Application of FPGAs to Triggering in
High Energy Physics

Sioni Paris Summers
Imperial College London
Department of Physics

A dissertation submitted to Imperial College London
for the degree of Doctor of Philosophy

1

The copyright of this thesis rests with the author and is made available un-
der a Creative Commons Attribution Non-Commercial No Derivatives licence. Re-
searchers are free to copy, distribute or transmit the thesis on the condition that
they attribute it, that they do not use it for commercial purposes and that they do
not alter, transform or build upon it. For any reuse or redistribution, researchers

must make clear to others the licence terms of this work.

Abstract

The High Luminosity upgrade of the LHC will increase the instantaneous luminosity
to 5 x 103 em™2s7 !, resulting in an increase in the number of simultaneous proton-
proton collisions per event (pileup) to the range 140-200. The CMS Level 1 Trigger
system will be upgraded, and will reduce the 40 MHz event rate to 750kHz. The
system will perform a fast event reconstruction on FPGA devices, and select events
for read out within a latency of 12.5 ps.

The high level FPGA programming tool MaxCompiler is investigated for use
in Level 1 Trigger applications. An existing trigger algorithm, originally developed
with a Hardware Description Language, is reimplemented using MaxCompiler and
compared to the original. Bitwise agreement between the outputs is observed, with
half as many lines of code, at the expense of some extra FPGA resources.

A hardware demonstration of a proposed Level 1 track reconstruction is pre-
sented, with a Kalman Filter track fit developed with MaxCompiler. The perfor-
mance of the tracking is investigated, as well as the potential for developing advanced
algorithms with low latency using the tool. A high tracking efficiency, and precise
parameter resolutions, are achieved with a 3.7 ps latency in high pileup events. A
boosted decision tree classifier, implemented with inference latency of a few clock
cycles, is presented as a means to reject fake tracks.

After the Level 1 Trigger, events are further processed on commodity PCs in the
High Level Trigger (HLT). The High Luminosity LHC will also challenge the HLT,
which is projected to require twenty times the processing power used during LHC
Run II. Part of the HLT tracking is ported to Maxeler Dataflow Engines (DFEs),
a hardware acceleration technology. A faster rate of processing is achieved, but
with an initial latency of the host-DFE communication that limits the performance.

Steps which might yield acceleration are identified.

il

Declaration

This thesis is the result of my own work, with contributions from others in collab-
oration. Where an argument, result or figure is not my own, the original work is
acknowledged and indicated by a reference.

In Chapter 3, the algorithm implementation using MaxCompiler, and subse-
quent integration with an MP7 and testing, was performed by me, and led to the
publication [1]. The algorithm was originally developed and implemented by others.

The work presented in Chapter 4 led to the publication [2], and was performed
in collaboration with the other listed authors. My main contribution was the de-
velopment of the Kalman Filter described in the chapter. I developed the imple-
mentation for the collaboration software, and studied the performance. The matrix
mathematics FPGA implementation was developed by myself, while the control
logic was developed by a collaborator. I carried out the investigation into removing
fake tracks, including the training and testing of classifiers, and the implementation
of the Boosted Decision Tree for the FPGA. I also implemented the calculations
performed by the Geometric Processor for the FPGA.

I performed the development of the Kalman Filter presented in Chapter 5. This
includes the implementation and testing of the FPGA, and the modification of the

original software with an interface to the FPGA.

v

Contents

1 Introduction 1
1.1 LHC and HL-LHC 1
1.2 Trigger and FPGAs 4

1.2.1 Trigger Lo 4
1.3 Introduction to FPGA computing 7
1.3.1 FPGA Programming 8
1.3.2 DataFlow 9

2 The Large Hadron Collider and Compact Muon Solenoid Experi-
ment 11
2.1 Large Hadron Collider 11
2.2 Compact Muon Solenoid Experiment 13

2.2.1 CMS Phase Il Upgrade 14
2.3 Tracker. 16
2.4 Phase Il Tracker 16
2.4.1 Inner Tracker 17
2.4.2 Outer Tracker 18
2.4.3 Performance 21
2.5 Electromagnetic Calorimeter 22
2.5.1 Input to the Trigger 23
2.6 Hadronic Calorimeter 23
2.7 Muon System 25
2.8 Level 1 Trigger 27
2.8.1 Differences for Phase IT 27
2.8.2 Phase I Calorimeter Trigger 30
2.9 High Level Trigger 31
2.10 Track Reconstruction 33

vi

CONTENTS

2.10.1 Seeding
2.10.2 Track Building
2.10.3 Track Fitting
2.10.4 Track Selection

3 MaxCompiler for Level 1 Trigger Applications

3.1 High Level FPGA Programming
3.1.1 MaxCompiler
3.2 Jets and Energy Sums
3.3 Algorithm
3.3.1 Jets ...
3.3.2 Emergysum L.
3.4 MaxJ Implementation,
3.4.1 Imterface with MP7
3.5 Comparison
3.5.1 Functional Correctness
3.5.2 FPGA Resources
3.6 Summary

4 Track Reconstruction for the Level 1 Trigger

4.1 Track Trigger Demonstrator
4.1.1 Time Multiplexed Track Trigger
4.1.2 Geometric Processor
4.1.3 Hough Transform
4.1.4 Kalman Filter
4.1.5 Duplicate Removal
4.1.6 Demonstrator System
4.1.7 System Performance
4.1.8 Latency
4.1.9 System capacity
4.1.10 Towards a Final System
4.1.11 Future Developments

4.2 Identifying Fake Tracks with a Boosted Decision Tree

4.2.1 FPGA implementation

4.3 Conclusions

CONTENTS vii

5 Hardware Acceleration of Track Reconstruction in the High Level

Trigger 101
5.1 Kalman Filterona DFE 101
5.1.1 MaxJ Implementation 103

5.1.2 Data Types 103

5.1.3 DataFlow 105

5.1.4 Interface with CMSSW 107

5.1.5 Performance 109

5.2 Future Developments L. 111
5.2.1 Design Improvements oL 111

5.2.2 Technological Improvements 113

53 Conclusion 116

6 Conclusion 118
Appendices 128
A Integer Division 129

A.0.1 Floating Point 131

List of Figures

1.1
1.2

2.1
2.2
2.3

2.4

2.5

2.6
2.7
2.8
2.9

2.10

2.11
2.12
2.13

3.1
3.2

3.3

Timeline of the LHC project.
The cross section for several standard model processes as a function

of centre-of-mass energy.

The CERN accelerator complex.
Cutaway of the CMS detector.
One quarter view of the proposed layout of the CMS Phase II tracker

inthe r—z plane.
The pixel-strip (PS) and strip-strip (2S) implementations of the pr

module concept.
Layout of the pr modules in the outer tracker used for the track

trigger demonstrator.o
One quarter view of the ECAL in the r—z plane.
View of the grouping of ECAL crystals into trigger towers.
A schematic of the HCAL in the r—z plane.
Schematic of a one quarter slice of the CMS detector, highlighting

the layout of the muon system.
Diagram of components of the Phase I Upgrade of the CMS Level 1

Trigger. L
Overview of the components of the Phase II Level 1 Trigger.
System architecture of the Level-1 Calorimeter Trigger.

The timing of track reconstruction at CMS.

Dataflow graph for z =22 4+9y.
Templates describing the definition of a Level 1 Calorimeter Trigger
jet object.
The scheme for reuse of partial sums of jet energy to save FPGA

TESOUICES. o v o vt e

4

24

30

43

LIST OF FIGURES ix
3.4 Dataflow graph of a bitonic sorting network with four parallel inputs. 46
3.5 Accumulation stage of the jet sorter. A7
3.6 Output distributions of reconstructed jet and Er parameters from

the VHDL and MaxJ implementations of the .1 Calorimeter Trigger

algorithms.o 50
4.1 Segmentation of the tracker into processing regions. %)
4.2 The Geometric Processor (GP) routing network. 56
4.3 Examples of Hough Transform evaluation for straight lines. 58
4.4 Schematic of the implementation of one Hough Transform column

PTOCESSOT. . . . v v v v v et e e e e e e e e e e 60
4.5 Schematic of one Hough Transform array as implemented in FPGA

firmware. L 61
4.6 An example track candidate found by the HT with intermediate KF

states shown. Lo 66
4.7 Histograms of numerical differences between the firmware and soft-

ware for each state update. 69
4.8 A maximally parallel matrix multiplication dataflow graph. 70
4.9 Dataflow graph of the Kalman Filter state update. 71
4.10 A schematic of the main components of the Kalman Filter processing

node. 73
4.11 Fraction of track candidates which pass through four iterations of the

KF state updater as a function of the processing timeout. 74
4.12 An illustration of one track producing three candidates in the Hough

Transform. 76
4.13 Duplicate Removal FPGA implementation architecture. 7
4.14 Photograph and diagram of the demonstrator crate. 79
4.15 Track reconstruction efficiency of the ‘full-chain’ algorithm in tt events

with 200PU. 82
4.16 Resolutions of the track parameters as fitted by the Kalman Filter. 83
4.17 Resolutions of the track parameters as fitted by the Kalman Filter

formuons. 84
4.18 Number of stubs output per GP sub-sector per event and number of

track candidates found by the HT per sub-sector per event. 86
4.19 One quarter of the r — z plane of the CMS outer tracker with tilted

modules in the barrel. oo oL 90

LIST OF FIGURES

4.20

4.21

4.22

4.23

4.24
4.25

0.1

5.2

5.3

5.4

2.5
2.6

2.7

2.8

Receiver Operator Characteristic (ROC) curve for the five classifiers

under investigation and histogram of separation between genuine and

fake tracks as a function of BDT score. 92
Distributions of fake tracks before and after BDT class prediction. . . 94
Schematic for the FPGA implementation of a decision tree with a

depthof 3. 96
Area under the ROC curve for a scan over BDT hyper-parameters,

and the impact on latency and resources. 97
Decision contour for the FPGA and CPU implementations of a BDT. 98

Number of classified data points vs. execution time on the FPGA

and CPU. 99

Pseudo-code of the track building procedure of the Combinatorial

Track Finder. 102
Kernel Graph representation of the HLT 5 parameter, floating point,
Kalman Filter. 104
Diagram of execution placement of logical components of the track
building, and the flow of data between the devices. 106
Pseudo-code of the track building procedure modified to coalesce mul-
tiple states into a stream.o 107
Histogram of the number of measurements found for all states. 108

C++ functions and data structures for the operation of the Kalman

Filter DFE from the host application. 109
Measured time to perform a number of iterations of Kalman Filter
state update on CPU and DFE. 110

DFE configuration possibilities with different PCle capabilities. . . . 114

List of Tables

2.1

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

5.1

0.2

Beam parameters of the LHC design and HL-LHC. 14

Number of each type of resource used by each implementation of the

jet and energy sum algorithm. 49

Utilisation of FPGA resources for the stub unpacking and pre-processing
block. 56

FPGA resource utilisation for one HT column processor, and one HT

accumulator array.o 61
Kalman Filter resource utilisation. 75
Resource usage of one instance of the Duplicate Removal block. . . . 77

Track reconstruction quality at different stages of the demonstrator
chain, for tt events with 200 PU interactions. 80
Measured latency of the demonstrated components of the track re-
construction chain Lo 85
Resource availability of the FPGA on an MP7, and of two current
generation Xilinx chips which are suitable for HL-LHC triggers. . . . 88
Tracking performance for both flat and tilted barrel tracker geometries. 89
Post-synthesis resource usage of the trained BDT with 4 features, 100
trees with a maximum depth of 3, for 3 different FPGA parts. 97

The range of the exponent of floating point variables in the Kalman

Filter state update. 105
Resource usage of the Kalman Filter state updater and CPU IO on
a Maia DFE. 109

X1

Chapter 1

Introduction

1.1 LHC and HL-LHC

The Large Hadron Collider (LHC), situated 100 m underground near Geneva, Switzer-
land, is the largest and most powerful synchrotron ever constructed. Particles, most
often protons, are accelerated up to 6.5 TeV by superconducting magnets in two
counter-rotating beams in a 27 km circumference ring. At four sites around the ring
the beams are brought into head on collision with a centre of mass energy of 13 TeV.

At each of these sites a detector measures the new particles created by the collision.
These detectors are the experiments: CMS, ATLAS, LHCb, and ALICE.

The LHC was constructed to further the understanding of the fundamental forces
of nature: for the discovery of new particles and new physics. To date the Standard
Model (SM) of particle physics is the theory that best describes the fundamental
forces, excluding gravity: electromagnetic; weak; and strong nuclear force. The
electromagnetic and weak forces are unified to a single force, the electroweak force
[3-5]. A breaking of the electroweak symmetry is necessary to provide the W* and
Z vector bosons with mass. The Brout-Englert-Higgs mechanism [6-9] provides this
symmetry breaking, with the addition of a scalar boson, the Higgs. At the time
of the construction of the LHC, the Higgs boson was the only SM particle not yet
directly observed. The potential for its discovery was a particular motivation for

the LHC.

Despite its successes, there are many phenomena that the SM cannot account for.
There is no SM particle that could be a candidate for Dark Matter, well motivated
by cosmological observations. Neutrinos in the SM are massless, which cannot be

reconciled with the observation of neutrino oscillation, which requires that they have

2 INTRODUCTION

LHC / HL-LHC Plan

LHC : HL-LHC

EVETS 14 TeV LS3 14 TeV
13 TeV —————————— energy
injector upgrade Stoix
Cryo RF P4 eryollmit HL-LHC nominal luminosity
P 11 T dip. coll. Inpacacton i \
civil Eng, P1-PS e il F
T T T N R T N R R A
ATLAS - CMS m"
upgrade phase 1 damage ATLAS - CMS
2.5 & il lumnosty ade 2
ot ety _SXPOM b ALICE - LHOD ey SPATGE PRI
'—,’_'__,_——'—'_ upgrade:
300" S 150 to” 300 10" ey

Figure 1.1: Timeline of the LHC project.

mass. There is no explanation for matter-antimatter asymmetry, with every SM
interaction conserving baryon number. Theories such as Supersymmetry propose
extensions to the SM which might resolve some of these outstanding issues, and
predict new particles with masses accessible at the LHC. Searches for signs of physics

beyond the Standard Model was another major motivation for the LHC.
Despite the success of the LHC in discovering the Higgs boson [10, 11], no new

physics has been discovered. To manifestly increase the potential for discovery of
any new phenomenon, that has so far proved elusive, the LHC will be upgraded.
This upgrade will take place after LHC Run III, planning to restart according to
the schedule shown in Figure 1.1, around mid-2026. The upgraded machine will
be called the High Luminosity LHC (HL-LHC), a reflection of the beam luminosity
increase by a factor five over the LHC design luminosity. This will facilitate the
collection of 3000 fb~! over a ten year period, compared to the 300 fb=! collected by
the end of Run III.

For the CMS experiment at the HL-LHC [12], the Higgs boson will remain a
major subject of interest. With the 3000 fb~! dataset, many measurements of Higgs
properties will be made possible with high precision. The couplings of the Higgs
boson to Standard Model fermions are currently measured with around 20% uncer-
tainty, which will decrease to around 1% with the full HL-LHC data. The Higgs self
coupling will be measurable, with the 40 fb cross section of di-Higgs production.

Vector boson scattering processes, which can be sensitive to new physics through
anomalous triple- and quartic-gauge couplings, will be another class of processes

to benefit from the additional integrated luminosity [13]. These processes probe

INTRODUCTION 3

the nature of the electroweak symmetry breaking and the role of the Higgs boson.
Tagging of forward jets is essential to reduce background contributions from pileup,

and a greater tracker acceptance will increase sensitivity.

CMS will also continue to carry out direct searches for new particles. New
particles with masses of up to a few TeV, accessible at the LHC, but with small
cross sections, may become detectable at the HL-LHC where they were not at the
LHC. The upper limits on the accessible mass of new particles will be extended
somewhat by the extra integrated luminosity. In the absence of any new discoveries
at the LHC, more exotic event topologies, for example with semi-stable particles
that decay inside the detector, but some distance from the beam line, become topics
of interest. The CMS detector must maintain sensitivity to these channels in the

more challenging environment.

The Phase IT upgrade of the CMS detector will prepare the experiment for HL-
LHC conditions [12]. Much of the detector will be replaced, although the overall
concept will remain. A new tracker, with greater acceptance and finer granularity,
will also provide input to the Level 1 Trigger for the first time. A new endcap
calorimeter, a highly segmented sampling calorimeter, will provide precise energy
resolution, particle identification capability, and pileup mitigation. A correlator
trigger will utilise these detectors with full particle-flow [14] reconstruction. These
upgrades will increase the power of the trigger, while presenting a significant chal-

lenge due to the harsh latency and throughput constraints.

The Level 1 Trigger will use the latest generation high performance Field Pro-
grammable Gate Array (FPGA) devices for computing. These latest devices are
increasingly commonly programmed using high level programming languages and
compilers. These approaches promise to improve the development time and effort
of complicated algorithms: an appealing prospect for the trigger processing at CMS
at the HL-LHC. In this thesis, the high level tools of Maxeler Technologies were
turned to the development of Level 1 Trigger algorithms. In Chapter 3 the tool
is benchmarked against the low-level handwritten approach to test its suitability
for applications with microsecond latency and tight resource constraints. It is then
used in Chapter 4 in the development of track reconstruction for the Level 1 Trigger.
Finally in Chapter 5, the high level tracking code is turned to an application target-
ing the High Level Trigger, using a Maxeler Technologies Dataflow Engine FPGA

accelerator card.

4 INTRODUCTION

proton - (anti)proton cross sections

0o [.
10" s (E > 100 GeV)

jet

10° ¢ ——— — 3 10°
8 [. 1 408
10 E o-tot‘_‘_:—_—_—_—g 10
10" £ Tevatron LHC: 10
o' E | / 310
5 . .] 5
10° | : 5 10 7
10° : L 410" E
: /] ©
10° b R R 8
jet . : E
ok o (E; > Vs/20) L
5 : . E I
: : 1 <
£ 10k 5 o410 C
6 z : : 1., O
;] 0]
¥ [72]
: /] =
, : 1 n
N ,—
> E c
/] o
b / s
- . 1 ()

10" | - 10"
10% | = 10?
10° | = 10°
10* [4 10*
10'5 ;_MH=125 GeV{ | 10'5
10° f o T

; [wisz012 .] ;
10 0 N N PR | i I0 10'

1 1 1

\s (TeV)

Figure 1.2: The cross section for several standard model processes as a function of
centre-of-mass energy [15].

1.2 Trigger and FPGAs

1.2.1 Trigger

The trigger system of a HEP experiment determines when to read signals from the
detector and write them to storage for later analysis. The first trigger, for example,
activated a cloud chamber when a high energy particle caused a coincidence of signals
in Geiger counters surrounding the chamber [16]. Triggers at the LHC experiment
perform the same operation: determine when ‘something of interest’ occurs, and
trigger the reading out of the detector for later analysis. These systems can perform
vastly more sophisticated analysis to reach their decision, but the principle remains.

Unlike the cloud chamber trigger, required to capture an event occurring at an

unknown time, the LHC collisions occur at a metronomic 40 MHz. The need for

INTRODUCTION)

a trigger arises because the vast majority of collisions do not produce any results
of interest. This may be because no hard proton scatter took place, or because
the products are of some well understood process. The cross sections of several
electroweak processes in proton-proton collisions are shown in Figure 1.2, and can
be seen to be several orders of magnitude less than the total cross section.

The ability to sift out such uninteresting events at the earliest opportunity allows
for a saving in infrastructure: a lower rate of event storage, requires lower bandwidth
to transport data from detector to storage, and less total storage capacity. The
workload to reconstruct and analyse event data is also reduced, which is already a
major globally distributed computing effort [17]. The existence of the trigger system
is also in some sense ‘built in’ to the rest of the CMS detector, as components
responsible for the readout of data would be unable to read out at the full 40 MHz
rate, so the trigger must perform this reduction.

Without yet describing the trigger as a system, the concept of a trigger ‘menu’, as
used at CMS, can be understood. The trigger menu defines what is an ‘interesting’
event worthy of sending to permanent storage. This takes the form of a list of particle
types and kinematic requirements. The items on the menu are a balance between
the interests of different analysis groups and the available bandwidth for reading
data off the detector and sending it to disk. Processing of the measurements made
by the CMS detector is required to construct the information used in the menu
to make the ultimate trigger decision. This processing is executed in the trigger
system, as well. Since, necessarily, all detector data must be stored somewhere until
the trigger decision is made, a latency restriction applies in order to avoid loss of
events. At CMS the data is kept in buffers on or near the detector until a trigger
signal is received.

The CMS trigger, which will be described in more detail in Chapter 2, is a two
stage processing system. The first stage — Level 1 — is situated underground in
the cavern adjacent to the detector. The Level 1 Trigger (L1T) processes events at
the full 40 MHz and triggers readout of around 100 kHz: a factor of 400 reduction.
Latency is constrained to 4ps by the depth of buffers on tracker front end chips.
Only a subset of the full detector data is sent to the L1T, to limit the bandwidth
required for transmission of data: the calorimeter (at a reduced granularity), and
muon detectors are used while the tracker is not. Processing is carried out on FPGA
devices with large data bandwidth and significant parallel computation.

Events which pass L1T are sent to a computing facility directly above the de-

tector on the surface, where space presents less of a restriction. At this High Level

6 INTRODUCTION

Trigger (HLT) commodity PCs are used to reconstruct events using all detectors
at their full granularity. The processing at HLT is also latency constrained, with a
limitation from the incoming event rate and the number of processors. With around
1,000 CPU nodes and the aforementioned 100 kHz rate, the limit is around 200 ms.

By contrast the ATLAS experiment operates a three level trigger [18]. The first
level (L1) is similar to the CMS L1T, with a latency of 2.5 us and a maximum output
rate of 75kHz. The Level 2 Trigger (L2) is comprised of conventional processors,
reducing the rate to 3kHz within 40 ms per event. The processing at this second
level performs similar algorithms to the full reconstruction, but only within regions
of interest (Rol) identified by L1. This Rol seeded reconstruction uses around 2-6%
of the total event data. Events passing L2 are then fully reconstructed, also using
conventional processors in the Event Filter (EF). The EF reduces the event rate
to disk to 200 Hz within 4s. The HLT system consists of around 1300 compute
nodes split between L2 and EF. ATLAS triggers are also produced after comparing
reconstructed particles with a menu of events of interest.

The LHCDb experiment uses a two level trigger: one level of hardware and one of
software, with the majority of the processing performed by the high level (software)
trigger [19, 20]. The hardware level (LO) reduces the rate from around 40 MHz to
1 MHz in 4 ps. Only the calorimeter and muon system are input to L0, and events
with high transverse momentum (pr) muons or large transverse energy deposited
in the calorimeter are read out. A CPU farm of 27000 cores reduces the rate to
12.5kHz. The software running at the HLT is structured into two subcomponents
— HLT1 and HLT2. HLT1 performs partial reconstruction, and reduces the rate
to around 70kHz. HLT2 then reconstructs all tracks above a pr threshold for the
remaining events. LHCDb also operates a ‘deferred trigger’ which stores 20% of all
L0 accepted events onto disks local to the HLT, and processes them during gaps in
LHC operation, which effectively increases the processing power of the farm.

For Run III LHCb will upgrade to a trigger-less readout [21]. This upgrade
will see the entire detector read out to a farm of conventional processors at the full
40 MHz event rate. With the current trigger system, a significant loss of efficiency
is incurred by L0O. The LHCb detector bandwidth is significantly less than the CMS
bandwidth, at 4 TBs~!. This upgrade might also see the HLT architecture change
from CPU-only, to a configuration with FPGA coprocessors [22]. Certain algorithms
used at the HLT show an improvement in processing speed using FPGA accelerators
[23].

This thesis is primarily concerned with the preparation of the CMS trigger for

INTRODUCTION 7

the HL-LHC, and the role of FPGAs within this development. Where it relates to
processing performed on CPUs; it looks to augment the performance with FPGAs.

A short primer on computing with FPGAs is provided, for the uninitiated.

1.3 Introduction to FPGA computing

FPGAs are the computing platform of choice for triggers in HEP experiments. They
are characterised by their huge number of configurable blocks for logical operations
— generically grouped with the term ‘resources’ — including specialised components
for multiplication, memory, and input/output (I0). Compared to CPUs, the clock
frequencies achieved on FPGAs are a factor ten lower. However, the FPGA’s power
comes from the massive parallelism which they enable. Modern devices contain
around 10,000 multipliers, 10 MB of internal memory with 10 TBs™! peak band-
width, millions of logic cells performing arbitrary six bit functions, and transceivers

capable of delivering data at 1 Ths™!.

Registers are placed at the output of each
component, holding the value of their data until the next clock cycle. Components
are distributed across the chip, like machines in a production line, and linked with
a ‘routing fabric’.

In Chapters 3 and 4 the Xilinx Virtex 7 device is used. The basic computa-
tion unit is the Look-Up Table (LUT) [24]. In the Virtex 7 these are 6-bit input
function generators. LUTs are arranged in Configurable Logic Blocks (CLBs), each
containing eight LUTSs, flip-flops on the LUT outputs, high-speed carry logic (for
chaining LUTS to perform arithmetic) and multiplexers. Arithmetic such as multipli-
cation and accumulation is better executed using dedicated digital signal processing
(DSP) blocks [25]. In the Virtex 7 these contain a 25 x 18 bit multiplier for two’s
complement data. Around the multiplier each DSP also contains an accumulator,
pre-adder, logic unit, and multiple registers. While LUTs can be used as memories,
a dedicated Block RAM (BRAM) [26] component allows memories with more than
a small number of addresses to be constructed efficiently. The basic memory unit in
the Virtex 7 is the BRAM36, a 36 Kb RAM. The BRAMS36 is a dual-port RAM with
two independent sets of ports, and the memory is partitioned into two 18 Kb regions
which can be utilised independently, or as one. The aspect ratio of the data and
address width is configurable, supporting from 32 K x 1 to 512 K x 72 modes. With
many of each of these components across the chip, an FPGA can perform massively
parallel computation.

Use of the flip-flops in each component causes the data to propagate at each

8 INTRODUCTION

tick of a clock signal, with the data at the input of the flip-flop only transferring
to its output (and the next computation) at the edge of the clock. The clock
frequency at which an FPGA runs depends on the program being executed. The
clock period is limited by the longest separation between any two components used
in the design: try to use a clock period shorter than this, and the design will
malfunction. Achieving high clock frequencies is part of the FPGA program design
process. Registers must be used to segment the processing into small chunks, and

processing should ideally be ‘local’ — using only data from nearby computations.

1.3.1 FPGA Programming

The role of the FPGA programmer is to specify which functions should be im-
plemented with logic cells, and how the blocks should be connected for their ap-
plication. This is aided by the use of ‘synthesis tools’, which map the program
description to the available FPGA resources. The ‘place and route’ process specifies
precisely which particular resource should be used in order to meet the designer’s
placement and timing constraints. Hardware Description Languages (HDLs), such
as VHDL and Verilog, are typically used to write applications for FPGAs. Some
level of abstraction from the base components is provided, allowing, for example, the
programmer to instantiate a multiplication and allowing the synthesis tool to infer
whether specialised multipliers or general logic should be used. These languages are
nonetheless typically ‘close to the metal’, and far removed from the domain of the
typical C++ developer. They might seem extreme even to the experienced Assem-
bly programmer, who is never concerned with the placement of clock edges in their
program.

Efforts to create higher level programming languages for FPGAs have existed
for almost as long as FPGAs. The principle is exactly the same as for higher
level languages for conventional CPU programming: by adding layers of abstraction
between the language and the implementation on silicon, programmers are able to
realise more complex computations on their data. By removing the requirement that
the developer have expert knowledge of the architecture, the platform is opened up
to new people. When the developer is able to spend less time on the minutiae, they
are freed to optimise their design at the algorithmic level. However, as also with
high level CPU programming, there are concerns as to their efficacy. Is the compiler
able to map concepts to compute components as efficiently as the programmer? Is

it possible for the developer to know how a line of code will be implemented by the

N

T W N~

INTRODUCTION 9

compiler?

For CPU programming, for a long time, the favour has fallen on the side of the
high level paradigm. The ease of creating programs in C++ compared to Assembly;
in Python compared to C++4, vastly outweigh any reservations on the effectiveness
of the compiler. For FPGA programming, and in particular for FPGA applications
intended for Level 1 Triggers of LHC experiments, however, the conversation is

ongoing.

1.3.2 Data Flow

In parallel and dataflow computing it is informative to think of the computational
loops involved in an algorithm. The existence or absence of data dependencies be-
tween loop iterations has a large impact on how an algorithm may be implemented
with low latency in a parallel processor, such as an FPGA. In the following code
listing the operation at iteration ¢ does not depend on the result of any other it-

eration. This loop could be ‘fully unrolled’ in a sufficiently large FPGA (that is,

int x[];

for(i = 0; 1 < iMax; i++){
x[i] = £(i);

}

each iteration could execute on different resources) and each iteration could execute
simultaneously. In the second code, however, the result at iteration ¢ depends on the

result at iteration 7 — 1. The execution of iteration ¢ must now follow that of i — 1. It

int x[];

x[0] = 12;

for(i = 1; 1 < iMax; i++){
x[i] = £(x[i-1]1);

+

may still be possible to fully unroll this loop, but the latency will be longer than for
a loop performing a similar function with no dependency. Still more complexities
arise in scenarios where, for example, the iteration itself is data dependent. This
may arise when there is a termination condition, or the iteration limit is a variable

derived from data.

10 INTRODUCTION

In general, computation performed in the trigger has favoured ‘fully unrolled’
loops. In Chapter 3, the input data from the calorimeter can map neatly to data ar-
rays within the FPGA with no data dependence, and processing executes in a rigidly
deterministic manner. This contrasts with the offline jet reconstruction algorithm
anti-k7 [27], which is completely iterative with loop dependencies, and disregarded
for use in the trigger.

In the Phase II detector, the extra granularity provided to the trigger will make
‘zero suppressed’ detector readout (whereby channels with no signal above a thresh-
old do not send data) essential. This will prevent convenient correspondence between
detector elements and data locations in the FPGAs. The types of algorithm used to
reconstruct particles in the new detectors tend also to be highly iterative: track re-
construction offline favours the Combinatorial Kalman Filter, while the particle-flow
algorithm loops over lists of particles to match them. To fully utilise the tracker
and endcap-calorimeter in the Level 1 Trigger, algorithms with complicated loop
dependencies will be required, and imagination must be used to fit them within the
harsh constraints of latency, throughput and resources. For these developments, a
high level language might enable the realisation of more sophisticated algorithms,
with more time spent optimising the data flow when the low level details are handled

by a compiler.

Chapter 2

The Large Hadron Collider and
Compact Muon Solenoid

Experiment

2.1 Large Hadron Collider

A significant accelerator complex, depicted in Figure 2.1 is required to accelerate
protons up to 6.5 TeV. Initially accelerated with a linear accelerator, the protons
are then injected into a series of synchrotrons of increasing circumference. The
series is as follows [28]. Protons from hydrogen gas are first accelerated by LINAC2
(Linear Accelerator 2) to 50 MeV, into the PSB (Proton Synchrotron Booster).
The PSB accelerates the protons to 1.4 GeV, before injecting them into the Proton
Synchrotron (PS), which accelerates the beam to 25 GeV. The beam is next injected
into the Super Proton Synchrotron (SPS), which is the final booster before the LHC,
and accelerated up to 450 GeV. Finally the beams are injected into the LHC which

accelerates them to their ultimate energy of 6.5 TeV.

The beams circulate in 2808 distinct bunches of protons, each containing around
10™ protons, and separated by 25ns (around 7.5 m). Each collision between protons
in two bunches is termed a ‘bunch crossing’, and the collision and its products are
referred to as the ‘event’. With bunch crossings spaced by 25 ns, the LHC event rate
is 40 MHz.

For any specific particle interaction the rate of event occurrence N is:

N = Lo, (2.1)

11

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
12 EXPERIMENT

ALICE

AD

ISOLDE East Area

¢ oo M2 —_—

s
R 3
Lnacs #

AD Antiproton Decelerator

PS Proton Synchrotron n-TOF Neutron Time Of Flight

» protons antiprotons SPS Super Proton Synchrotron AWAKE Advanced Wakefield Experiment
ions » electrons LHC Large Hadron Collider CTF3 CLIC Test Facility 3

neutrons »- neutrinos

Figure 2.1: The CERN accelerator complex.

where o is the cross section of the interaction, and L is the machine luminosity. This

instantaneous luminosity is expressed in terms of beam parameters as [29]:

o N(?”fbfrevV

L= 2.2
e, Bx (2.2)

where n; is the number of bunches per beam, N, is the bunch population, f..,
is the revolution frequency, ~ is the relativistic gamma factor, €, is the normalised
transverse emittance, and 5* is the beta function (focal length) at the collision point.
Fis a geometric luminosity reduction factor due to the crossing angle of the beams

at the interaction point given by:

F=1/4/1+ (922)2 (2.3)

where 6, is the crossing angle at the interaction point, o, is the RMS bunch length,
and o is the transverse RMS beam size at the interaction point.

The LHC operated with instantaneous luminosities of up to 2 x 10**cm=2s! in
2017, in excess of the design value of 1.0 x 103 cm2s7!. At the end of LHC Run 3,

anticipated around the end of 2023, it is expected that an integrated luminosity of

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
EXPERIMENT 13

300 fb~! will have been collected by CMS. During the Long Shutdown that follows,
LS3, the accelerator and experiments will prepare for high luminosity operation,
dubbed the High Luminosity Large Hadron Collider, or HL-LHC. An instantaneous

2571 is planned for this phase. Over the projected 10 year

luminosity of 5 x 103 cm™
running time of the HL-LHC, 3000 fb~! of integrated luminosity will be collected by
CMS and ATLAS.

By equation 2.1 the number of simultaneous pp collisions per bunch crossing
(pileup) is proportional to the instantaneous luminosity, and so will increase during
the HL-LHC compared to the LHC conditions. At the instantaneous luminosity
expected for the HL-LHC the mean pileup will be 200, where the original LHC
design value was 27.

Beam parameters of the LHC and HL-LHC accelerator are presented in table 2.1.
The most significant change arises from the use of new large aperture inner triplet
quadrupole magnets of NbgSn with a 12T peak magnetic field. These can yield
a much shorter fx in the collision region. However the crossing angle is increased
in the process, which reduces the geometric reduction factor and hence limits the
luminosity increase. This will be mitigated by the addition of superconducting RF
crab cavities which rotate each bunch to collide head on. These can also provide a
mechanism for luminosity levelling.

Without levelling, the luminosity profile decreases throughout a fill from an
initial peak value as N, decreases during proton collisions. Levelling will maintain
a constant luminosity which is lower than the maximum, but yielding the same
integrated luminosity over a fill. This provides more stable pileup conditions for

the experiments, and deposits less energy into the interaction region magnets from
debris [30].

2.2 Compact Muon Solenoid Experiment

The Compact Muon Solenoid (CMS) experiment is situated at one of the collision
points on the LHC ring. A cutaway diagram, showing the various subsystems is
shown in Figure 2.2. The detector comprises a cylindrical barrel section with planar
endcaps, and measures 28.7m in length with a diameter of 17m. Propagating
radially outwards from the centre, particles first pass through the tracker, which
measures points along the trajectories of charged particles. Radially outwards of
the tracker is the electromagnetic calorimeter (ECAL), followed by the hadronic

calorimeter (HCAL), each measuring particle energy. These detectors are contained

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
14 EXPERIMENT

Table 2.1: Beam parameters of the LHC design and HL-LHC [30].

Parameter LHC (design) HL-LHC
Proton energy [TeV] 7 7
ny 2808 2748
N, 1.15 x 10" 2.2 x 10"
Frew [kHz] 11.2 11.2
B+ [m] 0.55 0.15
€, [nmrad] 3.75 2.50
0. [prad] 285 590
o, [cm] 7.55 7.55
o [pm] 16.7 7.13
F 0.84 0.305
Peak luminosity [em™2s™!] 1.0 x 10** 5.0 x 103
Mean events per crossing 27 198

within the eponymous superconducting solenoid, and the 3.8 T magnetic field it
produces. Muon chambers are positioned outwards of the solenoid. The return yoke
of the magnet is interleaved with the muon chambers.

A right handed Cartesian coordinate system is defined with the origin at the
nominal interaction point. The z axis points towards the centre of the LHC, the
y axis points vertically upwards, and the z axis along the anticlockwise rotating
beam. The z axis is sometimes referred to as the longitudinal direction, and the z—y
plane is also referred to as the transverse plane. Transverse energy and momentum,
Er and pr respectively, are therefore the magnitude of energy and momentum in
the x—y plane. From this coordinate system, other frequently used quantities are
derived. The azimuthal angle ¢ is measured in the x—y plane from the x axis, and
the radius r in the same plane completes a cylindrical coordinate system along with
the z axis. The angle 6 is measured from the z axis in the r—z plane, and the dip

angle A = m — 6. Pseudorapidity is then defined to be n = —Intan /2.

2.2.1 CMS Phase II Upgrade

The luminosity of the HL-LHC will necessitate significant changes to the LHC ex-
periments. In part this will be to due to damage to the detectors from radiation
already deposited over the lifetime of the LHC. Detectors will also be improved,
generally with increased granularity, to further enable the mitigation of pileup in
the reconstruction. In both the trigger and offline analysis the objects of interest

are the particles produced from the primary vertex — the hard scatter surrounded

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID

CMS DETECTOR STEEL RETURN YOKE
Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS
Overall diameter :15.0m Pixel (100x150 ym) ~16m* ~66M channels
Overall length :28.7m Microstrips (80x180 ym) ~200m? ~9.6M channels
Magnetic field :3.8T
SUPERCONDUCTING SOLENOID
— Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

. PRESHOWER
-~ Silicon strips ~16m* ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PEWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

Figure 2.2: Cutaway of the CMS detector [31].

by the soft scatters of pileup. With more pileup interactions it becomes increasingly
difficult to correctly attribute particles to the primary vertex, and to accurately de-
termine the particle energy. The CMS experiment upgrades are presented in detail
in [12].

Damage is dealt to the detector in the form of radiation from the particles pro-
duced by particle collisions. Charged particles ionise the detectors, and nuclear
interactions produce particle cascades. Electromagnetic cascades are produced by
the interaction of ete™ pairs, themselves the product of photon interactions in ma-
terial, in the tracker. Calorimeters, based on scintillating materials, generally lose
transparency when subjected to high radiation doses. This effect reduces the am-
plitude of signals, which, after calibration, effects the energy resolution. Detectors
with better resilience to radiation damage, not just in a material sense, but in terms

of detector performance, will be used.

The particle-flow technique [14] is the primary reconstruction technique at CMS
currently, with ‘pileup per particle identification” (PUPPI) [32] for the mitigation
of pileup. These rely on the ability to separate energy deposits of particles in the

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
16 EXPERIMENT

calorimeter, therefore requiring adequate energy resolution and granularity; efficient
reconstruction of charged particles in the tracker; muon identification and momen-
tum measurement from the muon systems. Maintaining the performance of the
detector in the face of extreme pileup generally requires better resolution of recon-
structed objects: in pr and spacially.

In order to make use of the increased data rate in analysis, the trigger and readout
must also be upgraded. It is desirable to maintain trigger energy and momentum
thresholds as low as possible, within the limitations of the readout system, to have
sensitivity to low mass particles. The energy and momentum resolution of the trigger
must be improved to achieve this without losing efficiency. More advanced mitigation
of pileup will be required for the trigger, to reduce the impact of combinatorial
background. For this purpose, the tracker will provide input to the Level 1 trigger,
enabling identification of pileup particles, and allowing the L1T to perform particle-

flow-like reconstruction.

2.3 Tracker

The innermost sub-detector is the silicon tracker [33]. Planes of silicon sensors
measure the position of charged particles along their trajectory. Particle momentum
can be measured by determining the curvature of the particle trajectory in the 3.8 T
magnetic field. An inner pixel detector with high spatial resolution allows a precise
measurement of the vertex. Tracks which, when followed, lead to measurements in
other sub-detectors provides a means of particle identification: e/ like deposits in

the calorimeter can be distinguished, and tracks created by muons can be identified.

2.4 Phase II Tracker

The CMS tracker will be completely replaced for the HL-LHC. Damage done to
the existing detector due to radiation at the end of Run III will necessitate the
change. Radiation damages the lattice in silicon detectors, such as the tracker, and
alters the electrical behaviour. This leads to an increased leakage current, reduces
the charge collection efficiency, and increases the depletion voltage, which all result
in lower amplitude signals from charged particles. A reduction in charge sharing
between sensors in the pixel detector worsens the spatial resolution of hits, directly

impacting the tracking performance. The tracker, situated closest to the beam pipe,

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID

EXPERIMENT 17
0.0 0.2 0.4 08 [1F:] 1.0 1.2 1.4
— / ya Z 1.6
E' 1200 __
- = I I I I e
= II|| II|| II|| II|| Il|| ~
800 f— | I I | -
= h, Il |lI IlI |22
e Y "H "H "!! "|! "|! — 24
= A I iy iy iy iy [26
i =—SSSi il A R R R N N N :::: :::: i ol i -2
e R) n I — 32
= 4.0
iy S T TS
0 500 1000 1500 2000 2500 n

z [mm)]

Figure 2.3: One quarter view of the proposed layout of the CMS Phase II tracker
in the r—z plane. The inner tracker is shown in light blue and yellow (modules with
two or four readout chips respectively), and the outer tracker is shown in dark blue
and red (PS and 2S modules respectively) [34].

is the sub-detector with the highest radiation fluence.

The new tracker will be more radiation tolerant, to survive the 3000 fb~! inte-
grated luminosity. In addition, its performance must improve to maintain tracking
and vertexing efficiency and resolution in the 200 PU conditions. The granularity
will be increased to keep channel occupancy around the per mille level, and hit merg-
ing in the pixels will be corrected to improve the distinguishability of two closely
separated tracks. Less material will be used by the tracker, to reduce the effect of
particle interactions with the tracker material. Finally, the outer tracker will send
tracking information to the Level 1 Trigger, the subject of Chapter 4.

The proposed tracker layout is shown in Figure 2.3. Compared to the Phase 1
tracker, the Phase 2 tracker will extend further in 5, to |n| ~ 4 up from |n| ~ 2.4.
This extra coverage will improve the pileup mitigation capabilities, and facilitate
object tagging, at higher pseudo-rapidity. Particles will cross at least 9 layers of
modules across the whole pseudo-rapidity range, and up to 12 at the highest pseu-

dorapidity.

2.4.1 Inner Tracker

The Phase II pixel detector will be required to withstand a radiation dose of 1.2 Grad,
and up to 3 GHzcm™2 hit rate in the innermost layer. At the same time the new
detector performance must improve relative to the LHC in order to maintain efficient
track reconstruction in the higher pileup environment. The pixel surface area will

be a factor 6 smaller than the Phase I detector, with sensors of 25 x 100 pm? or

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
18 EXPERIMENT

50 x 50 pm?. These smaller pixels will improve the resolution on the longitudinal
and transverse impact parameters compared to Phase I, improve the separation

between track in dense jets, and maintain an occupancy around 0.1%.

Development of the pixel sensor is ongoing. The sensors will be thinner than
the Phase I pixels: in the range 100 pm to 150 pm compared to 270 pm to 285 pm.
The thinner pixel is protective against radiation damage, with less charge carrier
trapping after irradiation compared to a thick sensor. For the innermost layers,
which will receive the highest fluence, a 3D sensor with electrodes embedded in
the silicon is under investigation. These are potentially less susceptible to charge

trapping than planar sensors, although more difficult to fabricate.

A radiation hard pixel readout chip (PROC) is under development, which will
use a 65 nm CMOS technology [35]. These will digitise the detected sensor current,
store hits for the 12.5ps trigger latency, and send out hits for triggered events
(the inner tracker does not contribute to the trigger). Data transfer will be along
electrical connections to Low-power Gigabit Transceivers (LpGBT) on the inner
tracker service cylinder, where the signals are then sent optically to the back-end
electronics. Modules will host either two or four PROCs, with the two PROC

modules occupying the two innermost layers throughout.

The inner tracker DAQ will comprise modular Data, Trigger and Control (DTC)
boards, similar to those used for the outer tracker. The DTC boards will interface to
the LpGBT optical links, and house an FPGA with large logic capacity for processing
and buffering. Optical links operating at 10 Gbs~! will send data to the DAQ.

2.4.2 QOuter Tracker

The outer tracker will have six barrel layers and five endcap disks on each side.
Particles will traverse six detector layers up to |n| & 2.4, apart from a narrow region
around |n| & 1, which is the transition between barrel and endcap, where five layers
will be crossed. The number of layers is the minimum possible for efficient tracking
using only the outer tracker (for the Level 1 Trigger). Track reconstruction can be
performed with a high efficiency and low fake rate with only five layers, while an

additional layer allows for detector inefficiencies.

The outer tracker will send hits from tracks above a pr threshold (called ‘stubs’)

to the trigger. The pr threshold is applied on the detector, enabled by a pr module.

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
EXPERIMENT 19

Figure 2.4: The pixel-strip (PS) and strip-strip (2S) implementations (left, right
image respectively) of the pr module concept [40].

pr Module

A key technology enabling the development of a track trigger is the so called ‘pr
module’ [36, 37]. This module will enable the readout of tracker data at a reduced
bandwidth, and reconstruction within the trigger latency budget. The concept be-
gins with the reality that the readout of all tracker hits is not possible, or necessary
at the LHC collision rate of 40 MHz. In LHC pp collisions, especially with 200
pileup, most particles in an event are associated with pileup collisions rather than
the primary vertex. These pileup particles also tend to have lower pr than those
particles which are useful for physics analyses. Avoiding the readout and recon-
struction of hits from low pr tracks greatly reduces the bandwidth required from
the tracker to the Level 1 Trigger, and results in fewer hits for the track trigger to

process.

The pr module exploits the bending of charged particles in the large magnetic
field of CMS in order to detect hits associated with high py tracks. Two silicon sen-
sors, segmented in ¢, the track bending direction, and separated by a few millimetres,
make a pr module. This separation is wide enough to have a coarse resolution on
the track pr, while being small enough that the sensors can be read out by the
same electronics. Logic on the module clusters pairs of hits on the two layers. The
¢ direction separation of the hits gives a coarse measurement of the track pr. A
threshold on the hit separation is then used to apply a pr cut to tracker hits. Pairs
of hits with a pr over the threshold are called ‘stubs’. Only these stubs are read out
to the Level 1 Trigger. A pr threshold of 2-3 GeV is typically considered, providing

an order of magnitude rate reduction compared to reading out all hits [38, 39].

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
20 EXPERIMENT

Two types of pr modules have been developed, shown in Figure 2.4. The first,
for use at radii in the range 200 < r < 600mm, is the ‘pixel-strip’ (PS) module.
These consist of a silicon pixel sensor beneath a silicon strip sensor. Both layers have
a strip pitch of 100 pm in the z — y plane. The pixel sensor has a fine granularity
of 1.47mm in the z direction, while the upper layer has a z granularity of 23.5 mm.
The fine z granularity of the lower sensor is necessary for precision vertexing in the
Level 1 track reconstruction.

The second pr module, for use at radii > 600 mm where the hit occupancy is
lower, is the ‘strip-strip’ (2S) module. These have two layers of silicon strip sensors,
both with a pitch of 90 pm in — y, and a strip length of 50.3 mm in the z direction.
The coarse z resolution of these sensors adds little to the vertex resolution, but the
fine pitch, together with the long lever arm of a tracker extending to around 1 m in
a 3.8'T magnetic field, provides the best pr resolution.

Signals are processed by Front End (FE) chips, which find hits in the sensors and
correlate measurements on the two layers to find stubs. In the 2S module, the CMS
binary chip (CBC) correlates hits from the two silicon layers. In the PS modules,
the macro-pixel ASIC (MPA) processes hits in the lower layer, and the strip-sensor
ASIC (SSA) processes hits in the upper layer. Signals are sent from the SSA to
MPA which performs the hit correlation to form stubs.

These FE chips communicate with a Back End (BE) system, the main component
of which is the Data, Trigger and Control board (DTC). This board will send and
receive data from up to 72 modules, utilising FPGAs with optical communications.
The DTC will aggregate stubs from its front end modules, process them, and forward
them to the L1 track finder. The processing performed by the DTC will be to convert
the stub data received from the FE chip to a global format useful for track finding,
and also to carry out any time multiplexing required by the track finder. A separate
communication stream will handle DAQ functionality: sending trigger accept signals
to the FE chips, and forwarding data to the DAQ system.

Figure 2.5 shows the layout of the outer tracker used for the developments in
Chapter 4, called the ‘flat-barrel” layout. This differs from the layout shown in
Figure 2.3, in which some modules in the barrel are tilted towards the luminous
region, called the ‘tilted-barrel’ layout. The tilted-barrel layout is the variation
preferred by CMS, however was proposed later than the flat-barrel, for which the
Monte Carlo event samples used in Chapter 4 were produced. The tilted-barrel
results in a much greater stub reconstruction efficiency and lower module occupancy

than the flat-barrel, while also requiring fewer modules [40]. The flat-barrel layout

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID

EXPERIMENT 21
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 16
= 1200 L
g -
= = 18
800 — l l I I I -
= ||II ||II ||II ||II ||II |22
600 e iy iy iy iy iy |24
= == fy iy iy iy iy 26
00— e iy i iy iy iy " 2e
i i I, i, I, il 50
= " I n I " 32
- 1 4.0
OU_ * 50‘0 * * * * 10'00 * * * * 15'00 * * * * 20'00 * * * * 25'00 * * * * n

z [mm]

Figure 2.5: Layout of the pr modules in the outer tracker used for the track trigger
demonstrator, shown for one quarter of the r — z plane [12]. PS modules are shown
in blue, 2S modules are shown in red.

creates an inefficiency at the pr module edges, whereby a track crossing the inner
layer of one half module, and the upper layer of the other half module cannot form
a stub, since the signals are processed in different chips. This issue is eliminated for

the tilted modules, which are oriented facing the interaction region.

2.4.3 Performance

The expected performance of the Phase II tracker is presented in [34]. The metrics
of interest are the efficiency, fake rate and resolution. A track is deemed correctly
reconstructed if 75% of its hits are associated with the same simulated charged
particle, otherwise it is ‘fake’. Efficiency is defined as the fraction of charged particles
in the sample which are correctly reconstructed, while the fake rate is the fraction
of reconstructed tracks which are fake. Resolution is the RMS of the residuals
of reconstructed parameters and simulated parameter. The efficiency of finding
charged particles in tt samples with 140 or 200 PU is around 90% between 1 GeV
and 100 GeV. The fake rate is typically below 5% for 140 PU and below 10% for
200 PU, but is best (around 1%) at 2 GeV and worsens above and below this. The
resolution of all track parameters improves compared to the Phase I tracker, most
notably for the transverse impact parameter, which has a resolution approximately

twice as good.

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID

22 EXPERIMENT
3045 mm (IP to End Borrel 125 mm
—— - - -mm || Eta = 1479
~
HB ;o
_—
/Eto = 1653
EB _— !
T *E w
et . -
g j E ﬁ ! //// =
o g 5 i ‘ /'// — .
‘LEEN e o o
= 2 3 I T - -
= & @ ‘ T
ol & i T TK [
g = \ Pt — Eto = 30
;m | g
_/__'4::::-: —
3170 mm 730 mm

Figure 2.6: One quarter view of the ECAL in the r—z plane. Depicted are the ECAL
barrel (EB), ECAL endcap (EE), preshower endcap (SE). The diagram also shows
the HCAL barrel (HB) and tracker (TK) volume [41].

2.5 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) measures energy deposited by charged par-
ticles producing electromagnetic showers within the material, with photodetectors
to collect the energy [41]. The design considerations of the ECAL are largely moti-
vated to provide the best energy and angular resolution for the decay of the Higgs
boson to two photons.

The ECAL consists of PbWO, scintillating crystals, arranged as a barrel covering
In| < 1.479 with 61200 crystals (in rings of 360 in ¢), and two endcaps, extending
in the range 1.479 < |n| < 3.0, with 10764 crystals each [42]. A schematic of the
layout is shown in Figure 2.6, The choice of PbWO, crystals was motivated by the
tolerance to radiation, short radiation length of 0.89 cm, small Moliere radius of
2.19 cm, and fast response, with 100 ns duration to collect 99% of the light.

Tapered crystals, with a 3° offset, in both n and ¢, to a straight line from the
nominal interaction vertex to each crystal, ensure the ECAL barrel is hermetic. The
crystal length of 23 cm in the barrel is 26 radiation lengths, to capture as much of
the energy from electromagnetic showers as possible in the ECAL. In the endcap,
which is covered by the preshower, the length is 22 cm.

Photodetection is carried out with two types of devices. A high gain must be

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
EXPERIMENT 23

used due to the low light yield of the PbWQ,, operating in a high magnetic field, and
within a high radiation environment. In the barrel, avalanche photodiodes (APDs)
are used. In the endcap the much higher radiation dose makes APDs unsuitable, due
to the excessive electronic noise this would create. Vacuum phototriodes (VPTSs)
are used in the endcap instead. From measurements in an electron test beam [43],

the relative energy resolution has been determined to be

2 2
(%)2 - (—2\’/%) + (%%) +(0.3%).
2.5.1 Input to the Trigger

A 12-bit digitisation is performed on the measured signal, with an upper value of
around 2 TeV to accommodate an extreme energy deposition in one crystal, and with
the least-significant-bit around the magnitude of the single channel noise. Data are
transferred off-detector along high speed optical links individually from each crystal.
At the receiving end of the links, in the counting room, the data are summed into
trigger towers (TTs) for input into the trigger. Data with crystal level granularity
is buffered awaiting the trigger decision.

A view of the grouping of crystals into TTs is shown in Figure 2.7. In the barrel
a trigger tower has a size of 0.087 x 0.087 in An x A¢ (5 x5 crystals), which matches
the HCAL granularity as well as the structure of the muon system. Up to || < 2.1
the endcap TT size matches this, while for || > 2.6 the size in ¢ is the same, but the
size in 1 is An = 2x0.087 = 0.174. TTs therefore form rings of 72 in ¢, with 32 such
rings in 7 in the barrel. For the endcap the mapping to TTs is more complicated.
For consistency with the barrel TT angular size of 5° the endcap crystals, which are
packed onto a rectilinear grid in z—y, are assigned to 5° slices which align with the

barrel ¢ slices.

2.6 Hadronic Calorimeter

The hadronic calorimeter (HCAL) [44] detects particles through their interaction
with a dense absorber material via the strong force. This is the only part of the
detector which measures neutral hadrons, and is therefore essential for their iden-
tification and in determining their contribution to the energy of jets and other

quantities.
The HCAL consists of four sections: the HCAL barrel (HB), HCAL endcap (HE),

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID

24

EXPERIMENT

I

i s/ Ve L e
) 055 .
Ll 4 !ﬁ"#" i G

: S DEGREE TRIGGER ANGLE

R 1290
N
AN
N
N

i
711
i

Figure 2.7: View of the grouping of ECAL crystals into trigger towers [41]. On the
left is the view of the barrel in one quarter of the r—z plane. On the right is the
view of the endcap in one quarter of the z—y plane, the small boxes show individual
crystals, and the large boxes show modules. Dashed lines from the origin depict the
sections of 5° onto which crystals are assigned to trigger towers.

HCAL Outer (HO) and HCAL Forward (HF), a cross section of which is shown in
Figure 2.8. The HB and HF are sampling calorimeters with interleaved layers of
brass absorber and plastic scintillator active material. Wavelength-shifting fibres
transport light from the scintillator into hybrid photodiode (HPD) phototransducers
to measure the light amplitude. The HO is located outside of the solenoid, which
constitutes the active material along with the steel magnet return yoke. Plastic
scintillators, wavelength shifting fibres and HPDs are again used for the detection
of light. The HF extends the reach of the HCAL to || = 5, and consists of a steel
absorber and quartz fibres permeating the steel. Cherenkov light produced in the
steel is transported along the fibres into photomultiplier tubes for detection.

Each phototransducer signal is integrated over several 25ns bunch crossings,
and subsequently filtered and digitised, in a front-end ASIC. Optical links carry
digitised data off detector into HCAL Trigger and Readout (HTR) cards. The HTR
forms the trigger tower data for the HCAL and forwards this to the trigger. This
requires summing the measurements along the depth-segmented sections, providing
one measurement at each trigger tower location. Data is buffered in the HTR
awaiting the Level 1 Accept decision. Accepted events are transmitted into the
DAQ system.

The granularity of one HCAL cell matches that of the 5 x 5 grouping of ECAL
crystals which form one trigger tower. The lines of constant 7, numbered 1 to

29, in Figure 2.8 depict the segmentation of the HCAL into trigger towers. This

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
EXPERIMENT 25

Ring 2 Ring 1 Ring 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

‘%I\LIQA— T

S

lgFEE ™ ¥ T T
I~ L \\\\M \‘ \\ l\l %y
20 I ===
22 PR _ ===
BencREns gty HCAL -HB
24 i\\“\\:\ Nuy
LT Hca L
271 N e
29 O H
16 0
)] BEAM LINE
< 70 m >
< 11.15 m >

Figure 2.8: A schematic of the HCAL in the r—z plane [44]. The depth segmentation
is pictured, and the segmentation into towers.

segmentation also aligns with the ECAL trigger tower segmentation.

The energy resolution of the HCAL, measured in a test beam [45], was deter-

mined to be
2
(%)2 _ (94'2%) +(8.4%)? .

2.7 Muon System

The muon system is the outermost part of the CMS detector, designed to detect
muons and measure their transverse momentum [46]. All other detectable particles
should be stopped in the calorimeters, such that only muons leave signals in the
system. Some level of background charged particles do nonetheless enter the muon
system, predominating at higher pseudorapidity.

Three different technologies are used for the detection of muons. All of the
devices contain a gas which is ionised when traversed by a muon, with an electric
field produced by plates or wires to collect the charges and detect the produced
current. The gas is segmented into chambers, which facilitates the measurement of
muon position. The detectors are arranged such that any single muon will cross

several chambers, thus allowing a trajectory to be reconstructed.

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID

26 EXPERIMENT
n 01 02 03 04 05 06 0.7 08 0.9 1.0 1.4
8° 843 786° 731° 67.7° 625° 57.5° 528° 484° 44.3° 40.4° 36.8° noe
8 . -
—_ T 71 7 T T T T T T F 1 L T T T - 12 335
E F gty et DTs
“ .k . CSCs | 13 a0s5°
heel 0 ||/ [l RPCs |
1 14 277
6 —
1 15 252°
5 T 16 2
— "’l 2 [3 17 207
4 % — ,,LIE' - 18 188°
B — : 1 19 1700
_Solenoid magnet | o 20 154°
3 = ; 24 140°
= 1 22 126°
] 23 115°
HCAL 2.4 104°
N R mEE DR NN e 25 9.4°
;] B— 30 57°
H Silicon
[tracker | | " 40 2.1°
0 e T : 5.0 0.77°
0 1 2 3 4 5 6 7 8 9 10 1 12 2 (m)

Figure 2.9: Schematic of a one quarter slice of the CMS detector, highlighting the
layout of the muon system [47].

The layout of the muon system, with the different detector types highlighted,
is displayed in Figure 2.9. In the barrel part of the detector, covering |n| < 1.3,
drift tubes (DTs) containing a mix of Ar and COy at atmospheric pressure are
used. Cathode strip chambers (CSCs) are used in the endcaps, from 0.9 < |n| <
2.4. The technology is more capable than the DTs at providing high spatial and
temporal resolution in the presence of higher magnetic field and muon rate in the
endcap. Resistive plate chambers (RPCs) are used throughout |n| < 2.1 for their

fast response, to provide a trigger signal.

Muon identification efficiency is better than 95% for muons with momenta above
a few GeV [48]. For muons with pr < 200 GeV, the silicon tracker provides the better
pr measurement, which is between 1.3% and 6% from the barrel to endcap. Above
pr = 200 GeV, up to around 1TeV, the muon and tracker measurements combined

provide resolution of around 10% in the barrel region.

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
EXPERIMENT 27

2.8 Level 1 Trigger

The CMS Level 1 Trigger (L1T) receives detector data at the full 40 MHz collision
rate, performs a fast reconstruction of each event, and determines whether the event
should be read out from the detector, sending a signal to the front-end buffers when
this occurs. L1T is split into separate systems which reconstruct particles within
one sub-detector, and feed into a final system which combines that information and
makes the trigger decision. Work in this thesis relates to the Phase I calorimeter
trigger (Chapter 3) and the Phase II L1T track reconstruction (Chapter 4).

The Phase I Upgrade of the L1T, which fully began operations in March 2016,
during LHC Run II, processes measurements from the muon detector and calorime-
ters to trigger readout of the full detector [49]. A maximum latency limit of 4 ps is
imposed by the depth of front end buffers, and the readout has a maximum rate of
100 kHz. The design of the upgraded system sought to maintain trigger performance
after the increase of LHC collision centre of mass energy from 8 TeV to 13 TeV and
instantaneous luminosities yielding a mean pileup of 50, up from the 20 experienced
during Run I. In particular, pileup mitigation was required to avoid saturating the
maximum 100kHz trigger rate with acceptably low thresholds. For example, a
20 GeV single electron trigger would consume half of the available bandwidth using
the Run I system [50].

The system architecture is shown in Figure 2.10. FPGAs are used throughout
for processing. For the calorimeter, trigger tower data is sent into a two layer
FPGA processing system, described in more detail in section 2.8.2. Energy deposits
consistent with jets, e/7, or 7 particles are clustered. The total event energy and
transverse energy is also found. The muon trigger combines hits from the three
different types of muon detector to find muon tracks and measure the py. The
muon and calorimeter trigger systems send their reconstructed objects to the Global
Trigger (GT). The GT performs the event selection, based on comparing the input
objects to a ‘menu’ of criteria on which to select an event. Each item on the menu
will specify one or more object type (jet, e/7, T, u), Er thresholds, and quantities

such as angular separation.

2.8.1 Differences for Phase 11

The Phase II L1T upgrade will take place ahead of the HL-LHC [51]. The entire
trigger and DAQ system will be replaced and upgraded. A longer latency of 12.5 s

(including contingency) will be allowed, and a maximum L1T accept rate of 750 kHz

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID

28 EXPERIMENT
Calorimeter Trigger Muon Trigger
ECAL [HCAL] [HCAL] (CsC] DT [RPC
HB/HE uHTR HF uHTR
OSLB CuOF
LB
New SC
& fan-out
New SC
J’ & fan-out
v v
Calo Trigger Layer 1 ____Muon Track-Finder Layer
| Endcap |' Overlap 1. Barrel |
Y. Ve] b [
A
N \ 4
Calo Trigger Layer2 | | §9r\‘ting,’Me_rgiDg l_a[e_r_ I
| Endcap i \ Overlap i ' Barrel E
1 | PR b

- Global

“| Muon Trigger
Global
Trigger

Figure 2.10: Diagram of components of the Phase I Upgrade of the CMS Level 1
Trigger [49].

will be permitted. The functionality of the calorimeter and muon processing systems
will change to accommodate changes to the detectors. In particular, the processing of
the new endcap calorimeter [52] will necessarily be very different from the processing
for Phase I, due to the significantly increased detector granularity, and the addition
of depth information. For the first time CMS will also reconstruct tracks at the
L1T. Chapter 4 describes a demonstrator system for the track reconstruction.

The planned overall structure of the Phase II system is shown in Figure 2.11,
and is conceptually similar to the Phase I system. Each sub-detector will be served
by a processing system which reconstructs the raw signals into composite objects:
clustered energy deposits, tracks, and muons. These will forward those objects to a
system which combines them and makes the trigger decision. The task of combining
trigger primitive objects will become more difficult than for Phase I, because the
addition of tracks will facilitate discrimination of neutral from charged hadrons,
electrons from photons, and provide a more precise measurement of muon pr than
the muon detectors provide. In addition, the primary vertex can be identified from

the tracks. The processing to combine the objects from the various detector systems

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
EXPERIMENT 29

TRK EC EB || HB HF DT RPC || CSC || GEM

EB HB HF CSC || GEM
TPG || TPG || TPG TPG || TPG
NS
Endcap Endcap
Calo BCa;':'sI Muon Muon
TPG Trigoer Track Track
99 Finder inder

v A L

Correlator Trigger

CT
PPS

Global BRTX

Trigger
L1 Trigger Project

Figure 2.11: Overview of the components of the Phase II Level 1 Trigger [51].

ﬁpossible direct links from TF

*possible direct links to GT

will be a modified version of the Particle-Flow algorithm [14], used at the HLT and
offline. Pileup subtraction will also be carried out using the PUPPI algorithm [32].
This system will be called the Correlator Trigger. Particle candidate objects will be
sent from the Correlator to the Global Trigger, which will perform the same role as

it currently does.

Impact of tracks

The tracks reconstructed in the L1T will enable triggers with sharper turn on curves
and lower rate for the same efficiency [12]. A single muon trigger with a 20 GeV
threshold on the reconstructed pr displays a turn on curve which ramps from around
10 GeV to 30 GeV on the simulated muon pry, when using only the muon system.
With the addition of tracking information, assigning the muon py from a matched
Level 1 track, the width of the ramp up is reduced to around 2 GeV, due to the
superior resolution of the tracks at this momentum. As a result of the much sharper
turn on curve, the rate of the trigger is reduced by a factor of 10. Similarly, the
rate of a single electron trigger with a 20 GeV threshold is reduced by a factor 5
when tracks are matched to e/~ deposits in the calorimeter, compared to using the
calorimeter alone.

The rate of multi-object triggers, for example dimuon or dijet, can be reduced

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
30 EXPERIMENT

-

Each card spans 8 out of 72 towers in ¢ and }2 of n. J
1

18 cards, each receiving 60 links at between 5.0 Gb/s & 6.4 Gb/s of Calorimeter data

Y YY Y YY O vovoYy v

Layer-1
Cards ' ’
NN S

h‘%-‘.

Layer 1 cards transmit
48 links @ 10G

72 input links per

Layer-2 node) P / Node 1
Mp7 |

q - 6 output links per
3 Node2 MP card @ 10Gb/s

Redundant

—— Nodes 3 to 9 Flexible system
Simple to upgrade from 16 bit
cemux towers to 24 bit towers or
¢ provide extra logic resources.
uGT

Figure 2.12: System architecture of the Level-1 Calorimeter Trigger [50].

by reconstructing the primary event vertex and imposing that both objects are
associated with that vertex. A dimuon trigger rate can be reduced by a factor three
by requiring that the muons are consistent with the vertex to within 1cm. The
efficiency to reconstruct the vertex within 5mm of the generated vertex is 97% in

tt events, or 90% to reconstruct it within 1 mm.

2.8.2 Phase I Calorimeter Trigger

The system architecture of the Level-1 Calorimeter Trigger is shown in Figure 2.12.
A time multiplexed architecture is used. Time multiplexing is a technique which
allows data for the entire detector for one event to be processed in a single processing
node (in this case, one board). Since no board possesses the bandwidth to receive all
of this data in one bunch crossing (around 2.5 Ths™!), the data must be spread out

over a longer period of time'. A two layer architecture is required to perform time

T An alternative architecture would split the processing geometrically, such that each processing
board would receive data at the full collision rate. Drawbacks of such an approach are that data

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
EXPERIMENT 31

multiplexing. In the first layer, which consists of 18 CTP7 boards [53], each board
must receive data at the full detector rate, and forward it at the same rate to a node
in the second layer. Time multiplexing is carried out by switching the destination
node at each bunch crossing. A node in the second layer receives data from each
board in the first layer in turn. Each node sends and receives data continuously
to keep up with the collision rate. An optical patch panel facilitates the routing
between nodes in a compact form factor. A time multiplexing factor of nine is used,
meaning that the data from one bunch crossing are spread out over nine bunch
crossings to the second layer.

The second layer in the system executes the algorithms to construct particle-like
objects from the trigger tower input, and is implemented with nine MP7 boards [54,
55]. The firmware running on each node in the second layer is identical. On each
240 MHz clock cycle, the algorithm receives one complete 27 ring in ¢ (72 trigger
towers) from each half of the detector, beginning from the middle and progressing
outwards on subsequent cycles. From the trigger towers, the processors reconstruct
jets, e/v and 7 candidates, in addition to finding the total event energy, and trans-

verse missing energy. The performance of these algorithms can be found in [56].

2.9 High Level Trigger

The HLT is responsible for the final trigger decision before an event is stored to disk.
During Run I and II the HLT was a farm of CPUs situated on the surface directly
above the CMS detector, consisting of approximately 1,000 compute nodes. Software
running on the nodes execute several ‘trigger paths’, which require reconstruction of
subdetector signals into particle hypotheses, and kinematic criteria on the particles
which determine whether a path succeeds or fails. The software running at the HL'T
farm is a modified version of the CMS software, cMSSW [57], optimised to achieve
a low latency for creating a trigger decision. Events are dynamically allocated to
nodes in the farm by a high speed network.

Processing is latency constrained, with a mean time per event limited by the
input rate from the L1T and the number of nodes. The full detector granularity is
available, and the reconstruction is a lightweight version of the offline software. The
reconstruction is seeded by the Level 1 objects, which saves some processing effort.

The time taken to process an event at the HLT varies depending on the event

sharing becomes necessary to cover boundaries between regions, and that the loss of a processing
node effects one part of the detector for every event.

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
32 EXPERIMENT

content. The software is structured in such a way that events are rejected using
the fastest to execute paths first, using the calorimeters and muon chambers, before
running track reconstruction. Each trigger path comprises a series of sequential
reconstruction modules. Each module is followed by a filter step, which checks the
output of the module. In the case that any filter fails to meet its criteria, the entire
paths fails and its processing is terminated. Given the 100kHz L1T accept rate,
and the number of nodes available, a latency budget can be derived. In Run I and
IT this was around 200ms. This budget is the maximum average processing time

per event before the farm would become overloaded.

Detailed timing measurements of the HLT reconstruction are presented in [58].
With Run IT conditions of /s = 13TeV and 40 PU collisions, the mean HLT
processing time per event was predicted to be 162 ms. A much lower mean processing
time of 66.5 ms was predicted for 20 PU conditions, despite the most probable time
remaining similar at around 40 ms. The difference arises from the much longer tail of
event time with 40 PU, due to the extra combinations encountered during tracking

that arise with higher pileup.

At the HL-LHC, the CMS HLT will face the challenge of maintaining low latency
trigger decisions in the high pileup environment. The impact of high pileup on
track reconstruction is discussed in section 2.10. At the same time, CPU power
will continue to improve in the time before the HL-LHC, although the benefit from
clock frequency scaling is slowing, with most improvements coming from higher core
count and additional vector units. Efforts to parallelise cMSSW beyond the event

level show reduced event reconstruction times [59].

In addition to the direct impact on computation time from higher pileup, the L1T
event accept rate will increase from 100 kHz to 750 kHz at the HL-LHC. Combining
an anticipated scaling of event reconstruction time due to the increased number and
occupancy of detector channels; the increased L1T accept rate; and an anticipated
saving from utilisation of information from L1 tracking, it is projected that the HLT
for 200 PU events will need to be 22 times more powerful than the Run II HLT (11.0
MHS06" up from 0.5 MHS06) [60]. The Run IT HLT comprises 940 nodes, and under
two different CPU performance scaling scenarios the HL-LHC HLT would require
between 1400 and 7800 nodes.

tHepSpec06 (HS06) is a HEP specific CPU benchmark.

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
EXPERIMENT 33

2.10 Track Reconstruction

Track reconstruction, which is the focus of Chapters 4 and 5, is the procedure
by which the trajectory parameters of charged particles are determined. In the
solenoidal magnetic field, charged particles follow helical trajectories. The tracking
detector measures hits, that is position measurements, at each intersection of a
charged particle with a detector plane. The detector, depicted in Figure 2.3, samples
the trajectory on around 10 different surfaces. Reconstructing tracks requires the
identification of hits which lie on the same trajectory, referred to as track building
or pattern recognition, followed by a fit to the hits to obtain the parameters of the
trajectory.

The tracking performed at CMS, both offline and at the HLT, consists of four
steps, repeated iteratively to find all charged particle trajectories, and is termed the

Combinatorial Track Finder [61]. These steps are:

e Seeding: Initial estimates of track trajectories are obtained from combinations

of hits in the pixel detector.

e Building: Track seeds are propagated, searching for compatible hits and up-

dating the trajectory estimate using a Kalman Filter.
e Fitting: Found tracks are fitted with a Kalman Filter and smoother.
e Selection: Tracks are checked against quality criteria to identify fake tracks.

The procedure is repeated iteratively, each iteration targetting a specific class
of tracks by the adjustment of cut parameters. Following each iteration, any hits
contributing to finished tracks are ignored in subsequent iterations. Earlier iterations
find the easiest to reconstruct tracks, such as those with a high py, many hits, and
originating from near the interaction region. Later iterations find more difficult
classes of tracks, such as those with low py and displaced from the beam line, the
task made easier following the removal of already utilised hits.

One of the optimisations of the tracking at HLT is to reduce the number of
iterations of tracking compared to the offline reconstruction [62]. The first iteration
reconstructs prompt tracks from the highest quality seeds (with hits on 3 pixel
layers), and finds approximately 80% of tracks. The second iteration finds low pr
prompt tracks, again from pixel triplet seeds. The third iteration finds prompt
tracks from pixel seeds with hits on only 2 layers. The final iteration finds displaced

tracks.

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID

34 EXPERIMENT
CMS Data, 2012, {s=8 TeV, Preliminary S F) b
—_— C— — — T 2;. CMS Simulation, s = 13 TeV, it + PU, BX=25ns]
2L, F @ 2012 tracking i & eo — Full Reco Current—=— Track Reco Current]|
H 4.5} o + code optimization”™ T E r Full Reco Run1 Track Reco Run1]
L 4fA +PV constraints 4 @ s50- PU140 1
@ F ¢ +region P cut@iter2 E E F]
(o)) 3'5§ + triplet@iter4 + parabolicMF /. E r 1
E 3f+ + reduced tracking] 40—]
= 25 o :]
2 -9 3 i
€ 2 R :
© 1.50 = 20— -
= F] C]
o 1 = r]
= 0.5F 10 =
© F - PU25 1
E 07 7\ L8 1111 ‘ I ‘ | ‘ L1 \7

= 1 2
average pile-up Luminosity [10* cm2 s°1]
(a) (b)

Figure 2.13: The timing of track reconstruction at CMS, with several improvements
for speed enhancement at the HLT (left) [62], and for the full reconstruction as a
function of instantaneous luminosity (right) for the Run I software in yellow and
Run II software in blue [63].

Figure 2.13a shows the timing of track reconstruction at the HLT during Run I,
and for a series of improvements made for Run II. Even with the fastest configura-
tion, the tracking reaches the total HLT latency budget at a PU of 20, and exceeds
it by a factor 2.5 at 40 PU [62]. This necessitates the spared usage of the track re-
construction, only following calorimeter and muon algorithms. Figure 2.13b shows
the scaling of the timing of reconstruction with instantaneous luminosity. For the
Run II software the tracking takes more than half of the total event reconstruction
time at all pileup scenarios [63]. The time to reconstruct tracks at 140 PU is approx-
imately ten times greater than the time taken with 70 PU, with the same software.
For events of tt , and tt with 8 PU, 64% of the CPU time of offline tracking is spent
on track building, with approximately 15% on each of seeding and fitting [61].

2.10.1 Seeding

The seeding step finds initial estimates of the track parameters and the associated
uncertainties from just a few hits. Usually this uses only hits from the pixel detector,
which has the best position resolution and lowest hit occupancy. Seeds must be
formed either from three pixel hits, or two hits and an assumption that the track

passes through the beamline. Seeds with three hits have a lower fake rate than those

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
EXPERIMENT 35

with only two hits. At each iteration of the combinatorial track finder, a tracking
region is defined in which seeds are constrained, based on limits on the distance of

closest approach to the primary vertex and minimum pr.

2.10.2 Track Building

A Kalman Filter [64, 65] is used for both the track building and fitting. The filter
is a ‘local’ fitter: an estimate of the parameters of interest is updated with each
measurement in turn. This attribute makes the technique suitable for track building,
since multiple measurements on the same detector layer (of which only one can lie on
any track) can be considered independently, without affecting each other. Compared
to a ‘global’ fit, such as a linearised y? technique, this ensures that measurements
not belonging to a track cannot pull the fit parameters. A second advantage is that
effects such as multiple scattering can be included in the fit more easily.

The Kalman Filter operates on a ‘state’, which consists of the vector of track
parameters x, and their covariance matrix C. The equations of the Kalman Filter
state update are given by Equations 2.4 to 2.12. The index k refers to the iteration.
Since the measurements are included in order, this also corresponds to the detector

layers.

i =Fyp (2.4)
Ci ' =F,1C FL |+ Qs (2.5)
rit = my — Hpah ™t (2.6)
R; ' =V, +H,C{'HL (2.7)
K= Ci'Hf (RE™) (2.8)
z = 2h Kyt (2.9)
Ci = (I - K,H,)C;™! (2.10)
& =T (RE) .11
Xi = Xio1 + X3 (2.12)

These can be considered in two steps: the projection of the state to the next
layer, and the update of the state with a measurement on that layer. Projection
is carried out by Equations 2.4 to 2.5. The state is propagated from the previous
layer, k — 1, to the current layer k. Multiple scattering, which alters the path of the

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
36 EXPERIMENT

track, is included in the matrix Q.

The measurement m, with covariance matrix V is used to adjust the parameters.
This predicted state is updated in Equation 2.9 by the residual between the pro-
jection and the measurement, weighted by the Kalman gain K. The Kalman gain
weights the adjustment of the state according to the uncertainties and correlations
in the state and measurement. In simplistic terms, a small uncertainty in the state
compared to a large uncertainty in the measurement will change the state only a
little, whereas a large uncertainty in the state with a small measurement uncertainty

will result in the state pulling towards the measurement.

The track reconstruction performed at CMS, both offline and at the HLT, uses
a b parameter state in the curvilinear frame to describe a track at any point along

its trajectory:

T = (Q/p7/\7¢7$J_>?/J_)a (213)

where ¢ is the sign of the particle charge, p the magnitude of the momentum, A the
dip angle and ¢ the azimuthal angle, both in the global reference frame [66]. The
coordinates x; and y, are defined in a local coordinate system to the track given

by T, a unit vector pointing parallel to the track, and the orthogonal vectors U and
V defined by:

_ZxT
|ZxT)
V=TxTU, (2.15)

(2.14)

where Z is a unit vector pointing along the global z-axis. The vector T points
along z, by definition, U points along x, — lying in the global xzy-plane — and V
points along y, at an orthogonal to the above such that a right-handed Cartesian

coordinate system is formed.

Since the propagation of the track parameters is non-linear in the parameters,
the state propagation is modified slightly from Equations 2.4 to 2.5. The state vector

is simply propagated according to the track helix equations

oyt = fre (@)

The covariance matrix propagation is performed with the Jacobian, the matrix of

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
EXPERIMENT 37

first order partial derivatives of f with respect to the track parameters:
_9f
oz,

F

The state is constructed such that the measurement equation, Equation 2.7 is linear
in the state.

In the track building stage, the hits which belong to a track are not known.
Beginning with a seed track, the state is propagated to the next detector layer
according to the track helix equation. A search is then performed in all of the hits
measured on the detector layer, and any within a suitable x? are kept. Each of
these hits (there may be none, one, or more than one) is filtered with the state
update equations separately. These states are now independent track candidates,
and the procedure continues: propagation, hit searching, updating. States which
have been filtered with a random collection of hits will eventually not find any hits
within the x? window, and can be rejected. Similarly, tracks which fall outside of
the pr or vertex constraints of the tracking iteration are rejected. For the purposes
of the HLT, the track parameter uncertainty is good enough for a track with 8
hits that the building can be stopped in order to save processing time, rather than
continuing to the outermost detector layer. This track building procedure, while
powerful for finding all tracks, leads to the combinatorial problem that slows the
tracking execution time with increasing pileup. With more tracks, and hence more
hits, there are more combinations of hits that need to be tried in order to find all
of the tracks.

A cleaning step is performed to remove tracks which are reconstructed more
than once, which may occur when the same hits are added to different, similar, seed
tracks, or when a single seed develops into multiple viable tracks. The hits on each
pair of tracks are compared, and where the fraction of shared hits exceeds 19%, the

track with the most hits, then the smallest x? is kept.

2.10.3 Track Fitting

After the track building step a collection of trajectories corresponding to the Kalman
Filter states at the outermost detector layer is obtained. In order to obtain the best
estimate of the track parameters at the location of every hit, the hits are refit

and smoothed. The Kalman Filter state is initialised at the innermost hit, with

THE LARGE HADRON COLLIDER AND COMPACT MUON SOLENOID
38 EXPERIMENT

inflated uncertainties in the covariance matrix to remove bias towards the original
result from the building step. The procedure of propagation and update is repeated,
simplified now that at most only one hit on each layer remains in the track candidate.
A Runge-Kutta method is used to propagate the state between layers, in order
to take into account material between layers, and magnetic field inhomogeneities.
At the outermost hit, the uncertainties are again increased by a large factor and
the propagate-update procedure is carried out in the reverse direction. At each
measurement the weighted average of the inside-out and outside-in state is taken as
the best measurement. Now with the smallest uncertainty state estimate at every
layer, outlier hits can be identified and rejected with better accuracy. A 2 cut is
used to identify outlier hits, with a tighter cut than used during building. If any hits
were removed from a track, the fit is repeated until no more hits are removed, or the
track has hits removed from two consecutive layers, in which case it is discarded.
The state at the outermost hit can then be propagated to the calorimeter or muon
subsystems, while the state at the innermost hit can be propagated towards the

beamline to find the distance of closest approach.

2.10.4 Track Selection

The final step of an iteration of the track reconstruction is to select good quality
tracks, with the aim of rejecting fake tracks. Selection is made based on the number
of hits on the track, the x? per degree of freedom of the fit result, the compatibility
with a primary vertex, and the n and pr of the track. Different selection criteria
are applied for each tracking iteration, as well as ‘loose’, ‘tight’, and ‘high-purity’

working points [61].

Chapter 3

MaxCompiler for Level 1 Trigger
Applications

High-level programming languages for FPGAs enable the development of more ad-
vanced algorithms for the Phase II upgrades of the CMS trigger, and other HL-
LHC experiment triggers. These languages abstract some of the implementation de-
tails from the developer, allowing more effort to be spent on optimising algorithms.
Whether high level languages can match the performance (in FPGA resources and
latency) of expert, hand-written HDL has been an issue within the community
preventing more widespread adoption. Inefficiencies with a compiler that create
overly large and slow implementations would negate the benefits of being able to
realise complex trigger algorithms. In this chapter the MaxCompiler tool is bench-
marked against VHDL, using an algorithm originally developed in VHDL for the
CMS Phase I Calorimeter Trigger upgrade, and subsequently reimplemented using
MaxCompiler.

3.1 High Level FPGA Programming

Each of the two major FPGA vendors, Xilinx and Altera, offer their own propri-
etary high level tools. Xilinx supports Vivado High-Level Synthesis (HLS) [67],
which allows FPGA designs to be implemented with C, C++ and System C. The
tool significantly abstracts implementation details from the developer. Much of the
mapping of code to hardware relies on analysis of loop dependencies and algorithm
memory usage within the code. The compiler can be ‘guided’ with directives and

pragma statements to achieve a desired implementation.

39

40 MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS

Vivado HLS has been investigated for use in triggers for LHC experiments, and
used in the development of new systems for the Run 3 and HL-LHC upgrades. For
example the tool was used to redevelop some parts of the CMS Endcap Muon Track
Finder (EMTF) firmware by way of comparison with handwritten Verilog [68]. Some
parts of the design were implemented with lower resource usage with Vivado HLS
than the original. Achieving low latencies with the design required careful guiding
of the compiler with specific code constructs and compiler directives. The system
has a relatively low clock frequency of 40 MHz. A similar exercise in translating
an existing design to Vivado HLS, implementing a Finite Impulse Response filter
for the CMS ECAL Data Concentrator Card resulted in a design with 60% longer
latency than the expectation [69].

An advantage of Vivado HLS is the support for integration of C-based code within
other software. Generally performance studies of trigger algorithms are carried out
using a custom made software emulator which can run on conventional processors
such as in [70]. This requires a significant development effort to achieve results
which accurately match the HDL implementation used in the trigger. The ability
to utilise the same code in both FPGA and CPU platform implementations can lift
this development burden. It was found in [68] that the execution time on a CPU of
the HLS algorithm was a factor two slower than a hand made C++ emulation, but
with none of the development overhead.

Other attempts to move away from HDL programming have involved ad hoc
developments of tools. For example the Tracklet group of the CMS Level 1 Track
Trigger developed with a mix of Verilog and Python [71]. Expert developers created
core Verilog modules by hand, and described their connectivity with a Python model
of the design. This approach can save the work of specifying component connections
in HDL, for a design with high reuse of the handwritten modules, but without the
portability and flexibility of a fully fledged HLS tool.

Menus for the CMS Global Trigger in Run I were created from a set of VHDL
templates [72], a concept that was extended and refined to a custom software tool
for the 2016 Global Trigger upgrade (WGT) [73]. Compared to the preceding Global
Trigger, uGT allows more sophisticated, analysis-like, combinations of trigger prim-
itives to be used to make the trigger decision, such as the mass of a pair of objects. A
grammar is defined for describing combinations of trigger objects, functions to apply
on the objects, and cuts which together comprise a trigger algorithm. The grammar
is parsed by the Boost.Spirit C++ library, producing a VHDL implementation of
the specific menu which can be synthesised by FPGA vendor tools. This approach

MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS 41

totally decouples trigger menu development from hardware implementation, which
is useful for allowing physicists with no FPGA expertise to develop such menus. A
limited number of object combining functions are made available, which restricts
the algorithm developer to operations known to be practical in the resource and

latency constraints.

3.1.1 MaxCompiler

MaxCompiler [74] and MaxJ are the compiler and language produced by Maxeler
Technologies for the development of algorithms for FPGAs, with a focus on dataflow.
The MaxJ language is an extension of Java, variables are references to locations in
a data stream. Execution of the code (on a CPU) generates a dataflow graph, an
example of which is shown in Figure 3.1. Each node of the graph represents a
computation, with inputs and outputs corresponding to data. An implicit ‘for loop’
surrounds the dataflow graph, since presenting new data at the input to the graph
generates new results. Simply by ‘pushing’ data through the graph its function is
executed multiple times.

MaxCompiler optimises the design graph, for example propagating operations on
constants to reduce unnecessary computation in the FPGA. Each node, or cluster
of nodes, is then represented with a Register Transfer Level (RTL) HDL description
or vendor IP core (such as multipliers and memories), and connected according to
the graph. The design can then be synthesised to a bitstream for the target FPGA.
In this sense MaxJ is more like a ‘High Level HDL’ than HLS, since each operation
maps to a logical component in the FPGA.

Normally, MaxCompiler designs target ‘Dataflow Engine’ (DFE) boards pro-
duced by Maxeler. These are typically PCle form factor boards with an FPGA and
DDR memory for performing compute acceleration. Boards with both Altera and
Xilinx components are available. In this scenario, MaxCompiler runs the vendor
synthesis tools ‘under the hood’, generating a ‘. max’ file that contains the compiled
design (bitstream) and information used by other pieces of Maxeler software to run
the design in their hardware.

The compute acceleration boards manufactured by Maxeler do not provide the
optical IO bandwidth required by LHC Level 1 Trigger systems — very few other
setups could produce data at multiple Th/s. Working with Maxeler, provision was
made to halt the MaxCompiler process at an intermediate stage, providing access

to the HDL of the design. With this access it was possible to utilise designs written

42 MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS

DEE

Figure 3.1: Dataflow graph for z = 2% + y. Variables x and y are inputs, z is an
output. The box labelled ‘3’ represents a FIFO of depth 3, which is the latency of
the multiplication in clock cycles.

using MaxJ in other hardware, with the optical bandwidth needed, and therefore to

explore the use of the language for trigger applications.

3.2 Jets and Energy Sums

Of the reconstruction performed by the Layer 2 processor, the jet and energy sum
algorithms were chosen to be reimplemented with MaxCompiler. The energy sum
is the most simple quantity reconstructed, while the jet algorithm builds on some
elements of the energy sum, with additional processing. The hardware description
language VHDL was used for the implementation deployed in the trigger at CMS.

The energy sum is simply the sum of Er of all trigger towers:

ET,Event - Z ET,id)jW (31)

idnjn

where Er;,;, is the transverse energy of the ith tower in ¢ and ;' tower in 7. The

missing energy is the vector sum
ET = Z (ET,i¢jn COS(¢)) i‘, Z (ET,i¢jn Sln(¢)) g . (32)
ig:dn ig2dn

Equation 3.3 defines a jet in the Level 1 calorimeter trigger, and a diagram is

shown in Figure 3.2. A jet candidate is defined as the sum of Ep of a 9 x 9 window

MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS 43

| EeEEEEE.
[[0 o
41 I I O O
I 1 Y o
2| | o [[5 0
I 1 1 1)) o o 7 9
=~ 0| I T 0 1 9
()
=2/ 1 X 1
1)) e o o o 9
= I 0 9 9
EEEEEEEEN
s AEEEEEEEN
([[[[[]
e e

=

Figure 3.2: Templates describing the definition of a Level 1 Calorimeter Trigger jet
object. On the left is the template for summation of trigger tower energies to obtain
the jet energy. The pink outer regions are the bands used to obtain pileup energy.
On the right is the veto template defining whether a jet centred on the central tower
is a valid jet. If the energy of any of the red shaded towers is greater than the central
tower energy, or if the energy of any of the green shaded towers is greater than or
equal to the central tower energy, then the jet candidate is invalid.

around the central tower, which must be the highest energy tower in the window.
In order to avoid the mutual veto by two equal energy towers in the grid, while also
preventing double counting, a jet candidate may have a tower of equal energy within
its window to one side, but not to the other side. Energy from pileup is estimated
from a region neighbouring the jet. From the four strips of 9 x 3 neighbouring the
jet candidate, the lowest three are used as the pileup estimate, and their energy is
subtracted from the jet Er. The twelve highest energy jets are passed to the output,
and sent to the uGT.

ty+d,jnt+4
Er et (ig, Jn) = E Etiyj, — ETpileup, (3.3)
ig—4,jn—4
where
igt4,Gn T it T jin+4
ET Neighbours = g Eiy s § Ei,j, | > (3.4)
ig—4,jykD ik, jp—4
ET,Pileup = ET,Neighbours — max (ET,Neighbours) . (35)

The 9 x 9 area was chosen to be close to the size of the AR = 0.4 parameter

44 MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS

frequently used with the anti-kp algorithm to compute jets offline, while having
a fixed size greatly simplifies the implementation. The energy of the leading jet
computed by the L1T very closely matches that computed by anti-kt with AR = 0.4
using trigger tower inputs, with a slight bias towards higher energy [56].

3.3 Algorithm

3.3.1 Jets

The time multiplexing scheme introduces a mapping of trigger tower to input link
and time slice. The link on which a trigger tower arrives corresponds to the ¢ posi-
tion, while the time of arrival relates to the n position. Summing tower energies in a
window with extent in 7 therefore requires significant pipelining to access data from
multiple clock cycles after it was received, while the ¢ extent requires a combina-
tion of signals from multiple locations across the chip. All of the algorithm is fully
pipelined, that is, new data arrives on every clock cycle and the algorithm execution
never stalls. A clock frequency of 240 MHz is used throughout.

In order to keep up with the incoming data rate, and to achieve the smallest
possible latency, the algorithm is highly parallelised. For the jets, this means that
each trigger tower is initially considered a jet candidate, and processed as such: its
Er jer is computed. The Er ;e centred around every tower in two ¢ rings on opposite
sides of the interaction point is computed in parallel. Simultaneously, a map of the
highest energy towers is constructed to ultimately select the jet candidates which
are centred on local maxima of energy. All of this is performed as soon as data
begins to arrive from the detector, before the whole event has been seen. Because
the span of a jet object is still much less than the total extent of the calorimeter, and
only twelve are selected at the end, the incoming trigger towers can be reduced to a
handful of possible jet candidates of a smaller data size, with a final accumulation
step to pick out only the highest energy.

The formation of jet sums and the map of local maxima are a fully unrolled, static
configuration of the algorithm within the FPGA. Both the jet energy and validity
are calculated in a piecewise fashion, illustrated in Figure 3.3 for a section nine
towers wide in ¢. As every tower is initially considered to be a jet candidate, until
vetoed, there is a large overlap between the computations of the energy of nearby jet
candidates. In order to save FPGA resources, and since addition components only

take two inputs, rather than performing multiple summations with the same data,

MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS 45

1x1 1x1 1x1 1x1 Ix1 || 1x1 | 1x1 1x1 1x1

3x1 [3x1 || 3x1 []3x1 |]|3x1 ||3x1[]3x1|]|3x1]|3x1

9x1 | [9x1 []9x1 |[9x1 []|9x1 || 9x1 ||9x1 || 9x1 || 9x1

Figure 3.3: The scheme for reuse of partial sums of jet energy to save FPGA re-
sources. Each cell represents an object with the summed energy of a number of
trigger towers in ¢ x 1. Towers (with 1 x 1 area in ¢ x 7) enter at the top row of
the diagram. Three neighbouring towers are grouped, and their energy is summed
making a 3 x 1 partial jet sum. Finally three non-overlapping 3 x 1 sums are grouped
and summed.

intermediate sums are reused multiple times. At each stage three objects (input
towers, or partial sums) are grouped and summed into a composite object. The
inputs are then discarded (again saving resources), and the result propagates to the
next calculation.

When both the 9 x 9 sums and local maxima are available for one particular ring
in ¢, the number of jet candidates can immediately be reduced from 72 to 18 with
a multiplexer, since no strip of four neighbouring towers can contain more than one
maximum according to the template of Figure 3.2. The pileup estimate around each
tower is also multiplexed with the map of maxima, and then subtracted from the
surviving 18.

To obtain the top six from each half barrel, the 18 are sorted in order of Er and
the lowest twelve are discarded. A bitonic sorting network, a static configuration of
pairwise comparisons and swaps with no data dependence, is used. The dataflow
graph of a bitonic sort network for four parallel inputs is shown in Figure 3.4. The
basic unit is a comparator controlling the output of a pair of multiplexers, which
swaps the order of the inputs depending on the comparison. At the output of this
sort, the six highest Er jets with the same 7 remain, ordered by FEr.

In order to accumulate over the highest Er from the whole 1 range (which means
allowing all data to arrive and propagate through the preceding steps), a pipelined
accumulation step is used, an illustration of which is shown in Figure 3.5. The
pipeline has six stages, one for each of the six jets to be selected from this half
barrel (and duplicated for the other half barrel). The first stage holds the maximum
E7 jet seen so far in a register. Each cycle, when a new ring of jet candidates is

produced, a comparison is made between the current maximum and each of the new

46

MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS

dIn0

MUX

MUX

dIn2

MUX

dIn3

MUX

MUX

MUX

MUX

dOut0

MUX

dOutl

MUX

MUX

MUX

dOut2

MUX

dOut3

Figure 3.4: Dataflow graph of a bitonic sorting network with four parallel inputs.
The basic unit consisting of a comparison and two multiplexers (labelled MUX) is
repeated, with the data routing between units achieving the desired sorting.

six. If one or more of the new six candidates has a higher Er, the highest of these
becomes the new maximum, and the old maximum shuffles into the remaining five,
maintaining the Er ordering. If none of the six have a higher Er than the current
maximum, they all propagate to the next stage. The second stage carries out the
same procedure, but selects the second highest Er jet candidate because the highest
Er candidate never propagates past the first stage. The procedure continues for four
more stages, such that the register at each stage holds one of the six highest Fr jets
in one half barrel. When all of the calorimeter trigger towers have been received
and propagated through the pipeline the six jets from each of the two accumulation

stages are sent to the output.

MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS 47

Figure 3.5: Accumulation stage of the jet sorter. Six Ep ordered jets from one 7
ring enter the accumulation at the top of the schematic, and propagate towards the
bottom. At each stage the highest Er jet object remains in the register on the left
(numbered 1-6 in the diagram), while the remaining objects continue to the next
stage. Each stage outputs one fewer jet than it received to keep the resource usage
only as large as necessary.

3.3.2 Energy sum

The scalar and vector energy sums are executed in parallel with the jet algorithm.
Since the scalar sum involves the same tower £ quantities as the jet algorithm, the
partial sums are reused for the event energy sum. The E; sum for one ring in ¢ is
carried out with a balanced adder tree, and an adder with the output redirected to
the input accumulates these sums over 7. For the vector sums, the tower Ers are
first split into and § components, then summed with a balanced adder tree and

accumulated.

3.4 MaxJ Implementation

Similar design patterns to the VHDL were used when implementing the design using
MaxJ. In both cases, sharing partial sums of tower energy between jets with different
tower centres required explicit control by the developer, by constructing arrays of
partial sums and using indexing to select neighbouring sums.

An advantage of MaxCompiler over VHDL is the functionality of the compiler
to automatically set data types. When summing two integer values of n bits, n + 1
bits are required to store the result at the same precision as the summands, and for

all possible outcomes. In VHDL this must be coded by hand, whereas MaxJ will

48 MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS

guarantee the result has the correct type, unless overridden. Several strategies are
provided for the compiler to set the type for the output of all operations, these are

used extensively in Chapter 4.

The bitonic sorting network used to select the highest Ep jets can be easily
implemented using recursion, as was done in the MaxJ implementation. VHDL,
however, does not support recursion, and here the two code bodies differ greatly
in achieving the same desired functionality. For a sorting network which discards
some of the sorted data, some comparisons do not lead to the output. MaxCompiler
analyses the path of the dataflow graph, and trims the network to only include

operations which lead to outputs.

Latency is also controlled differently in the two languages. In VHDL, registers
are added to create the pipeline with the construct ‘if rising_edge(clk):’. Con-
versely, in MaxJ, every operation is followed by a register unless otherwise forced
with ‘optimization.pushPipeliningFactor(0)’. A VHDL design therefore has
no pipelining by default, while a MaxJ design is maximally pipelined. The VHDL
developer must add registers to achieve a reasonable clock frequency, while a MaxJ

developer must remove registers to reduce the latency.

3.4.1 Interface with MP7

An interface was required to use the MaxJ design within an MP7 board. For all
MP7T designs, a ‘core firmware’ package exists, which largely separates the algorithm
and IO functionality of a design. The package provides firmware for all necessary

external communications, with connections to a ‘payload’ defined by the user.

MaxCompiler produces VHDL output from the MaxJ Kernel, which can be inter-
faced with other VHDL. This corresponds to the top level in the algorithm hierarchy.
MaxCompiler Kernels support asynchronous communication with each other, and so
contain control ports for stalling and terminating execution. These are not required
for the L1 Calorimeter Trigger, however, since it runs continuously. A wrapper
module was programmatically generated to connect the data ports of the Kernel to

the core firmware as the payload, and tie other control ports to constant values.

MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS 49

Table 3.1: Number of each type of resource used by each implementation of the jet
and energy sum algorithm. Built for a Virtex-7 690T using Vivado 2015.4 with MP7
core infrastructure (numbers for algorithm only).

Resource VHDL MaxJ
Slice LUT's 95235 102508
Slice registers 153198 130072
DSPs 288 288
BRAM tiles 0 0
Lines of source code 3000 1500

3.5 Comparison

3.5.1 Functional Correctness

Monte Carlo events were passed through both the VHDL and MaxJ implementa-
tions of the algorithm. Figure 3.6 shows the functional correctness of the MaxJ
implementation. Bit-identical results were obtained for the jet energies, and 7, and
for the scalar and vector energy sums. A small discrepancy is observed in the ¢
distribution, which arises from a difference in the bitonic sorting network. Two jets
with the same Er and 7 but different ¢ can emerge in a different order from the
two implementations. When selecting the top six jets in the event one of these may
be removed in the case that one has the sixth highest E7 and the other has the
seventh. In other cases, they will simply emerge in a different order. The trigger

performance would not be affected by this difference.

3.5.2 FPGA Resources

Resource consumption of each implementation is shown in Table 3.1. Approximately
8% more slice LUTs are used by the MaxJ implementation, with slightly fewer regis-
ters than the VHDL. The DSP usage is the same between the two. Multiplication is
only performed for the projection of 144 towers onto the x and y axis, so the tool has
correctly mapped these onto DSPs. No BRAMs are used by either implementation.
The MaxJ implementation latency matches that of the VHDL. One noteworthy dis-
tinction is that the MaxJ code body is half the length of the VHDL for the same

functionality. This suggests that the code may be easier to maintain.

50 MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS
Jet Er Total Er
1000 T T | 1 I I
— VHDL 70 §
@ 800 | ° * MaxJ [60 |- -
3 £ 5
2 S 50 |]
g 600 |- i :
O 5 40 | B
g 400 | . 330} -
! £
£ Z 20| .
Z 200 | .
10 | -
0 ® P o 0]]
0 50 100 150 200 250 0 500 1000 1500
L1T Jet iEr L1T Er iEr
Jetn Jet ¢
300 I I I I I I I 240 I I I I I I I
250 | . 220 | .
%) 2
& 200 | . & 200 [g
> >
W] L
S 150 | 1 B8}
() (0]
o) O
E 100 | {1 E§ieof .
Z =z
50 | - 140 | -
[]
0 1 1 1 1 1 1 1 120 1 1 1 1 1 1 1
~40 —30 =20 —10 O 10 20 30 40 0 10 20 30 40 50 60 70
L1T Jetn /in L1T Jet ¢ / i¢p
MEr3 METy
120 I I I I I 160 I I I I I
100 b | 140 | .
@ o 120 -
c |] C
g 80 2 100 } -
W] L
S 60 {1 © sof -
3 3
60 |- -
£ wf {1 5
Z =z 40 F .
20 | . 20 | |
O LR 1 1 a & O 1 1 Lett o.0-0.
~600 —400 —200 O 200 400 600 ~600 —400 —200 O 200 400 600
LT Er iEr LiT Er iEr

Figure 3.6: Output distributions of reconstructed jet and Ep parameters from the
VHDL and MaxJ implementations of the L1 Calorimeter Trigger algorithms, in the
integer units of the calorimeter trigger. A bit-exact matching is observed for all
parameters apart from the jet ¢, due to an internal difference in the sorting of jets.

MAXCOMPILER FOR LEVEL 1 TRIGGER APPLICATIONS 51

3.6 Summary

This chapter presents the first use of MaxCompiler in a low latency, high throughput,
scenario interfacing to hardware not produced by Maxeler Technologies. By com-
paring the performance of a MaxCompiler implementation of an algorithm originally
implemented using VHDL, it has been shown that the tool is viable for producing
low latency algorithms with an efficient use of FPGA resources. Due to the fine
level of control provided by the tool, bit-wise matching to the handwritten VHDL
was achieved. The MaxCompiler implementation resulted in an 8% increase in LUT
usage, while requiring half the number of lines of code. This inefficiency might be
acceptable, if the ease of algorithm design with the higher level language enables
realisation of designs that would be extremely difficult with the conventional HDL

approach to writing trigger algorithms, as shall be explored in the next chapter.

Chapter 4

Track Reconstruction for the Level

1 Trigger

During Long Shutdown 3, operation of the LHC will cease, and the machine will be
upgraded to deliver an instantaneous luminosity of L = 5 x 103t cms™?, five times
its current value, restarting as the High Luminosity LHC (HL-LHC). The CMS
experiment will be significantly upgraded in order to maintain performance in the
high radiation, high pileup conditions [12]. The tracking detector will be completely
replaced, and for the first time will send data to the Level 1 Trigger (L1T).

The new detector will consist of an inner and outer part: the inner containing
silicon pixel sensors, and the outer part containing silicon strip, and macro-pixel
detectors. These sensors will have a higher granularity, better radiation tolerance,
and extend further in pseudo-rapidity than the current tracker. They will also allow
for the higher trigger acceptance rate of 750kHz, and longer Level 1 latency of
12.5ps of the Phase II detector. Furthermore the outer tracker modules will send
information to the Level 1 trigger, for particles with transverse momentum above a
threshold. This information, which is first made available for reconstruction in the
High Level Trigger at CMS currently, will be used to maintain trigger thresholds
for particle energy and momentum as low as possible within the maximum trigger
accept rate. It is the reconstruction of tracks, that is determining the kinematic
properties of the charged particles, from the outer tracker in the Level 1 trigger that

is the main topic of this chapter.

Reconstruction of charged particle trajectories is an essential part of CMS event
reconstruction. The procedure is, however, computationally expensive, as discussed

in Section 2.10. During LHC Run I the CPU time required for track reconstruction

52

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 53

was almost as much as the time for all other reconstruction [61]. Tracking execution
time on a CPU scales badly with increasing pileup as the number of possible com-
binations of hits increases. The track reconstruction time with 140 PU is a factor
ten slower than with 70 PU. At the HLT tracking is executed only sparingly, after
attempting to reject events using faster to reconstruct requirements such as those
based on calorimetry. Track reconstruction is not currently performed in the Level
1 Trigger at CMS, in part as the tracker cannot be read out at the full LHC event
rate, but also because the reconstruction is extremely difficult in the microsecond

timescale available at L1.

4.1 Track Trigger Demonstrator

A demonstration of a concept for a Level 1 Track Trigger was constructed to inves-
tigate the feasibility and performance of track reconstruction within the restrictions
of the Level 1 Trigger in a 200 pileup regime, and also to determine the scale of the
final system in hardware terms.

For the Phase IT upgrade, the total L1 latency budget is at most 12.5ps [12]. Of
this, 3.5 ps are allocated to utilise the reconstructed tracks, calorimeter and muon
primitives to make the final trigger decision. 1 ps is required for the propagation of
the L1 accept decision to the front end chips, and 3 ps is reserved for a safety margin.
The total time to receive stubs and completely reconstruct them into tracks is there-
fore bps. Of this, 1pus is required for the on detector processing, and transmission
to the Data, Trigger and Control (DTC) boards, so 4 ps remains for reconstruction

[40].

4.1.1 Time Multiplexed Track Trigger

The time-multiplexed track trigger demonstrator hinges on the platform of a time-
multiplexed architecture using FPGAs for processing that is feed-forward only (that
is, there are no bidirectional links between boards). This concept decouples the
algorithm design from the architecture as much as possible, and maintains a high
degree of flexibility for algorithm changes. By segmenting the processors only in ¢
and by bunch crossing (by time-multiplexing), the algorithm is the same on every
processor in the system. This scalable design allowed the demonstration of the
entire track reconstruction system with just one instance of a Track Finder Processor

(TFP). The reconstruction algorithm centres on the use of a Hough Transform for

54 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

track finding, with pre and post-processing steps to parallelise the processing and

perform track fitting. The reconstruction steps proceed as follows:

e Geometric Processor (GP) - Performs preprocessing of stub data to a format
designed for the Hough Transform, and routes the stubs to Hough Transform

instances compatible with the narrower internal sectors.

e Hough Transform (HT) - Groups stubs consistent with tracks in the r — ¢
plane. Multiple instances are created, covering different detector regions, and

are evaluated in parallel.

e Kalman Filter (KF) - Fits track parameters to the stubs in a candidate, si-

multaneously rejecting inconsistent candidates and stubs.

e Duplicate Removal (DR) - Utilises the precise fit information to remove tracks

found in multiple HT cells.

The demonstrator TFP, described in more detail in Section 4.1.6, covers one
eighth of the detector — the full range in 7 and 7/4 in ¢ — and one event in every 36
with time multiplexing. Each element of the reconstruction procedure will now be

discussed in detail.

4.1.2 Geometric Processor

The geometric processor (GP) firstly unpacks 48-bit stubs (containing the (7, ¢, 2)
coordinates, bend, and a validity bit) from the DTC into an extended 64-bit format
which removes some processing work from the HT. The first extra bits are an ID field
for the detector layer, since the HT track candidate definition requires a number of
stubs on unique layers. The second extra bits correspond to the track py range with
which a stub is compatible, derived from the bend, in the units used internally by
the HT.

The detector segmentation performed by the GP is constrained by the availability
of optical links on the MP7, which is 72 in each direction, since the GP alone
occupies one board in the demonstrator system. Since the stubs are 64-bits wide,
they must be carried across two links, yielding a maximum of 36 sectors. Two
divisions are made in ¢ (within the 7/4+ covered by the TFP), and 18 in 7, shown
in Figure 4.1. Each geometrical sector is served by a separate instance of an HT
algorithm, thus parallelising the track finding. These sectors overlap, allowing for

the curvature of tracks in r» — ¢ and the 150 mm interaction region length in z.

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 55

1000 = — ~~

o
>
o
°
=
e
>
o
>
i
N

X AR e
7/ /. 1/4//_1«:—5&@@\1\\1\1 N

Fo 157 TR X0

500 — — 1000
L —

\)
\ 800
91 |

y [mm]
=3
il

! 8'/ " 600

g1 ST - i e Wy - =

400,

500 A

== 1y] I [30

Il "] n] [32

14.0

/
74 200

I
!
|
\
\
i|||| T ‘Y;‘:_LI T 7T

-1000 [— N~ —

P n n PR 1 PR n P n n PR 1 PR n n n n PR
500 1000 1500 2000 2500
z [mm]

P i N AR PR
-1000 -500 0 500 1000
X [mm]

Figure 4.1: Segmentation of the tracker into processing regions. Shaded sections
show overlaps between regions. Each demonstrator TFP serves one eighth of the
detector in ¢, for the full range in 7. Internal segmentation creates two additional
¢ regions and 18 7 regions within each TFP.

The HT implementation, which is described in section 4.1.3, is capable of handling
additional sectors within one physical processing unit, for a small cost in additional
resources. The 18 n sectors are further split into two halves with this mechanism.
The GP attaches a bit for each of these sectors to the stub data. Since the HT
finds tracks only in the r — ¢ plane, it is prone to producing track candidates whose
stubs do not form a physical trajectory in the r — z plane. The 36 1 segments limit
the production of these fake tracks, ensuring that the candidates are somewhat
consistent with a straight line in r — z.

An ‘any-to-any’ routing mesh transmits formatted stubs from any input link to
any HT segment, with compatible segments calculated in the GP processing step.
The routing is performed in stages, with one input leading to at most either 3 or 4
outputs depending on the layer, shown in Figure 4.2. This way, the movement of
data at each layer is small, enabling a high clock frequency when placed in the FPGA
compared to a network which performs ‘any-to-any’ routing in one step. Each node
in the routing network receives data from 3 to 4 nodes in the preceding layer, but
processes at most one stub per clock cycle. This requires buffering and arbitration
between inputs, which ultimately leads to gaps in the data packet at the output of
the GP. A small loss of stubs is introduced, as the packet length may exceed the
time multiplexing period.

The resource usage of the components is shown in table 4.1. Since each of the
72 input links is deserialised into 32 bit data, 48 of the 48 bit stubs arrive in parallel
each cycle. The pre-processing block is duplicated once per input stub, therefore

48 times in total. One instance of the 48 to 36 routing network is used, with each

56 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

M N W NN N N NN NG W7 N W7 M7

Figure 4.2: The Geometric Processor (GP) routing network. 64 bit stubs, and their
sector addresses, arrive at the nodes at the top of the diagram. They move along
lines to nodes in the next layer according to the address. At the output layer, at the
bottom of the diagram, each node corresponds to one geometric processing sector.

Table 4.1: Utilisation of FPGA resources for the stub unpacking and pre-processing
block, of which 48 instances are needed to cover one TFP, and the routing network.
Percentages are reported as the fraction used of the total available in the Xilinx
Virtex-7 XC7VX690T FPGA used for the demonstrator.

Component LUTs DSPs FFs BRAM (36Kb)
Pre-processing Block 1942 (0.4%) 22 (0.6%) 2416 (0.3%) 1 (0.0%)
Routing Network 27700 (6.4%) 0 (0.0%) 89531 (10.3%) 174 (11.8%)

output node containing stubs from only one of the geometric regions within the
TFP. The GP output is sent to the Hough Transform.

4.1.3 Hough Transform

The Hough Transform is a technique used for detecting features in image pixel data
[75], and used early on for detecting charged particle tracks in bubble chamber
pictures [76]. Initially developed for finding straight lines, the method was first
extended to finding more general curves by Duda and Hart [77], and subsequently for
arbitrary objects [78]. All types of Hough Transform have been utilised within HEP,
from the aforementioned finding of straight lines in 2-dimensional bubble chamber
photographs, to a 4-dimensional accumulator space, using templates accounting for
the fact that physical effects (multiple Coulomb scattering and energy loss) alter
the particle trajectory in a cylindrical tracker such as that used at CMS [79].

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 57

Algorithm

The basic algorithm, for finding straight lines, maps the space of spatial coordinates

to the space of line parameters. The straight line may be described by

Yy =mx +c, (4.1)
which can be rearranged to

c=y—axm. (4.2)

A single pair of coordinates (x,y) lie on infinite straight lines parametrised by (m, ¢)
constrained by equation 4.2. With multiple coordinates, (z,y), along a line, the lines
of possible parameters, (m, ¢), for each point intersect at the true (m, ¢) value of the
line. In order to find the (m, ¢) values of interest, a two-dimensional histogram of the
(m, c) space is made, with one count for each bin that a line intersects. Local maxima
in this accumulator space correspond to the (m, c) parameters of the straight lines.
Examples of the (z,y), continuous (m, ¢), and binned (m, ¢) accumulator spaces are

shown for different scenarios in Figure 4.3.

For particles of charge ¢, in a magnetic field B with momentum in the plane
perpendicular to the magnetic field py (in CMS this is the — y plane), the radius

of curvature is

pr

R=-PT_
0.3¢B’

(4.3)

for R in metres, pr in GeV and B in Tesla. The trajectory of particles originating

at the interaction point in the r — ¢ plane is

r .
o = sin (0= du), (44

where ¢ is the initial angle in the x — y plane from the positive x axis towards the
positive y axis. With a sufficiently large R, and therefore p; by equation 4.3, the

small angle approximation can be made, yielding

r
5B X ¢ — . (4.5)

Given the on detector pr cut minimum of 2 GeV, and the maximum tracker radius

of 1m, the worst case difference of the approximation is 0.23°, or around 1.4%.

58 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

2.0 A 10q¢c 10 1.0
1.5 - 5 5 0.8
0.6
> 1.0 4 L] r v P ml 0
—10 10 0.4
0.5 —5 1 -5 0.2
00 T 1 '—10 = '—10 00
0 1 2 —10
X
o 40 7
15 A 6
-]
20 ‘ 5
e
10 A 4
> -] 0 i
3
° 2
5 7 —20
° 1
t: | X 40 0
Y o 40 9
10 4 o 8
o 20 4 7
® 6
N i 5
T 15} X| 0+ 4
-5 o 5
® 3
—20 2
-] P -]
@;19 » 9 1
—40 0

Figure 4.3: Examples of Hough Transform evaluation for straight lines. FEach row
displays the (z,y) space (left), the continuous (m,c) space (middle), and discrete
(m, ¢) accumulator space (right). The top row shows how a single point in (z,y)
maps to a line in (m, ¢) space. On the middle row, each point in (z,y) corresponds
to one of the lines in (m,c) space. The lines intersect at the actual straight line
parameters. In the accumulator space, one can see that only the bin containing the
true parameters has a ‘vote’ from every (x,y) point, all other bins have one vote.
On the bottom row, there are (z,y) points from two different straight lines. The
distinct parameters of the two lines create local maxima in the accumulator space.
Some bins accrue more than one vote where the many lines in (m, ¢) space overlap.
A further difference between the middle and bottom row is that the x axis has been
transformed so that there are equal numbers of measurements on either side of the
y axis. This improves the separation between lines in the accumulator space, and is
used in the track finding HT.

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 59

Equation 4.5 is the basis of the straight line relationship used here to find tracks in

the r — ¢ plane by means of a Hough Transform.

It can be seen in equation 4.2 that the gradient of lines in accumulator space is
given by the x (here r) ordinate of the measurement. In the conventional cylindrical
coordinate system, r is only positive, so only negative line gradients are possible in
the Hough Transform. When creating the histogram of (m, ¢) parameter space with
a rectilinear grid, the separation between lines can be improved by allowing positive

gradients. This is achieved by transforming the radius r with an offset
rp=1r—"T. (4.6)

T is chosen to be 580 mm, a radius which transforms approximately equal number
of stubs to produce positive and negative line gradients in the transformed space.

The transformed track parameter space of equation 4.5 then becomes

1
¢ = oR'T + o, (4.7)

where ¢r is the angle of the track at radius 7. The Hough Transform algorithm is
a histogram over all stubs within a GP sector of the ((2R)™!, ¢r) space. The ¢r
range of the array must cover the whole sector, and the (2R)~! range must cover
|pr| > 3GeV. A bin containing stubs from five unique detector layers in the same

71 subsector is classed as a track candidate.

Implementation

The HT algorithm described in section 4.1.3 is implemented in FPGA firmware in
two pipelined stages. Firstly the accumulator array is filled with stubs, followed by
the readout of track candidates. The array implementation can input and output

one stub on each clock cycle.

Within the array, the 32 x 64 bins are split into columns spanning the length of
the ¢7 axis, for one bin in (2R)™!, each served by an instance of processing logic,
shown in Figure 4.4. Several columns are daisy-chained together, with stubs passed
along the column in a pipeline. Propagating the stubs this way means that the HT

straight line equation can be expressed

¢r(n) = ¢r(0) + n- Aggy-1 - 11, (4.8)

60 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

~
stubs — stubs —
> > Hough >
\
Transform
NI
ér - Track
Buffer > Builder
——
Hand enable
- Shake -
track candidates — { track candidates —
\

Figure 4.4: Schematic of the implementation of one Hough Transform column pro-
cessor. Stubs arrive from, and are sent to, neighbouring column processors, forming
a pipelined chain. The ‘Hough Transform’ block evaluates the ¢ of the current
stub at the (2R)™! edges of the column. The appropriate ¢ bins are sent through
the ‘¢ Buffer’, which handles cases where more than one bin in the column must
be incremented. The ‘“Track Builder’ writes the stub pointer to the column memory
and determines which cells are track candidates. Finally, the ‘Hand Shake’ block
outputs the track candidate stubs in a contiguous stream during event readout.

for column n. ¢7(0) is simply the ¢ coordinate of the stub. Equation 4.8 is imple-
mented using two DSPs per column: one for each bin edge. The chain of column
processors need not span the full (2R)™! axis, and splitting the axis into chunks,
each two or three columns long, reduces the latency of the design, and the memory
size requirement for the processor.

Since the finding of track candidates is not the end of the procedure — they
must be fit and filtered — access to the stubs which contributed to the bin reaching
the threshold must be provided. This is achieved using a segmented memory, with
capacity for pointers to 16 stubs in the column manager’s memory reserved for each
of the 64 cells in the column. The template is duplicated, one half for alternate LHC
collision events, allowing for simultaneous readout of the first event and filling of the
second event. This requires one of the 18 Kb block RAMs available in the FPGA.

The same logical element maintains a count of which detector layers have stubs
in each bin. A separate count is maintained for each of the two 7 subsectors. The
cell is only classed as a track candidate if the threshold is reached in one, or both, of
the subsectors (stubs from both subsectors are read out if the threshold is reached
in either).

It can be possible for a stub to lie in two ¢r bins within the (2R)™ column,

in which case two addresses must be written to. This writing must take place on

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 61

HT A‘rray

— —

Col. Col. Col.

stubs

stubs é ‘ Book Keeper

H input L J output track

candidates

tracks
J

Figure 4.5: Schematic of one Hough Transform array as implemented in FPGA
firmware. Each column (‘Col.”) processor spans all 64 bins in the ¢ variable, and
one bin in (2R)™!. A book keeper stores input stubs and passes them through the
daisy-chained columns. The 32 bins of the (2R)~! axis are split into twelve chunks
managed by independent book keepers: 8 of which manage 3 columns; the remaining
4 of which manage 2.

Table 4.2: FPGA resource utilisation for one HT column processor, and one HT
accumulator array. Percentages are of the resources available in the Xilinx Virtex-7
XCVX690T FPGA used. The 36 geometric sectors are served by separate array
instances, so resources for 36 HT arrays are required.

LUTs DSPs FFs BRAM (36 Kb)
One Column 188 (0.0%) 2 (0.1%) 204 (0.0%) 1 (0.1%)
One HT array 6014 (1.4%) 64 (1.8%) 6718 (0.8%) 33 (2.2%)

separate clock cycles, so a buffer is introduced to interleave the storage of the second
column stub when there is a gap in the datastream.

Chains of HT column processors are managed by a ‘book keeper’, an array of
which is shown in Figure 4.5. This block receives the stubs from the GP, stores them
in a memory, and passes them through the HT array columns. One stub is received
per clock cycle, and written into a 36 Kb memory. The minimum data needed for
the HT calculations, and stub retrieval, are sent to the first column in the chain:
the r, ¢r at a reduced resolution; the ID of the layer on which the stub was found;
the range of (2R)~! bins compatible with the stub bend, and the pointer to the full
stub data in the book keeper memory. The length of the (2R)™! axis is split into
twelve chains of neighbouring columns, each arranged into a pipeline and managed
by one book keeper instance. FPGA resource usage for these components is shown
in table 4.2.

62 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

At the end of the time-multiplexed period, after all stubs have been written
into the HT array, the cells meeting the threshold requirement are read out. A
‘Hand Shake’ component reads the stubs, one per clock cycle, and presents them
on the track candidate bus, attaching the cell array indices to the data. All the
stubs belonging to the candidate are read out consecutively into the stream, before
beginning the next candidate. The stream of stub pointers and (m, ¢) indices passes
through the book keeper, which retrieves the original stub data to pass to the track
fit.

At the output of the book keepers, a multiplexer consolidates six streams into a
single output, so tracks from each HT are read out on two streams, and therefore 72
per TEP. A load balancing unit then moves track candidates between output streams
initially paired with different geometrical sectors. Dense jets tend to create many
track candidates in a single sector, which could overload the fitting stage. Lifting
the geometrical segmentation of the data streams better utilises the track fitting
resources later. At the output of this load balancing, the candidates are streamed
into the track fitter.

4.1.4 Kalman Filter

A Kalman Filter [64] was chosen to fit and simultaneously clean the track candi-
dates after the finding performed by the Hough Transform. The algorithm, which
is the de facto choice for offline and HLT tracking in CMS, was chosen in this case
for a number of reasons. Firstly, the algorithm is a local one, meaning hits within
the collection are sequentially added to the fit, contrasting with a global method
which considers all hits at once, such as a linear regression. The resolution, and
also efficiency, of a global track fit is adversely affected by the presence of the many
outliers in the track candidates found by the HT, since all measurements pull the fit
to the parameters simultaneously. These outliers can lie several standard deviations
of detector resolution away from the true track due to the coarseness of the longitu-
dinal segmentation. Since the Kalman Filter introduces measurements sequentially,
a stub can be left out of the fit if deemed to be too far from the track hypothesis
at that point. The local nature of the Kalman Filter also allows for small matrices
in the algorithm. The matrices have dimensions of the number of track parameters,
and the dimensionality of the measurement, in some combination. By contrast, a
linear regression requires matrices with dimensions up to the product of the number

of measurements with the measurement dimensionality. When prioritising a low

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 63

latency implementation, small matrices should enable a faster algorithm. A linear
regression also has the complication that the number of measurements in a track
candidate is not constant, which makes a highly parallel FPGA implementation

more challenging.

The track fit seeks to obtain the track parameters from the simplified track
equations 4.9 and 4.10.

1
o(r) = R + o, (4.9)
z(r) = tan (A) - r + 2o, (4.10)

where ¢ is the azimuthal angle of the trajectory at radius r from the beam line, R
is the radius of curvature of the trajectory, ¢q is the initial azimuthal angle, z is
the longitudinal position of the trajectory at r, A is the angle from the r axis in the
r — z plane (the dip angle), and z is the initial longitudinal position of the track at
the beam line. Using the Kalman Filter nomenclature introduced in Equations 2.4
to 2.12, these relations define the state and measurement vectors to be those given
by Equations 4.11 and 4.12.

(2R)™

T = tifA : (4.11)
20

= f). 112)

The matrix F must transport the state from layer k£ — 1 to layer k according to
equation 2.5, and since we do not expect the track parameters to change we have

that F = I4. In order to obtain the residual of equation 2.7, H is:
1 00
=" .
00 r 1

Without including the effects of multiple scattering, the matrix Q = 04. Un-

certainties in the stub measurements are included into the matrix V as in equation

64 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

4.13.

2.0
V = (0[-;5 0_2) ’ (413)

< 1 p)2 0 if stub in barrel (414

Vizr

0-(1):

(%)2 if stub in endcap

where p is the pitch of a module located at radius . An endcap correction is required
since a track originating at the nominal interaction point does not intersect the strip
at a tangent for modules in the endcap. The factor 1.05 differs from 1 as it was

found to increase efficiency during testing.

(4.15)

z

I \? 1 if stub in barrel
ol=|—] x
V12

0.9 tan A2 if stub in endcap,

where [is the strip length of the module, and the factor 0.9 was found to increase

the efficiency compared to 1.

In order to begin the Kalman Filter, an estimate of the state and its covariance
is required. The track finding information is used. For the r — ¢ part the central
value of the m and ¢ bin of the candidate are used, transformed to (2R)™" and ¢.
In the r — 2z plane, the initial vertex is unknown so zy = 0 in the initial state. The
central value of the 7 sector is used to estimate the initial tan A. Similarly, for the
covariance matrix, the width of the HT cells, n sector and beam spot uncertainty

are used.

The Equations 2.4 to 2.12 describe the update of a state, x, with a measure-
ment m on detector layer k. A track candidate found by the HT contains multiple
measurements, some of which may be on the same layer. In this instance, the mea-
surements are considered in turn, yielding a new state for each hit on the same
layer, each of which is independent of the other hits. Further measurements on
subsequent layers are then filtered with each of these new states independently. The
HT may also find candidates with no stub on a given layer, or with only erroneous
stubs in a particular layer on an otherwise real track. To account for this, as well

as filtering all measurements on a layer into new states, each state is propagated to

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 65

the next layer unadjusted. This is only done for states whereby skipping the layer
would not make the state invalid. A valid candidate is one with no more than two
missing layers, which may not be consecutive layers, and may not both be PS layers.
This also allows the fitter to mitigate against the presence of broken modules. The
requirement for a valid candidate to contain at least two stubs from PS modules is
motivated by their superior 2z resolution, giving a better vertex resolution at the end
of fitting.

The creation of multiple new track states at every layer creates a kind of ‘combi-
natorial explosion’, and slows down the processing as each is processed in turn. To
reduce the impact of the extra combinations in the hardware, two procedures are
used. The first is limiting propagation of states where one or more parameter fails

a specified cut. The cuts applied are as follows:

e 2y: the nominal interaction region has an extent of 150 mm either side of z = 0
with a flat distribution of interactions. States with a z; outside this range are

cut

e pr: since only tracks with py > 3 GeV should be found, any with lower pr are

deemed spurious, and cut.

e ¢y: duplication of stubs across ¢ processors can lead to the same track being
reconstructed in each processor. In one processor the ¢q will be outside of its

bounds, so these states are cut.

e 1: the same duplication occurs across n sectors, so states with trajectories

with an out of bounds tan A are cut.

e % candidates with stubs far from the state trajectory obtain a large x? value,

and these are cut to reduce the number of fake stubs, and tracks.

In addition to the cuts, an accumulation step is introduced with only the ‘best’ states
surviving. At each iteration, states are ordered first by their number of skipped
layers, then by the x2. At the first iteration, the best four are propagated, and at
subsequent iterations only the single best state continues. Figure 4.6 illustrates the
procedure for an example candidate which has one erroneous stub on the second
layer. States filtered with the erroneous stub can be rejected when the y? of the
residual with later stubs is large.

The FPGA implementation of the algorithm can be considered in two parts: the
filtering of a state and measurement according to equations 2.4 to 2.12; and the

iteration over layers, and over multiple stubs in a layer.

66 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

800 -
® Genuine PS stub
600 4 - Genuine 2S stub
= 0 Fake stub
E Updated track projection
= 4004 2] e Projection between 2a-3
---- Projection between 2b-3-4
1o uncertainty
200 -
0

T T T T T
0 100 200 300 400 500 600
z / mm

Figure 4.6: An example track candidate found by the HT with intermediate KF
states shown. The candidate has a single stub, on the second layer, not associated
with the same MC particle as the rest (labelled 2b). The state filtered with the fake
stub does not match either the stub on layer 3 or 4, and is terminated due to having
too high a y?. The state filtered with the genuine stubs matches to each stub and
is output.

Matrix Mathematics

Equations 2.4 to 2.12 were implemented using MaxCompiler. Fixed-point arithmetic
is used throughout, the tuning of which contributed significantly to the time for
design completion. Floating-point arithmetic, as commonly used on CPUs, requires
more FPGA resources and results in a longer latency than fixed-point. This is due,
mostly, to the denormalisation and renormalisation steps required before and after
an equivalent fixed-point step. In the FPGA, arbitrary bit widths are possible, and
the radix point can be placed wherever desired. However, constraints arise from the
DSP and BRAM port widths, which must be respected for a result with efficient
resource uses and high clock frequency.

The DSP units of the Virtex 7 FPGA have one port of 18 bits and another
of 25 bits' [25]. This allows for an 18 x 25 bit multiplication of two’s complement,
fixed-point quantities. It is possible to tile multiple DSPs together to multiply wider
quantities. For example, the product of a 25 bit ‘a’ with a 35 bit ‘b’ can be achieved
with two DSPs [81, p. 4]. The first DSP receives the lower 18 bits of b, and the

fThe Ultrascale generation devices, which are likely to be used in the final system, have DSPs
with one 18 bit input and one 27 bit input [80].

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 67

full 25 bits of a. The second then receives the upper 17 bits of b, the 25 bits of a
and a carry bit from the first DSP. The need for a carry signal to propagate when
chaining DSPs this way results in longer latencies for multiplication wider than the
single DSP port widths.

The Xilinx BRAM component is a memory with a configurable data depth and
address width. The basic unit is an 18 Kb memory, with data depth d, and address
width a such that d x a = 18432, with d < 36 [26]. Multiple BRAMs may be
combined to make a larger capacity memory. Given these constraints, data repre-
sentations of 18, 25, and 35 bits are commonly used in the KF implementation.

When using fixed-point representation, the dynamic range made possible by
floating-point is lost. Care is therefore required when assigning data types that
the full range of a parameter’s possible values can be represented with sufficient
precision. When constructing the KF implementation, two techniques were used to
choose data types: known data ranges, and numerical profiling. During construction
of the data types, a distinction was also made between quantities internal to the
state update, and those which are propagated to the next iteration, including the
state itself. Data propagated to the next iteration requires queueing in a memory,
as shall be discussed further. To reduce the memory requirements of the queue,
smaller widths are desirable. At a minimum the four state parameters, six unique
covariance matrix elements, and the y? must be stored, which easily overflows the
36 bit data depth maximum of a single BRAM when encoded with any reasonable
precision. Several ID fields are also required to associate states with stored stubs.

All of the state parameter types could be tuned by physical constraints. For
(2R)™!, the range is bounded by the on detector pr cut: |pr| > 3 GeV, or equiv-
alently |(2R)™!| > 189.9mm™'. The initial angle of the track in the r — ¢ plane,
®o, is measured relative to the processing sector boundary, of which there are eight,
and therefore bounded by —7/16 < ¢y < 7/16. The Phase II Upgrade outer tracker
extends up to |n| < 3, constraining tan A to —10 < tan A < 10. Finally, the beam
spot is constrained to —150 mm < 2y < 150 mm.

Since, when using the DSP resources, there is no resource advantage to using
bit widths of less than 18 bits, this width was chosen as the default, with more
used where necessary. It was found, for example, that 18 bits was insufficient for the
diagonal covariance matrix elements. Compared to its initial value, the element Cs,,
which is (04,)°, decreases by a factor approximately 10%® when the fit converges.
Since 10%5 ~ 222, 18 bits cannot represent the full range without saturation at one

end. Instability in the fit was observed when encoding with 18 bits, manifesting

68 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

as covariance matrices which were not positive semi-definite: a required feature
for a covariance matrix. For the diagonal elements, 25 bits were therefore used.
Off-diagonal elements, which are initialised to zero, were found to be adequately
represented with 18 bits.

In order to accurately compute the 25 bit diagonal, 18 bit off-diagonal covariance
matrix, 35 bits were used for matrices in the update path of the covariance matrix:
(R)_l, K, and (I — KH). A copy of these matrices truncated to 25 bits was used
for the state and x? update of equations 2.9 and 2.11, in order to save resources,
since the extra bits were not needed for these calculations.

Matrix multiplications are performed in the shortest possible latency, at the
expense of resources. This requires simultaneous execution of all multiplications,
with an adder tree for the result, shown schematically in Figure 4.8. MaxCompiler
optimises out operations such as multiplying by a constant ‘0’ or ‘1’, and adding ‘0.
This saves many DSPs, in particular, owing to the form of the F and H matrices. The
many constant valued elements of these matrices can be optimised out of operations,
and propagated to subsequent calculations.

A custom division algorithm was used for the matrix inversion, which requires
1 BRAM, 2 DSPs with a latency of 20 clock cycles, and has a worst case accuracy
of 16 bits. The algorithm is described in detail in Appendix A. After updating the
state and covariance matrix according to equations 2.4 to 2.12, the MaxCompiler
block additionally computes the validity of the state according to the previously
stated parameter cuts. This set of calculations to update the state contributes the
majority of the latency of any single component of the Kalman Filter in the FPGA.

The numerical deviation of the state parameters computed by the FPGA firmware
with respect to the simulation software is shown in Figure 4.7. The firmware output
is compared to both a double precision floating point software implementation, and
a handmade emulation of the fixed point operations. The fixed point implementa-
tion can be seen to introduce differences compared to the double precision — which
encodes numbers with greater precision and dynamic range than any of the fixed
point types used — however the tracking performance is not significantly affected, as
will be seen in Section 4.1.7. The fixed point software emulation better matches the
output of the FPGA, and can be used to reproduce the output on standard CPU
Processors.

The use of MaxCompiler was advantageous for the development of the matrix
maths firmware. The automated pipelining and scheduling provided by the tool com-

pletely removes a large overhead in the development phase compared to a VHDL

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 69

=—0.25 0.00 0.25 ’ —2.5 0.0 2.5 —0.25 0.00 0.25 —2.5 0.0 2.5
A(2R)™' / mm™! Apo x107° Azp / mm AtanA %1072

1071 5 E 3
1072 4 3 3

107 5 E 3

—25 0.0 0 5 —02 0.0 0.2 —05 0.0
AC11/|C11] AC12/|C12] AC33/|Cs3] AC34/|Cs4]

100 4
—— Emulator E

—— Floating Point 10-1

—1 0 1 —0.5 0.0 0.5
AC52/|Cas| ACy4/|Cu4|

Figure 4.7: Histograms of numerical differences between the firmware and both of
the fixed-point emulator, and floating point software, for each state update. On
the top row are the track parameters of the state x, where the difference shown is
Ax; = xgy — xpy. The remaining plots are the relative differences of the non-zero
covariance matrix elements: AC;;/|Cyj| = (Cijsv — Cijr)/|Cijsul-

70 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

Figure 4.8: A maximally parallel matrix multiplication dataflow graph for the ij*
element of the product A x B where A and B have dimensions n x 4 and 4 x m
respectively.

design. Certain equations of the update 2.4 to 2.12 can be computed in parallel,
while others must be calculated sequentially using intermediate results. In a hard-
ware description language this requires the construction of the pipeline, and the
precise delay to each variable must be input by hand. This can make such a design
significantly more time consuming to implement.

MaxJ benefits from being an object oriented language, which permits the use of
classes and overloaded methods to implement a set of linear algebra equations such
as the Kalman Filter. Conversely, VHDL does not support user defined objects,
so constructs such as matrices must be represented and manipulated using built-in
functionality such as arrays. Some encapsulation is possible with VHDL, however

properly developed object oriented code is more readable and maintainable.

The dataflow graph of the implementation of the matrix maths is shown in Figure
4.9. The division operation required for the inversion of the matrix R require a
significant number of sequential steps, shown in the two long sequences of operations
towards the beginning of the graph. Once R™! is obtained the calculation of K,
followed by z, and Cy, proceed with fine grained parallelism with each vector or

matrix element computed simultaneously. This is visualised by the horizontal extent

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 71

Figure 4.9: Dataflow graph of the implementation of the Kalman Filter state update
Equations 2.4-2.12 with inputs at the top and outputs at the bottom.

72 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

of the dataflow graph after the division operations.

Control Logic

The previous section described the update of a state given a stub. The control
logic orchestrates the movement of states and stubs to the updater, handling the
updated state, and eventual output of completed tracks. Figure 4.10 is a schematic
of the connectivity of the control logic elements within the KF worker node. Their

operation is summarised as follows:

e Stub packets stream from the HT on the input. They are written into a
memory for later retrieval, since a single iteration of the updater takes many

clock cycles.

e HT stubs carry the (m,c) indices of the cell in the array, which the Seed
Creator converts to the state parameters given by Equation 4.11. A unique
ID for the candidate is generated by the Seed Creator, and used to reference
the stored stubs later.

e The State Control arbitrates between the states promoted by the Seed Creator,
and queued working states at its other input. This allows new candidates to be
started at the same time as others are processed. The State Updator accepts
one state-stub pair per clock cycle, so the arbitration is necessary. Priority is

given to new candidates.

e The unique IDs stored on the state are used by the State-Stub Associator
to retrieve the stubs from memory required for updating the current state
in question. A field of the state data specifies how many iterations it has
been through, and the block reads stubs belonging to the candidate from the
next layer (or on the subsequent layer if applicable), one per clock cycle. The
number of layers skipped for this state is contained in another field, which
determines whether stubs from one, or two layers, are read. The State-Stub
Associator determines when all stubs on the layer have been read using the

‘last in layer’ flag set on the appropriate stub.

e The associated state-stub pair are input to the KF State Update block, which
performs the matrix maths operations previously described, outputting the

updated state.

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 73

Stubs in

-

Seed State State-Stub State State State
Creation Control Associator Update Filter Accumulator Tracks out

Figure 4.10: A schematic of the main components of the Kalman Filter processing
node. Stubs arrive from the HT at the input on the left. Tracks are output from
the State Accumulator on the right.

e The validity of the updated state is determined by the State Filter. Require-
ments on the pr, X2, 29, compatibility with sub-sector, and PS-module layer
are applied. A state failing any cut is not continued, and its processing fin-
ishes. Before writing surviving states into the state queue, the State Filter
accumulates the N states for that candidate at the current iteration with the
lowest x? (separately for states in which a layer has been skipped, and those
in which one has not). On the first iteration, N = 4, after which N = 1. Any
additional states with greater x? are discarded. Limiting the number of circu-
lating states helps avoid the possibility of a processing timeout, while ordering

by x? ensures the most compatible candidates are kept.

o After the State Filter, the surviving states are written into a queue for further
iteration. Tracks are completed after four iterations of the filter, after which
they are no longer circulated in the queue. The State Accumulator maintains
a copy of the best current state for each candidate in the node. Preference is
given to the state with the most iterations, then with the fewest skipped layers,
and then with the smallest y2. If processing for a candidate is completed before
the timeout (described below), this state in the accumulator is therefore the
best possible for the candidate. In the event of a timeout, a partially completed
track can be read out, which may occur for candidates found in dense jets with

many stubs.

All of the algorithm components are implemented in pipelined, fixed latency
blocks in the FPGA, and operate at 240 MHz. This gives the worker node a signif-
icant amount of pipeline parallelism, such that multiple track candidates, and all
of the combinations of stubs and states, can be processed simultaneously, in a data

stream. The matrix maths involved in the state update contributes the most to the

74 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

1.0 1 ol o @ L]

0.8 1

0.6 1

0.4 1

0.2 1

009 o

T T T T T
1000 1200 1400 1600 1800
t/ns

Figure 4.11: Points show the fraction, N, of track candidates which pass through
four iterations of the KF state updater as a function of the processing timeout, ¢.
The line is the chosen timeout used in the demonstrator system, 1550 ns.

latency, with 55 clock cycles (230 ns) taken to output the updated state. Since the
state update accepts one stub-state combination per clock cycle, and subsequent
combinations are streamed consecutively, the total time for reconstruction with four
iterations is a little more than four multiples of the single iteration latency. The to-
tal time depends on the exact configuration of stubs on layers in the candidate, and
on whether other candidates are being processed in the same node. The processing
of some tracks also begins later than others, since the packet of track candidates
from the HT contains some gaps. Figure 4.11 shows the fraction of tracks which
complete four iterations as a function of time. In order to keep the track finder total
processing within the latency constraint of 4ps, a timeout of 1550 ns is imposed
on the KF. After this time all fitted tracks in the accumulator are read out. More
than 99.9 % of tracks are completely reconstructed in this time, in events of tt with
200 PU.

Table 4.3 shows the FPGA resource consumption of one worker node. Since a
single node uses at most 2% of each type of resource, it was possible to create 36
instances within one FPGA, operable at 240 MHz. This amounts to one worker per
input from the HT, which avoids any multiplexing or arbitration of candidates to
nodes. Since two MP7 boards are used for the HT in the TFP, each outputting
track candidates on all links, two MP7 boards are required for the KF (since the

number of inputs on an MP7 is the same as the number of outputs).

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 75

Table 4.3: Kalman Filter resource utilisation, shown for the matrix maths (and
supplementary calculations) of the State Update, and for the whole worker node
which includes the logic to complete the algorithm. Percentages are the fractional
utilisation of a Xilinx Virtex-7 XC7TVX690T FPGA. One TFP is served by 72 KF

instances connected to 36 HT arrays.

LUTs DSPs FFs BRAM (36 Kb)
State Update Block 4014 (0.9%) 70 (1.9%) 3094 (0.4%) 6 (0.4%)
One Kalman Worker 5520 (1.3%) 71 (2.0%) 4370 (0.5%) 24.5 (1.7%)

As shall be discussed in Section 4.1.7, the KF greatly reduces the number of
tracks compared to the number received from the HT due to its ability to identify
and reject fake tracks. The data size of a fitted track candidate is also smaller
than the size of the HT candidate, since only the track parameters and quality
information is kept, and the stubs are discarded. The tracks remaining after the
Kalman Filter still may contain some duplication of tracks, which are finally removed

in the subsequent Duplicate Removal step.

4.1.5 Duplicate Removal

After the KF, over half of the fitted tracks are duplicates of other tracks. These
are created by the HT, and their elimination is based on the mechanism by which
the HT creates them. In Figure 4.12, a track with five stubs creates three track
candidates due to the overlap of the stub (m,c) lines with three HT cells. Since
the stubs are the same for each candidate, the parameters fit by the KF will be the
same. The fitted parameters, which have a higher precision than the HT cells, will
therefore all lie in the same HT cell range. Tracks whose post-KF (m, ¢) bin index
do not match the (m, ¢) bin in which the HT found them are likely to be duplicates,
and can be removed. Due to resolution effects, it is possible that the KF fits a track
candidate, which is not duplicated, with parameters falling in a different HT bin
to the one in which it was originally found. To avoid losing these tracks the DR
proceeds in a two stage algorithm.

In the first step, all tracks whose KF fitted parameters are different from the
original HT cell are marked. All tracks which are fit to the same bin as the one in
which they were originally found are kept at this stage, and the cells in which these
tracks exist are marked. The second pass compares the HT cells of those tracks
with consistent KF-HT parameters, with the remaining tracks. Tracks in HT bins

not marked in the first phase are also read out. After this two classes of tracks

76 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

Outermost stub

o e) e o e e e

Middle stub

Innermost stub

Figure 4.12: An illustration of one track producing three candidates in the Hough
Transform. The central, yellow, cell is considered the correct cell, and the Kalman
Filter parameters will most likely agree with this cell for all three track candidates.

remain: those for which the track fit yielded parameters consistent with the HT cell
in which the track was initially found; and those for which the fitted parameters are
inconsistent with the original HT cell, but where no other track consistent with that
fitted HT cell was found.

Figure 4.13 illustrates the FPGA implementation of the algorithm described.
Track candidates, already marked by the KF with the HT cell index of the fitted
parameters, and the consistency with the original HT cell, are streamed into the
DR. Tracks which are consistent are forwarded to the output stream, and the HT
cell index is marked as containing a track in the memory (‘MatrixA’ or ‘MatrixB’ in
the Figure). Inconsistent tracks are instead buffered in a FIFO for the second stage.

After all tracks from the KF have been streamed through the first phase, the
tracks queued in the FIFO have their HT bin indices compared against the marked
cells in the memory. Tracks with bin indices that were not marked in the first phase
are appended to the readout stream.

Since the memories used for the HT cell mask and inconsistent track FIFO must
be reset after each event, two separate memory instances are used. Each memory
alternates between filling while tracks are streamed, and resetting while the other
memory fills for the next event. The HT array memory is implemented with one
36 Kb block RAM: one half for the HT matrix for 6 geometric sectors, and one
half containing the list of addresses which were marked in the first phase and hence
must be cleared in the reset phase. The FIFO for tracks with fitted track parameters
inconsistent with their original HT cell is implemented with two 36 Kb block RAMs.
Table 4.4 shows the resource usage of the DR block for one instance covering six
geometric subsectors. Since one TFP finds tracks in 36 subsectors, six instances of

the block are required. The algorithm has a latency of only 4 clock cycles.

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 7

|
|
|
i Output .
. | = .
— D | . ,D | Logic Output
|
. | .
: |

R_FIFO

Figure 4.13: Duplicate Removal FPGA implementation architecture.

Table 4.4: Resource usage of one instance of the Duplicate Removal block, covering
six subsectors, in a Xilinx Virtex-7 XC7VX690T. Six instances are required to cover
the 36 subsectors used by one TFP to find tracks.

LUTs DSPs FFs BRAM (36Kb)
One DR Block 291 (0.1%) 0 (0.0%) 496 (0.1%) 4 (0.3%)

The DR is the last step in the proposed L1 track reconstruction procedure. At
the end of the processing chain in the full trigger system, the collection of tracks
(represented by their four helix parameters, x?, and supplementary data such as the
number of layers that were skipped during the track fit) would be forwarded to the
Correlator Trigger and used to perform particle level reconstruction by matching
with the other subdetector trigger primitives; to find the primary event vertex; and

ultimately to trigger the readout of the CMS detector.

4.1.6 Demonstrator System

A system was constructed to demonstrate the operability and performance of the
algorithms for reconstructing tracks of charged particles with pr above 3 GeV in
4 ps described in sections 4.1.2-4.1.5 in realistic hardware, pictured in Figure 4.14.
Stubs were generated using the CMS experiment software (CMSSw) from Monte
Carlo generated physics events with HL-LHC pileup conditions of 200 PU, including
modelling of the detector response and particle-material interactions. The system,
one TFP, demonstrates reconstruction of tracks for one detector octant, for one

event in 36. Since the algorithms for each octant and each event are identical, the

78 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

system is able to perform the full track reconstruction by running over each octant
sequentially.

All of the algorithms were running on eleven MP7 cards [54], housed in a Mi-
croTCA crate. A commercial NAT MicroTCA Carrier Hub enables communication
via Gigabit Ethernet over the crate backplane. Synchronisation, timing and control
are provided by a CMS auxiliary AMC13 card [82]. The system utilises the core
firmware of the MP7, with components for handling all IO requirements: seriali-
sation/deserialisation of optical data; data buffering; formatting; board and clock
configuration; and external communication via the Gigabit Ethernet interface.

In the so called ‘full chain’ configuration, high speed optical links connect several
of the MP7s. The role of the DTCs — packaging stubs into a 48 bit format and
performing time multiplexing — is performed on a PC. The stubs are sent, using
IPBus [83], to two MP7s which act as large buffers, called the source cards. Each
card emulates 36 DTCs, and can store stubs for 30 simulated collisions. The source
cards stream data optically to the TFP, which is implemented on five of the MP7s.

The TFP cards are segmented as follows: one for the GP, two for the HT and
two for the KF and DR. The GP board provides 36 optical links to each HT board,
and each HT board sends stubs over 72 links to one KF board. The final board in
this setup, the sink, receives input from each KF board and represents the end of
the track reconstruction chain. Tracks sent to the sink are sent to the system PC
for analysis. These connections are displayed in the lower part of Figure 4.14. The
remaining boards are used for performing standalone tests of firmware components.

A C++ software emulation of the algorithms has also been developed, which
is able to perform the same reconstruction as the FPGA system. The software
was used for validation of the hardware system, and for carrying out performance
studies. Fixed-point operations were used where possible, although in some places
floating-point is used. The FPGA logic was approximated as closely as possible
to emulate effects due to ordering of data, truncations and timeout. However, the
emulation is not clock-cycle accurate, and so small differences between the software

and hardware implementations arise.

4.1.7 System Performance
Track Finding

The track reconstruction efficiency of the system is of critical importance. All sim-

ulated charged particles originating from the primary interaction which can pro-

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 79

data flow

Source

72 links

36 links 36 links

36 Iinks .

Track Finder Processor /

12 links

Detector octant 1 (right)

Detector octant 2 (left)

12 links

36 links
72 links

-
\

Source

Figure 4.14: Top: photograph of the MP7s in the demonstrator crate, labelled by
function. Bottom: the segmentation of the TFP algorithm across the eight MP7
boards, and the connections between boards.

80 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

duce stubs are considered for the reconstruction efficiency. That is, those with
pr > 3GeV, |n| < 24, |2| < 150mm, and L,, < 10mm, where L,, is the dis-
tance from the beamline to the particle production vertex in the x — y plane. The
particle must also produce stubs in at least four different layers of the tracker to
be included in the efficiency measurement. A charged particle is considered to be
reconstructed if the found track has stubs associated with the particle from at least
four different tracker layers, and secondly that there are no stubs associated with
other charged particles. The second requirement is only imposed when considering
tracks which are processed by the ‘full-chain’. Tracks found by the HT are likely
to contain erroneous stubs, so only the first requirement is imposed when analysing
the collection of tracks at the HT output, with the expectation that the KF may be
able to remove the erroneous stubs. Tracks which are found by the system, but with
stubs produced by multiple generated charged particles, are termed ‘fake’ tracks.
For a charged particle which is found more than once, the extra tracks are termed

‘duplicates’. Fake tracks can also be duplicated.

Table 4.5: Track reconstruction quality at different stages of the demonstrator chain,
for tt events with 200 PU interactions. The efficiencies follow the definitions in the
text. The total number of found tracks, fakes and duplicates are also reported. The
fraction of the total tracks which are fakes and duplicates are given in parentheses.

Stage Efficiency [%] Total tracks Fakes Duplicates
HT 971 331 130 (42%) 126 (38%)
KF 95.1 190 27 (14%) 103 (54%)
DR 94.4 79 16 (20%) 3 (4%)

Full chain 94.4 79 16 (20%) 3 (a%)

Table 4.5 presents the tracking performance of the demonstrator components
and full procedure when reconstructing tracks in events of tt with 200 PU with
the algorithm emulation. The HT successfully finds almost all tracks, but with a
large number of fake and duplicate tracks. The Kalman Filter then removes 80%
of fake tracks, at the expense of two percentage points of efficiency, equivalent to
1 to 2 genuine particles per event on average. Some duplicates are also removed
by the KF, because fake tracks can be duplicated, and both identified separately
as fake. All of the tracks which satisfy the first of the criteria outlined above also
meet the second after the KF: that is, the KF removes all erroneous stubs from
the HT candidates which it keeps. Finally the Duplicate Removal greatly reduces
the number of duplicate tracks, again with a small penalty of efficiency. The mean

tracking efficiency of the full chain in hardware is measured to be 94.5%: in good

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 81

agreement with the emulation.

Figure 4.15 shows the efficiency of the track reconstruction as a function of pr
and 7 for tt events with 200 PU. The emulation and hardware are in close agreement
across both variables. For all tracks there is a slight turn on at low p7, up to around
95% efficiency, with some drop off for higher pr tracks. Reconstruction efficiency
is also best in the barrel part of the detector, with some degradation at the most
forward part of the detector. Muons are reconstructed with higher efficiency than
the average across all pr and 7, with no loss in efficiency at high py. Some efficiency
degradation is observed in the overlap region from barrel to endcap (around |n| = 1),
and at the most forward part of the detector. The efficiency for reconstructing elec-
trons is somewhat lower. Electrons lose energy via bremsstrahlung, which deviate
the particle from the helix trajectory assumed by the tracking algorithm. Tracks
within high pr jets (pr > 100 GeV) are reconstructed slightly less efficiently than
the average, especially for |n| > 1, which is the detector endcap. The many overlap-
ping tracks increase the confusion of assigning hits to the correct track. Most of the
‘lost’ tracks are incorrect by only one stub (the other three all matched to the same
generated charged particle), as seen by adjusting the efficiency criteria to allow for
a single erroneous stub. These tracks are classed as fakes, but may still be of use to
the trigger, albeit with a worse track parameter resolution. An improved rejection

of stubs in the Kalman Filter might also recover this efficiency loss.

Track Fitting

Figure 4.16 shows the residuals of the four track parameters, measured for both the
FPGA demonstrator, and the emulation, for tracks originating from the primary
vertex. The resolution is defined to be the RMS of the residual: the difference
between the reconstructed and simulated parameter. Resolution worsens for all
parameters at greater |n|. The shorter lever arm for tracks with |n| > 1 accounts
for the degradation in pr and ¢. Emulation and hardware resolutions are in good
agreement.

Figure 4.17 shows the resolution for single muons without pileup in different pp
ranges. This provides a handle on the ultimate limitation of the reconstruction, as
no track trajectory is more ideal than that of a muon, and the clean environment
of 0PU guarantees there will be no contamination by other tracks. Compared to
Figure 4.16 it can be seen that the resolution for single muons is relatively improved

across the whole detector, with the exception of the relative pr resolution of muons

82 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

- R R
z [T T T e e 8 s 4
g ; o k] [e gy 90900 o
:g ,*_.MW*W_;@:T_?] ke [e e e
b [+: sl +
0.8f] 8~ -]
0.6] 06f]
0.4f] 0.4]
[—4— Hardware demonstrator] . 2: —$— Hardware demonstrator]
0.2— -2
r —— CMSSW emulator 1 r —$— CMSSW emulator .
) T Y D U P ST I T T %i”‘\H"\HH\HH\HH\HH\HH\HH\HH\HH’
0 5 10 15 20 25 30 35 40 45 50 25 2 -15 -1 05 0 05 1 15 2 25
Simulated track P; [GeV] Simulated track n
3 AR R AR R AR AR AR AR AR > I R B B A N I I RN IR
S 1 S & ™ o o0
S L oo Rl Rl -] % [000 0000000 ¢ 0 00000% %
b L - _O_-o--o--o—O--O—O"O_O'O-O_O--O- 1 & [5 OOoOOOOoOOOOOOOOOO]
0.8 Eex] 0.8 00070 o
L o 4 [0% oo]
L i [o o 4
0.6] 0.6, o
0.4F . 0.4F]
L —4— Muons] L —4— Muons i
0.2 02
r —619— Electrons] r —619— Electrons q
o) I B P I I R R W W B I I I B I S S B N P
0 25 30 35 40 45 5 -%.5 2 -15 -1 -05 0 05 1 15 2 25
Simulated track P, [GeV] Simulated track n
5 1 8 T oee oo %0e°%
S [*tamtemeees asonen®eg®®e 1 2 [TSN asseeste,®e |
] = 4 W H E
0.8f . 0.8 .
06F - 06[5 ~
0.4f] 0.4f]
L —4— Alltracks] L —4— Alltracks]
0.2F e (o 0.2 e (o
+ —4— Tracks within jets (p;">100GeV) g - —4— Tracks within jets (py">100GeV) g
I I B I S S R I I B G b b b b b b
-%.5 2 -15 -1 -05 0 05 1 15 2 25 -%.5 2 -15 -1 -05 0 05 1 15 2 25
Simulated track n Simulated track n

Figure 4.15: Track reconstruction efficiency of the ‘full-chain’ algorithm in tt events
with 200 PU. Top row: for all tracks originating from the primary interaction, for
both the hardware demonstrator system and the software emulation, as a function of
pr (left) and n (right). Middle row: for electrons and muons, using the emulation, as
a function of pr (left) and 7 (right). Bottom row: for all tracks originating from the
primary vertex, or only tracks contained within a primary jet with pr > 100 GeV.
On the right plot, the efficiency definition is altered such that at most one erroneous
stub is permitted on the track. The original efficiency definition is used for the left
plot.

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 83

0.06 /‘/
0.04 |

0.02 M

/

-3
aQ r] 3 r]
5=] g E E
o 1 = 1.8F .
© 2 16F :
© 0'08, - Hardware demonstrator B % 1'6: —e Hardware demonstrator .|
i 1 : A
L -o- CMSSW emulator E e -o- CMSSW emulator Varad v
1.2F (-

T T
\
L1

o O O o

\S] AH‘O? ® o

[N NN N AN AN NN N

o i
O

0H‘\\HMHJ\\HH‘JH\MHJ‘HMHMHJ\HMH

0 02040608 1 12141618 2 2224 PRV RIS T EY

Simulated track | Simulated track fn|
-3

£ 0.9F A 3 a5t]
N7 08: /l: <3 C i
=3 ' E —*- Hardware demonstrator j E © E —— Hardware demonstrator. e
© o7t E 30F]
E -o- CMSSW emulator / B £ -o- CMSSW emulator ﬁ
0.6F / E 25: g
0.5F - - 20k / 1
0.45 . E : A
E e] 15F 7
0%] :]
0. 2R] 10F e]
0'12 i S Rt s]
02..\‘.m..J".\...J..‘\...J...\.‘.\...J‘.m.,: 0:‘..J..‘\...J..‘\..m..\‘..\...J‘.m‘m.m.‘:

0 02040608 1 12141618 2 2224 0 02040608 1 12141618 2 2224

Simulated track | Simulated track |

Figure 4.16: Resolutions of the track parameters as fitted by the Kalman Filter.
Relative pr (top left), ¢y (top right), coté (bottom left) and z, (bottom right)
resolutions are shown as a function of pseudorapidity for tracks originating from the
primary interaction, in events of tt with 200 PU.

84 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER
-3
o 0'15”" T T T T T T 3 § 2>:<1'0w T UL I I I
~ 008E . = 18f E
© 0.08F i 1 & 16F E
6 F —-3<pi<5CeV 3 © TE —4-3<p'<5GeV e
0.07F i] E I E
E 5P <15CeV /U E TAE™ 4 5¢pt<15Gev /.\//‘ E
0.06? —4— 15 <pl <100 GeV /Z{ g 1.2f —— 15<p’ <100 GeV E
0.05F /-@(ﬂ\g = 1 g]
0.04F // Vi a = P g o
c 3 : }—H—.W' M]
o N/ M E 06F]
0.02fz== e = 0.4k e e
001 ; 0.2F]
00:‘bJé‘blcileé'b‘él‘4“‘1‘2‘%‘4“1%'%\8“'é‘”2‘2”54) T I IR P N R P P P T T
= 04 0.0 0. = e 1ot ‘e 0 02040608 1 121416 18 2 22 2.
Simulated track n Simulated track n
-3

g 15‘,\‘”[,,,\,”HmuH,kuwuwmy,,E s 40?19\' [SN ‘ [g
= 0.9F = 9 = B
> E ER] 35F 7
& 08 i ER- E E
© ogb.. iemEse E 30F- ——3<pl<5Gev E
E - 5c¢p =15Cev E E 4 5cp. <15GeV E
0.6F —4— 15 < pl <100 GeV ./; 251~ —4— 15 <p! <100 GeV /t
0.5¢ N 20F :
0.4F </ E A
E /;5/5 151 al
0.3F E E /ﬂ:
0.2} ol E o S E
0'1§._L W}f i Sf W f
00:‘bJé‘blileé'b‘él‘4“‘1‘2“%‘4“1%'%\&3“'é‘”2‘2'“2:4 R A T PN P .

= U4 0.0 0 < ta 1ol e e 0 02040608 1 121416 1.8 2 22 24

Simulated track n

Simulated track n

Figure 4.17: Resolutions of the track parameters as fitted by the Kalman Filter.
Relative pr (top left), ¢¢ (top right), cotf (bottom left) and z, (bottom right)
resolutions are shown as a function of pseudorapidity for tracks originating from
the primary interaction, in events of single muons without pileup, for muons in the
ranges 3 < pi < 5GeV, 5 < pf < 15GeV, and 15 < pf < 100 GeV.

with 15 < p4. < 100 GeV. Compared to the full offline track reconstruction with the
full Phase-2 tracker in [40, p. 289], for 10 GeV isolated muons, the relative pr, and
¢ resolution of the Level 1 tracking is worse by around a factor of two, while z5 and
cot # resolution is worse by more than a factor of ten. The PS stubs have a length of
1.5mm in the z direction, while the pixels which are available for the full tracking,
have a length of 0.1 mm, which accounts for the difference in r — z plane parameter

resolutions.

4.1.8 Latency

The latency of the track reconstruction is presented in Table 4.6, broken down for
each part of the processing and connections between boards. As can be seen, the
KF and DR are the components with the highest latency, followed by the HT. The

latency of the system is measured to be less than the imposed 4 ps limit, both for the

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 85

first and last track output by the system. This latency is constant by construction,

and independent of the pileup scenario, and the specific event topology.

Table 4.6: Measured latency of the demonstrated components of the track recon-
struction chain, including the serialisation/de-serialisation (SERDES) and optical
transmission delays between each board.

System Latency Latency [ns]
SERDES + optical length 1 143
Geometric Processor 251
SERDES + optical length 2 144
Hough Transform 1025
SERDES + optical length 3 129
Kalman Filter & Duplicate Removal 1658
SERDES + optical length 4 129
Total: First out - First in 3479
Last out - First out 225
Total: Last out - First in 3704

4.1.9 System capacity

Since the track trigger processes zero-suppressed data (that is, only tracker channels
with stubs are read out), the rate of data processed by the track finder will vary event
by event. It is instructive, therefore, to explore how the number of objects varies
through the processor, and where the limitations lie. Throughout the demonstrator
system, several sources of data loss exist. Movement of data packets can never exceed
the time multiplexing period, since data from the next event must transmit at this
time. The GP incurs some loss by this mechanism: stubs enter the GP within
the time multiplexing period, and pass through the formatter with no change in
distribution. The routing network may spread the stub packet however. When
a ‘collision’ occurs, with two stubs attempting to pass through a network node
simultaneously, one must wait. With a time multiplexing period of 900ns and a
240 MHz clock frequency, 216 stubs can transmit per link. The gaps introduced
reduce this limit on average to 175 stubs per HT sector per event. As can be seen in
Figure 4.18, this is approximately double the average seen in tt with 200 PU events.
The truncation loss is therefore quite small: 0.3% of stubs, which results in the loss
of 0.5% of tracks.

The HT output is also sensitive to losing stubs due to transmission exceeding the

time multiplexing period. The right side of Figure 4.18 shows the uneven distribution

86 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER
z T T 1z T T T
B 0018~ {i+200 PU \."ﬁ| 4 3 'E. t+200 PU 3
8 F Vo Mean 92.383| 1 8 F Mean 1.207| J
Q@ 0016— f \. J & C 1
F ! ' RMS 23.058|] ! RMS 3.089
0.0145 ' |.' - 10 ?__ ?
F !)] E - E
0.012]— ' ' 3 r - B
r ! i] r - 7
0.011— ' | — 102 — T -
0.008— .". = E - i
E 5] F e R
0.006 [— . — Al - N
E \"-. E 103E ..,.. E
0.004; -,‘\. = F - 7
0.002]— A = - H+H+.+ i
F é A] 10* e —
0 A . N R R IR BN £ i.x Y7 PP B
0 50 100 150 200 0 10 20 30 40 50 60
Number of stubs output by GP per sub-sector Number of tracks reconsructed by HT per sub-sector

Figure 4.18: Number of stubs output per GP sub-sector per event (left) and number
of track candidates found by the HT per sub-sector per event (right), both in events
of tt with 200 PU.

of found tracks across HT sectors. 70% of sectors find no tracks, and 97.5% find
fewer than 10 tracks. The average number of stubs per track candidate is 7, and
the 216 stubs per event restriction due to time multiplexing applies, so generally the
truncation at the HT output is very small. Collimated, high-pr jets, however, may
produce many tracks and stubs within a narrow region, which must all be found
in one, or a few HTs. The tracks in these types of ‘busy’ regions would also tend
to contain more than the average number of stubs. The load-balancing at the HT
output helps to mitigate against this effect, by decoupling the output streams from
geometric regions. The remaining effect is a 0.1% loss in tracking efficiency in events
of tt with 200 PU.

The final loss of efficiency due to ‘overloading’ the system capacity arises from the
Kalman Filter. The mechanism by which tracks are lost is the timeout described
in section 4.1.4 whereby a track may not have been completely fitted before the
latency budget expires. Again, tracks in high pr jets with many stubs are the most
susceptible to this effect due to the greater number of trajectory combinations arising
from the many stubs. Loss by this mechanism is less than 0.1% in tt with 200 PU
events. The net loss of tracks in the full systems is around 0.6% in events with tt
and 200 PU, and is dominated by the truncation in the GP.

4.1.10 Towards a Final System

The MP7 platform was used throughout the demonstrator system, and a number

of optimisations were made to fully utilise the architecture. Any production track

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 87

trigger system will certainly not be constructed with MP7s, which were first re-
leased around the year 2012, with an FPGA which first became available a year
or so before. The track trigger at the HL-LHC will comprise boards using latest
generation components at the time of construction, preceding 2025. Many system
parameters were chosen with a view to balance tracking performance with FPGA
resource usage and communication bandwidth. While some parameters have values
motivated by ultimate tracking performance, the final choice takes into account the
mapping onto the particular FPGA platform. Furthermore, some parameters are
highly interdependent, such that a change to one requires an adjustment elsewhere.
This includes for example communication bandwidth and rate, clock frequency, re-
source utilisation and latency. A reoptimisation of the whole track finder algorithm
will likely take place to better utilise the upgraded architecture.

In 2017 Xilinx Ultrascale and Ultrascale4+ parts became available. These are
constructed with a 20nm and 16 nm process respectively, compared to the 28 nm
Virtex-7 chips, so are typically more cost and power efficient than their predecessor.
This is likely to be the iteration used for the HL-LHC triggers, since specifications
and parts for the next generation will become available only very close to the time
of construction of the trigger. In particular the VU9P and KU115 FPGAs have
been identified as being of particular interest for HL-LHC era triggers. The former
represents a part with some of the most resources available, while the latter has
the best ‘resources per $’. The cost of an FPGA board is dominated by the FPGA
itself, so to some extent a component with good cost efficiency is desirable.

Data transferred optically from detector front-ends to the trigger are received at
dedicated transceivers on FPGAs. The Virtex-7 component on an MP7 is capable of
12.5 Gbs™! per transceiver, while the newer Xilinx FPGAs support up to 16 Gbs™!

I are available.

or 32.75 Gbs™!, although only optical components of up to 25 Gbs~
Data encoding also moves from 8b/10b to 64b/66b encoding which improves the
encoding efficiency from 25% to 3.125%, better utilising the available bandwidth.
A 16 Gbs™!, or 25 Gbs™! link with the updated encoding has a 1.65, or 2.58 times
bandwidth increase over one MP7 link, respectively. For the 2025 track trigger, this
means that fewer links, shorter (in time) data packets, or a combination will be
sufficient for data transfer compared to the demonstrator. It is anticipated that the
time multiplexing factor will be halved from 36 to 18.

In the demonstrator system, the exact number of instances of certain processing
steps is tightly linked to the number of optical links. There are 36 Kalman Filter

worker instances, for example, since this allows a neat correspondence of links to

88 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

Table 4.7: Resource availability of the FPGA on an MP7, and of two current gen-
eration Xilinx chips which are suitable for HL-LHC triggers.

Component Logic Cells (K) DSPs Memory (Mb)

XCTVX690T 693 3600 51.7
KU115 1451 5520 75.9
VU9P 2586 6840 345.9
One TFP 1629 16944 231

workers with 72 links and 64 bit stubs. The same preference towards multiples or
integer divisors of 72 is manifest in the choice of 36 geometric processing sectors.
Since no Ultrascale(+) FPGAs host exactly 72 transceivers, the number of links
between boards is likely to differ for the final system. The number of instances in

certain steps may therefore be slightly different for the final system.

The increase in optical communications bandwidth has a subsequent impact on
the algorithm clock frequency, and to some extent the number of resources allo-
cated. The first processing step to receive external data, the GP, must be able to
absorb stubs at the same rate they are sent. The rate of arrival of stubs increases
with the same factor as the updated optical connection, so the capacity of the GP
algorithm must increase. Since the processing rate with n algorithm instances, and
frequency f is r = nf, this can be achieved by increasing: the clock frequency of the
algorithm; the algorithm parallelisation; or both. In practice n is bounded by the
FPGA resources available and f has an upper limit of around 500 MHz, although
the limit of f will be dependent on the algorithm, the implementation, and the
total chip utilisation. The maximum frequency will likely differ for each algorithm
component. Practically, a design optimised for latency, working at 240 MHz, will
require additional registers to operate at 500 MHz. Experience from reoptimising
the router used in the GP to 480 MHz suggests that a 30% latency reduction is
achievable compared to the 240 MHz design, rather than the 50% that might be as-
sumed without the additional registers. Assuming that the same scaling applies to
other algorithm components, a system with three FPGAs, connected sequentially,
operating at 480 MHz with a time multiplexing factor of 18 would achieve a latency
of around 2.5 ps from the first stub arriving at the DTC to the last track exiting the
track finder.

The FPGA resources of selected Xilinx parts are shown in table 4.7, with those
of the MP7 FPGA for reference. The relative increase in size is not uniform for
the different resource types, but is at least 1.5 for the KU115, and 2 times for

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 89

Table 4.8: Tracking performance for both flat and tilted barrel tracker geometries
using events containing a single muon with a pr of 10 GeV and 200 pileup collisions,
reconstructed using the unmodified demonstrator algorithm.

Flat geometry Tilted geometry

Tracks after HT 229 161
Fakes after HT 92 35
Tracks after full chain 55 48
Fakes after full chain 9 4
Efficiency after full chain 97.3% 97.3%

the VU9P. Resource consumption of one TFP is presented assuming the algorithm
is ported to the Ultrascale architecture (necessarily including adopting 16 Gbs™!
optical connections) by simply doubling the resource usage to accommodate the
doubling of stub input rate. This corresponds to three KU115 parts, mostly due
to the DSPs and memory. As discussed, however, the rate increase can be met by
increasing the algorithm clock frequency as well as the resources. A frequency of
350 MHz would sufficient to bring the resource usage of one TFP down to use only
two KU115 parts. A natural splitting of the algorithm components would then be to
place the GP and HT in a single FPGA, and the KF and DR into the second chip.
Dividing the algorithm this way would also remove the preference towards using a
number of geometric sectors which is an integer divisor of the number of links, since
the distribution of stubs from GP to HT would take place within the FPGA.

4.1.11 Future Developments

The adoption of next generation FPGAs described does not assume any changes to
the algorithm, other than scaling the number of instances. Of course, the algorithm
can be improved further. Increasing the efficiency, reducing the fake rate, improving
the parameter resolution and introducing the transverse impact parameter to the
fit would all improve the tracking performance. Separately, improvements to the
load balancing of work within the system would allow the trigger to become less
susceptible to particularly populated events, and would also potentially allow FPGA
resources to be saved.

One development which is necessary is to adopt the updated tracker design which
uses tilted modules at the ends of the barrel to reduce the number of modules re-
quired for continuous coverage. This layout is depicted in Figure 4.19. A test on a

preliminary Monte Carlo sample using this geometry, and without modification of

90 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

=]
o
o
N
o
IS

0.6 0.8 1.0 1.2 1.4

L
E 1200 —
) - I I Il Il Il 1o
o b ! !
2.0
= [|| I B
600 — !!" !!" "II "u "u -
= SN0 2 TR N N W W N o thy My My - 2
- I I m, I, I, | 26
AOQ:— O Y N AR U R R Y N ::II ::II IIII ||II IIII | gg
200:__2\\\\\\\\\\ L O\ W W\ I\ [\ ||II ||II 32
= 4.0
0 O_ * * * 5(;0 * * * * 1 OIOO * * * * 1 5‘00 * * * * 20‘00 * * * * 25IOO * * * * T‘

z [mm]

Figure 4.19: One quarter of the r — 2z plane of the CMS outer tracker with tilted
modules in the barrel [12].

the track reconstruction yields the results in table 4.8. The change makes an im-
mediate reduction to the number of fake tracks found by the HT, without affecting
the efficiency, due simply to a reduction in the number of stubs from tilted mod-
ules. With fewer tracks found by the HT, there will be additional spare capacity in
the track finding system, which should allow for a resource saving, for example by
reducing the number of KF nodes for track fitting.

In the demonstrator system the GP is responsible for the loss of 0.5% of genuine
tracks (although this might improve with the aforementioned tilted geometry). As
discussed, this arises from gaps introduced in the data packet as stubs are routed
from input to geometric sector through a routing network. A change to the design of
this network, with more parallel links between routing layer, might be less susceptible
to this loss. This would come at the cost of more FPGA resources.

The T parameter was introduced in Section 4.1.3 to transform the stub radius r
to rp = r — T, such that stubs with » < T produce lines in track parameter space
with a negative gradient, which improves the separation of tracks in the rectilinearly
sampled space, and yields a lower fake rate without losing efficiency. The chosen
value of T = 580 mm allows approximately equal numbers of stubs with positive
and negative line gradients in the barrel. In the endcap, however, tracks do not
reach the outermost radii of the tracker, so this choice of T" biases towards negative
gradient stubs. A better separation can be achieved for the endcap by choosing a
smaller value of T' for this region to again improve the separation between tracks.
Setting T' = 470 mm at the highest |n| sectors reduces the number of tracks found in
those sectors by a factor of two. The Hough Transform might be further improved by

altering the shape of the HT cells, since fakes occur due to the accidental intersection

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 91

of several stub lines with a bin. Using hexagonal bins has been seen to reduce the
number of tracks found by 20% without adversely affecting the efficiency [84].

The Kalman Filter implemented for this development is significantly simplified
compared to the algorithm used in the reconstruction at HLT and offline. Steps
to introduce missing features ought to improve the tracking performance further,
without requiring a complete redesign, but at the expense of some resources and
possibly latency. Adding the transverse impact parameter to the track fit would
improve the performance for tracks not originating from the beam line, notably
those from B hadron decays. The state would become a five parameter vector,
and certain matrices would increase in dimension, thus requiring some extra FPGA
resources for matrix operations. The treatment of multiple scattering within the
Kalman Filter ought to improve the efficiency at a given fake rate. Scattering can
be included within the Kalman Filter formalism, and would require some additional
computation of the most probable scattering angle. A slight modification to the
parametrisation would also be beneficial: from including the initial track position
(o, z0) in the state, to the current position (¢, z). An additional step to recover the
track parameters at the vertex would then also be needed. The linear approximation
to tracks is a good one across most of the parameter space of the track trigger, but
introduces a 1.5% error in ¢ for the lowest pr tracks at the outer barrel layer.
Evaluating the arcsin function exactly would require some extra FPGA resources,
and would potentially provide better discrimination for fake tracks at low pr.

Section 4.2 describes a development to reduce the number of fake tracks at the

output of the track reconstruction.

4.2 Identifying Fake Tracks with a Boosted Deci-

sion Tree

A means to identify fake tracks from the Kalman Filter output, shown in section
4.1.7, is desirable. The presence of fake tracks in the reconstruction is unavoidable
in a high pileup environment, but can only negatively effect the trigger performance,
so any mitigation may be worthwhile. Fakes, particularly those reconstructed with
high pr, would increase the trigger rate, and potentially mimic a physics signal. As
with all trigger algorithms, a low latency, low resource usage in the FPGA is also
desirable. Further, ideally only quantities which are output by the track trigger, or

which require minimal calculation from those outputs, should be used to identify fake

92 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

1.00 0.25
0.99 A
- 0.20 A
g
£ 0.98
g £ 0.15
= Q . T
£ 0.97 1 =
& =
g DT
C?’) 0.95 A LR
9 0.05 A
0.94 1 X~ cut
0.93 : : : 0.00 ﬁ——»-—A-—F
0.00 0.25 0.50 0.75 1.00 -5.0 =25 0.0 2.5 5.0
Fake fraction kept BDT score

Figure 4.20: Left: Receiver Operator Characteristic (ROC) curve for the five classi-
fiers under investigation: Gradient Boosted Decision Tree (GBDT); Random Forest
(RF); Decision Tree (DT); Logistic Regression (LR); x? cut. The desired working
point is at the top left: all genuine tracks kept, and no fake tracks kept. By tuning
a cut on the classifier score above which all tracks are labelled ‘fake’ a working point
can be selected. Right: histogram of separation between genuine (green) and fake
(red) tracks as a function of BDT score.

tracks. The identification of fake tracks is now treated as a classification problem.

A selection of multivariate classifiers were trained on Kalman Filter output tracks
using the SCIKIT-LEARN package [85]. The x?, number of skipped layers, tan \, and
(2R)™! of the track were used as features, with ‘fake’ and ‘genuine’ classes labelled
from the Monte Carlo truth information. Receiver Operator Characteristic (ROC)
curves for the classifiers are shown in Figure 4.20, by varying the classifier output
threshold at which to label a track as fake. All of the multivariate classifiers perform
better than the y? cut only baseline. A Gradient Boosted Decision Tree (GBDT)
is the most performant of those investigated, with an area under the ROC curve of
0.966. A loss of genuine tracks is undesirable, so a conservative cut is required. The
GBDT can remove around 75% of the fake tracks while retaining 99% of the genuine
tracks. The GBDT ROC curve never crosses that of another classifier, i.e. it yields
the best (lowest) fake fraction at every efficiency working point. Furthermore, the
GBDT was deemed to be among the most suitable to be implemented in an FPGA
for a number of reasons, which will be outlined.

The distribution of fake tracks in (2R)™! and tan A (the proxies for (p7)~! and

n which are available in the demonstrator hardware) can be seen in Figure 4.21,

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 93

alongside the ratio of fakes which are identified as genuine to all fakes. The BDT
is most effective at identifying fake tracks in the tracker barrel-endcap transition
(around |tan A| = 2), and those with high pr (low (2R)™').

The GBDT inference algorithm has aspects which suggest it should be imple-
mentable within an FPGA. The output of the GBDT, the score, is given by equation
4.16.

where x are the input features, h; are the decision trees and [3; are the tree weights.
The inverse of the loss function used in training can be used to obtain the probability
for each class from the score. In a scenario where the BDT output is used to keep or
discard tracks, this function need not be computed, as the score can be used to cut
directly. The decision tree score, h;, depends on which leaf node the feature vector

ends in. The value of the score for each leaf is set during training.

Each h; in equation 4.16 is independent of any other. This is the first opportunity
for parallelism: h; can be computed simultaneously for all i. Within the decision
trees, if the node is considered as a processing unit, each node consists of some
processing which is independent of any other — the comparison of a feature with a
threshold — and one part which depends upon the result of other nodes — whether

or not the decision path passed through the node’s parent.

Other works have implemented Decision Tree ensembles for FPGAs previously
[86-90], although since generally these target ‘Big Data’ applications, they tend
to be optimised for throughput or power consumption over latency. Some imple-
mentations [87, 89] target ensembles larger than the capacity of the target FPGA,
developing a base decision tree unit onto which the model is loaded from a memory.
Such an approach adds flexibility, and classification performance by supporting large
ensembles, at the expense of latency and resource overheads. BDTs have been de-
veloped with low latency for the L1 muon trigger of CMS [91]. An external memory
of 1.2GB is used as a look up table to assign the muon pr. This approach requires
few FPGA resources, but does require an external memory, with the associated
latency to retrieve data. To maintain a reasonable memory size, the features are
significantly truncated: 30 bits (which forms the address) are used to encode five
features. The approach used here is to fully map all of the operations onto discrete
FPGA components, to achieve the shortest latency without restricting the number

or width of features used.

94 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

=
>
1
[0}
Il
—
o
S
S

s}
ot
1
a
Il
o
©
0
)
——

)
=~

1

-
——

——

——

——

Nfakes after / Ngapes before
o
o

_ RILN
) bl

0.2 7 { +++++++5+

tt+aia ¢
0148747008
0.0 1 T T T
0.0 05 1.0 1.5
2R)™' / mm~' x107* (2R)™' /mm~' x107*

e} o
t D
1 1
——
——
——
——

=
=~
1

Nfakes after / Ngakes before
o
o
1

o ++¢m +++ ++ by
: el } {
0.1 A
0.0 1
0 2 4
| tan A| | tan A|

Figure 4.21: Distributions of fake tracks before and after BDT class prediction, and
the fraction which remain, as a function of (2R)™! (top left, top right respectively)
and tan A (bottom left, bottom right respectively) at different BDT score cuts,
selected to yield one percentage point decreases in efficiency between cut values.

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 95

4.2.1 FPGA implementation

In order to evaluate the suitability of the BDT for a trigger application, a MaxJ
firmware was developed. The design maximised the trivial parallelisability of BDTs,
discussed in section 4.2, by performing all comparisons, and evaluating all trees in
parallel. Figure 4.22 shows schematically how a single decision tree is implemented
in the FPGA. All of the comparisons execute in parallel, and a chain of parallel
boolean operations is constructed for each leaf node such that the decision path is
encoded in an array of boolean values. The leaf boolean activation values are used
to select the appropriate leaf score to output for the tree from the small table of
possible values. Within the tree, each operation is pipelined, allowing a new feature
vector to be classified on every clock cycle. The sum of tree scores, as required by
Equation 4.16, is performed with a balanced adder tree. Features are distributed
to the trees through a register tree, avoiding a significant fan out of signals which
would degrade the maximum clock frequency. This comes at the expense of some
extra latency.

From the FPGA implementation details, it is possible to construct a model for
the resource and latency usage of a BDT dependent on the hyper-parameters. The
parameters which impact the FPGA consumption are the number of trees, n, and
the maximum depth d. The resource usage scales linearly with the number of trees
- both for the decision tree inference and adder tree size - and exponentially (base
2) with the tree depth. A constant five clock cycles are used to fan out the features
and execute all comparisons. The boolean logic to determine the active leaf is
pipelined, scaling linearly with the tree depth. Finally the adder tree latency scales
logarithmically with the number of trees. The model to predict resource usage, R,
and latency, T', relative to a reference ensemble, with n,f = 100 and dyof = 3 (with

12 clock cycles latency), is given by Equations 4.17 and 4.18.

R= " x gd—duer (4.17)
Nyef
5) 7 n d

Y . 4.18
2" (°g2 (nf) " dref) 1)

This model was used to explore the resource usage and latency of ensembles when
scanning across a range of hyper-parameters n and d, as shown in Figure 4.23. The
area under the ROC curve (AUC) is used as the metric of performance of the BDT.

Some ensembles were synthesised to obtain true resource and latency figures, and

96 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

Left child

Root node Right child

score

Figure 4.22: Schematic for the FPGA implementation of a decision tree with a depth
of 3. A node stores its feature threshold ¢, as a constant, and selects its required
feature from the input vector . A branch of the decision tree is activated depending
on the comparison between the branch’s node’s feature and threshold, and the node’s
parents’ comparisons. Each node in the FPGA implementation outputs two boolean
signals corresponding to the branch’s activation. At the leaf nodes, the leaf scores
are presented as the input to a multiplexer (the node labelled ‘MUX’). The branch
bits are concatenated (the node labelled ‘cat.’)and used as the multiplexer address
to select the decision tree score to output.

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 97

6
1.4 - 0.965
o
5 0.960
. 1.2 A
g 0.955 ¢
= 4 A Y (] g -]
S1.04 . =
= 0.950
3
0.8 0.945
9 .] : : 0.940
100 200 300 0 5 10
n Resources

Figure 4.23: Area under the ROC curve (AUC), in colour, for a scan over BDT
hyper-parameters n and d. The left plot shows how AUC varies with n and d, and
the right plot uses to the model of equations 4.17 and 4.18 to show how AUC varies
with FPGA resources and latency. Resources and latency values are with respect
to an ensemble with n = 100 and d = 3. Points on the right plot are resource and
latency measurements obtained after synthesising the ensemble.

Table 4.9: Post-synthesis resource usage of the trained BDT with 4 features, 100
trees with a maximum depth of 3, for 3 different FPGA parts: Virtex 7 690 (V7
690), Kintex Ultrascale 115 (KU 115), and Virtex Ultrascale 9+ (VU 9+).

Device LUTs (%) Registers (%)

V7690 2.24 1.15
KU 115 1.46 0.75
VU 9+ 0.82 0.42

are displayed in the Figure, and are well described by the model. It can be seen that
the achievable AUC reaches a plateau for ensembles with n > 100 and d > 3, which
are correspondingly more expensive in resource consumption and latency. The BDT
with n = 100 and d = 3 is therefore selected as the appropriate ensemble for the L1
trigger constraints.

The resource usage of the previously described BDT for several FPGA parts is
shown in Table 4.9. The usage is around the 1% level, and approximately twice as

many LUTs are used over registers, as a percentage of the total available.

The functional correctness of the FPGA implementation was tested against

SCIKIT-LEARN running on a CPU. The FPGA used for this test was an Altera

98 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

FPGA decision contour CPU decision contour

Figure 4.24: Decision contour for the FPGA and CPU implementations of a BDT.
A BDT was trained on a randomly generated, separable 2D dataset with 2 classes
(‘purple’ and ‘orange’). Points show the training data. Shading shows the prediction
for a uniform sampling of the feature space.

Stratix V [92] on a Maxeler Maia DFE, in an MPC-X [93] machine housed at the
DeLorean facility at the STFC Daresbury computing centre. The Maxeler ‘SLiC
Interface’ and MAXELEROS software was used for CPU-FPGA communication,
which is across an Infiniband network to a PCle switch in the MPC-X. A BDT
was trained to classify a randomly generated, separable, 2D dataset with 2 classes.
A static FPGA implementation was then generated, as previously described. Next,
2D features were created, uniformly sampling the feature space of the generated
dataset. These features were classified on the CPU and FPGA separately, and the
output compared. The result is shown in Figure 4.24, where it can be seen that the

architectures are in perfect agreement.

The DeLorean machine also facilitated a measurement of the speedup factor of
the FPGA compared to a CPU, using the same trained BDT as used for Figure
4.24. While class prediction on the CPU may be relatively fast for a single datum,
latencies of 1.7 ps were typical, the latency for classifying a large dataset may be
long. The time to classify n data items, ¢, is ¢, = nty, for single item classification
latency t;, on a CPU. On the FPGA, on the other hand, ¢,, = tsetup + ¢ +™/f, where
tsetup 15 the FPGA setup time including communication latency, t; is the algorithm
latency, and f is the clock frequency of the algorithm. The setup time may be

relatively long, typically around 1s, but ¢; is small for this implementation, and

TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER 99

00054 e CPU o e CPU ..'
s FPGA o* 1507« FPGA .°
.. ..
0.004 o® °
[] ..
* 100 .°
<2 0.003 - o’ < o
° °
° ® °
° []
i °
0.002 A o 50 .°
o ®
[]
[] [}
Y YY) ° °
0'001_0'00.'. ceceene ()| eeceecccccccccccccccccne
250 500 750 1000 0.25 0.50 0.75 1.00
Sample size Sample size x10®

Figure 4.25: Number of classified data points, IV, vs. execution time on the FPGA
and CPU.

f = 400 MHz was achieved. With a large enough n, therefore, the FPGA should
begin to classify faster than the CPU. As can be seen in Figure 4.25, this is indeed
the case. With the BDT image preloaded onto the FPGA, and in CPU memory,
the FPGA classifies a dataset fastest when there are more than 100 samples in the
dataset. With 1000 samples the FPGA is five times faster. With a large number of
samples, such that ¢ > 1ms, the FPGA is up to 670 times faster.

4.3 Conclusions

The time multiplexed track trigger demonstrator shows the feasibility of performing
track reconstruction on charged particles with pr above 3GeV in less than 4 ps
at the full 40 MHz LHC collision rate. A hardware system was constructed, using
five MP7 boards carrying out track reconstruction for one eighth of the detector in
azimuth, and one in thirty six LHC collisions. Since the processing for every detector
octant and event is identical, the full system could be constructed by duplicating
the demonstrator platform, and utilising an optical routing construct of the type
used currently in the CMS calorimeter trigger.

Within the Track Finder Processor the reconstruction is first divided geometri-
cally, to introduce additional parallelisation. Track candidates are found by thirty

six instances of a Hough Transform algorithm, which groups stubs with a consistent

100 TRACK RECONSTRUCTION FOR THE LEVEL 1 TRIGGER

trajectory in the r—¢ plane. These candidates are then cleaned, and a fit to their
track parameters is obtained by a Kalman Filter. Finally, duplicate tracks are re-
moved. A tracking efficiency of 95% is obtained for tracks from the primary vertex
of tt events with 200 PU, reproduced in both a software emulation and the FPGA
platform. Track parameter resolutions adequate for use in the later L1 trigger stages
are also achieved.

The system has been tested with events of tt with 200 PU to find the limitations,
and losses. Some 0.6% of tracks are lost due to the latency and throughput restric-
tions imposed. This occurs particularly at the very first processing step, where stubs
are distributed geometrically. Collimated high-pr jets also create ‘busy’ regions in
the processor which strain the readout of the HT.

The development towards a production trigger system for the HL-LHC would see
the algorithm operating on an updated FPGA, with significantly increased resources
and faster IO connections. This development also presents an opportunity to further
improve the tracking algorithm. Regarding tracking performance, the rate of fake
tracks can be reduced while maintaining the efficiency. For the benefit of the trigger
project, reducing the FPGA resources can be pursued in order to save on system
cost, and the latency can be pushed lower in order to add slack or allow other trigger
systems more time.

One particular development for rejecting fake tracks uses a boosted decision tree.
This machine learning technique achieves a significant improvement in fake rejection
over a simple x? cut, which was the method used for the demonstrator project. An
FPGA implementation, developed using MaxCompiler, performs the class inference
step for a trained BDT within tens of nanoseconds. Optimisation of the ensemble
hyperparameters, with awareness of the impact on resources and latency, led to
an ensemble which uses around 1% of the resources of an Ultrascale FPGA. The
flexibility of the implementation is such that it could be adopted in other areas of

the Level 1 Trigger.

Chapter 5

Hardware Acceleration of Track
Reconstruction in the High Level

Trigger

High Luminosity LHC (HL-LHC) conditions of 200 pileup (PU) collisions per event
will increase the computation required to make a trigger decision at the High Level
Trigger (HLT). In particular the latency of track reconstruction, which is compu-
tationally expensive, scales exponentially with pileup due to the ‘combinatorial ex-
plosion’ from the vastly increased number of hits in the tracker. As described in
Section 2.10, the tracking executed at the HLT is modified from the offline tracking
to improve the timing, and used sparingly, yet still contributes significantly to the
processing time. Expected increases in computing power by 2025 are insufficient to
prevent an increase in the time taken to reconstruct tracks at the HLT at the HL-
LHC compared to the LHC. In this chapter, the use of FPGA hardware acceleration
of tracking with a Maxeler DFE is investigated as a means of reducing the impact

of the pileup increase.

5.1 Kalman Filter on a DFE

The Combinatorial Track Finder uses a Kalman Filter for both track building and
fitting. A pseudo code representation of the track building procedure is shown in
Figure 5.1. For every candidate compatible measurements in the next detector layers
along the trajectory are found. Then for each found measurement, the candidate is

updated by the Kalman Filter, branching each updated state to a new candidate.

101

1
2
3
4
5
6
7
8

9
10
11
12
13
14

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
102 HIGH LEVEL TRIGGER

while candidate pool is not empty do:
initialise empty temporary candidate pool;
for all candidates in candidate pool do:
find hits compatible with candidate;
for all compatible hits do:
update candidate state with hit;
if updated state is finished then:
add candidate to result tracks;
else:
add candidate to temporary candidate pool;
sort temporary candidate pool by quality;
discard all but best N candidates;
replace candidate pool with temporary candidate pool;
return result tracks;

Figure 5.1: Pseudo-code of the track building procedure of the Combinatorial Track
Finder.

The finding of compatible measurements and state update contain all of the
mathematical computations of the Kalman Filter. The project and update parts of
the filter are split between the functions. In order to find compatible measurements,
the algorithm first determines which detector layers are next intersected by the state
trajectory, then propagates the state to the surfaces (there may only be one) in turn.
Once the coordinates of the track intersection with a detector element are calculated,
the hits lying in that detector element are found. Hits which are compatible (the 2

of the residual is below a threshold) are returned.

A Kalman Filter state update is performed for each of the found measurements.
If no measurements were found, the state may be permitted to skip this iteration if
it has not already skipped too many layers previously. Updated states which have
reached a completion condition — the trajectory has been updated by a sufficient
number of hits — are added to a container of results and no longer circulate the track
builder loop. States requiring further iterations are stored in a separate container.
After all states known at the start of the current iteration have been updated with
measurements, the states are sorted by 2, and only the best N are retained, with
N depending on the iteration. Limiting the number of states kept at each iteration
prevents an excessive number of combinations from being considered. At the end of

the iteration the surviving, unfinished, states are recirculated.

Both finding compatible measurements and the state update perform matrix

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
HIGH LEVEL TRIGGER 103

operations, which can readily be parallelised and pipelined on a DFE,; as already
demonstrated in Chapter 4. The additional work performed to find measurements,
by returning detector hits stored in memory, is less well suited to a parallel and
pipelined implementation. Searching for compatible hits in memory requires signif-
icantly random access memory operations and highly data dependent processing,
neither of which are desirable on the DFE. The Kalman Filter update, conversely,
has no data dependent operation. Only the state update part of the track build-
ing was therefore ported to the DFE. A parallelised state update, with pipeline

parallelism of the loop over measurements was developed.

5.1.1 MaxJ Implementation

The Kalman Filter state update is similar to that implemented in Section 4.1.4, using
Equations 2.4 to 2.12. Since the HLT tracking fits 5 parameters, as introduced in
Section 2.10, the state vector is 5 elements and matrices in the fit have dimensions
5x5,5x 2or 2x 2. All matrix multiplications are fully unrolled, as in Chapter
4. The data flow graph of this state update is shown in Figure 5.2. The extra
parameter, giving wider matrices, results in more operations executing in parallel

compared to Figure 4.9, for which the fit used only 4 parameters.

5.1.2 Data Types

Track reconstruction in cCMsSW makes use of IEEE 754 standard [94] double precision
floating point throughout. Floating point operations (whether double, single, or
custom) always takes more time and uses more area than fixed point arithmetic
tuned to the DSP port sizes (18 and 27 bits for an Altera Stratix V, as used here).
Nonetheless, a floating point representation is the most appropriate choice where
variables have a wide dynamic range, and need to be precisely represented across
that range.

Table 5.1 shows the dynamic range of the state vector and matrices, as well
as matrices calculated as part of the update of the state, obtained from numerical
profiling. For each variable a histogram of the exponent (base 2) is filled during
the execution of the unmodified Kalman Filter software, for every state update
performed. This procedure informs the viability of using a fixed point representation
when ported to the FPGA. In order to fully represent the range of a variable x, a

fixed point format would require at least as many bits as the range max (log, |z|) —

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE

HIGH LEVEL TRIGGER

104

Figure 5.2: Kernel Graph representation of the HLT 5 parameter, floating point, Kalman Filter. The width of the graph
illustrates the operation parallelism achieved for the state update.

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
HIGH LEVEL TRIGGER 105

Table 5.1: The range of the exponent of floating point variables in the Kalman Filter
state update.

Matrix | column |, 5, o
1 18 27 34 31 31

p - 37 45 34 40

C 3 - - 33 44 29
4 - - - 34 37

5 .- - 26

xT : 10 25 23 21 20
KT 1 23 20 29 18 50
9 23 30 27 41 23

min (log, |z|). Extra bits would be needed to retain a reasonable precision on values
close to min (|z|).

Only a very small number of variables have exponent distributions with a width
of a few bits. The state vector elements, for example, cover a reasonably narrow
range of around 20 bits each. Conversely the covariance matrix elements occupy a
range much larger than the DSP port width, of up to 45 bits. Elements of the gain
matrix K have an exponent range up to 50. To avoid the introduction of instability
by saturating or overflowing fixed-point arithmetic, floating point representation
was used throughout the DFE implementation. As a concession to the architecture,
single precision was used rather than double as in the c++-. No variables come near
to the minimum or maximum values of single precision floating point of 27126 <
x < 2717 For the matrix inversion the floating point configuration of the division

algorithm presented in Appendix A was used.

5.1.3 Data Flow

Figure 5.3 shows schematically the flow of data between the CPU and DFE, and
the execution of the main parts of the track building procedure. Measurements are
paired with states on the CPU, and streamed to the DFE. The DFE updates the

state and streams these back to the host.

On each platform, CPU and DFE, the time to process n state updates, T, is:

Tecpy = n - tepu, (5.1)

TDFE = tl +n- tDFE; (52)

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
106 HIGH LEVEL TRIGGER

Hit
/ State

find compatible measurements

¢ update state

Hits in memory

CPU

DFE

Figure 5.3: Diagram of execution placement of logical components of the track
building, and the flow of data between the devices.

where tcpy is the time for a single state update on the CPU; ¢ is the latency
incurred each time the DFE is called due to algorithm and data transfer latency,
and initialisation; and tppg is the time between completion of each update. With a
fully pipelined algorithm and data sent between devices for each iteration the time
between updated states is bound by the slower of the algorithm clock frequency and
the data transfer rate: tppg = min (1/ feu, 1/ faata)-

In order to achieve speedup, that is Tprg < Tcpu, it is necessary that tppg <
topu. Assuming that this is the case, the speedup factor Tppg/Tcpy will be greater
for larger values of n. Once the initial data transfer latency has been paid, and the
pipeline is full, the additional latency for processing new state updates ought to be
very small. From the algorithm presented in Figure 5.1, such as it is implemented in
CMSSW, a restructuring was made in order to increase n by sending more states to
the DFE in each transaction. This restructuring is shown in the pseudo-code listing
of Figure 5.4. With this modification, the maximum possible number of states and
measurements — before their updates are required for the next iteration — are sent

to the DFE.

A histogram of the number of measurements that can be sent to the DFE in one
transaction with the modified track building is shown in Figure 5.5. The restructured
code was sampled when executing the HLT software on simulated events of tt with
200 PU. Small numbers of updates occur much more frequently than large ones:

75% of iterations find fewer than 50 measurements across all states, and the most

1
2
3
4
5
6
7
8

9
10
11
12
13

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
HIGH LEVEL TRIGGER 107

while candidate pool is not empty do:
for all candidates in candidate pool do:
find hits compatible with candidate;
queue candidate and hits for update;
update all candidates with hits on DFE;
for all updated candidates do:
if updated state is finished then:
add candidate to result tracks;
else:
add candidate to pool of candidates;
sort candidate pool by quality;
discard all but best N candidates;
return result tracks;

Figure 5.4: Pseudo-code of the track building procedure modified to coalesce multi-
ple states into a stream.

probable number of measurements is 1. The weighted histogram shows the raw
count, n, weighted by the time taken to update n states on the CPU according to
Equation 5.2. While occurring much less frequently, iterations with larger numbers
of state updates contribute significantly to the execution time on the CPU. As
discussed, the DFE speedup ought to become more significant with larger n.

On the DFE, a further optimisation was made for the benefit of speedup. The
state is a data structure with 20 fields — 15 for the unique covariance matrix elements
and 5 for the vector, while a hit is 5 fields — 3 unique covariance matrix elements and
2 coordinates. Each state may be updated with multiple hits, so rather than sending
a stream of states with the same length as the stream of hits (the easier to implement
variant), each state is sent only once and a separate stream specifying how many hits
are to be updated with each state is used. Logic in the DFE reads a new state from
the input after the current state has been updated with the appropriate number of

hits. This greatly reduces the amount of data sent across the PCle bus.

5.1.4 Interface with CMSSW

Some steps were needed in order to utilise the DFE from the CPU application.
The ‘Simple Live CPU Interface’ (SLiC) [95] is used to provide handles to the
DFE application to embed in the software. A SLiC interface for the Kalman Filter
update was defined, specifying the type and dimensions of the input and output

streams. During the compile process a header file and shared object library are

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
108 HIGH LEVEL TRIGGER

10°
Runtime weighted
Unweighted

f /50

0 250 500 750
Number of Pipelineable Iterations

Figure 5.5: Histogram of the number of measurements found for all states, equivalent
to the number of state updates that can be performed in a single DFE transaction.
The unweighted histogram is the frequency of each bin, while the weighted histogram
scales each entry by the contribution to the run time on a CPU.

generated containing functions for loading and executing the DFE from the cMssw
host code at a high level of abstraction from the underlying PCle transfer and device

configuration.

The main functions are displayed in the listing of Figure 5.6. A call to the
functions on lines 1 and 2 load the Kalman Filter updater image onto a DFE available
on the system (on a system with many DFEs this can be specified by the argument
or left to be determined by the host). The struct on line 3 contains pointers to
data corresponding to the data streams expected by the DFE: the hits, the states,
the control stream specifying the number of hits per state, fields for the size of each
stream, and a pointer to memory allocated for the returned updated states. The
dataset to send to the DFE is termed an ‘action’. Finally the function on line 4
executes the action on the loaded DFE. A DFE can remain loaded and reserved by

an application for its duration, or until explicitly unloaded.

Each of the application specific functions call further operations within the MAX-
ELEROS software. The MAXELEROS package comprises software components which
run on the host machine and corresponding hardware on the DFE which handle all
low level communication between the devices. As well as providing functionality for
inter-device communication and application control, the software includes a daemon

process which monitors DFEs on the system.

~ W N

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
HIGH LEVEL TRIGGER 109

max_file_tx* dfeKFUpdator_init ();
max_engine_t* max_load(max_file_t*, const charx);
struct dfeKFUpdator_actions_t;

void dfeKFUpdator_run(max_engine_t*, dfeKFUpdator_actions_t);

Figure 5.6: ¢4+ functions and data structures for the operation of the Kalman
Filter DFE from the host application.

Table 5.2: Resource usage of the Kalman Filter state updater and CPU IO on a
Maia DFE. Resources are also expressed as a percentage of the Altera Stratix V

5SGSDR device used.

Resource Number Percentage of available
ALMs 76054 28.98%
DSP Blocks 149 7.59%
Block Memory 1027 40.01%
Latency 181 -
fclk 250 MHz -

The cMmSsSw tracking code was modified according to the pseudo-code of Figure
5.4, with the functions of Figure 5.6. When testing with simulated events, a DFE
was loaded at the beginning of the test and retained for the duration. The hits and
states were repackaged into the appropriate struct, and the DFE was run with the
required method. The cMSSW compile step, which uses the SCRAM build tool [96],
was modified, including the relevant DFE application and Maxeler software header

files, and linking to the libraries.

5.1.5 Performance

The performance of the DFE augmented cMSSW was measured on the STFC De-
Lorean MPC-X machine. An Intel Xeon Sandy Bridge E5-2650v2 processor (as also
used for some HLT timing tests in [58]) running at 2.6 GHz executed the CMSSW
application. The Kalman Filter state update was executed on a Maxeler Maia DFE,
which hosts an Altera Stratix V 5SGSD8 FPGA and 48 GB of DRAM. The DFE
card, housed in an MPC-X, interfaced to the CPU over a PCle switch inside the
MPC-X chassis, and an Infiniband network between the machines.

The resource usage, and other performance metrics, of the Kalman Filter state
updater is listed in Table 5.2. Execution time of a single state update on the CPU

was measured to be (255 + 34) ns, and the time for n state updates increased linearly

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE

110 HIGH LEVEL TRIGGER

%1074

64° . -=- CMSSW CPU

* o™ e DFE
5 whER ——- DFE Best Fit
4 -
< 3-

2 -

1 N ’f””

O | ” T T T T
0 200 400 600 800

Number of Iterations

Figure 5.7: Measured time to perform a number of iterations of Kalman Filter state
update on CPU and DFE.

as in Equation 5.2. The latency of the algorithm on the DFE is 181 clock cycles,
which is 724 ns at the 250 MHz algorithm clock frequency.

Figure 5.7 shows the measured time of state update execution as a function of the
number of updates, across a range compatible with the observed numbers of Figure
5.5. In all cases the CPU performs faster than the DFE. The gradient of the DFE
execution time best fit is shallower than the CPU line, in other words tprg < tcpu.
A large initial latency, t;, however, means that the CPU has completed execution
before the DFE has begun for realistic numbers of updates. Here ¢, is observed to
be around 500 ps, which is as long as 2000 state updates on the CPU. The DFE
would eventually become faster than the CPU above 2519 updates.

The rate of iteration (from the gradient of the best fit) is 17.4 x 10°s™! on the
DFE compared to 3.92 x 10°s~! on the CPU, a factor 4.4 faster on the DFE. This
increased rate is the result of the pipelining of the states and hits into a continuous
stream. The 17.4 x 10°s~! iteration rate achieved on the DFE is significantly below
the 250 MHz clock frequency — the upper limit imposed by the algorithm. With

1'is achieved,

one 80 B state produced for each iteration, a data rate of 1.30 GBs™
approaching the 2GBs™! limit of the card, suggesting the implementation is IO
limited. Section 5.2 will discuss how this rate might be further improved, along
with possible strategies to mitigate against the long initial latency of utilising the

DFE.

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
HIGH LEVEL TRIGGER 111

5.2 Future Developments

While a speedup was not achieved from the development presented, the potential
has been demonstrated. The DFE was able to perform state updates at a faster
rate than the CPU, but with a large overhead, and at a rate limited by the link
bandwidth. Several design and technology changes might help realise a definitive
speedup for the tracking on a DFE. All of the improvements would be mutually

beneficial.

5.2.1 Design Improvements

The bottleneck in the presented design is in the communication between the host and
accelerator devices. No design improvement can increase the available bandwidth,
but it may be possible to better utilise the available link. The ultimate performance

would be realised by using the PCle bus as little as possible.

Closing the Loop

The diagram of Figure 5.3 showed how state and hit data loops between the DFE
and CPU. This is required, as part of the application — the finding of measurement
compatible with a state — was not ported to the DFE. Executing this task on the
DFE would remove the need for constant communication between the devices. In-
stead, all hits and seed states would be sent to the DFE once at the beginning of
reconstruction, and the resulting states would be returned to the CPU at completion.
Either the O(10) MB of high throughput internal memory or GBs of DRAM could
be used for this data. It was stated in Section 5.1 that the finding of measurements
was less suited to the parallel, pipelined approach. Nonetheless, removing the com-
munication overhead completely, even if one part of the application is slower on the
DFE than the CPU, may enable the application to become faster as a whole. Given
that the state update has been shown to offer a potentially significant speedup, some
time penalty in finding measurements might be acceptable.

The state projection mathematics can be highly parallelised and pipelined as
with the Kalman Filter. Mapping projections onto the detector geometry might
also be parallelised by considering multiple detector elements simultaneously. Full or
partial unrolling of any loop over detector layers will benefit from the predetermined
detector layout. The final task, finding hits within compatible detectors, might be

parallelised with a memory partitioning which makes use of the helical trajectories

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
112 HIGH LEVEL TRIGGER

of tracks. Such a scheme was used to parallelise the Hough Transform presented
in Chapter 4, and also to speed up the hit searching on parallel processors in [97].
The internal FPGA memory can be partitioned, with each partition supporting
independent read and write. A hit searching block could be developed to iterate

over stored hits in a geometric partition and forward to them to a state updater.

Link Usage

Even in a design for which the hit searching step remains on the CPU, a more
efficient usage of the PCle link could be made. All data pertaining to hits is known
at the start of the event. The hits could be sent to the DFE at the start of processing,
and retrieved from the on chip BRAM or on board DRAM. Instead of sending hits
across the PCle link, the host would send pointers to the hits in the DFE memory.
Sending 32 bit pointers would address all of the on-chip memory and use 1/5th the
bandwidth. The O(10) MB of on chip memory would be sufficient to store O(10°)
hits, although it cannot necessarily be used efficiently as one coalesced RAM, and
some is used for the creation of the algorithm pipeline, as seen in Table 5.2.

The presented design returns the updated state from the DFE to the CPU, which
is then propagated to a detector surface, followed by the search for hits. A state
is represented by 20 fields of 32 bit data. Performing the state propagation on the
DFE, and returning only enough information to identify the detector element and
decide hit compatibility — the propagated coordinates and uncertainty should be
sufficient — would then reduce the size of data sent between the devices.

These improvements would improve the rate of iteration on the DFE by reducing
the volume of data transferred per iteration. The overhead paid each time data is
transferred between devices would remain, however, and this can only be overcome

with some changes to the accelerator setup.

Data Types

While single precision floating point was used, due to the wide range of some vari-
ables, alternative data representations more suited to the FPGA architecture might
be adopted. A floating point type with 17 mantissa bits and 7 exponent bits is suited
to the DSP block on both Altera and Xilinx FPGAs. Adopting this representation
would halve the DSP usage of multiplications, allowing more parallel instances of
the state update. The smaller exponent would still be sufficient to represent the full

range of the Kalman Filter variables. A 17 bit mantissa, however, would reduce the

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
HIGH LEVEL TRIGGER 113

precision by a factor 27 compared to single precision, which may lead to instability.
This custom data type may also introduce complications for studying the perfor-
mance of the HLT tracking, for which the ability to run on ‘standard’ processors is

beneficial.

5.2.2 Technological Improvements

In addition to performance changes to the DFE algorithm, advances in technology
will improve the performance and potential of a track reconstruction accelerator
ahead of the HL-LHC upgrade.

FPGA

Next generation Xilinx FPGAs have been described in Section 4.1.10. An FPGA
accelerator card based on a Xilinx FPGA, such as the Maxeler Max5, can leverage
the increased resource availability to fit more parallel computation on a single device.
For the Kalman Filter this could enable more instances of updater units to execute
in parallel, as long as an improved 10 bandwidth is also achieved.

Altera/Intel devices have improved significantly since the Stratix V generation
used for the presented design and testing. The current generation, Arria and Stratix
10, feature hardened floating point units [98]. These move parts of the floating point
operation that previously used general FPGA logic into the multiplier unit. The
barrel shifting operation required to perform exponent normalisation and denor-
malisation is carried out inside the DSP. This change reduces the amount of logic
resource used, and also allows floating point designs to achieve higher clock fre-
quencies, since the barrel shift generally requires significant routing. The hardened
floating point DSP blocks are limited to single precision.

In addition, the Intel synthesis tools support ‘fused’ floating point operations.
Rather than treating sequential floating point operations as independent IEEE 754
operations, the synthesis tool analyses the datapath and allows the number of man-
tissa bits to grow in order to reduce the impact of successive normalisation/denor-
malisation steps that otherwise precede and follow each IEEE 754 operation. The
wider mantissa also increases the accuracy compared to IEEE 754.

For the Kalman Filter state update, which uses a much higher percentage of
the available logic than DSPs on the Stratix V (as seen in Table 5.2), these high
floating point performance devices would increase capacity for more parallel updater

instances, and have potential for higher clock frequencies.

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
114 HIGH LEVEL TRIGGER

DFE

Updater 20 GB/s

20 GB/s
64 GB/s - 20 GB/s »| Updater 20 GB/s
20 GB/s 20 GB/s

2 GB/s - 20 GB/s >

64 GB/s >

Updater

DFE

20 GB/s - 2 GB/s >

Updater

Figure 5.8: DFE configuration possibilities with different PCle capabilities.

PCle

Figure 5.8 shows how a faster PCle link speed might be utilised with an unchanged
state updater. The Kalman Filter state updater kernel outputs one state per clock
cycle. At 80B per state, and a 250 MHz clock frequency, this is 20 GBs~!. The
PCle communication rate accessible on a Maia card peaks at 2 GBs™!, so the kernel
must periodically stall to allow the communication to keep up. PCle v.5, which is

! which exceeds the rate

expected to be available around 2019, specifies 64 GBs™
at which a single updater can produce states. Given the FPGA resource utilisation
of the single updater shown in Table 5.2, it is reasonable to expect to fit 3 par-
allel instances within a chip, especially with a next-generation device with higher
resources. Such a configuration would then use almost the full available PCle link
rate (notwithstanding the better link utilisation described). This would yield a data
rate improvement of around 30 times, alongside any aforementioned improvements

to the algorithm data transfer.

Alternative Accelerators

Integrated CPU-FPGA sockets, of the kind under development by Intel /Altera may
provide the ultimate performance for a tightly coupled tracking accelerator. Placing

the two processors on the same die will enable very low latency and high bandwidth

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
HIGH LEVEL TRIGGER 115

communications between the devices. While specifications for these future devices
are not readily available, one would expect to be able to process data at the full rate
that the algorithm can accommodate. Such a processor architecture would allow the
FPGA to be used for only those tasks most suited to it, such as arithmetic on long
data streams, while the CPU can be used for all control aspects such as branching
and data dependent looping. This might allow a design similar to the one presented
to achieve a speedup over a CPU only. CPU-FPGA sockets could likely fit into a
heterogeneous HLT-like data-centre in a similar way to an architecture augmented
only with FPGA accelerators.

A precursor to these tightly coupled devices has been used to demonstrate the
acceleration of the particle identification algorithm used by LHCb [23]. The device
is a dual socket server with a Xeon CPU and Stratix V connected over Intel’s QPI,
rather than a single die containing each device. This application is also limited by
the connection between the host and accelerator, with an initial latency close to the
0.5 ms observed for the state update in this chapter. The connection bandwidth also
limits the algorithm pipeline to be 50% full.

Graphics Processing Units (GPUs) are one of the most commonly used acceler-
ators. The GPU architecture is very different to FPGAs, but they are also highly
parallel processors. Where an FPGA is a ‘hardware accelerator’, a GPU is a ‘soft-
ware accelerator’, that is, a GPU executes an instruction set on many cores in
parallel.

GPUs have been applied to tracking problems, as in [97] for track building and
fitting, and [99] for seeding. The authors of [97] note the difficulty of achieving an
efficient use of the GPU when dealing with the branching that occurs from pursuing
multiple combinations of tracks during track building, since the GPU threads within
a warp must branch identically in order to execute in parallel. A modest speed-
up over a single threaded CPU is obtained, with the performance limited by data
transfer to the GPU.

GPUs generally offer a lower entry point than FPGAs in terms of both cost
and effort. FPGAs, however, do have significant benefits after these overheads.
While the performance on any computation platform is highly algorithm depen-
dent, FPGAs compare favourably to GPUs for many problems. In [100] the FPGA
outperforms a GPU and CPU both in speed and operations per Watt for a recur-
rent neural network. Performance per Watt is an important consideration for the
operational cost of data centres, such as the HLT, which will operate over a period

of many years.

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
116 HIGH LEVEL TRIGGER

5.3 Conclusion

Track reconstruction is one of the most time consuming parts of the CMS experiment
reconstruction. At the HLT currently, the timing of tracking is such that it must
be used on only a subset of events, and within limited regions of phase-space. The
track reconstruction time scales exponentially with pileup, which will pose problems
at the HL-LHC where pileup of 200 is expected. FPGA accelerators may be able
to speed-up the track reconstruction, by leveraging their significant operational and

pipeline parallelism.

The Kalman Filter state update of the CMS HLT track reconstruction has been
ported to a Maxeler DFE and integrated with the cMssw tracking. The cMSsw
application executes on a CPU host, and buffers hits and state combinations during
the track building. These data are streamed through a DFE in an MPC-X, connected
to the host over an Infiniband network. State updates are executed on the DFE and
the data is streamed back to the host, where they are used to continue building
tracks. Control flow for track branching — the exploration of the many possible

combinations of hits which could belong to a track — is performed on the CPU.

Timing measurements of the execution of state updates on the DFE show that
the initial latency of utilising the DFE is too slow to gain over using the host alone
for realistic numbers of state updates encountered during track reconstruction in
events of tt with 200 PU. A state update rate enhancement of 4.4 times is obtained,
limited by the bandwidth of the host-DFE connection, which shows the potential
for a speedup from the DFE with further development.

Possible developments towards achieving a true speed enhancement were pre-
sented, including algorithm and technological developments anticipated before the
HL-HLC. For the algorithm, the main improvement will be gained by ‘closing the
loop” on the DFE, only streaming data between host and DFE at the event start,
and streaming tracks back after performing all of the track reconstruction on the
DFE. This will necessitate the implementation of the more complicated control and
branching, required to search for hits and combine multiple of them with tracks, on
the DFE. Next generation FPGA devices, particularly those from Intel, may signifi-
cantly benefit acceleration of the tracking. Dedicated floating point resources in the
Intel Arria and Stratix 10 families will enable more parallel floating point compu-
tations, with higher clock frequencies than older Altera and current Xilinx devices.
The prospect of Intel Xeon processors integrated with high capacity FPGA devices

might also permit a use case like the one presented in this chapter, where both

HARDWARE ACCELERATION OF TRACK RECONSTRUCTION IN THE
HIGH LEVEL TRIGGER 117

the FPGA and host processor execute part of the application, with data streaming

between the devices.

Chapter 6
Conclusion

The High Luminosity upgrade of the Large Hadron Collider will present a signifi-
cant challenge for the trigger system. The CMS Level 1 Trigger will be upgraded,
taking input from the calorimeters at higher granularity, receiving data from the
tracker for the first time, and using particle flow reconstruction to achieve the best
precision on particle momentum and identity, with mitigation for pileup. Latest
generation, high performance FPGAs will carry out the processing for reconstruc-
tion and ultimately make the trigger decision. Implementing these algorithms on
FPGAs, with microsecond latency, will be a demanding task. The latest design
techniques, utilising high level languages, may enable more complicated algorithms

to be realised.

The toolset of Maxeler Technologies, the language MaxJ and compiler Max-
Compiler, was investigated for use in Level 1 Trigger applications. The algorithm
for finding jets in the calorimeter, and the total event energy and transverse energy
were reimplemented using MaxCompiler. The implementation currently deployed
during Run IT at CMS was developed with VHDL. The two designs produce bit-
wise identical results, with a small discrepancy in jet ¢ position. The MaxCompiler
implementation used 7% more LUT resources than the VHDL, and matched the
latency, while requiring only half as many lines of code to implement. The Max-
eler tools were therefore demonstrated to be capable of producing high performance

trigger applications with low latency.

In order to investigate the advantages of using the tool in the development of
a sophisticated algorithm, MaxCompiler was then used in the development of a
demonstrator system for the track reconstruction in the Level 1 Trigger at the HL-
LHC. A Kalman Filter (KF) track fit was developed to fit and filter track candidates

118

CONCLUSION 119

found by a Hough Transform (HT). The algorithm is used in the offline track re-
construction at CMS, and can reject outlier stubs while simultaneously refining the
calculated track parameters. The KF rejects 80% of the fake tracks produced by the
HT in events of tt with 200 PU, at the expense of 1 or 2 genuine particles per event.
For muons without pileup the KF fits the py with 1% resolution in the barrel, up to
9% for high pr muons at the most forward part of the detector, with a z, resolution
of 1mm, up to 6 mm.

A boosted decision tree (BDT) classifier was developed to further reject fake
tracks, using information from the track fit. The BDT is able to reject 75% of the
remaining fakes at the cost of 1% more of genuine tracks. An FPGA implementation
of BDT inference was developed, using MaxCompiler. The configuration with 100
trees with a depth of 3 uses around 1% of the resources of a KU115 or VU9P chip.
For the same ensemble, an inference latency of 12 clock cycles was obtained, tested
up to 400 MHz on a Stratix V, with full pipelining to enable a new classification on
every clock cycle.

With the development of the Kalman Filter and BDT algorithms, both with
low latency and reasonable resource usage, MaxCompiler is seen to be beneficial to
the design of the kinds of sophisticated processing required for the CMS Phase II
Upgrade. The automatic scheduling and pipelining, and the extensive support for
custom fixed point arithmetic make the tool advantageous for the design of high
throughput, mathematically intensive algorithms.

Finally, Maxeler Dataflow Engine (DFE) devices were targeted to investigate ac-
celeration of the track reconstruction of the High Level Trigger. The Kalman Filter
state update part of the tracking procedure was ported to the DFE. This implemen-
tation fits the five track parameters, and uses floating point arithmetic compared to
the four parameter, fixed point fit developed for the Level 1 tracking. The connec-
tion between DFE and host proved to be the bottleneck: both the bandwidth and
the latency. A 500ps overhead is spent each time the DFE is used, in which time
around 2000 state updates can be executed on the CPU. The potential for speedup
is seen by the factor 4.4 faster rate of iteration on the DFE compared to the CPU.
Developments to overcome this limitation were presented. These include moving the
entire computation to the DFE, and reducing the data size transferred between the
devices, making a more efficient use of the link. Technological advances ahead of the
HL-LHC will also benefit FPGA accelerated computation, with higher bandwidth
host-FPGA connections, and tightly coupled CPU-FPGA processors.

Bibliography

1]

S. Summers, A. Rose, and P. Sanders, “Using maxcompiler for the high level
synthesis of trigger algorithms,” Journal of Instrumentation, vol. 12, no. 02,
p. C02015, 2017.

R. Aggleton et al., “An FPGA based track finder for the L1 trigger of the
CMS experiment at the High Luminosity LHC,” Journal of Instrumentation,
vol. 12, no. 12, P12019, 2017.

S. L. Glashow, “Partial-symmetries of weak interactions,” Nuclear Physics,
vol. 22, no. 4, pp. 579-588, 1961. DOI: 10.1016/0029-5582(61)90469-2.

S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett., vol. 19, pp. 12641266,
21 Nov. 1967. poI: 10.1103/PhysRevLett.19.1264.

A. Salam and J. Ward, “Electromagnetic and weak interactions,” Physics
Letters, vol. 13, no. 2, pp. 168-171, 1964. DO1: 10.1016/0031-9163(64)
90711-5.

F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vec-
tor Mesons,” Phys. Rev. Lett., vol. 13, pp. 321-323, 1964. por: 10. 1103/
PhysRevLett.13.321.

P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys.
Lett., vol. 12, pp. 132-133, 1964. DOI: 10.1016/0031-9163(64)91136-9.

P. W. Higgs, “Spontaneous Symmetry Breakdown without Massless Bosons,”
Phys. Rev., vol. 145, pp. 1156-1163, 1966. DOI: 10.1103/PhysRev.145.1156.

T. W. B. Kibble, “Symmetry breaking in Non-Abelian gauge theories,” Phys.
Rev., vol. 155, pp. 1554-1561, 1967. DOI: 10.1103/PhysRev.155.1554.

The CMS Collaboration, “Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC,” Physics Letters B, vol. 716, no. 1,
pp. 30-61, 2012. DOI: 10.1016/j .physletb.2012.08.021.

120

BIBLIOGRAPHY 121

[11]

ATLAS Collaboration, “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC,” Physics
Letters B, vol. 716, no. 1, pp. 1-29, 2012. poI: 10.1016/j.physletb.2012.
08.020.

D. Contardo et al., “Technical Proposal for the Phase-II Upgrade of the CMS
Detector,” Geneva, Tech. Rep. CERN-LHCC-2015-010. LHCC-P-008. CMS-
TDR~15-02, Jun. 2015.

The CMS Collaboration, “Vector Boson Scattering and Quartic Gauge Cou-
pling Studies in WZ Production at 14 TeV,” CERN, Geneva, Tech. Rep.
CMS-PAS-FTR-13-006, 2013.

The CMS Collaboration, “Particle-Flow Event Reconstruction in CMS and
Performance for Jets, Taus, and MET,” CERN, Geneva, Tech. Rep. CMS-
PAS-PFT-09-001, Apr. 2009.

W. J. Stirling, Private communication.

P. M. S. Blackett, “On the Technique of the Counter Controlled Cloud Cham-
ber,” Proceedings of the Royal Society of London A: Mathematical, Phys-
ical and Engineering Sciences, vol. 146, no. 857, pp. 281-299, 1934. port:
10.1098/rspa.1934.0154.

G. L. Bayatyan et al., CMS computing: Technical Design Report, ser. Techni-
cal Design Report CMS. Geneva: CERN, 2005, Submitted on 31 May 2005.

G. Aad et al., “Performance of the ATLAS Trigger System in 2010,” FEur.
Phys. J., vol. C72, p. 1849, 2012. DOI: 10.1140/epjc/s10052-011-1849-1.

R. Aaij et al., “The LHCb Trigger and its Performance in 2011,” JINST, vol.
8, P04022, 2013. por: 10.1088/1748-0221/8/04/P04022.

E. Michielin, “The LHCb trigger in Run II,” PoS, vol. ICHEP2016, 996. 4 p,
2016.

LHCb Collaboration, “LHCb Trigger and Online Upgrade Technical Design
Report,” Tech. Rep. CERN-LHCC-2014-016. LHCB-TDR-016, May 2014.

A. Abba et al., “A specialized track processor for the LHCb upgrade,” CERN,
Geneva, Tech. Rep. LHCb-PUB-2014-026. CERN-LHCb-PUB-2014-026, Mar.
2014.

122 BIBLIOGRAPHY

[23] C. Farber et al., “Particle identification on an FPGA accelerated compute
platform for the LHCb upgrade,” in 2016 IEEE-NPSS Real Time Conference
(RT), Jun. 2016, pp. 1-2.

[24] Xilinx Inc., 7 Series FPGAs Configurable Logic Block, vol. UG474 (v1.8).
[25] Xilinx Inc., 7 Series DSP48E1 Slice, vol. UG479 (v1.9).

[26] Xilinx Inc., 7 Series FPGAs Memory Resources, vol. UGAT3 (v1.12).

[27] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algo-

rithm,” Journal of High Energy Physics, vol. 2008, no. 04, p. 063, 2008.

[28] M. Benedikt et al., LHC Design Report Volume III, ser. CERN Yellow Re-
ports: Monographs. Geneva: CERN, 2004.

[29] O. S. Briining et al., LHC Design Report Volume I, ser. CERN Yellow Re-
ports: Monographs. Geneva: CERN, 2004.

[30] G. Apollinari et al., High-Luminosity Large Hadron Collider (HL-LHC): Pre-
liminary Design Report, ser. CERN Yellow Reports: Monographs. Geneva:
CERN, 2015.

[31] T.Sakuma and T. McCauley, “Detector and Event Visualization with SketchUp
at the CMS Experiment,” Journal of Physics: Conference Series, vol. 513,
no. 2, p. 022032, 2014.

[32] D. Bertolini et al., “Pileup per particle identification,” Journal of High Energy
Physics, vol. 2014, no. 10, p. 59, Oct. 2014. DOI: 10.1007/JHEP10(2014)059.

[33] V. Karimaiki et al., The CMS tracker system project: Technical Design Report,
ser. Technical Design Report CMS. Geneva: CERN, 1997.

[34] Brondolin, Erica, “Expected Performance of Tracking in CMS at the HL-
LHC,” EPJ Web Conf., vol. 150, 2017. DOI: 10.1051/epjconf/201715000001.

[35] J. Chistiansen and M. Garcia-Sciveres, “RD Collaboration Proposal: Devel-
opment of pixel readout integrated circuits for extreme rate and radiation,”
CERN, Geneva, Tech. Rep. CERN-LHCC-2013-008. LHCC-P-006, Jun. 2013.

[36] J. Jones et al., “A Pixel Detector for Level-1 Triggering at SLHC,” Oct. 2005.

[37] M. Pesaresi, “Development of a new Silicon Tracker for CMS at Super-LHC,”
CERN-THESIS-2010-083, PhD thesis, Imperial College, London, 2010.

BIBLIOGRAPHY 123

[38]

[46]

[47]

G. Hall, M. Raymond, and A. Rose, “2-D PT module concept for the SLHC
CMS tracker,” Journal of Instrumentation, vol. 5, p. C07012, 2010. DOI:
10.1088/1748-0221/5/07/C07012.

M. Pesaresi and G. Hall, “Simulating the performance of a pT tracking trigger
for CMS,” Journal of Instrumentation, vol. 5, p. C08003, 2010. por: 10.1088/
1748-0221/5/08/C08003.

K. Klein, “The Phase-2 Upgrade of the CMS Tracker,” CERN, Geneva, Tech.
Rep. CERN-LHCC-2017-009. CMS-TDR-014, Jun. 2017.

The CMS Collaboration, The CMS electromagnetic calorimeter project: Tech-
nical Design Report, ser. Technical Design Report CMS. Geneva: CERN,
1997.

The CMS Collaboration, “The CMS Experiment at the CERN LHC,” Journal
of Instrumentation, vol. 3, no. 08, S08004, 2008.

P. Adzic, “Energy resolution of the barrel of the CMS Electromagnetic Calorime-

ter,” Journal of Instrumentation, vol. 2, no. 04, 2007.

J. Mans et al., “CMS Technical Design Report for the Phase 1 Upgrade of
the Hadron Calorimeter,” Tech. Rep. CERN-LHCC-2012-015. CMS-TDR-10,
Sep. 2012.

S. Abdullin et al., “The CMS barrel calorimeter response to particle beams
from 2 to 350 GeV/c,” The European Physical Journal C., vol. 60, no. 3,
pp. 359-373, Apr. 2009. DOI: 10.1140/epjc/s10052-009-0959-5.

The CMS Collaboration, The CMS muon project: Technical Design Report,
ser. Technical Design Report CMS. Geneva: CERN, 1997.

S. Chatrchyan et al., “The performance of the CMS muon detector in proton-
proton collisions at sqrt(s) = 7 TeV at the LHC,” JINST, vol. 8, P11002, 2013.
DOI: 10.1088/1748-0221/8/11/P11002.

S. Chatrchyan et al., “Performance of CMS muon reconstruction in pp col-
lision events at /s = 7 TeV,” JINST, vol. 7, P10002, 2012. por: 10.1088/
1748-0221/7/10/P10002.

A. Tapper and D. Acosta, “CMS Technical Design Report for the Level-1
Trigger Upgrade,” CERN-LHCC-2013-011. CMS-TDR-12, Jun. 2013.

A. Zabi et al., “The CMS Level-1 Calorimeter Trigger for the LHC Run II,”
Journal of Instrumentation, vol. 12, no. 01, p. C01065, 2017.

124

BIBLIOGRAPHY

[51]

The CMS Collaboration, “The Phase-2 Upgrade of the CMS L1 Trigger In-
terim Technical Design Report,” CERN, Geneva, Tech. Rep. CERN-LHCC-
2017-013. CMS-TDR-017, Sep. 2017.

A.-M. Magnan, “HGCAL: a High-Granularity Calorimeter for the endcaps
of CMS at HL-LHC,” Journal of Instrumentation, vol. 12, no. 01, p. C01042,
2017.

A. Svetek, “Construction, Testing, Installation, Commissioning and Opera-
tion of the CMS Calorimeter Trigger Layer-1 CTP7 Cards,” Poster at TWEPP
2015.

K. Compton et al., “The MP7 and CTP-6: multi-hundred Gbps processing
boards for calorimeter trigger upgrades at CMS,” Journal of Instrumentation,
vol. 7, no. 12, p. C12024, 2012.

Imperial College London, “MP7 website http://www.hep.ph.ic.ac.uk/mp7.”

A. Zabi et al., “Triggering on electrons, jets and tau leptons with the CMS
upgraded calorimeter trigger for the LHC Run II,” Journal of Instrumenta-
tion, vol. 11, no. 02, 2016.

D. J. Lange and the CMS Collaboration, “The CMS Reconstruction Soft-
ware,” Journal of Physics: Conference Series, vol. 331, no. 3, p. 032020,
2011.

C. Richardson, “CMS High Level Trigger Timing Measurements,” Journal of
Physics: Conference Series, vol. 664, no. 8, p. 082045, 2015.

T. Hauth, V. Innocente, and D. Piparo, “Development and Evaluation of
Vectorised and Multi-Core Event Reconstruction Algorithms within the CMS
Software Framework,” Journal of Physics: Conference Series, vol. 396, no. 5,

p. 052065, 2012.

J.-M. Andre et al., “The CMS Data Acquisition - Architectures for the Phase-
2 Upgrade,” Journal of Physics: Conference Series, vol. 898, no. 3, p. 032019,
2017.

The CMS Collaboration, “Description and performance of track and primary-
vertex reconstruction with the CMS tracker,” Journal of Instrumentation,
vol. 9, no. 10, P10009, 2014.

BIBLIOGRAPHY 125

[62]

[70]

[71]

[72]

M. Tosi, “Tracking at High Level Trigger in CMS,” Nuclear and Parti-
cle Physics Proceedings, vol. 273-275, pp. 2494-2496, 2016, 37th Interna-
tional Conference on High Energy Physics (ICHEP). por: 10. 1016/ .
nuclphysbps.2015.09.436.

M. Rovere, “CMS reconstruction improvements for the tracking in large
pileup events,” J. Phys.: Conf. Ser., vol. 664, no. 7, 072040. 8 p, 2015.

R. E. Kalman, “A New Approach to Linear Filtering and Prediction Prob-
lems,” Transactions of the ASME-Journal of Basic Engineering, vol. 82, no.
Series D, pp. 3545, 1960.

R. Fruhwirth, “Application of Kalman filtering to track and vertex fitting,”
Nucl. Instrum. Meth., vol. A262, pp. 444-450, 1987. por: 10.1016/0168~-
9002(87)90887-4.

A. Strandlie and W. Wittek, “Propagation of covariance matrices of track

parameters in homogeneous magnetic fields in CMS,” 2006.
Xilinx Inc., High-Level Synthesis, vol. UG902 (v2014.1).

N. Ghanathe et al., “Software and firmware co-development using high-level
synthesis,” Journal of Instrumentation, vol. 12, no. 01, p. C01083, 2017.

M. Husejko, J. Evans, and J. C. R. da Silva, “Investigation of High-Level
Synthesis tools’ applicability to data acquisition systems design based on the
CMS ECAL Data Concentrator Card example,” Journal of Physics: Confer-
ence Series, vol. 664, no. 8, p. 082019, 2015.

V. M. Ghete and CMS Collaboration, “The CMS L1 Trigger emulation soft-
ware,” Journal of Physics: Conference Series, vol. 219, no. 3, p. 032009,
2010.

J. Chaves, “Implementation of FPGA-based level-1 tracking at CMS for the
HL-LHC,” Journal of Instrumentation, vol. 9, no. 10, p. C10038, 2014.

M. Jeitler et al., “The level-1 global trigger for the CMS experiment at LHC,”

Journal of Instrumentation, vol. 2, no. 01, 2007.

T. Matsushita and CMS Collaboration, “Flexible trigger menu implementa-
tion on the Global Trigger for the CMS Level-1 trigger upgrade,” Journal of
Physics: Conference Series, vol. 898, no. 3, p. 032033, 2017.

Maxeler Technologies, “MaxCompiler (White Paper),”

126 BIBLIOGRAPHY

[75] P. V. C. Hough, Method and means for recognizing complex patterns, US
Patent 3,069,654, Dec. 1962.

[76] P. V. C. Hough, “Machine Analysis of Bubble Chamber Pictures,” Conf.
Proc., vol. C590914, pp. 554-558, 1959.

[77] R. O. Duda and P. E. Hart, “Use of the Hough Transformation to Detect
Lines and Curves in Pictures,” Commun. ACM, vol. 15, no. 1, pp. 11-15,
Jan. 1972. poI: 10.1145/361237.361242.

[78] D. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,”
Pattern Recognition, vol. 13, no. 2, pp. 111-122, 1981. por: 10.1016/0031-
3203(81)90009-1.

[79] Siklér, Ferenc, “Combination of various data analysis techniques for efficient
track reconstruction in very high multiplicity events,” EPJ Web Conf., vol.
150, p. 00011, 2017. DOL: 10.1051/epjcont/201715000011.

[80] Xilinx Inc., UltraScale Architecture DSP Slice, vol. UGH79 (v1.4).

[81] Xilinx Inc., Accelerating Design Productivity with 7 Series FPGAs and DSP
Platforms. Feb. 2013, vol. WP406 (v1.1).

[82] E. Hazen et al., “The AMC13XG: a new generation clock/timing/DAQ mod-
ule for CMS MicroTCA,” Journal of Instrumentation, vol. 8, no. 12, p. C12036,
2013.

[83] C.G. Larrea et al., “IPbus: a flexible Ethernet-based control system for xTCA
hardware,” Journal of Instrumentation, vol. 10, no. 02, p. C02019, 2015.

[84] H. Mohr et al., “Evaluation of GPUs as a level-1 track trigger for the High-
Luminosity LHC,” Journal of Instrumentation, vol. 12, no. 04, p. C04019,
2017.

[85] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[86] M. Barbareschi et al., “Decision Tree-Based Multiple Classifier Systems: An
FPGA Perspective,” in Multiple Classifier Systems, F. Schwenker, F. Roli,
and J. Kittler, Eds., Springer International Publishing, 2015, pp. 194-205.

[87] M. Owaida et al., “Scalable inference of decision tree ensembles: Flexible

design for CPU-FPGA platforms,” in 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), Sep. 2017, pp. 1-8. DOL:
10.23919/FPL.2017.8056784.

BIBLIOGRAPHY 127

[33]

[98]

[99]

[100]

B. V. Essen et al., “Accelerating a Random Forest Classifier: Multi-Core,
GP-GPU, or FPGA?” In IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, Apr. 2012, pp. 232-239. DOI:
10.1109/FCCM.2012.47.

R. Kulaga and M. Gorgon, “FPGA Implementation of Decision Trees and
Tree Ensembles for Character Recognition in Vivado HLS,” Image Processing

& Communications, vol. 19, Jan. 2014.

J. Oberg et al., “Random decision tree body part recognition using FPGAs,”
in 22nd International Conference on Field Programmable Logic and Applica-
tions (FPL), Aug. 2012, pp. 330-337. DOI: 10.1109/FPL.2012.6339226.

D. E. Acosta et al., “Boosted Decision Trees in the Level-1 Muon Endcap
Trigger at CMS,” CERN, Geneva, Tech. Rep. CMS-CR-2017-357, Oct. 2017.

Altera, Stratiz V' Device Overview, SV51001, Oct. 2015.

Maxeler Technologies, New Mazeler MPC-X series: Mazximum Performance

Computing for Big Data Applications, Mar. 2012.
IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic, 2008.
Maxeler Technologies, Multiscale Dataflow Programming. 2014.

J. Wellisch, C. Williams, and S. Ashby, “SCRAM: Software configuration
and management for the LHC Computing Grid project,” Jun. 2003.

G. Cerati et al., “Parallelized Kalman-Filter-Based Reconstruction of Parti-
cle Tracks on Many-Core Processors and GPUs,” EPJ Web Conf., vol. 150,
p. 00006, 2017. DOI: 10.1051/epjconf/201715000006.

Intel Corporation, “Enabling Impactful DSP Designs on FPGAs with Hard-
ened Floating-Point Implementation (White Paper),”

F. Pantaleo et al., “New Track Seeding Techniques for the CMS Experiment,”
2017.

E. Nurvitadhi et al., “Accelerating recurrent neural networks in analytics
servers: Comparison of FPGA, CPU, GPU, and ASIC,” in 2016 26th Inter-
national Conference on Field Programmable Logic and Applications (FPL),
Aug. 2016, pp. 1-4. DOL: 10.1109/FPL.2016.7577314.

Appendices

128

Appendix A

Integer Division

Consider the inversion of the 2 x 2, diagonal matrix X. This matrix is simple enough

to invert using the analytic solution.

Xlzla Ol_lzi[b 0]:[1/(1 O] (A1)
0 b ab |0 a 0 1/b

The final expression requires fewer processing steps than the intermediate solution,
and allows for finer control over the precision of the two non-zero elements. An
implementation of 1/z is therefore required, which is usually an expensive operation
in the FPGA. The algorithm must also be fast, in order to meet the latency require-
ment. A lookup would be the fastest possible algorithm, but since the divisor is a

25 bit quantity, the cost in BRAMs would be too great. An algorithm using a single
BRAM for a lookup was developed.

The fixed-point divisor z can be expressed as the sum of individual powers of
two as: x = X,2,2" where x,, can be 0 or 1. This sum can in turn be expressed as

the sum of two smaller sums:
[e'¢] m—1
T = Zazn2"+2xn2”:xg+xL (A.2)
n=m n=0

where m bits are used to encode x;. Then:

1 1 1 1 ! —
= = - — (1 + —J:L) ~ TH 0L 5 L (A.3)
r xg+xp Ty <1_|__IL> TH TH TH

Ty

where a binomial series, truncated after the second term was used for the last step.

129

130 INTEGER DIVISION

The value of m, that is the number of bits used for xj, is chosen such that xy uses
11 bits, and therefore one BRAM is used to lookup 1/x% which are stored as 35 bit
quantities. In the implementation a shift is performed such that the most significant
bit of z has value 1. Doing so gives the best precision of x g, and reduces the number
of bits needed to address the lookup by 1 as an msb value of 1 can be assumed. A
corresponding restoring shift is performed on the result. The xy — z, calculation is

performed in LUTSs, and (1/2%) x (zg — x1) uses DSPs. The algorithm steps are:
e Take the absolute value of

Identify position of leading 1 in |z|

Shift |z| to the left such that the msb has value 1

Slice |x| to obtain zy and zp, then in parallel:

— Compute rg — xp,

— Lookup 1/2%

Multiply 1/2% by xyg — zr

Shift the result to the right by the same amount as the first shift

Restore the sign of 1/z

The data type required for the output is defined by max(1/z) = 1/min(x).
Since the greatest precision in 1/x is desired, in the case that min(z) > Isb(z) some
extra precision can be gained using ‘ignore bits’. The number of ignore bits should
be defined as n; = log,Isb(x) — ceillog, min(x), in which case the n; Isbs cannot
contribute to the initial shift, and the max(1/x) value can be set to 1/min(x) rather
than 1/Isb(x).

The configuration used for the Level 1 track finding, with min(z) = 25 x Isb(z)
the division algorithm has a worst case accuracy, defined in equation A.4, of 16 bits.
The worst case accuracy is observed for the largest divisors, and with small divisors
the accuracy is as good as 29 bits (not counting instances of power of two divisors,

where the result is exact).

1
accuracy = — log, <1 - x—) (A.4)
T

INTEGER DIVISION 131

A.0.1 Floating Point

The algorithm can also be modified for floating point quantities. A floating point
quantity x is represented as x = m - 2¢ for a mantissa m such that 1 < m < 2, and

exponent e. The inverse of x is therefore:

1 1
= .9 (A.5)

T m

Using IEEE 754 standard floating point formats, mantissas are normalised such
that a leading value of ‘1’ can be assumed. Denormalized values are not supported
by this implementation. The above algorithm is therefore modified to skip the
bit shifting steps, since the mantissa is already appropriately aligned. The new
exponent must be calculated separately, and is simply the negative of the original
exponent. Unusually, this algorithm is faster for floating point variables than for

fixed point.

