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Abstract

The High Luminosity upgrade of the LHC will increase the instantaneous luminosity

to 5× 1034 cm−2 s−1, resulting in an increase in the number of simultaneous proton-

proton collisions per event (pileup) to the range 140-200. The CMS Level 1 Trigger

system will be upgraded, and will reduce the 40MHz event rate to 750 kHz. The

system will perform a fast event reconstruction on FPGA devices, and select events

for read out within a latency of 12.5 µs.
The high level FPGA programming tool MaxCompiler is investigated for use

in Level 1 Trigger applications. An existing trigger algorithm, originally developed

with a Hardware Description Language, is reimplemented using MaxCompiler and

compared to the original. Bitwise agreement between the outputs is observed, with

half as many lines of code, at the expense of some extra FPGA resources.

A hardware demonstration of a proposed Level 1 track reconstruction is pre-

sented, with a Kalman Filter track fit developed with MaxCompiler. The perfor-

mance of the tracking is investigated, as well as the potential for developing advanced

algorithms with low latency using the tool. A high tracking efficiency, and precise

parameter resolutions, are achieved with a 3.7 µs latency in high pileup events. A

boosted decision tree classifier, implemented with inference latency of a few clock

cycles, is presented as a means to reject fake tracks.

After the Level 1 Trigger, events are further processed on commodity PCs in the

High Level Trigger (HLT). The High Luminosity LHC will also challenge the HLT,

which is projected to require twenty times the processing power used during LHC

Run II. Part of the HLT tracking is ported to Maxeler Dataflow Engines (DFEs),

a hardware acceleration technology. A faster rate of processing is achieved, but

with an initial latency of the host-DFE communication that limits the performance.

Steps which might yield acceleration are identified.
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Chapter 1

Introduction

1.1 LHC and HL-LHC

The Large Hadron Collider (LHC), situated 100m underground near Geneva, Switzer-

land, is the largest and most powerful synchrotron ever constructed. Particles, most

often protons, are accelerated up to 6.5TeV by superconducting magnets in two

counter-rotating beams in a 27 km circumference ring. At four sites around the ring

the beams are brought into head on collision with a centre of mass energy of 13TeV.

At each of these sites a detector measures the new particles created by the collision.

These detectors are the experiments: CMS, ATLAS, LHCb, and ALICE.

The LHC was constructed to further the understanding of the fundamental forces

of nature: for the discovery of new particles and new physics. To date the Standard

Model (SM) of particle physics is the theory that best describes the fundamental

forces, excluding gravity: electromagnetic; weak; and strong nuclear force. The

electromagnetic and weak forces are unified to a single force, the electroweak force

[3–5]. A breaking of the electroweak symmetry is necessary to provide the W± and

Z vector bosons with mass. The Brout-Englert-Higgs mechanism [6–9] provides this

symmetry breaking, with the addition of a scalar boson, the Higgs. At the time

of the construction of the LHC, the Higgs boson was the only SM particle not yet

directly observed. The potential for its discovery was a particular motivation for

the LHC.

Despite its successes, there are many phenomena that the SM cannot account for.

There is no SM particle that could be a candidate for Dark Matter, well motivated

by cosmological observations. Neutrinos in the SM are massless, which cannot be

reconciled with the observation of neutrino oscillation, which requires that they have

1



2 INTRODUCTION

Figure 1.1: Timeline of the LHC project.

mass. There is no explanation for matter-antimatter asymmetry, with every SM

interaction conserving baryon number. Theories such as Supersymmetry propose

extensions to the SM which might resolve some of these outstanding issues, and

predict new particles with masses accessible at the LHC. Searches for signs of physics

beyond the Standard Model was another major motivation for the LHC.

Despite the success of the LHC in discovering the Higgs boson [10, 11], no new

physics has been discovered. To manifestly increase the potential for discovery of

any new phenomenon, that has so far proved elusive, the LHC will be upgraded.

This upgrade will take place after LHC Run III, planning to restart according to

the schedule shown in Figure 1.1, around mid-2026. The upgraded machine will

be called the High Luminosity LHC (HL-LHC), a reflection of the beam luminosity

increase by a factor five over the LHC design luminosity. This will facilitate the

collection of 3000 fb−1 over a ten year period, compared to the 300 fb−1 collected by

the end of Run III.

For the CMS experiment at the HL-LHC [12], the Higgs boson will remain a

major subject of interest. With the 3000 fb−1 dataset, many measurements of Higgs

properties will be made possible with high precision. The couplings of the Higgs

boson to Standard Model fermions are currently measured with around 20% uncer-

tainty, which will decrease to around 1% with the full HL-LHC data. The Higgs self

coupling will be measurable, with the 40 fb cross section of di-Higgs production.

Vector boson scattering processes, which can be sensitive to new physics through

anomalous triple- and quartic-gauge couplings, will be another class of processes

to benefit from the additional integrated luminosity [13]. These processes probe
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the nature of the electroweak symmetry breaking and the role of the Higgs boson.

Tagging of forward jets is essential to reduce background contributions from pileup,

and a greater tracker acceptance will increase sensitivity.

CMS will also continue to carry out direct searches for new particles. New

particles with masses of up to a few TeV, accessible at the LHC, but with small

cross sections, may become detectable at the HL-LHC where they were not at the

LHC. The upper limits on the accessible mass of new particles will be extended

somewhat by the extra integrated luminosity. In the absence of any new discoveries

at the LHC, more exotic event topologies, for example with semi-stable particles

that decay inside the detector, but some distance from the beam line, become topics

of interest. The CMS detector must maintain sensitivity to these channels in the

more challenging environment.

The Phase II upgrade of the CMS detector will prepare the experiment for HL-

LHC conditions [12]. Much of the detector will be replaced, although the overall

concept will remain. A new tracker, with greater acceptance and finer granularity,

will also provide input to the Level 1 Trigger for the first time. A new endcap

calorimeter, a highly segmented sampling calorimeter, will provide precise energy

resolution, particle identification capability, and pileup mitigation. A correlator

trigger will utilise these detectors with full particle-flow [14] reconstruction. These

upgrades will increase the power of the trigger, while presenting a significant chal-

lenge due to the harsh latency and throughput constraints.

The Level 1 Trigger will use the latest generation high performance Field Pro-

grammable Gate Array (FPGA) devices for computing. These latest devices are

increasingly commonly programmed using high level programming languages and

compilers. These approaches promise to improve the development time and effort

of complicated algorithms: an appealing prospect for the trigger processing at CMS

at the HL-LHC. In this thesis, the high level tools of Maxeler Technologies were

turned to the development of Level 1 Trigger algorithms. In Chapter 3 the tool

is benchmarked against the low-level handwritten approach to test its suitability

for applications with microsecond latency and tight resource constraints. It is then

used in Chapter 4 in the development of track reconstruction for the Level 1 Trigger.

Finally in Chapter 5, the high level tracking code is turned to an application target-

ing the High Level Trigger, using a Maxeler Technologies Dataflow Engine FPGA

accelerator card.
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Figure 1.2: The cross section for several standard model processes as a function of
centre-of-mass energy [15].

1.2 Trigger and FPGAs

1.2.1 Trigger

The trigger system of a HEP experiment determines when to read signals from the

detector and write them to storage for later analysis. The first trigger, for example,

activated a cloud chamber when a high energy particle caused a coincidence of signals

in Geiger counters surrounding the chamber [16]. Triggers at the LHC experiment

perform the same operation: determine when ‘something of interest’ occurs, and

trigger the reading out of the detector for later analysis. These systems can perform

vastly more sophisticated analysis to reach their decision, but the principle remains.

Unlike the cloud chamber trigger, required to capture an event occurring at an

unknown time, the LHC collisions occur at a metronomic 40MHz. The need for
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a trigger arises because the vast majority of collisions do not produce any results

of interest. This may be because no hard proton scatter took place, or because

the products are of some well understood process. The cross sections of several

electroweak processes in proton-proton collisions are shown in Figure 1.2, and can

be seen to be several orders of magnitude less than the total cross section.

The ability to sift out such uninteresting events at the earliest opportunity allows

for a saving in infrastructure: a lower rate of event storage, requires lower bandwidth

to transport data from detector to storage, and less total storage capacity. The

workload to reconstruct and analyse event data is also reduced, which is already a

major globally distributed computing effort [17]. The existence of the trigger system

is also in some sense ‘built in’ to the rest of the CMS detector, as components

responsible for the readout of data would be unable to read out at the full 40MHz

rate, so the trigger must perform this reduction.

Without yet describing the trigger as a system, the concept of a trigger ‘menu’, as

used at CMS, can be understood. The trigger menu defines what is an ‘interesting’

event worthy of sending to permanent storage. This takes the form of a list of particle

types and kinematic requirements. The items on the menu are a balance between

the interests of different analysis groups and the available bandwidth for reading

data off the detector and sending it to disk. Processing of the measurements made

by the CMS detector is required to construct the information used in the menu

to make the ultimate trigger decision. This processing is executed in the trigger

system, as well. Since, necessarily, all detector data must be stored somewhere until

the trigger decision is made, a latency restriction applies in order to avoid loss of

events. At CMS the data is kept in buffers on or near the detector until a trigger

signal is received.

The CMS trigger, which will be described in more detail in Chapter 2, is a two

stage processing system. The first stage – Level 1 – is situated underground in

the cavern adjacent to the detector. The Level 1 Trigger (L1T) processes events at

the full 40MHz and triggers readout of around 100 kHz: a factor of 400 reduction.

Latency is constrained to 4 µs by the depth of buffers on tracker front end chips.

Only a subset of the full detector data is sent to the L1T, to limit the bandwidth

required for transmission of data: the calorimeter (at a reduced granularity), and

muon detectors are used while the tracker is not. Processing is carried out on FPGA

devices with large data bandwidth and significant parallel computation.

Events which pass L1T are sent to a computing facility directly above the de-

tector on the surface, where space presents less of a restriction. At this High Level
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Trigger (HLT) commodity PCs are used to reconstruct events using all detectors

at their full granularity. The processing at HLT is also latency constrained, with a

limitation from the incoming event rate and the number of processors. With around

1,000 CPU nodes and the aforementioned 100 kHz rate, the limit is around 200ms.

By contrast the ATLAS experiment operates a three level trigger [18]. The first

level (L1) is similar to the CMS L1T, with a latency of 2.5 µs and a maximum output

rate of 75 kHz. The Level 2 Trigger (L2) is comprised of conventional processors,

reducing the rate to 3 kHz within 40ms per event. The processing at this second

level performs similar algorithms to the full reconstruction, but only within regions

of interest (RoI) identified by L1. This RoI seeded reconstruction uses around 2–6%

of the total event data. Events passing L2 are then fully reconstructed, also using

conventional processors in the Event Filter (EF). The EF reduces the event rate

to disk to 200Hz within 4 s. The HLT system consists of around 1300 compute

nodes split between L2 and EF. ATLAS triggers are also produced after comparing

reconstructed particles with a menu of events of interest.

The LHCb experiment uses a two level trigger: one level of hardware and one of

software, with the majority of the processing performed by the high level (software)

trigger [19, 20]. The hardware level (L0) reduces the rate from around 40MHz to

1MHz in 4 µs. Only the calorimeter and muon system are input to L0, and events

with high transverse momentum (pT ) muons or large transverse energy deposited

in the calorimeter are read out. A CPU farm of 27000 cores reduces the rate to

12.5 kHz. The software running at the HLT is structured into two subcomponents

– HLT1 and HLT2. HLT1 performs partial reconstruction, and reduces the rate

to around 70 kHz. HLT2 then reconstructs all tracks above a pT threshold for the

remaining events. LHCb also operates a ‘deferred trigger’ which stores 20% of all

L0 accepted events onto disks local to the HLT, and processes them during gaps in

LHC operation, which effectively increases the processing power of the farm.

For Run III LHCb will upgrade to a trigger-less readout [21]. This upgrade

will see the entire detector read out to a farm of conventional processors at the full

40MHz event rate. With the current trigger system, a significant loss of efficiency

is incurred by L0. The LHCb detector bandwidth is significantly less than the CMS

bandwidth, at 4TB s−1. This upgrade might also see the HLT architecture change

from CPU-only, to a configuration with FPGA coprocessors [22]. Certain algorithms

used at the HLT show an improvement in processing speed using FPGA accelerators

[23].

This thesis is primarily concerned with the preparation of the CMS trigger for
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the HL-LHC, and the role of FPGAs within this development. Where it relates to

processing performed on CPUs, it looks to augment the performance with FPGAs.

A short primer on computing with FPGAs is provided, for the uninitiated.

1.3 Introduction to FPGA computing

FPGAs are the computing platform of choice for triggers in HEP experiments. They

are characterised by their huge number of configurable blocks for logical operations

– generically grouped with the term ‘resources’ – including specialised components

for multiplication, memory, and input/output (IO). Compared to CPUs, the clock

frequencies achieved on FPGAs are a factor ten lower. However, the FPGA’s power

comes from the massive parallelism which they enable. Modern devices contain

around 10,000 multipliers, 10MB of internal memory with 10TB s−1 peak band-

width, millions of logic cells performing arbitrary six bit functions, and transceivers

capable of delivering data at 1Tb s−1. Registers are placed at the output of each

component, holding the value of their data until the next clock cycle. Components

are distributed across the chip, like machines in a production line, and linked with

a ‘routing fabric’.

In Chapters 3 and 4 the Xilinx Virtex 7 device is used. The basic computa-

tion unit is the Look-Up Table (LUT) [24]. In the Virtex 7 these are 6-bit input

function generators. LUTs are arranged in Configurable Logic Blocks (CLBs), each

containing eight LUTs, flip-flops on the LUT outputs, high-speed carry logic (for

chaining LUTs to perform arithmetic) and multiplexers. Arithmetic such as multipli-

cation and accumulation is better executed using dedicated digital signal processing

(DSP) blocks [25]. In the Virtex 7 these contain a 25 × 18 bit multiplier for two’s

complement data. Around the multiplier each DSP also contains an accumulator,

pre-adder, logic unit, and multiple registers. While LUTs can be used as memories,

a dedicated Block RAM (BRAM) [26] component allows memories with more than

a small number of addresses to be constructed efficiently. The basic memory unit in

the Virtex 7 is the BRAM36, a 36Kb RAM. The BRAM36 is a dual-port RAM with

two independent sets of ports, and the memory is partitioned into two 18Kb regions

which can be utilised independently, or as one. The aspect ratio of the data and

address width is configurable, supporting from 32K× 1 to 512K× 72 modes. With

many of each of these components across the chip, an FPGA can perform massively

parallel computation.

Use of the flip-flops in each component causes the data to propagate at each
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tick of a clock signal, with the data at the input of the flip-flop only transferring

to its output (and the next computation) at the edge of the clock. The clock

frequency at which an FPGA runs depends on the program being executed. The

clock period is limited by the longest separation between any two components used

in the design: try to use a clock period shorter than this, and the design will

malfunction. Achieving high clock frequencies is part of the FPGA program design

process. Registers must be used to segment the processing into small chunks, and

processing should ideally be ‘local’ – using only data from nearby computations.

1.3.1 FPGA Programming

The role of the FPGA programmer is to specify which functions should be im-

plemented with logic cells, and how the blocks should be connected for their ap-

plication. This is aided by the use of ‘synthesis tools’, which map the program

description to the available FPGA resources. The ‘place and route’ process specifies

precisely which particular resource should be used in order to meet the designer’s

placement and timing constraints. Hardware Description Languages (HDLs), such

as VHDL and Verilog, are typically used to write applications for FPGAs. Some

level of abstraction from the base components is provided, allowing, for example, the

programmer to instantiate a multiplication and allowing the synthesis tool to infer

whether specialised multipliers or general logic should be used. These languages are

nonetheless typically ‘close to the metal’, and far removed from the domain of the

typical C++ developer. They might seem extreme even to the experienced Assem-

bly programmer, who is never concerned with the placement of clock edges in their

program.

Efforts to create higher level programming languages for FPGAs have existed

for almost as long as FPGAs. The principle is exactly the same as for higher

level languages for conventional CPU programming: by adding layers of abstraction

between the language and the implementation on silicon, programmers are able to

realise more complex computations on their data. By removing the requirement that

the developer have expert knowledge of the architecture, the platform is opened up

to new people. When the developer is able to spend less time on the minutiae, they

are freed to optimise their design at the algorithmic level. However, as also with

high level CPU programming, there are concerns as to their efficacy. Is the compiler

able to map concepts to compute components as efficiently as the programmer? Is

it possible for the developer to know how a line of code will be implemented by the
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compiler?

For CPU programming, for a long time, the favour has fallen on the side of the

high level paradigm. The ease of creating programs in C++ compared to Assembly;

in Python compared to C++, vastly outweigh any reservations on the effectiveness

of the compiler. For FPGA programming, and in particular for FPGA applications

intended for Level 1 Triggers of LHC experiments, however, the conversation is

ongoing.

1.3.2 Data Flow

In parallel and dataflow computing it is informative to think of the computational

loops involved in an algorithm. The existence or absence of data dependencies be-

tween loop iterations has a large impact on how an algorithm may be implemented

with low latency in a parallel processor, such as an FPGA. In the following code

listing the operation at iteration i does not depend on the result of any other it-

eration. This loop could be ‘fully unrolled’ in a sufficiently large FPGA (that is,

1 int x[];

2 for(i = 0; i < iMax; i++){

3 x[i] = f(i);

4 }

each iteration could execute on different resources) and each iteration could execute

simultaneously. In the second code, however, the result at iteration i depends on the

result at iteration i−1. The execution of iteration i must now follow that of i−1. It

1 int x[];

2 x[0] = 12;

3 for(i = 1; i < iMax; i++){

4 x[i] = f(x[i -1]);

5 }

may still be possible to fully unroll this loop, but the latency will be longer than for

a loop performing a similar function with no dependency. Still more complexities

arise in scenarios where, for example, the iteration itself is data dependent. This

may arise when there is a termination condition, or the iteration limit is a variable

derived from data.
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In general, computation performed in the trigger has favoured ‘fully unrolled’

loops. In Chapter 3, the input data from the calorimeter can map neatly to data ar-

rays within the FPGA with no data dependence, and processing executes in a rigidly

deterministic manner. This contrasts with the offline jet reconstruction algorithm

anti-kT [27], which is completely iterative with loop dependencies, and disregarded

for use in the trigger.

In the Phase II detector, the extra granularity provided to the trigger will make

‘zero suppressed’ detector readout (whereby channels with no signal above a thresh-

old do not send data) essential. This will prevent convenient correspondence between

detector elements and data locations in the FPGAs. The types of algorithm used to

reconstruct particles in the new detectors tend also to be highly iterative: track re-

construction offline favours the Combinatorial Kalman Filter, while the particle-flow

algorithm loops over lists of particles to match them. To fully utilise the tracker

and endcap-calorimeter in the Level 1 Trigger, algorithms with complicated loop

dependencies will be required, and imagination must be used to fit them within the

harsh constraints of latency, throughput and resources. For these developments, a

high level language might enable the realisation of more sophisticated algorithms,

with more time spent optimising the data flow when the low level details are handled

by a compiler.



Chapter 2

The Large Hadron Collider and

Compact Muon Solenoid

Experiment

2.1 Large Hadron Collider

A significant accelerator complex, depicted in Figure 2.1 is required to accelerate

protons up to 6.5TeV. Initially accelerated with a linear accelerator, the protons

are then injected into a series of synchrotrons of increasing circumference. The

series is as follows [28]. Protons from hydrogen gas are first accelerated by LINAC2

(Linear Accelerator 2) to 50MeV, into the PSB (Proton Synchrotron Booster).

The PSB accelerates the protons to 1.4GeV, before injecting them into the Proton

Synchrotron (PS), which accelerates the beam to 25GeV. The beam is next injected

into the Super Proton Synchrotron (SPS), which is the final booster before the LHC,

and accelerated up to 450GeV. Finally the beams are injected into the LHC which

accelerates them to their ultimate energy of 6.5TeV.

The beams circulate in 2808 distinct bunches of protons, each containing around

1011 protons, and separated by 25 ns (around 7.5m). Each collision between protons

in two bunches is termed a ‘bunch crossing’, and the collision and its products are

referred to as the ‘event’. With bunch crossings spaced by 25 ns, the LHC event rate

is 40MHz.

For any specific particle interaction the rate of event occurrence N is:

N = Lσ, (2.1)

11
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Figure 2.1: The CERN accelerator complex.

where σ is the cross section of the interaction, and L is the machine luminosity. This

instantaneous luminosity is expressed in terms of beam parameters as [29]:

L =
N2

b nbfrevγ

4π�nβ∗
F, (2.2)

where nb is the number of bunches per beam, Nb is the bunch population, frev

is the revolution frequency, γ is the relativistic gamma factor, �n is the normalised

transverse emittance, and β∗ is the beta function (focal length) at the collision point.

F is a geometric luminosity reduction factor due to the crossing angle of the beams

at the interaction point given by:

F = 1/

�
1 +

�
θcσz

2σ

�2

, (2.3)

where θc is the crossing angle at the interaction point, σz is the RMS bunch length,

and σ is the transverse RMS beam size at the interaction point.

The LHC operated with instantaneous luminosities of up to 2× 1034 cm−2 s−1 in

2017, in excess of the design value of 1.0× 1034 cm−2 s−1. At the end of LHC Run 3,

anticipated around the end of 2023, it is expected that an integrated luminosity of
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300 fb−1 will have been collected by CMS. During the Long Shutdown that follows,

LS3, the accelerator and experiments will prepare for high luminosity operation,

dubbed the High Luminosity Large Hadron Collider, or HL-LHC. An instantaneous

luminosity of 5× 1034 cm−2 s−1 is planned for this phase. Over the projected 10 year

running time of the HL-LHC, 3000 fb−1 of integrated luminosity will be collected by

CMS and ATLAS.

By equation 2.1 the number of simultaneous pp collisions per bunch crossing

(pileup) is proportional to the instantaneous luminosity, and so will increase during

the HL-LHC compared to the LHC conditions. At the instantaneous luminosity

expected for the HL-LHC the mean pileup will be 200, where the original LHC

design value was 27.

Beam parameters of the LHC and HL-LHC accelerator are presented in table 2.1.

The most significant change arises from the use of new large aperture inner triplet

quadrupole magnets of Nb3Sn with a 12T peak magnetic field. These can yield

a much shorter β∗ in the collision region. However the crossing angle is increased

in the process, which reduces the geometric reduction factor and hence limits the

luminosity increase. This will be mitigated by the addition of superconducting RF

crab cavities which rotate each bunch to collide head on. These can also provide a

mechanism for luminosity levelling.

Without levelling, the luminosity profile decreases throughout a fill from an

initial peak value as Nb decreases during proton collisions. Levelling will maintain

a constant luminosity which is lower than the maximum, but yielding the same

integrated luminosity over a fill. This provides more stable pileup conditions for

the experiments, and deposits less energy into the interaction region magnets from

debris [30].

2.2 Compact Muon Solenoid Experiment

The Compact Muon Solenoid (CMS) experiment is situated at one of the collision

points on the LHC ring. A cutaway diagram, showing the various subsystems is

shown in Figure 2.2. The detector comprises a cylindrical barrel section with planar

endcaps, and measures 28.7m in length with a diameter of 17m. Propagating

radially outwards from the centre, particles first pass through the tracker, which

measures points along the trajectories of charged particles. Radially outwards of

the tracker is the electromagnetic calorimeter (ECAL), followed by the hadronic

calorimeter (HCAL), each measuring particle energy. These detectors are contained
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Table 2.1: Beam parameters of the LHC design and HL-LHC [30].

Parameter LHC (design) HL-LHC
Proton energy [TeV] 7 7
nb 2808 2748
Nb 1.15× 1011 2.2× 1011

frev [kHz] 11.2 11.2
β∗ [m] 0.55 0.15
�n [µmrad] 3.75 2.50
θc [µrad] 285 590
σz [cm] 7.55 7.55
σ [µm] 16.7 7.13
F 0.84 0.305
Peak luminosity [cm−2s−1] 1.0× 1034 5.0× 1034

Mean events per crossing 27 198

within the eponymous superconducting solenoid, and the 3.8T magnetic field it

produces. Muon chambers are positioned outwards of the solenoid. The return yoke

of the magnet is interleaved with the muon chambers.

A right handed Cartesian coordinate system is defined with the origin at the

nominal interaction point. The x axis points towards the centre of the LHC, the

y axis points vertically upwards, and the z axis along the anticlockwise rotating

beam. The z axis is sometimes referred to as the longitudinal direction, and the x–y

plane is also referred to as the transverse plane. Transverse energy and momentum,

ET and pT respectively, are therefore the magnitude of energy and momentum in

the x–y plane. From this coordinate system, other frequently used quantities are

derived. The azimuthal angle φ is measured in the x–y plane from the x axis, and

the radius r in the same plane completes a cylindrical coordinate system along with

the z axis. The angle θ is measured from the z axis in the r–z plane, and the dip

angle λ = π − θ. Pseudorapidity is then defined to be η = − ln tan θ/2.

2.2.1 CMS Phase II Upgrade

The luminosity of the HL-LHC will necessitate significant changes to the LHC ex-

periments. In part this will be to due to damage to the detectors from radiation

already deposited over the lifetime of the LHC. Detectors will also be improved,

generally with increased granularity, to further enable the mitigation of pileup in

the reconstruction. In both the trigger and offline analysis the objects of interest

are the particles produced from the primary vertex – the hard scatter surrounded
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Figure 2.2: Cutaway of the CMS detector [31].

by the soft scatters of pileup. With more pileup interactions it becomes increasingly

difficult to correctly attribute particles to the primary vertex, and to accurately de-

termine the particle energy. The CMS experiment upgrades are presented in detail

in [12].

Damage is dealt to the detector in the form of radiation from the particles pro-

duced by particle collisions. Charged particles ionise the detectors, and nuclear

interactions produce particle cascades. Electromagnetic cascades are produced by

the interaction of e+e− pairs, themselves the product of photon interactions in ma-

terial, in the tracker. Calorimeters, based on scintillating materials, generally lose

transparency when subjected to high radiation doses. This effect reduces the am-

plitude of signals, which, after calibration, effects the energy resolution. Detectors

with better resilience to radiation damage, not just in a material sense, but in terms

of detector performance, will be used.

The particle-flow technique [14] is the primary reconstruction technique at CMS

currently, with ‘pileup per particle identification’ (PUPPI) [32] for the mitigation

of pileup. These rely on the ability to separate energy deposits of particles in the
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calorimeter, therefore requiring adequate energy resolution and granularity; efficient

reconstruction of charged particles in the tracker; muon identification and momen-

tum measurement from the muon systems. Maintaining the performance of the

detector in the face of extreme pileup generally requires better resolution of recon-

structed objects: in pT and spacially.

In order to make use of the increased data rate in analysis, the trigger and readout

must also be upgraded. It is desirable to maintain trigger energy and momentum

thresholds as low as possible, within the limitations of the readout system, to have

sensitivity to low mass particles. The energy and momentum resolution of the trigger

must be improved to achieve this without losing efficiency. More advanced mitigation

of pileup will be required for the trigger, to reduce the impact of combinatorial

background. For this purpose, the tracker will provide input to the Level 1 trigger,

enabling identification of pileup particles, and allowing the L1T to perform particle-

flow-like reconstruction.

2.3 Tracker

The innermost sub-detector is the silicon tracker [33]. Planes of silicon sensors

measure the position of charged particles along their trajectory. Particle momentum

can be measured by determining the curvature of the particle trajectory in the 3.8T

magnetic field. An inner pixel detector with high spatial resolution allows a precise

measurement of the vertex. Tracks which, when followed, lead to measurements in

other sub-detectors provides a means of particle identification: e/γ like deposits in

the calorimeter can be distinguished, and tracks created by muons can be identified.

2.4 Phase II Tracker

The CMS tracker will be completely replaced for the HL-LHC. Damage done to

the existing detector due to radiation at the end of Run III will necessitate the

change. Radiation damages the lattice in silicon detectors, such as the tracker, and

alters the electrical behaviour. This leads to an increased leakage current, reduces

the charge collection efficiency, and increases the depletion voltage, which all result

in lower amplitude signals from charged particles. A reduction in charge sharing

between sensors in the pixel detector worsens the spatial resolution of hits, directly

impacting the tracking performance. The tracker, situated closest to the beam pipe,
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Figure 2.3: One quarter view of the proposed layout of the CMS Phase II tracker
in the r–z plane. The inner tracker is shown in light blue and yellow (modules with
two or four readout chips respectively), and the outer tracker is shown in dark blue
and red (PS and 2S modules respectively) [34].

is the sub-detector with the highest radiation fluence.

The new tracker will be more radiation tolerant, to survive the 3000 fb−1 inte-

grated luminosity. In addition, its performance must improve to maintain tracking

and vertexing efficiency and resolution in the 200PU conditions. The granularity

will be increased to keep channel occupancy around the per mille level, and hit merg-

ing in the pixels will be corrected to improve the distinguishability of two closely

separated tracks. Less material will be used by the tracker, to reduce the effect of

particle interactions with the tracker material. Finally, the outer tracker will send

tracking information to the Level 1 Trigger, the subject of Chapter 4.

The proposed tracker layout is shown in Figure 2.3. Compared to the Phase 1

tracker, the Phase 2 tracker will extend further in η, to |η| ≈ 4 up from |η| ≈ 2.4.

This extra coverage will improve the pileup mitigation capabilities, and facilitate

object tagging, at higher pseudo-rapidity. Particles will cross at least 9 layers of

modules across the whole pseudo-rapidity range, and up to 12 at the highest pseu-

dorapidity.

2.4.1 Inner Tracker

The Phase II pixel detector will be required to withstand a radiation dose of 1.2Grad,

and up to 3GHz cm−2 hit rate in the innermost layer. At the same time the new

detector performance must improve relative to the LHC in order to maintain efficient

track reconstruction in the higher pileup environment. The pixel surface area will

be a factor 6 smaller than the Phase I detector, with sensors of 25 × 100 µm2 or
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50 × 50 µm2. These smaller pixels will improve the resolution on the longitudinal

and transverse impact parameters compared to Phase I, improve the separation

between track in dense jets, and maintain an occupancy around 0.1%.

Development of the pixel sensor is ongoing. The sensors will be thinner than

the Phase I pixels: in the range 100 µm to 150 µm compared to 270 µm to 285 µm.

The thinner pixel is protective against radiation damage, with less charge carrier

trapping after irradiation compared to a thick sensor. For the innermost layers,

which will receive the highest fluence, a 3D sensor with electrodes embedded in

the silicon is under investigation. These are potentially less susceptible to charge

trapping than planar sensors, although more difficult to fabricate.

A radiation hard pixel readout chip (PROC) is under development, which will

use a 65 nm CMOS technology [35]. These will digitise the detected sensor current,

store hits for the 12.5 µs trigger latency, and send out hits for triggered events

(the inner tracker does not contribute to the trigger). Data transfer will be along

electrical connections to Low-power Gigabit Transceivers (LpGBT) on the inner

tracker service cylinder, where the signals are then sent optically to the back-end

electronics. Modules will host either two or four PROCs, with the two PROC

modules occupying the two innermost layers throughout.

The inner tracker DAQ will comprise modular Data, Trigger and Control (DTC)

boards, similar to those used for the outer tracker. The DTC boards will interface to

the LpGBT optical links, and house an FPGA with large logic capacity for processing

and buffering. Optical links operating at 10Gb s−1 will send data to the DAQ.

2.4.2 Outer Tracker

The outer tracker will have six barrel layers and five endcap disks on each side.

Particles will traverse six detector layers up to |η| ≈ 2.4, apart from a narrow region

around |η| ≈ 1, which is the transition between barrel and endcap, where five layers

will be crossed. The number of layers is the minimum possible for efficient tracking

using only the outer tracker (for the Level 1 Trigger). Track reconstruction can be

performed with a high efficiency and low fake rate with only five layers, while an

additional layer allows for detector inefficiencies.

The outer tracker will send hits from tracks above a pT threshold (called ‘stubs’)

to the trigger. The pT threshold is applied on the detector, enabled by a pT module.
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Figure 2.4: The pixel-strip (PS) and strip-strip (2S) implementations (left, right
image respectively) of the pT module concept [40].

pT Module

A key technology enabling the development of a track trigger is the so called ‘pT

module’ [36, 37]. This module will enable the readout of tracker data at a reduced

bandwidth, and reconstruction within the trigger latency budget. The concept be-

gins with the reality that the readout of all tracker hits is not possible, or necessary

at the LHC collision rate of 40MHz. In LHC pp collisions, especially with 200

pileup, most particles in an event are associated with pileup collisions rather than

the primary vertex. These pileup particles also tend to have lower pT than those

particles which are useful for physics analyses. Avoiding the readout and recon-

struction of hits from low pT tracks greatly reduces the bandwidth required from

the tracker to the Level 1 Trigger, and results in fewer hits for the track trigger to

process.

The pT module exploits the bending of charged particles in the large magnetic

field of CMS in order to detect hits associated with high pT tracks. Two silicon sen-

sors, segmented in φ, the track bending direction, and separated by a few millimetres,

make a pT module. This separation is wide enough to have a coarse resolution on

the track pT , while being small enough that the sensors can be read out by the

same electronics. Logic on the module clusters pairs of hits on the two layers. The

φ direction separation of the hits gives a coarse measurement of the track pT . A

threshold on the hit separation is then used to apply a pT cut to tracker hits. Pairs

of hits with a pT over the threshold are called ‘stubs’. Only these stubs are read out

to the Level 1 Trigger. A pT threshold of 2-3GeV is typically considered, providing

an order of magnitude rate reduction compared to reading out all hits [38, 39].
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Two types of pT modules have been developed, shown in Figure 2.4. The first,

for use at radii in the range 200 < r < 600mm, is the ‘pixel-strip’ (PS) module.

These consist of a silicon pixel sensor beneath a silicon strip sensor. Both layers have

a strip pitch of 100 µm in the x − y plane. The pixel sensor has a fine granularity

of 1.47mm in the z direction, while the upper layer has a z granularity of 23.5mm.

The fine z granularity of the lower sensor is necessary for precision vertexing in the

Level 1 track reconstruction.

The second pT module, for use at radii > 600mm where the hit occupancy is

lower, is the ‘strip-strip’ (2S) module. These have two layers of silicon strip sensors,

both with a pitch of 90 µm in x−y, and a strip length of 50.3mm in the z direction.

The coarse z resolution of these sensors adds little to the vertex resolution, but the

fine pitch, together with the long lever arm of a tracker extending to around 1m in

a 3.8T magnetic field, provides the best pT resolution.

Signals are processed by Front End (FE) chips, which find hits in the sensors and

correlate measurements on the two layers to find stubs. In the 2S module, the CMS

binary chip (CBC) correlates hits from the two silicon layers. In the PS modules,

the macro-pixel ASIC (MPA) processes hits in the lower layer, and the strip-sensor

ASIC (SSA) processes hits in the upper layer. Signals are sent from the SSA to

MPA which performs the hit correlation to form stubs.

These FE chips communicate with a Back End (BE) system, the main component

of which is the Data, Trigger and Control board (DTC). This board will send and

receive data from up to 72 modules, utilising FPGAs with optical communications.

The DTC will aggregate stubs from its front end modules, process them, and forward

them to the L1 track finder. The processing performed by the DTC will be to convert

the stub data received from the FE chip to a global format useful for track finding,

and also to carry out any time multiplexing required by the track finder. A separate

communication stream will handle DAQ functionality: sending trigger accept signals

to the FE chips, and forwarding data to the DAQ system.

Figure 2.5 shows the layout of the outer tracker used for the developments in

Chapter 4, called the ‘flat-barrel’ layout. This differs from the layout shown in

Figure 2.3, in which some modules in the barrel are tilted towards the luminous

region, called the ‘tilted-barrel’ layout. The tilted-barrel layout is the variation

preferred by CMS, however was proposed later than the flat-barrel, for which the

Monte Carlo event samples used in Chapter 4 were produced. The tilted-barrel

results in a much greater stub reconstruction efficiency and lower module occupancy

than the flat-barrel, while also requiring fewer modules [40]. The flat-barrel layout
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Figure 2.5: Layout of the pT modules in the outer tracker used for the track trigger
demonstrator, shown for one quarter of the r− z plane [12]. PS modules are shown
in blue, 2S modules are shown in red.

creates an inefficiency at the pT module edges, whereby a track crossing the inner

layer of one half module, and the upper layer of the other half module cannot form

a stub, since the signals are processed in different chips. This issue is eliminated for

the tilted modules, which are oriented facing the interaction region.

2.4.3 Performance

The expected performance of the Phase II tracker is presented in [34]. The metrics

of interest are the efficiency, fake rate and resolution. A track is deemed correctly

reconstructed if 75% of its hits are associated with the same simulated charged

particle, otherwise it is ‘fake’. Efficiency is defined as the fraction of charged particles

in the sample which are correctly reconstructed, while the fake rate is the fraction

of reconstructed tracks which are fake. Resolution is the RMS of the residuals

of reconstructed parameters and simulated parameter. The efficiency of finding

charged particles in tt samples with 140 or 200 PU is around 90% between 1GeV

and 100GeV. The fake rate is typically below 5% for 140PU and below 10% for

200PU, but is best (around 1%) at 2GeV and worsens above and below this. The

resolution of all track parameters improves compared to the Phase I tracker, most

notably for the transverse impact parameter, which has a resolution approximately

twice as good.
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Figure 2.6: One quarter view of the ECAL in the r–z plane. Depicted are the ECAL
barrel (EB), ECAL endcap (EE), preshower endcap (SE). The diagram also shows
the HCAL barrel (HB) and tracker (TK) volume [41].

2.5 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) measures energy deposited by charged par-

ticles producing electromagnetic showers within the material, with photodetectors

to collect the energy [41]. The design considerations of the ECAL are largely moti-

vated to provide the best energy and angular resolution for the decay of the Higgs

boson to two photons.

The ECAL consists of PbWO4 scintillating crystals, arranged as a barrel covering

|η| < 1.479 with 61200 crystals (in rings of 360 in φ), and two endcaps, extending

in the range 1.479 < |η| < 3.0, with 10764 crystals each [42]. A schematic of the

layout is shown in Figure 2.6, The choice of PbWO4 crystals was motivated by the

tolerance to radiation, short radiation length of 0.89 cm, small Molière radius of

2.19 cm, and fast response, with 100 ns duration to collect 99% of the light.

Tapered crystals, with a 3° offset, in both η and φ, to a straight line from the

nominal interaction vertex to each crystal, ensure the ECAL barrel is hermetic. The

crystal length of 23 cm in the barrel is 26 radiation lengths, to capture as much of

the energy from electromagnetic showers as possible in the ECAL. In the endcap,

which is covered by the preshower, the length is 22 cm.

Photodetection is carried out with two types of devices. A high gain must be
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used due to the low light yield of the PbWO4, operating in a high magnetic field, and

within a high radiation environment. In the barrel, avalanche photodiodes (APDs)

are used. In the endcap the much higher radiation dose makes APDs unsuitable, due

to the excessive electronic noise this would create. Vacuum phototriodes (VPTs)

are used in the endcap instead. From measurements in an electron test beam [43],

the relative energy resolution has been determined to be
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2.5.1 Input to the Trigger

A 12-bit digitisation is performed on the measured signal, with an upper value of

around 2TeV to accommodate an extreme energy deposition in one crystal, and with

the least-significant-bit around the magnitude of the single channel noise. Data are

transferred off-detector along high speed optical links individually from each crystal.

At the receiving end of the links, in the counting room, the data are summed into

trigger towers (TTs) for input into the trigger. Data with crystal level granularity

is buffered awaiting the trigger decision.

A view of the grouping of crystals into TTs is shown in Figure 2.7. In the barrel

a trigger tower has a size of 0.087×0.087 in Δη×Δφ (5×5 crystals), which matches

the HCAL granularity as well as the structure of the muon system. Up to |η| < 2.1

the endcap TT size matches this, while for |η| > 2.6 the size in φ is the same, but the

size in η is Δη = 2×0.087 = 0.174. TTs therefore form rings of 72 in φ, with 32 such

rings in η in the barrel. For the endcap the mapping to TTs is more complicated.

For consistency with the barrel TT angular size of 5° the endcap crystals, which are

packed onto a rectilinear grid in x–y, are assigned to 5° slices which align with the

barrel φ slices.

2.6 Hadronic Calorimeter

The hadronic calorimeter (HCAL) [44] detects particles through their interaction

with a dense absorber material via the strong force. This is the only part of the

detector which measures neutral hadrons, and is therefore essential for their iden-

tification and in determining their contribution to the energy of jets and other

quantities.

The HCAL consists of four sections: the HCAL barrel (HB), HCAL endcap (HE),
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Figure 2.7: View of the grouping of ECAL crystals into trigger towers [41]. On the
left is the view of the barrel in one quarter of the r–z plane. On the right is the
view of the endcap in one quarter of the x–y plane, the small boxes show individual
crystals, and the large boxes show modules. Dashed lines from the origin depict the
sections of 5° onto which crystals are assigned to trigger towers.

HCAL Outer (HO) and HCAL Forward (HF), a cross section of which is shown in

Figure 2.8. The HB and HF are sampling calorimeters with interleaved layers of

brass absorber and plastic scintillator active material. Wavelength-shifting fibres

transport light from the scintillator into hybrid photodiode (HPD) phototransducers

to measure the light amplitude. The HO is located outside of the solenoid, which

constitutes the active material along with the steel magnet return yoke. Plastic

scintillators, wavelength shifting fibres and HPDs are again used for the detection

of light. The HF extends the reach of the HCAL to |η| = 5, and consists of a steel

absorber and quartz fibres permeating the steel. Cherenkov light produced in the

steel is transported along the fibres into photomultiplier tubes for detection.

Each phototransducer signal is integrated over several 25 ns bunch crossings,

and subsequently filtered and digitised, in a front-end ASIC. Optical links carry

digitised data off detector into HCAL Trigger and Readout (HTR) cards. The HTR

forms the trigger tower data for the HCAL and forwards this to the trigger. This

requires summing the measurements along the depth-segmented sections, providing

one measurement at each trigger tower location. Data is buffered in the HTR

awaiting the Level 1 Accept decision. Accepted events are transmitted into the

DAQ system.

The granularity of one HCAL cell matches that of the 5× 5 grouping of ECAL

crystals which form one trigger tower. The lines of constant η, numbered 1 to

29, in Figure 2.8 depict the segmentation of the HCAL into trigger towers. This
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Figure 2.8: A schematic of the HCAL in the r–z plane [44]. The depth segmentation
is pictured, and the segmentation into towers.

segmentation also aligns with the ECAL trigger tower segmentation.

The energy resolution of the HCAL, measured in a test beam [45], was deter-

mined to be
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2.7 Muon System

The muon system is the outermost part of the CMS detector, designed to detect

muons and measure their transverse momentum [46]. All other detectable particles

should be stopped in the calorimeters, such that only muons leave signals in the

system. Some level of background charged particles do nonetheless enter the muon

system, predominating at higher pseudorapidity.

Three different technologies are used for the detection of muons. All of the

devices contain a gas which is ionised when traversed by a muon, with an electric

field produced by plates or wires to collect the charges and detect the produced

current. The gas is segmented into chambers, which facilitates the measurement of

muon position. The detectors are arranged such that any single muon will cross

several chambers, thus allowing a trajectory to be reconstructed.
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Figure 2.9: Schematic of a one quarter slice of the CMS detector, highlighting the
layout of the muon system [47].

The layout of the muon system, with the different detector types highlighted,

is displayed in Figure 2.9. In the barrel part of the detector, covering |η| < 1.3,

drift tubes (DTs) containing a mix of Ar and CO2 at atmospheric pressure are

used. Cathode strip chambers (CSCs) are used in the endcaps, from 0.9 < |η| <
2.4. The technology is more capable than the DTs at providing high spatial and

temporal resolution in the presence of higher magnetic field and muon rate in the

endcap. Resistive plate chambers (RPCs) are used throughout |η| < 2.1 for their

fast response, to provide a trigger signal.

Muon identification efficiency is better than 95% for muons with momenta above

a few GeV [48]. For muons with pT < 200GeV, the silicon tracker provides the better

pT measurement, which is between 1.3% and 6% from the barrel to endcap. Above

pT = 200GeV, up to around 1TeV, the muon and tracker measurements combined

provide resolution of around 10% in the barrel region.
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2.8 Level 1 Trigger

The CMS Level 1 Trigger (L1T) receives detector data at the full 40MHz collision

rate, performs a fast reconstruction of each event, and determines whether the event

should be read out from the detector, sending a signal to the front-end buffers when

this occurs. L1T is split into separate systems which reconstruct particles within

one sub-detector, and feed into a final system which combines that information and

makes the trigger decision. Work in this thesis relates to the Phase I calorimeter

trigger (Chapter 3) and the Phase II L1T track reconstruction (Chapter 4).

The Phase I Upgrade of the L1T, which fully began operations in March 2016,

during LHC Run II, processes measurements from the muon detector and calorime-

ters to trigger readout of the full detector [49]. A maximum latency limit of 4 µs is
imposed by the depth of front end buffers, and the readout has a maximum rate of

100 kHz. The design of the upgraded system sought to maintain trigger performance

after the increase of LHC collision centre of mass energy from 8TeV to 13TeV and

instantaneous luminosities yielding a mean pileup of 50, up from the 20 experienced

during Run I. In particular, pileup mitigation was required to avoid saturating the

maximum 100 kHz trigger rate with acceptably low thresholds. For example, a

20GeV single electron trigger would consume half of the available bandwidth using

the Run I system [50].

The system architecture is shown in Figure 2.10. FPGAs are used throughout

for processing. For the calorimeter, trigger tower data is sent into a two layer

FPGA processing system, described in more detail in section 2.8.2. Energy deposits

consistent with jets, e/γ, or τ particles are clustered. The total event energy and

transverse energy is also found. The muon trigger combines hits from the three

different types of muon detector to find muon tracks and measure the pT . The

muon and calorimeter trigger systems send their reconstructed objects to the Global

Trigger (GT). The GT performs the event selection, based on comparing the input

objects to a ‘menu’ of criteria on which to select an event. Each item on the menu

will specify one or more object type (jet, e/γ, τ , µ), ET thresholds, and quantities

such as angular separation.

2.8.1 Differences for Phase II

The Phase II L1T upgrade will take place ahead of the HL-LHC [51]. The entire

trigger and DAQ system will be replaced and upgraded. A longer latency of 12.5 µs
(including contingency) will be allowed, and a maximum L1T accept rate of 750 kHz
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Figure 2.10: Diagram of components of the Phase I Upgrade of the CMS Level 1
Trigger [49].

will be permitted. The functionality of the calorimeter and muon processing systems

will change to accommodate changes to the detectors. In particular, the processing of

the new endcap calorimeter [52] will necessarily be very different from the processing

for Phase I, due to the significantly increased detector granularity, and the addition

of depth information. For the first time CMS will also reconstruct tracks at the

L1T. Chapter 4 describes a demonstrator system for the track reconstruction.

The planned overall structure of the Phase II system is shown in Figure 2.11,

and is conceptually similar to the Phase I system. Each sub-detector will be served

by a processing system which reconstructs the raw signals into composite objects:

clustered energy deposits, tracks, and muons. These will forward those objects to a

system which combines them and makes the trigger decision. The task of combining

trigger primitive objects will become more difficult than for Phase I, because the

addition of tracks will facilitate discrimination of neutral from charged hadrons,

electrons from photons, and provide a more precise measurement of muon pT than

the muon detectors provide. In addition, the primary vertex can be identified from

the tracks. The processing to combine the objects from the various detector systems
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Figure 2.11: Overview of the components of the Phase II Level 1 Trigger [51].

will be a modified version of the Particle-Flow algorithm [14], used at the HLT and

offline. Pileup subtraction will also be carried out using the PUPPI algorithm [32].

This system will be called the Correlator Trigger. Particle candidate objects will be

sent from the Correlator to the Global Trigger, which will perform the same role as

it currently does.

Impact of tracks

The tracks reconstructed in the L1T will enable triggers with sharper turn on curves

and lower rate for the same efficiency [12]. A single muon trigger with a 20GeV

threshold on the reconstructed pT displays a turn on curve which ramps from around

10GeV to 30GeV on the simulated muon pT , when using only the muon system.

With the addition of tracking information, assigning the muon pT from a matched

Level 1 track, the width of the ramp up is reduced to around 2GeV, due to the

superior resolution of the tracks at this momentum. As a result of the much sharper

turn on curve, the rate of the trigger is reduced by a factor of 10. Similarly, the

rate of a single electron trigger with a 20GeV threshold is reduced by a factor 5

when tracks are matched to e/γ deposits in the calorimeter, compared to using the

calorimeter alone.

The rate of multi-object triggers, for example dimuon or dijet, can be reduced
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Figure 2.12: System architecture of the Level-1 Calorimeter Trigger [50].

by reconstructing the primary event vertex and imposing that both objects are

associated with that vertex. A dimuon trigger rate can be reduced by a factor three

by requiring that the muons are consistent with the vertex to within 1 cm. The

efficiency to reconstruct the vertex within 5mm of the generated vertex is 97% in

tt events, or 90% to reconstruct it within 1mm.

2.8.2 Phase I Calorimeter Trigger

The system architecture of the Level-1 Calorimeter Trigger is shown in Figure 2.12.

A time multiplexed architecture is used. Time multiplexing is a technique which

allows data for the entire detector for one event to be processed in a single processing

node (in this case, one board). Since no board possesses the bandwidth to receive all

of this data in one bunch crossing (around 2.5Tb s−1), the data must be spread out

over a longer period of time†. A two layer architecture is required to perform time

†An alternative architecture would split the processing geometrically, such that each processing
board would receive data at the full collision rate. Drawbacks of such an approach are that data
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multiplexing. In the first layer, which consists of 18 CTP7 boards [53], each board

must receive data at the full detector rate, and forward it at the same rate to a node

in the second layer. Time multiplexing is carried out by switching the destination

node at each bunch crossing. A node in the second layer receives data from each

board in the first layer in turn. Each node sends and receives data continuously

to keep up with the collision rate. An optical patch panel facilitates the routing

between nodes in a compact form factor. A time multiplexing factor of nine is used,

meaning that the data from one bunch crossing are spread out over nine bunch

crossings to the second layer.

The second layer in the system executes the algorithms to construct particle-like

objects from the trigger tower input, and is implemented with nine MP7 boards [54,

55]. The firmware running on each node in the second layer is identical. On each

240MHz clock cycle, the algorithm receives one complete 2π ring in φ (72 trigger

towers) from each half of the detector, beginning from the middle and progressing

outwards on subsequent cycles. From the trigger towers, the processors reconstruct

jets, e/γ and τ candidates, in addition to finding the total event energy, and trans-

verse missing energy. The performance of these algorithms can be found in [56].

2.9 High Level Trigger

The HLT is responsible for the final trigger decision before an event is stored to disk.

During Run I and II the HLT was a farm of CPUs situated on the surface directly

above the CMS detector, consisting of approximately 1,000 compute nodes. Software

running on the nodes execute several ‘trigger paths’, which require reconstruction of

subdetector signals into particle hypotheses, and kinematic criteria on the particles

which determine whether a path succeeds or fails. The software running at the HLT

farm is a modified version of the CMS software, cmssw [57], optimised to achieve

a low latency for creating a trigger decision. Events are dynamically allocated to

nodes in the farm by a high speed network.

Processing is latency constrained, with a mean time per event limited by the

input rate from the L1T and the number of nodes. The full detector granularity is

available, and the reconstruction is a lightweight version of the offline software. The

reconstruction is seeded by the Level 1 objects, which saves some processing effort.

The time taken to process an event at the HLT varies depending on the event

sharing becomes necessary to cover boundaries between regions, and that the loss of a processing
node effects one part of the detector for every event.
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content. The software is structured in such a way that events are rejected using

the fastest to execute paths first, using the calorimeters and muon chambers, before

running track reconstruction. Each trigger path comprises a series of sequential

reconstruction modules. Each module is followed by a filter step, which checks the

output of the module. In the case that any filter fails to meet its criteria, the entire

paths fails and its processing is terminated. Given the 100 kHz L1T accept rate,

and the number of nodes available, a latency budget can be derived. In Run I and

II this was around 200ms. This budget is the maximum average processing time

per event before the farm would become overloaded.

Detailed timing measurements of the HLT reconstruction are presented in [58].

With Run II conditions of
√
s = 13TeV and 40 PU collisions, the mean HLT

processing time per event was predicted to be 162ms. A much lower mean processing

time of 66.5ms was predicted for 20 PU conditions, despite the most probable time

remaining similar at around 40ms. The difference arises from the much longer tail of

event time with 40 PU, due to the extra combinations encountered during tracking

that arise with higher pileup.

At the HL-LHC, the CMS HLT will face the challenge of maintaining low latency

trigger decisions in the high pileup environment. The impact of high pileup on

track reconstruction is discussed in section 2.10. At the same time, CPU power

will continue to improve in the time before the HL-LHC, although the benefit from

clock frequency scaling is slowing, with most improvements coming from higher core

count and additional vector units. Efforts to parallelise cmssw beyond the event

level show reduced event reconstruction times [59].

In addition to the direct impact on computation time from higher pileup, the L1T

event accept rate will increase from 100 kHz to 750 kHz at the HL-LHC. Combining

an anticipated scaling of event reconstruction time due to the increased number and

occupancy of detector channels; the increased L1T accept rate; and an anticipated

saving from utilisation of information from L1 tracking, it is projected that the HLT

for 200 PU events will need to be 22 times more powerful than the Run II HLT (11.0

MHS06† up from 0.5 MHS06) [60]. The Run II HLT comprises 940 nodes, and under

two different CPU performance scaling scenarios the HL-LHC HLT would require

between 1400 and 7800 nodes.

†HepSpec06 (HS06) is a HEP specific CPU benchmark.
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2.10 Track Reconstruction

Track reconstruction, which is the focus of Chapters 4 and 5, is the procedure

by which the trajectory parameters of charged particles are determined. In the

solenoidal magnetic field, charged particles follow helical trajectories. The tracking

detector measures hits, that is position measurements, at each intersection of a

charged particle with a detector plane. The detector, depicted in Figure 2.3, samples

the trajectory on around 10 different surfaces. Reconstructing tracks requires the

identification of hits which lie on the same trajectory, referred to as track building

or pattern recognition, followed by a fit to the hits to obtain the parameters of the

trajectory.

The tracking performed at CMS, both offline and at the HLT, consists of four

steps, repeated iteratively to find all charged particle trajectories, and is termed the

Combinatorial Track Finder [61]. These steps are:

• Seeding: Initial estimates of track trajectories are obtained from combinations

of hits in the pixel detector.

• Building: Track seeds are propagated, searching for compatible hits and up-

dating the trajectory estimate using a Kalman Filter.

• Fitting: Found tracks are fitted with a Kalman Filter and smoother.

• Selection: Tracks are checked against quality criteria to identify fake tracks.

The procedure is repeated iteratively, each iteration targetting a specific class

of tracks by the adjustment of cut parameters. Following each iteration, any hits

contributing to finished tracks are ignored in subsequent iterations. Earlier iterations

find the easiest to reconstruct tracks, such as those with a high pT , many hits, and

originating from near the interaction region. Later iterations find more difficult

classes of tracks, such as those with low pT and displaced from the beam line, the

task made easier following the removal of already utilised hits.

One of the optimisations of the tracking at HLT is to reduce the number of

iterations of tracking compared to the offline reconstruction [62]. The first iteration

reconstructs prompt tracks from the highest quality seeds (with hits on 3 pixel

layers), and finds approximately 80% of tracks. The second iteration finds low pT

prompt tracks, again from pixel triplet seeds. The third iteration finds prompt

tracks from pixel seeds with hits on only 2 layers. The final iteration finds displaced

tracks.
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(a) (b)

Figure 2.13: The timing of track reconstruction at CMS, with several improvements
for speed enhancement at the HLT (left) [62], and for the full reconstruction as a
function of instantaneous luminosity (right) for the Run I software in yellow and
Run II software in blue [63].

Figure 2.13a shows the timing of track reconstruction at the HLT during Run I,

and for a series of improvements made for Run II. Even with the fastest configura-

tion, the tracking reaches the total HLT latency budget at a PU of 20, and exceeds

it by a factor 2.5 at 40 PU [62]. This necessitates the spared usage of the track re-

construction, only following calorimeter and muon algorithms. Figure 2.13b shows

the scaling of the timing of reconstruction with instantaneous luminosity. For the

Run II software the tracking takes more than half of the total event reconstruction

time at all pileup scenarios [63]. The time to reconstruct tracks at 140 PU is approx-

imately ten times greater than the time taken with 70 PU, with the same software.

For events of tt , and tt with 8PU, 64% of the CPU time of offline tracking is spent

on track building, with approximately 15% on each of seeding and fitting [61].

2.10.1 Seeding

The seeding step finds initial estimates of the track parameters and the associated

uncertainties from just a few hits. Usually this uses only hits from the pixel detector,

which has the best position resolution and lowest hit occupancy. Seeds must be

formed either from three pixel hits, or two hits and an assumption that the track

passes through the beamline. Seeds with three hits have a lower fake rate than those
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with only two hits. At each iteration of the combinatorial track finder, a tracking

region is defined in which seeds are constrained, based on limits on the distance of

closest approach to the primary vertex and minimum pT .

2.10.2 Track Building

A Kalman Filter [64, 65] is used for both the track building and fitting. The filter

is a ‘local’ fitter: an estimate of the parameters of interest is updated with each

measurement in turn. This attribute makes the technique suitable for track building,

since multiple measurements on the same detector layer (of which only one can lie on

any track) can be considered independently, without affecting each other. Compared

to a ‘global’ fit, such as a linearised χ2 technique, this ensures that measurements

not belonging to a track cannot pull the fit parameters. A second advantage is that

effects such as multiple scattering can be included in the fit more easily.

The Kalman Filter operates on a ‘state’, which consists of the vector of track

parameters x, and their covariance matrix C. The equations of the Kalman Filter

state update are given by Equations 2.4 to 2.12. The index k refers to the iteration.

Since the measurements are included in order, this also corresponds to the detector

layers.

xk−1
k = Fk−1xk−1 (2.4)

Ck−1
k = Fk−1Ck−1F

T
k−1 +Qk−1 (2.5)

rk−1
k = mk −Hkx

k−1
k (2.6)

Rk−1
k = Vk +HkC

k−1
k HT

k (2.7)

Kk = Ck−1
k HT

k

�
Rk−1

k

�−1
(2.8)

xk = xk−1
k +Kkr

k−1
k (2.9)

Ck = (I−KkHk)C
k−1
k (2.10)

χ2
+ = rk−1T

k

�
Rk−1

k

�−1
rk−1
k (2.11)

χ2
k = χ2

k−1 + χ2
+ (2.12)

These can be considered in two steps: the projection of the state to the next

layer, and the update of the state with a measurement on that layer. Projection

is carried out by Equations 2.4 to 2.5. The state is propagated from the previous

layer, k− 1, to the current layer k. Multiple scattering, which alters the path of the
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track, is included in the matrix Q.

The measurement m, with covariance matrix V is used to adjust the parameters.

This predicted state is updated in Equation 2.9 by the residual between the pro-

jection and the measurement, weighted by the Kalman gain K. The Kalman gain

weights the adjustment of the state according to the uncertainties and correlations

in the state and measurement. In simplistic terms, a small uncertainty in the state

compared to a large uncertainty in the measurement will change the state only a

little, whereas a large uncertainty in the state with a small measurement uncertainty

will result in the state pulling towards the measurement.

The track reconstruction performed at CMS, both offline and at the HLT, uses

a 5 parameter state in the curvilinear frame to describe a track at any point along

its trajectory:

x = (q/p,λ,φ, x⊥, y⊥), (2.13)

where q is the sign of the particle charge, p the magnitude of the momentum, λ the

dip angle and φ the azimuthal angle, both in the global reference frame [66]. The

coordinates x⊥ and y⊥ are defined in a local coordinate system to the track given

by T, a unit vector pointing parallel to the track, and the orthogonal vectors U and

V defined by:

U =
Z×T

|Z×T| , (2.14)

V = T×U, (2.15)

where Z is a unit vector pointing along the global z-axis. The vector T points

along z⊥ by definition, U points along x⊥ – lying in the global xy-plane – and V

points along y⊥ at an orthogonal to the above such that a right-handed Cartesian

coordinate system is formed.

Since the propagation of the track parameters is non-linear in the parameters,

the state propagation is modified slightly from Equations 2.4 to 2.5. The state vector

is simply propagated according to the track helix equations

xk−1
k = fk−1(xk−1).

The covariance matrix propagation is performed with the Jacobian, the matrix of
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first order partial derivatives of f with respect to the track parameters:

Fk =
∂f

∂x

����
k−1

,

Ck−1
k = FkCkF

T
k +Qk.

The state is constructed such that the measurement equation, Equation 2.7 is linear

in the state.

In the track building stage, the hits which belong to a track are not known.

Beginning with a seed track, the state is propagated to the next detector layer

according to the track helix equation. A search is then performed in all of the hits

measured on the detector layer, and any within a suitable χ2 are kept. Each of

these hits (there may be none, one, or more than one) is filtered with the state

update equations separately. These states are now independent track candidates,

and the procedure continues: propagation, hit searching, updating. States which

have been filtered with a random collection of hits will eventually not find any hits

within the χ2 window, and can be rejected. Similarly, tracks which fall outside of

the pT or vertex constraints of the tracking iteration are rejected. For the purposes

of the HLT, the track parameter uncertainty is good enough for a track with 8

hits that the building can be stopped in order to save processing time, rather than

continuing to the outermost detector layer. This track building procedure, while

powerful for finding all tracks, leads to the combinatorial problem that slows the

tracking execution time with increasing pileup. With more tracks, and hence more

hits, there are more combinations of hits that need to be tried in order to find all

of the tracks.

A cleaning step is performed to remove tracks which are reconstructed more

than once, which may occur when the same hits are added to different, similar, seed

tracks, or when a single seed develops into multiple viable tracks. The hits on each

pair of tracks are compared, and where the fraction of shared hits exceeds 19%, the

track with the most hits, then the smallest χ2 is kept.

2.10.3 Track Fitting

After the track building step a collection of trajectories corresponding to the Kalman

Filter states at the outermost detector layer is obtained. In order to obtain the best

estimate of the track parameters at the location of every hit, the hits are refit

and smoothed. The Kalman Filter state is initialised at the innermost hit, with
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inflated uncertainties in the covariance matrix to remove bias towards the original

result from the building step. The procedure of propagation and update is repeated,

simplified now that at most only one hit on each layer remains in the track candidate.

A Runge-Kutta method is used to propagate the state between layers, in order

to take into account material between layers, and magnetic field inhomogeneities.

At the outermost hit, the uncertainties are again increased by a large factor and

the propagate-update procedure is carried out in the reverse direction. At each

measurement the weighted average of the inside-out and outside-in state is taken as

the best measurement. Now with the smallest uncertainty state estimate at every

layer, outlier hits can be identified and rejected with better accuracy. A χ2 cut is

used to identify outlier hits, with a tighter cut than used during building. If any hits

were removed from a track, the fit is repeated until no more hits are removed, or the

track has hits removed from two consecutive layers, in which case it is discarded.

The state at the outermost hit can then be propagated to the calorimeter or muon

subsystems, while the state at the innermost hit can be propagated towards the

beamline to find the distance of closest approach.

2.10.4 Track Selection

The final step of an iteration of the track reconstruction is to select good quality

tracks, with the aim of rejecting fake tracks. Selection is made based on the number

of hits on the track, the χ2 per degree of freedom of the fit result, the compatibility

with a primary vertex, and the η and pT of the track. Different selection criteria

are applied for each tracking iteration, as well as ‘loose’, ‘tight’, and ‘high-purity’

working points [61].



Chapter 3

MaxCompiler for Level 1 Trigger

Applications

High-level programming languages for FPGAs enable the development of more ad-

vanced algorithms for the Phase II upgrades of the CMS trigger, and other HL-

LHC experiment triggers. These languages abstract some of the implementation de-

tails from the developer, allowing more effort to be spent on optimising algorithms.

Whether high level languages can match the performance (in FPGA resources and

latency) of expert, hand-written HDL has been an issue within the community

preventing more widespread adoption. Inefficiencies with a compiler that create

overly large and slow implementations would negate the benefits of being able to

realise complex trigger algorithms. In this chapter the MaxCompiler tool is bench-

marked against VHDL, using an algorithm originally developed in VHDL for the

CMS Phase I Calorimeter Trigger upgrade, and subsequently reimplemented using

MaxCompiler.

3.1 High Level FPGA Programming

Each of the two major FPGA vendors, Xilinx and Altera, offer their own propri-

etary high level tools. Xilinx supports Vivado High-Level Synthesis (HLS) [67],

which allows FPGA designs to be implemented with C, C++ and System C. The

tool significantly abstracts implementation details from the developer. Much of the

mapping of code to hardware relies on analysis of loop dependencies and algorithm

memory usage within the code. The compiler can be ‘guided’ with directives and

pragma statements to achieve a desired implementation.

39
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Vivado HLS has been investigated for use in triggers for LHC experiments, and

used in the development of new systems for the Run 3 and HL-LHC upgrades. For

example the tool was used to redevelop some parts of the CMS Endcap Muon Track

Finder (EMTF) firmware by way of comparison with handwritten Verilog [68]. Some

parts of the design were implemented with lower resource usage with Vivado HLS

than the original. Achieving low latencies with the design required careful guiding

of the compiler with specific code constructs and compiler directives. The system

has a relatively low clock frequency of 40MHz. A similar exercise in translating

an existing design to Vivado HLS, implementing a Finite Impulse Response filter

for the CMS ECAL Data Concentrator Card resulted in a design with 60% longer

latency than the expectation [69].

An advantage of Vivado HLS is the support for integration of C-based code within

other software. Generally performance studies of trigger algorithms are carried out

using a custom made software emulator which can run on conventional processors

such as in [70]. This requires a significant development effort to achieve results

which accurately match the HDL implementation used in the trigger. The ability

to utilise the same code in both FPGA and CPU platform implementations can lift

this development burden. It was found in [68] that the execution time on a CPU of

the HLS algorithm was a factor two slower than a hand made C++ emulation, but

with none of the development overhead.

Other attempts to move away from HDL programming have involved ad hoc

developments of tools. For example the Tracklet group of the CMS Level 1 Track

Trigger developed with a mix of Verilog and Python [71]. Expert developers created

core Verilog modules by hand, and described their connectivity with a Python model

of the design. This approach can save the work of specifying component connections

in HDL, for a design with high reuse of the handwritten modules, but without the

portability and flexibility of a fully fledged HLS tool.

Menus for the CMS Global Trigger in Run I were created from a set of VHDL

templates [72], a concept that was extended and refined to a custom software tool

for the 2016 Global Trigger upgrade (µGT) [73]. Compared to the preceding Global

Trigger, µGT allows more sophisticated, analysis-like, combinations of trigger prim-

itives to be used to make the trigger decision, such as the mass of a pair of objects. A

grammar is defined for describing combinations of trigger objects, functions to apply

on the objects, and cuts which together comprise a trigger algorithm. The grammar

is parsed by the Boost.Spirit C++ library, producing a VHDL implementation of

the specific menu which can be synthesised by FPGA vendor tools. This approach
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totally decouples trigger menu development from hardware implementation, which

is useful for allowing physicists with no FPGA expertise to develop such menus. A

limited number of object combining functions are made available, which restricts

the algorithm developer to operations known to be practical in the resource and

latency constraints.

3.1.1 MaxCompiler

MaxCompiler [74] and MaxJ are the compiler and language produced by Maxeler

Technologies for the development of algorithms for FPGAs, with a focus on dataflow.

The MaxJ language is an extension of Java, variables are references to locations in

a data stream. Execution of the code (on a CPU) generates a dataflow graph, an

example of which is shown in Figure 3.1. Each node of the graph represents a

computation, with inputs and outputs corresponding to data. An implicit ‘for loop’

surrounds the dataflow graph, since presenting new data at the input to the graph

generates new results. Simply by ‘pushing’ data through the graph its function is

executed multiple times.

MaxCompiler optimises the design graph, for example propagating operations on

constants to reduce unnecessary computation in the FPGA. Each node, or cluster

of nodes, is then represented with a Register Transfer Level (RTL) HDL description

or vendor IP core (such as multipliers and memories), and connected according to

the graph. The design can then be synthesised to a bitstream for the target FPGA.

In this sense MaxJ is more like a ‘High Level HDL’ than HLS, since each operation

maps to a logical component in the FPGA.

Normally, MaxCompiler designs target ‘Dataflow Engine’ (DFE) boards pro-

duced by Maxeler. These are typically PCIe form factor boards with an FPGA and

DDR memory for performing compute acceleration. Boards with both Altera and

Xilinx components are available. In this scenario, MaxCompiler runs the vendor

synthesis tools ‘under the hood’, generating a ‘.max’ file that contains the compiled

design (bitstream) and information used by other pieces of Maxeler software to run

the design in their hardware.

The compute acceleration boards manufactured by Maxeler do not provide the

optical IO bandwidth required by LHC Level 1 Trigger systems – very few other

setups could produce data at multiple Tb/s. Working with Maxeler, provision was

made to halt the MaxCompiler process at an intermediate stage, providing access

to the HDL of the design. With this access it was possible to utilise designs written
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x ×

+

y 3

z

Figure 3.1: Dataflow graph for z = x2 + y. Variables x and y are inputs, z is an
output. The box labelled ‘3’ represents a FIFO of depth 3, which is the latency of
the multiplication in clock cycles.

using MaxJ in other hardware, with the optical bandwidth needed, and therefore to

explore the use of the language for trigger applications.

3.2 Jets and Energy Sums

Of the reconstruction performed by the Layer 2 processor, the jet and energy sum

algorithms were chosen to be reimplemented with MaxCompiler. The energy sum

is the most simple quantity reconstructed, while the jet algorithm builds on some

elements of the energy sum, with additional processing. The hardware description

language VHDL was used for the implementation deployed in the trigger at CMS.

The energy sum is simply the sum of ET of all trigger towers:

ET,Event =
�

iφ,jη

ET,iφjη , (3.1)

where ET,iφjη is the transverse energy of the ith tower in φ and jth tower in η. The

missing energy is the vector sum

ĒT =


�

iφ,jη

�
ET,iφjη cos(φ)

�
x̂,

�

iφ,jη

�
ET,iφjη sin(φ)

�
ŷ


 . (3.2)

Equation 3.3 defines a jet in the Level 1 calorimeter trigger, and a diagram is

shown in Figure 3.2. A jet candidate is defined as the sum of ET of a 9× 9 window



MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS 43

Figure 3.2: Templates describing the definition of a Level 1 Calorimeter Trigger jet
object. On the left is the template for summation of trigger tower energies to obtain
the jet energy. The pink outer regions are the bands used to obtain pileup energy.
On the right is the veto template defining whether a jet centred on the central tower
is a valid jet. If the energy of any of the red shaded towers is greater than the central
tower energy, or if the energy of any of the green shaded towers is greater than or
equal to the central tower energy, then the jet candidate is invalid.

around the central tower, which must be the highest energy tower in the window.

In order to avoid the mutual veto by two equal energy towers in the grid, while also

preventing double counting, a jet candidate may have a tower of equal energy within

its window to one side, but not to the other side. Energy from pileup is estimated

from a region neighbouring the jet. From the four strips of 9 × 3 neighbouring the

jet candidate, the lowest three are used as the pileup estimate, and their energy is

subtracted from the jet ET . The twelve highest energy jets are passed to the output,

and sent to the µGT.

ET,Jet(iφ, jη) =

iφ+4,jη+4�

iφ−4,jη−4

ET,iφjη − ET,Pileup, (3.3)

where

ET,Neighbours =




iφ+4,jη±7�

iφ−4,jη±5

Eiφ,jη ,

iφ±7,jη+4�

iφ±5,jη−4

Eiφ,jη


 , (3.4)

ET,Pileup = ET,Neighbours −max (ET,Neighbours) . (3.5)

The 9 × 9 area was chosen to be close to the size of the ΔR = 0.4 parameter
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frequently used with the anti-kT algorithm to compute jets offline, while having

a fixed size greatly simplifies the implementation. The energy of the leading jet

computed by the L1T very closely matches that computed by anti-kT with ΔR = 0.4

using trigger tower inputs, with a slight bias towards higher energy [56].

3.3 Algorithm

3.3.1 Jets

The time multiplexing scheme introduces a mapping of trigger tower to input link

and time slice. The link on which a trigger tower arrives corresponds to the φ posi-

tion, while the time of arrival relates to the η position. Summing tower energies in a

window with extent in η therefore requires significant pipelining to access data from

multiple clock cycles after it was received, while the φ extent requires a combina-

tion of signals from multiple locations across the chip. All of the algorithm is fully

pipelined, that is, new data arrives on every clock cycle and the algorithm execution

never stalls. A clock frequency of 240MHz is used throughout.

In order to keep up with the incoming data rate, and to achieve the smallest

possible latency, the algorithm is highly parallelised. For the jets, this means that

each trigger tower is initially considered a jet candidate, and processed as such: its

ET,Jet is computed. The ET,Jet centred around every tower in two φ rings on opposite

sides of the interaction point is computed in parallel. Simultaneously, a map of the

highest energy towers is constructed to ultimately select the jet candidates which

are centred on local maxima of energy. All of this is performed as soon as data

begins to arrive from the detector, before the whole event has been seen. Because

the span of a jet object is still much less than the total extent of the calorimeter, and

only twelve are selected at the end, the incoming trigger towers can be reduced to a

handful of possible jet candidates of a smaller data size, with a final accumulation

step to pick out only the highest energy.

The formation of jet sums and the map of local maxima are a fully unrolled, static

configuration of the algorithm within the FPGA. Both the jet energy and validity

are calculated in a piecewise fashion, illustrated in Figure 3.3 for a section nine

towers wide in φ. As every tower is initially considered to be a jet candidate, until

vetoed, there is a large overlap between the computations of the energy of nearby jet

candidates. In order to save FPGA resources, and since addition components only

take two inputs, rather than performing multiple summations with the same data,
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1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x1

3x1 3x1 3x1 3x1 3x1 3x1 3x1 3x1 3x1

9x1 9x1 9x1 9x1 9x1 9x1 9x1 9x1 9x1

Figure 3.3: The scheme for reuse of partial sums of jet energy to save FPGA re-
sources. Each cell represents an object with the summed energy of a number of
trigger towers in φ × η. Towers (with 1 × 1 area in φ × η) enter at the top row of
the diagram. Three neighbouring towers are grouped, and their energy is summed
making a 3×1 partial jet sum. Finally three non-overlapping 3×1 sums are grouped
and summed.

intermediate sums are reused multiple times. At each stage three objects (input

towers, or partial sums) are grouped and summed into a composite object. The

inputs are then discarded (again saving resources), and the result propagates to the

next calculation.

When both the 9×9 sums and local maxima are available for one particular ring

in φ, the number of jet candidates can immediately be reduced from 72 to 18 with

a multiplexer, since no strip of four neighbouring towers can contain more than one

maximum according to the template of Figure 3.2. The pileup estimate around each

tower is also multiplexed with the map of maxima, and then subtracted from the

surviving 18.

To obtain the top six from each half barrel, the 18 are sorted in order of ET and

the lowest twelve are discarded. A bitonic sorting network, a static configuration of

pairwise comparisons and swaps with no data dependence, is used. The dataflow

graph of a bitonic sort network for four parallel inputs is shown in Figure 3.4. The

basic unit is a comparator controlling the output of a pair of multiplexers, which

swaps the order of the inputs depending on the comparison. At the output of this

sort, the six highest ET jets with the same η remain, ordered by ET .

In order to accumulate over the highest ET from the whole η range (which means

allowing all data to arrive and propagate through the preceding steps), a pipelined

accumulation step is used, an illustration of which is shown in Figure 3.5. The

pipeline has six stages, one for each of the six jets to be selected from this half

barrel (and duplicated for the other half barrel). The first stage holds the maximum

ET jet seen so far in a register. Each cycle, when a new ring of jet candidates is

produced, a comparison is made between the current maximum and each of the new
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Figure 3.4: Dataflow graph of a bitonic sorting network with four parallel inputs.
The basic unit consisting of a comparison and two multiplexers (labelled MUX) is
repeated, with the data routing between units achieving the desired sorting.

six. If one or more of the new six candidates has a higher ET , the highest of these

becomes the new maximum, and the old maximum shuffles into the remaining five,

maintaining the ET ordering. If none of the six have a higher ET than the current

maximum, they all propagate to the next stage. The second stage carries out the

same procedure, but selects the second highest ET jet candidate because the highest

ET candidate never propagates past the first stage. The procedure continues for four

more stages, such that the register at each stage holds one of the six highest ET jets

in one half barrel. When all of the calorimeter trigger towers have been received

and propagated through the pipeline the six jets from each of the two accumulation

stages are sent to the output.
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Figure 3.5: Accumulation stage of the jet sorter. Six ET ordered jets from one η
ring enter the accumulation at the top of the schematic, and propagate towards the
bottom. At each stage the highest ET jet object remains in the register on the left
(numbered 1-6 in the diagram), while the remaining objects continue to the next
stage. Each stage outputs one fewer jet than it received to keep the resource usage
only as large as necessary.

3.3.2 Energy sum

The scalar and vector energy sums are executed in parallel with the jet algorithm.

Since the scalar sum involves the same tower ET quantities as the jet algorithm, the

partial sums are reused for the event energy sum. The ET sum for one ring in φ is

carried out with a balanced adder tree, and an adder with the output redirected to

the input accumulates these sums over η. For the vector sums, the tower ET s are

first split into x̂ and ŷ components, then summed with a balanced adder tree and

accumulated.

3.4 MaxJ Implementation

Similar design patterns to the VHDL were used when implementing the design using

MaxJ. In both cases, sharing partial sums of tower energy between jets with different

tower centres required explicit control by the developer, by constructing arrays of

partial sums and using indexing to select neighbouring sums.

An advantage of MaxCompiler over VHDL is the functionality of the compiler

to automatically set data types. When summing two integer values of n bits, n+ 1

bits are required to store the result at the same precision as the summands, and for

all possible outcomes. In VHDL this must be coded by hand, whereas MaxJ will
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guarantee the result has the correct type, unless overridden. Several strategies are

provided for the compiler to set the type for the output of all operations, these are

used extensively in Chapter 4.

The bitonic sorting network used to select the highest ET jets can be easily

implemented using recursion, as was done in the MaxJ implementation. VHDL,

however, does not support recursion, and here the two code bodies differ greatly

in achieving the same desired functionality. For a sorting network which discards

some of the sorted data, some comparisons do not lead to the output. MaxCompiler

analyses the path of the dataflow graph, and trims the network to only include

operations which lead to outputs.

Latency is also controlled differently in the two languages. In VHDL, registers

are added to create the pipeline with the construct ‘if rising_edge(clk):’. Con-

versely, in MaxJ, every operation is followed by a register unless otherwise forced

with ‘optimization.pushPipeliningFactor(0)’. A VHDL design therefore has

no pipelining by default, while a MaxJ design is maximally pipelined. The VHDL

developer must add registers to achieve a reasonable clock frequency, while a MaxJ

developer must remove registers to reduce the latency.

3.4.1 Interface with MP7

An interface was required to use the MaxJ design within an MP7 board. For all

MP7 designs, a ‘core firmware’ package exists, which largely separates the algorithm

and IO functionality of a design. The package provides firmware for all necessary

external communications, with connections to a ‘payload’ defined by the user.

MaxCompiler produces VHDL output from the MaxJ Kernel, which can be inter-

faced with other VHDL. This corresponds to the top level in the algorithm hierarchy.

MaxCompiler Kernels support asynchronous communication with each other, and so

contain control ports for stalling and terminating execution. These are not required

for the L1 Calorimeter Trigger, however, since it runs continuously. A wrapper

module was programmatically generated to connect the data ports of the Kernel to

the core firmware as the payload, and tie other control ports to constant values.
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Table 3.1: Number of each type of resource used by each implementation of the jet
and energy sum algorithm. Built for a Virtex-7 690T using Vivado 2015.4 with MP7
core infrastructure (numbers for algorithm only).

Resource VHDL MaxJ
Slice LUTs 95235 102508
Slice registers 153198 130072
DSPs 288 288
BRAM tiles 0 0
Lines of source code 3000 1500

3.5 Comparison

3.5.1 Functional Correctness

Monte Carlo events were passed through both the VHDL and MaxJ implementa-

tions of the algorithm. Figure 3.6 shows the functional correctness of the MaxJ

implementation. Bit-identical results were obtained for the jet energies, and η, and

for the scalar and vector energy sums. A small discrepancy is observed in the φ

distribution, which arises from a difference in the bitonic sorting network. Two jets

with the same ET and η but different φ can emerge in a different order from the

two implementations. When selecting the top six jets in the event one of these may

be removed in the case that one has the sixth highest ET and the other has the

seventh. In other cases, they will simply emerge in a different order. The trigger

performance would not be affected by this difference.

3.5.2 FPGA Resources

Resource consumption of each implementation is shown in Table 3.1. Approximately

8% more slice LUTs are used by the MaxJ implementation, with slightly fewer regis-

ters than the VHDL. The DSP usage is the same between the two. Multiplication is

only performed for the projection of 144 towers onto the x and y axis, so the tool has

correctly mapped these onto DSPs. No BRAMs are used by either implementation.

The MaxJ implementation latency matches that of the VHDL. One noteworthy dis-

tinction is that the MaxJ code body is half the length of the VHDL for the same

functionality. This suggests that the code may be easier to maintain.
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Figure 3.6: Output distributions of reconstructed jet and ET parameters from the
VHDL and MaxJ implementations of the L1 Calorimeter Trigger algorithms, in the
integer units of the calorimeter trigger. A bit-exact matching is observed for all
parameters apart from the jet φ, due to an internal difference in the sorting of jets.
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3.6 Summary

This chapter presents the first use of MaxCompiler in a low latency, high throughput,

scenario interfacing to hardware not produced by Maxeler Technologies. By com-

paring the performance of a MaxCompiler implementation of an algorithm originally

implemented using VHDL, it has been shown that the tool is viable for producing

low latency algorithms with an efficient use of FPGA resources. Due to the fine

level of control provided by the tool, bit-wise matching to the handwritten VHDL

was achieved. The MaxCompiler implementation resulted in an 8% increase in LUT

usage, while requiring half the number of lines of code. This inefficiency might be

acceptable, if the ease of algorithm design with the higher level language enables

realisation of designs that would be extremely difficult with the conventional HDL

approach to writing trigger algorithms, as shall be explored in the next chapter.



Chapter 4

Track Reconstruction for the Level

1 Trigger

During Long Shutdown 3, operation of the LHC will cease, and the machine will be

upgraded to deliver an instantaneous luminosity of L = 5× 1034 cm s−1, five times

its current value, restarting as the High Luminosity LHC (HL-LHC). The CMS

experiment will be significantly upgraded in order to maintain performance in the

high radiation, high pileup conditions [12]. The tracking detector will be completely

replaced, and for the first time will send data to the Level 1 Trigger (L1T).

The new detector will consist of an inner and outer part: the inner containing

silicon pixel sensors, and the outer part containing silicon strip, and macro-pixel

detectors. These sensors will have a higher granularity, better radiation tolerance,

and extend further in pseudo-rapidity than the current tracker. They will also allow

for the higher trigger acceptance rate of 750 kHz, and longer Level 1 latency of

12.5 µs of the Phase II detector. Furthermore the outer tracker modules will send

information to the Level 1 trigger, for particles with transverse momentum above a

threshold. This information, which is first made available for reconstruction in the

High Level Trigger at CMS currently, will be used to maintain trigger thresholds

for particle energy and momentum as low as possible within the maximum trigger

accept rate. It is the reconstruction of tracks, that is determining the kinematic

properties of the charged particles, from the outer tracker in the Level 1 trigger that

is the main topic of this chapter.

Reconstruction of charged particle trajectories is an essential part of CMS event

reconstruction. The procedure is, however, computationally expensive, as discussed

in Section 2.10. During LHC Run I the CPU time required for track reconstruction

52
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was almost as much as the time for all other reconstruction [61]. Tracking execution

time on a CPU scales badly with increasing pileup as the number of possible com-

binations of hits increases. The track reconstruction time with 140PU is a factor

ten slower than with 70PU. At the HLT tracking is executed only sparingly, after

attempting to reject events using faster to reconstruct requirements such as those

based on calorimetry. Track reconstruction is not currently performed in the Level

1 Trigger at CMS, in part as the tracker cannot be read out at the full LHC event

rate, but also because the reconstruction is extremely difficult in the microsecond

timescale available at L1.

4.1 Track Trigger Demonstrator

A demonstration of a concept for a Level 1 Track Trigger was constructed to inves-

tigate the feasibility and performance of track reconstruction within the restrictions

of the Level 1 Trigger in a 200 pileup regime, and also to determine the scale of the

final system in hardware terms.

For the Phase II upgrade, the total L1 latency budget is at most 12.5 µs [12]. Of

this, 3.5 µs are allocated to utilise the reconstructed tracks, calorimeter and muon

primitives to make the final trigger decision. 1 µs is required for the propagation of

the L1 accept decision to the front end chips, and 3 µs is reserved for a safety margin.

The total time to receive stubs and completely reconstruct them into tracks is there-

fore 5 µs. Of this, 1 µs is required for the on detector processing, and transmission

to the Data, Trigger and Control (DTC) boards, so 4 µs remains for reconstruction

[40].

4.1.1 Time Multiplexed Track Trigger

The time-multiplexed track trigger demonstrator hinges on the platform of a time-

multiplexed architecture using FPGAs for processing that is feed-forward only (that

is, there are no bidirectional links between boards). This concept decouples the

algorithm design from the architecture as much as possible, and maintains a high

degree of flexibility for algorithm changes. By segmenting the processors only in φ

and by bunch crossing (by time-multiplexing), the algorithm is the same on every

processor in the system. This scalable design allowed the demonstration of the

entire track reconstruction system with just one instance of a Track Finder Processor

(TFP). The reconstruction algorithm centres on the use of a Hough Transform for
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track finding, with pre and post-processing steps to parallelise the processing and

perform track fitting. The reconstruction steps proceed as follows:

• Geometric Processor (GP) - Performs preprocessing of stub data to a format

designed for the Hough Transform, and routes the stubs to Hough Transform

instances compatible with the narrower internal sectors.

• Hough Transform (HT) - Groups stubs consistent with tracks in the r − φ

plane. Multiple instances are created, covering different detector regions, and

are evaluated in parallel.

• Kalman Filter (KF) - Fits track parameters to the stubs in a candidate, si-

multaneously rejecting inconsistent candidates and stubs.

• Duplicate Removal (DR) - Utilises the precise fit information to remove tracks

found in multiple HT cells.

The demonstrator TFP, described in more detail in Section 4.1.6, covers one

eighth of the detector – the full range in η and π/4 in φ – and one event in every 36

with time multiplexing. Each element of the reconstruction procedure will now be

discussed in detail.

4.1.2 Geometric Processor

The geometric processor (GP) firstly unpacks 48-bit stubs (containing the (r,φ, z)

coordinates, bend, and a validity bit) from the DTC into an extended 64-bit format

which removes some processing work from the HT. The first extra bits are an ID field

for the detector layer, since the HT track candidate definition requires a number of

stubs on unique layers. The second extra bits correspond to the track pT range with

which a stub is compatible, derived from the bend, in the units used internally by

the HT.

The detector segmentation performed by the GP is constrained by the availability

of optical links on the MP7, which is 72 in each direction, since the GP alone

occupies one board in the demonstrator system. Since the stubs are 64-bits wide,

they must be carried across two links, yielding a maximum of 36 sectors. Two

divisions are made in φ (within the π/4 covered by the TFP), and 18 in η, shown

in Figure 4.1. Each geometrical sector is served by a separate instance of an HT

algorithm, thus parallelising the track finding. These sectors overlap, allowing for

the curvature of tracks in r − φ and the 150mm interaction region length in z.
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Figure 4.1: Segmentation of the tracker into processing regions. Shaded sections
show overlaps between regions. Each demonstrator TFP serves one eighth of the
detector in φ, for the full range in η. Internal segmentation creates two additional
φ regions and 18 η regions within each TFP.

The HT implementation, which is described in section 4.1.3, is capable of handling

additional sectors within one physical processing unit, for a small cost in additional

resources. The 18 η sectors are further split into two halves with this mechanism.

The GP attaches a bit for each of these sectors to the stub data. Since the HT

finds tracks only in the r−φ plane, it is prone to producing track candidates whose

stubs do not form a physical trajectory in the r− z plane. The 36 η segments limit

the production of these fake tracks, ensuring that the candidates are somewhat

consistent with a straight line in r − z.

An ‘any-to-any’ routing mesh transmits formatted stubs from any input link to

any HT segment, with compatible segments calculated in the GP processing step.

The routing is performed in stages, with one input leading to at most either 3 or 4

outputs depending on the layer, shown in Figure 4.2. This way, the movement of

data at each layer is small, enabling a high clock frequency when placed in the FPGA

compared to a network which performs ‘any-to-any’ routing in one step. Each node

in the routing network receives data from 3 to 4 nodes in the preceding layer, but

processes at most one stub per clock cycle. This requires buffering and arbitration

between inputs, which ultimately leads to gaps in the data packet at the output of

the GP. A small loss of stubs is introduced, as the packet length may exceed the

time multiplexing period.

The resource usage of the components is shown in table 4.1. Since each of the

72 input links is deserialised into 32 bit data, 48 of the 48 bit stubs arrive in parallel

each cycle. The pre-processing block is duplicated once per input stub, therefore

48 times in total. One instance of the 48 to 36 routing network is used, with each
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Figure 4.2: The Geometric Processor (GP) routing network. 64 bit stubs, and their
sector addresses, arrive at the nodes at the top of the diagram. They move along
lines to nodes in the next layer according to the address. At the output layer, at the
bottom of the diagram, each node corresponds to one geometric processing sector.

Table 4.1: Utilisation of FPGA resources for the stub unpacking and pre-processing
block, of which 48 instances are needed to cover one TFP, and the routing network.
Percentages are reported as the fraction used of the total available in the Xilinx
Virtex-7 XC7VX690T FPGA used for the demonstrator.

Component LUTs DSPs FFs BRAM (36 Kb)
Pre-processing Block 1942 (0.4%) 22 (0.6%) 2416 (0.3%) 1 (0.0%)
Routing Network 27700 (6.4%) 0 (0.0%) 89531 (10.3%) 174 (11.8%)

output node containing stubs from only one of the geometric regions within the

TFP. The GP output is sent to the Hough Transform.

4.1.3 Hough Transform

The Hough Transform is a technique used for detecting features in image pixel data

[75], and used early on for detecting charged particle tracks in bubble chamber

pictures [76]. Initially developed for finding straight lines, the method was first

extended to finding more general curves by Duda and Hart [77], and subsequently for

arbitrary objects [78]. All types of Hough Transform have been utilised within HEP,

from the aforementioned finding of straight lines in 2-dimensional bubble chamber

photographs, to a 4-dimensional accumulator space, using templates accounting for

the fact that physical effects (multiple Coulomb scattering and energy loss) alter

the particle trajectory in a cylindrical tracker such as that used at CMS [79].



TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 57

Algorithm

The basic algorithm, for finding straight lines, maps the space of spatial coordinates

to the space of line parameters. The straight line may be described by

y = mx+ c, (4.1)

which can be rearranged to

c = y − xm. (4.2)

A single pair of coordinates (x, y) lie on infinite straight lines parametrised by (m, c)

constrained by equation 4.2. With multiple coordinates, (x, y), along a line, the lines

of possible parameters, (m, c), for each point intersect at the true (m, c) value of the

line. In order to find the (m, c) values of interest, a two-dimensional histogram of the

(m, c) space is made, with one count for each bin that a line intersects. Local maxima

in this accumulator space correspond to the (m, c) parameters of the straight lines.

Examples of the (x, y), continuous (m, c), and binned (m, c) accumulator spaces are

shown for different scenarios in Figure 4.3.

For particles of charge q, in a magnetic field B with momentum in the plane

perpendicular to the magnetic field pT (in CMS this is the x− y plane), the radius

of curvature is

R =
pT

0.3qB
, (4.3)

for R in metres, pT in GeV and B in Tesla. The trajectory of particles originating

at the interaction point in the r − φ plane is

r

2R
= sin (φ− φ0), (4.4)

where φ0 is the initial angle in the x− y plane from the positive x axis towards the

positive y axis. With a sufficiently large R, and therefore pT by equation 4.3, the

small angle approximation can be made, yielding

r

2R
≈ φ− φ0. (4.5)

Given the on detector pT cut minimum of 2GeV, and the maximum tracker radius

of 1m, the worst case difference of the approximation is 0.23°, or around 1.4%.
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Figure 4.3: Examples of Hough Transform evaluation for straight lines. Each row
displays the (x, y) space (left), the continuous (m, c) space (middle), and discrete
(m, c) accumulator space (right). The top row shows how a single point in (x, y)
maps to a line in (m, c) space. On the middle row, each point in (x, y) corresponds
to one of the lines in (m, c) space. The lines intersect at the actual straight line
parameters. In the accumulator space, one can see that only the bin containing the
true parameters has a ‘vote’ from every (x, y) point, all other bins have one vote.
On the bottom row, there are (x, y) points from two different straight lines. The
distinct parameters of the two lines create local maxima in the accumulator space.
Some bins accrue more than one vote where the many lines in (m, c) space overlap.
A further difference between the middle and bottom row is that the x axis has been
transformed so that there are equal numbers of measurements on either side of the
y axis. This improves the separation between lines in the accumulator space, and is
used in the track finding HT.
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Equation 4.5 is the basis of the straight line relationship used here to find tracks in

the r − φ plane by means of a Hough Transform.

It can be seen in equation 4.2 that the gradient of lines in accumulator space is

given by the x (here r) ordinate of the measurement. In the conventional cylindrical

coordinate system, r is only positive, so only negative line gradients are possible in

the Hough Transform. When creating the histogram of (m, c) parameter space with

a rectilinear grid, the separation between lines can be improved by allowing positive

gradients. This is achieved by transforming the radius r with an offset

rT = r − T. (4.6)

T is chosen to be 580mm, a radius which transforms approximately equal number

of stubs to produce positive and negative line gradients in the transformed space.

The transformed track parameter space of equation 4.5 then becomes

φ =
1

2R
rT + φT , (4.7)

where φT is the angle of the track at radius T . The Hough Transform algorithm is

a histogram over all stubs within a GP sector of the ((2R)−1,φT ) space. The φT

range of the array must cover the whole sector, and the (2R)−1 range must cover

|pT | > 3GeV. A bin containing stubs from five unique detector layers in the same

η subsector is classed as a track candidate.

Implementation

The HT algorithm described in section 4.1.3 is implemented in FPGA firmware in

two pipelined stages. Firstly the accumulator array is filled with stubs, followed by

the readout of track candidates. The array implementation can input and output

one stub on each clock cycle.

Within the array, the 32× 64 bins are split into columns spanning the length of

the φT axis, for one bin in (2R)−1, each served by an instance of processing logic,

shown in Figure 4.4. Several columns are daisy-chained together, with stubs passed

along the column in a pipeline. Propagating the stubs this way means that the HT

straight line equation can be expressed

φT (n) = φT (0) + n ·Δ(2R)−1 · rT , (4.8)
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Figure 4.4: Schematic of the implementation of one Hough Transform column pro-
cessor. Stubs arrive from, and are sent to, neighbouring column processors, forming
a pipelined chain. The ‘Hough Transform’ block evaluates the φT of the current
stub at the (2R)−1 edges of the column. The appropriate φT bins are sent through
the ‘φT Buffer’, which handles cases where more than one bin in the column must
be incremented. The ‘Track Builder’ writes the stub pointer to the column memory
and determines which cells are track candidates. Finally, the ‘Hand Shake’ block
outputs the track candidate stubs in a contiguous stream during event readout.

for column n. φT (0) is simply the φ coordinate of the stub. Equation 4.8 is imple-

mented using two DSPs per column: one for each bin edge. The chain of column

processors need not span the full (2R)−1 axis, and splitting the axis into chunks,

each two or three columns long, reduces the latency of the design, and the memory

size requirement for the processor.

Since the finding of track candidates is not the end of the procedure – they

must be fit and filtered – access to the stubs which contributed to the bin reaching

the threshold must be provided. This is achieved using a segmented memory, with

capacity for pointers to 16 stubs in the column manager’s memory reserved for each

of the 64 cells in the column. The template is duplicated, one half for alternate LHC

collision events, allowing for simultaneous readout of the first event and filling of the

second event. This requires one of the 18Kb block RAMs available in the FPGA.

The same logical element maintains a count of which detector layers have stubs

in each bin. A separate count is maintained for each of the two η subsectors. The

cell is only classed as a track candidate if the threshold is reached in one, or both, of

the subsectors (stubs from both subsectors are read out if the threshold is reached

in either).

It can be possible for a stub to lie in two φT bins within the (2R)−1 column,

in which case two addresses must be written to. This writing must take place on



TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 61

Figure 4.5: Schematic of one Hough Transform array as implemented in FPGA
firmware. Each column (‘Col.’) processor spans all 64 bins in the φT variable, and
one bin in (2R)−1. A book keeper stores input stubs and passes them through the
daisy-chained columns. The 32 bins of the (2R)−1 axis are split into twelve chunks
managed by independent book keepers: 8 of which manage 3 columns; the remaining
4 of which manage 2.

Table 4.2: FPGA resource utilisation for one HT column processor, and one HT
accumulator array. Percentages are of the resources available in the Xilinx Virtex-7
XCVX690T FPGA used. The 36 geometric sectors are served by separate array
instances, so resources for 36 HT arrays are required.

LUTs DSPs FFs BRAM (36 Kb)
One Column 188 (0.0%) 2 (0.1%) 204 (0.0%) 1 (0.1%)
One HT array 6014 (1.4%) 64 (1.8%) 6718 (0.8%) 33 (2.2%)

separate clock cycles, so a buffer is introduced to interleave the storage of the second

column stub when there is a gap in the datastream.

Chains of HT column processors are managed by a ‘book keeper’, an array of

which is shown in Figure 4.5. This block receives the stubs from the GP, stores them

in a memory, and passes them through the HT array columns. One stub is received

per clock cycle, and written into a 36Kb memory. The minimum data needed for

the HT calculations, and stub retrieval, are sent to the first column in the chain:

the rT , φT at a reduced resolution; the ID of the layer on which the stub was found;

the range of (2R)−1 bins compatible with the stub bend, and the pointer to the full

stub data in the book keeper memory. The length of the (2R)−1 axis is split into

twelve chains of neighbouring columns, each arranged into a pipeline and managed

by one book keeper instance. FPGA resource usage for these components is shown

in table 4.2.
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At the end of the time-multiplexed period, after all stubs have been written

into the HT array, the cells meeting the threshold requirement are read out. A

‘Hand Shake’ component reads the stubs, one per clock cycle, and presents them

on the track candidate bus, attaching the cell array indices to the data. All the

stubs belonging to the candidate are read out consecutively into the stream, before

beginning the next candidate. The stream of stub pointers and (m, c) indices passes

through the book keeper, which retrieves the original stub data to pass to the track

fit.

At the output of the book keepers, a multiplexer consolidates six streams into a

single output, so tracks from each HT are read out on two streams, and therefore 72

per TFP. A load balancing unit then moves track candidates between output streams

initially paired with different geometrical sectors. Dense jets tend to create many

track candidates in a single sector, which could overload the fitting stage. Lifting

the geometrical segmentation of the data streams better utilises the track fitting

resources later. At the output of this load balancing, the candidates are streamed

into the track fitter.

4.1.4 Kalman Filter

A Kalman Filter [64] was chosen to fit and simultaneously clean the track candi-

dates after the finding performed by the Hough Transform. The algorithm, which

is the de facto choice for offline and HLT tracking in CMS, was chosen in this case

for a number of reasons. Firstly, the algorithm is a local one, meaning hits within

the collection are sequentially added to the fit, contrasting with a global method

which considers all hits at once, such as a linear regression. The resolution, and

also efficiency, of a global track fit is adversely affected by the presence of the many

outliers in the track candidates found by the HT, since all measurements pull the fit

to the parameters simultaneously. These outliers can lie several standard deviations

of detector resolution away from the true track due to the coarseness of the longitu-

dinal segmentation. Since the Kalman Filter introduces measurements sequentially,

a stub can be left out of the fit if deemed to be too far from the track hypothesis

at that point. The local nature of the Kalman Filter also allows for small matrices

in the algorithm. The matrices have dimensions of the number of track parameters,

and the dimensionality of the measurement, in some combination. By contrast, a

linear regression requires matrices with dimensions up to the product of the number

of measurements with the measurement dimensionality. When prioritising a low
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latency implementation, small matrices should enable a faster algorithm. A linear

regression also has the complication that the number of measurements in a track

candidate is not constant, which makes a highly parallel FPGA implementation

more challenging.

The track fit seeks to obtain the track parameters from the simplified track

equations 4.9 and 4.10.

φ(r) =
1

2R
r + φ0, (4.9)

z(r) = tan (λ) · r + z0, (4.10)

where φ is the azimuthal angle of the trajectory at radius r from the beam line, R

is the radius of curvature of the trajectory, φ0 is the initial azimuthal angle, z is

the longitudinal position of the trajectory at r, λ is the angle from the r axis in the

r− z plane (the dip angle), and z0 is the initial longitudinal position of the track at

the beam line. Using the Kalman Filter nomenclature introduced in Equations 2.4

to 2.12, these relations define the state and measurement vectors to be those given

by Equations 4.11 and 4.12.

x =




(2R)−1

φ0

tanλ

z0




, (4.11)

m =

�
φ

z

�
. (4.12)

The matrix F must transport the state from layer k − 1 to layer k according to

equation 2.5, and since we do not expect the track parameters to change we have

that F = I4. In order to obtain the residual of equation 2.7, H is:

H =

�
r 1 0 0

0 0 r 1

�
.

Without including the effects of multiple scattering, the matrix Q = 04. Un-

certainties in the stub measurements are included into the matrix V as in equation
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4.13.

V =

�
σ2
φ 0

0 σ2
z

�
, (4.13)

where

σ2
φ =

�
1√
12

p

r

�2

+




0 if stub in barrel
�
1.05
2R

�2
if stub in endcap

(4.14)

where p is the pitch of a module located at radius r. An endcap correction is required

since a track originating at the nominal interaction point does not intersect the strip

at a tangent for modules in the endcap. The factor 1.05 differs from 1 as it was

found to increase efficiency during testing.

σ2
z =

�
l√
12

�2

×




1 if stub in barrel

0.9 tanλ2 if stub in endcap,
(4.15)

where l is the strip length of the module, and the factor 0.9 was found to increase

the efficiency compared to 1.

In order to begin the Kalman Filter, an estimate of the state and its covariance

is required. The track finding information is used. For the r − φ part the central

value of the m and c bin of the candidate are used, transformed to (2R)−1 and φ0.

In the r − z plane, the initial vertex is unknown so z0 = 0 in the initial state. The

central value of the η sector is used to estimate the initial tanλ. Similarly, for the

covariance matrix, the width of the HT cells, η sector and beam spot uncertainty

are used.

The Equations 2.4 to 2.12 describe the update of a state, x, with a measure-

ment m on detector layer k. A track candidate found by the HT contains multiple

measurements, some of which may be on the same layer. In this instance, the mea-

surements are considered in turn, yielding a new state for each hit on the same

layer, each of which is independent of the other hits. Further measurements on

subsequent layers are then filtered with each of these new states independently. The

HT may also find candidates with no stub on a given layer, or with only erroneous

stubs in a particular layer on an otherwise real track. To account for this, as well

as filtering all measurements on a layer into new states, each state is propagated to
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the next layer unadjusted. This is only done for states whereby skipping the layer

would not make the state invalid. A valid candidate is one with no more than two

missing layers, which may not be consecutive layers, and may not both be PS layers.

This also allows the fitter to mitigate against the presence of broken modules. The

requirement for a valid candidate to contain at least two stubs from PS modules is

motivated by their superior z resolution, giving a better vertex resolution at the end

of fitting.

The creation of multiple new track states at every layer creates a kind of ‘combi-

natorial explosion’, and slows down the processing as each is processed in turn. To

reduce the impact of the extra combinations in the hardware, two procedures are

used. The first is limiting propagation of states where one or more parameter fails

a specified cut. The cuts applied are as follows:

• z0: the nominal interaction region has an extent of 150mm either side of z = 0

with a flat distribution of interactions. States with a z0 outside this range are

cut

• pT : since only tracks with pT > 3GeV should be found, any with lower pT are

deemed spurious, and cut.

• φ0: duplication of stubs across φ processors can lead to the same track being

reconstructed in each processor. In one processor the φ0 will be outside of its

bounds, so these states are cut.

• η: the same duplication occurs across η sectors, so states with trajectories

with an out of bounds tanλ are cut.

• χ2: candidates with stubs far from the state trajectory obtain a large χ2 value,

and these are cut to reduce the number of fake stubs, and tracks.

In addition to the cuts, an accumulation step is introduced with only the ‘best’ states

surviving. At each iteration, states are ordered first by their number of skipped

layers, then by the χ2. At the first iteration, the best four are propagated, and at

subsequent iterations only the single best state continues. Figure 4.6 illustrates the

procedure for an example candidate which has one erroneous stub on the second

layer. States filtered with the erroneous stub can be rejected when the χ2 of the

residual with later stubs is large.

The FPGA implementation of the algorithm can be considered in two parts: the

filtering of a state and measurement according to equations 2.4 to 2.12; and the

iteration over layers, and over multiple stubs in a layer.
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Figure 4.6: An example track candidate found by the HT with intermediate KF
states shown. The candidate has a single stub, on the second layer, not associated
with the same MC particle as the rest (labelled 2b). The state filtered with the fake
stub does not match either the stub on layer 3 or 4, and is terminated due to having
too high a χ2. The state filtered with the genuine stubs matches to each stub and
is output.

Matrix Mathematics

Equations 2.4 to 2.12 were implemented using MaxCompiler. Fixed-point arithmetic

is used throughout, the tuning of which contributed significantly to the time for

design completion. Floating-point arithmetic, as commonly used on CPUs, requires

more FPGA resources and results in a longer latency than fixed-point. This is due,

mostly, to the denormalisation and renormalisation steps required before and after

an equivalent fixed-point step. In the FPGA, arbitrary bit widths are possible, and

the radix point can be placed wherever desired. However, constraints arise from the

DSP and BRAM port widths, which must be respected for a result with efficient

resource uses and high clock frequency.

The DSP units of the Virtex 7 FPGA have one port of 18 bits and another

of 25 bits† [25]. This allows for an 18 × 25 bit multiplication of two’s complement,

fixed-point quantities. It is possible to tile multiple DSPs together to multiply wider

quantities. For example, the product of a 25 bit ‘a’ with a 35 bit ‘b’ can be achieved

with two DSPs [81, p. 4]. The first DSP receives the lower 18 bits of b, and the

†The Ultrascale generation devices, which are likely to be used in the final system, have DSPs
with one 18 bit input and one 27 bit input [80].
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full 25 bits of a. The second then receives the upper 17 bits of b, the 25 bits of a

and a carry bit from the first DSP. The need for a carry signal to propagate when

chaining DSPs this way results in longer latencies for multiplication wider than the

single DSP port widths.

The Xilinx BRAM component is a memory with a configurable data depth and

address width. The basic unit is an 18Kb memory, with data depth d, and address

width a such that d × a = 18432, with d ≤ 36 [26]. Multiple BRAMs may be

combined to make a larger capacity memory. Given these constraints, data repre-

sentations of 18, 25, and 35 bits are commonly used in the KF implementation.

When using fixed-point representation, the dynamic range made possible by

floating-point is lost. Care is therefore required when assigning data types that

the full range of a parameter’s possible values can be represented with sufficient

precision. When constructing the KF implementation, two techniques were used to

choose data types: known data ranges, and numerical profiling. During construction

of the data types, a distinction was also made between quantities internal to the

state update, and those which are propagated to the next iteration, including the

state itself. Data propagated to the next iteration requires queueing in a memory,

as shall be discussed further. To reduce the memory requirements of the queue,

smaller widths are desirable. At a minimum the four state parameters, six unique

covariance matrix elements, and the χ2 must be stored, which easily overflows the

36 bit data depth maximum of a single BRAM when encoded with any reasonable

precision. Several ID fields are also required to associate states with stored stubs.

All of the state parameter types could be tuned by physical constraints. For

(2R)−1, the range is bounded by the on detector pT cut: |pT | > 3GeV, or equiv-

alently |(2R)−1| > 189.9mm−1. The initial angle of the track in the r − φ plane,

φ0, is measured relative to the processing sector boundary, of which there are eight,

and therefore bounded by − π/16 ≤ φ0 ≤ π/16. The Phase II Upgrade outer tracker

extends up to |η| < 3, constraining tanλ to −10 ≤ tanλ ≤ 10. Finally, the beam

spot is constrained to −150mm ≤ z0 ≤ 150mm.

Since, when using the DSP resources, there is no resource advantage to using

bit widths of less than 18 bits, this width was chosen as the default, with more

used where necessary. It was found, for example, that 18 bits was insufficient for the

diagonal covariance matrix elements. Compared to its initial value, the element C22,

which is (σφ0)
2, decreases by a factor approximately 106.5 when the fit converges.

Since 106.5 ≈ 222, 18 bits cannot represent the full range without saturation at one

end. Instability in the fit was observed when encoding with 18 bits, manifesting
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as covariance matrices which were not positive semi-definite: a required feature

for a covariance matrix. For the diagonal elements, 25 bits were therefore used.

Off-diagonal elements, which are initialised to zero, were found to be adequately

represented with 18 bits.

In order to accurately compute the 25 bit diagonal, 18 bit off-diagonal covariance

matrix, 35 bits were used for matrices in the update path of the covariance matrix:

(R)−1, K, and (I−KH). A copy of these matrices truncated to 25 bits was used

for the state and χ2 update of equations 2.9 and 2.11, in order to save resources,

since the extra bits were not needed for these calculations.

Matrix multiplications are performed in the shortest possible latency, at the

expense of resources. This requires simultaneous execution of all multiplications,

with an adder tree for the result, shown schematically in Figure 4.8. MaxCompiler

optimises out operations such as multiplying by a constant ‘0’ or ‘1’, and adding ‘0’.

This saves many DSPs, in particular, owing to the form of the F andHmatrices. The

many constant valued elements of these matrices can be optimised out of operations,

and propagated to subsequent calculations.

A custom division algorithm was used for the matrix inversion, which requires

1 BRAM, 2 DSPs with a latency of 20 clock cycles, and has a worst case accuracy

of 16 bits. The algorithm is described in detail in Appendix A. After updating the

state and covariance matrix according to equations 2.4 to 2.12, the MaxCompiler

block additionally computes the validity of the state according to the previously

stated parameter cuts. This set of calculations to update the state contributes the

majority of the latency of any single component of the Kalman Filter in the FPGA.

The numerical deviation of the state parameters computed by the FPGA firmware

with respect to the simulation software is shown in Figure 4.7. The firmware output

is compared to both a double precision floating point software implementation, and

a handmade emulation of the fixed point operations. The fixed point implementa-

tion can be seen to introduce differences compared to the double precision – which

encodes numbers with greater precision and dynamic range than any of the fixed

point types used – however the tracking performance is not significantly affected, as

will be seen in Section 4.1.7. The fixed point software emulation better matches the

output of the FPGA, and can be used to reproduce the output on standard CPU

processors.

The use of MaxCompiler was advantageous for the development of the matrix

maths firmware. The automated pipelining and scheduling provided by the tool com-

pletely removes a large overhead in the development phase compared to a VHDL
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Figure 4.8: A maximally parallel matrix multiplication dataflow graph for the ijth

element of the product A × B where A and B have dimensions n × 4 and 4 × m
respectively.

design. Certain equations of the update 2.4 to 2.12 can be computed in parallel,

while others must be calculated sequentially using intermediate results. In a hard-

ware description language this requires the construction of the pipeline, and the

precise delay to each variable must be input by hand. This can make such a design

significantly more time consuming to implement.

MaxJ benefits from being an object oriented language, which permits the use of

classes and overloaded methods to implement a set of linear algebra equations such

as the Kalman Filter. Conversely, VHDL does not support user defined objects,

so constructs such as matrices must be represented and manipulated using built-in

functionality such as arrays. Some encapsulation is possible with VHDL, however

properly developed object oriented code is more readable and maintainable.

The dataflow graph of the implementation of the matrix maths is shown in Figure

4.9. The division operation required for the inversion of the matrix R require a

significant number of sequential steps, shown in the two long sequences of operations

towards the beginning of the graph. Once R−1 is obtained the calculation of K,

followed by xk and Ck, proceed with fine grained parallelism with each vector or

matrix element computed simultaneously. This is visualised by the horizontal extent
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Figure 4.9: Dataflow graph of the implementation of the Kalman Filter state update
Equations 2.4-2.12 with inputs at the top and outputs at the bottom.
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of the dataflow graph after the division operations.

Control Logic

The previous section described the update of a state given a stub. The control

logic orchestrates the movement of states and stubs to the updater, handling the

updated state, and eventual output of completed tracks. Figure 4.10 is a schematic

of the connectivity of the control logic elements within the KF worker node. Their

operation is summarised as follows:

• Stub packets stream from the HT on the input. They are written into a

memory for later retrieval, since a single iteration of the updater takes many

clock cycles.

• HT stubs carry the (m, c) indices of the cell in the array, which the Seed

Creator converts to the state parameters given by Equation 4.11. A unique

ID for the candidate is generated by the Seed Creator, and used to reference

the stored stubs later.

• The State Control arbitrates between the states promoted by the Seed Creator,

and queued working states at its other input. This allows new candidates to be

started at the same time as others are processed. The State Updator accepts

one state-stub pair per clock cycle, so the arbitration is necessary. Priority is

given to new candidates.

• The unique IDs stored on the state are used by the State-Stub Associator

to retrieve the stubs from memory required for updating the current state

in question. A field of the state data specifies how many iterations it has

been through, and the block reads stubs belonging to the candidate from the

next layer (or on the subsequent layer if applicable), one per clock cycle. The

number of layers skipped for this state is contained in another field, which

determines whether stubs from one, or two layers, are read. The State-Stub

Associator determines when all stubs on the layer have been read using the

‘last in layer’ flag set on the appropriate stub.

• The associated state-stub pair are input to the KF State Update block, which

performs the matrix maths operations previously described, outputting the

updated state.
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Figure 4.10: A schematic of the main components of the Kalman Filter processing
node. Stubs arrive from the HT at the input on the left. Tracks are output from
the State Accumulator on the right.

• The validity of the updated state is determined by the State Filter. Require-

ments on the pT , χ
2, z0, compatibility with sub-sector, and PS-module layer

are applied. A state failing any cut is not continued, and its processing fin-

ishes. Before writing surviving states into the state queue, the State Filter

accumulates the N states for that candidate at the current iteration with the

lowest χ2 (separately for states in which a layer has been skipped, and those

in which one has not). On the first iteration, N = 4, after which N = 1. Any

additional states with greater χ2 are discarded. Limiting the number of circu-

lating states helps avoid the possibility of a processing timeout, while ordering

by χ2 ensures the most compatible candidates are kept.

• After the State Filter, the surviving states are written into a queue for further

iteration. Tracks are completed after four iterations of the filter, after which

they are no longer circulated in the queue. The State Accumulator maintains

a copy of the best current state for each candidate in the node. Preference is

given to the state with the most iterations, then with the fewest skipped layers,

and then with the smallest χ2. If processing for a candidate is completed before

the timeout (described below), this state in the accumulator is therefore the

best possible for the candidate. In the event of a timeout, a partially completed

track can be read out, which may occur for candidates found in dense jets with

many stubs.

All of the algorithm components are implemented in pipelined, fixed latency

blocks in the FPGA, and operate at 240MHz. This gives the worker node a signif-

icant amount of pipeline parallelism, such that multiple track candidates, and all

of the combinations of stubs and states, can be processed simultaneously, in a data

stream. The matrix maths involved in the state update contributes the most to the
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Figure 4.11: Points show the fraction, N , of track candidates which pass through
four iterations of the KF state updater as a function of the processing timeout, t.
The line is the chosen timeout used in the demonstrator system, 1550 ns.

latency, with 55 clock cycles (230 ns) taken to output the updated state. Since the

state update accepts one stub-state combination per clock cycle, and subsequent

combinations are streamed consecutively, the total time for reconstruction with four

iterations is a little more than four multiples of the single iteration latency. The to-

tal time depends on the exact configuration of stubs on layers in the candidate, and

on whether other candidates are being processed in the same node. The processing

of some tracks also begins later than others, since the packet of track candidates

from the HT contains some gaps. Figure 4.11 shows the fraction of tracks which

complete four iterations as a function of time. In order to keep the track finder total

processing within the latency constraint of 4 µs, a timeout of 1550 ns is imposed

on the KF. After this time all fitted tracks in the accumulator are read out. More

than 99.9% of tracks are completely reconstructed in this time, in events of tt with

200PU.

Table 4.3 shows the FPGA resource consumption of one worker node. Since a

single node uses at most 2% of each type of resource, it was possible to create 36

instances within one FPGA, operable at 240MHz. This amounts to one worker per

input from the HT, which avoids any multiplexing or arbitration of candidates to

nodes. Since two MP7 boards are used for the HT in the TFP, each outputting

track candidates on all links, two MP7 boards are required for the KF (since the

number of inputs on an MP7 is the same as the number of outputs).
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Table 4.3: Kalman Filter resource utilisation, shown for the matrix maths (and
supplementary calculations) of the State Update, and for the whole worker node
which includes the logic to complete the algorithm. Percentages are the fractional
utilisation of a Xilinx Virtex-7 XC7VX690T FPGA. One TFP is served by 72 KF
instances connected to 36 HT arrays.

LUTs DSPs FFs BRAM (36 Kb)
State Update Block 4014 (0.9%) 70 (1.9%) 3094 (0.4%) 6 (0.4%)
One Kalman Worker 5520 (1.3%) 71 (2.0%) 4370 (0.5%) 24.5 (1.7%)

As shall be discussed in Section 4.1.7, the KF greatly reduces the number of

tracks compared to the number received from the HT due to its ability to identify

and reject fake tracks. The data size of a fitted track candidate is also smaller

than the size of the HT candidate, since only the track parameters and quality

information is kept, and the stubs are discarded. The tracks remaining after the

Kalman Filter still may contain some duplication of tracks, which are finally removed

in the subsequent Duplicate Removal step.

4.1.5 Duplicate Removal

After the KF, over half of the fitted tracks are duplicates of other tracks. These

are created by the HT, and their elimination is based on the mechanism by which

the HT creates them. In Figure 4.12, a track with five stubs creates three track

candidates due to the overlap of the stub (m, c) lines with three HT cells. Since

the stubs are the same for each candidate, the parameters fit by the KF will be the

same. The fitted parameters, which have a higher precision than the HT cells, will

therefore all lie in the same HT cell range. Tracks whose post-KF (m, c) bin index

do not match the (m, c) bin in which the HT found them are likely to be duplicates,

and can be removed. Due to resolution effects, it is possible that the KF fits a track

candidate, which is not duplicated, with parameters falling in a different HT bin

to the one in which it was originally found. To avoid losing these tracks the DR

proceeds in a two stage algorithm.

In the first step, all tracks whose KF fitted parameters are different from the

original HT cell are marked. All tracks which are fit to the same bin as the one in

which they were originally found are kept at this stage, and the cells in which these

tracks exist are marked. The second pass compares the HT cells of those tracks

with consistent KF-HT parameters, with the remaining tracks. Tracks in HT bins

not marked in the first phase are also read out. After this two classes of tracks
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Figure 4.12: An illustration of one track producing three candidates in the Hough
Transform. The central, yellow, cell is considered the correct cell, and the Kalman
Filter parameters will most likely agree with this cell for all three track candidates.

remain: those for which the track fit yielded parameters consistent with the HT cell

in which the track was initially found; and those for which the fitted parameters are

inconsistent with the original HT cell, but where no other track consistent with that

fitted HT cell was found.

Figure 4.13 illustrates the FPGA implementation of the algorithm described.

Track candidates, already marked by the KF with the HT cell index of the fitted

parameters, and the consistency with the original HT cell, are streamed into the

DR. Tracks which are consistent are forwarded to the output stream, and the HT

cell index is marked as containing a track in the memory (‘MatrixA’ or ‘MatrixB’ in

the Figure). Inconsistent tracks are instead buffered in a FIFO for the second stage.

After all tracks from the KF have been streamed through the first phase, the

tracks queued in the FIFO have their HT bin indices compared against the marked

cells in the memory. Tracks with bin indices that were not marked in the first phase

are appended to the readout stream.

Since the memories used for the HT cell mask and inconsistent track FIFO must

be reset after each event, two separate memory instances are used. Each memory

alternates between filling while tracks are streamed, and resetting while the other

memory fills for the next event. The HT array memory is implemented with one

36Kb block RAM: one half for the HT matrix for 6 geometric sectors, and one

half containing the list of addresses which were marked in the first phase and hence

must be cleared in the reset phase. The FIFO for tracks with fitted track parameters

inconsistent with their original HT cell is implemented with two 36Kb block RAMs.

Table 4.4 shows the resource usage of the DR block for one instance covering six

geometric subsectors. Since one TFP finds tracks in 36 subsectors, six instances of

the block are required. The algorithm has a latency of only 4 clock cycles.
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Figure 4.13: Duplicate Removal FPGA implementation architecture.

Table 4.4: Resource usage of one instance of the Duplicate Removal block, covering
six subsectors, in a Xilinx Virtex-7 XC7VX690T. Six instances are required to cover
the 36 subsectors used by one TFP to find tracks.

LUTs DSPs FFs BRAM (36 Kb)
One DR Block 291 (0.1%) 0 (0.0%) 496 (0.1%) 4 (0.3%)

The DR is the last step in the proposed L1 track reconstruction procedure. At

the end of the processing chain in the full trigger system, the collection of tracks

(represented by their four helix parameters, χ2, and supplementary data such as the

number of layers that were skipped during the track fit) would be forwarded to the

Correlator Trigger and used to perform particle level reconstruction by matching

with the other subdetector trigger primitives; to find the primary event vertex; and

ultimately to trigger the readout of the CMS detector.

4.1.6 Demonstrator System

A system was constructed to demonstrate the operability and performance of the

algorithms for reconstructing tracks of charged particles with pT above 3GeV in

4 µs described in sections 4.1.2-4.1.5 in realistic hardware, pictured in Figure 4.14.

Stubs were generated using the CMS experiment software (cmssw) from Monte

Carlo generated physics events with HL-LHC pileup conditions of 200PU, including

modelling of the detector response and particle-material interactions. The system,

one TFP, demonstrates reconstruction of tracks for one detector octant, for one

event in 36. Since the algorithms for each octant and each event are identical, the
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system is able to perform the full track reconstruction by running over each octant

sequentially.

All of the algorithms were running on eleven MP7 cards [54], housed in a Mi-

croTCA crate. A commercial NAT MicroTCA Carrier Hub enables communication

via Gigabit Ethernet over the crate backplane. Synchronisation, timing and control

are provided by a CMS auxiliary AMC13 card [82]. The system utilises the core

firmware of the MP7, with components for handling all IO requirements: seriali-

sation/deserialisation of optical data; data buffering; formatting; board and clock

configuration; and external communication via the Gigabit Ethernet interface.

In the so called ‘full chain’ configuration, high speed optical links connect several

of the MP7s. The role of the DTCs – packaging stubs into a 48 bit format and

performing time multiplexing – is performed on a PC. The stubs are sent, using

IPBus [83], to two MP7s which act as large buffers, called the source cards. Each

card emulates 36 DTCs, and can store stubs for 30 simulated collisions. The source

cards stream data optically to the TFP, which is implemented on five of the MP7s.

The TFP cards are segmented as follows: one for the GP, two for the HT and

two for the KF and DR. The GP board provides 36 optical links to each HT board,

and each HT board sends stubs over 72 links to one KF board. The final board in

this setup, the sink, receives input from each KF board and represents the end of

the track reconstruction chain. Tracks sent to the sink are sent to the system PC

for analysis. These connections are displayed in the lower part of Figure 4.14. The

remaining boards are used for performing standalone tests of firmware components.

A C++ software emulation of the algorithms has also been developed, which

is able to perform the same reconstruction as the FPGA system. The software

was used for validation of the hardware system, and for carrying out performance

studies. Fixed-point operations were used where possible, although in some places

floating-point is used. The FPGA logic was approximated as closely as possible

to emulate effects due to ordering of data, truncations and timeout. However, the

emulation is not clock-cycle accurate, and so small differences between the software

and hardware implementations arise.

4.1.7 System Performance

Track Finding

The track reconstruction efficiency of the system is of critical importance. All sim-

ulated charged particles originating from the primary interaction which can pro-
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Figure 4.14: Top: photograph of the MP7s in the demonstrator crate, labelled by
function. Bottom: the segmentation of the TFP algorithm across the eight MP7
boards, and the connections between boards.
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duce stubs are considered for the reconstruction efficiency. That is, those with

pT > 3GeV, |η| < 2.4, |z0| < 150mm, and Lxy < 10mm, where Lxy is the dis-

tance from the beamline to the particle production vertex in the x − y plane. The

particle must also produce stubs in at least four different layers of the tracker to

be included in the efficiency measurement. A charged particle is considered to be

reconstructed if the found track has stubs associated with the particle from at least

four different tracker layers, and secondly that there are no stubs associated with

other charged particles. The second requirement is only imposed when considering

tracks which are processed by the ‘full-chain’. Tracks found by the HT are likely

to contain erroneous stubs, so only the first requirement is imposed when analysing

the collection of tracks at the HT output, with the expectation that the KF may be

able to remove the erroneous stubs. Tracks which are found by the system, but with

stubs produced by multiple generated charged particles, are termed ‘fake’ tracks.

For a charged particle which is found more than once, the extra tracks are termed

‘duplicates’. Fake tracks can also be duplicated.

Table 4.5: Track reconstruction quality at different stages of the demonstrator chain,
for tt events with 200 PU interactions. The efficiencies follow the definitions in the
text. The total number of found tracks, fakes and duplicates are also reported. The
fraction of the total tracks which are fakes and duplicates are given in parentheses.

Stage Efficiency [%] Total tracks Fakes Duplicates
HT 97.1 331 139 (42%) 126 (38%)
KF 95.1 190 27 (14%) 103 (54%)
DR 94.4 79 16 (20%) 3 (4%)

Full chain 94.4 79 16 (20%) 3 (4%)

Table 4.5 presents the tracking performance of the demonstrator components

and full procedure when reconstructing tracks in events of tt with 200 PU with

the algorithm emulation. The HT successfully finds almost all tracks, but with a

large number of fake and duplicate tracks. The Kalman Filter then removes 80%

of fake tracks, at the expense of two percentage points of efficiency, equivalent to

1 to 2 genuine particles per event on average. Some duplicates are also removed

by the KF, because fake tracks can be duplicated, and both identified separately

as fake. All of the tracks which satisfy the first of the criteria outlined above also

meet the second after the KF: that is, the KF removes all erroneous stubs from

the HT candidates which it keeps. Finally the Duplicate Removal greatly reduces

the number of duplicate tracks, again with a small penalty of efficiency. The mean

tracking efficiency of the full chain in hardware is measured to be 94.5%: in good
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agreement with the emulation.

Figure 4.15 shows the efficiency of the track reconstruction as a function of pT

and η for tt events with 200 PU. The emulation and hardware are in close agreement

across both variables. For all tracks there is a slight turn on at low pT , up to around

95% efficiency, with some drop off for higher pT tracks. Reconstruction efficiency

is also best in the barrel part of the detector, with some degradation at the most

forward part of the detector. Muons are reconstructed with higher efficiency than

the average across all pT and η, with no loss in efficiency at high pT . Some efficiency

degradation is observed in the overlap region from barrel to endcap (around |η| = 1),

and at the most forward part of the detector. The efficiency for reconstructing elec-

trons is somewhat lower. Electrons lose energy via bremsstrahlung, which deviate

the particle from the helix trajectory assumed by the tracking algorithm. Tracks

within high pT jets (pT > 100GeV) are reconstructed slightly less efficiently than

the average, especially for |η| > 1, which is the detector endcap. The many overlap-

ping tracks increase the confusion of assigning hits to the correct track. Most of the

‘lost’ tracks are incorrect by only one stub (the other three all matched to the same

generated charged particle), as seen by adjusting the efficiency criteria to allow for

a single erroneous stub. These tracks are classed as fakes, but may still be of use to

the trigger, albeit with a worse track parameter resolution. An improved rejection

of stubs in the Kalman Filter might also recover this efficiency loss.

Track Fitting

Figure 4.16 shows the residuals of the four track parameters, measured for both the

FPGA demonstrator, and the emulation, for tracks originating from the primary

vertex. The resolution is defined to be the RMS of the residual: the difference

between the reconstructed and simulated parameter. Resolution worsens for all

parameters at greater |η|. The shorter lever arm for tracks with |η| > 1 accounts

for the degradation in pT and φ. Emulation and hardware resolutions are in good

agreement.

Figure 4.17 shows the resolution for single muons without pileup in different pT

ranges. This provides a handle on the ultimate limitation of the reconstruction, as

no track trajectory is more ideal than that of a muon, and the clean environment

of 0 PU guarantees there will be no contamination by other tracks. Compared to

Figure 4.16 it can be seen that the resolution for single muons is relatively improved

across the whole detector, with the exception of the relative pT resolution of muons
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Figure 4.15: Track reconstruction efficiency of the ‘full-chain’ algorithm in tt events
with 200PU. Top row: for all tracks originating from the primary interaction, for
both the hardware demonstrator system and the software emulation, as a function of
pT (left) and η (right). Middle row: for electrons and muons, using the emulation, as
a function of pT (left) and η (right). Bottom row: for all tracks originating from the
primary vertex, or only tracks contained within a primary jet with pT > 100GeV.
On the right plot, the efficiency definition is altered such that at most one erroneous
stub is permitted on the track. The original efficiency definition is used for the left
plot.
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Figure 4.16: Resolutions of the track parameters as fitted by the Kalman Filter.
Relative pT (top left), φ0 (top right), cot θ (bottom left) and z0 (bottom right)
resolutions are shown as a function of pseudorapidity for tracks originating from the
primary interaction, in events of tt with 200 PU.
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Figure 4.17: Resolutions of the track parameters as fitted by the Kalman Filter.
Relative pT (top left), φ0 (top right), cot θ (bottom left) and z0 (bottom right)
resolutions are shown as a function of pseudorapidity for tracks originating from
the primary interaction, in events of single muons without pileup, for muons in the
ranges 3 < pµT < 5GeV, 5 < pµT < 15GeV, and 15 < pµT < 100GeV.

with 15 < pµT < 100GeV. Compared to the full offline track reconstruction with the

full Phase-2 tracker in [40, p. 289], for 10GeV isolated muons, the relative pT , and

φ resolution of the Level 1 tracking is worse by around a factor of two, while z0 and

cot θ resolution is worse by more than a factor of ten. The PS stubs have a length of

1.5mm in the z direction, while the pixels which are available for the full tracking,

have a length of 0.1mm, which accounts for the difference in r− z plane parameter

resolutions.

4.1.8 Latency

The latency of the track reconstruction is presented in Table 4.6, broken down for

each part of the processing and connections between boards. As can be seen, the

KF and DR are the components with the highest latency, followed by the HT. The

latency of the system is measured to be less than the imposed 4 µs limit, both for the
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first and last track output by the system. This latency is constant by construction,

and independent of the pileup scenario, and the specific event topology.

Table 4.6: Measured latency of the demonstrated components of the track recon-
struction chain, including the serialisation/de-serialisation (SERDES) and optical
transmission delays between each board.

System Latency Latency [ns]
SERDES + optical length 1 143
Geometric Processor 251
SERDES + optical length 2 144
Hough Transform 1025
SERDES + optical length 3 129
Kalman Filter & Duplicate Removal 1658
SERDES + optical length 4 129

Total: First out - First in 3479
Last out - First out 225
Total: Last out - First in 3704

4.1.9 System capacity

Since the track trigger processes zero-suppressed data (that is, only tracker channels

with stubs are read out), the rate of data processed by the track finder will vary event

by event. It is instructive, therefore, to explore how the number of objects varies

through the processor, and where the limitations lie. Throughout the demonstrator

system, several sources of data loss exist. Movement of data packets can never exceed

the time multiplexing period, since data from the next event must transmit at this

time. The GP incurs some loss by this mechanism: stubs enter the GP within

the time multiplexing period, and pass through the formatter with no change in

distribution. The routing network may spread the stub packet however. When

a ‘collision’ occurs, with two stubs attempting to pass through a network node

simultaneously, one must wait. With a time multiplexing period of 900 ns and a

240MHz clock frequency, 216 stubs can transmit per link. The gaps introduced

reduce this limit on average to 175 stubs per HT sector per event. As can be seen in

Figure 4.18, this is approximately double the average seen in tt with 200PU events.

The truncation loss is therefore quite small: 0.3% of stubs, which results in the loss

of 0.5% of tracks.

The HT output is also sensitive to losing stubs due to transmission exceeding the

time multiplexing period. The right side of Figure 4.18 shows the uneven distribution
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Figure 4.18: Number of stubs output per GP sub-sector per event (left) and number
of track candidates found by the HT per sub-sector per event (right), both in events
of tt with 200PU.

of found tracks across HT sectors. 70% of sectors find no tracks, and 97.5% find

fewer than 10 tracks. The average number of stubs per track candidate is 7, and

the 216 stubs per event restriction due to time multiplexing applies, so generally the

truncation at the HT output is very small. Collimated, high-pT jets, however, may

produce many tracks and stubs within a narrow region, which must all be found

in one, or a few HTs. The tracks in these types of ‘busy’ regions would also tend

to contain more than the average number of stubs. The load-balancing at the HT

output helps to mitigate against this effect, by decoupling the output streams from

geometric regions. The remaining effect is a 0.1% loss in tracking efficiency in events

of tt with 200PU.

The final loss of efficiency due to ‘overloading’ the system capacity arises from the

Kalman Filter. The mechanism by which tracks are lost is the timeout described

in section 4.1.4 whereby a track may not have been completely fitted before the

latency budget expires. Again, tracks in high pT jets with many stubs are the most

susceptible to this effect due to the greater number of trajectory combinations arising

from the many stubs. Loss by this mechanism is less than 0.1% in tt with 200PU

events. The net loss of tracks in the full systems is around 0.6% in events with tt

and 200PU, and is dominated by the truncation in the GP.

4.1.10 Towards a Final System

The MP7 platform was used throughout the demonstrator system, and a number

of optimisations were made to fully utilise the architecture. Any production track
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trigger system will certainly not be constructed with MP7s, which were first re-

leased around the year 2012, with an FPGA which first became available a year

or so before. The track trigger at the HL-LHC will comprise boards using latest

generation components at the time of construction, preceding 2025. Many system

parameters were chosen with a view to balance tracking performance with FPGA

resource usage and communication bandwidth. While some parameters have values

motivated by ultimate tracking performance, the final choice takes into account the

mapping onto the particular FPGA platform. Furthermore, some parameters are

highly interdependent, such that a change to one requires an adjustment elsewhere.

This includes for example communication bandwidth and rate, clock frequency, re-

source utilisation and latency. A reoptimisation of the whole track finder algorithm

will likely take place to better utilise the upgraded architecture.

In 2017 Xilinx Ultrascale and Ultrascale+ parts became available. These are

constructed with a 20 nm and 16 nm process respectively, compared to the 28 nm

Virtex-7 chips, so are typically more cost and power efficient than their predecessor.

This is likely to be the iteration used for the HL-LHC triggers, since specifications

and parts for the next generation will become available only very close to the time

of construction of the trigger. In particular the VU9P and KU115 FPGAs have

been identified as being of particular interest for HL-LHC era triggers. The former

represents a part with some of the most resources available, while the latter has

the best ‘resources per $’. The cost of an FPGA board is dominated by the FPGA

itself, so to some extent a component with good cost efficiency is desirable.

Data transferred optically from detector front-ends to the trigger are received at

dedicated transceivers on FPGAs. The Virtex-7 component on an MP7 is capable of

12.5Gbs−1 per transceiver, while the newer Xilinx FPGAs support up to 16Gb s−1

or 32.75Gb s−1, although only optical components of up to 25Gb s−1 are available.

Data encoding also moves from 8b/10b to 64b/66b encoding which improves the

encoding efficiency from 25% to 3.125%, better utilising the available bandwidth.

A 16Gb s−1, or 25Gb s−1 link with the updated encoding has a 1.65, or 2.58 times

bandwidth increase over one MP7 link, respectively. For the 2025 track trigger, this

means that fewer links, shorter (in time) data packets, or a combination will be

sufficient for data transfer compared to the demonstrator. It is anticipated that the

time multiplexing factor will be halved from 36 to 18.

In the demonstrator system, the exact number of instances of certain processing

steps is tightly linked to the number of optical links. There are 36 Kalman Filter

worker instances, for example, since this allows a neat correspondence of links to
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Table 4.7: Resource availability of the FPGA on an MP7, and of two current gen-
eration Xilinx chips which are suitable for HL-LHC triggers.

Component Logic Cells (K) DSPs Memory (Mb)
XC7VX690T 693 3600 51.7
KU115 1451 5520 75.9
VU9P 2586 6840 345.9
One TFP 1629 16944 231

workers with 72 links and 64 bit stubs. The same preference towards multiples or

integer divisors of 72 is manifest in the choice of 36 geometric processing sectors.

Since no Ultrascale(+) FPGAs host exactly 72 transceivers, the number of links

between boards is likely to differ for the final system. The number of instances in

certain steps may therefore be slightly different for the final system.

The increase in optical communications bandwidth has a subsequent impact on

the algorithm clock frequency, and to some extent the number of resources allo-

cated. The first processing step to receive external data, the GP, must be able to

absorb stubs at the same rate they are sent. The rate of arrival of stubs increases

with the same factor as the updated optical connection, so the capacity of the GP

algorithm must increase. Since the processing rate with n algorithm instances, and

frequency f is r = nf , this can be achieved by increasing: the clock frequency of the

algorithm; the algorithm parallelisation; or both. In practice n is bounded by the

FPGA resources available and f has an upper limit of around 500MHz, although

the limit of f will be dependent on the algorithm, the implementation, and the

total chip utilisation. The maximum frequency will likely differ for each algorithm

component. Practically, a design optimised for latency, working at 240MHz, will

require additional registers to operate at 500MHz. Experience from reoptimising

the router used in the GP to 480MHz suggests that a 30% latency reduction is

achievable compared to the 240MHz design, rather than the 50% that might be as-

sumed without the additional registers. Assuming that the same scaling applies to

other algorithm components, a system with three FPGAs, connected sequentially,

operating at 480MHz with a time multiplexing factor of 18 would achieve a latency

of around 2.5 µs from the first stub arriving at the DTC to the last track exiting the

track finder.

The FPGA resources of selected Xilinx parts are shown in table 4.7, with those

of the MP7 FPGA for reference. The relative increase in size is not uniform for

the different resource types, but is at least 1.5 for the KU115, and 2 times for
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Table 4.8: Tracking performance for both flat and tilted barrel tracker geometries
using events containing a single muon with a pT of 10GeV and 200 pileup collisions,
reconstructed using the unmodified demonstrator algorithm.

Flat geometry Tilted geometry
Tracks after HT 229 161
Fakes after HT 92 35
Tracks after full chain 55 48
Fakes after full chain 9 4
Efficiency after full chain 97.3% 97.3%

the VU9P. Resource consumption of one TFP is presented assuming the algorithm

is ported to the Ultrascale architecture (necessarily including adopting 16Gbs−1

optical connections) by simply doubling the resource usage to accommodate the

doubling of stub input rate. This corresponds to three KU115 parts, mostly due

to the DSPs and memory. As discussed, however, the rate increase can be met by

increasing the algorithm clock frequency as well as the resources. A frequency of

350MHz would sufficient to bring the resource usage of one TFP down to use only

two KU115 parts. A natural splitting of the algorithm components would then be to

place the GP and HT in a single FPGA, and the KF and DR into the second chip.

Dividing the algorithm this way would also remove the preference towards using a

number of geometric sectors which is an integer divisor of the number of links, since

the distribution of stubs from GP to HT would take place within the FPGA.

4.1.11 Future Developments

The adoption of next generation FPGAs described does not assume any changes to

the algorithm, other than scaling the number of instances. Of course, the algorithm

can be improved further. Increasing the efficiency, reducing the fake rate, improving

the parameter resolution and introducing the transverse impact parameter to the

fit would all improve the tracking performance. Separately, improvements to the

load balancing of work within the system would allow the trigger to become less

susceptible to particularly populated events, and would also potentially allow FPGA

resources to be saved.

One development which is necessary is to adopt the updated tracker design which

uses tilted modules at the ends of the barrel to reduce the number of modules re-

quired for continuous coverage. This layout is depicted in Figure 4.19. A test on a

preliminary Monte Carlo sample using this geometry, and without modification of
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Figure 4.19: One quarter of the r − z plane of the CMS outer tracker with tilted
modules in the barrel [12].

the track reconstruction yields the results in table 4.8. The change makes an im-

mediate reduction to the number of fake tracks found by the HT, without affecting

the efficiency, due simply to a reduction in the number of stubs from tilted mod-

ules. With fewer tracks found by the HT, there will be additional spare capacity in

the track finding system, which should allow for a resource saving, for example by

reducing the number of KF nodes for track fitting.

In the demonstrator system the GP is responsible for the loss of 0.5% of genuine

tracks (although this might improve with the aforementioned tilted geometry). As

discussed, this arises from gaps introduced in the data packet as stubs are routed

from input to geometric sector through a routing network. A change to the design of

this network, with more parallel links between routing layer, might be less susceptible

to this loss. This would come at the cost of more FPGA resources.

The T parameter was introduced in Section 4.1.3 to transform the stub radius r

to rT = r − T , such that stubs with r < T produce lines in track parameter space

with a negative gradient, which improves the separation of tracks in the rectilinearly

sampled space, and yields a lower fake rate without losing efficiency. The chosen

value of T = 580mm allows approximately equal numbers of stubs with positive

and negative line gradients in the barrel. In the endcap, however, tracks do not

reach the outermost radii of the tracker, so this choice of T biases towards negative

gradient stubs. A better separation can be achieved for the endcap by choosing a

smaller value of T for this region to again improve the separation between tracks.

Setting T = 470mm at the highest |η| sectors reduces the number of tracks found in

those sectors by a factor of two. The Hough Transform might be further improved by

altering the shape of the HT cells, since fakes occur due to the accidental intersection
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of several stub lines with a bin. Using hexagonal bins has been seen to reduce the

number of tracks found by 20% without adversely affecting the efficiency [84].

The Kalman Filter implemented for this development is significantly simplified

compared to the algorithm used in the reconstruction at HLT and offline. Steps

to introduce missing features ought to improve the tracking performance further,

without requiring a complete redesign, but at the expense of some resources and

possibly latency. Adding the transverse impact parameter to the track fit would

improve the performance for tracks not originating from the beam line, notably

those from B hadron decays. The state would become a five parameter vector,

and certain matrices would increase in dimension, thus requiring some extra FPGA

resources for matrix operations. The treatment of multiple scattering within the

Kalman Filter ought to improve the efficiency at a given fake rate. Scattering can

be included within the Kalman Filter formalism, and would require some additional

computation of the most probable scattering angle. A slight modification to the

parametrisation would also be beneficial: from including the initial track position

(φ0, z0) in the state, to the current position (φ, z). An additional step to recover the

track parameters at the vertex would then also be needed. The linear approximation

to tracks is a good one across most of the parameter space of the track trigger, but

introduces a 1.5% error in φ for the lowest pT tracks at the outer barrel layer.

Evaluating the arcsin function exactly would require some extra FPGA resources,

and would potentially provide better discrimination for fake tracks at low pT .

Section 4.2 describes a development to reduce the number of fake tracks at the

output of the track reconstruction.

4.2 Identifying Fake Tracks with a Boosted Deci-

sion Tree

A means to identify fake tracks from the Kalman Filter output, shown in section

4.1.7, is desirable. The presence of fake tracks in the reconstruction is unavoidable

in a high pileup environment, but can only negatively effect the trigger performance,

so any mitigation may be worthwhile. Fakes, particularly those reconstructed with

high pT , would increase the trigger rate, and potentially mimic a physics signal. As

with all trigger algorithms, a low latency, low resource usage in the FPGA is also

desirable. Further, ideally only quantities which are output by the track trigger, or

which require minimal calculation from those outputs, should be used to identify fake
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Figure 4.20: Left: Receiver Operator Characteristic (ROC) curve for the five classi-
fiers under investigation: Gradient Boosted Decision Tree (GBDT); Random Forest
(RF); Decision Tree (DT); Logistic Regression (LR); χ2 cut. The desired working
point is at the top left: all genuine tracks kept, and no fake tracks kept. By tuning
a cut on the classifier score above which all tracks are labelled ‘fake’ a working point
can be selected. Right: histogram of separation between genuine (green) and fake
(red) tracks as a function of BDT score.

tracks. The identification of fake tracks is now treated as a classification problem.

A selection of multivariate classifiers were trained on Kalman Filter output tracks

using the scikit-learn package [85]. The χ2, number of skipped layers, tanλ, and

(2R)−1 of the track were used as features, with ‘fake’ and ‘genuine’ classes labelled

from the Monte Carlo truth information. Receiver Operator Characteristic (ROC)

curves for the classifiers are shown in Figure 4.20, by varying the classifier output

threshold at which to label a track as fake. All of the multivariate classifiers perform

better than the χ2 cut only baseline. A Gradient Boosted Decision Tree (GBDT)

is the most performant of those investigated, with an area under the ROC curve of

0.966. A loss of genuine tracks is undesirable, so a conservative cut is required. The

GBDT can remove around 75% of the fake tracks while retaining 99% of the genuine

tracks. The GBDT ROC curve never crosses that of another classifier, i.e. it yields

the best (lowest) fake fraction at every efficiency working point. Furthermore, the

GBDT was deemed to be among the most suitable to be implemented in an FPGA

for a number of reasons, which will be outlined.

The distribution of fake tracks in (2R)−1 and tanλ (the proxies for (pT )
−1 and

η which are available in the demonstrator hardware) can be seen in Figure 4.21,
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alongside the ratio of fakes which are identified as genuine to all fakes. The BDT

is most effective at identifying fake tracks in the tracker barrel-endcap transition

(around | tanλ| = 2), and those with high pT (low (2R)−1).

The GBDT inference algorithm has aspects which suggest it should be imple-

mentable within an FPGA. The output of the GBDT, the score, is given by equation

4.16.

F = Σiβihi(x) (4.16)

where x are the input features, hi are the decision trees and βi are the tree weights.

The inverse of the loss function used in training can be used to obtain the probability

for each class from the score. In a scenario where the BDT output is used to keep or

discard tracks, this function need not be computed, as the score can be used to cut

directly. The decision tree score, hi, depends on which leaf node the feature vector

ends in. The value of the score for each leaf is set during training.

Each hi in equation 4.16 is independent of any other. This is the first opportunity

for parallelism: hi can be computed simultaneously for all i. Within the decision

trees, if the node is considered as a processing unit, each node consists of some

processing which is independent of any other – the comparison of a feature with a

threshold – and one part which depends upon the result of other nodes – whether

or not the decision path passed through the node’s parent.

Other works have implemented Decision Tree ensembles for FPGAs previously

[86–90], although since generally these target ‘Big Data’ applications, they tend

to be optimised for throughput or power consumption over latency. Some imple-

mentations [87, 89] target ensembles larger than the capacity of the target FPGA,

developing a base decision tree unit onto which the model is loaded from a memory.

Such an approach adds flexibility, and classification performance by supporting large

ensembles, at the expense of latency and resource overheads. BDTs have been de-

veloped with low latency for the L1 muon trigger of CMS [91]. An external memory

of 1.2GB is used as a look up table to assign the muon pT . This approach requires

few FPGA resources, but does require an external memory, with the associated

latency to retrieve data. To maintain a reasonable memory size, the features are

significantly truncated: 30 bits (which forms the address) are used to encode five

features. The approach used here is to fully map all of the operations onto discrete

FPGA components, to achieve the shortest latency without restricting the number

or width of features used.
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Figure 4.21: Distributions of fake tracks before and after BDT class prediction, and
the fraction which remain, as a function of (2R)−1 (top left, top right respectively)
and tanλ (bottom left, bottom right respectively) at different BDT score cuts,
selected to yield one percentage point decreases in efficiency between cut values.
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4.2.1 FPGA implementation

In order to evaluate the suitability of the BDT for a trigger application, a MaxJ

firmware was developed. The design maximised the trivial parallelisability of BDTs,

discussed in section 4.2, by performing all comparisons, and evaluating all trees in

parallel. Figure 4.22 shows schematically how a single decision tree is implemented

in the FPGA. All of the comparisons execute in parallel, and a chain of parallel

boolean operations is constructed for each leaf node such that the decision path is

encoded in an array of boolean values. The leaf boolean activation values are used

to select the appropriate leaf score to output for the tree from the small table of

possible values. Within the tree, each operation is pipelined, allowing a new feature

vector to be classified on every clock cycle. The sum of tree scores, as required by

Equation 4.16, is performed with a balanced adder tree. Features are distributed

to the trees through a register tree, avoiding a significant fan out of signals which

would degrade the maximum clock frequency. This comes at the expense of some

extra latency.

From the FPGA implementation details, it is possible to construct a model for

the resource and latency usage of a BDT dependent on the hyper-parameters. The

parameters which impact the FPGA consumption are the number of trees, n, and

the maximum depth d. The resource usage scales linearly with the number of trees

- both for the decision tree inference and adder tree size - and exponentially (base

2) with the tree depth. A constant five clock cycles are used to fan out the features

and execute all comparisons. The boolean logic to determine the active leaf is

pipelined, scaling linearly with the tree depth. Finally the adder tree latency scales

logarithmically with the number of trees. The model to predict resource usage, R,

and latency, T , relative to a reference ensemble, with nref = 100 and dref = 3 (with

12 clock cycles latency), is given by Equations 4.17 and 4.18.

R =
n

nref

× 2d−dref (4.17)

T =
5

12
+

7

24

�
log2

�
n

nref

�
+

d

dref

�
. (4.18)

This model was used to explore the resource usage and latency of ensembles when

scanning across a range of hyper-parameters n and d, as shown in Figure 4.23. The

area under the ROC curve (AUC) is used as the metric of performance of the BDT.

Some ensembles were synthesised to obtain true resource and latency figures, and
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Figure 4.22: Schematic for the FPGA implementation of a decision tree with a depth
of 3. A node stores its feature threshold tn as a constant, and selects its required
feature from the input vector x. A branch of the decision tree is activated depending
on the comparison between the branch’s node’s feature and threshold, and the node’s
parents’ comparisons. Each node in the FPGA implementation outputs two boolean
signals corresponding to the branch’s activation. At the leaf nodes, the leaf scores
are presented as the input to a multiplexer (the node labelled ‘MUX’). The branch
bits are concatenated (the node labelled ‘cat.’)and used as the multiplexer address
to select the decision tree score to output.
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Figure 4.23: Area under the ROC curve (AUC), in colour, for a scan over BDT
hyper-parameters n and d. The left plot shows how AUC varies with n and d, and
the right plot uses to the model of equations 4.17 and 4.18 to show how AUC varies
with FPGA resources and latency. Resources and latency values are with respect
to an ensemble with n = 100 and d = 3. Points on the right plot are resource and
latency measurements obtained after synthesising the ensemble.

Table 4.9: Post-synthesis resource usage of the trained BDT with 4 features, 100
trees with a maximum depth of 3, for 3 different FPGA parts: Virtex 7 690 (V7
690), Kintex Ultrascale 115 (KU 115), and Virtex Ultrascale 9+ (VU 9+).

Device LUTs (%) Registers (%)
V7 690 2.24 1.15
KU 115 1.46 0.75
VU 9+ 0.82 0.42

are displayed in the Figure, and are well described by the model. It can be seen that

the achievable AUC reaches a plateau for ensembles with n > 100 and d > 3, which

are correspondingly more expensive in resource consumption and latency. The BDT

with n = 100 and d = 3 is therefore selected as the appropriate ensemble for the L1

trigger constraints.

The resource usage of the previously described BDT for several FPGA parts is

shown in Table 4.9. The usage is around the 1% level, and approximately twice as

many LUTs are used over registers, as a percentage of the total available.

The functional correctness of the FPGA implementation was tested against

scikit-learn running on a CPU. The FPGA used for this test was an Altera
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FPGA decision contour CPU decision contour

Figure 4.24: Decision contour for the FPGA and CPU implementations of a BDT.
A BDT was trained on a randomly generated, separable 2D dataset with 2 classes
(‘purple’ and ‘orange’). Points show the training data. Shading shows the prediction
for a uniform sampling of the feature space.

Stratix V [92] on a Maxeler Maia DFE, in an MPC-X [93] machine housed at the

DeLorean facility at the STFC Daresbury computing centre. The Maxeler ‘SLiC

Interface’ and MaxelerOS software was used for CPU-FPGA communication,

which is across an Infiniband network to a PCIe switch in the MPC-X. A BDT

was trained to classify a randomly generated, separable, 2D dataset with 2 classes.

A static FPGA implementation was then generated, as previously described. Next,

2D features were created, uniformly sampling the feature space of the generated

dataset. These features were classified on the CPU and FPGA separately, and the

output compared. The result is shown in Figure 4.24, where it can be seen that the

architectures are in perfect agreement.

The DeLorean machine also facilitated a measurement of the speedup factor of

the FPGA compared to a CPU, using the same trained BDT as used for Figure

4.24. While class prediction on the CPU may be relatively fast for a single datum,

latencies of 1.7 µs were typical, the latency for classifying a large dataset may be

long. The time to classify n data items, tn is tn = nt1, for single item classification

latency t1, on a CPU. On the FPGA, on the other hand, tn = tsetup+ tl + n/f, where

tsetup is the FPGA setup time including communication latency, tl is the algorithm

latency, and f is the clock frequency of the algorithm. The setup time may be

relatively long, typically around 1 s, but tl is small for this implementation, and
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Figure 4.25: Number of classified data points, N , vs. execution time on the FPGA
and CPU.

f = 400MHz was achieved. With a large enough n, therefore, the FPGA should

begin to classify faster than the CPU. As can be seen in Figure 4.25, this is indeed

the case. With the BDT image preloaded onto the FPGA, and in CPU memory,

the FPGA classifies a dataset fastest when there are more than 100 samples in the

dataset. With 1000 samples the FPGA is five times faster. With a large number of

samples, such that t � 1ms, the FPGA is up to 670 times faster.

4.3 Conclusions

The time multiplexed track trigger demonstrator shows the feasibility of performing

track reconstruction on charged particles with pT above 3GeV in less than 4 µs
at the full 40MHz LHC collision rate. A hardware system was constructed, using

five MP7 boards carrying out track reconstruction for one eighth of the detector in

azimuth, and one in thirty six LHC collisions. Since the processing for every detector

octant and event is identical, the full system could be constructed by duplicating

the demonstrator platform, and utilising an optical routing construct of the type

used currently in the CMS calorimeter trigger.

Within the Track Finder Processor the reconstruction is first divided geometri-

cally, to introduce additional parallelisation. Track candidates are found by thirty

six instances of a Hough Transform algorithm, which groups stubs with a consistent



100 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

trajectory in the r–φ plane. These candidates are then cleaned, and a fit to their

track parameters is obtained by a Kalman Filter. Finally, duplicate tracks are re-

moved. A tracking efficiency of 95% is obtained for tracks from the primary vertex

of tt events with 200PU, reproduced in both a software emulation and the FPGA

platform. Track parameter resolutions adequate for use in the later L1 trigger stages

are also achieved.

The system has been tested with events of tt with 200PU to find the limitations,

and losses. Some 0.6% of tracks are lost due to the latency and throughput restric-

tions imposed. This occurs particularly at the very first processing step, where stubs

are distributed geometrically. Collimated high-pT jets also create ‘busy’ regions in

the processor which strain the readout of the HT.

The development towards a production trigger system for the HL-LHC would see

the algorithm operating on an updated FPGA, with significantly increased resources

and faster IO connections. This development also presents an opportunity to further

improve the tracking algorithm. Regarding tracking performance, the rate of fake

tracks can be reduced while maintaining the efficiency. For the benefit of the trigger

project, reducing the FPGA resources can be pursued in order to save on system

cost, and the latency can be pushed lower in order to add slack or allow other trigger

systems more time.

One particular development for rejecting fake tracks uses a boosted decision tree.

This machine learning technique achieves a significant improvement in fake rejection

over a simple χ2 cut, which was the method used for the demonstrator project. An

FPGA implementation, developed using MaxCompiler, performs the class inference

step for a trained BDT within tens of nanoseconds. Optimisation of the ensemble

hyperparameters, with awareness of the impact on resources and latency, led to

an ensemble which uses around 1% of the resources of an Ultrascale FPGA. The

flexibility of the implementation is such that it could be adopted in other areas of

the Level 1 Trigger.



Chapter 5

Hardware Acceleration of Track

Reconstruction in the High Level

Trigger

High Luminosity LHC (HL-LHC) conditions of 200 pileup (PU) collisions per event

will increase the computation required to make a trigger decision at the High Level

Trigger (HLT). In particular the latency of track reconstruction, which is compu-

tationally expensive, scales exponentially with pileup due to the ‘combinatorial ex-

plosion’ from the vastly increased number of hits in the tracker. As described in

Section 2.10, the tracking executed at the HLT is modified from the offline tracking

to improve the timing, and used sparingly, yet still contributes significantly to the

processing time. Expected increases in computing power by 2025 are insufficient to

prevent an increase in the time taken to reconstruct tracks at the HLT at the HL-

LHC compared to the LHC. In this chapter, the use of FPGA hardware acceleration

of tracking with a Maxeler DFE is investigated as a means of reducing the impact

of the pileup increase.

5.1 Kalman Filter on a DFE

The Combinatorial Track Finder uses a Kalman Filter for both track building and

fitting. A pseudo code representation of the track building procedure is shown in

Figure 5.1. For every candidate compatible measurements in the next detector layers

along the trajectory are found. Then for each found measurement, the candidate is

updated by the Kalman Filter, branching each updated state to a new candidate.

101
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HIGH LEVEL TRIGGER

1 while candidate pool is not empty do:

2 initialise empty temporary candidate pool;

3 for all candidates in candidate pool do:

4 find hits compatible with candidate;

5 for all compatible hits do:

6 update candidate state with hit;

7 if updated state is finished then:

8 add candidate to result tracks;

9 else:

10 add candidate to temporary candidate pool;

11 sort temporary candidate pool by quality;

12 discard all but best N candidates;

13 replace candidate pool with temporary candidate pool;

14 return result tracks;

Figure 5.1: Pseudo-code of the track building procedure of the Combinatorial Track
Finder.

The finding of compatible measurements and state update contain all of the

mathematical computations of the Kalman Filter. The project and update parts of

the filter are split between the functions. In order to find compatible measurements,

the algorithm first determines which detector layers are next intersected by the state

trajectory, then propagates the state to the surfaces (there may only be one) in turn.

Once the coordinates of the track intersection with a detector element are calculated,

the hits lying in that detector element are found. Hits which are compatible (the χ2

of the residual is below a threshold) are returned.

A Kalman Filter state update is performed for each of the found measurements.

If no measurements were found, the state may be permitted to skip this iteration if

it has not already skipped too many layers previously. Updated states which have

reached a completion condition – the trajectory has been updated by a sufficient

number of hits – are added to a container of results and no longer circulate the track

builder loop. States requiring further iterations are stored in a separate container.

After all states known at the start of the current iteration have been updated with

measurements, the states are sorted by χ2, and only the best N are retained, with

N depending on the iteration. Limiting the number of states kept at each iteration

prevents an excessive number of combinations from being considered. At the end of

the iteration the surviving, unfinished, states are recirculated.

Both finding compatible measurements and the state update perform matrix
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operations, which can readily be parallelised and pipelined on a DFE, as already

demonstrated in Chapter 4. The additional work performed to find measurements,

by returning detector hits stored in memory, is less well suited to a parallel and

pipelined implementation. Searching for compatible hits in memory requires signif-

icantly random access memory operations and highly data dependent processing,

neither of which are desirable on the DFE. The Kalman Filter update, conversely,

has no data dependent operation. Only the state update part of the track build-

ing was therefore ported to the DFE. A parallelised state update, with pipeline

parallelism of the loop over measurements was developed.

5.1.1 MaxJ Implementation

The Kalman Filter state update is similar to that implemented in Section 4.1.4, using

Equations 2.4 to 2.12. Since the HLT tracking fits 5 parameters, as introduced in

Section 2.10, the state vector is 5 elements and matrices in the fit have dimensions

5 × 5, 5 × 2 or 2 × 2. All matrix multiplications are fully unrolled, as in Chapter

4. The data flow graph of this state update is shown in Figure 5.2. The extra

parameter, giving wider matrices, results in more operations executing in parallel

compared to Figure 4.9, for which the fit used only 4 parameters.

5.1.2 Data Types

Track reconstruction in cmsswmakes use of IEEE 754 standard [94] double precision

floating point throughout. Floating point operations (whether double, single, or

custom) always takes more time and uses more area than fixed point arithmetic

tuned to the DSP port sizes (18 and 27 bits for an Altera Stratix V, as used here).

Nonetheless, a floating point representation is the most appropriate choice where

variables have a wide dynamic range, and need to be precisely represented across

that range.

Table 5.1 shows the dynamic range of the state vector and matrices, as well

as matrices calculated as part of the update of the state, obtained from numerical

profiling. For each variable a histogram of the exponent (base 2) is filled during

the execution of the unmodified Kalman Filter software, for every state update

performed. This procedure informs the viability of using a fixed point representation

when ported to the FPGA. In order to fully represent the range of a variable x, a

fixed point format would require at least as many bits as the range max (log2 |x|)−
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Table 5.1: The range of the exponent of floating point variables in the Kalman Filter
state update.

Matrix
row

column
1 2 3 4 5

C

1 18 27 34 31 31
2 - 37 45 34 40
3 - - 33 44 29
4 - - - 34 37
5 - - - - 26

xT - 19 25 23 21 20

KT 1 23 20 29 18 50
2 23 30 27 41 23

min (log2 |x|). Extra bits would be needed to retain a reasonable precision on values

close to min (|x|).
Only a very small number of variables have exponent distributions with a width

of a few bits. The state vector elements, for example, cover a reasonably narrow

range of around 20 bits each. Conversely the covariance matrix elements occupy a

range much larger than the DSP port width, of up to 45 bits. Elements of the gain

matrix K have an exponent range up to 50. To avoid the introduction of instability

by saturating or overflowing fixed-point arithmetic, floating point representation

was used throughout the DFE implementation. As a concession to the architecture,

single precision was used rather than double as in the c++. No variables come near

to the minimum or maximum values of single precision floating point of 2−126 <

x < 2+127. For the matrix inversion the floating point configuration of the division

algorithm presented in Appendix A was used.

5.1.3 Data Flow

Figure 5.3 shows schematically the flow of data between the CPU and DFE, and

the execution of the main parts of the track building procedure. Measurements are

paired with states on the CPU, and streamed to the DFE. The DFE updates the

state and streams these back to the host.

On each platform, CPU and DFE, the time to process n state updates, T , is:

TCPU = n · tCPU, (5.1)

TDFE = tl + n · tDFE, (5.2)
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Figure 5.3: Diagram of execution placement of logical components of the track
building, and the flow of data between the devices.

where tCPU is the time for a single state update on the CPU; tl is the latency

incurred each time the DFE is called due to algorithm and data transfer latency,

and initialisation; and tDFE is the time between completion of each update. With a

fully pipelined algorithm and data sent between devices for each iteration the time

between updated states is bound by the slower of the algorithm clock frequency and

the data transfer rate: tDFE = min (1/fclk, 1/fdata).

In order to achieve speedup, that is TDFE < TCPU, it is necessary that tDFE <

tCPU. Assuming that this is the case, the speedup factor TDFE/TCPU will be greater

for larger values of n. Once the initial data transfer latency has been paid, and the

pipeline is full, the additional latency for processing new state updates ought to be

very small. From the algorithm presented in Figure 5.1, such as it is implemented in

cmssw, a restructuring was made in order to increase n by sending more states to

the DFE in each transaction. This restructuring is shown in the pseudo-code listing

of Figure 5.4. With this modification, the maximum possible number of states and

measurements – before their updates are required for the next iteration – are sent

to the DFE.

A histogram of the number of measurements that can be sent to the DFE in one

transaction with the modified track building is shown in Figure 5.5. The restructured

code was sampled when executing the HLT software on simulated events of tt with

200 PU. Small numbers of updates occur much more frequently than large ones:

75% of iterations find fewer than 50 measurements across all states, and the most
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1 while candidate pool is not empty do:

2 for all candidates in candidate pool do:

3 find hits compatible with candidate;

4 queue candidate and hits for update;

5 update all candidates with hits on DFE;

6 for all updated candidates do:

7 if updated state is finished then:

8 add candidate to result tracks;

9 else:

10 add candidate to pool of candidates;

11 sort candidate pool by quality;

12 discard all but best N candidates;

13 return result tracks;

Figure 5.4: Pseudo-code of the track building procedure modified to coalesce multi-
ple states into a stream.

probable number of measurements is 1. The weighted histogram shows the raw

count, n, weighted by the time taken to update n states on the CPU according to

Equation 5.2. While occurring much less frequently, iterations with larger numbers

of state updates contribute significantly to the execution time on the CPU. As

discussed, the DFE speedup ought to become more significant with larger n.

On the DFE, a further optimisation was made for the benefit of speedup. The

state is a data structure with 20 fields – 15 for the unique covariance matrix elements

and 5 for the vector, while a hit is 5 fields – 3 unique covariance matrix elements and

2 coordinates. Each state may be updated with multiple hits, so rather than sending

a stream of states with the same length as the stream of hits (the easier to implement

variant), each state is sent only once and a separate stream specifying how many hits

are to be updated with each state is used. Logic in the DFE reads a new state from

the input after the current state has been updated with the appropriate number of

hits. This greatly reduces the amount of data sent across the PCIe bus.

5.1.4 Interface with CMSSW

Some steps were needed in order to utilise the DFE from the CPU application.

The ‘Simple Live CPU Interface’ (SLiC) [95] is used to provide handles to the

DFE application to embed in the software. A SLiC interface for the Kalman Filter

update was defined, specifying the type and dimensions of the input and output

streams. During the compile process a header file and shared object library are
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Figure 5.5: Histogram of the number of measurements found for all states, equivalent
to the number of state updates that can be performed in a single DFE transaction.
The unweighted histogram is the frequency of each bin, while the weighted histogram
scales each entry by the contribution to the run time on a CPU.

generated containing functions for loading and executing the DFE from the cmssw

host code at a high level of abstraction from the underlying PCIe transfer and device

configuration.

The main functions are displayed in the listing of Figure 5.6. A call to the

functions on lines 1 and 2 load the Kalman Filter updater image onto a DFE available

on the system (on a system with many DFEs this can be specified by the argument

or left to be determined by the host). The struct on line 3 contains pointers to

data corresponding to the data streams expected by the DFE: the hits, the states,

the control stream specifying the number of hits per state, fields for the size of each

stream, and a pointer to memory allocated for the returned updated states. The

dataset to send to the DFE is termed an ‘action’. Finally the function on line 4

executes the action on the loaded DFE. A DFE can remain loaded and reserved by

an application for its duration, or until explicitly unloaded.

Each of the application specific functions call further operations within theMax-

elerOS software. TheMaxelerOS package comprises software components which

run on the host machine and corresponding hardware on the DFE which handle all

low level communication between the devices. As well as providing functionality for

inter-device communication and application control, the software includes a daemon

process which monitors DFEs on the system.
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1 max_file_t* dfeKFUpdator_init ();

2 max_engine_t* max_load(max_file_t*, const char *);

3 struct dfeKFUpdator_actions_t;

4 void dfeKFUpdator_run(max_engine_t*, dfeKFUpdator_actions_t );

Figure 5.6: c++ functions and data structures for the operation of the Kalman
Filter DFE from the host application.

Table 5.2: Resource usage of the Kalman Filter state updater and CPU IO on a
Maia DFE. Resources are also expressed as a percentage of the Altera Stratix V
5SGSD8 device used.

Resource Number Percentage of available
ALMs 76054 28.98%
DSP Blocks 149 7.59%
Block Memory 1027 40.01%
Latency 181 -
fclk 250MHz -

The cmssw tracking code was modified according to the pseudo-code of Figure

5.4, with the functions of Figure 5.6. When testing with simulated events, a DFE

was loaded at the beginning of the test and retained for the duration. The hits and

states were repackaged into the appropriate struct, and the DFE was run with the

required method. The cmssw compile step, which uses the scram build tool [96],

was modified, including the relevant DFE application and Maxeler software header

files, and linking to the libraries.

5.1.5 Performance

The performance of the DFE augmented cmssw was measured on the STFC De-

Lorean MPC-X machine. An Intel Xeon Sandy Bridge E5-2650v2 processor (as also

used for some HLT timing tests in [58]) running at 2.6GHz executed the cmssw

application. The Kalman Filter state update was executed on a Maxeler Maia DFE,

which hosts an Altera Stratix V 5SGSD8 FPGA and 48GB of DRAM. The DFE

card, housed in an MPC-X, interfaced to the CPU over a PCIe switch inside the

MPC-X chassis, and an Infiniband network between the machines.

The resource usage, and other performance metrics, of the Kalman Filter state

updater is listed in Table 5.2. Execution time of a single state update on the CPU

was measured to be (255± 34) ns, and the time for n state updates increased linearly
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Figure 5.7: Measured time to perform a number of iterations of Kalman Filter state
update on CPU and DFE.

as in Equation 5.2. The latency of the algorithm on the DFE is 181 clock cycles,

which is 724 ns at the 250MHz algorithm clock frequency.

Figure 5.7 shows the measured time of state update execution as a function of the

number of updates, across a range compatible with the observed numbers of Figure

5.5. In all cases the CPU performs faster than the DFE. The gradient of the DFE

execution time best fit is shallower than the CPU line, in other words tDFE < tCPU.

A large initial latency, tl, however, means that the CPU has completed execution

before the DFE has begun for realistic numbers of updates. Here tl is observed to

be around 500 µs, which is as long as 2000 state updates on the CPU. The DFE

would eventually become faster than the CPU above 2519 updates.

The rate of iteration (from the gradient of the best fit) is 17.4× 106 s−1 on the

DFE compared to 3.92× 106 s−1 on the CPU, a factor 4.4 faster on the DFE. This

increased rate is the result of the pipelining of the states and hits into a continuous

stream. The 17.4× 106 s−1 iteration rate achieved on the DFE is significantly below

the 250MHz clock frequency – the upper limit imposed by the algorithm. With

one 80B state produced for each iteration, a data rate of 1.30GB s−1 is achieved,

approaching the 2GB s−1 limit of the card, suggesting the implementation is IO

limited. Section 5.2 will discuss how this rate might be further improved, along

with possible strategies to mitigate against the long initial latency of utilising the

DFE.
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5.2 Future Developments

While a speedup was not achieved from the development presented, the potential

has been demonstrated. The DFE was able to perform state updates at a faster

rate than the CPU, but with a large overhead, and at a rate limited by the link

bandwidth. Several design and technology changes might help realise a definitive

speedup for the tracking on a DFE. All of the improvements would be mutually

beneficial.

5.2.1 Design Improvements

The bottleneck in the presented design is in the communication between the host and

accelerator devices. No design improvement can increase the available bandwidth,

but it may be possible to better utilise the available link. The ultimate performance

would be realised by using the PCIe bus as little as possible.

Closing the Loop

The diagram of Figure 5.3 showed how state and hit data loops between the DFE

and CPU. This is required, as part of the application – the finding of measurement

compatible with a state – was not ported to the DFE. Executing this task on the

DFE would remove the need for constant communication between the devices. In-

stead, all hits and seed states would be sent to the DFE once at the beginning of

reconstruction, and the resulting states would be returned to the CPU at completion.

Either the O(10) MB of high throughput internal memory or GBs of DRAM could

be used for this data. It was stated in Section 5.1 that the finding of measurements

was less suited to the parallel, pipelined approach. Nonetheless, removing the com-

munication overhead completely, even if one part of the application is slower on the

DFE than the CPU, may enable the application to become faster as a whole. Given

that the state update has been shown to offer a potentially significant speedup, some

time penalty in finding measurements might be acceptable.

The state projection mathematics can be highly parallelised and pipelined as

with the Kalman Filter. Mapping projections onto the detector geometry might

also be parallelised by considering multiple detector elements simultaneously. Full or

partial unrolling of any loop over detector layers will benefit from the predetermined

detector layout. The final task, finding hits within compatible detectors, might be

parallelised with a memory partitioning which makes use of the helical trajectories
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of tracks. Such a scheme was used to parallelise the Hough Transform presented

in Chapter 4, and also to speed up the hit searching on parallel processors in [97].

The internal FPGA memory can be partitioned, with each partition supporting

independent read and write. A hit searching block could be developed to iterate

over stored hits in a geometric partition and forward to them to a state updater.

Link Usage

Even in a design for which the hit searching step remains on the CPU, a more

efficient usage of the PCIe link could be made. All data pertaining to hits is known

at the start of the event. The hits could be sent to the DFE at the start of processing,

and retrieved from the on chip BRAM or on board DRAM. Instead of sending hits

across the PCIe link, the host would send pointers to the hits in the DFE memory.

Sending 32 bit pointers would address all of the on-chip memory and use 1/5th the

bandwidth. The O(10) MB of on chip memory would be sufficient to store O(106)

hits, although it cannot necessarily be used efficiently as one coalesced RAM, and

some is used for the creation of the algorithm pipeline, as seen in Table 5.2.

The presented design returns the updated state from the DFE to the CPU, which

is then propagated to a detector surface, followed by the search for hits. A state

is represented by 20 fields of 32 bit data. Performing the state propagation on the

DFE, and returning only enough information to identify the detector element and

decide hit compatibility – the propagated coordinates and uncertainty should be

sufficient – would then reduce the size of data sent between the devices.

These improvements would improve the rate of iteration on the DFE by reducing

the volume of data transferred per iteration. The overhead paid each time data is

transferred between devices would remain, however, and this can only be overcome

with some changes to the accelerator setup.

Data Types

While single precision floating point was used, due to the wide range of some vari-

ables, alternative data representations more suited to the FPGA architecture might

be adopted. A floating point type with 17 mantissa bits and 7 exponent bits is suited

to the DSP block on both Altera and Xilinx FPGAs. Adopting this representation

would halve the DSP usage of multiplications, allowing more parallel instances of

the state update. The smaller exponent would still be sufficient to represent the full

range of the Kalman Filter variables. A 17 bit mantissa, however, would reduce the
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precision by a factor 27 compared to single precision, which may lead to instability.

This custom data type may also introduce complications for studying the perfor-

mance of the HLT tracking, for which the ability to run on ‘standard’ processors is

beneficial.

5.2.2 Technological Improvements

In addition to performance changes to the DFE algorithm, advances in technology

will improve the performance and potential of a track reconstruction accelerator

ahead of the HL-LHC upgrade.

FPGA

Next generation Xilinx FPGAs have been described in Section 4.1.10. An FPGA

accelerator card based on a Xilinx FPGA, such as the Maxeler Max5, can leverage

the increased resource availability to fit more parallel computation on a single device.

For the Kalman Filter this could enable more instances of updater units to execute

in parallel, as long as an improved IO bandwidth is also achieved.

Altera/Intel devices have improved significantly since the Stratix V generation

used for the presented design and testing. The current generation, Arria and Stratix

10, feature hardened floating point units [98]. These move parts of the floating point

operation that previously used general FPGA logic into the multiplier unit. The

barrel shifting operation required to perform exponent normalisation and denor-

malisation is carried out inside the DSP. This change reduces the amount of logic

resource used, and also allows floating point designs to achieve higher clock fre-

quencies, since the barrel shift generally requires significant routing. The hardened

floating point DSP blocks are limited to single precision.

In addition, the Intel synthesis tools support ‘fused’ floating point operations.

Rather than treating sequential floating point operations as independent IEEE 754

operations, the synthesis tool analyses the datapath and allows the number of man-

tissa bits to grow in order to reduce the impact of successive normalisation/denor-

malisation steps that otherwise precede and follow each IEEE 754 operation. The

wider mantissa also increases the accuracy compared to IEEE 754.

For the Kalman Filter state update, which uses a much higher percentage of

the available logic than DSPs on the Stratix V (as seen in Table 5.2), these high

floating point performance devices would increase capacity for more parallel updater

instances, and have potential for higher clock frequencies.
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Figure 5.8: DFE configuration possibilities with different PCIe capabilities.

PCIe

Figure 5.8 shows how a faster PCIe link speed might be utilised with an unchanged

state updater. The Kalman Filter state updater kernel outputs one state per clock

cycle. At 80B per state, and a 250MHz clock frequency, this is 20GB s−1. The

PCIe communication rate accessible on a Maia card peaks at 2GB s−1, so the kernel

must periodically stall to allow the communication to keep up. PCIe v.5, which is

expected to be available around 2019, specifies 64GB s−1, which exceeds the rate

at which a single updater can produce states. Given the FPGA resource utilisation

of the single updater shown in Table 5.2, it is reasonable to expect to fit 3 par-

allel instances within a chip, especially with a next-generation device with higher

resources. Such a configuration would then use almost the full available PCIe link

rate (notwithstanding the better link utilisation described). This would yield a data

rate improvement of around 30 times, alongside any aforementioned improvements

to the algorithm data transfer.

Alternative Accelerators

Integrated CPU-FPGA sockets, of the kind under development by Intel/Altera may

provide the ultimate performance for a tightly coupled tracking accelerator. Placing

the two processors on the same die will enable very low latency and high bandwidth
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communications between the devices. While specifications for these future devices

are not readily available, one would expect to be able to process data at the full rate

that the algorithm can accommodate. Such a processor architecture would allow the

FPGA to be used for only those tasks most suited to it, such as arithmetic on long

data streams, while the CPU can be used for all control aspects such as branching

and data dependent looping. This might allow a design similar to the one presented

to achieve a speedup over a CPU only. CPU-FPGA sockets could likely fit into a

heterogeneous HLT-like data-centre in a similar way to an architecture augmented

only with FPGA accelerators.

A precursor to these tightly coupled devices has been used to demonstrate the

acceleration of the particle identification algorithm used by LHCb [23]. The device

is a dual socket server with a Xeon CPU and Stratix V connected over Intel’s QPI,

rather than a single die containing each device. This application is also limited by

the connection between the host and accelerator, with an initial latency close to the

0.5ms observed for the state update in this chapter. The connection bandwidth also

limits the algorithm pipeline to be 50% full.

Graphics Processing Units (GPUs) are one of the most commonly used acceler-

ators. The GPU architecture is very different to FPGAs, but they are also highly

parallel processors. Where an FPGA is a ‘hardware accelerator’, a GPU is a ‘soft-

ware accelerator’, that is, a GPU executes an instruction set on many cores in

parallel.

GPUs have been applied to tracking problems, as in [97] for track building and

fitting, and [99] for seeding. The authors of [97] note the difficulty of achieving an

efficient use of the GPU when dealing with the branching that occurs from pursuing

multiple combinations of tracks during track building, since the GPU threads within

a warp must branch identically in order to execute in parallel. A modest speed-

up over a single threaded CPU is obtained, with the performance limited by data

transfer to the GPU.

GPUs generally offer a lower entry point than FPGAs in terms of both cost

and effort. FPGAs, however, do have significant benefits after these overheads.

While the performance on any computation platform is highly algorithm depen-

dent, FPGAs compare favourably to GPUs for many problems. In [100] the FPGA

outperforms a GPU and CPU both in speed and operations per Watt for a recur-

rent neural network. Performance per Watt is an important consideration for the

operational cost of data centres, such as the HLT, which will operate over a period

of many years.
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5.3 Conclusion

Track reconstruction is one of the most time consuming parts of the CMS experiment

reconstruction. At the HLT currently, the timing of tracking is such that it must

be used on only a subset of events, and within limited regions of phase-space. The

track reconstruction time scales exponentially with pileup, which will pose problems

at the HL-LHC where pileup of 200 is expected. FPGA accelerators may be able

to speed-up the track reconstruction, by leveraging their significant operational and

pipeline parallelism.

The Kalman Filter state update of the CMS HLT track reconstruction has been

ported to a Maxeler DFE and integrated with the cmssw tracking. The cmssw

application executes on a CPU host, and buffers hits and state combinations during

the track building. These data are streamed through a DFE in an MPC-X, connected

to the host over an Infiniband network. State updates are executed on the DFE and

the data is streamed back to the host, where they are used to continue building

tracks. Control flow for track branching – the exploration of the many possible

combinations of hits which could belong to a track – is performed on the CPU.

Timing measurements of the execution of state updates on the DFE show that

the initial latency of utilising the DFE is too slow to gain over using the host alone

for realistic numbers of state updates encountered during track reconstruction in

events of tt with 200 PU. A state update rate enhancement of 4.4 times is obtained,

limited by the bandwidth of the host-DFE connection, which shows the potential

for a speedup from the DFE with further development.

Possible developments towards achieving a true speed enhancement were pre-

sented, including algorithm and technological developments anticipated before the

HL-HLC. For the algorithm, the main improvement will be gained by ‘closing the

loop’ on the DFE, only streaming data between host and DFE at the event start,

and streaming tracks back after performing all of the track reconstruction on the

DFE. This will necessitate the implementation of the more complicated control and

branching, required to search for hits and combine multiple of them with tracks, on

the DFE. Next generation FPGA devices, particularly those from Intel, may signifi-

cantly benefit acceleration of the tracking. Dedicated floating point resources in the

Intel Arria and Stratix 10 families will enable more parallel floating point compu-

tations, with higher clock frequencies than older Altera and current Xilinx devices.

The prospect of Intel Xeon processors integrated with high capacity FPGA devices

might also permit a use case like the one presented in this chapter, where both
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the FPGA and host processor execute part of the application, with data streaming

between the devices.



Chapter 6

Conclusion

The High Luminosity upgrade of the Large Hadron Collider will present a signifi-

cant challenge for the trigger system. The CMS Level 1 Trigger will be upgraded,

taking input from the calorimeters at higher granularity, receiving data from the

tracker for the first time, and using particle flow reconstruction to achieve the best

precision on particle momentum and identity, with mitigation for pileup. Latest

generation, high performance FPGAs will carry out the processing for reconstruc-

tion and ultimately make the trigger decision. Implementing these algorithms on

FPGAs, with microsecond latency, will be a demanding task. The latest design

techniques, utilising high level languages, may enable more complicated algorithms

to be realised.

The toolset of Maxeler Technologies, the language MaxJ and compiler Max-

Compiler, was investigated for use in Level 1 Trigger applications. The algorithm

for finding jets in the calorimeter, and the total event energy and transverse energy

were reimplemented using MaxCompiler. The implementation currently deployed

during Run II at CMS was developed with VHDL. The two designs produce bit-

wise identical results, with a small discrepancy in jet φ position. The MaxCompiler

implementation used 7% more LUT resources than the VHDL, and matched the

latency, while requiring only half as many lines of code to implement. The Max-

eler tools were therefore demonstrated to be capable of producing high performance

trigger applications with low latency.

In order to investigate the advantages of using the tool in the development of

a sophisticated algorithm, MaxCompiler was then used in the development of a

demonstrator system for the track reconstruction in the Level 1 Trigger at the HL-

LHC. A Kalman Filter (KF) track fit was developed to fit and filter track candidates
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found by a Hough Transform (HT). The algorithm is used in the offline track re-

construction at CMS, and can reject outlier stubs while simultaneously refining the

calculated track parameters. The KF rejects 80% of the fake tracks produced by the

HT in events of tt with 200PU, at the expense of 1 or 2 genuine particles per event.

For muons without pileup the KF fits the pT with 1% resolution in the barrel, up to

9% for high pT muons at the most forward part of the detector, with a z0 resolution

of 1mm, up to 6mm.

A boosted decision tree (BDT) classifier was developed to further reject fake

tracks, using information from the track fit. The BDT is able to reject 75% of the

remaining fakes at the cost of 1% more of genuine tracks. An FPGA implementation

of BDT inference was developed, using MaxCompiler. The configuration with 100

trees with a depth of 3 uses around 1% of the resources of a KU115 or VU9P chip.

For the same ensemble, an inference latency of 12 clock cycles was obtained, tested

up to 400MHz on a Stratix V, with full pipelining to enable a new classification on

every clock cycle.

With the development of the Kalman Filter and BDT algorithms, both with

low latency and reasonable resource usage, MaxCompiler is seen to be beneficial to

the design of the kinds of sophisticated processing required for the CMS Phase II

Upgrade. The automatic scheduling and pipelining, and the extensive support for

custom fixed point arithmetic make the tool advantageous for the design of high

throughput, mathematically intensive algorithms.

Finally, Maxeler Dataflow Engine (DFE) devices were targeted to investigate ac-

celeration of the track reconstruction of the High Level Trigger. The Kalman Filter

state update part of the tracking procedure was ported to the DFE. This implemen-

tation fits the five track parameters, and uses floating point arithmetic compared to

the four parameter, fixed point fit developed for the Level 1 tracking. The connec-

tion between DFE and host proved to be the bottleneck: both the bandwidth and

the latency. A 500 µs overhead is spent each time the DFE is used, in which time

around 2000 state updates can be executed on the CPU. The potential for speedup

is seen by the factor 4.4 faster rate of iteration on the DFE compared to the CPU.

Developments to overcome this limitation were presented. These include moving the

entire computation to the DFE, and reducing the data size transferred between the

devices, making a more efficient use of the link. Technological advances ahead of the

HL-LHC will also benefit FPGA accelerated computation, with higher bandwidth

host-FPGA connections, and tightly coupled CPU-FPGA processors.
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Appendix A

Integer Division

Consider the inversion of the 2×2, diagonal matrix X. This matrix is simple enough

to invert using the analytic solution.

X−1 =

�
a 0

0 b

�−1

=
1

ab

�
b 0

0 a

�
=

�
1/a 0

0 1/b

�
(A.1)

The final expression requires fewer processing steps than the intermediate solution,

and allows for finer control over the precision of the two non-zero elements. An

implementation of 1/x is therefore required, which is usually an expensive operation

in the FPGA. The algorithm must also be fast, in order to meet the latency require-

ment. A lookup would be the fastest possible algorithm, but since the divisor is a

25 bit quantity, the cost in BRAMs would be too great. An algorithm using a single

BRAM for a lookup was developed.

The fixed-point divisor x can be expressed as the sum of individual powers of

two as: x = Σnxn2
n where xn can be 0 or 1. This sum can in turn be expressed as

the sum of two smaller sums:

x =
∞�

n=m

xn2
n +

m−1�

n=0

xn2
n = xH + xL (A.2)

where m bits are used to encode xL. Then:

1

x
=

1

xH + xL

=
1

xH

�
1 + xL

xH

� =
1

xH

�
1 +

xL

xH

�−1

≈ xH − xL

x2
H

(A.3)

where a binomial series, truncated after the second term was used for the last step.
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The value of m, that is the number of bits used for xL is chosen such that xH uses

11 bits, and therefore one BRAM is used to lookup 1/x2
H which are stored as 35 bit

quantities. In the implementation a shift is performed such that the most significant

bit of x has value 1. Doing so gives the best precision of xH , and reduces the number

of bits needed to address the lookup by 1 as an msb value of 1 can be assumed. A

corresponding restoring shift is performed on the result. The xH − xL calculation is

performed in LUTs, and (1/x2
H)× (xH − xL) uses DSPs. The algorithm steps are:

• Take the absolute value of x

• Identify position of leading 1 in |x|

• Shift |x| to the left such that the msb has value 1

• Slice |x| to obtain xH and xL, then in parallel:

– Compute xH − xL

– Lookup 1/x2
H

• Multiply 1/x2
H by xH − xL

• Shift the result to the right by the same amount as the first shift

• Restore the sign of 1/x

The data type required for the output is defined by max(1/x) = 1/min(x).

Since the greatest precision in 1/x is desired, in the case that min(x) > lsb(x) some

extra precision can be gained using ‘ignore bits’. The number of ignore bits should

be defined as nI = log2 lsb(x) − ceil log2 min(x), in which case the nI lsbs cannot

contribute to the initial shift, and the max(1/x) value can be set to 1/min(x) rather

than 1/lsb(x).

The configuration used for the Level 1 track finding, with min(x) = 26 × lsb(x)

the division algorithm has a worst case accuracy, defined in equation A.4, of 16 bits.

The worst case accuracy is observed for the largest divisors, and with small divisors

the accuracy is as good as 29 bits (not counting instances of power of two divisors,

where the result is exact).

accuracy = − log2

�
1− x

1

x

�
(A.4)
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A.0.1 Floating Point

The algorithm can also be modified for floating point quantities. A floating point

quantity x is represented as x = m · 2e for a mantissa m such that 1 ≤ m < 2, and

exponent e. The inverse of x is therefore:

1

x
=

1

m
· 2−e. (A.5)

Using IEEE 754 standard floating point formats, mantissas are normalised such

that a leading value of ‘1’ can be assumed. Denormalized values are not supported

by this implementation. The above algorithm is therefore modified to skip the

bit shifting steps, since the mantissa is already appropriately aligned. The new

exponent must be calculated separately, and is simply the negative of the original

exponent. Unusually, this algorithm is faster for floating point variables than for

fixed point.


