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1. Foreword 

That a spontaneously broken, anomalous, global Up*(l) symmetry can be 

introduced into the standard model to solve the strong CP problem is a well 

known fact. ’ This model has a pseudo-goldstone boson, the axion.2’3 The axion is 

phenomenologically acceptable if the symmetry breaking scale is not too low(f, > 

x 10gGev)” , for stars would burn up too fast;5-7 and if it is not too high(f, < 

4 x 1012Gev), for the axions would dominate the universe.8-” For details on 

these matters the interested reader is referred to the literature. 

Here I am concerned-&h the upper bound on the PQ symmetry breaking 

scale. This bound was derived by looking at the zero momentum mode of the 

axion field as the universe passes through the quark-hadron phase transition. 

Above the phase transition the axion is massless and the zero momentum mode 

contributes nothing to the energy density, so the value of the field can be any 

constant from 0 to fa without affecting the physics. Causality arguments imply 

that it is o(f=). At the phase transition instanton phenomena give mass to the 

axion field and it begins to undergo spatially homogeneous coherent oscillations 

about zero, with frequency m,. Consideration of the damping needed to prevent 

the associated energy from dominating the universe gives the cosmological bound. 

In this letter I would like to discuss other sources of axions which might 

contribute to this bound, the non-zero momentum modes. The first source is a 

thermal distribution: the axions were in thermal equilibrium at the PQ symmetry 

breaking, but then were decoupled from the subsequent thermal history of the 

fll This bound may be lowered by a factor - .Ol in models where the axion does not couple 
to electrons. Also, since the physics of the interiors of stars is imperfectly understood, one 
must take this bound with some skepticism. Present observational limits on the solar axion 
flux imply that fcl > 10’Gev.’ 
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universe. Though decoupled, these axions maintained the “thermal” spectrum 

^’ as the universe cooled, with “temperature” simply related to the temperature 

of the surrounding thermal bath all the way down to the quark-hadron phase 

transition. In the analysis described above it was assumed that these axions get 

redshifted away and are therefore not cosmologically important. In section 2 I 

will show explicitly that this assumption is correct. 

But mainly I am interested in another, hitherto unrecognized source of axions 

which could have cosmological import. These arise from the inevitable(barring 

inflationary models) appearance5f axion strings after the PQ phase transition. 

The strings lose energy by emission of axions into a characteristic energy spec- 

trum. Of no significance above the quark-hadron phase transition, the energy 

density is enhanced when ‘passing through, and this contributes to the upper 

bound on the PQ scale. This material is treated in section 3, and comments on 

the relevance of this bound are in the conclusion. An important technical note 

is reserved for the appendix. 

2. Energy Density of Decoupled Thermal Axions 

The energy density just below the PQ symmetry breaking scale has a thermal 

spectrum 

Sometime after the symmetry breaking(long before the quark-hadron phase tran- 

sition) the axions decouple from all other matter and radiation, and the axion 

field redshifts as the universe expands and cools. At lower temperatures this 

“thermal” distribution is maintained, only the effective temperature of the axion 

3 



field may be different from the actual temperature of the universe. The energy 

density is - 

1 
/ 

k3dk 
pa=% e&Fl’ 

where T* can be derived in an adiabatically expanding universe, 

T* = [Jf(T)/.v(z-~ec)] 1’3T. 

U(T) is the number of interacting particle degrees of freedom with masses less 

than T. At the quark-hadron phase transition the axion mass starts to turn on. 

How does this effect p a? Tn”the appendix I have outlined a WKB calculation for 

the proper integral insertion; the energy density is 

ck2 + $+i) k3dk 

(k2 + i?i2) eqF* _ 1’ (2.1) 

where ris roughly the time when the Compton wavelength of the axion comes 

within the horizon. I call the axion mass at that time 63 = l/E The value 

of t can be estimated from instanton physics: the corresponding temperature is 

? - 800Mev - lGev,* and % - 10eQ - lo-*ev. 

Without performing the integral we can see that the phase transition does 

not significantly alter pa. The insertion in eq.(2.1) is different from 1 only in the 

region k 2 m, - 10s5ev. But since the quark-hadron phase transition occurrs 

at 2’ - lOOMev, and since for any plausible value of [h((~)/~(~dec)3 1’3 we must 

have 9 >> m,, the other term in the integrand is essentially zero in that region. 

In other words, the effective temperature of the axion bath is high enough that 

the axions remain relativistic through the phase transition. Since they become 

non-relativistic at nearly the same time as other matter, and because their mass 

is so small, these thermal axions pose no threat of dominating the universe. 
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i 3. Energy Density of Cosmic String Axions 

At the PQ phase transition’s random network of cosmic axion strings ma- 

terializes. Densely knotted, the strings will start to oscillate under their own 

tension after axion decoupling, when frictional effects cease to matter. In a pre- 

vious article l2 I have demonstrated that strings from broken global symmetries 

lose their energy very efficiently by radiation of Goldstone bosons. Here I will 

assume that string excitations will be damped out so rapidly that loop formation 

and decay is not an important effect. Since oscillations can only occur when a 

kink enters the horizon, th@ string system will tend to straighten-out on scales 

less than the horizon, maintaining its Brownian knottiness on larger scales. The 

system remains in a tangle, but the step length grows with the horizon, while 

the radiation of axions is continuous and accumulating. To begin I will derive 

the energy density of these massless axions. 

It is quite general that a static, straight axion string has mass per unit length 

P = 
/ 

[(a~)’ + $ + V(p)]rdtd+, 

where V is a symmetry breaking potential and the field p behaves like - r inside 

the string and goes exponentially to fa outside. V and the functional form of p 

are model dependent, and therefore so is ~1, but because of the middle term ~1 

is dominated by a long range l/r potential which is unambiguous. Thus we can 

write 

where 6 is the thickness of the string core and A is a cutoff provided by the 

inter-string spacing. 
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Let us divide space up into expanding cubic cells of size t, the age of the 

radiation dominated universe. Also, let us assume that at any given t there is 

one straight string of length t per cell. Then the string mass in a cell at any time 

is 

E(t) = 27r jzt In(t/s). (3.1) 

In order to maintain this form of E(t), axions must be radiated because kinks 

appear in a cell as it expands. We can calculate the amount of radiation if we 

were to suppose that the energy were to have the correct form at some time to, 

but afterwards the stringsdid not-oscillate and radiate at all. At later times the 

energy per cell would be 

E(t) = 27r r,“fi( -$=)” ln(&/S) = 27r fit2 ln(&/6), 
0 

in which I have included both the of stretching of the original cell, to + to d- 6, 

and the fact that a cell of size t contains (t/fi)3 of the original cells. The rate 

?z% at which energy must be radiated to maintain the form of eq.(3.1) is 

-&&d(t) It+= -&T(t) It=to --$E(t) Itdo= W,2[ln (to/J) - l/21. 

The increment to the energy density at time t is 

Ap(t) = AEd) 
t3 

= 27r jz[ln(t/6) - l/21$, 

and the total energy density that is accumulated between some very early time 

t*, when axions decoupled, and a later time t is 

t 

p(t) = 27r r,” 
J 

(f)2[ln(r/6) - l/2]; = $[ln(t/J) ln(t/t*) - ln(t/t*)], (3.2) 
t* 

where the (T/t)2 f ac t or in the integrand accounts for the cosmological redshift in 
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i the radiation dominated epoch. All that remains is to write eq.(3.1) as a spectral 

distribution. . . 

Radiation emitted at time r will originally have a wavelength of - r and 

momentum - 27r/r. To be careful, let us suppose that radiation emitted at r 

has an effective momentum k = n/r, where we expect R 2 27r. At a later time t 

that momentum is redshifted by fl. In terms of k, (3.1) becomes 

n 

44 
JiiT 

PM = --$- 
/ 

[ln(n2/tk26) - l/2]?. 
n 

--rc --T r 

(3.3) 

This formula is good for all times up to when n/t = m(t) is satisfied, that is, 

when the axion mass is equal to the energy of the lowest energy axion. 

We will need to know’ this time, so I will calculate it here. Recall that Fis 

defined so that 6 E rn(?) = l/E Instanton calculations’3 imply that for three 

quark flavors 

m(t) - 7.3(A6/7r4 ja)( mumpb/A3)‘/2m$ ln(r2mpl/A2t)i, 

where A is the QCD scale factor, -mpl is the Planck mass and rnU,d,+ are the quark 

masses. Since the logarithm evolves so slowly we may write 

m(t) = t2/P 

as long as t does not stray too far from x Setting this equal to n/t we find that 

the latest time for which eq.(3.3) is valid is 04; 

After the axion mass has turned on the picture is entirely different. Any 

string must be attached to a domain wall. The wall-bounded-by-string system 
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breaks up into loops spanned by walls; they oscillate and decay radiatively; but 

since the axion is now massive the radiation is gravitational, at least until the 

wall area shrinks to a size of a few meters-squared, when axion emission can 

again take over. The cosmology of the string-wall system is very interesting, 14 

but here we are concerned only with the effects of those axions radiated before 

fN3iI 

After f11i3’i/the energy density of these axions has the form [See Al] 

Notice that this has the appropriate redshifting properties: - tm2 for large k 

modes and - te3i2 for low. k modes. Looking at this spectrum we see that as 

long as $2 is not too large there is a significant contribution from very low values of 

k, down to k = R2/3/r= n2/3+%, where the effect of the WKB insert is important. 

So, contrary to the previous example, there should be a large enhancement when 

the mass turns on. 

Only an approximate solution can be found. First, we can set G’z = 0 in the 

denominator, introducing an error of at most a few percent. Second, we can 

underestimate pa by truncating the upper limit of integration down to k = m,. 

Third, we can put k = m, in the logarithm and pull it out of the integral, 

obtaining 
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At this point it is fruitful to cast our result into a form that can be easily 

compared to previous calculations. In the following I will be closely paralleling 

the work in ref.[6]. Th e energy density can be written 

p,(T) w 4zln[n5/3/Fm~6] x ---$ x pg]“’ x p-1 [$qP, 

where I have used the relation tT2 = .3m,l/fl. Next, using ?=800Mev and 

dividing by the critical density of the universe, we get 

fll 
' 10'3Giw' (3.4 

Of course the bound on the axion scale comes from the condition that this quan- 

tity be less than 1. 

4. Conclusion 

m = 61.75, which includes the helicity states of photons, gluons, three 

neutrinos, two charged leptons, and three quark flavors. At the present temper- 

ature Ner#') = 3.4, which accounts for the neutrino decoupling before e+e- 

annihilation. Taking for now fl = 27r, ja - lO’OGev, m, = [(mumd)1/2/(mu + 

m~>](md&) - 6 x lo- 4ev and 6 = (l/ja), eq.(3.4) gives 

which implies 

j,, 2 2 x lO”Gev, (44 

a factor of 200 lower than the bound previously obtained by looking only at the 

zero-momentum mode of the axion field. 
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i Evidently the bound (4.1) d p e en d s critically on the value of f2, as well as on 

the assumption that one cubic cell of size t contains one string of length t. If we 

assume that the wavelength of the radiation accurately follows the scale of the 

string network then a larger value of n requires more length of string per cell. 

In fact, since fl scales as the string step-length, the length per cell goes as - f13. 

This appears in the numerator of eq.(3.4) so the choice of n = 27r in eq.(4.1) 

truly would give an upper bound to ja. Another class of uncertainties going 

into eq.(4.1) h ave to do with the nature of the quark-hadron phase transition. 

These were considered in refs.[6-91. It suffices to say that the effects considered - -6 
tend to strengthen the bound, except for ref.[9], which used the coherence of the 

zero-momentum mode to argue that the bound may be weakened. Since cosmic 

string axions are not coherent this argument should not apply. 

Because there appears to be some confusion, I would like to make some 

remarks about the effect of inflation on the cosmological bound for ja. First, 

cosmological difficulties with the zero-momentum mode of the axion field are 

most serious without inflation. This is because the horizon at the quark-hadron 

phase transition contained many, many regions which were causally disconnected 

at the PQ transition, but were brought together in the subsequent history of the 

universe. Causality requires us to suppose that the value of the zero-momentum 

mode was assigned randomly over all of these regions, and to imagine that all 

of these combined to result in a value which is zero to great precision is very 

difficult. Furthermore, if this did occur, then the axion mass turn-on would 

have been safe at the quark-hadron transition, but it would have had to have 

happened in nearly every region in the present horizon that was disconnected 

at then. Thus we can only take uc - o( ja) at the quark-hadron transition. As 
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long as ja 2 4 x 1012Gev then normal damping effects in an expanding universe 

are sufficient to render this mode of the axion harmless. Note that the bound 

is saturated for p a = per, the closure density of the universe. In the absence of 

inflation we have no reason to insist on a flat universe; it is more reasonable to 

assume that there is no more mass than is consistent with observations. This is 

P/PC, = -4 - .l, and the bound on j. is correspondingly tightened. 

Inflation ameliorates the axion problem because everything in the present 

horizon was causally connected at the PQ transition, so of, could have been close 

to zero in that tiny region-which-has become the present universe. In this case 

the PQ transition could have been at the GUT scale. To many people, though, 

it seems very unnatural for our universe to be singled out as a region where 

uc = 0 when it could only have happened by chance. To these skeptics it is 

more comfortable to suppose that a0 - o(ja) at the quark-hadron transition, 

with or without inflation, obtaining once again ja 2 4 x 1012Gev. If so, the post- 

inflationary reheating required by GUT baryosynthesis brings the temperature 

above ja. The universe then cools normally, so except for the fact that inflation 

requires p/pcrit = 1 the effects of inflation are irrelevant. 

This letter shows that axion strings strengthen the bound when there is 

no inflation. With inflation it is possible remove the strings from the observable 

universe, and as long as the post inflationary reheating does not bring the universe 

above Tpo = jpg then the result presented here does not apply. Suppose jp~ 

satisfies the zero-momentum cosmological bound. Since GUT baryosynthesis 

requires reheating to - 1014Gev strings are unavoidable in these models. It is 

only possible to get rid of strings if baryon number is generated below TPQ. 

Besides solving the strong CP problem, axions have been proposed as the 
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missing mass of the universe. Efforts have been undertaken to detect these axions 

exploiting the coherence of the zero-momentum mode. This letter indicates that 

the cosmic axion field is dominated by incoherent axions, so these efforts may be 

in vain. On the other hand, if the axion were discovered by some other method 

then the tightness of the bound implies it is more likely to contribute significantly 

to the density of the universe.’ 

In summary, I cannot argue that the assumptions going into (4.1) are any- 

thing but reasonable. To be certain of this bound would require detailed knowl- 

edge of the evolution of thcaxioastring system. Though computer simulations _ 

have been done in the case of gauge strings, to my knowledge no one has at- 

tempted similar calculations for strings from global symmetries. The problem is 

inherently more difficult because the global strings have long range interactions. 

What this letter suggests unambiguously is that is that axions from strings are 

of cosmological importance. To go further, and accept the bound (4.1), would 

leave scant room for the axion to exist. 

_. 

APPENDIX 

The WKB Approximation for Non-Zero Momentum Modes 

We want to know the enhancement an energy density initially given by 

P = J f(k)& (Al) 

when the axion mass turns on. 

For an axion mode which at some reference time tl, before the mass turn-on, 
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i has the form a = A(t) cos kx, the equation of motion is 

d2 .. 
&A + [Fk2 + m2(t)]A + SH(t)-$A = 0. 

H is the Hubble constant and m is the time dependent axion mass. rand 6i are 

defined by the equation 

F= l/m@) = l/K. 

This is roughly the time at which the axion Compton wavelength crosses the 

horizon. The axion massstarts Zt zero for t < rand rises to its final value m, 

fortBE If&% < m and H < m then the adiabatic condition is met. Since 

m(t) oc t2 (neglecting a logarithmic factor), the time that marks the onset of the 

adiabatic regime is just 2z Let us take tl = E The solution is then 

A(t) x ii(t) cos j /GdT, 

with the condition that the number of axions per comoving volume is constant. 

Thus 

= &q%F~2(E/R(t))3, 

and the energy density of this mode is 

i(fk2 + mf)A(t)2 = { /x}(r,t)’ x ;(k2 + 6i2)a2. 

Finally, since (r/t)2 x i (k2 + W2)z2 is the energy density of the mode at r, and 

the spectrum at this time is eq.(Al), we can simply insert the term in braces into 
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i 
the integral to obtain 

p= &/xj(k)dk. W) 
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