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We consider type IIB SL(2, Z) symmetry to relate the partition functions of different 5d supersymmetric

Abelian linear quiver Yang-Mills theories in the Q-background and squashed S° background. By Higgsing
S-dual theories, we extract new and old 3d mirror pairs. Generically, the Higgsing procedure yields 3d
defects on intersecting spaces, and we derive new hyperbolic integral identities expressing the equivalence

of the squashed S* partition functions with additional degrees of freedom on the S! intersection.
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I. INTRODUCTION

One of the most beautiful features in the family of 3d
gauge theories with N/ = 4 supersymmetry is the existence
of mirror symmetry [1]. When 3d supersymmetric gauge
theories admit brane constructions through D3 branes
suspended between (p, g) branes [2-6], mirror symmetry
can be understood from the SL(2, Z) symmetry of type IIB
string theory. From the QFT perspective, mirror symmetry
is deeply related to S-duality of the boundary conditions in
4d N = 4 supersymmetric Yang-Mills theory (SYM) [7],
and for Abelian theories it can also be traced back to the
existence of a natural SL(2,Z) action on path integrals
(functional Fourier transform) [8,9]. For non-Abelian
theories, this action can be implemented at the level of
localized partition functions [10,11]. Moreover, the class of
3d N = 4 theories can be deformed in many interesting
ways to N =2, such as the inclusion of masses, Fayet-
Hiopoulos (FI) parameters for Abelian factors in the gauge
group, or superpotential terms. While the reduced super-
symmetry implies a weaker control over the dynamics,
mirror-like dualities are known to exist for a long time
[12—14]. Lately, this has been a very active research field,
and significant progress is made possible thanks to the
careful analysis of (monopole) superpotentials [15-22]. In
many cases, the IR equivalence of proposed dual pairs has
been tested using the exact evaluation of supersymmetric
observables through localization, such as the (squashed) S*
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partition function [23,24]. In fact, over the past few years,
the results of supersymmetric localization (see, e.g., [25]
for a review) have been systematically exploited to predict
and test dual pairs.

In this paper, we continue the study of 3d dualities
inherited from the SL(2,Z) symmetry of type IIB string
theory. Our strategy is to consider first 5d /' =1 SYM
theories with unitary gauge groups engineered by (p, ¢)-
webs in type 1IB string theory in which the SL(2, Z) action
can be manifestly realized, for instance, through the
exchange of D5 and NS5 branes (a.k.a. the fiber-base or
S-duality [26,27]). Second, we engineer codimension 2
defects of the parent 5d theories by the Higgsing procedure
[28,29], and in simple configurations we can identify
candidate 3d mirror pairs (this is the perspective also
adopted in [30-32]). In order to be able to explicitly test
their IR equivalence through the exact evaluation and
comparison of the partition functions, we focus on 5d
Abelian linear quivers in which the instanton corrections
can be easily resummed [33]. In fact, the fiber-base dual
picture of such theories provides a very simple duality
frame for the resulting 3d theories, which look free. Our
reference example is 5d SQED with one fundamental and
one anti-fundamental flavors and its fiber-base dual. From
this very simple example, we can already extract nontrivial
dualities for 3d non-Abelian theories. One of our main
results is indeed a non-Abelian version of the basic SOED/
XYZ duality. Remarkably, this duality has implicitly
appeared in [34] (at the level of the squashed S3 partition
function) as an intermediate step to test the mirror dual of
(A, Ay,_) Argyres-Douglas (AD) theories reduced to 3d,
which has been shown to follow from an involved cascade
of sequential confinement and mirror symmetry [20,21]
starting from the 3d reduction of the 4d “Lagrangian”
description [35,37]. Here, we provide a first principle
derivation of this crucial bridge from the 5d physics
viewpoint.
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Another motivation for this paper comes from the recent
studies of supersymmetric gauge theories on intersecting
spaces [38—44]. In our case, we are interested in pairs of 3d
theories supported on two codimension 2 orthogonal
spaces in the ambient 5d space (which we take to be either
the Q-background Cﬁ, -1 X S! or the squashed S° [45-55])),
interacting along a common codimension 4 locus (S')
where additional degrees of freedom live. A natural
question is whether 3d mirror symmetry survives in these
more complicated configurations. Remarkably, we are able
to generalize known dualities to this more refined setup too
by studying the relevant compact and noncompact space
partition functions using the integral identities descending
from the fiber-base duality, up to some subtleties inherent
to intersecting theories [36].

The rest of the paper is organized as follows. In Sec. II,
we review instanton partition functions of 5d Abelian linear
quiver theories on Ci (1 X S! through the refined topo-
logical vertex, exploiting their (p, g)-web realization in
type 1IB string theory or M-theory on toric Calabi-Yau
3-folds. In particular, the slicing invariance of the refined
topological vertex implies the equivalence of supersym-
metric partition functions of different looking field theories
(duality frames) associated to the same string geometry.
Two of the duality frames are exactly related by S-duality in
type 1IB, but we also discuss another one. In Sec. III,
we extract candidate 3d mirror pairs by following the
Higgsings of the parent 5d theories across different duality
frames, and compare the resulting partition functions. For
special Higgsings, the 3d theories live on a single compo-
nent codimension 2 subspace in the 5d ambient space, in
which case we reproduce known results and propose a new
mirror pair which is a non-Abelian version of the basic
SQED/XYZ. However, we show that generic Higgsings
produce 3d/1d coupled theories which live on distinct
codimension 2 subspaces mutually intersecting along
codimension 4 loci, and we generalize and test the dualities
in these cases too. In Sec. IV, we discuss further our results
and outline possible applications and extensions for future

research. In Appendix A, we collect the definitions of the
special functions which we use throughout the paper. In
Appendix B and C, we present few technical definitions
and derivations. In Appendix D, we collect useful infor-
mation and notation of the refined topological vertex.

II. 5D INSTANTON PARTITION FUNCTIONS

In this section, we review the instanton partition func-
tions of 5d Abelian linear quiver theories with unitary
gauge groups in the Q-background, usually denoted by
Ci 1 X S!. The geometric engineering of these theories

through (p, ¢)-webs in type IIB string theory or M-theory
on toric Calabi-Yau 3-folds [4-6,56-58] allows us to
perform the various computations using the topological
vertex formalism [59-62]. In this paper, we mainly follow
the conventions of [63], summarized in Appendix D. In a
nutshell, in any toric diagram there is a frame in which one
associates internal white arrows which point in the same
(preferred/instanton) direction and correspond to unitary
gauge groups, with the ranks determined by their number in
each segment (one in this paper); consecutive gauge groups
are coupled through bi-fundamental hypers, while non-
compact white arrows correspond to (anti)fundamental
hypers.

Our reference examples are the diagrams listed in Fig. 1.
By explicit computation, it is easy to verify that the
associated topological amplitudes correspond respectively
to the instanton partition functions of: (i) the U(1) theory
with one fundamental and one antifundamental hypers
(SQED); (ii) the theory of four free hypers and “resummed
instantons,” which will be simply referred to as the “free
theory”; (iii) the U(1) x U(1) theory with one bifunda-
mental hyper. Note however that, although the case (i) and
(iii) can be precisely identified with conventional 5d gauge
theory partition functions, the case (ii) involves contribu-
tions from nonconventional matter.

The first diagram, corresponding to the U(1) theory, has
amplitude

Q1,1 Q1,1 Q1, M1
— — —
YQo, A Qo, A Qo, A
—_— — —
Q2,2 Q2,2 Q2, A2

FIG. 1.
one bifundamental hyper multiplet.

From left to right, the diagrams correspond to 5d U(1) gauge theories with 2 hypers, a free theory, and U(1)? quiver theory with
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where p = qt~!. The prefactor in front of the instanton sum can be identified with the perturbative or 1-loop contribution
from the fundamental hypermultiplets. We refer to Appendix A for the definition of g-Pochhammer symbols and
Nekrasov’s function.

The second diagram, if read naively corresponding to the four free hypermultiplets, has amplitude given by

ZResummed(QO’ le QZ)
M1 (0" 4.7 o (Qop" /%3 4. t71) o (@001 Q2925 q. 171 ]

We note that the factors in the bracket captures the contribution from four free hypermultiplets, however, the resummation
of instantons has also produced a factor

Zz:

(2.2)

ZResummed(QOv Ql s QQ) = (QOQl;qv t_l)oo(QOQZP; q, t_l)oo’ (23)

in the numerator, which does not have straightforward interpretation in terms of conventional 5d supersymmetric matter
content. Here, we simply take the expression (2.2) as a computational result. We refer the readers to [64,65] for more detail

on these nonconventional matter, which are termed “non-full spin content.”
Finally, the third diagram, corresponding to the U(1) x U(1) theory, has amplitude

Zy = [( : ]2:(1’_1/2&)1‘(P_l/zQz)/12

Qopl/z;q,t_l)oo Tidn

The prefactor in front of the instanton sum can be identified
with the perturbative contribution of the bi-fundamental
hyper.

The above computation can be generalized to more
complicated toric diagrams. For instance, a strip of 2N
vertices can be associated to three QFT frames, corre-
sponding respectively to: (i) the U(1)¥=! theory coupled
to N — 2 bifundamentals, one fundamental at first node
and one anti-fundamental at last node; (ii) the theory of
2N free hypers and “resummed instantons”; (iii) the
U(1)" theory coupled to N — 1 bifundamentals. A similar

NS5

NS5
Db

S-duality

>

D5
NS5

NS5

Ny, (Qop%q.17h)
Ny (g 7N, (1 g.t7h)

triality relation among distinct gauge theories has been
recently obtained also in 6d [66,67].

A. Duality frames

The three configurations in Fig. 1 share the same toric
diagram. In fact, they all give equivalent amplitudes. Let us
start by focusing on the first two diagrams in Fig. 1. They
can be understood as two different (p, ¢)-webs related by
S-duality in type IIB string theory, under which D5 and
NS5 branes are exchanged. Upon a clockwise rotation
by 90 degrees, the S-duality is represented by Figure 2.

NS5

D5

Db

Db

D5

NS5

FIG. 2. S-duality between the two (p, g)-webs.
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Since D5s correspond to horizontal (1,0) branes, NS5s
correspond to vertical (0,1) branes and diagonal segments
correspond to (1,1) branes, the duality map is indeed
represented by the S element in SL(2,Z) acting on the

|

2= I,

l=1

0, )
Qp'/z,qt >] [”(q—l)(t—w(“Qz“Ql

(p, q) charge vectors. In this particularly simple example,
we can explicitly check the invariance of the amplitude. We
can expand Z; and Z, in series of Q,, and both Z; and
Z, equal

(@)'20+0,0)+ -

1/2)

2 _(ql/zQz—t1/2>(t1/2Q1 —q
[H(g P g >] [l T—a(=

confirming one of the predictions. More generally, (p, g)-
webs constructed by gluing vertically N copies of the left
diagram in Fig. 2 or constructed by gluing horizontally N
copies of the right diagram are S-dual to each other and
hence give equivalent amplitudes: the former is nothing but
the U(N) SQCD, while the latter is a linear U(2)¥~! quiver
with bifundamental hypers between gauge nodes and one
fundamental and one antifundamental hypers at each ends.

The third duality frame is related to the first one by a
clockwise rotation by 45 degree of the (1,1) branes, which
acts as the STS™! element in SL(2, Z) on the (p, q) charge
vector. One can verify that Z; = Z, = Z3 using the
identities of [63].

The map between the Kéhler parameters of the string
geometry and the physical masses and coupling constants
of the gauge theory depends on the duality frame. First of
all, it is convenient to introduce exponential variables

— 27 — 27
q=em/e,’ t=e mﬁez’

Q],Z = eZﬂi/}am’ QO = 627!i/300’

(2.6)

where # measures the S! radius. In the frame corresponding
to the U(1) theory, we can identify

o
a=—i(E—=M), a,=i(S—M), 218

00(0,0,)*=e
(2.7)

where M, M are the 5d fundamental and antifundamental
masses, X is the v.e.v. of the vector multiplet scalar and g is
the YM coupling.

Similarly, on the U(1) x U(1) side we can identify

_Qﬂﬂ&

ag =1i(Zyp — M), p 20, =e i, (2.8)

where My;; is the 5d bi-fundamental mass, £, =X — %,
and X, are the v.e.v.’s of the vector multiplet scalars and
g1, are the YM couplings.

Qo+"'] = 25,

B. S° partition functions

In this section, we use the refined topological string/
Nekrasov partition functions in the various duality frames
to write S° partition functions related by type IIB SL(2, Z)
transformations. The study of compact space partition
functions is useful because one can get rid of subtleties
related to boundary conditions, at the price of introducing
an integration over some modulus. The round §° =
{(z1,22,23) € C*||z1* + |z2]* + |23/> = 1} admits a toric
U(1)? action given by z, — €<z, Denoting by e, the
corresponding vector fields, the vector R = e; + e, + e3 is
the so-called Reeb vector, and it describes the Hopf
fibration U(1) - S° — CP?. A useful generalization is
obtained by replacing the Reeb vector with R = we; +
wrey + mwzes (w; € R.g), and the resulting manifold is
referred to as the squashed S’ and the @’s as squashing (or
equivariant) parameters. We refer to [68] for further details
of this geometry.

The partition functions of 5d N' = 1 gauge theories on
the (squashed) S’ can be computed via localization. In the
Coulomb branch localization scheme [51-54] (as opposed
to the Higgs branch scheme [38,44,69]), the result is given
in terms of a matrix-like integral over the constant vector
multiplet scalar in the Cartan subalgebra of the gauge
group. It is known that the integrand can be constructed by
gluing three Nekrasov partition functions [51,54,68,70,71],
one for each fixed point of the toric action on CP?, with
equivariant parameters €;, and radius § of the -back-
ground related to (complexified) squashing parameters. For
each of the fixed points labeled by a = 1, 2, 3, where the
space looks like a copy of Ci,t“ X Sb, we can choose

| 1 2 3
€] W+, W)+ w3 W +w;
(2.9)
€) [OF] (] (1))
p 1/w, 1/w, 1/ws

On the U(1) theory side (frame 1), the product of
Nekrasov partition functions yields
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e —2(Byy (—i(Z—M)+9)+ B33 (i(Z-M)+2))

|Z |3_ w ()
=S E(E - M) + 9)8,G(Z - M) +9)
x| ZEaS (9 2. M M), (2.10)

where = w; + @, + w3 and |-|* denotes the product
of three objects with parameters related by Table (2.9).
Notice that the 1-loop contributions have fused into triple
Sine functions (and exponential factors) by using the
definition (A13).

On the free theory side (frame 2), the product of ¢-

Pochhammer symbols yields

3
Z (B3 (-i(Z-M)+4)+ B33 (i(2-M)+))
5 1
S3(<i(Z = M) +%)S:(i(E~-M) +9)
53(isti+i(M+M) —iz)
X (2.11)
sy (£5E L0 - M) +9)
Using Z; = Z, (type 1IB S-duality), after removing

common exponential factors on both sides and integrating
with the classical action, we can obtain the identity'

ZResummed(Z, M, M, g) =¢

Zsoep = Zi (2.12)

free’

where we defined the squashed S partition function of the
SQED by

s 1-1 ~
Z?QEDE/dZZEIQED(g; Z)ZSQ(E)DP(Z’ M, M)

ZX 1 .
_ 80 32
ZngED (g, 2) = w003 42 ,
/1 1
Zl—lOOp Z,M,M — ) ’
SQED( ) S3(~i(Z = M) +2)S5(i(Z - M) +2)
(2.14)

and the “Fourier-like transform” of the squashed S°
partition function of free theory by

free

. SIS it =) -
7S = /dze Fojoe ZResummed(Z’ M.M, g)

ZiOP (T, M, M, g) =

free

As for the Q-background case, we simply take this result as
a computational fact and we do not attempt to give here a
gauge theory interpretation, which is not needed for the
purposes of this paper.

On the U(1) x U(1) side (frame 3), we can write

e—%333(1212—iMbir+%)

S3(1(Z1p = M) +5)

23 = 755

inst|U(1)

(91192§212»Mb1f) %,
(2.17)
and in order to reproduce the squashed S° partition function

we need to bring the exponential factor on the other side
and integrate with the classical action, namely

"The identity is actually stronger because it is really an identity
even before taking the integral.

X Zine (£, M, M, g), (2.15)
|
873 (IM-9)(iM-2) 8 i ~
Farwgy HS ( —iX + Ll + = (M + M)) )
¥ g 2
1
S';(—I(Z — M) + %’)S3(1(Z — M) + %)
1
X — . 2.16
[} s (2.16)

ZIS;(I)Z E/d21d2223(1)z(91,92§21,22)252?;)5(212,1‘413&)

‘Zlnst|U (1)? (gl’g2;2127Mbif>|3, (218)
el
i 2ta
ZCI()(gvaZsZIaZZ)E |wyw3 2 2
- 1
Z5% (T, M) = (2.19)

um S3(i(Zp2 = Myig) +%)
Substituting Z; = Z, = Z; and using the dictionary
(2.6)—(2.8), one can obtain two more identities. In the
following, we are going to focus on first one, namely
type 1IB S-duality in relation to 3d mirror symmetry.

III. MIRROR SYMMETRY

In this section, we will follow type IIB S-duality acting
on 5d gauge theories, and extract mirror dual partition
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N D5

NS5

Higgsing

NS5 NS5 NS5

FIG. 3.

A

NS5

N
1 1) 1
nt) D3 Higgsing nY D3 ”(1 ' D3
n? D3’ @ Dy n? Dy
NS5 NS5 NS5 NS5

The brane moves of a simple type of Higgsing applied to a 5d linear quiver gauge theory. The NS5s fill the 012348 directions,

while the D35s fill the 012347 directions, hence 78 represents the (p, ¢)-plane (here we are slightly simplifying the picture). The D3s are
stretched along the 6 direction and fill also the 012 and/or 034 directions, hence they all share a common direction and are supported on

two orthogonal planes inside the 5-brane world volumes.

functions of 3d gauge theories defined on the squashed S3
or on the intersecting space S?l) U 8?2) C S°. The spheres

S?a> are submanifolds associated to the equations z, = 0,
a=1,2,3. We will focus on S?l) and S?z), which clearly
= 1. We will
denote the squashing parameters of S?I) and 8(32) by by =

V@y/w3 and b(y) = \/; /w3 tespectively, and we will set

Qo) = ba) + b(‘al) as usual. We will review few aspects of

intersect transversally® along the circle |z;

gauge theories on this type of geometries in the following,
while for further details we refer to [39,40].

A. Higgsing, residues, and mirror symmetry

Higgsing [28,29] a higher dimensional bulk theory is an
effective procedure for accessing lower dimensional super-
symmetric theories that preserve half (or fewer) the super-
charges that the bulk theory enjoys. More precisely, the
resulting lower dimensional supersymmetric field theories
are worldvolume theories of codimension 2 Bogomol ' nyi-
Prasad-Sommerfield defects inserted into the bulk theory.
The procedure can be more easily described when there is a
(flat space) brane construction. If the 5d theory 7" admits a
construction in terms of an array of DSs suspended between
parallel NS5s, for example when 7 is a unitary linear
quiver gauge theory, then one type of Higgsing amounts to
aligning the outermost flavor D5 with the adjacent gauge
D5, and subsequently pulling the in-between NS5 away
from the array while stretching a number of D3s. See Fig. 3
for an example. At the level of the compact space partition
function, Higgsing 7 implies taking the residues at certain
poles of the partition function as a meromorphic function of
mass parameters. In practice, when the compact space
partition function is written as a Coulomb branch integral,
this is often equivalent to computing the residues of the

*The intersection is transversal from the perspective of the two
C’s in the two individual tubular neighborhoods C x S' C
S?l)or@)' Put differently, the two complex planes intersect only
at the origin.

integrand at a collection of poles of the perturbative
determinant as a function of the v.e.v.’s of the scalars in
the vector multiplet(s).

Let us consider the partition function of the SQED on the
squashed S° expressed as an integral as in (2.13). In the fol-

lowing we will focus on the poles of Zé‘(lz‘g’Dp(Z) of the form

i(Z-M)+w/2=-nVo, —nPa, - nPaw;,

n'® e 7. (3.1)
It is sufficient to study the cases with n®) =0 as they
already demonstrate many core features of more general
cases. The cases n®) # 0 are a straightforward generali-
zation. As was extensively discussed in [40], the residue of
the integrand can be organized into the partition function of
a 5d/3d/1d coupled system. Indeed, upon taking the
residue, a few things happen which we now summarize
(we refer to [40] for a full account, and to Appendix B for
the sketch of a slightly different derivation). The non-
perturbative factors and the classical factor are simply
evaluated at the pole 2* = M +iw/2 +inMw, +in®w,.
Because of the different S! periodicities at the fixed points
|z,| = 1 labeled by @ =1, 2, 3 as in Table 2.9, the n(!)
dependence in the first instanton partition function drops
out, and it only depends on n(?, and similarly the second
depends only on n!), while the third depends on both.
Therefore, among the three instanton partition functions
associated to the three fixed points, two simply reduce to
the vortex partition functions of two SQCDAs with gauge
groups U(n?®)) and U(n(")) supported on (C,-1 x S') ;) and
(Cq x Sl)(z) respectively, while the remaining one encodes
the vortex partition functions of the two SQCDA,3 now
supported on (Cy x S') 5 and (C+ x S') 3 respectively,
and their intricate interaction along the common S' at the
origin. Schematically, we have the reduction

*We refer to the U(n) SYM theory coupled to ; fundamental,
antifundamental and 1 adjoint chiral multiplets with SQCDA.
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Zr (D255

T3 .
mst\SQED( )|3 ZngED(Z )

CFIX§

( CyxS!
vortex|U(n?)

) ( S!(+“extra”)
)7 (1) A vortex|U(n®) “int|U(n?

Ci-1 xS! CyxS!

YxU(n) vortex|U(n(”))(3)( vortex|U(n“)))(2)’ (32)

C2xsl s
<Zin>|\XU(l)(2 >)(I) Z

where the “extra” factors are remnants that will eventually
cancel out in the final result. Also, the residue of the 1-loop
factors can be simplified to
1-loop
Res ZsoED (%)

=Z5uM =M)x -, (3.3)

where Z5,(M) = S3(iM 4+ @/2)~" denotes the 1-loop
determinant of a free hyper of mass M on the squashed
S°, while the dots denote 1-loop determinant factors similar
to those which would arise in a Higgs branch localization
computation of SQCDAs on each S3 [72,73], plus inter-
action terms. Because of the form of the q, t parameters at
each fixed point and the 3d holomorphic block factorization
of $? partition functions [74-76], one can readily under-
stand that the above reduction describes the partition
function of the combined system of two SQCDA on
8(31) and S?z), interacting through additional degrees of
freedom at the common S'.*

To make our life easier when dealing with the defect
theories, itis convenient to recast the above Higgs branch-like
representation of the partition function sketched above, into a
Coulomb branch-like integral, making the structure of the
world volume theories manifest. This is possible thanks to
the following nontrivial observation: one can reorganize all
the (intricated) factors into an elegant matrix integral, namely

Proposition 1 (residues).

1-1 2!
ER_?’XS*ZEIQED( )ZSQ(E)S( NZ5 s

3
inst|SQED (2) |

ZngED(M‘f‘ iw/2)Z§M(M - M)

2 n” 3
/ S(1)
U(n<l
a=1 a=1 27[1”

§3

X Zlgd chiral (0(1) ’ 0<2) )ZU((ZZ,(Z))_SQCDA (6(2))

))-SQCDA U U(n?))-SQCDA.

>)-SQCDA(6(1>)

= 250Uyl (3.4)
The explicit expression of the integrand of the matrix
model on the right-hand side (r.h.s.) can be found in
Appendix C, and the definition of the integral is given
by the Jeffrey-Kirwan prescription discussed in [40].

*Notice that a generalization to the three-component subspace
§?l) U 8?2) U §?3) C S® features in the Higgs branch localization

on S° [44].

o C2xs! (v
(1 (= ))<3) (stl\uu) (= )>(2)

|
The proof of this equality relies on formal manipulations
of Nekrasov’s functions and brute force computational
checks, as briefly explained in Appendix B

To summarize, the result of the residue computation can
be naturally interpreted as the partition function of a free
hypermultiplet on the squashed S° in the presence of two
Bogomol’nyi-Prasad-Sommerfield codimension 2 defects

supported respectively on S?l) and 8?2) which intersect

along a common S' = S?” N S?z). Each defect is charac-

terized by its worldvolume theory, being 3d N =2
U(n@)-SQCDA with a = 1, 2 respectively. It is crucial
to emphasize that the two defect worldvolume theories
interact at an S', which harbors a pair of additional 1d
N = 2 chiral multiplets transforming in the bifundamental
representation of the two 3d gauge groups. Figure 4
summarizes the quiver structure of the 5d/3d/1d coupled
system. Each SQCDA on S?@ contains one fundamental,

one antifundamental and one adjoint chiral multiplet, of

gdj) respectively. The FI term is

turned on with coefficient {(,). These parameters can be

identified with the 5d hyper multiplet masses and gauge
coupling according to the dictionary

masses m@, 7@, and m

m@ =1, (M+%(a}+a)a)> ,

ﬁl(a) = j'(Jt (M +%(w - wa)) ’

(@) 8122,

a .
madj = lw(lj’(ﬂ é(a) = 7 s

3
Sty 1] Sk
VS Sy
n® ) stss (n®
—bh—
1

FIG. 4. The quiver structure of the 5d/3d/1d theory describing
the 5d theory in the presence of intersecting codimension 2
defects. The hyper or chiral multiplets supported on spheres of
different dimensions are indicated by their colors.
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where 1, = \/w,/®,w,03. The 3d ch1ra1 multiplets ¢, §
couple to the bulk hyper multlplet qbulk via cubic super-

potentials ¢(1)G1)Gvuik @a0d g(2)G(2)Gbux- leading to the mass
relations

i
bym') = baym® == (bfy) = b)),

theories are also related by (b)) = (b{),), indicating
that the two theories also share the same U(1) topological
symmetry.

Now we are ready to extract candidate 3d mirror
pairs. The two sides of the fiber/base duality between
frame 1 and 2 share the same poles in the integrand. In
fact, the integral equality trivially follows from the

b(l)m(l) _ b(z) M2 — _i(bzz _ b21 ), equality of the integrand, and therefore by taking the
2@ M residue at the same pole ¥ — X* on both sides (and
b(l)m;(i(lij? _ b(z)mi(i(zi; _ i(bzz) _ b%l))' (3.6) dropp'in.g the common fa.c'tors), we extract a family.of
nontrivial integral identities labeled by non-negative
In other words, the theories on S%l) and S%l) share the  jntegers n(!) and n®, namely
same U(1) flavor group. The FI parameters in the two
|
Proposition 2 (master identity).
70" U(n(1)-SQCDA U U(n®)-SQCDA
87° . 167°
=exp [2ﬂ (=i(M + M) + o)(nWa, + nPaw,) — z—ﬂn(l)n(z)
g w13 g w3
5 ﬁﬁl S, (i(M = M) + @ + kay|ws, »,)
1 Sa(=(+ D). @, [ S5 (E350 1§ (8 — M) + % + kargls. @)
5 non® o TTLS, (ig’”+ (M—-M)+2+ (k= D, + (£ = Dw;|o3) 57)
k=1f=151 kwl _pr2|w3) ((M_M)+w+(k_1)wl +(l’ﬂ_1)w2|w3)’ '
|
where y = 1, 2 when a = 2, 1. We refer to Appendix A 2% U(1)-SQCDA
for the definitions of the double Sine and single Sine Sb(ig + M)
functions. Notice that this mathematical identity, which 2 2470 _
we will refer to as the master identity, is new and = [e-mlmrim) g Q Tom—iit é,_m m
provides a huge generalization of the hyperbolic iden- 2 2
tity in Theorem 5.6.8 of [77]. The proof relies on m— 1
formal manipulations of Nekrasov’s functions and X Sp <+C —Tﬂ . (3.8)
(1)

brute force computational checks. We will shortly see
that these integral identities, derived from type IIB
S-duality, capture 3d N =2 mirror symmetry on
intersecting S*’s.

B. Warming up: SQED/XYZ duality

We begin with a warm-up exercise to see that the well-
known Abelian mirror symmetry between 3d N =2
SQED and the XYZ model arises from the integral
identities discussed above. For this, we consider n!) = 1
and n(?) = 0. Upon substituting in (3.5), the master equality
(3.7) implies

>The 5d hyper multiplet has two scalars gy, Gouix- It can be
decomposed into two 3d N =2 chiral multiplets, into which
Goux and Gy, enter separately.

We refer to Appendix A for the definition of the double sine
function. This integral equality is nothing but the mirror
symmetry relation between 3d N = 2 SQED and the XYZ
model at the level of S?I) partition functions. As expected,
the complexified masses of the three free chiral multiplets
in the XYZ model, namely (suppressing the label (1))

m—nm 10 -
mx’yEié— 2 —7, my =m—m, (39)
satisfy
mx+my+mz = —IQ, (310)

signaling the presence of the superpotential XYZ. On the
SQED side, the additional 1-loop factor signals the pres-
ence of a decoupled chiral multiplet f; interacting with the
adjoint chiral @ through the superpotential f;®
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C. Generalization: Intersecting SQED/XYZ duality

Now we are ready to generalize the mirror symmetry relation between the SQED and XYZ models to intersecting

spheres. Dropping from both sides the common 1-loop factors like

_1 55(10/2 + mygj) (o> the master equality (3.7) with

n) = =1 implies a more involved integral identity, namely

S{)USh)
Zgor * U SQED

sini—”(b mg(l) + b

2

siniz(b(ym adJ ) 4+ b

where the masses in the XYZ models are defined as usual
by (we suppress the label (@)

m—rn 10

mX,YEiC— ) —7,

my;=m—n. (3.12)

The Lh.s. of the above identity is the partition function of
two SQED on §31) and S coupled through a pair of 1d
bi-fundamental chiral multlplets along the common S!
intersection. The r.h.s. can be naturally 1nterpreted as the
partition function of two XYZ models on S and S(

coupled to a pair of 1d free Fermi multiplets and another
pair of 1d chiral multiplets on S'. The fact that the masses
of the 1d multiplets are combinations of those of the 3d
multiplets indicates the presence of a certain 1d super-
potential that involves both the 3d and 1d chiral multiplets.
As a result, the 1d multiplets are charged under the 3d
global symmetries, in particular, the Fermi multiplets are
charged under the 3d topological U(1) symmetry.

Some remarks follow. In the previous subsection, the
integral equality reproduces the well-known 3d mirror
symmetry between SQED and XYZ model, confirming
at the level of partition function that the SQED flows to the
free XYZ model as the IR limit. In this subsection, our
derived integral identity shall be viewed as a piece of
mathematical evidence from which we identify a possible
flow from the gauge theory on the intersecting space S?l) U

S?z) to a free theory on the same space. However, one

should also note that surprises arise in intersection theories
[36], which might bring subtleties to such naive RG flow.
We leave detailed investigation of these subtleties to
future study.

D. Generalization: Non-Abelian SQCDA/XYZ duality

We can now move to discuss more interesting
examples, generalizing the previous Abelian examples to
non-Abelian gauge groups. Let us start by considering
n) > 0, n =0, in which case the master equality
specializes to

adj) Sin%ﬂ (b(l)(mZ + madj)

2 . . .
X C_”ig(m+'ﬁ)sb <1Q+ le) Sp <1Q+ mx) Sp (1Q+ mY>:| 5
(1:[1[ 2 2 2 (@)

+ b(z)(mz + myg)?)

(3.11)
|
Z°nU(n)-SQCDA
= |: —mind (m+i) Hsb( + m(pﬂ) b<§ + mzﬂ)
xsh<g+mxﬂ)sb<g+myﬂ)] s (313)
2 2 (1)

where we used the shorthand notations (suppressing again
the label (V)

m—m 1Q
mXﬂ:C_T_T_ﬂmadJ’

m—m i
myﬂ=—C—T—?_(n_1_ﬂ)mady
Mz, =M — 1+ PNy, m@ﬂz(ﬂ+l)madj- (3.14)

For convenience, we can reorganize the following products

1
Hsb< +m®ﬂ> I 5,(10/2 — pmyg; —10Q)”
(3.15)
B sb(iQ/2+m—l’7l+(l’l—1)madj)
Hsb( tm Zﬂ)_Hg—%sh(ig/z—m+ﬁ1—umadj—iQ)’
(3.16)

and move the denominators to the Lh.s. of (3.13). Defining
the leftover mass on the r.h.s.

My =my,_1) =m—rni+ (n—)my;, (3.17)
one easily finds the masses satisfy
my, + my, +mz; = —iQ, u=0,...,n-1, (3.18)

which is compatible with the superpotential Z” : X,Y,Z

On the Lh.s., the additional 1-loop factors are compatlble
with free chiral multiplets §, and y, interacting with the
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adjoint chiral @ and the quarks ¢, § through the super-
potential Y =5 y,G®q + Y i_, f, D
The mathematical relation (3.13) has implicitly appeared
in [34] as an intermediate step to test another duality,
involving the SU(n) theory coupled to one fundamental,
one anti-fundamental and one adjoint chiral on the one
hand, and the U(1) theory coupled to n hypers on the other
hand as shown in Fig. 5, which was motivated by the study
of the mirror dual of (A, A,,_;) AD theories reduced to 3d
[20,21]. This duality is simply related to ours by gauging
the topological U(1). Hence, we have physically interpreted
and derived both dualities as 3d N = 2 mirror symmetry
descending from type IIB S-duality.
|

Z°0"0U(n(1)-SQCDA U U(n®)-SQCDA

2 n—1 . .
—mind(m—+m IQ IQ
:H{e ¢(m+ )Hsb<7+m¢”>sb<7

@] — (=D
o,

FIG.5. Another duality that can be obtained by integrating over
the FI parameter, viewed as the “mass” for the topological U(1)
symmetry.

E. Generalization: Intersecting non-Abelian
SQCDA/XYZ duality

It is now straightforward to take the further generaliza-
tion n("), n® > 0. In this case, the master identity yields

i0 i0
EANCIANC )
(a)

a=1 u=0

ﬁl n2et sing (b (myy, — may) V) + by (mx, = ma,) ) +ibY,) +ib7)) (X = Y)
X .

u=0 =0 Sin ﬂi(b<1>m$,1 + b<2)mg3) sin% (b (mz, + m@y)(l) + by (mz, + me,)?)

where we used the same shorthand notations as before. We
can reorganize the factors as we did in the previous
subsection, and the difference compared to the previous
result (besides the doubling of all factors) is the presence of
the additional 1-loop contributions from the 1d matter
living on the S(!) intersection, represented by the last line.
This picture provides the generalization of the non-Abelian
SQCDA/XYZ duality to the more complicated geometry
involving 1d degrees of freedom, and we have shown that it
also descends from type IIB S-duality.

It is worth noting that one can further integrate over the
FI parameters ;) to obtain the intersecting space version of
the SU(n)-SQCDA/U(1) duality mentioned at the end of
the last subsection. However, the fact that the FI parameters
on each component space are related by (b)) = (b))

FIG. 6. Quiver world volume theories of intersecting codimen-
sion 2 defects following from Higgsing twice. The purple arrows
denote bi-fundamental 1d chiral multiplets, while the blue dotted
lines denote 1d Fermi multiplets.

, (3.19)

[

implies integration with the constraint 5(327", (b7'6q) )+
Z(j] (b‘lo-u)(z)), whose field theory interpretation

remains unclear to us at the moment.

F. Quiver gauge theories

It is possible to generalize the above computations to
quiver gauge theories. As shown in Fig. 3, one could start
from a 5d linear quiver gauge theory and engineer
intersecting codimension 2 defects with quiver world
volume theories by multiple Higgsings. For example, it
is not hard to convince oneself that by Higgsing twice the
5d linear quiver gauge theory with two U(1) gauge nodes,
one will obtain 3d quiver theories of the form depicted in
Figure 6. It is possible to apply the Higgsing procedure by
taking the residues of the resulting partition functions and
their fiber/base dual, and repeat the computations in the
previous discussions. However, the technical computations
are more involved and we do not consider them here
explicitly.

IV. DISCUSSION AND OUTLOOK

In this paper, we have studied a class of 3d A/ = 2 non-
Abelian gauge theories which can be realized as codimen-
sion 2 defects in the parent 5d A/ =1 Abelian gauge
theories, which in turn can be realized in type IIB string
theory. Generically, the defect theories are not supported on
a single component subspace, instead, they live on mutually
orthogonal submanifolds intersecting at codimension
4 loci where additional degrees of freedom live. We have
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considered some implications of type IIB SL(2,Z) sym-
metry for these systems, and we have generalized to this
class of more complicated geometries the known fact that
type IIB S-duality reduces to 3d mirror symmetry. Using
the refined topological vertex, we have been able to test this
idea in simple cases where the parent 5d gauge theory is
simply the SQED with two flavors, while the dual 3d
theories are SQCDA with two chirals and a generalized
XYZ model. Interestingly enough, the QFT/string theory
methods have also allowed us to physically explain existing
integral identities in the math literature, and moreover, to
derive new ones and interpret them as the equivalence of
partition functions of mirror dual theories on (intersecting)
squashed spheres. One should bare in mind, however,
that the field-theoretical interpretation of the intersecting
mirror symmetry requires further investigation due to
surprises/inconsistences hidden within theories on inter-
secting spaces.

Along the lines of this paper, one should also be able to
study more complicated 5d theories and hence derive new
or generalized 3d mirror pairs. As byproduct, one may also
obtain new mathematical identities expressing the equiv-
alence of dual partition functions. Moreover, what we
have discussed in this paper is expected to have a higher
dimensional lift [78] by considering 6d theories engineered
by periodic (p, ¢)-webs [58,79,80] and the resulting 4d/2d
defect theories.

Finally, it is worth noting that the type of 3d/1d defects
that we have considered in this paper appear in the Higgs
branch localization approach to SQCD on S° [44], whose
partition functions are identified with correlators in the
g-Virasoro modular triple [81]. Therefore, another inte-
resting route of investigation would be the study of type 1IB
SL(2,Z) symmetry from the viewpoint of the
Bogomol’nyi-Prasad-Sommerfield/CFT and 5d AGT cor-
respondences [82-96] and the DIM algebra [97,98], whose
representation theory is known to govern the topological
amplitudes associated to toric CY 3-folds or (p, g)-webs
[99-102]. From this perspective, the SL(2,Z) symmetry
group is identified with the automorphism group of the
DIM algebra, and it would be interesting to systematically
study how different g-deformed correlators are related to
each other. In turn, this perspective may give powerful tools
for handling 3d mirror symmetry very efficiently. This
is a topic which deserves further investigations, and in
Appendix D we have collected few preliminary comments
and background material for the interested readers.
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APPENDIX A: SPECIAL FUNCTIONS

In this Appendix, we recall the definitions of several
special functions which we use in the main body. Below, r
is a positive integer, and @ = (wy, ..., w,) is a collection of
nonzero complex parameters. We frequently take r = 1, 2,
3 for concreteness. We refer to [103] for further details.

The multiple Bernoulli polynomials B,,(X|®) are
defined by the generating function

treXt i
M e =i= > B(X|®) -

m>0

(A1)

In particular, we use By, (X|@) and B33(X|@) in this paper,
and they are given explicitly by

X o+ 0} + w3 + 3w 0,

By (X|w) = X + ’
W1 010 6w w,
(A2)
B (X|3) = By(X) = % @it ortos)
01003 2w 0,05
n 0} 4+ @3 + 03 + 30,0, + 30,05 + 3030 M
20,w,03
+— (0] + @) + 03) (0105 + W03 + W301) |
4w wyw3
(A3)
The g-Pochhammer symbols are defined as
(XG0 Q) = H (1=xq\"...q7")
ny....n,=0
whenall |g;| < 1. (A4)

Other regions in the g-planes are defined through the
replacements

1
—-1,.. -1 ‘
47 XG5 g7 ) oo

(5 q1s - 8r)0 = ( (AS)

The multiple Sine functions S,(X|®) can be defined by
the {-regularized product
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5,(x1) =

I

My,..., m, €N
r
i=1

S,(X|@) is symmetric in all w;, has the reflection property
S,(X|@) = S, (0 — X|@)"V"" for o=, + -+ o, the
homogeneity property S,(AX|i@) = S,(X|@) for 1 € C*,
and the shift property

(X + Z miwi)<_1)r71
i=1

(A6)

5,(x1@)
Sr—l (X|é\)) ’

o= (a)l,a),-_l,a),-H,

S/ (X + wil3) =

o). (A7)

The single Sine function S|(X|®) is simply defined as

S1(X|@) = 2sin(zX/w,). (A8)

The double Sine function S,(x|@) enjoys a factorization
property when Im(w,/@,) # 0, namely
S, (X‘c?)) _ e%’Bzz(X\(B) (ezmx/w, : e2riw, /o, )oo

X (e2ﬂiX/w2;e2niw]/w2>oo. (A9)

There is also a shifted version of the double Sine function
which is often denoted by s,(X) where b= +/w,/w,,

related to S,(X|@) by
0, X
2 \/ W1 W) ’

where Q = b + b~!. In terms of the double sine s, (x), the
factorization is rewritten as

S (X|w) = Sb( (A10)

(5]

i i B — .
S) <_?Q 4 X) _ eiBzz(—lX‘b,b 1)(6271'[7X; eZmbz)

% (eznb-'x;ezmb-z) (Al])

00*

Ngi(019"%:4.4)N 15 (0,p"%: 0. 1) 1 1

The reflection property of s,(z) is simply

sp(X)sp(=X) = 1. (A12)

The triple Sine function S3(X|@) = S3(X) also has a
useful factorization property. When Im(w;/w;) # 0 for all
i # j, then

S3(X) = e~#Bu () (en: M0, M) (A13)
1<ij#k<3
The Nekrasov function is defined as
Nu(sat) = [ (1-xqhigi=h)
(i)l
< [ (1= xqmut=te 4 (A14)
(i.j)en

where ¥ denotes transposition of the Young diagrams.

us?

APPENDIX B: DERIVATION OF THE S} 2

1
MATRIX MODEL W

Here we sketch how to derive the matrix model (3.4)
following the argument given above (3.3). The exact equality
between the residue of the S° integrand at the selected poles
(3.1) (with n®) = 0) and the S}, U S}, matrix model is
established in the next section in the notation used in the
main body. See also [40] for another derivation.

We start by rewriting the instanton sum (2.1) using the
manipulations considered in [43]. Shown in Fig. 7 is a large
Hook Young diagram 1 decomposed into an upper-left full
rectangle with exactly r rows and ¢ columns, an upper-right
subdiagram YR with at most r rows and a lower-left sub-
diagram Y with at most ¢ rows. For such a diagram, we
can write the corresponding summand in the instanton
partition function (2.1) as

T (1L=p2000/ ') (1 - p'20,t'q7)

Nﬂﬂ(l;q’t) _NQ)QJ i=1 j=1

X Ap(zyr; q)Aq- (ZYLQt_l)H

<11

(1-tq/=)(1-t'""q7)

(R' a2y /x319) o (MC'H q 2y /st 1)
(bRt~ /2yrs @)oo (@7 MLt QX 213t ) o

i>1

1

o H(tﬂRPI/lex/ZYF;

i (1 =722y /2y) (1= p™ Py /2y )
7)o (q_lﬂLP]/lex/ZyiL; t )

i>1

(1R'P* Qozyr /x:0) e (17" P? Oz /2387 )

: (B1)
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where 77 g are free parameters such that 5 /ng = 1/qf, we
defined
=t g = paqit!TieY, (B2)
and N\ 4 denotes the whole factor beginning in the second
line and evaluated for empty diagrams. The nonperturbative
instanton partition function is obtained as the weighted sum
over A with weight (p~'/2Q), where |1| = 3,4, implies
the total number of boxes in A. The sum can be further
decomposed into a form respecting the hook Young
diagram decomposition as shown in Fig. 7, namely
Y= D ores0 2yiyk, such that r—c=m is a fixed
arbitrary integer expressing a linear relation between r
and c. Note that if we tune p'/>Q, = q 11", the first factor
in (2.1) vanishes, and therefore the instanton sum only
receives non-vanishing contributions from diagrams A
which do not contain the box (n, + 1,n; + 1), i.e., Hook

c

Noi(Q19'% 4. H)Np (020 0. ) _ (1-q7t)(1

YL

FIG. 7. A large Young diagram with subdiagrams Y and YR.

diagrams with 4,, 1 < ny, 4, | < ny: they include all large
hook Young diagrams with an upper-left rectangle of the
shape r = n,, ¢ = n;, and infinitely many diagrams that we
call small hook diagrams. Let us focus on the large Hook
diagrams. In this case we get the simplification

—p!/2Q,tiq)

NM(I; q, t) i=1 j=I (1 - tiqj_1>(1 - tl_iq_j)
L Arlays A 2y t7) pp (P12 010/ 2y @) (a7 mp 201/ 2yt
Noo s (Rt ax/zymi @) (a7t qx 2zt
1
x = : (B3)
:1,:[1 I-p ]/ZZY/P/ZY}‘)(I -Pp 1/ZZY§</ZY/L)
Also, the residue of the perturbative factor in (2.1) at a pole p'/2Q, = q~"1t"2 reads
1 Res,_i(z;q,t~ < 1 L 1
= S ; e ; (B4)
,L[; (2050t (20117, HH 1—q7t Hl T 1>w,.Ul (3 0)eo
Notice that the second factor will cancel against the first factor in the numerator of (B3). We can also set
01 = q“t7p'Pw/x, (B5)
and redefine
2t =g Y S 2,z = bt g > (B6)
so that
Noi(Q:' i ONi0(Q:0'0.) _ YT H (1= a7t (1 = pt~rq Iw/x)
N;(13q.1) Py 1_ttqj N(1 —t' iq )
L Aulay ) (2t I (tnrpw/zye: @)oo (a7 mLPw/2ps 1)
Nog s R/ 2ym: Q) (@7 i/ 2pi b))
1
x - - : (B7)
11;[1 (I-p 1/2ZY}/ZY§)<1 -p I/ZZYIR/ZY;)
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For convenience, we can also set

tnrpw = wg, q ' pw = wp, trx = xR, q nx = X (B8)
so that
Nosl QD50 UN;ol @20 ia:1) _ T =000 b~ra )
Ni/l(l;q’ t) i=1 j=1 (1 _thj_l)(l _tl_lq_])

Al )8 (271 pr (/2 e (01/ 2111 o
N@@ i>1 (xR/ZYF; q)oo (XL/ZY%;t_l)oo

1
. B9
) H (1= pzp/2ye) (1= p~22yr /201 (B9)

i,j>1

Notice that

OEP™200/2yx:9)0(&50) _ OEP™200/ 7413 9)O(&5 )
O(&/zyx: )02 0p3a)  O(&/25x:0)O(EP™2 Q03 )

(p™'2Q0)", (B10)

O(Ep™20 /2y t)OE L) (P20 2503t )O(E )
O(¢/2y1:t7)0(Ep ™00t O(¢/20:t™)O(EP 2003t )

(p7'2Q0)"", (B11)

where ¢ is arbitrary. Since

(p™172Q0) 1 = (p7172Q0) (p71/2 Q)Y (p1/20) ", (B12)

we can recognize the weighted sum over the left and right diagrams [second and third line of (B9)] as the vortex part of the
partition function

b= § Hz‘jjf;{l [ Yoo Vet ) ) = (B1)
= R T Tl ) Tal) T U Ty o

where
T
wE,HGf’;;f%éazgpli%iiIii R v L
Tl 2) ,11 ]Hl (1- p_l/ZZLj/ZRi;(l —p " Pagi/)’ (B17)

and the contour is chosen to encircle the poles6

®We simply integrate the z’s one after the other, starting from Zg,i—r around xg and z; ;_. around x.
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—i YR
i:ZYf:xRtrl Yy

(B18)

—etip—YE
;= e =X g U, R

This corresponds to the block integral [75] of the
SQCDA-U(r) U SQCDA-U(c) theory on [C, xS'|u
[Ci1 x S!], interacting through a pair of 1d chiral multip-
lets in the bifundamental of U(r) x U(c) at the common S!
intersection at the origin (plus superpotential terms). The 3d
FI/vortex counting parameters {7, {g are identified with

p_l/2QO — qCR =t (B19)

Now let us think of C, x S' and C;-1 x S' as two halves
of two squashed S*’s, namely

3
Sty
3
S@)

~ [Cq X Sl}#s[Cq X Sl],

~ [Cir x S'J#¢[Cpr x S, (B20)
where § and { are related to q and t by the S element in
SL(2, Z) performing the boundary homeomorphism [75],
and form the partition function on the intersecting space
S?l) U 832). In order to do that, it is convenient to para-
metrize the variables as

q= eZmZ—;’ -1 = eZﬂlZ}—i’ p= 62771%’
el o Ri — e XLr
gLj=¢em 7, IRi =€ XLR =€% 7,
27 2ni 2zim
WL.R = e L<R’ p_l/zQO = e(ugé, 6 = 073_‘.

(B21)

Then we can multiply (B13) with another left block integral
with @3 <> @, and another right block integral with
@3 <> ;. This will convert

(. - q)oo — S2( |CU1 6()3)6 2322( ‘ﬂ)l.w3),
(. .. ;t—l)oo N S2< |w2 603)6 LEE \02-03),
( 1q) = e—UFBzz |m|,m3)’

)
) — e—imBn (- |wr.m;)

CICE (B22)
Then the matrix model we are interested in becomes

S} S c S
77 Y /d ZLerRch (ZL) lloop(ZL)

th<ZL’ZR>Z I)<ZR>Zl 100p<ZR> (B23)

where

ZSE (Ze) 852(Zri — Zgjloy. w3)
1-loop \““R SZ(_w2 + Zg; — ZRj|a)1’ 0)3)

I<i#j<r
o S (Wr = Zgi|wy, w3)
i Sa(Xg = Zrilwy, w3)

(B24)

Z§3 ) $2(Z1i = Zyj| @, @3)
1-loop \~~L S2(_a)1 —+ ZLi - ZLj|a)27 6()3)

1<ij<c

o Hsz Wi = Zyj|w,, w3)
$» XL —ZLJ|602,603)

(B25)

.
Z.(Zg) = (=D (@ o tos)

xe g (Wr=XR)(Wr+Xg—@, ~3)

r r
) .
% H eﬁ(Wk—Xk)ZRi % H ele3CZRi’
i=1 i=1

(B26)

3 )
ZS( (ZL) _ eZIﬂJzﬂl)z( 2=1)(0,+o,+w3)

xe 2wzw3 c(WL=X1)(WL+XL—a,~3)

C . C .
2 (WL_XL>ZL' 20 gZL
X H ew2®3 X | | emw3 J s
J=1 J=1

(B27)

r r p

mt ZL’ ZR = H H H 4 SlIl Zi;

i=1 j=1 +

. (B28

Notice the renormalization of the FI by (W — X )/2 =
(Wr — Xg)/2 (we impose this equality), as usual when
going from K-theoretic to field-theoretic notation. The
vortex part of the above matrix model captures the Hook
truncation of the S° integrand at the poles specified in (3.1)
with n®) = 0. In order to obtain the exact equality between
the matrix model and the residue of the S° integrand at
these poles, one needs to carefully study the extra factors in
the first line of (B9), their combination with the 5d
perturbative contributions (B4) as well as the residue of
the matrix model at the trivial poles (perturbative part).
Also, in order to fully specify the matrix model, one needs
to choose an integration contour. The right choice turns out
to be a Jeffrey-Kirwan prescription as studied in [40].
Intuitively, the poles coming from the S*’s integrands will
capture the contribution from large Hook diagrams (namely
those constructed over a rectangle of size r x ¢ and
considered in this appendix), while the contribution from
small Hook diagrams (namely those which do not contain
the box (r, c)) are accounted by additional poles coming
from the S! piece.
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APPENDIX C: S$* AND S}, U §3
FUNCTIsz

In this Appendix, we establish the exact equality
between the residue of the S’ integrand at the selected

poles (3.1) (with n®) = 0) and the S( ) U S( %) matrix model

(3.4) in the notation used in the main body. We start by
|

PARTITION

Z§3 _ dnU
U(n)-SQCDA — (2ﬂi)nn!

recalling useful definitions of partition functions on a
squashed spheres or their intersections.

The squashed S* partition function of a U(n) gauge
theory coupled to n; = n,s fundamental and antifundamen-
tal chirals and one adjoint, which we will refer to as
U(n)-SQCDA, is given by

g2, HZ sinh zb(c, — 0)2sinh zb~' (0, — 0,)

a>b

o1 s5(+i0/2 + 6, — 1i1;)

i—1 H:lz=1 sb(_iQ/2 +0,— mi)

As usual, b denotes the squashing parameter, Q = b + b~!,
while m;, m;, and m,q; denote the complexified masses

of fundamental, antifundamental, and adjoint chiral
multiplets
m=mR —¢g 2Q m=m® + q Q
10
mad] = WL Qadj 2 (CZ)

and ¢ is the FI parameter. Let us denote the integrand
simply as Z§3( )-SQCD A (0). Then the partition function of a
1))-SQCDA on S? Y S( - interacting through

a pair of 1d bi-fundamental chiral multiplets at the
intersection S' = S%l) N §?2>, is given by

pair of U(n¢

§u§

ZU( SQCDAUU(

(@)
2 " daa 83
M (0.(1))
Zﬂ'li’l Q) U(n(l)),nf.naf

alal

))-SQCDA

§3

X Z?(;chiral (6<1)’ 6(2))2 0

U D)

(C3)

where the contribution from the 1d chiral multiplets is
captured by

ZISA chiral (6( b 6(2) )

2 2

_HH 0

+ a=1b=1 21 Slnhﬂ' b(1>6g

~bpyol £1 (b + b))
(C4)

In general, the parameters in the two SQCDA are
independent, however, when they are the world volume
theories of intersecting codimension 2 defects in a bulk 5d
N =1 theory, the masses are likely to be related due to

L i
H Sp <2—0a+0b+madj>. (C1)
a,b=1 2

5d/3d superpotentials, which is indeed the case throughout
our paper. For example, we have mass relations

- b%l))' (C5)

The matrix model (C3) should be understood as a
contour integral with a Jeffrey-Kirwan residue prescription.
Take n(V) = 1,n® =1 as an example. There are two sets
of poles, the first of which is given by

oM =mM —imWp;) —in)

6(2) — m(z) — 1m(2)b(2> - in<2) (_2), (C6)

for all m("), n(@ > 0, while the second

o) =m —i(=1)b) - in(‘)b(‘ll),

6@ — m® _in@p-

2)° (C7)

for all n(®
of Zldchiml, since this set of poles satisfies

) > 0. Clearly, the second set come from the poles

i
sinhﬂ<b<1)0(1> — by - 5 (bé) + b%n)) =0, (C8)

thanks to the mass relations mentioned above. With these
definitions, the equality (3.4) and the master identities (3.7)
can be explicitly verified (e.g., by using Mathematica).

APPENDIX D: THE REFINED TOPOLOGICAL
VERTEX AND DIM ALGEBRA

1. The refined topological vertex

The topological vertex formalism [59] and its refinement
[62,63] are powerful tools to study 5d instanton partition
functions and their properties. In this paper we will mainly
follow the conventions of [63], which we now review.
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The relevant vertices’ are graphically represented in
Fig. 8. Note that at each vertex there are two black and
one white arrows (the preferred/instanton direction), each
labeled by a Young diagram. The three arrows are ordered
in a clockwise manner, keeping the white arrow in the
middle. For example, in the two diagrams in the Fig. 8, the
white arrows are labeled with 4,, and is also the second
index of the vertex. Lowered/raised indices of the vertex
correspond to incoming/outgoing arrows. These graphical
vertices represent the following contributions to the full
amplitude,

G0 =P, (14, t);PX?}f@(q, t)~!

X lP,l{/AV(—ﬂvqpﬁ,Q)Pzg/z(qitpéq’t)’ (DI1)
Chhy = Py (=t @;Pghg(q’ t)

X lpil/i(qlfﬁq,t)Pa;/ﬂ(—tivqp;q’t)- (D2)

The P);,(x;q,t) is the skew Macdonald function of the
sequence of variables x = (x,x,,...) with Young dia-
grams A = (A, 4y, ...) and u = (uy, 4y, ...) as parameters,
while |A] = > ,4; denotes the total number of boxes in
the diagram 1 and 1 is the involution «(p,) = —p,, acting
on the power sums p, = > ;x”. The other parameters
q=e> t =e 2" and p = qt~' are complex numbers.

The vertices can be joined together to form web diagrams
corresponding to CY or (p, g)-webs engineering 5d super-
symmetric gauge theories. In doing so, each internal line
is further associated to a complex parameter Q" and a
framing factor f,(q, t)" (for us n = 0), and the correspond-
ing Young diagrams are summed over.

2. DIM intertwiners

The topological vertex can be interpreted as matrix
elements of DIM intertwining operators in the
Macdonald basis [104], namely

C(a.t) = O, (o L DL
<urjar] B i)
Cut(a.8) = O (P s
o Rl [P RCS

"There are two more vertices with different directions of the
white arrows. However, we choose to build the web diagrams
with just the two in Fig. 8.

)\3 >\3

A1 A1
A2 A2

A3 Oz

C>\1 )\2 >\3

FIG. 8. Refined topological vertices.

where we defined Qy, == —q(=y)"/t'/%x. The state |¢P,)
and its dual (1Q,| glve "a Fock basis, and the labels (n, k)
are DIM representations specified by the integer values of
the two central charges and the complex spectral parameter.
In particular, (0,1), is called vertical, while (1,N), is
called horizontal. They are isomorphic and related by the
so-called spectral duality [101,105,106], a manifestation of
the SL(2, Z) group of automorphism of the DIM algebra.
In the web diagram, the choice of preferred/white direction
correspond to the choice of vertical representation, to which
® or ®* are attached. See Fig. 9 for an illustration.

As the basic example, let us consider the resolved
conifold amplitude with preferred direction or (0,1) repre-
sentation along the vertical direction

% (17N)b (071)(1 (1’N+1)—uv

@{ }®4«un @N%b@

=> v/a ”'Cw (9.£)C*5(a, 1), (D4)
A

where uv = ab. Alternatively, we could have put the
preferred direction or (0,1) representation along the hori-
zontal direction

(LN =1)_y,
(I,N),

(I,N),
XQ@LOUH<LN—UfW]M>
= (¥/u)Cip2(q. 1)CP5(q, 1),

A

oles | mJ”]

(D5)

where d'/b=1v'/u’. The two results should agree
because of slicing invariance of the topological vertex,
and they do provided v/a = b'/u' = Q, which is the ratio
of the outgoing/incoming spectral parameters associated to
the (0,1) representations. From the DIM perspective, this
should descend from the SL(2,Z) automorphism of the
algebra, see Fig. 10 for an illustration. A more complicated
choice is to assign the preferred direction or (0,1) repre-
sentation to the diagonal direction. Now the composition of
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A (0,1)q

o (L, N+ 1)y v : (1, N)y

A
Cra, 2

v (1, N)y ot (L, N 4+ 1) gy

A (0,1)y

C)\l >\2)\

3

FIG. 9. DIM intertwining operators.

the intertwiners acts on the tensor product of two Fock
spaces, and the corresponding amplitude is

1 (1.1 - M),
@8 O 5% 0.1y (1), ]
(0. 1)y
L R T T
Z ”/1}” WC@& (q,t)CQM@(q,t), (D6)

A

where b”/a"” = u" /v". This corresponds to the Nekrasov
partition function of the 5d pure U(1) SYM theory with
instanton counting parameter a”/v”. This expansion coin-
cides with the previous ones provided we identify a” /v" =
Qy. See Fig. 11 for an illustration.

For the next level of complication, we can consider the
geometries considered in the main text. As we discussed,
there is a frame corresponding to a U(1) theory with two
flavors (Fig. 1 left), a frame corresponding to four free
hypers (Fig. 1 center) and a frame corresponding to a
U(1) x U(1) theory with one bifundamental hyper (Fig. 1
right). It is now easy to recognize the various topological
amplitudes as (vacuum) matrix elements of intertwining
operators between various representations, and the fact that
they should agree is expected from the SL(2,Z) auto-
morphism of DIM. In particular, we can identify (we
neglect the unnecessary labels in order to avoid cluttering)

(PG ®1)(P,@P;)(1®D,)
—(0|® ®|Z AT 2) ®2).
(D7)
0 :(0,1)q
0 = (1, N)y
A (L,N+1)_ypy——qab i

0 (N 0 (0,1),,

P

0 :(0,1)y 0 o —=(1, N) .,

Z, = (0| PpP Py Py| D). (D)
Z; = (20| ® (2] ® (2]
(10, ®;)(?, ®PD; ®1)
S
N P/11|P21><P/12|P12>
x|2) ® |2) ® |2). (DY)

Of course, we need suitable identifications between param-
eters. Anyhow, from the form of the matrix elements it is
immediate that Z; should correspond to a U(1) theory, Z, to
a free theory and Z5 to a U(1) x U(1) theory. Also, since
the W, 1-1(A,) or g-Virasoro algebra can be represented on
the tensor product of two horizontal DIM representations,
while W, ;-1(A;) can be represented on the tensor product
of three horizontal DIM representations, the resulting 5d
N =1 quiver gauge theories match with Kimura-Pestun
construction of quiver W -1 algebras [94]. In their con-
struction, the basic object is the Z operator, which is an
infinite product of the W ;-1 screening charges. From the
DIM perspective, we can identify

D, ® OF
il = Z <;J,1|PA>A’

(1@, @D; )(P), ®P; ®1)
Al = ,%:2 (Py,|Py, ) (P, |Ps,) ‘

(D10)

On the other hand, it is known that Kimura-Pestun
construction as an analogous for 3d A =2 quiver
gauge theories, which involves a finite number of W ;-1

FIG. 10. Action of the S element in SL(2, Z) (for N = 0).
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0 :(0,1)q

O (1, N)y

0 :(0,1)y

FIG. 11.

screening charges [90,107—109]. An efficient control on the
transformation relations between the DIM operators in
different duality frames and at specific points in the
parameter space (corresponding to complete Higgsing of

0 (L, =N)ymm 0 (1,1 =Ny

O (1L,1=N) i 0 (L, =N)

The third triality frame for the resolved conifold.

the 5d theories) would imply an elegant description of
some 3d dualities. The peculiar example of the self-mirror
T[U(N)] theory [7] has been recently considered in [30]

from the W -1 perspective.
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