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Introduction

The Feynman-Metropolis-Teller treatment
of compressed atom [1] is extended to the
relativistic regime. Each atomic configura-
tion is confined by a Wigner-Seitz cell and is
characterized by a positive electron Fermi en-
ergy. The nonrelativistic treatment assumes
a pointlike nucleus and infinite values of the
electron Fermi energy can be attained. In
the relativistic treatment, there exists a limit-
ing configuration, reached when the Wigner-
Seitz cell radius equals the radius of the nu-
cleus with a maximum value of the electron
Fermi energy. These approximations cor-
rectly reproduce Chandrasekhar mass limit for
White Dwarfs (WDs). But recently several
WDs have been proposed with masses signifi-
cantly greater than this limit, known as Super-
Chandrasekhar WDs, to account for the over-
luminous Type Ia supernovae [2]. FMT treat-
ment with Coulomb screening in presence of
strong quantizing magnetic field has been ap-
plied in this work to develop the Equation
of State(EoS). The Mass-Radius relations for
magnetized WDs are obtained by solving the
Tolman-Oppenheimer-Volkoff equations.
EoS for magnetic White Dwarfs

We consider a compressed atom as a
Wigner-Seitz cell consisted of a finite sized nu-
cleus at the center of the cell and completely
degenerate relativistic electron gas embedded
in a strong magnetic field. We consider here
the interaction between the nucleus and the
electrons. Electrons, being charged particles,
occupy Landau quantized states in a mag-
netic field. Electrons with spin s and charge
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q = −|e|, the maximum number of particles

per Landau level per unit area is |e|B(2s+1)
hc in

magnetic field B. On solving Dirac’s with spin
in an external magnetic field B in z-direction
which is uniform and static, energy eigenval-
ues are given by

Eν,pz =
[
p2zc

2 +m2
ec

4 (1 + 2νBD)
] 1

2−mec
2−eV (r)

(1)
where ν=n+ 1

2+sz, the Landau quantum
number, me is electron rest mass and
the dimensionless magnetic field defined as
BD=B/Bc is introduced with Bc given by

~ωc=~ |e|Bc
mec

=mec
2 ⇒ Bc=

m2
ec

3

|e|~ =4.414 × 1013

gauss. A constant distribution of protons
confined in a radius given by Rc=r0A

1
3 with

r0=1.2fm is assumed. Using Landau quanti-
zation, electronic number density is given by
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where V̂ = eV + Eν,pz and Eq.(1) is used for
its evaluation. νm is the upper limit of Landau
level can be found from the condition p2z ≥ 0

and is given by νm = V̂ 2+2V̂ mec
2

2BDm2
ec

4 . The overall

Coulomb potential outside the nucleus satis-
fies the poisson equation
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⇒ 1
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where dimensionless quantities x= r
λπ

,χr= V̂ (r)
c~

have been introduced. Solving Eq.(3) we find
the electrostatic potential and the electronic
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distribution. Hence the potential energy den-
sity εp, kinetic energy density εk are found.
The energy density ε and pressure P expres-
sions are given by,

εp = −ene(r)V (r)

εk =
2BDmec

2

4π2λ3e
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gν (1 + 2νBD)
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(
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2 +
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8π
(4)
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where xF (ν)=pz/mec, λe=
~
mec

, λπ= ~
mπc

, mπ

is the pion mass, ρ is the baryonic number den-
sity, mB is the baryonic mass. The magnetic

energy contribution is εB=B2

8π while PB= εB
3

is the magnetic contribution to pressure and
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Calculations and Results
We perform calculations with varying mag-

netic field inside WD given by the form [3]

Bd = Bs +B0[1− exp{−β(ρ/ρ0)γ}] (7)

where Bd (in units of Bc) is the magnetic field
at baryonic density ρ, Bs (in units of Bc) is
the surface magnetic field and ρ0 is taken as
ρ(r=0)/10 and β, γ are constants. We choose
constants β=0.8, γ=0.9, rather arbitrarily but
the central and surface magnetic fields once
fixed the variations of its profile do not al-
ter the gross results. The maximum central
magnetic field strength is kept at 10Bc which
is 4.414× 1014 gauss [4] and surface magnetic
field at∼ 109 gauss estimated by observations.

TABLE I: Variations of masses and radii of mag-
netized WD. The maximum magnetic field Bdc at
the centre is listed in units of Bc.

ρ (r=0) Radius Mass Bdc

fm−3 Kms M� Bc

9.348×10−6 1285.91 1.4146 1.5
9.348×10−6 1344.46 1.4236 1.75
9.348×10−6 1349.45 1.4339 2.0
9.350×10−6 1388.04 1.4906 3.0
9.344×10−6 1438.94 1.5731 4.0
9.342×10−6 1503.64 1.6863 5.0
9.355×10−6 1581.27 1.8353 6.0
9.355×10−6 1663.86 2.0217 7.0
9.331×10−6 1758.40 2.2601 8.0
9.323×10−6 1954.44 2.8997 10.

TABLE II: Variations of masses and radii of mag-
netized WD with coulomb interaction. The max-
imum magnetic field Bdc at the centre is listed in
units of Bc.

ρ (r=0) Radius Mass Bdc

fm−3 Kms M� Bc

6.039×10−7 3572.24 2.2653 1.5
6.039×10−7 3142.19 1.8405 1.2
6.039×10−7 2801.06 1.5725 0.9
6.039×10−6 2110.46 3.2624 8.0
6.039×10−6 1659.09 2.0178 5.0
6.039×10−6 1369.83 1.5157 2.0

Summary and Conclusion
The EoS for magnetized WD in presence of

Coulomb screening has been explored as fur-
ther refinement [5]. We find that the inclusion
of Coulomb interaction modifies the masses of
WD further upward and significantly greater
than Chandrasekhar limit.
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