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Resonance Topology

Leo Michelotti
Fermilab*, P.O.Box 500, Batavia, IL 80510

1 Separatrix: a definition.

It is hard to find & satisfactory answer to the question, *What. is a reso-
nance?” A typical response is to characterize resonances by frequency-space
conditions of the form,

myvy +maig et mpp ka0, (1)

for integral m; ...m, and n. This definition is correct, but it ignores what
should be the central feature of a resonance: ita separatriz. The utility of &
separatrix is that it globally organises the dynamica, enabling simultaneous
visyalization of all the orbits and their reiationshipa. If resonancen are the
building blocks of instability, then the separatrix is its mechanism. Neverthe-
less, establishing the concept of a separatrix for higher dimensional systems
is not completely trivial. Consider, for example, Sturrock’s conclusion that
the first order (1,2) sextupole resonance possesses unbounded orbits that
pass arbitrarily close to the (phase space) origin, an error that was corrected
recently by Ohnuma.[6,8} Such anomolous behavior would require that the
resonance nol even possess a separalrix.

The situation is confused further by the way that resonances appear in
perturbative calculations, where they quickly become enmeshed in questions
of convergence via the “small denominator® problem. This almost suggesis
that a resonance has more to do with the way things are calculated than with
real, physical phenomena—the sort of {equslly false?) feeling one sometimes
gets about renormalisation in quantum field theory, To offset this we em-
phasize that a separatrix is a topological property of a vector field, No
continuous transformation of phase space, whether constructed perturba-
tively or inspired by God, can deform the orbits so as to make this property
disappear. That is why a perturbation expansion which ignores resonances
while seeking to bring a Hamiltonian inte normal form must fail (globally and
almost always).! Small denominators are not the real problem but only its
manifestution within the context of perturbation theory. The real problem
is that we are attempting something fundamentally imposaible.

To get a betler feeling for our question and for what is required of an an-
swer, consider the following thought experiment. Suppose that you are given
a one-to-one mymplectic mapping, F', defined over some four-dimensional
phase space and realised in an unspecified system of coordinates. (Think
of F, for example, as & tracking program that models the Poincaré map of
Y 2% degree of freedom Hamiltonian system.) Starting from any number
of points in phase space, you can calculate forward or backward iterates of
F infinitely quickly. Further, you have unlimited capabilities for displaying
these orbits on & four-dimiensional graphics terminal. Given even these ex-
traordinary tools, how would you test the simple hypothesis: *This system
exhibits a first order (1, 2) sextupole resonance™? What topological features
of the separatrix must be refected in the “data™ in order to confirm or deny
such a statement?

There is not enough space in & short paper like this to present a full analysis
of this problem. We shall short-circuit the process and simply assert what is
needed to define the separatrix of an integrably resonant dynamical system
on a general Zp-dimensional phase space; & more thorough discussion is being
written {5 (In what follows, the word *orbit® refers to the set of images and
preimages of & phase space point under the action of F; if P is some point
in phase space, then the “orbit through P~ ia the set | I72 ___{F"(P)}.)

ASSERTIONS:

1. At the highest level of structure, there is a way of slicing 2p-dimensional
phase space along disjoint (p + 1)-dimensional adiabatically invariant
sub-manifolds. {This may amount to little more than restating integra-
bility, which requires that there be p invariants in involution. One of
these is a Hamiltonian; the other p — 1 label the invariant manifolds.)
We shall call these slices *leaves.”? The invariance property means that
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1Even so, the first few low-order terms of an asymptotic series which in-
cludes resonances may contain useful information on the macroscopic strac-
ture of the flow.(2,4]

2An extraordinary example of dividing s space into lower dimensional
manifolds can be found in A.Ssulkin, “R? is the Union of Disjoint Circles,”
Americon Mathematical Monthly 90{9),840 (1983).

each orbit is contained within a single leaf.

2. At the next level of structure, almost all bounded orbita lie on p-tori
{p-dimensional tori). (Arnold’s theorem)

8. A special clasa of “resonant orbits® lic on ¢ finite set of N-periodic
{p—1)-tor%, for some N. By saying a (p—1)-torus, TP~1, is N-periodic we
mean that 721 js invariant under F¥ { FN:T#-1 — T#-1), Joining
together the TP~! from all the leaves produces (2p — 2)-dimensional
“tubes” of resonant orbits. '

|
4. Each TP~! that is unstable forms a cluster set for a aet of orbits lying
on sero-measure, p-dimensional manifolds. {In modern terminology, they
are the "alpha and omega limit sets” of these orbits, whose manifolds
generalize the "stable® and “unstable” manifolds which are atiached to
fixed points. We shall risk abusing the tirminology and call them by
the same name. '

5. The “separatrix™ is the union of all the stable and unstable manifolds
along with the periodic tori to which they are attached. It is therefore a
(2p — 1)-dimensional surface, and it partitions the 2p-dimensional phase
apace, thereby serving to organise the dynamics.

The topological description of a particular resonance consists of listing the
periodic tori, the TP~!, and describing how the branches of the separatrix
connect them Logether. Testing a hypothesis, such as the one given above,
consists of fnding Lhene structures in the system of interest,

Of course, knowing what Lo look for is not the same as knowing how to find
it. In two-dimensional phase spaces, an N-periodic O-torus is simply & fixed
point of the iterated mapping F¥, and any fixed point algorithm employing
Newton's method {gradient search} will usually locate it. [Of course, you
must choose & good starting point and somehow specify the appropriate N,
but once that is done, the slgorithm converges rapidly.) In contrast to this
happy situation, there is no general purpose procedure for finding higher
dimensional periodic tori. The difficulty is that Hamiltonian systems are
symplectic: in a sense, rescnant orbits are attractors, but the measure of
their basin of attraction is zero. Think of Newton’s method as s replacement
rule that substitytes a contractive mapping for & given one in such a way
that an attractor of the former is a fixed point of the latter, Poes a aimilar
rule exist for higher dimensional resonances? We pose this as s

PROBLEM: Given a symplectic map, F, does there exist a dissipative
mapping, G, constructible from F, such that attractors of @ are periodic
tori of F7

2 Separatrix: an example.

To iltustrate all of this, we shall draw the separatrix for the first order (1, 2)
sextupole resonance. Visualising a four-dimensional figure like this is a little
involved, but not impossible. One method is to take & sequence of three-
dimensional slices, much as one would present a cube to s two-dimensional
creature by slicing it from bottom to top. Of course, we must take some care
in arranging the slices; our two-dimensional friend would form a distorted
concept of a cube were it presented aliced along a diagonal. We shall obtain
s good representation of the four-dimensional dynamies by drawing the sep-
aratrix within each three-dimensional leaf of Assertion 1 and observing its
bifurcations as we pass through the leaves,
The model Hamiltonian, defined over a punctured phase space, is

H =l +uly+gI} P lycon(by + 265 + n + ¢) .

1) and Ij are amplitude variables conjugate to the phase variables #, and
&3, @ in the independent variable; the numbers g and ¢ are functionals of the
sextupole distribution.[3] By a canonical transformation we can define new
coordinates

5 o= (h+2hL)/s

Jz = (211 - I,}/E

& = h++nb+o

& = 15 -6 (2}
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Figure 1: Projected slices of & four-dimensional (1,2) separatrix.

for which the Hamiltonian function, K, is given by

K=JhA+hF+gl Loty (3)
where A = v + 2ig + n and T' = 21y — wg. It is expected that A s a small
quantity. Indeed, for this Hamiltonian to be at all interesting A must be
small encugh so that J; A in comparable in magnitude to the resonant term.
&3 does not appear in X, which means that (a) the invariant tori run parallel
to £z and (b) J; in invariant and can label the leaves. The Hamilionian flow,
projected along &3, is given by the vector field

J = giM*Lsing

& (4}

Rescnant orbits of K are projected into fixed points of Eq.5(4). We shall eall
“regular” those resonant orbits for which sin & = 0 and “irregular” those
for which either f; =0or I3=0.

Symmetries of the projected flow will allow us to confine our attention
to the parameter quadrant: A > 0, g > 0. Clearly, if we simultanecusly
change the sign of both these quantities, the flow simply changes direction.
Changing the sign of g alone can be compensated for by the transformation
€1 — £ + 7. Finally, changing the sign of A alone amounts to performing
both previous transformations in succession.

In fact, as is characteristic of sextupole interactions, there are really no
essential parameters in the problem: both A and g can be made to vanish
by & simple scaling transformation. Let us define £ = A/g, and scale the
amplitude variables by x%.

At oM (Tl 2h) con &

i3 = /e e = ha/e?

Then the level sets—which determine the topology of the Bow——of the func-
tion

K =g*(K — J;T)/A% = ji +i) izeony

are identical to those of XK. Further, X can act as a true Hamiltorian for
the scaled variables provided we simultaneously rescale @ — 843 /g%,

The separatrix is sketched in Figure 1. Each frame shows its intersection
with a single three-dimensional J; leaf projected along the ¢; direction onto
the (€1, J;) plane. A few poinis should be kept in mind while scanning these
pictures. Firat, the &, axis corresponds not to J; = 0 but to Jy, = —2J,
(fs = 0), when J3 < 0, and to J; = 3J2 (I = 0), when J; > 0. Second,
the dynamical range of £ is 6x: we are viewing only one-third of the full
projection; each picture is repeated twice. Third, remember that a *fixed
point” in the diagram is the projection of & period-three I-torus, a closed

curve corresponds to a 2-torus, and an open {unbounded) curve corresponds
to a two-dimensional surface.

We now deseribe the separatrix: (a) For J; large and negative all orbita
wre unbounded except the irregular resonant orbits, which are pinned to
to the surface J; = O at phases £ ~ +x/2. (b) As J; increases, a local
bifurcation, or catastrophe, occurs on the leaf J; = —alom’. It is heralded by
the appearance of & new branch of the separatrix connected non-tranaversally
{forming a cusp} to a 3-periodic I-torus. (c) That torus splits, and for
—g5%% < Jy < —%«? there is a single class of bounded orbits. (d) A
global bifurcation, a saddle-switch, occurs on the leafl J; = — 2552 At this
precise value, the surface [; = O is stable for phases that are 2x-equivalent
to the range #/2 < £ < 3x/2. On the leaves — L¥ < J; < 0 there are
two classes of bounded orbits. The first, say Class A, is as before and is
characterised by  bounded phase, x/2 < £ < 3x/2. The second, Class B,
has an unboundedly increasing phase £,. (A better way of saying this: Class
A orhits lie on 3-periodic 2-tori, while Class B orbits lie on invariant 2-tori.
Or: the underlying invariant manifold of a Class A orbit is disconnected.)
The entire surface /; = 0 is now locally stable. [e¢) For 0 < J, < ol
the Class A orbits have disappeared; Class B orbits are atill bounded. {n
When i%l:’ < J3 Class B has disappeared as well. All orbits are once more
unbounded, except the two unpinned irregular resonant orbits in the plane
iz = 0 which begin at ¢, ~ x at J; = L.x? and (g} wander to £ ~ +x/2 as
Jz — oo,

3 Adiabatic resonance widths.

Except for the irregular resonant orbits pinned on f; = 0 and [, = 0,
the (1,2) resonance possesses no bounded orbits on the leaves for which
Ja < —din? or Ln? < Jy, whereas between these leaves bounded orbits fll
some volume of phase space. This is the general behavior of all resonances,
except the quadrupole rescnances for which all orbits are either bounded or
unbounded: the region of bounded orbits slawly shrinks as the resonance is
approsched. One quantitative measure of this approach to global instability
is the “resonance width.” Ohnuma has pointed out that this term has been
used in & variety of imprecise ways by different suthors.[T] Vaguely speaking,
it refers to the sise of the smallest strip in tune space which is centered on the
resonance line, Fq.(1), and outside of which a beam is stable. This definition
remains ambiguous, because it depends on the size and shape of the beam
a8 well as on the experimental setup-—e.g., on whether the resonance is
approached adisbatically or the beam is suddenly injected into the resonant
situation. In order to avoid beam parameters entirely, we shall associate an
“adiabatic resonance width” with each individual orbit, That is, we imagine
initialising an erbit in phase space with control parameters set far from
resonance, then approaching the resonance very slowly, and finally noting
when the orbit becomes unbounded.
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Figure 2: Resonance width master curve.

For the (1, 2) resonance of our example this means beginning with x # 0o
and letting £ — 0 on a time acale much greater than max({}/ey, 1/p}. At
& = oo all orbits are harmonic oscillator orbits, the variables Iy, Iz, J; and
J3 are conserved separately, and we can label an orbit with any two of the
four initial vatues, i*, Ji*, Ji™ and J§*3 According to the usnal adiabatic
theorems the variation of an orbit as x spproaches sero will be regulated by
the adiabatic invariance of the action integrals.|1] Because J; is a constant of
motion for fixed &, we can take Jz = c'—l § Jadgy itself as the first adiabatic
invariant. To the second we attach the symbol A = le d€;, whose value is
An = ax JI“'-

What happens to an orbit as & slowly decreases depends critically on
the sign of Ji*. For Ji" > 0 the diagrams of Figure le-g are the relevant
ones, and we now must think of them as flow diagrams for the projected
Hamiltonian (see Eq.(3)) rather than mepping diagrams of the function F.
As x decreases the separatrix pushes downward. Each orbit remains on its
leaf, J3 = J", it meintains ita value of A, and it crosses the separatrix, thus
becoming unbounded, when the area under the separatrix has decreased to
Ain,

For Ji* < O the situation is much more interesting, ns the separatrix
contains two branches. Figures (la-e) are now the relevant ones, but they
must be traversed in reverse order. As & decreasea from <o the upper branch
pushes downward, as before, but simultaneously a bubble, representing the
lower branch of the separatrix, forms and begins to grow. As these two
branches grow closer, approaching their merger at the saddie-awitch (x? =
~40J5"), orbits either are captured by the island or pass through the upper
branch, depending on their values for Ai". The total ares under the saddle-
switeh is A, = —(15 + 33x/4)Ji". If A > A, the orbit passes through
the upper branch of the separatrix; if A** < A,, then it is captured by
and subsequently leaks through the lower branch. If the latter happens, A
undergoes a discontinuoun change vpon passage through the separatrix, since
only one of the three islands can capture the orbit. (Remember, the period
3 property refers to the phase space mapping, not the tranaformed flow.} As
& continues to decrease, the orbit will retain its new value for A as the island
lifts and shrinks. Eventually—at some point before 2 = —30Ji*—the island
becomes too amall to contain the orbit. .

Figure 2 contains a “master curve,” drawn in the normalised (ji~, 5"}
coordinates, which uses this scenario to assign resonance widths to individeal
orbits. The curve was computed by numerically integrating the area under
the upper branch of the separatrix®when —1/40 < ja < 1/10 and within the
island when —1/80 < 53 < —1/40. It in used in the following way. Suppose
one starts am orbit at x = co with initial amplitude variables Ii* and J*.
To find the value of x at which the orbit becomes unbounded, firat calculate
Ji and Ji", using Eq.s{2}, and take their ratic. The intersection of the ray
An/En = Ji~/ M with the “master curve® is now read off; call that point
{(#™*, 7i"*). The value of « at which the orbit becomes unbounded i=

K= I in

For a given resonant coupling, the adiabatic resonance width of the orbit is
then determined according to 2A = 2g«.

*Because the system is linear for k = oo we can legitimately associate 7i™
and I* with the initial horisontal and vertical emittances divided by 2x.|3]

A more dynamic picture is obtained by removing the 1/x? normalisa-
tion: the curve of Figure 2 would be no longer static but sweep through the
(I, 1i*) space, converging on the origin aa x approaches sero and making
ofbits unbounded as it passes Lheir initial conditions.
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