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ABSTRACT 

We present four new methods in addition to the standard methods of extrap- 

olating the t-expansion series, and make a comprehensive comparison of these 

procedures by applying them to the t-series for three quantum systems. We have 

found that by writing the series as a ratio of decreasing exponentials it is pos- 

sible to devise methods that are significantly more accurate than the standard 

methods for low order series. By studying the function t(E) we have found a 

procedure that is more accurate than the standard methods for all t-series orders 

in two of the test sytems. 
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1. Introduction 

The t-expansion ’ is a non-perturbative method that calculates ground-state 

expectation values of many-body systems described by lattice Hamiltonians. The 

idea behind the method is that for any variational state I&,), the normalized state 

I$Jt> = 1 

(Go ) frtH 1 +o)1’2 
estHj2 I$,) (1.1) 

is a better approximation to the true vacuum for any finite value of t. As long as 

the initial state I$,) h as an overlap with the true ground state, quantities such 

as 

0(t) = WtlO wt> 
are guaranteed to converge to their true ground-state expectation values in the 

limitt-+oo. 

Of particular interest is the ground-state energy density 

E(t) = No I HctH Ilclo> 
Wol e-tH Itio) P-2) 

which can be written as a power series in the parameter t, 

E(t)=~~(H”+‘)c=~,-~2t+&+... 
n=O ’ . 

The coefficients ( Hn+l)c are connected moments of the Hamiltonian and are 

defined recursively as 

( H n+l)c = ($01 Hn+’ l$o) - nc (;) (HP+‘)” (+ol Hn-P l$o) . 
p=o 

In order.to calculate the limit E(t + 00) for the power series one must know all 

of the connected moments, which is not possible in any real system.-Instead we 
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are given a finite power series 

N (-t)n E(t) = c --++I n=O - (1.3) 

and the following information: 

1. E(t) is a monotonically decreasing function. This is because the derivative 

. of eqn(l.2) is -(AE)2. 

2. g 2 0. This can be seen by writing the mass-gap (the difference between 

the first excited state and the ground state) as M(t) = -g$. 

3. E(t) rapidly goes to a constant so, g goes to zero as t goes to infinity. 

4. g is integrable. 

Since we only have a finite power series we know that E(t) will not be well 

behaved for large values of t. Therefore we must have criteria for knowing what 

t to trust the series for and a means of extrapolating the series for larger t. 

Until recently, the only procedures used to extrapolate the t-series were the 

Pad4 and d-Pad& methods.1’2 These methods are reliable for series with moderate 

to high orders of t, but become unreliable for low orders. In fact, the more 

accurate of the two methods, the d-Pad4 method, can only be used for series of 

order greater than two. This paper examines several new practical procedures 

for approximating the t-expansion series for large values of t. First we discuss 

the three quantum mechanical sytems to which the t-expansion will be applied. 

Then we examine in detail the approximation methods and compare the results 

of each. 
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2. Quantum Systems 

The harmonic oscillator 

In this test system, we express the partition function explicitly by expanding 

ltio) in the basis of the energy eigenstates of the system. The partition function 

Z(t) is defined in terms of the energy as 

E(t) = -$ ln Z(t) = - $34 z(t) . (2-l) 

Comparing this with equation (1.2) gives 

z(t) = (tiol cHt Itio) . (2.2) 

By writing Itio) = C,“=, b, In) with H In) = (n+ l/2) In) and bz = esn27 we get 

z(t) = 5 e-n27e-(n+l/2)t 

n=l 

Z(0) = 1 . (2.3) 

Large 7 corresponds to the system having a very large probability of being in the 

ground state; small 7 corresponds to the system having nearly equal probability 

of being in any of the eigenstates. For practical reasons N, the number of states 

in which Itio) is expanded in terms of, is chosen here to be no bigger than 50. 

From (2.3) the asymptotic value of the vacuum energy is analytically given as 1;. 

We applied our methods to this test system by writing Z(t) and E(t) as power 

series to see how well our methods recover the true vacuum energy. 

The U(1) .one plaquette lattice gauge theory 

The application of the t-expansion to lattice gauge theories is discussed in 

detail in references 1,2. For periodic QED in 2+1 space-time dime’fisions, the 
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t-expansion is used to calculate the vacuum energy 

E@) = (tiol He-tB l&J 
MO I thR I$J~> 

where H is Kogut-Susskind Hamiltonian: 

H = $[I? + fNp] 

(2-4 

(2.5) 

(2.6) 

g is the coupling constant, y = 2/g2 and Np is the number of plaquettes (usually 

infinite). Up is the ordered product of the link operators Ul which are elements of 

the U(1) group. Since El are their conjugate variables, the first term of (2.6) is 

the Casimir operator of the U(1) group on every link. The calculation of E(t, y) is 

based on the vacuum of the strong-coupling limit so that El I$J~) = 0. For Np = 1 

there are four links to be summed on in (2.6). This model is a particularly good 

example on which to test our methods because the exact answer may be found 

by diagonalizing the Hamiltonian in a large basis of strong-coupling states. The 

weak-coupling limit for the infinite plaquette system is E(g2 = 0) = $$. We will 

analyze the vacuum energy density to order t8, as calculated by D. Horn3. 

The SU(2) lattice gauge theory 

In 3+1 dimensions, the Hamiltonian for this model is 

H = c[xl3’ + zc(2 - trU,)] 
1 P 

(2.7) 

where x = 4/g 4. The link operators El and Vi are the color electric field and the 
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SU (2) group elements satisfying 

[Ef,Up] = $Jl&$l. . (2.8) 

Out of every four links that compose a plaquette one constructs the product 

tr up = tr(Ulug-Jp UL’). The state Itio) is taken to be the ground state of the 

strong-coupling Hamiltonian so that 

El l$o) = 0. 

Again, we will analyse the series for the vacuum energy density to order t8 as 

calculated by G.J. Mathews et.aZ.4 

3. Methods and Results 

As stated in the introduction, these methods are used in conjunction with the 

t-expansion to calculate ground state energies of quantum mechanical systems. 

The Pade’, d-Pad6 and CMX methods have been documented and we include 

them for completeness and comparison. In this chapter we apply these various 

methods to the t-expansion series up to order t8 for three quantum systems and 

evaluate the merits of each. 

3.1. PAD& METHOD 

The standard procedure for extending the range for a series is to express it 

as a ratio of polynominals with orders L and A4 

PL (t> 
E(t) = QM(t) (3-l) 

where L .+ M is less than or equal to the order of E(t). Since we expect E(t) to 

tend smoothly to its exact value as t + 00, only diagonal approximatis are used. 

6 



However, if we are satisfied with the computation of E(t) for a finite value of t, 

then we may use all approximants with M 2 L. None of these approximants, 

including the diagonal Pad& are guaranteed to behave properly for all values of 

t. The usual critereon used to determine the range in which the Pad6 calculation 

can be trusted is that several Pad6 approximants must agree over this range for 

a given value of L + M. We will refer to this as the Pad6 criterion. Generally, for 

a given value of L + M one of the approximants (usually the diagonal Pade’) will 

have a larger range than the others; but with the Pad6 criterion there is no way 

of determining this. This is particularly true if there are very few approximants. 

Also in its stated form, it is difficult to implement the Pad6 criterion in a machine 

calculation. 

We present a simpler and more accurate cutoff for E(t) and the Pad& ap- 

proximants by trusting the series only to where dE(t)/dt becomes positive or 

zero for the first time, or when the second derivative of E(t) becomes negative 

or zero for the first time. Figure 1 represents typical Pad6 approximants for the 

energy density t-series, and exhibits the general features discussed above. For 

this diagram, our new criteria indicate that the largest value we can trust the 

[4,4] Pad6 is to t = 1.5 and that we can only trust the series up to t z 3/10. In 

general a spurious pole similar to the one in the [3,5] Pad6 near t=7/10 would 

be mistaken as the cutoff point in a computer program; so when using the cutoff 

procedure we must avoid values of t near the roots of Q(t) by omitting these 

points and interpolating the function using smoothly joined parabolas. 

In figures 2-4 we compare the low and high order results of prior extrapola- 

tion methods (Padd, d-Pad& and CMX) applied to the harmonic oscillator, U(1) 

and SU(2) systems for various values of the coupling constant. Wherever there 
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are numerous approximants for a given order, such as in the Pad6 and d-Pad& 

methods, we present the more accurate results. In all the Pad6 results we have 

applied the cutoff procedure to the Pad& approximants. To compare the results 

for no extrapolation, we also include the results of making a cutoff to the series 

directly. Since it is a Taylor series about t=O, the t-series is only valid for small t, 

so we expect the cutoff procedure applied to the t-series not to show any drastic 

improvements for moderate increases in the order. The results verify this. Since 

the range of the series is extended by the Pad6 approximants, we expect the cut- 

off to be closer to the actual ground-state. At each order, we have found this to 

always be true for some values of L and M. This is demonstrated in the diagrams 

since the Pad& results are always more accurate then the direct t-series results. 

Second order perturbation theory implies that dE(y)/dy is a monotonically de- 

creasing function and strong coupling expansions tell us that dE(oo)/dy = 0. 

So dE (y)/dy should b e a positive function and we cannot trust E(y) for values 

of y where its derivative is negative. This means that we should make E(y) 

be a constant rather than turn down in our diagrams. In the U(1) and SU(2) 

systems, the cutoff procedure used with the [4,4] Pad6 approximant produces 

oscillatory behavior in the weak-coupling regime. This signals the break-down of 

the method. Since this occurs past the point where dE(y)/dy becomes negative, 

it has no effect on the final results. 

Our results indicate that it is possible to choose an optimum finite value of t 

for the Pad6 approximants to the t-series and that the most accurate approximant 

need not be the diagonal one. We also conclude that the off-diagonal approxi- 

mants are best for very low orders (t2, t3) and the near diagonal approximants 

are best for higher orders (t6 to t8). 

8 



3.2. D- PADI? METHOD 

. 

The d-Pad& method forms Pad& approximants to dE(t)/dt. It then integrates 

to find E(t). Th is method allows the use of [L, L + M] Pad6 approximants for 

M 2 2, therby offering more approximants to be compared for a given value of 

L + M than in the diagonal Pad6 case. The d-Pad& method yields more accurate 

results than the diagonal Pad4 method because our knowledge of the derivative 

is accurate near t=O and becomes worse for increasing values of t. Hence when 

E(t) is reconstructed by integration, the effect of the error in the approximation 

to dE(t)/dt for t = to will not show up until the value of t is significantly greater 

than to. So the ground state energy is of the form 

E(t) = PL (7) 
QM(r) dr. (3.2) 

First we write the integrand as 

PL(T) m 
c 

PL (G) 

Q&) = i=l Q’I&)(~ - ri) 

where the 7:s represent the m roots of QM( r and M > L + 2. The integral ) 

becomes 

In general, the integral will have poles along the path of integration as well 

as complex poles near the real axis, r; = 7i f i&. In order for the integral to be 

defined we express it in terms of the Cauchy principal value as follows: 

/ -dr=p 7 - 1 7; / 
-dr f ir . 
7 - 1 7i 

Since E(t) is the eigenvalue of a hermitian operator we take the reagart of the 
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integral to get 

E(t) = f: PL(7i) 
i=l Q’m(74 Re(b(t - 7i)) - (3.3) 

. 

For a function j(t, y) of more than one variable this method is generalized 

by forming Pade’ approximants to w in the parameter t. Then we integrate 

from t = 0 to t = 00 to form g and finally integrate with respect to y to 

reconstruct f(y). W e refer to this specific form of the d-Pad4 method as a d2- 

Pad& Another advantage of forming a Pade’ approximant to the derivative of 

E(t) is that if the derivative of E vanishes quickly enough, then no cutoff is 

needed in the integration over t. In our calculations, only in the case of the 

harmonic oscillator does a cutoff of t substantially improve the results. 

The denominator of (3.2) must be at least two orders higher than the nu- 

merator. Therefore, the lowest order d-Pad4 one can safely form is the [0,2], 

which requires up to the t3 term in the series. As expected for a given order, 

the approximants with largest M - L values are the most accurate except in the 

harmonic oscillator case. There, we have already seen that the derivative does 

not vanish sufficiently fast. 

The first graph in figure 4 includes the results of the d2-Pad& method applied 

to the SU(2) system. Analogous to the improvement of the d-Pad6 over the 

Pade’ method, by integrating over y = 2/g2 as well as t we see that the second 

derivative with respect to y will generally have the correct sign for a larger value 

of y in the d2-Pad& method than in the d-Pad4 case. This can easily be seen 

in the d2p[1,6] and dp[1,6] graphs. Comparing, for example, the t8 CMX and 

t8 ECMX results for the SU(2) system in figures 4 and 7, we see that a similar 

relationship holds for these two methods. For low orders the d2-P&t+ method 
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shows no improvement over the d-Pad4 method; however, for higher order series 

the d2-Pad4 procedure substantially improves the results for small values of the 

coupling constant. 

3.3. CONNECTED MOMENT EXPANSION 

The CMX method 596 for extrapolating the function for large t is based on ex- 

pressing E(t) not as a ratio of polynomials but as a set of decreasing exponentials 

according to the formula 

E(t) = E(t + 00) + E Aiexp(-bit) 
j=l 

bj > 0. (3.4) 

To find E,, the powers of t on both sides of this equation are equated to get 

j=O 
00 

Pk E Ik = C Ajb;-’ k> 1. 
j=O 

It is postulated that PI can be expressed in terms of the other P’s as 

PI = ~w*(p2,p3,--) 

k=l 

(3.5) 

(3.6) 

and is noted that the function Sk defined by 

Sk = PkPk+2 - P;+1 = 2 AiAj(b! - bibj)(bibj)k-’ P-7) 
i,j=l 

has the same form as Pk. Hence, Sr may also be expressed as in eqn (3.6) 

s1 = ~~k(s2,s3,-) 
k=l 

(3.8) 
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or 
00 

PlP3 - P; = c wk(P2p4 - p,“,p3pS - pi,. . .). 

k=l 

Solving for PI gives 

P2 00 
pl = g + c wk(P2P4 - P32, P3P5 - P,&. . .)/P3. 

k=l 

. 
Comparing this with (3.6) yields the recursion relation 

Wl = P,“/P, 

wk+l(p2,p3,... ) = &-1wk(P2P4 - P,“,P3P5 - Pi,. . .) . 

Substituting PI back in the first equation of (3.5) gives 

E = I 
1 

1 (Id12 - ‘:j2 I; - 00 
13 I3 1513-I; 

. . . 

This may be written as 

( 

&i . . . In+1 
Em=I~-(12 . . . In) i --. i 

I n+1 *** I2n-1 

where n is the number of terms in (3.12). 

I2 
. . 0 . 

In 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

A disadvantage the methods that approximate the series as exponentials have 

is that if one has an odd order power series then the last order is not included 

in the approximation. As indicated by the singularity at g2 = .8 in the t8 CMX 

result of figure 3, the inverse of the matrix in (3.13) will not always exist. If this 

occurs we must discard the answers in this region. 
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3.4. LAPLACE METHOD 

The Laplace method follows the procedure in the harmonic oscillator system 

and expands Itio) in terms of the the eigenfunctions of the Hamiltonian as 

ltio) = fJ Ai In> 
n=O 

with H In) = An I ) n so that for finite volume V, the partition function is 

Z(t) = [boevtAo + bleptxl + . . .I” bi, Xi > 0. (3.14) 

From this the energy density is 

E(t) = boXoe-txo + blXleTtX1 + . . . 
boe-tXo + ble-tX1 + . . . 

(3.15) 

where 0 < X0 < Xi < X2 . . . so AoV is the lowest lying energy eigenvalue. If we 

take the Laplace transform of z(t) = Z(t)ljV, G(s) = s-“, emstz(t)dt we get 

G(s) = -& + e-i!- + . . . s + Xl 
(3.16) 

We note that the lowest pole of G( s corresponds to -X0 and that its residue is ) 

positive. We use this knowledge by solving for z(t) in terms of the t-expanstion 

series, E(t) as 

Z(t) = z(O)e- K E(t’)dt’. (3.17) 

For small t we may expand this as a Taylor series 

z(t) = 20 + z1t + $t2 + St3 + . . . 
. 

; (3.18) 
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We form G(s) by taking the Laplace transform of (3.18) 

G(s) = : + 5 + $ + . . . (3.19) 

and define the variable u E l/s so that 

G(u) = u(zo + zlu + .z2u2 + . . .). (3.20) 

. 

We may write this as a ratio of polynominals by forming a Pad4 approximant to 

the terms in parenthesis. To know which L, M values we should form our Pad& 

we look at (3.16). In terms of u, this is written 

G(u) = 
u[bo(l + Xru)(l+ A+). . . + bl(l + Xou)(l + X24.. . + . . .] 

(1+ Xou)(l + XlU)(l + x24.. . 
. 

So we see that our Pad& should be a [L, M] = [n - 1, n] approximant, 

c&-l(U) 
G(u) = u Qn(U) 

(3.21) 

(3.22) 

where the order of Qn(u) ( or value of M) corresponds to the number of exponen- 

tials we are approximating z(t) to. In order to form the [n, n - l] Pad&, we must 

have coefficients in the t-series to order 2(n - 1). Having written G(u) in this 

manner, we know that the smallest real negative root of Qn(l/u) with a positive 

residue is -X0. 

We expect Pad6 approximants of analytic functions with various singularities 

to display these singularities but the approximants may also have extraneous 

poles with nearby zeroes known as defects7. If the function j(t) is analytic near 

t = Q but has a Pad6 approximant, g(t) = RM-Fi;{t--aj with a pole ati = QI, then 
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the approximant will only agree with the series when its residue is very small at 

the spurious pole. Therefore, if a pole has a residue that is significantly smaller 

(- 10 times smaller) than the next biggest pole, we discard it and take the next 

largest pole. Two other characteristics of defects are that they are transient in 

going from one Padd to the next and they are often associated with successive 

approximants (AL = 1 or AM = 1 or both) being nearly equal. 

. In figures 5-8 we compare the low and high order results of the new extrap- 

olation methods (Inverse, Laplace, EofF and ECMX) applied to the harmonic 

oscillator, U( 1) and SU(2) systems for various values of the coupling constant. 

As with the previous methods, these graphs represent the more accurate results 

for a given order. For the Laplace method problems occur involving the roots 

of Qn(u) for larger n’s due to defects (see for example figure S), and we know 

that the results can not be trusted in these regions. In the SU(2) system, the t2, 

t4 and t6 results are nearly equal in value. However, the t8 result in figure 7 is 

substantially lower for large y. The t lo result has a singularity near y = 1.4 which 

may effect the answer for larger values of y. Nevertheless, outside the singular 

region. the tenth order result also agrees with the lower order values. 

3.5. EXTENDED CONNECTED MOMENT EXPANSION 

As in the Laplace method, this method expresses E(t) as a ratio of decreasing 

exponentials. The difficulty with this approach, as with the CMX and Laplace 

methods, is finding the b’s and X’s so that the Taylor expansion for (3.15) agrees 

with all orders of the t-expansion series. Once this is achieved, we are assured 

that E(t) will behave properly as t --) 00. Because of the agreement with the 

t-expansion series, E(t) will behave properly for small t as well. - 
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There is no loss of generality in defining be = 1 in equation (3.15). For 

convenience we also define 

N-1-f b, c 6,3 A, - x0 . 
n=l 

So that 

E(t) = x0 + 
blSltctG1 + b262e -a! + . . . 
1 + ble-t61 + b2e-t62 + . . . ’ (3.23) 

where t is the number of exponentials in the numerator and denomenator of 

(3.23). If we want to express E(t) as a ratio of n exponentials then we must 

have 2n + 1 terms in our t-expansion series. It is also clear that the asymtotic 

value of E(t -+ 00) is Xo. Now we write E(t) as a power series by expanding the 

exponentials 

E(t) = x0 + Sl - ts2 + $3 + . . . 
l-t&+$2+... * 

Since the denominator is small we may write 

t2 
E(t) = X0 + (S1 - tS2 + ziS3 + . . .)(l - h + h2 - h3 + . . .) . 

where 

S, E (b16,” + b26; + . . .)/N 

t2 
h z -t& + + + . . . 

. 

(3.24) 

(3.25) 

To find the b’s and X’s we equate the coefficients of the power series in (3.25) 
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with the t-expansion series 

t2 
E(t) = I1 - 12t + ‘35 + . . . 

. 

We compute out to second order in t, which corresponds to one exponential in 

(3.23), and obtain 

I1 = x0 + Sl 

I2 = s2 - sf 

I3 = s3 - 3sls2 + 2s; . 

As in the CMX method we define 

(3.26) 

Pl - I1 -x0 

P, G I, n>l 
(3.27) 

so that 
PI =s1 

P2 = s2 - sf (3.28) 

P3 = s3 - 3SlS2 + 2s; . 

These equations may be written as 

92 = P2 +Pf = s2 
93 = P3 + 3g2P1 - 2Pf = s3 

(3.29) 

which have the same structure as equations (3.5) so that we can write 

(3.30) 

Since the g’s depend on the unknown PI , we must solve (3.30) iteratively. In 

(3.27) we must have an initial estimate of X0. Because the answer for the ECMX 
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energy quickly converges for any reasonable initial values, we are free to choose 

from any of the other methods. We will use the CMX results. So initially 

PI = II - ECMX, and 

From this we get P,’ = II - 

!J2m2 

g3w - 
(3.31) 

(3.32) 

and so forth. This is easily generalized for a t-expansion series with an arbitrary 

number of terms. 

For the t-series studied, the Laplace and ECMX methods give the same re- 

sults. One advantage ECMX has over the Laplace method is that one does not 

have to deal with the subtle task of finding defects. The problem of finding de- 

fects may also be solved by noting that any differences between the Laplace (if we 

have not searched for defects) and ECMX methods are caused by defects. Figure 

8 compares the results of the [3,4] Laplace method, where the defects have not 

been found, and the t6 ECMX method. We can see from the figure that a defect 

occurs at 2/g2 = 9/10 in the Laplace method. If we discard these spurious poles, 

we obtain the same answer as in the ECMX result. In this same figure we also 

illustrate the rapid convergence of the ECMX iteration process. The first graph 

corresponds to the t6 CMX result. 
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3.6. INVERSION METHOD 

This method takes advantage of the fact that since t(E) has a much shorter 

range than E(t) , it should be better behaved than E(t). We have already stated 

that E(t) rapidly decreases to a constant so that its derivative for t --) 00 should 

be zero. This means that the value of E at which the derivative of t(E) become 

infinite is the value of E(t) where dE (t)/dt becomes zero. We take this to be 

E (t + 00). We implement this by inverting E(t) thus 

t(E) = 2 d,E”. 
n=O 

(3.33) 

We take the derivative of t and form a Pad& approximant 

dt(E)= PL (El 
dE QM (E) 

(3.34) 

and take the largest positive real zero of Q(E) less than E(t = 0) to be the value 

for E(t ---) 00). 

For the Inverse method, the one root of the [n,l] Pad4 is always a reasonable 

estimate of the ground state energy density and, if they exist, the roots of QM(E) 

for larger M are more accurate. In the SU(2) system the results for the t-series 

for order greater than four do not improve the low order results. This is due to 

the non-existence of positive real roots less than E(t = 0) for large values of y. 

After varying the application of the inverse method to this system and seeing 

no change in the results, we conclude that the non-existence of proper roots for 

large y is a result of the power series and not the calculation. For the harmonic 

oscillator and U(1) systems, the Inverse method is more accurate than all of the 

other methods for high order series. For these two systems, the Inverse method 
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is closer to the exact answers than the CMX, Pad6 and d-Pad6 methods for all of 

the orders we studied and is comparable to the ECMX/Laplace method for low 

orders. We have also noted that in all three systems the [O,l]. inverse result is 

the same as the second order CMX result. It is not completely clear why this is 

true. The major drawback of the Inverse method is that there are more defects 

and they are harder to detect than in the Laplace method. While the ECMX 

method may be used as a check for defects in the Laplace method, there is no 

similar check for the Inverse method. 

3.7. E OF F 

Though this method is not more accurate than the Pad6 method, we include 

it for completeness. As with the inversion method we try to improve the behavior 

of E(t) by expressing the t-series as a function of a more compact variable than 

t. Suppose we define b(t) E 1 - Z(t) and invert this equation to get 

t(6) = do + d16 + d2b2 + . . . o<sg. (3.35) 

Equation (2.1) tells us that 

Therefore if we write the derivative of t as 

w4 - = -&F(6) 
dc5 

(3.37) 

we are assured that 

1 
W) = F(6)’ (3.38) 

Where 6 = 1 corresponds to t = 00. We then extend the range of E(G)-by forming 

20 



Pad4 approximants to it. 

The function E(6) actually is better behaved than E(t) and the cutoff proce- 

dure is really only needed in the Ul case where improvement is. drastic. Figures 

5-7 contain graphs of the EofF results. Since E(6) has the same general behavior 

as E(t) we expect the EofF method to have results similar to the Pad4 method. 

The t2 approximants yield inaccurate answers but the results at higher orders are 

comparable to those obtained with the Padd method. Like the Pade’ method for 

higher orders, the near diagonal approximants are the most accurate. Because of 

numerous poles in F(6) = M, th e cutoff procedure is very difficult to use for 

the Ul series. As a result, the approximants for g2 < 1.2 are not well behaved in 

figure 6. 

4. Conclusion 

We have seen that in the strong-coupling region all of the methods agree. 

Also, as we increase the order of the t-series, the methods generally become 

more accurate. Through the Laplace and ECMX methods, we have sucessfully 

expressed the t-series as a ratio of decreasing exponentials by two independent 

methods and have shown that this ansatz produces very stable results. The 

ECMX/Laplace method converges rapidly and for, the SU(2) system, essentially 

requires only three terms in the t-series to give the asymptotic value for E(t). 

It is important to note that all of the methods may produce singularities that 

are inherent to each method. We summarize the results for the three systems by 

stating that: 

1. For general orders the Inverse and ECMX/Laplace methods are the most 

accurate. 
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2. For low orders the EofF method is comparable to the Pad4 and d-Pad& 

methods which are not as accurate as the CMX, Inverse or ECMX/Laplace 

methods. 

3. For higher orders the Inverse, ECMX/Laplace and d-Pad4 methods are the 

most accurate; the EofF, Pad4 and CMX are the least accurate. 

Of course these are generalities and should be so treated since the accuracy of 

the methods will depend on the system to which they are applied. However, 

we can say that these new procedures provide an excellent complement to the 

prior methods of extrapolating the t-expansion series, and in some cases greatly 

surpasses them in accuracy. 

The author whould like: to thank M. Weinstein for many helpful suggestions 

and for comments on the manuscript, and M. Karliner for a number of helpful 

conversations. 
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FIGURE CAPTIONS 

1) Shows the vacuum state energy density for the eighth order SU(2) series 

versus the parameter t. L;M refers to the PL(t)/QM(t) approximant. The 

MP graph is the mean plaquette exact upper bound obtained in reference 

8. Not shown is that all of the off-diagonal approximant go to zero for large 

t. 

2) The first three methods (Pad& d-Pad6 and CMX) are applied to the har- 

monic oscillator. The [4,4] Pad& approximant agrees well with the exact 

answer up to 7=.2, which corresponds to roughly eight coefficients in eqn 

(2.3) greater than lo- 6. tn refers to approximating the nth order series. 

3) The results of the first three methods on the U(1) system. The maximum 

of dE(y) lb is the cross-over region from strong to weak coupling, and 

occurs near g 2 = 1.2. The bump in the dp[1,6] graph is due to dE/dt not 

vanishing sufficiently fast for those values of the coupling constant. 

4) The results of the first three methods on the SU(2) series. The MP graph 

has a weak-coupling limit of & Most of the approximants are in rough 

agreement with each other up to y=1.5, where dE(y)/dy becomes negative. 

5) The new methods (Inverse, Laplace, EofF and ECMX) applied to the har- 

monic oscillator series. For the EofF method. The [L, M] means the [M, L] 

Pade’ for F(6) in eqn (3.38). 

6) The new methods applied to the U(1) series. As in the d-Pad& case, the 

Inversion method agrees well with the weak-coupling limit of $&. 

7) The new methods applied to the SU(2) series. 

8) Ten iterations of the ECMX method applied to the SU(2) series for terms 
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up to t6 with an initial value of Pl = I,- ECMX(G). We also show the [3,4] 

Laplace result obtained without searching for defects. When the defects 

are properly handled, the two results agree exactly. 
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