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ABSTRACT 
We consider a proposal that the masses of fermions in the Standard Model 

are determined by dynamical symmetry breaking. Rather than being introduced 
as arbitrary parameters in the Lagrangian, they are determined self-consistently 

- by the requirement that the proper self-energy vanish on the fermion mass shell. 
We find in the one-loop approximation that it is possible to generate a heavy top 
quark mass dynamically, while the other fermions remain massless. 
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- --‘- We address the question of fermion masses in the Standard Model of quarks, 
i-t ep ons, gauge bosons, and elementary Higgs. The many successes of the Standard 
Model are accompanied with an appreciation that it also contains a large number of 
arbitrary constants-in particular, the three masses of the charged quarks and lepton 
in each of the three generations. At a deeper level one puzzles at the origin of the 
fermion masses which break the chiral gauge symmetry and for which no compelling- 
or even physically attractive-origin has been proposed analogous to the dynamical 
symmetry breaking leading to the masses of the W* and 2’ gauge bosons. 

In this paper we look into possible origins of the finite fermion masses starting 
with the assumption that the Standard Model Lagrangian, ,!ZSM, is an effective La- 
grangian for sub-TeV physics. We use the Higgs mechanism to give the W* and 2” 
their observed masses and treat the Higgs as an elementary scalar for this study. 

- The simplest way to formulate our calculation is to assert that the fermion 
masses mf that appear in LSM are not arbitrary parameters but are the physical 
masses themselves and their values are determined by the underlying dynamics. This 
means that the proper self-energy of the fermions vanishes on the mass shell: 

C(mj,Qf) = 0 . (1) 
The fermion masses appearing in LSM are thus not renormalized. Their values are 
determined by the solutions to Eq. 1 which also depend on the fermion charges Qf. 

In our calculations we apply Eq. 1 in the one-loop approximation to the third 
generation fermions (7, t, b) to relate their masses to known mw and mz for a range 
of masses of the Higgs, ??2H, and of the effective cutoff A N 1 TeV. The neutrino 
mass is automatically zero since there is no right-handed neutrino in the Glashow- 
Salam-Weinberg model. We shall initially apply this approach to calculate masses of 
the third generation fermions because these masses are in the several to multi-GeV 
region and less sensitive to (unknown) mixing parameters and to any other smaller 
corrections on the scale of MeVs. The difference between current and constituent 
quark masses (- 300 MeV) is also ignored along with all contributions from QCD. 

At a deeper level one can motivate this calculation in terms of dynamical sym- 
metry breaking of the underlying chirally invariant gauge theory by applying self- 
consistency arguments. We start by assuming that the Higgs mechanism applies but 
that the basic Lagrangian remains chirally invariant. Denote this Lagrangian by 

GM, i.e., the standard model, lacking the Yukawa terms, ,Cy, that couple right- and 
left-handed fermions and give rise to the fermion masses via the Higgs mechanism. 

Due to the explicit chiral symmetry of ,!$M, the Yukawa couplings, as well as 
the fermion masses, will not be generated perturbatively. They may, however, be 
generated nonperturbatively if the chiral symmetry is dynamically broken. The self- 
consistency argument1 we use goes as follows: 

Suppose that the physical Yukawa couplings ly,phys are generated dynamically, 
giving rise to physical fermion masses, mf. The Lagrangian 

then constitutes an effective Lagrangian and provides a basis for perturbative calcu- 
lation in terms of the physical, observed fermion masses. In the usual perturbative 
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Fig. 1. Proper self-energy of the fermion. The unlabelled lines include all 
particles coupling to fermion f in the self-energy bubble, and all particles 
coupling to the Higgs in the tadpole. 

-- - -0 H 
2-91 
6821A2 

Fig. 2. Tadpole contribution to tde vacuum expectation value, V, of the 
Higgs field. The bubble includes all particles that couple to the Higgs. 

- approach, if one studies ,C beyond the tree approximation, one will in general find 
.- _. . self-mass corrections from loop diagrams as in Fig. 1. The amplitudes corresponding 

to Fig. 1 will correct the fermion propagator, leading to 

mf+mf+Cb)lmf # mf- (3) 

Here< since we assume that rnf is the physical fermion mass, we must impose the 
condition Eq. 1. Equation 1 is the basic equation for determining the fermion masses. 

In either of its formulations, Fq. 1 is not a new idea to quantum field the- 
ory. However, it cannot be applied to generate mass in pure (Abelian) quantum- 
electrodynamics for which the second order self-energy contribution is 

E(m) = g m .!n 
[ 

A2 
m,+w * 1 

The unique solution to Eq. 1 based on Eq. 4 is m = 0. 
As long ago as 1939, in the early days of QED, Stiickelberg2 conjectured that 

the self-energy of a Dirac electron could be made finite without disturbing its exper- 
imental successes if there were another short-range interaction that could cancel the 
logarithmic cutoff dependence of Eq. 4. Extensive studies along this line were pur- 
sued, initially by Pais and Sakata and Hara .3 In the approach we adopt in this work, 
we find that the Standard Model, with quarks and leptons interacting via the electro- 
weak forces, admits m # 0 solutions to Eq. 1, in contrast to QED. However, these 
solutions depend quadratically as well as logarithmically on the cutoff, Working in 
the one-loop approximation we find solutions that are insensitive to the actual value 

- -of the cutoff for m < A - TeV. 
The tadpole graphs in Fig. 1 must be included along with the self-energy bubble 

in a gauge invariant calculation of c(m). However, these tadpoles also renormalize 
the vacuum expectation value of the Higgs field, v, corresponding to the graph in 
Fig. 2. 
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- --- By itself Fig. 2 is not gauge invariant; gauge dependence appears in the parts - 
that depend logarithmically on A, but not quadratically. We may choose the gauge 

.- so that the tadpole vanishes, thereby preserving the vacuum expectation value of the 
Higgs field, w, in the presence of dynamical symmetry breaking, or we may choose 
to renormalize v in treating the Higgs. In either case, Eq. 1 is a gauge independent 
consistency condition and in the one-loop approximation gives rise to the following 
equations for fermions of flavor f (including the leptons): 

- 

= 

( 

m2, 3 m2 
;+;z+-&+ 

H c ) 

6 A2 mX Inn” 

H fi m$ 
-+): mtv fi m&m& 

m?i 

+ 
ii 

Cf 
m‘$(3m$ - 4mi) m4f 

(rn; - mi)2 + 8(mT - mi)2 - 

m4f(m; - ami) 1 m2, 
8rni(m; - mi)2 m&,, 

m4f(3m; - 2m$) 
-3 sin2 OwQ; + 8m2 

122 

w(m; - m&)2 I In q 

mi(3mi - 2m;) m4f _ rn;rni 3rni rni A2 - 
(m; - mi)2 

--- - 
8(m; - mi)2 8(m’$ -mi)2 I 

In 2 
4m$ m2, mZ 

+ ): v,‘,Yfjf 
m? 

(2 + &)8(m2 
m4f, _ m$(3m$ - 4m2w) 1 A2 

In - 
f’ f - m&)2 8mb(m;, - m&,)2 m;, 

m$(3m& - 2m;,) 

- S(m$ -m&,)2 1 
m”H A2 

+- 
m;(3m& - 4m;) 

Sm& (rn; - m$)2 
-3 In-. 

I mil 

In writing Eq. 6 we have kept leading terms for large A, and dropped terms of 
order unity. For simplicity, f; is used to denote all the fermions. Cf = (1~~ - 
Qf sin2 Ow)Qf sin2 8w, where IS35 is the third component of the weak isospin for 

_ fermions of flavor f. Cf, denotes the summation over all fermions which are coupled 
to the fermion f via the charged currents. The matrix V is the Kobayashi-Maskawa 
matrix, UKM, when Isr = -l/2, and V = UfiM when 1~~ = l/2. 13w is the Weinberg 
angle. There is one consistency equation for each fermion flavor, and all equations 
are coupled. 
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Fig. 3. Relation between mt and mH given by Eq. 5 for f = t. The dotted, dashed, and 
dotted-dashed lines correspond, respectively, to A = 5 mz, 10 mz, and 20 mz. 

Note that mf = 0 is always a solution. To search for nontrivial solutions, 
we solve the consistency equation for the mass of the top quark, mt, for three dif- 
ferent cutoff scales: A = 5mz, 10 mz and 20mz, and for a range of Higgs mass, 
25 GeV < ?nH < A, assuming that all other fermions are massless. We find that 
nonzero solutions for mt do exist and they are always greater than 70 GeV for the 
range of cutoff and Higgs masses explored. These solutions are plotted in Fig. 3. This 
result implies that, without putting in the Yukawa couplings by hand, it is possible 
to generate a heavy top quark mass dynamically, while the other fermions remain 
massless.* Given the upper and lower bounds on mt which have been obtained from 
various experiments, including direct search and sin2 6~ measurements, one can also 

* This result does not depend crucially on the charge of the top quark. More generally, we find that, 
if mfi = Oforallfif fo, h t 

charge Qf,, . 

en eq. 5 admits nonzero solutions for mfo which are insensitive to the 
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oh2ain bounds on the Higgs mass from Fig. 3. For 89 GeV < mt < 250 GeV, 
we find that 75 GeV < ULH < 375 GeV, 75 GeV < mH < 475 GeV, and 
100 GeV < T?LH < 500 GeV, for A = 5 mz, 10 mz and 20mz, respectively. 

It is clear that, for f = t, the contributions to the right-hand side of 
Eq. 6 from light fermions are negligible. We have checked that the solutions 
for rnt differ by no more than 0.5% whether we use the “known” masses+ for 
all the fermions other than the top quark, or assume that they are all massless. 
On the other hand, in order to have a nonzero mass for, say, the b-quark, as well as the 
t-quark, the consistency equations for both f = t and f = b have to be satisfied. We 
find that, for all three cutoff scales considered, there is no solution with rnt > 80 GeV 
and rnb M 5 GeV which satisfies Eq. 5 for f = t and f = b simultaneously. 

- One may thus be led to conclude that, while a heavy top quark mass can be 
generated dynamically, the observed masses of the light fermions cannot be generated 
in our approach. It should, however, be pointed out that this conclusion is based on 
the solutions to Eqs. 5 and 6, which are only a crude approximation to the true 
consistency equations, Eq. 1. We observe that, although Fb does not vanish when 
mb = 5 GeV and rnt takes the value which satisfies the equation Ftlmb = 5 GeV = 
0, IC(mb) 1 is always very small, less than 0.07 n2b when mt < 250 GeV. This example 
suggests the possibility that a more refined approximation to Eq. 1 may yield solutions 
with the observed mb and m,, as well as a large mt. 

Concerning the contributions of QCD, it is commonly assumed that the Yukawa 
couplings in the Standard Model give rise to the current quark masses. The difference 
between the constituent quark mass and the current quark mass (of order 300 MeV) 
is attributed to the dynamics of QCD. In principle, we can check this assumption 
by solving an equation similar to Eq. 5 which includes the QCD contributions to the 
fermion self-mass, and compare the two solutions of mf. We carry out such a check 
for the t-quark by including the one-loop QCD contribution. We find that where 
solutions exist for both equations, they are not as close to each other as 300 MeV. In 
most cases, nonzero solutions cannot be found when QCD contributions are included. 
This can mean either that the above common assumption is invalid, or, much more 
likely, that a one-loop QCD calculation is not adequate to represent the full QCD 
effects, even for energy as high as the t-quark mass. 

Our main interest in the above calculations is in the underlying idea on which 
Eq. 1 is based rather than on attaching numerical significance to the resulting masses 
in view of the crudity of the approximation. 

Similar considerations to what we are discussing here-but with different 
motivation and interpretation-have appeared in the literature. R. Decker and 
J. Pestieau4 in 1980 and M. Veltman5 in 1981 proposed cancellation of the quadratic 
divergences that appear in Eq. 6 so that what Veltman described as “naturalness” 
obtains in the Standard Model in the sub-TeV regime. In the one-loop approximation 
this condition for cancelling the quadratic divergences is: 

+For quarks, there is some uncertainty as to what exactly the current quark masses are. 
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Fig. 4. Relation between mt and ?nH. The dashed line is the solution to Eq. 5, with a 
cutoff A = 10 mz. The dotted line corresponds to Eq. 7, and the solid one, mfl = 2mt. 

c 3 
rn; = 4 [m& + 2m& + rni] . 

all f 
(7) 

The solution to Eq. 7 is plotted in Fig. 4 relative to that for Eq. 5 for A = 10 mz 
from which it differs only slightly as the masses increase. 

Recently Ruiz-Altaba, Gonzalez and Vargas’ extended Eq. 7 to a two-loop cal- 
culation, predicting rnt = 124 GeV, mH = 234 GeV and the weak mixing angle 
sin2 8~ N .24. 

Decker and Pestieau7 went further in 1989, insisting that the theory have neither 
quadratic nor logarithmic divergences. They solved for mt and mH by separately 
cancelling quadratic and logarithmic terms in the one-loop calculation. Here we do 
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n&her of these. Our physical motivation is to remove the fermion masses as arbitrary 
parameters of the Standard Model and treat them as parameters determined by the 
dynamics in the sub-TeV region. Rather than cancel the divergences, we impose 
Eq. 1 as a physical condition and interpret the Standard Model ,!Z as an “effective 
Lagrangian,” in order to determine the physical masses. 
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