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We consider type IIB SLð2;ZÞ symmetry to relate the partition functions of different 5d supersymmetric
Abelian linear quiver Yang-Mills theories in the Ω-background and squashed S5 background. By Higgsing
S-dual theories, we extract new and old 3d mirror pairs. Generically, the Higgsing procedure yields 3d
defects on intersecting spaces, and we derive new hyperbolic integral identities expressing the equivalence
of the squashed S3 partition functions with additional degrees of freedom on the S1 intersection.
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I. INTRODUCTION

One of the most beautiful features in the family of 3d
gauge theories withN ¼ 4 supersymmetry is the existence
of mirror symmetry [1]. When 3d supersymmetric gauge
theories admit brane constructions through D3 branes
suspended between ðp; qÞ branes [2–6], mirror symmetry
can be understood from the SLð2;ZÞ symmetry of type IIB
string theory. From the QFT perspective, mirror symmetry
is deeply related to S-duality of the boundary conditions in
4d N ¼ 4 supersymmetric Yang-Mills theory (SYM) [7],
and for Abelian theories it can also be traced back to the
existence of a natural SLð2;ZÞ action on path integrals
(functional Fourier transform) [8,9]. For non-Abelian
theories, this action can be implemented at the level of
localized partition functions [10,11]. Moreover, the class of
3d N ¼ 4 theories can be deformed in many interesting
ways to N ¼ 2, such as the inclusion of masses, Fayet-
Iliopoulos (FI) parameters for Abelian factors in the gauge
group, or superpotential terms. While the reduced super-
symmetry implies a weaker control over the dynamics,
mirror-like dualities are known to exist for a long time
[12–14]. Lately, this has been a very active research field,
and significant progress is made possible thanks to the
careful analysis of (monopole) superpotentials [15–22]. In
many cases, the IR equivalence of proposed dual pairs has
been tested using the exact evaluation of supersymmetric
observables through localization, such as the (squashed) S3

partition function [23,24]. In fact, over the past few years,
the results of supersymmetric localization (see, e.g., [25]
for a review) have been systematically exploited to predict
and test dual pairs.
In this paper, we continue the study of 3d dualities

inherited from the SLð2;ZÞ symmetry of type IIB string
theory. Our strategy is to consider first 5d N ¼ 1 SYM
theories with unitary gauge groups engineered by ðp; qÞ-
webs in type IIB string theory in which the SLð2;ZÞ action
can be manifestly realized, for instance, through the
exchange of D5 and NS5 branes (a.k.a. the fiber-base or
S-duality [26,27]). Second, we engineer codimension 2
defects of the parent 5d theories by the Higgsing procedure
[28,29], and in simple configurations we can identify
candidate 3d mirror pairs (this is the perspective also
adopted in [30–32]). In order to be able to explicitly test
their IR equivalence through the exact evaluation and
comparison of the partition functions, we focus on 5d
Abelian linear quivers in which the instanton corrections
can be easily resummed [33]. In fact, the fiber-base dual
picture of such theories provides a very simple duality
frame for the resulting 3d theories, which look free. Our
reference example is 5d SQED with one fundamental and
one anti-fundamental flavors and its fiber-base dual. From
this very simple example, we can already extract nontrivial
dualities for 3d non-Abelian theories. One of our main
results is indeed a non-Abelian version of the basic SQED/
XYZ duality. Remarkably, this duality has implicitly
appeared in [34] (at the level of the squashed S3 partition
function) as an intermediate step to test the mirror dual of
ðA1; A2n−1Þ Argyres-Douglas (AD) theories reduced to 3d,
which has been shown to follow from an involved cascade
of sequential confinement and mirror symmetry [20,21]
starting from the 3d reduction of the 4d “Lagrangian”
description [35,37]. Here, we provide a first principle
derivation of this crucial bridge from the 5d physics
viewpoint.
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Another motivation for this paper comes from the recent
studies of supersymmetric gauge theories on intersecting
spaces [38–44]. In our case, we are interested in pairs of 3d
theories supported on two codimension 2 orthogonal
spaces in the ambient 5d space (which we take to be either
the Ω-background C2

q;t−1 × S1 or the squashed S5 [45–55]),
interacting along a common codimension 4 locus (S1)
where additional degrees of freedom live. A natural
question is whether 3d mirror symmetry survives in these
more complicated configurations. Remarkably, we are able
to generalize known dualities to this more refined setup too
by studying the relevant compact and noncompact space
partition functions using the integral identities descending
from the fiber-base duality, up to some subtleties inherent
to intersecting theories [36].
The rest of the paper is organized as follows. In Sec. II,

we review instanton partition functions of 5d Abelian linear
quiver theories on C2

q;t−1 × S1 through the refined topo-
logical vertex, exploiting their ðp; qÞ-web realization in
type IIB string theory or M-theory on toric Calabi-Yau
3-folds. In particular, the slicing invariance of the refined
topological vertex implies the equivalence of supersym-
metric partition functions of different looking field theories
(duality frames) associated to the same string geometry.
Two of the duality frames are exactly related by S-duality in
type IIB, but we also discuss another one. In Sec. III,
we extract candidate 3d mirror pairs by following the
Higgsings of the parent 5d theories across different duality
frames, and compare the resulting partition functions. For
special Higgsings, the 3d theories live on a single compo-
nent codimension 2 subspace in the 5d ambient space, in
which case we reproduce known results and propose a new
mirror pair which is a non-Abelian version of the basic
SQED/XYZ. However, we show that generic Higgsings
produce 3d/1d coupled theories which live on distinct
codimension 2 subspaces mutually intersecting along
codimension 4 loci, and we generalize and test the dualities
in these cases too. In Sec. IV, we discuss further our results
and outline possible applications and extensions for future

research. In Appendix A, we collect the definitions of the
special functions which we use throughout the paper. In
Appendix B and C, we present few technical definitions
and derivations. In Appendix D, we collect useful infor-
mation and notation of the refined topological vertex.

II. 5D INSTANTON PARTITION FUNCTIONS

In this section, we review the instanton partition func-
tions of 5d Abelian linear quiver theories with unitary
gauge groups in the Ω-background, usually denoted by
C2
q;t−1 × S1. The geometric engineering of these theories

through ðp; qÞ-webs in type IIB string theory or M-theory
on toric Calabi-Yau 3-folds [4–6,56–58] allows us to
perform the various computations using the topological
vertex formalism [59–62]. In this paper, we mainly follow
the conventions of [63], summarized in Appendix D. In a
nutshell, in any toric diagram there is a frame in which one
associates internal white arrows which point in the same
(preferred/instanton) direction and correspond to unitary
gauge groups, with the ranks determined by their number in
each segment (one in this paper); consecutive gauge groups
are coupled through bi-fundamental hypers, while non-
compact white arrows correspond to (anti)fundamental
hypers.
Our reference examples are the diagrams listed in Fig. 1.

By explicit computation, it is easy to verify that the
associated topological amplitudes correspond respectively
to the instanton partition functions of: (i) the U(1) theory
with one fundamental and one antifundamental hypers
(SQED); (ii) the theory of four free hypers and “resummed
instantons,” which will be simply referred to as the “free
theory”; (iii) the Uð1Þ × Uð1Þ theory with one bifunda-
mental hyper. Note however that, although the case (i) and
(iii) can be precisely identified with conventional 5d gauge
theory partition functions, the case (ii) involves contribu-
tions from nonconventional matter.
The first diagram, corresponding to the U(1) theory, has

amplitude

FIG. 1. From left to right, the diagrams correspond to 5d U(1) gauge theories with 2 hypers, a free theory, and Uð1Þ2 quiver theory with
one bifundamental hyper multiplet.
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Z1 ≡
�Y2
i¼1

1

ðQip1=2; q; t−1Þ∞

�X
λ

ðp−1=2Q0Þjλj
N∅λðQ1p1=2; q; t−1ÞNλ∅ðQ2p1=2; q; t−1Þ

Nλλð1; q; t−1Þ
; ð2:1Þ

where p≡ qt−1. The prefactor in front of the instanton sum can be identified with the perturbative or 1-loop contribution
from the fundamental hypermultiplets. We refer to Appendix A for the definition of q-Pochhammer symbols and
Nekrasov’s function.
The second diagram, if read naively corresponding to the four free hypermultiplets, has amplitude given by

Z2 ≡ ZResummedðQ0; Q1; Q2Þ
½Q2

i¼1ðQip1=2; q; t−1Þ∞ðQ0p1=2; q; t−1Þ∞ðQ0Q1Q2p1=2; q; t−1Þ∞�
: ð2:2Þ

We note that the factors in the bracket captures the contribution from four free hypermultiplets, however, the resummation
of instantons has also produced a factor

ZResummedðQ0; Q1; Q2Þ≡ ðQ0Q1; q; t−1Þ∞ðQ0Q2p; q; t−1Þ∞; ð2:3Þ
in the numerator, which does not have straightforward interpretation in terms of conventional 5d supersymmetric matter
content. Here, we simply take the expression (2.2) as a computational result. We refer the readers to [64,65] for more detail
on these nonconventional matter, which are termed “non-full spin content.”
Finally, the third diagram, corresponding to the Uð1Þ × Uð1Þ theory, has amplitude

Z3 ≡
�

1

ðQ0p1=2; q; t−1Þ∞

�X
λ1;λ2

ðp−1=2Q1Þjλ1jðp−1=2Q2Þjλ2j
Nλ1λ2ðQ0p1=2; q; t−1Þ

Nλ1λ1ð1; q; t−1ÞNλ2λ2ð1; q; t−1Þ
: ð2:4Þ

The prefactor in front of the instanton sum can be identified
with the perturbative contribution of the bi-fundamental
hyper.
The above computation can be generalized to more

complicated toric diagrams. For instance, a strip of 2N
vertices can be associated to three QFT frames, corre-
sponding respectively to: (i) the Uð1ÞN−1 theory coupled
to N − 2 bifundamentals, one fundamental at first node
and one anti-fundamental at last node; (ii) the theory of
2N free hypers and “resummed instantons”; (iii) the
Uð1ÞN theory coupled to N − 1 bifundamentals. A similar

triality relation among distinct gauge theories has been
recently obtained also in 6d [66,67].

A. Duality frames

The three configurations in Fig. 1 share the same toric
diagram. In fact, they all give equivalent amplitudes. Let us
start by focusing on the first two diagrams in Fig. 1. They
can be understood as two different ðp; qÞ-webs related by
S-duality in type IIB string theory, under which D5 and
NS5 branes are exchanged. Upon a clockwise rotation
by 90 degrees, the S-duality is represented by Figure 2.

FIG. 2. S-duality between the two ðp; qÞ-webs.
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Since D5s correspond to horizontal (1,0) branes, NS5s
correspond to vertical (0,1) branes and diagonal segments
correspond to (1,1) branes, the duality map is indeed
represented by the S element in SLð2;ZÞ acting on the

ðp; qÞ charge vectors. In this particularly simple example,
we can explicitly check the invariance of the amplitude. We
can expand Z1 and Z2 in series of Q0, and both Z1 and
Z2 equal

Z1 ¼
�Y2
i¼1

1

ðQip1=2; q; t−1Þ
��

1þ Q0

ðq − 1Þðt − 1Þ ðqQ2 þ tQ1 − ðqtÞ1=2ð1þQ1Q2ÞÞ þ � � �
�

¼
�Y2
i¼1

1

ðQip1=2; q; t−1Þ
��

1 −
ðq1=2Q2 − t1=2Þðt1=2Q1 − q1=2Þ

ð1 − qÞð1 − tÞ Q0 þ � � �
�
¼ Z2; ð2:5Þ

confirming one of the predictions. More generally, ðp; qÞ-
webs constructed by gluing vertically N copies of the left
diagram in Fig. 2 or constructed by gluing horizontally N
copies of the right diagram are S-dual to each other and
hence give equivalent amplitudes: the former is nothing but
the UðNÞ SQCD, while the latter is a linear Uð2ÞN−1 quiver
with bifundamental hypers between gauge nodes and one
fundamental and one antifundamental hypers at each ends.
The third duality frame is related to the first one by a

clockwise rotation by 45 degree of the (1,1) branes, which
acts as the STS−1 element in SLð2;ZÞ on the ðp; qÞ charge
vector. One can verify that Z1 ¼ Z2 ¼ Z3 using the
identities of [63].
The map between the Kähler parameters of the string

geometry and the physical masses and coupling constants
of the gauge theory depends on the duality frame. First of
all, it is convenient to introduce exponential variables

q≡ e2πiβϵ1 ; t≡ e−2πiβϵ2 ; Q1;2 ≡ e2πiβa1;2 ; Q0 ≡ e2πiβa0 ;

ð2:6Þ

where βmeasures the S1 radius. In the frame corresponding
to the U(1) theory, we can identify

a1≡−iðΣ− M̃Þ; a2≡ iðΣ−MÞ; Q0ðQ1Q2Þ1=2≡ e
−2πβ8π2

g2 ;

ð2:7Þ

where M; M̃ are the 5d fundamental and antifundamental
masses, Σ is the v.e.v. of the vector multiplet scalar and g is
the YM coupling.
Similarly, on the Uð1Þ × Uð1Þ side we can identify

a0 ≡ iðΣ12 −MbifÞ; p−1=2Q1;2 ≡ e
−2πβ8π2

g2
1;2 ; ð2:8Þ

where Mbif is the 5d bi-fundamental mass, Σ12 ≡ Σ1 − Σ2

and Σ1;2 are the v.e.v.’s of the vector multiplet scalars and
g1;2 are the YM couplings.

B. S5 partition functions

In this section, we use the refined topological string/
Nekrasov partition functions in the various duality frames
to write S5 partition functions related by type IIB SLð2;ZÞ
transformations. The study of compact space partition
functions is useful because one can get rid of subtleties
related to boundary conditions, at the price of introducing
an integration over some modulus. The round S5 ≡
fðz1; z2; z3Þ ∈ C3jjz1j2 þ jz2j2 þ jz3j2 ¼ 1g admits a toric
Uð1Þ3 action given by zα → eiφαzα. Denoting by eα the
corresponding vector fields, the vector R ¼ e1 þ e2 þ e3 is
the so-called Reeb vector, and it describes the Hopf
fibration Uð1Þ → S5 → CP2. A useful generalization is
obtained by replacing the Reeb vector with R ¼ ω1e1 þ
ω2e2 þ ω3e3 (ωi ∈ R>0), and the resulting manifold is
referred to as the squashed S5 and the ω’s as squashing (or
equivariant) parameters. We refer to [68] for further details
of this geometry.
The partition functions of 5d N ¼ 1 gauge theories on

the (squashed) S5 can be computed via localization. In the
Coulomb branch localization scheme [51–54] (as opposed
to the Higgs branch scheme [38,44,69]), the result is given
in terms of a matrix-like integral over the constant vector
multiplet scalar in the Cartan subalgebra of the gauge
group. It is known that the integrand can be constructed by
gluing three Nekrasov partition functions [51,54,68,70,71],
one for each fixed point of the toric action on CP2, with
equivariant parameters ϵ1;2 and radius β of the Ω-back-
ground related to (complexified) squashing parameters. For
each of the fixed points labeled by α ¼ 1, 2, 3, where the
space looks like a copy of C2

q;t−1 × S1
β, we can choose

1 2 3

ϵ1 ω1 þ ω2 ω2 þ ω3 ω1 þ ω3

ϵ2 ω3 ω1 ω2

β 1=ω1 1=ω2 1=ω3

: ð2:9Þ

On the U(1) theory side (frame 1), the product of
Nekrasov partition functions yields
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jZ1j3 ≡ e−
iπ
6
ðB33ð−iðΣ−M̃Þþω

2
ÞþB33ðiðΣ−MÞþω

2
ÞÞ

S3ð−iðΣ − M̃Þ þ ω
2
ÞS3ðiðΣ −MÞ þ ω

2
Þ

× jZC2×S1

instjUð1Þðg;Σ;M; M̃Þj3; ð2:10Þ

where ω≡ ω1 þ ω2 þ ω3 and j · j3 denotes the product
of three objects with parameters related by Table (2.9).
Notice that the 1-loop contributions have fused into triple
Sine functions (and exponential factors) by using the
definition (A13).
On the free theory side (frame 2), the product of q-

Pochhammer symbols yields

jZ2j3 ≡
Q

�e
−iπ

6
ðB33ð�8π2 i

g2
þ i

2
ðM̃−MÞþω

2
Þ−B33ð�8π2 i

g2
þ i

2
ðMþM̃Þ−iΣÞÞ

e
iπ
6
ðB33ð−iðΣ−M̃Þþω

2
ÞþB33ðiðΣ−MÞþω

2
ÞÞ

×
1

S3ð−iðΣ − M̃Þ þ ω
2
ÞS3ðiðΣ −MÞ þ ω

2
Þ

×
Y
�

S3
�
� 8π2i

g2 þ i
2
ðM þ M̃Þ − iΣ

�
S3
�
� 8π2i

g2 þ i
2
ðM̃ −MÞ þ ω

2

� : ð2:11Þ

Using Z1 ¼ Z2 (type IIB S-duality), after removing
common exponential factors on both sides and integrating
with the classical action, we can obtain the identity1

ZS5

SQED ¼ ZS5

free; ð2:12Þ

where we defined the squashed S5 partition function of the
SQED by

ZS5

SQED ≡
Z

dΣZcl
SQEDðg;ΣÞZ1-loop

SQEDðΣ;M; M̃Þ

× jZC2×S1

instjUð1Þðg;Σ;M; M̃Þj3; ð2:13Þ

Zcl
SQEDðg;ΣÞ≡ e

− 8π3

ω1ω2ω3
Σ2

g2 ;

Z1-loop
SQEDðΣ;M; M̃Þ≡ 1

S3ð−iðΣ − M̃Þ þ ω
2
ÞS3ðiðΣ −MÞ þ ω

2
Þ ;

ð2:14Þ

and the “Fourier-like transform” of the squashed S5

partition function of free theory by

ZS5

free ≡
Z

dΣe
8π3 iΣðiMþiM̃−ωÞ

g2ω1ω2ω3 ZResummedðΣ;M; M̃; gÞ

× Z1-loop
free ðΣ;M; M̃; gÞ; ð2:15Þ

ZResummedðΣ;M; M̃; gÞ≡ e
−
8π3ðiM−ω

2
ÞðiM̃−ω

2
Þ

g2ω1ω2ω3

Y
�
S3

�
−iΣ� 8π2i

g2
þ i
2
ðM þ M̃Þ

�
;

Z1-loop
free ðΣ;M; M̃; gÞ≡ 1

S3ð−iðΣ − M̃Þ þ ω
2
ÞS3ðiðΣ −MÞ þ ω

2
Þ

×
Y
�

1

S3ð� 8π2i
g2 þ i

2
ðM̃ −MÞ þ ω

2
Þ : ð2:16Þ

As for the Ω-background case, we simply take this result as
a computational fact and we do not attempt to give here a
gauge theory interpretation, which is not needed for the
purposes of this paper.
On the Uð1Þ × Uð1Þ side (frame 3), we can write

jZ3j3≡ e−
iπ
6
B33ðiΣ12−iMbifþω

2
Þ

S3ðiðΣ12−MbifÞþ ω
2
Þ jZ

C2×S1

instjUð1Þ2ðg1; g2;Σ12;MbifÞj3;

ð2:17Þ

and in order to reproduce the squashed S5 partition function
we need to bring the exponential factor on the other side
and integrate with the classical action, namely

ZS5

Uð1Þ2 ≡
Z

dΣ1dΣ2Zcl
Uð1Þ2ðg1; g2;Σ1;Σ2ÞZ1-loop

Uð1Þ2 ðΣ12;MbifÞ

× jZC2×S1

instjUð1Þ2ðg1; g2;Σ12;MbifÞj3; ð2:18Þ

Zcl
Uð1Þ2ðg1; g2;Σ1;Σ2Þ≡ e

− 8π3

ω1ω2ω3
ðΣ

2
1

g2
1

þΣ2
2

g2
2

Þ
;

Z1-loop
Uð1Þ2 ðΣ12;MbifÞ≡ 1

S3ðiðΣ12 −MbifÞ þ ω
2
Þ : ð2:19Þ

Substituting Z3 ¼ Z2 ¼ Z1 and using the dictionary
(2.6)–(2.8), one can obtain two more identities. In the
following, we are going to focus on first one, namely
type IIB S-duality in relation to 3d mirror symmetry.

III. MIRROR SYMMETRY

In this section, we will follow type IIB S-duality acting
on 5d gauge theories, and extract mirror dual partition

1The identity is actually stronger because it is really an identity
even before taking the integral.
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functions of 3d gauge theories defined on the squashed S3

or on the intersecting space S3
ð1Þ ∪ S3

ð2Þ ⊂ S5. The spheres

S3
ðαÞ are submanifolds associated to the equations zα ¼ 0,

α ¼ 1, 2, 3. We will focus on S3
ð1Þ and S3

ð2Þ, which clearly

intersect transversally2 along the circle jz3j ¼ 1. We will
denote the squashing parameters of S3

ð1Þ and S
3
ð2Þ by bð1Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2=ω3

p
and bð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1=ω3

p
respectively, and we will set

QðαÞ ≡ bðαÞ þ b−1ðαÞ as usual. We will review few aspects of

gauge theories on this type of geometries in the following,
while for further details we refer to [39,40].

A. Higgsing, residues, and mirror symmetry

Higgsing [28,29] a higher dimensional bulk theory is an
effective procedure for accessing lower dimensional super-
symmetric theories that preserve half (or fewer) the super-
charges that the bulk theory enjoys. More precisely, the
resulting lower dimensional supersymmetric field theories
are worldvolume theories of codimension 2 Bogomol’nyi-
Prasad-Sommerfield defects inserted into the bulk theory.
The procedure can be more easily described when there is a
(flat space) brane construction. If the 5d theory T admits a
construction in terms of an array of D5s suspended between
parallel NS5s, for example when T is a unitary linear
quiver gauge theory, then one type of Higgsing amounts to
aligning the outermost flavor D5 with the adjacent gauge
D5, and subsequently pulling the in-between NS5 away
from the array while stretching a number of D3s. See Fig. 3
for an example. At the level of the compact space partition
function, Higgsing T implies taking the residues at certain
poles of the partition function as a meromorphic function of
mass parameters. In practice, when the compact space
partition function is written as a Coulomb branch integral,
this is often equivalent to computing the residues of the

integrand at a collection of poles of the perturbative
determinant as a function of the v.e.v.’s of the scalars in
the vector multiplet(s).
Let us consider the partition function of the SQED on the

squashed S5 expressed as an integral as in (2.13). In the fol-
lowing we will focus on the poles of Z1-loop

SQEDðΣÞ of the form

iðΣ −MÞ þ ω=2 ¼ −nð1Þω1 − nð2Þω2 − nð3Þω3;

nðαÞ ∈ Z≥0: ð3:1Þ

It is sufficient to study the cases with nð3Þ ¼ 0 as they
already demonstrate many core features of more general
cases. The cases nð3Þ ≠ 0 are a straightforward generali-
zation. As was extensively discussed in [40], the residue of
the integrand can be organized into the partition function of
a 5d/3d/1d coupled system. Indeed, upon taking the
residue, a few things happen which we now summarize
(we refer to [40] for a full account, and to Appendix B for
the sketch of a slightly different derivation). The non-
perturbative factors and the classical factor are simply
evaluated at the pole Σ� ¼ M þ iω=2þ inð1Þω1 þ inð2Þω2.
Because of the different S1 periodicities at the fixed points
jzαj ¼ 1 labeled by α ¼ 1, 2, 3 as in Table 2.9, the nð1Þ
dependence in the first instanton partition function drops
out, and it only depends on nð2Þ, and similarly the second
depends only on nð1Þ, while the third depends on both.
Therefore, among the three instanton partition functions
associated to the three fixed points, two simply reduce to
the vortex partition functions of two SQCDAs with gauge
groups Uðnð2ÞÞ and Uðnð1ÞÞ supported on ðCt−1 × S1Þð1Þ and
ðCq × S1Þð2Þ respectively, while the remaining one encodes
the vortex partition functions of the two SQCDA,3 now
supported on ðCq × S1Þð3Þ and ðCt−1 × S1Þð3Þ respectively,
and their intricate interaction along the common S1 at the
origin. Schematically, we have the reduction

FIG. 3. The brane moves of a simple type of Higgsing applied to a 5d linear quiver gauge theory. The NS5s fill the 012348 directions,
while the D5s fill the 012347 directions, hence 78 represents the ðp; qÞ-plane (here we are slightly simplifying the picture). The D3s are
stretched along the 6 direction and fill also the 012 and/or 034 directions, hence they all share a common direction and are supported on
two orthogonal planes inside the 5-brane world volumes.

2The intersection is transversal from the perspective of the two
C’s in the two individual tubular neighborhoods C × S1 ⊂
S3
ð1Þorð2Þ. Put differently, the two complex planes intersect only

at the origin.

3We refer to the UðnÞ SYM theory coupled to nf fundamental,
antifundamental and 1 adjoint chiral multiplets with SQCDA.
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Zcl
SQEDðΣÞjZC2×S1

instjSQEDðΣÞj3⟶
Σ¼Σ�

Zcl
SQEDðΣ�Þ

× ðZCt−1×S
1

vortexjUðnð2ÞÞÞð1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðZC2×S1

instjUð1ÞðΣ�ÞÞð1Þ

ðZCq×S1

vortexjUðnð2ÞÞZ
S1ðþ“extra”Þ
intjUðnð2ÞÞ×Uðnð1ÞÞZ

Ct−1×S
1

vortexjUðnð1ÞÞÞð3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðZC2×S1

instjUð1ÞðΣ�ÞÞð3Þ

ðZCq×S1

vortexjUðnð1ÞÞÞð2Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðZC2×S1

instjUð1ÞðΣ�ÞÞð2Þ

; ð3:2Þ

where the “extra” factors are remnants that will eventually
cancel out in the final result. Also, the residue of the 1-loop
factors can be simplified to

Res
Σ→Σ�Z

1-loop
SQEDðΣÞ ¼ ZS5

HMðM̃ −MÞ × � � � ; ð3:3Þ

where ZS5

HMðMÞ≡ S3ðiM þ ω=2Þ−1 denotes the 1-loop
determinant of a free hyper of mass M on the squashed
S5, while the dots denote 1-loop determinant factors similar
to those which would arise in a Higgs branch localization
computation of SQCDAs on each S3 [72,73], plus inter-
action terms. Because of the form of the q, t parameters at
each fixed point and the 3d holomorphic block factorization
of S3 partition functions [74–76], one can readily under-
stand that the above reduction describes the partition
function of the combined system of two SQCDA on
S3
ð1Þ and S3

ð2Þ, interacting through additional degrees of

freedom at the common S1.4

To make our life easier when dealing with the defect
theories, it is convenient to recast the aboveHiggs branch-like
representation of the partition function sketched above, into a
Coulomb branch-like integral, making the structure of the
world volume theories manifest. This is possible thanks to
the following nontrivial observation: one can reorganize all
the (intricated) factors into an elegant matrix integral, namely
Proposition 1 (residues).

Res
Σ→Σ�Z

cl
SQEDðΣÞZ1-loop

SQEDðΣÞjZC2×S1

instjSQEDðΣÞj3

Zcl
SQEDðM þ iω=2ÞZS5

HMðM̃ −MÞ

¼
Z Y2

α¼1

YnðαÞa

a¼1

dσðαÞa

2πinðαÞ!
Z
S3
ð1Þ

Uðnð1ÞÞ-SQCDAðσð1ÞÞ

× ZS1

1d chiralðσð1Þ; σð2ÞÞZ
S3
ð2Þ

Uðnð2ÞÞ-SQCDAðσð2ÞÞ≡
≡ ZS3

ð1Þ∪S
3
ð2ÞUðnð1ÞÞ-SQCDA ∪ Uðnð2ÞÞ-SQCDA: ð3:4Þ

The explicit expression of the integrand of the matrix
model on the right-hand side (r.h.s.) can be found in
Appendix C, and the definition of the integral is given
by the Jeffrey-Kirwan prescription discussed in [40].

The proof of this equality relies on formal manipulations
of Nekrasov’s functions and brute force computational
checks, as briefly explained in Appendix B.
To summarize, the result of the residue computation can

be naturally interpreted as the partition function of a free
hypermultiplet on the squashed S5 in the presence of two
Bogomol’nyi-Prasad-Sommerfield codimension 2 defects
supported respectively on S3

ð1Þ and S3
ð2Þ which intersect

along a common S1 ¼ S3
ð1Þ ∩ S3

ð2Þ. Each defect is charac-
terized by its worldvolume theory, being 3d N ¼ 2

UðnðαÞÞ-SQCDA with α ¼ 1, 2 respectively. It is crucial
to emphasize that the two defect worldvolume theories
interact at an S1, which harbors a pair of additional 1d
N ¼ 2 chiral multiplets transforming in the bifundamental
representation of the two 3d gauge groups. Figure 4
summarizes the quiver structure of the 5d/3d/1d coupled
system. Each SQCDA on S3

ðαÞ contains one fundamental,
one antifundamental and one adjoint chiral multiplet, of

masses mðαÞ, m̃ðαÞ, and mðαÞ
adj respectively. The FI term is

turned on with coefficient ζðαÞ. These parameters can be
identified with the 5d hyper multiplet masses and gauge
coupling according to the dictionary

mðαÞ ¼ λα

�
Mþ i

2
ðωþωαÞ

�
;

m̃ðαÞ ¼ λα
�
M̃þ i

2
ðω−ωαÞ

�
;

mðαÞ
adj ¼ iωαλα; ζðαÞ ¼

8π2λα
g2

; ð3:5Þ

FIG. 4. The quiver structure of the 5d/3d/1d theory describing
the 5d theory in the presence of intersecting codimension 2
defects. The hyper or chiral multiplets supported on spheres of
different dimensions are indicated by their colors.

4Notice that a generalization to the three-component subspace
S3
ð1Þ ∪ S3

ð2Þ ∪ S3
ð3Þ ⊂ S5 features in the Higgs branch localization

on S5 [44].
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where λα ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωα=ω1ω2ω3

p
. The 3d chiral multiplets q; q̃

couple to the bulk hyper multiplet qbulk
5 via cubic super-

potentials qð1Þq̃ð1Þqbulk and qð2Þq̃ð2Þqbulk, leading to the mass
relations

bð1Þmð1Þ − bð2Þmð2Þ ¼ i
2
ðb2ð2Þ − b2ð1ÞÞ;

bð1Þm̃ð1Þ − bð2Þm̃ð2Þ ¼ −
i
2
ðb2ð2Þ − b2ð1ÞÞ;

bð1Þm
ð1Þ
adj − bð2Þm

ð2Þ
adj ¼ iðb2ð2Þ − b2ð1ÞÞ: ð3:6Þ

In other words, the theories on S3
ð1Þ and S3

ð1Þ share the
same U(1) flavor group. The FI parameters in the two

theories are also related by ðbζÞð1Þ ¼ ðbζÞð2Þ, indicating
that the two theories also share the same U(1) topological
symmetry.
Now we are ready to extract candidate 3d mirror

pairs. The two sides of the fiber/base duality between
frame 1 and 2 share the same poles in the integrand. In
fact, the integral equality trivially follows from the
equality of the integrand, and therefore by taking the
residue at the same pole Σ → Σ� on both sides (and
dropping the common factors), we extract a family of
nontrivial integral identities labeled by non-negative
integers nð1Þ and nð2Þ, namely

Proposition 2 (master identity).

ZS3
ð1Þ∪S

3
ð2ÞUðnð1ÞÞ-SQCDA ∪ Uðnð2ÞÞ-SQCDA

¼ exp

�
8π3

g2ω1ω2ω3

ð−iðM þ M̃Þ þ ωÞðnð1Þω1 þ nð2Þω2Þ −
16π3

g2ω3

nð1Þnð2Þ
�

×
Y2
α¼1

YnðαÞ−1
k¼0

S2ðiðM̃ −MÞ þ ωþ kωαjω3;ωγÞ
S2ð−ðkþ 1ÞωαÞjω3;ωγÞ

Q
�S2ð� 8π2i

g2 þ i
2
ðM̃ −MÞ þ ω

2
þ kωαjω3;ωγÞ

×
Ynð1Þ
k¼1

Ynð2Þ
l¼1

Q
�S1ð� 8π2i

g2 þ i
2
ðM̃ −MÞ þ ω

2
þ ðk − 1Þω1 þ ðl − 1Þω2jω3Þ

S1ð−kω1 − lω2jω3ÞS1ðiðM̃ −MÞ þ ωþ ðk − 1Þω1 þ ðl − 1Þω2jω3Þ
; ð3:7Þ

where γ ¼ 1, 2 when α ¼ 2, 1. We refer to Appendix A
for the definitions of the double Sine and single Sine
functions. Notice that this mathematical identity, which
we will refer to as the master identity, is new and
provides a huge generalization of the hyperbolic iden-
tity in Theorem 5.6.8 of [77]. The proof relies on
formal manipulations of Nekrasov’s functions and
brute force computational checks. We will shortly see
that these integral identities, derived from type IIB
S-duality, capture 3d N ¼ 2 mirror symmetry on
intersecting S3’s.

B. Warming up: SQED/XYZ duality

We begin with a warm-up exercise to see that the well-
known Abelian mirror symmetry between 3d N ¼ 2
SQED and the XYZ model arises from the integral
identities discussed above. For this, we consider nð1Þ ¼ 1

and nð2Þ ¼ 0. Upon substituting in (3.5), the master equality
(3.7) implies

ZS3
ð1ÞUð1Þ-SQCDA
sbðiQ2 þmadjÞð1Þ

¼
�
e−πiζðmþm̃Þsb

�
iQ
2
þm − m̃

�
sb

�
−ζ −

m − m̃
2

�

× sb

�
þζ −

m − m̃
2

��
ð1Þ
: ð3:8Þ

We refer to Appendix A for the definition of the double sine
function. This integral equality is nothing but the mirror
symmetry relation between 3d N ¼ 2 SQED and the XYZ
model at the level of S3

ð1Þ partition functions. As expected,

the complexified masses of the three free chiral multiplets
in the XYZ model, namely (suppressing the label ð1Þ)

mX;Y ≡�ζ −
m − m̃

2
−
iQ
2
; mZ ≡m − m̃; ð3:9Þ

satisfy

mX þmY þmZ ¼ −iQ; ð3:10Þ
signaling the presence of the superpotential XYZ. On the
SQED side, the additional 1-loop factor signals the pres-
ence of a decoupled chiral multiplet β1 interacting with the
adjoint chiral Φ through the superpotential β1Φ.

5The 5d hyper multiplet has two scalars qbulk; q̃bulk. It can be
decomposed into two 3d N ¼ 2 chiral multiplets, into which
qbulk and q̃bulk enter separately.
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C. Generalization: Intersecting SQED/XYZ duality

Now we are ready to generalize the mirror symmetry relation between the SQED and XYZ models to intersecting
spheres. Dropping from both sides the common 1-loop factors like

Q
2
α¼1 sbðiQ=2þmadjÞðαÞ, the master equality (3.7) with

nð1Þ ¼ nð2Þ ¼ 1 implies a more involved integral identity, namely

Z
S3
ð1Þ∪S

3
ð2Þ

SQED ∪ SQED

¼ sin iπ
2
ðbð1Þmð1Þ

X þ bð2Þm
ð2Þ
X Þ sin iπ

2
ðbð1Þmð1Þ

Y þ bð2Þm
ð2Þ
Y Þ

sin iπðbð1Þmð1Þ
adj þ bð2Þm

ð2Þ
adjÞ sin iπ

2
ðbð1ÞðmZ þmadjÞð1Þ þ bð2ÞðmZ þmadjÞð2ÞÞ

×
Y2
α¼1

�
e−πiζðmþm̃Þsb

�
iQ
2
þmZ

�
sb

�
iQ
2
þmX

�
sb

�
iQ
2
þmY

��
ðαÞ
; ð3:11Þ

where the masses in the XYZ models are defined as usual
by (we suppress the label ðαÞ)

mX;Y ≡�ζ −
m − m̃

2
−
iQ
2
; mZ ≡m − m̃: ð3:12Þ

The l.h.s. of the above identity is the partition function of
two SQED on S3

ð1Þ and S3
ð2Þ, coupled through a pair of 1d

bi-fundamental chiral multiplets along the common S1

intersection. The r.h.s. can be naturally interpreted as the
partition function of two XYZ models on S3

ð1Þ and S3
ð2Þ,

coupled to a pair of 1d free Fermi multiplets and another
pair of 1d chiral multiplets on S1. The fact that the masses
of the 1d multiplets are combinations of those of the 3d
multiplets indicates the presence of a certain 1d super-
potential that involves both the 3d and 1d chiral multiplets.
As a result, the 1d multiplets are charged under the 3d
global symmetries, in particular, the Fermi multiplets are
charged under the 3d topological U(1) symmetry.
Some remarks follow. In the previous subsection, the

integral equality reproduces the well-known 3d mirror
symmetry between SQED and XYZ model, confirming
at the level of partition function that the SQED flows to the
free XYZ model as the IR limit. In this subsection, our
derived integral identity shall be viewed as a piece of
mathematical evidence from which we identify a possible
flow from the gauge theory on the intersecting space S3ð1Þ ∪
S3ð2Þ to a free theory on the same space. However, one

should also note that surprises arise in intersection theories
[36], which might bring subtleties to such naive RG flow.
We leave detailed investigation of these subtleties to
future study.

D. Generalization: Non-Abelian SQCDA/XYZ duality

We can now move to discuss more interesting
examples, generalizing the previous Abelian examples to
non-Abelian gauge groups. Let us start by considering
nð1Þ > 0, nð2Þ ¼ 0, in which case the master equality
specializes to

ZS3
ð1ÞUðnð1ÞÞ-SQCDA

¼
�
e−πinζðmþm̃ÞYn−1

μ¼0

sb

�
iQ
2
þmΦμ

�
sb

�
iQ
2
þmZμ

�

× sb

�
iQ
2
þmXμ

�
sb

�
iQ
2
þmYμ

��
ð1Þ
; ð3:13Þ

where we used the shorthand notations (suppressing again
the label ð1Þ)

mXμ ≡ ζ −
m − m̃

2
−
iQ
2
− μmadj;

mYμ ≡ −ζ −
m − m̃

2
−
iQ
2
− ðn − 1 − μÞmadj;

mZμ ≡m − m̃þ μmadj; mΦμ ≡ ðμþ 1Þmadj: ð3:14Þ
For convenience, we can reorganize the following products

Yn−1
μ¼0

sb

�
iQ
2
þmΦμ

�
¼ 1Q

n
μ¼1 sbðiQ=2 − μmadj − iQÞ ;

ð3:15Þ
Yn−1
μ¼0

sb

�
iQ
2
þmZμ

�
¼ sbðiQ=2þm− m̃þðn−1ÞmadjÞQ

n−2
μ¼0 sbðiQ=2−mþ m̃−μmadj− iQÞ ;

ð3:16Þ

and move the denominators to the l.h.s. of (3.13). Defining
the leftover mass on the r.h.s.

mZ ≡mZðn−1Þ ¼ m − m̃þ ðn − 1Þmadj; ð3:17Þ
one easily finds the masses satisfy

mXμ þmYμ þmZ ¼ −iQ; μ ¼ 0;…; n − 1; ð3:18Þ
which is compatible with the superpotential

P
n−1
μ¼0 XμYμZ.

On the l.h.s., the additional 1-loop factors are compatible
with free chiral multiplets βμ and γμ interacting with the
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adjoint chiral Φ and the quarks q; q̃ through the super-
potential

P
n−2
μ¼0 γμq̃ΦμqþP

n
μ¼1 βμΦμ.

The mathematical relation (3.13) has implicitly appeared
in [34] as an intermediate step to test another duality,
involving the SUðnÞ theory coupled to one fundamental,
one anti-fundamental and one adjoint chiral on the one
hand, and the U(1) theory coupled to n hypers on the other
hand as shown in Fig. 5, which was motivated by the study
of the mirror dual of ðA1; A2n−1Þ AD theories reduced to 3d
[20,21]. This duality is simply related to ours by gauging
the topological U(1). Hence, we have physically interpreted
and derived both dualities as 3d N ¼ 2 mirror symmetry
descending from type IIB S-duality.

E. Generalization: Intersecting non-Abelian
SQCDA/XYZ duality

It is now straightforward to take the further generaliza-
tion nð1Þ; nð2Þ > 0. In this case, the master identity yields

ZS3
ð1Þ∪S

3
ð2ÞUðnð1ÞÞ-SQCDA ∪ Uðnð2ÞÞ-SQCDA

¼
Y2
α¼1

�
e−πinζðmþm̃Þ Yn−1

μ¼0

sb

�
iQ
2
þmΦμ

�
sb

�
iQ
2
þmZμ

�
sb

�
iQ
2
þmXμ

�
sb

�
iQ
2
þmYμ

��
ðαÞ

×
Ynð1Þ−1
μ¼0

Ynð2Þ−1
ν¼0

sin πi
2
ðbð1ÞðmXμ −mΦμÞð1Þ þ bð2ÞðmXμ −mΦνÞð2Þ þ ib2ð2Þ þ ib2ð1ÞÞðX → YÞ

sin πiðbð1Þmð1Þ
Φμ þ bð2Þm

ð2Þ
ΦνÞ sin πi

2
ðbð1ÞðmZμ þmΦμÞð1Þ þ bð2ÞðmZν þmΦνÞð2ÞÞ

; ð3:19Þ

where we used the same shorthand notations as before. We
can reorganize the factors as we did in the previous
subsection, and the difference compared to the previous
result (besides the doubling of all factors) is the presence of
the additional 1-loop contributions from the 1d matter
living on the Sð1Þ intersection, represented by the last line.
This picture provides the generalization of the non-Abelian
SQCDA/XYZ duality to the more complicated geometry
involving 1d degrees of freedom, and we have shown that it
also descends from type IIB S-duality.
It is worth noting that one can further integrate over the

FI parameters ζðiÞ to obtain the intersecting space version of
the SUðnÞ-SQCDA/U(1) duality mentioned at the end of
the last subsection. However, the fact that the FI parameters
on each component space are related by ðbζÞð1Þ ¼ ðbζÞð2Þ

implies integration with the constraint δðPnð1Þ
a¼1ðb−1σaÞð1ÞþP

nð2Þ
a¼1ðb−1σaÞð2ÞÞ, whose field theory interpretation

remains unclear to us at the moment.

F. Quiver gauge theories

It is possible to generalize the above computations to
quiver gauge theories. As shown in Fig. 3, one could start
from a 5d linear quiver gauge theory and engineer
intersecting codimension 2 defects with quiver world
volume theories by multiple Higgsings. For example, it
is not hard to convince oneself that by Higgsing twice the
5d linear quiver gauge theory with two U(1) gauge nodes,
one will obtain 3d quiver theories of the form depicted in
Figure 6. It is possible to apply the Higgsing procedure by
taking the residues of the resulting partition functions and
their fiber/base dual, and repeat the computations in the
previous discussions. However, the technical computations
are more involved and we do not consider them here
explicitly.

IV. DISCUSSION AND OUTLOOK

In this paper, we have studied a class of 3d N ¼ 2 non-
Abelian gauge theories which can be realized as codimen-
sion 2 defects in the parent 5d N ¼ 1 Abelian gauge
theories, which in turn can be realized in type IIB string
theory. Generically, the defect theories are not supported on
a single component subspace, instead, they live on mutually
orthogonal submanifolds intersecting at codimension
4 loci where additional degrees of freedom live. We have

FIG. 5. Another duality that can be obtained by integrating over
the FI parameter, viewed as the “mass” for the topological U(1)
symmetry.

FIG. 6. Quiver world volume theories of intersecting codimen-
sion 2 defects following from Higgsing twice. The purple arrows
denote bi-fundamental 1d chiral multiplets, while the blue dotted
lines denote 1d Fermi multiplets.
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considered some implications of type IIB SLð2;ZÞ sym-
metry for these systems, and we have generalized to this
class of more complicated geometries the known fact that
type IIB S-duality reduces to 3d mirror symmetry. Using
the refined topological vertex, we have been able to test this
idea in simple cases where the parent 5d gauge theory is
simply the SQED with two flavors, while the dual 3d
theories are SQCDA with two chirals and a generalized
XYZ model. Interestingly enough, the QFT/string theory
methods have also allowed us to physically explain existing
integral identities in the math literature, and moreover, to
derive new ones and interpret them as the equivalence of
partition functions of mirror dual theories on (intersecting)
squashed spheres. One should bare in mind, however,
that the field-theoretical interpretation of the intersecting
mirror symmetry requires further investigation due to
surprises/inconsistences hidden within theories on inter-
secting spaces.
Along the lines of this paper, one should also be able to

study more complicated 5d theories and hence derive new
or generalized 3d mirror pairs. As byproduct, one may also
obtain new mathematical identities expressing the equiv-
alence of dual partition functions. Moreover, what we
have discussed in this paper is expected to have a higher
dimensional lift [78] by considering 6d theories engineered
by periodic ðp; qÞ-webs [58,79,80] and the resulting 4d/2d
defect theories.
Finally, it is worth noting that the type of 3d/1d defects

that we have considered in this paper appear in the Higgs
branch localization approach to SQCD on S5 [44], whose
partition functions are identified with correlators in the
q-Virasoro modular triple [81]. Therefore, another inte-
resting route of investigation would be the study of type IIB
SLð2;ZÞ symmetry from the viewpoint of the
Bogomol’nyi-Prasad-Sommerfield/CFT and 5d AGT cor-
respondences [82–96] and the DIM algebra [97,98], whose
representation theory is known to govern the topological
amplitudes associated to toric CY 3-folds or ðp; qÞ-webs
[99–102]. From this perspective, the SLð2;ZÞ symmetry
group is identified with the automorphism group of the
DIM algebra, and it would be interesting to systematically
study how different q-deformed correlators are related to
each other. In turn, this perspective may give powerful tools
for handling 3d mirror symmetry very efficiently. This
is a topic which deserves further investigations, and in
Appendix D we have collected few preliminary comments
and background material for the interested readers.
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APPENDIX A: SPECIAL FUNCTIONS

In this Appendix, we recall the definitions of several
special functions which we use in the main body. Below, r
is a positive integer, and ω⃗≡ ðω1;…;ωrÞ is a collection of
nonzero complex parameters. We frequently take r ¼ 1, 2,
3 for concreteness. We refer to [103] for further details.
The multiple Bernoulli polynomials BrnðXjω⃗Þ are

defined by the generating function

treXtQ
r
i¼1 e

ωit − 1
≡X

m≥0
BrnðXjω⃗Þ

tn

n!
: ðA1Þ

In particular, we use B22ðXjω⃗Þ and B33ðXjω⃗Þ in this paper,
and they are given explicitly by

B22ðXjω⃗Þ≡ X2

ω1ω2

−
ω1 þ ω2

ω1ω2

X þ ω2
1 þ ω2

2 þ 3ω1ω2

6ω1ω2

;

ðA2Þ

B33ðXjω⃗Þ≡B33ðXÞ ¼
X3

ω1ω2ω3

−
3ðω1 þω2 þω3Þ

2ω1ω2ω3

X2

þω2
1 þω2

2 þω2
3 þ 3ω1ω2 þ 3ω2ω3 þ 3ω3ω1

2ω1ω2ω3

X

þ−
ðω1 þω2 þω3Þðω1ω2 þω2ω3 þω3ω1Þ

4ω1ω2ω3

:

ðA3Þ

The q-Pochhammer symbols are defined as

ðx; q1;…; qrÞ∞ ≡ Y∞
n1;…;nr¼0

ð1 − xqn11 …qnrr Þ

when all jqij < 1: ðA4Þ

Other regions in the q-planes are defined through the
replacements

ðx; q1;…; qrÞ∞ →
1

ðq−1i x; q1;…; q−1i ;…; qrÞ∞
: ðA5Þ

The multiple Sine functions SrðXjω⃗Þ can be defined by
the ζ-regularized product
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SrðXjω⃗Þ ≃
Y

m1;…;mr∈N
ðX þ

Xr
i¼1

miωiÞð−1Þrþ1

×

�
−X þ

Xr
i¼1

ðmi þ 1Þωi

�
: ðA6Þ

SrðXjω⃗Þ is symmetric in all ωi, has the reflection property
SrðXjω⃗Þ ¼ Srðω − Xjω⃗Þð−1Þrþ1

for ω≡ ω1 þ � � � þ ωr, the
homogeneity property SrðλXjλω⃗Þ ¼ SrðXjω⃗Þ for λ ∈ C×,
and the shift property

SrðX þ ωijω⃗Þ ¼
SrðXjω⃗Þ
Sr−1ðXjω̂Þ

;

ω̂≡ ðω1;ωi−1;ωiþ1;…;ωrÞ: ðA7Þ

The single Sine function S1ðXjω⃗Þ is simply defined as

S1ðXjω⃗Þ≡ 2 sinðπX=ω1Þ: ðA8Þ

The double Sine function S2ðxjω⃗Þ enjoys a factorization
property when Imðω1=ω2Þ ≠ 0, namely

S2ðXjω⃗Þ ¼ e
iπ
2
B22ðXjω⃗Þðe2πiX=ω1 ; e2πiω2=ω1Þ∞

× ðe2πiX=ω2 ; e2πiω1=ω2Þ∞: ðA9Þ

There is also a shifted version of the double Sine function
which is often denoted by sbðXÞ where b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1=ω2

p
,

related to S2ðXjω⃗Þ by

S2ðXjω⃗Þ≡ sb

�
−
iQ
2
þ iXffiffiffiffiffiffiffiffiffiffiffi

ω1ω2

p
�
; ðA10Þ

where Q≡ bþ b−1. In terms of the double sine sbðxÞ, the
factorization is rewritten as

sb

�
−
iQ
2
þ X

�
¼ e

iπ
2
B22ð−iXjb;b−1Þðe2πbX; e2πib2Þ∞

× ðe2πb−1X; e2πib−2Þ∞: ðA11Þ

The reflection property of sbðzÞ is simply

sbðXÞsbð−XÞ ¼ 1: ðA12Þ

The triple Sine function S3ðXjω⃗Þ≡ S3ðXÞ also has a
useful factorization property. When Imðωi=ωjÞ ≠ 0 for all
i ≠ j, then

S3ðXÞ ¼ e−
iπ
6
B33ðXÞ

Y
1≤i≠j≠k≤3

ðe2πiωk
X
; e2πi

ωi
ωk ; e2πi

ωj
ωkÞ∞: ðA13Þ

The Nekrasov function is defined as

Nλμðx; q; t−1Þ≡
Y

ði;jÞ∈λ
ð1 − xqλi−jtμ

∨
j −iþ1Þ

×
Y

ði;jÞ∈μ
ð1 − xq−μiþj−1t−λ

∨
j þiÞ; ðA14Þ

where ∨ denotes transposition of the Young diagrams.

APPENDIX B: DERIVATION OF THE S3
ð1Þ ∪ S3

ð2Þ
MATRIX MODEL

Here we sketch how to derive the matrix model (3.4)
following the argument given above (3.3). The exact equality
between the residue of the S5 integrand at the selected poles
(3.1) (with nð3Þ ¼ 0) and the S3

ð1Þ ∪ S3
ð2Þ matrix model is

established in the next section in the notation used in the
main body. See also [40] for another derivation.
We start by rewriting the instanton sum (2.1) using the

manipulations considered in [43]. Shown in Fig. 7 is a large
Hook Young diagram λ decomposed into an upper-left full
rectangle with exactly r rows and c columns, an upper-right
subdiagram YR with at most r rows and a lower-left sub-
diagram YL with at most c rows. For such a diagram, we
can write the corresponding summand in the instanton
partition function (2.1) as

N∅λðQ1p1=2; q; tÞNλ∅ðQ2p1=2; q; tÞ
Nλλð1; q; tÞ

¼ 1

N ∅∅

Yr
i¼1

Yc
j¼1

ð1 − p1=2Q2qj−1t1−iÞð1 − p1=2Q1tiq−jÞ
ð1 − tiqj−1Þð1 − t1−iq−jÞ

× ΔtðzYR ; qÞΔq−1ðzYL ; t−1Þ
Y
i≥1

ðη−1R trq−czYR
i
=x; qÞ∞

ðtηRt−rqcx=zYR
i
; qÞ∞

ðη−1L trq−czYL
i
=x; t−1Þ∞

ðq−1ηLt−rqcx=zYL
i
; t−1Þ∞

×
Y
i;j≥1

1

ð1 − p−1=2zYL
j
=zYR

i
Þð1 − p−1=2zYR

i
=zYL

j
Þ

×
Y
i≥1

ðtηRp1=2Q1x=zYR
i
; qÞ∞

ðη−1R p1=2Q2zYR
i
=x; qÞ∞

ðq−1ηLp1=2Q1x=zYL
i
; t−1Þ∞

ðη−1L p1=2Q2zYL
i
=x; t−1Þ∞

; ðB1Þ
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where ηL;R are free parameters such that ηL=ηR ¼ ffiffiffiffiffi
qt

p
, we

defined

zYL
i
≡ ηLxt−rqi−1t−Y

L
i ; zYR

i
≡ ηRxqct1−iqY

R
i ; ðB2Þ

andN ∅∅ denotes the whole factor beginning in the second
line and evaluated for empty diagrams. The nonperturbative
instanton partition function is obtained as the weighted sum
over λ with weight ðp−1=2Q0Þjλj, where jλj≡P

iλi implies
the total number of boxes in λ. The sum can be further
decomposed into a form respecting the hook Young
diagram decomposition as shown in Fig. 7, namelyP

λ ¼
P

r;c≥0
P

YL;YR , such that r − c ¼ n is a fixed
arbitrary integer expressing a linear relation between r
and c. Note that if we tune p1=2Q2 ¼ q−n1tn2 , the first factor
in (2.1) vanishes, and therefore the instanton sum only
receives non-vanishing contributions from diagrams λ
which do not contain the box ðn2 þ 1; n1 þ 1Þ, i.e., Hook

diagrams with λn2þ1 ≤ n1, λ∨n1þ1 ≤ n2: they include all large
hook Young diagrams with an upper-left rectangle of the
shape r ¼ n2; c ¼ n1, and infinitely many diagrams that we
call small hook diagrams. Let us focus on the large Hook
diagrams. In this case we get the simplification

N∅λðQ1p1=2; q; tÞNλ∅ðQ2p1=2; q; tÞ
Nλλð1; q; tÞ

¼
Yr
i¼1

Yc
j¼1

ð1 − q−jtiÞð1 − p1=2Q1tiq−jÞ
ð1 − tiqj−1Þð1 − t1−iq−jÞ

×
ΔtðzYR ; qÞΔq−1ðzYL ; t−1Þ

N ∅∅

Y
i≥1

ðtηRp1=2Q1x=zYR
i
; qÞ∞

ðtηRt−rqcx=zYR
i
; qÞ∞

ðq−1ηLp1=2Q1x=zYL
i
; t−1Þ∞

ðq−1ηLt−rqcx=zYL
i
; t−1Þ∞

×
Y
i;j≥1

1

ð1 − p−1=2zYL
j
=zYR

i
Þð1 − p−1=2zYR

i
=zYL

j
Þ : ðB3Þ

Also, the residue of the perturbative factor in (2.1) at a pole p1=2Q2 ¼ q−n1tn2 reads

Y
i¼1;2

1

ðp1=2Qi; q; t−1Þ∞
→

Resz¼1ðz; q; t−1Þ−1∞
ðp1=2Q1; q; t−1Þ∞

Yr
i¼1

Yc
j¼1

1

1 − q−jti
Yc
j¼1

1

ðq−j; t−1Þ∞
Yr
i¼1

1

ðti; qÞ∞
: ðB4Þ

Notice that the second factor will cancel against the first factor in the numerator of (B3). We can also set

Q1 ¼ qct−rp1=2w=x; ðB5Þ

and redefine

zYL
i
q−ctr ¼ ηLq−1xq−cþit−Y

L
i → zYL

i
; zYR

i
q−ctr ¼ ηRtxtr−iqY

R
i → zYR

i
; ðB6Þ

so that

N∅λðQ1p1=2; q; tÞNλ∅ðQ2p1=2; q; tÞ
Nλλð1; q; tÞ

¼
Yr
i¼1

Yc
j¼1

ð1 − q−jtiÞð1 − pti−rqc−jw=xÞ
ð1 − tiqj−1Þð1 − t1−iq−jÞ

×
ΔtðzYR ; qÞΔq−1ðzYL ; t−1Þ

N ∅∅

Y
i≥1

ðtηRpw=zYR
i
; qÞ∞

ðtηRx=zYR
i
; qÞ∞

ðq−1ηLpw=zYL
i
; t−1Þ∞

ðq−1ηLx=zYL
i
; t−1Þ∞

×
Y
i;j≥1

1

ð1 − p−1=2zYL
j
=zYR

i
Þð1 − p−1=2zYR

i
=zYL

j
Þ : ðB7Þ

FIG. 7. A large Young diagram with subdiagrams YL and YR.
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For convenience, we can also set

tηRpw≡ wR; q−1ηLpw≡ wL; tηRx≡ xR; q−1ηLx≡ xL; ðB8Þ

so that

N∅λðQ1p1=2; q; tÞNλ∅ðQ2p1=2; q; tÞ
Nλλð1; q; tÞ

¼
Yr
i¼1

Yc
j¼1

ð1 − q−jtiÞð1 − pti−rqc−jw=xÞ
ð1 − tiqj−1Þð1 − t1−iq−jÞ

×
ΔtðzYR ; qÞΔq−1ðzYL ; t−1Þ

N ∅∅

Y
i≥1

ðwR=zYR
i
; qÞ∞

ðxR=zYR
i
; qÞ∞

ðwL=zYL
i
; t−1Þ∞

ðxL=zYL
i
; t−1Þ∞

×
Y
i;j≥1

1

ð1 − p−1=2zYL
j
=zYR

i
Þð1 − p−1=2zYR

i
=zYL

j
Þ : ðB9Þ

Notice that

Θðξp−1=2Q0=zYR
i
; qÞΘðξ; qÞ

Θðξ=zYR
i
; qÞΘðξp−1=2Q0; qÞ

¼ Θðξp−1=2Q0=z∅R
i
; qÞΘðξ; qÞ

Θðξ=z∅R
i
; qÞΘðξp−1=2Q0; qÞ

ðp−1=2Q0ÞjYR
i j; ðB10Þ

Θðξp−1=2Q0=zYL
i
; t−1ÞΘðξ; t−1Þ

Θðξ=zYL
i
; t−1ÞΘðξp−1=2Q0; t−1Þ

¼ Θðξp−1=2Q0=z∅L
i
; t−1ÞΘðξ; t−1Þ

Θðξ=z∅L
i
; t−1ÞΘðξp−1=2Q0; t−1Þ

ðp−1=2Q0ÞjYL
i j; ðB11Þ

where ξ is arbitrary. Since

ðp−1=2Q0Þjλj ¼ ðp−1=2Q0Þrcðp−1=2Q0ÞjYLjðp−1=2Q0ÞjYRj; ðB12Þ

we can recognize the weighted sum over the left and right diagrams [second and third line of (B9)] as the vortex part of the
partition function

BLR ≡
I Yr

i¼1

dzRi
2πizRi

Yc
j¼1

dzLj
2πizLj

ϒLðzLÞϒintðzL; zRÞϒRðzRÞ ¼ ðB13Þ

¼ ReszLj¼z
∅L
j

zRi¼z
∅R
i

ϒLðzLÞϒintðzL; zRÞϒRðzRÞ
X
YL;YR

ϒLðzYLÞϒintðzYL ; zYRÞϒRðzYRÞ
ϒLðzL∅ÞϒintðzL∅; zR∅ÞϒRðzR∅Þ

; ðB14Þ

where

ϒRðzRÞ≡
Yr
i¼1

Θðξp−1=2Q0=zRi; qÞΘðξ; qÞ
Θðξ=zRi; qÞΘðξp−1=2Q0; qÞ

ΔtðzR; qÞ
Yr
i¼1

ðwR=zRi; qÞ∞
ðxR=zRi; qÞ∞

; ðB15Þ

ϒLðzLÞ≡
Yc
j¼1

Θðξp−1=2Q0=zLj; t−1ÞΘðξ; t−1Þ
Θðξ=zLj; t−1ÞΘðξp−1=2Q0; t−1Þ

Δq−1ðzL; t−1Þ
Yc
j¼1

ðwL=zLj; t−1Þ∞
ðxL=zLj; t−1Þ∞

; ðB16Þ

ϒintðzL; zRÞ≡
Yr
i¼1

Yc
j¼1

1

ð1 − p−1=2zLj=zRiÞð1 − p−1=2zRi=zLjÞ
; ðB17Þ

and the contour is chosen to encircle the poles6

6We simply integrate the z’s one after the other, starting from zR;i¼r around xR and zL;j¼c around xL.
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zLj ¼ zYL
j
¼ xLq−cþjt−Y

L
j ; zRi ¼ zYR

i
¼ xRtr−iqY

R
i :

ðB18Þ

This corresponds to the block integral [75] of the
SQCDA-UðrÞ ∪ SQCDA-UðcÞ theory on ½Cq × S1� ∪
½Ct−1 × S1�, interacting through a pair of 1d chiral multip-
lets in the bifundamental of UðrÞ × UðcÞ at the common S1

intersection at the origin (plus superpotential terms). The 3d
FI/vortex counting parameters ζL, ζR are identified with

p−1=2Q0 ¼ qζR ¼ t−ζL : ðB19Þ

Now let us think of Cq × S1 and Ct−1 × S1 as two halves
of two squashed S3’s, namely

S3
ð1Þ ≃ ½Cq × S1�#S½Cq̃ × S1�;

S3
ð2Þ ≃ ½Ct−1 × S1�#S½Ct̃−1 × S1�; ðB20Þ

where q̃ and t̃ are related to q and t by the S element in
SLð2;ZÞ performing the boundary homeomorphism [75],
and form the partition function on the intersecting space
S3
ð1Þ ∪ S3

ð2Þ. In order to do that, it is convenient to para-

metrize the variables as

q≡ e2πi
ω1
ω3 ; t−1 ≡ e2πi

ω2
ω3 ; p≡ e2πi

ρ
ω3 ;

zLj ≡ e
2πi
ω3
ZLj ; zRi ≡ e

2πi
ω3
ZRi ; xL;R ≡ e

2πi
ω3
XL;R ;

wL;R ≡ e
2πi
ω3
WL;R ; p−1=2Q0 ≡ e

2πi
ω3
ζ; ξ≡ e

2πi
ω3
Ξ:

ðB21Þ

Then we can multiply (B13) with another left block integral
with ω3 ↔ ω2 and another right block integral with
ω3 ↔ ω1. This will convert

ð� � � ; qÞ∞ → S2ð� � � jω1;ω3Þe−iπ
2
B22ð���jω1;ω3Þ;

ð� � � ; t−1Þ∞ → S2ð� � � jω2;ω3Þe−iπ
2
B22ð���jω2;ω3Þ;

Θð� � � ; qÞ → e−iπB22ð���jω1;ω3Þ;

Θð� � � ; t−1Þ → e−iπB22ð���jω2;ω3Þ: ðB22Þ

Then the matrix model we are interested in becomes

ZS3
ð1Þ∪S

3
ð2Þ ≡

Z
dcZLdrZRZ

S3
ð2Þ

cl ðZLÞZ
S3
ð2Þ

1-loopðZLÞ

× ZS1

intðZL; ZRÞZ
S3
ð1Þ

cl ðZRÞZ
S3
ð1Þ

1-loopðZRÞ; ðB23Þ

where

Z
S3
ð1Þ

1-loopðZRÞ≡
Y

1≤i≠j≤r

S2ðZRi − ZRjjω1;ω3Þ
S2ð−ω2 þ ZRi − ZRjjω1;ω3Þ

×
Yr
i¼1

S2ðWR − ZRijω1;ω3Þ
S2ðXR − ZRijω1;ω3Þ

; ðB24Þ

Z
S3
ð2Þ

1-loopðZLÞ≡
Y

1≤i≠j≤c

S2ðZLi − ZLjjω2;ω3Þ
S2ð−ω1 þ ZLi − ZLjjω2;ω3Þ

×
Yc
j¼1

S2ðWL − ZLjjω2;ω3Þ
S2ðXL − ZLjjω2;ω3Þ

; ðB25Þ

Z
S3
ð1Þ

cl ðZRÞ≡ e
iπω2
2ω1ω3

ðr2−1Þðω1þω2þω3Þ

× e−
iπ

2ω1ω3
rðWR−XRÞðWRþXR−ω1−ω3Þ

×
Yr
i¼1

e
iπ

ω1ω3
ðWR−XRÞZRi ×

Yr
i¼1

e
2πi

ω1ω3
ζZRi ; ðB26Þ

Z
S3
ð2Þ

cl ðZLÞ≡ e
iπω1
2ω2ω3

ðc2−1Þðω1þω2þω3Þ

× e−
iπ

2ω2ω3
cðWL−XLÞðWLþXL−ω2−ω3Þ

×
Yc
j¼1

e
iπ

ω2ω3
ðWL−XLÞZLj ×

Yc
j¼1

e
2πi

ω2ω3
ζZLj ; ðB27Þ

ZS1

intðZL; ZRÞ≡
Yr
i¼1

Yr
j¼1

Y
�

e
iπ
ω3
ρ

4 sin π
ω3
½ZRi − ZLj � ρ

2
� : ðB28Þ

Notice the renormalization of the FI by ðWL − XLÞ=2 ¼
ðWR − XRÞ=2 (we impose this equality), as usual when
going from K-theoretic to field-theoretic notation. The
vortex part of the above matrix model captures the Hook
truncation of the S5 integrand at the poles specified in (3.1)
with nð3Þ ¼ 0. In order to obtain the exact equality between
the matrix model and the residue of the S5 integrand at
these poles, one needs to carefully study the extra factors in
the first line of (B9), their combination with the 5d
perturbative contributions (B4) as well as the residue of
the matrix model at the trivial poles (perturbative part).
Also, in order to fully specify the matrix model, one needs
to choose an integration contour. The right choice turns out
to be a Jeffrey-Kirwan prescription as studied in [40].
Intuitively, the poles coming from the S3’s integrands will
capture the contribution from large Hook diagrams (namely
those constructed over a rectangle of size r × c and
considered in this appendix), while the contribution from
small Hook diagrams (namely those which do not contain
the box ðr; cÞ) are accounted by additional poles coming
from the S1 piece.
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APPENDIX C: S3 AND S3
ð1Þ ∪ S3

ð2Þ PARTITION
FUNCTIONS

In this Appendix, we establish the exact equality
between the residue of the S5 integrand at the selected
poles (3.1) (with nð3Þ ¼ 0) and the S3

ð1Þ ∪ S3
ð2Þ matrix model

(3.4) in the notation used in the main body. We start by

recalling useful definitions of partition functions on a
squashed spheres or their intersections.
The squashed S3 partition function of a UðnÞ gauge

theory coupled to nf ¼ naf fundamental and antifundamen-
tal chirals and one adjoint, which we will refer to as
UðnÞ-SQCDA, is given by

ZS3

UðnÞ-SQCDA ≡
Z

dnσ
ð2πiÞnn! e

−2πiζ
P

a
σa
Y
a>b

2 sinh πbðσa − σbÞ2 sinh πb−1ðσa − σbÞ

×
Ynf
i¼1

Q
n
a¼1 sbðþiQ=2þ σa − m̃iÞQ
n
a¼1 sbð−iQ=2þ σa −miÞ

Yn
a;b¼1

sb

�
iQ
2
− σa þ σb þmadj

�
: ðC1Þ

As usual, b denotes the squashing parameter,Q≡ bþ b−1,
while mi, m̃i, and madj denote the complexified masses
of fundamental, antifundamental, and adjoint chiral
multiplets

m≡mR − q
iQ
2
; m̃≡ m̃R þ q̃

iQ
2
;

madj ≡mR
adj − qadj

iQ
2
; ðC2Þ

and ζ is the FI parameter. Let us denote the integrand
simply as ZS3

UðnÞ-SQCDAðσÞ. Then the partition function of a

pair of UðnðαÞÞ-SQCDA on S3
ð1Þ ∪ S3

ð2Þ, interacting through
a pair of 1d bi-fundamental chiral multiplets at the
intersection S1 ¼ S3

ð1Þ ∩ S3
ð2Þ, is given by

Z
S3
ð1Þ∪S

3
ð2Þ

Uðnð1ÞÞ-SQCDA∪Uðnð2ÞÞ-SQCDA

≡
Z Y2

α¼1

YnðαÞ
a¼1

dσðαÞa

2πinðαÞ!
Z
S3
ð1Þ

Uðnð1ÞÞ;nf ;naf ðσ
ð1ÞÞ

× ZS1

1d chiralðσð1Þ; σð2ÞÞZ
S3
ð2Þ

Uðnð2ÞÞ;nf ;naf ðσ
ð2ÞÞ; ðC3Þ

where the contribution from the 1d chiral multiplets is
captured by

ZS1

1dchiralðσð1Þ;σð2ÞÞ

¼
Y
�

Ynð1Þ
a¼1

Ynð2Þ
b¼1

1

2i sinhπðbð1Þσð1Þa − bð2Þσ
ð2Þ
a � i

2
ðb2ð1Þ þ b2ð2ÞÞÞ

:

ðC4Þ

In general, the parameters in the two SQCDA are
independent, however, when they are the world volume
theories of intersecting codimension 2 defects in a bulk 5d
N ¼ 1 theory, the masses are likely to be related due to

5d/3d superpotentials, which is indeed the case throughout
our paper. For example, we have mass relations

bð1Þm
ð1Þ
i − bð2Þm

ð2Þ
i ¼ i

2
ðb2ð2Þ − b2ð1ÞÞ: ðC5Þ

The matrix model (C3) should be understood as a
contour integral with a Jeffrey-Kirwan residue prescription.
Take nð1Þ ¼ 1; nð2Þ ¼ 1 as an example. There are two sets
of poles, the first of which is given by

σð1Þ ¼ mð1Þ − imð1Þbð1Þ − inð1Þb−1ð1Þ;

σð2Þ ¼ mð2Þ − imð2Þbð2Þ − inð2Þb−1ð2Þ; ðC6Þ

for all mðαÞ;nðαÞ ≥ 0, while the second

σð1Þ ¼ mð1Þ − ið−1Þbð1Þ − inð1Þb−1ð1Þ;

σð2Þ ¼ mð2Þ − inð2Þb−1ð2Þ; ðC7Þ

for all nðαÞ ≥ 0. Clearly, the second set come from the poles
of ZS1

1d chiral, since this set of poles satisfies

sinh π

�
bð1Þσð1Þ − bð2Þσð2Þ −

i
2
ðb2ð2Þ þ b2ð1ÞÞ

�
¼ 0; ðC8Þ

thanks to the mass relations mentioned above. With these
definitions, the equality (3.4) and the master identities (3.7)
can be explicitly verified (e.g., by using Mathematica).

APPENDIX D: THE REFINED TOPOLOGICAL
VERTEX AND DIM ALGEBRA

1. The refined topological vertex

The topological vertex formalism [59] and its refinement
[62,63] are powerful tools to study 5d instanton partition
functions and their properties. In this paper we will mainly
follow the conventions of [63], which we now review.
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The relevant vertices7 are graphically represented in
Fig. 8. Note that at each vertex there are two black and
one white arrows (the preferred/instanton direction), each
labeled by a Young diagram. The three arrows are ordered
in a clockwise manner, keeping the white arrow in the
middle. For example, in the two diagrams in the Fig. 8, the
white arrows are labeled with λ2, and is also the second
index of the vertex. Lowered/raised indices of the vertex
correspond to incoming/outgoing arrows. These graphical
vertices represent the following contributions to the full
amplitude,

Cλ1λ2
λ3 ¼ Pλ2ðtρ; q; tÞ

X
λ

p
jλj−jλ3 j

2 fλ3ðq; tÞ−1

× {Pλ∨
1
=λ∨ð−tλ∨qρ; t; qÞPλ3=λðqλtρ; q; tÞ; ðD1Þ

Cλ1λ2
λ3 ¼ Pλ∨

2
ð−qρ; t; qÞ

X
λ

p
jλ3 j−jλj

2 fλ3ðq; tÞ

× {Pλ1=λðqλtρ; q; tÞPλ∨
3
=λ∨ð−tλ∨qρ; q; tÞ: ðD2Þ

The Pλ=μðx; q; tÞ is the skew Macdonald function of the
sequence of variables x ¼ ðx1; x2;…Þ with Young dia-
grams λ ¼ ðλ1; λ2;…Þ and μ ¼ ðμ1; μ2;…Þ as parameters,
while jλj≡P

iλi denotes the total number of boxes in
the diagram λ and { is the involution {ðpnÞ ¼ −pn acting
on the power sums pn ≡P

ix
n
i . The other parameters

q≡ e2πiϵ1 ; t≡ e−2πiϵ2 and p≡ qt−1 are complex numbers.
The vertices can be joined together to form web diagrams

corresponding to CY or ðp; qÞ-webs engineering 5d super-
symmetric gauge theories. In doing so, each internal line
is further associated to a complex parameter Qjλj and a
framing factor fλðq; tÞn (for us n ¼ 0), and the correspond-
ing Young diagrams are summed over.

2. DIM intertwiners

The topological vertex can be interpreted as matrix
elements of DIM intertwining operators in the
Macdonald basis [104], namely

Cμλ
νðq; tÞ ¼ Qjλj

Nðu;vÞ ðt−1=2vÞjνj−jμj
fNλ ðq; tÞfνðq; tÞ

hPλjPλi

× h{PμjΦλ

� ð1; N þ 1Þ−uv
ð0; 1Þv ð1; NÞu

�
j{Qνi

Cμλ
νðq; tÞ ¼ Q−jλj

Nðv;uÞ ðt−1=2uÞjμj−jνj
1

fNλ ðq; tÞfνðq; tÞ

× h{PνjΦ�
λ

� ð1; NÞv ð0; 1Þu
ð1; N þ 1Þ−uv

�
j{Qμi; ðD3Þ

where we defined QNðx;yÞ ≡ −qð−yÞN=t1=2x. The state j{Pμi
and its dual h{Qμj give a Fock basis, and the labels ðn; kÞx
are DIM representations specified by the integer values of
the two central charges and the complex spectral parameter.
In particular, ð0; 1Þx is called vertical, while ð1; NÞx is
called horizontal. They are isomorphic and related by the
so-called spectral duality [101,105,106], a manifestation of
the SLð2;ZÞ group of automorphism of the DIM algebra.
In the web diagram, the choice of preferred/white direction
correspond to the choice of vertical representation, to which
Φ or Φ� are attached. See Fig. 9 for an illustration.
As the basic example, let us consider the resolved

conifold amplitude with preferred direction or (0,1) repre-
sentation along the vertical direction

h∅jΦ�
∅

� ð1; NÞb ð0; 1Þa
ð1; N þ 1Þ−ab

�
Φ∅

� ð1; N þ 1Þ−uv
ð0; 1Þv ð1; NÞu

�
j∅i

¼
X
λ

ðv=aÞjλjCλ∅
∅ðq; tÞCλ∅

∅ðq; tÞ; ðD4Þ

where uv ¼ ab. Alternatively, we could have put the
preferred direction or (0,1) representation along the hori-
zontal direction

h∅jΦ�
∅

� ð1; N − 1Þ−v0=u0 ð0; 1Þu0
ð1; NÞv0

�

×Φ∅

� ð1; NÞa0
ð0; 1Þb0 ð1; N − 1Þ−a0=b0

�
j∅i

¼
X
λ

ðb0=u0ÞjλjCλ∅
∅ðq; tÞCλ∅

∅ðq; tÞ; ðD5Þ

where a0=b ¼ v0=u0. The two results should agree
because of slicing invariance of the topological vertex,
and they do provided v=a ¼ b0=u0 ≡Q0, which is the ratio
of the outgoing/incoming spectral parameters associated to
the (0,1) representations. From the DIM perspective, this
should descend from the SLð2;ZÞ automorphism of the
algebra, see Fig. 10 for an illustration. A more complicated
choice is to assign the preferred direction or (0,1) repre-
sentation to the diagonal direction. Now the composition of

FIG. 8. Refined topological vertices.

7There are two more vertices with different directions of the
white arrows. However, we choose to build the web diagrams
with just the two in Fig. 8.
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the intertwiners acts on the tensor product of two Fock
spaces, and the corresponding amplitude is

h∅j ⊗ h∅j
X
λ

1

hPλjPλi
Φλ

� ð1; 1 −MÞb00
ð0; 1Þ−b00=a00 ð1;−MÞa00

�

⊗ Φ�
λ

� ð1;−MÞv00 ð0; 1Þ−u00=v00
ð1; 1 −MÞu00

�
j∅i ⊗ j∅i

¼
X
λ

ða00=v00ÞjλjC∅λ
∅ðq; tÞC∅λ

∅ðq; tÞ; ðD6Þ

where b00=a00 ¼ u00=v00. This corresponds to the Nekrasov
partition function of the 5d pure U(1) SYM theory with
instanton counting parameter a00=v00. This expansion coin-
cides with the previous ones provided we identify a00=v00 ¼
Q0. See Fig. 11 for an illustration.
For the next level of complication, we can consider the

geometries considered in the main text. As we discussed,
there is a frame corresponding to a U(1) theory with two
flavors (Fig. 1 left), a frame corresponding to four free
hypers (Fig. 1 center) and a frame corresponding to a
Uð1Þ × Uð1Þ theory with one bifundamental hyper (Fig. 1
right). It is now easy to recognize the various topological
amplitudes as (vacuum) matrix elements of intertwining
operators between various representations, and the fact that
they should agree is expected from the SLð2;ZÞ auto-
morphism of DIM. In particular, we can identify (we
neglect the unnecessary labels in order to avoid cluttering)

Z1¼h∅j⊗ h∅j
X
λ

ðΦ�
∅⊗1ÞðΦλ⊗Φ�

λÞð1⊗Φ∅Þ
hPλjPλi

j∅i⊗ j∅i;

ðD7Þ

Z2 ¼ h∅jΦ�
∅Φ∅Φ�

∅Φ∅j∅i; ðD8Þ

Z3 ¼ h∅j ⊗ h∅j ⊗ h∅j

×
X
λ1;λ2

ð1 ⊗ Φλ1 ⊗ Φ�
λ1
ÞðΦλ2 ⊗ Φ�

λ2
⊗ 1Þ

hPλ1 jPλ1ihPλ2 jPλ2i
× j∅i ⊗ j∅i ⊗ j∅i: ðD9Þ

Of course, we need suitable identifications between param-
eters. Anyhow, from the form of the matrix elements it is
immediate that Z1 should correspond to a U(1) theory, Z2 to
a free theory and Z3 to a Uð1Þ × Uð1Þ theory. Also, since
the Wq;t−1ðA1Þ or q-Virasoro algebra can be represented on
the tensor product of two horizontal DIM representations,
while Wq;t−1ðA2Þ can be represented on the tensor product
of three horizontal DIM representations, the resulting 5d
N ¼ 1 quiver gauge theories match with Kimura-Pestun
construction of quiver Wq;t−1 algebras [94]. In their con-
struction, the basic object is the Z operator, which is an
infinite product of the Wq;t−1 screening charges. From the
DIM perspective, we can identify

Z½A1� ¼
X
λ

Φλ ⊗ Φ�
λ

hPλjPλi
;

Z½A2� ¼
X
λ1;λ2

ð1 ⊗ Φλ1 ⊗ Φ�
λ1
ÞðΦλ2 ⊗ Φ�

λ2
⊗ 1Þ

hPλ1 jPλ1ihPλ2 jPλ2i
: ðD10Þ

On the other hand, it is known that Kimura-Pestun
construction as an analogous for 3d N ¼ 2 quiver
gauge theories, which involves a finite number of Wq;t−1

FIG. 9. DIM intertwining operators.

FIG. 10. Action of the S element in SLð2;ZÞ (for N ¼ 0).
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screening charges [90,107–109]. An efficient control on the
transformation relations between the DIM operators in
different duality frames and at specific points in the
parameter space (corresponding to complete Higgsing of

the 5d theories) would imply an elegant description of
some 3d dualities. The peculiar example of the self-mirror
T½UðNÞ� theory [7] has been recently considered in [30]
from the Wq;t−1 perspective.
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