightman, which is known to have a
multitude of solutions. Even if one finds too broad
a class of solutions from a superficial analysis of the
new system of equations, the original functions would
satisfy many more conditions, namely, the non-linear
system in the low energy parts. The proof will be
given in a paper that should come out in the fall.

Breir: I did not understand just what you meant
by the Bethe-Salpeter equation for one particle.
Does this mean a complete description of one particle ?

SyMANZIK : The physical one-particle problem is
entirely contained in the one-particle propagation
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function and the analysis of that function presented
here does not give anything new beyond what is
already known. The one-particle structure is not
the structure of one particle but the structure with
respect to one-particle connecting lines in graphs.
The characteristic singularities of these functions can
be proven axiomatically. Those irreducible functions
defined here as well as their analytic continuation do
not have these characteristic singularities. One can
prove that the irreducible functions do not even have
complex singularities. This is standard knowledge in
the meson-nucleon scattering problem, as Zimmerman
first observed.

OPPENHEIMER : Would you expect any great diffi-
culty in continuing this program of removing the
higher intermediate states?

SyMANZIK : It would be rather complicated to do
it analytically. If one carries this out in general
terms, it will not be necessary to do everything ana-
lytically, since I think much can be obtained simply
by formal manipulations. All of this has been done
without ever writing down any integral explicitly.
Nevertheless, it has content at the end.

BiorkEN : What is the outlook with regard to
removing the singularities in the irreducible kernels
with respect to, say, the momentum transfer variable ?

SyMANZzIK : One simply has to apply the analysis
twice with respect to those separations as is done
here. If one does this with the momentum transfer
singularities, for instance, the pole in nucleon-nucleon
scattering, they will be removed. One would be
able to show that the pole is removed if one could
show that there are no singularities around the pole.
This procedure would yield a detailed characteristic
of the function in the complex domain. Everything
which is done here refers to real values of z. One can
say something about the parts that are infinite and
something about the parts that are finite, but this does
not cover physical needs as one would like to make
statements about the behavior in the complex domain.

BJORKEN : Does the nonlinear system hold in that
direction for the irreducible parts as well as for the
complete r-function?

SyMANzZIK : Yes; with respect to those separations,
the ordinary system holds. This is the best I can
say here without being too specific.

THE USE OF PERTURBATION METHODS IN DISPERSION THEORY ®

R. J. Eden ¢»

University of California, Berkeley, California

I. INTRODUCTION

In this talk I will outline some proofs of dispersion
relations for every order in perturbation theory. After
this I will indicate some further topics that can be
studied by perturbation methods.

The following dispersion relations (DR) have now
been proved in perturbation theory :

(a) Vertex parts

(b) Forward scattering

(¢) Non-forward scatter-
ing (in a limited range)

(d) External-mass DR

(e) Internal-mass DR

Single-variable DR

(*) This work was done under the auspices of the U.S. Atomic Energy Commission.

(**) Normal address, Clare College, Cambridge, England.



