
Eur. Phys. J. C          (2019) 79:106 
https://doi.org/10.1140/epjc/s10052-019-6606-x

Regular Article - Theoretical Physics

Non-comoving baryons and cold dark matter in cosmic voids

Ismael Delgado Gaspar1,a, Juan Carlos Hidalgo1,b, Roberto A. Sussman2,c

1 Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, A.P. 48–3, 62251 Cuernavaca, Morelos, México
2 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70–543, 04510 Ciudad de México, México

Received: 8 November 2018 / Accepted: 17 January 2019
© The Author(s) 2019

Abstract We examine the fully relativistic evolution of
cosmic voids constituted by baryons and cold dark matter
(CDM), represented by two non-comoving dust sources in a
ΛCDM background. For this purpose, we consider numer-
ical solutions of Einstein’s field equations in a fluid-flow
representation adapted to spherical symmetry and multiple
components. We present a simple example that explores the
frame-dependence of the local expansion and the Hubble
flow for this mixture of two dusts, revealing that the relative
velocity between the sources yields a significantly different
evolution in comparison with that of the two sources in a
common 4-velocity (which reduces to a Lemaître–Tolman–
Bondi model). In particular, significant modifications arise
for the density contrast depth and void size, as well as in
the amplitude of the surrounding over-densities. We show
that an adequate model of a frame-dependent evolution that
incorporates initial conditions from peculiar velocities and
large-scale density contrast observations may contribute to
understand the discrepancy between the local value of H0

and that inferred from the CMB.

1 Introduction

The generic term “Cosmic Voids” denotes ∼ 10–120 Mpc
sized round shaped low density regions surrounded by over-
dense filaments and walls, all of which conform the “cosmic
web” of large-scale structure (baryons and CDM) revealed
by observations and N-body simulations [1]. There is a large
body of literature on cosmic voids, from seminal early work
[2,3] to recent extensive reviews [4–7] and detailed cata-
logues (see a summary in [8]). As revealed by these reviews
and references therein: (i) cosmic voids enclose only 15% of
cosmic matter-energy (within the ΛCDM paradigm) but con-
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stitute about 77% of cosmic volume; (ii) they form from early
negative density contrast perturbations; (iii) they roughly
keep their rounded shape and (iv) their dynamics is rel-
atively insensitive to considerations from baryon physics.
This relatively simple and pristine dynamics renders them
as ideal structure systems to improve the theoretical mod-
eling of generic cosmological observations [9–11], and to
assess several open problems in cosmology: the nature of
dark matter and dark energy [12–21], redshift space distor-
tions [22–25], Cosmic Microwave Background (CMB) prop-
erties [26–30], Baryonic Acoustic Oscillations (BAO) [31],
alternative gravity theories [32–37], local group kinematics
and peculiar velocity fields [38–44], as well as theoretical
issues such as gravitational entropy [45,46].

The usual approach to study the nature and dynamics
of cosmic voids is through Newtonian gravity [47] (see
reviews [4–7] and references cited therein for examples of
studies based on analytic work, perturbations and N-body
simulations). These studies have put forward various forms
of “universal” density profiles [48,49] that fit observations
and catalogues. However, given the fact that cosmic voids
are approximately spherical structures that tend to become
more spherical as they evolve (see [50] for the first proof
of this fact known as the “bubble theorem”1 and also [4–
7,51–53] for further discussions and comparison with N-
body simulations), it is also feasible to study them by means
of spherically symmetric, exact and numerical solutions of
Einstein’s equations. As examples of analytic and semi-
analytic general relativistic studies, there are many based on
Lemaître–Tolman–Bondi (LTB) dust models [54–57], or the
more general non-spherical (but quasi-spherical) Szekeres
models [58–61]. While numerical relativity techniques have
already been applied in a cosmological context beyond spher-
ical symmetry [62–67], most relativistic numerical studies on
cosmic voids still rely on metric-based techniques involving

1 The “Bubble Theorem” states that an isolated underdensity (void)
tends to evolve into a spherical shape, explicitly: “as the void becomes
bigger, its asphericities will tend to disappear” [50].
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the Misner-Sharp mass function, and thus their validity is
restricted to spherical symmetry [68–71]. In particular, four
relevant studies that specifically examine general relativistic
void dynamics for spherical symmetry preceding our study
are [72–75].

In the present article we examine the fully general rela-
tivistic evolution of a spherically symmetric cosmic void,
assuming as matter source a mixture of non-interactive
baryons and CDM species, each evolving along a differ-
ent 4-velocity. Specifically, we consider the evolution of a
generic cosmic void suitably embedded in a ΛCDM back-
ground. Since CDM is the dominant clustering source, we
assume a frame in which its 4-velocity is comoving, whereas
the baryons evolve along a non-comoving 4-velocity that
defines a non-trivial field of spacelike relative velocities with
respect to the CDM frame. Consequently the 4-velocities of
the two dust sources are related by a boost, and the energy-
momentum tensor of the mixture (as described in the comov-
ing frame) no longer has the form of a perfect fluid, but that of
a complicated “fluid” energy-momentum tensor that contains
effective pressures and energy flux terms associated with the
relative velocity field.

In order to deal with the general relativistic dynamics for
this energy-momentum tensor, we do not resort to the tra-
ditional metric based methods of [72–75], but consider the
system of first order partial differential equations (PDEs)
provided by the “fluid-flow” (or “1 + 3”) representation of
Einstein’s equations [76–78] in terms of evolution equations
and constraints for the covariant quantities associated with
the CDM comoving 4-velocity. These covariant variables are
(i) kinematic: expansion scalar, 4-acceleration, shear tensor
and relative velocity, all computed from the CDM frame; (ii)
source terms: the total energy density, pressure and energy
flux that arise from the relative velocity and (iii) the electric
Weyl tensor. These equations (evolutions and constraints)
must be supplemented by spacelike constraints.

The plan of the paper is as follows. In Sect. 2, we introduce
a model for the evolution of a generic mixture of fluids in a
spherically symmetric spacetime. This model is specialized
to the case of two non-interacting dust-like fluids, namely
CDM and baryons, in Sect. 3. We examine the numerical
solutions of the resulting system of partial differential equa-
tions (PDEs) in a void formation scenario. Through repre-
sentative numerical examples, we look at the influence of the
relative baryon-CDM velocity on the evolution and present-
day final structure. Our results are summarized and discussed
in Sect. 4. Finally, we have included three appendices that
complement the main text. “Appendix A” provides the gen-
eral tensorial evolution equations of the 1 + 3 description;
while in “Appendix B” and “Appendix C”, we present the
dimensionless baryon-CDM system of PDEs and show its
(single-fluid) LTB limit.

2 A mixture of multiple fluids in spherical symmetry

A spherically symmetric spacetime is characterized by the
line element,

ds2 = gμνdx
μdxν

= −N 2dt2 + B2dr2 + Y 2
(
dθ2 + sin2(θ)dφ2

)
, (1)

where the metric coefficients N , B and Y are functions of the
radial and time coordinates. Notice that this metric contains
as a particular case the Robertson–Walker line element, a
solution recovered in our examples at scales larger than ∼
100 Mpc at z = 0.

Regarding the evolution of a mixture of non-comoving flu-
ids, the fluid elements of each species will evidently present
its own 4-velocity. In absence of specific criteria, a use-
ful choice of “reference frame” is the one of the dominant
species.2 Hence the family of fundamental observers will
evolve with comoving 4-velocity,

uμ = 1

N
δ
μ
t , (2)

which defines the convective fluid-flow (or time derivative)
and space-like gradients (orthogonal to uμ):

Ẋ = uμ∇μX = X,t

N
and ∇̃μX = hν

μ∇νX. (3)

The kinematic parameters associated with a spherically sym-
metric fluid as measured by the fundamental observers are
the expansion scalar, 4-acceleration and shear tensor (the vor-
ticity vanishes identically):

H = Θ

3
= 1

3
∇̃μu

μ, (4a)

u̇μ = uν∇νuμ, (4b)

σμν = ∇̃(μuν) − u̇μuν − Hhμν. (4c)

The Einstein field equations can be recast [76–78] as a first
order system of “1 + 3” evolution and constraint equa-
tions involving these kinematic parameters, together with
the energy density ρ, isotropic p and anisotropic pressure
πμν and energy flux qμ of the source given by the energy-
momentum tensor, as well as the electric Weyl tensor Eμν =
Cμανβ uαuβ (the magnetic Weyl tensor identically vanishes).
This system (displayed in “Appendix A”) is ideal for a numer-
ical treatment in which all variables have a clear physical and
geometric meaning. Since it is based on a 4-velocity flow it is
fully covariant, and thus it is readily applicable to spacetimes
that are not spherically symmetric.

2 This choice, however, is arbitrary and one could also choose the fun-
damental observers moving with the baryon component or even a frame
in which the total momentum flux density vanishes qμ = 0.
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For the spherically symmetric metric (1) we have

H = 1

3

(
2Ẏ

Y
+ Ḃ

B

)
, u̇μ = ∇̃μ (ln N ) = Aδrμ, A ≡ N,r

N
,

(5)

and the space-like symmetric trace-free tensors σ
μ
ν and Eμ

ν

can be written as

σμ
ν = Σ eμ

ν, Eμ
ν = W eμ

ν. (6)

Here W and Σ are scalar functions,

Σ = 1

3

(
Ẏ

Y
− Ḃ

B

)
, W = −Ψ2, (7)

with Ψ2 the conformal invariant of Petrov type D space-
times, and eμ

ν = hμ
ν − 3nμnν = Diag [0,−2, 1, 1] is the

tensor basis that serves as eigenframe for spacelike sym-
metric trace free tensors in Petrov type D spacetimes, with
hμν = gμν + uμuν and nμ = √

grr δrμ the projection tensor
and a spacelike normal vector tangent to the orbits of SO(3)

(note that ėμ
ν = 0).

The 4-velocity of the other non-comoving components
are related to uμ via the relative velocity measured by the
fundamental observers v

μ

(i), defined such that v
μ

(i)uμ = 0.
Then, the 4-velocity of the i-th fluid reads,

uμ

(i) = γ(i)

(
uμ + v

μ

(i)

)
, with γ(i) =

(
1 − v2

(i)

)− 1
2
, (8)

where “i” labels the components and v2
(i) = gμνv

μ

(i)v
ν
(i).

The total energy-momentum tensor is made up of all the
contributions from the different species, and in general it will
no longer be the energy-momentum tensor of a perfect fluid,
but

Tμν =
∑
i

Tμν

(i) = ρ uμuν + p hμν + 2q(μuν) + πμν, (9)

where ρ, p, πμν and qμ are the energy density, isotropic
and anisotropic pressures,3 and the energy flow measured
by the fundamental observers along uμ. These components
are determined by projecting the energy-momentum tensor
parallel and orthogonal to uμ [78,79]:

ρ = Tμνuμuν, qμ = −Tμνuν − ρuμ, p = 1

3
Tμνhμν,

(10a)

πμν = T〈μν〉 =
[
hη

(μh
υ
ν) − 1

3
hμνh

ηυ

]
Tηυ . (10b)

3 In this setup, the cosmological constant is implicitly considered by
the substitution ρ → ρ + Λ and p → p − Λ.

Although the total energy-momentum tensor is always con-
served, the energy-momentum tensors of the individual
components are not necessarily conserved. If there are
non-gravitational interactions between them, they satisfy
∇νT

μν

(i) = Jμ

(i), where J(i) is the rate of energy and momen-
tum densities transfer between species i as measured in
the uμ-frame. In absence of non-gravitational interaction
these energy-momentum tensors are separately conserved:
Jμ

(i) = 0 for all i .

2.1 A mixture of non-interacting perfect fluids

We now focus on the case of a mixture of non-interacting
fluids, each one a perfect fluid with a suitable equation of
state in its intrinsic frame (denoted with ∗):

p∗
(i) = w(i) ρ∗

(i), in general w(i) = w(i)(t, r). (11)

In this way, the total energy-momentum tensor follows from
adding up the corresponding tensors of the dynamically sig-
nificant species as seen from the uμ frame (Eqs. (9) and (10)).

Explicitly, if we choose the fundamental observers those
along uμ

(0), then the contribution to the total energy-
momentum tensor of the “0” component reads

Tμν
0 = ρ∗

0u
μuν + p∗

0 h
μν. (12)

On the other hand, the energy-momentum tensor of the i-th
component comoving with velocity uμ

(i) (see Eq. (8)) takes
the form

Tμν

(i) = ρ(i)u
μuν + p(i)h

μν + 2q(μ

(i)u
ν) + π

μν

(i) , (13)

with the dynamical quantities given by [78,79]:

ρ =
∑
i

ρ(i), ρ(i) = γ 2
(i)(1 + w(i)v

2
(i))ρ

∗
(i), (14a)

p =
∑
i

p(i), p(i) =
[
w(i) + 1

3
γ 2
(i)v

2
(i)(1 + w(i))

]
ρ∗

(i),

(14b)

qμ =
∑
i

qμ

(i), qμ

(i) = γ 2
(i)(1 + w(i))ρ

∗
(i)v

μ

(i), (14c)

πμν =
∑
i

π
μν

(i) , π
μν

(i) = γ 2
(i)(1 + w(i))ρ

∗
(i)v

〈μ
(i)v

ν〉
(i), (14d)

where for spherical symmetry spacetimes the anisotropy ten-
sor can be written as π

μ

(i) ν = Π(i)e
μ
ν , with Π(i) to be deter-

mined from Eq. (14d).
The dynamics of this fluid mixture can be determined from

the first order “1 + 3” fluid flow representation of Einstein’s
field equations given in “Appendix A”, by direct substitution
of ρ, p, πμν, qμ by (14a)–(14d), with

q(i)μ = Q(i)δ
r
μ, v(i)μ = V(i)δ

r
μ, (15)
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and u̇μ, σμν, Eμν obtained from (5) and (7). For spherical
symmetry this system can be further simplified and comple-
mented by evolution equations for the metric functions Y, B
and χ ≡ Y ′ that can be obtained from (5) and (7). Since each
one of the proper tensors u̇μ, σμν, Eμν is fully determined
by a single scalar function A, Σ, W , the tensorial system
in Appendix A becomes a dynamical system involving only
scalar functions:

Ẏ = Y (H + Σ) , (16a)

χ̇ = A (Σ + H) Y − 2χΣ + χH + 1

2
κQY, (16b)

Ḃ = B (H − 2Σ) , (16c)

Ḣ = −H2 − 2Σ2 − 1

6
κ (ρ + 3p) + 1

3

A2

B2 + 1

3

A,r

B2

−1

3

AB,r

B3 + 2

3

Aχ

B2Y
, (16d)

Σ̇ = Σ2 − 2HΣ + 1

2
κΠ − W − 1

3

A2

B2 + 1

3

Aχ

B2Y

+1

3

AB,r

B3 − 1

3

A,r

B2 , (16e)

Ẇ + 1

2
κΠ̇ = −3 (H + Σ)W − 1

2
κ (ρ + p) Σ

−1

2
κ (H − Σ) Π − κ

QB,r

6B3 + κ
Q,r

6B2

−κ
Qχ

6B2Y
+ κ

AQ

3B2 , (16f)

where A is defined in (5), Q = ∑
i
Q(i) and Π = ∑

i
Π(i).

This system must be complemented by the following con-
straints:

W = −1

6
κρ − κ

2
Π + M

Y 3 , (17a)

N,r = AN , (17b)

H2 = 1

3
κρ − K + Σ2. (17c)

Here K is the spatial curvature:

K ≡
(3)R

6
= (KY ),r

3Y 2χ
, with K = 1 − χ2

B2 , (18)

and M is the Misner-Sharp function

M = Y

2

[
Ẏ 2 − χ2

B2 + 1

]
= Y

2

[
Y 2(H + Σ)2 − χ2

B2 + 1

]
,

(19)

that is characteristic of spherically symmetric spacetimes.
Notice that this function furnishes an expression for W
through the constraint (17a) that allows us to eliminate the
evolution equation (16f) for Ẇ (and W in (16e)), though,
since M is fully expressible through (19) in terms of the

variables of (16), we do not need to use this function explic-
itly to integrate this system (we just eliminate M with (19)).4

Besides these constraints, we also need to supplement the
system with the conservation equation for each fluid:

ρ̇0 = −3
(
ρ∗

0 + p∗
0

)
H, A = − p∗

0,r

ρ∗
0 + p∗

0
, (20a)

ρ̇(i) = −3
(
ρ(i) + p(i)

)
H − 2

AQ(i)

B2 − 6Π(i)Σ

−2
Q(i)χ

Y B2 − Q(i),r

B2 + Q(i)B,r

B3 , (20b)

Q̇(i) = −3HQ(i) − p(i),r − Aρ(i) − Ap(i) + 2Π(i)A

+2Π(i),r + 6Π(i)χ

Y
. (20c)

Finally, the radial component velocity V(i) of the i-th fluid in
(15) can be determined algebraically from (14a) and (14c).

3 Void evolution from a mixture of two decoupled dusts

The main characteristic of cosmic voids is the underdensity
profile that depends on the (roughly) radial distance on Mpc
scales. However, the usual single fluid (dust) approach gener-
ally focuses on the void dimensions (size and the depth of the
density contrast) and the value of the local expansion [80],
while the relative velocity between the dynamically signifi-
cant species is usually ignored. In this section we show that
the multiple components scenario brings important modifi-
cations to the evolution of cosmic voids.

3.1 A numerical example of the two-component mixture

To stress the above it is illustrative to look at the case of a
mixture of two dust fluids identified as CDM and baryonic
matter, including a cosmological constant characterized by
the present-day parameters from Planck 2015 [81], in order
to accommodate a ΛCDM asymptotic background model.
We consider the fundamental observers comoving with dark
matter uμ

DM = δ
μ
t ; consequently, the baryonic matter will have

4-velocity,

uμ
B = γ

(
uμ

DM + vμ
)
, with γ =

(
1 − v2

)− 1
2
, and

vμ = V δrμ, (21)

and the energy-momentum tensor, Eq. (9), will be the sum
of the CDM and baryonic components:

Tμν = Tμν
DM +Tμν

B = ρ uμuν+phμν+2q(μuν)+πμν, (22a)

4 To work beyond spherical symmetry we can easily do away with the
usage of the Misner-Sharp mass function and work with the electric
and/or magnetic Weyl tensor.
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Fig. 1 Initial CDM density, spatial curvature and baryon relative veloc-
ity profiles as functions of ξ = r/ l∗. The initial functions are taken as
Gaussian perturbations to the background functions, given by Eq. (23)
with μc ∼ 0.01, kc ∼ 0.05, σK = σμ = 0.03, σv = 0.025, while Vpeak

is varied over values between −10−3 and ∼ 10−2. The initial baryon
matter density is homogeneous, as seen from the baryons intrinsic frame

with

Tμν
DM = ρDMu

μuν and Tμν
B = ρBu

μuν + pBh
μν

+2q(μ
B uν) + πμν

B , (22b)

such that one can identify the following quantities (as defined
in (14) and (15)),

ρ = ρDM + ρB, p ≡ pB = 1

3
γ 2v2ρ∗

B , (22c)

Q ≡ QB = γ 2ρ∗
B V, Π ≡ ΠB = 1

3
γ 2ρ∗

B v2, (22d)

ρDM ≡ ρ∗
DM, ρB = γ 2ρ∗

B . (22e)

Note that the pressure, heat flow and anisotropic stress terms
are zero when V = 0 (CDM and baryons with common
4-velocity: LTB limit). Consequently, the evolution will be
governed by the system of equations that results from sub-
stituting 0 → DM and i → B in Eq. (16) and considering
the energy-momentum tensor variables (22). The resulting
dimensionless system of equations is presented explicitly in
Appendix B.

We examine the numerical solutions of this two-dust sys-
tem in a grid simulating a cosmic void of present-day radius
∼ 60 Mpc. Starting from linear initial conditions at z = 23
we follow its evolution until z = 0 (see below for the jus-
tification of this choice of initial redshift). The initial CDM
density, spatial curvature, and the relative velocity profiles are
taken as Gaussian functions of linear amplitude with respect
to the background parameters. In all our simulations the bary-
onic density is initially homogeneous and equal to its value
in the background (as seen in its intrinsic frame),
[

8π

3

ρDM

H2

]

ini

= Ω ini
DM − μc exp

(
− ξ

σμ

)2

, (23a)

[K ]ini = −kcξ
2 exp

(
− ξ

σK

)2

, (23b)

[V ]ini = Vcξ
2 exp

(
− ξ

σv

)2

. (23c)

In the expressions above μc ∼ 0.01, kc ∼ 0.05, σK = σμ =
0.03, σv = 0.025, and r = l∗ξ . From this, the spatial curva-
ture (K ) is derived from Eqs. (18) and (23b). The charac-
teristic length is l∗ ∼ 60 Mpc, while the characteristic speed
constant Vc (and the maximum of the velocity Vpeak) will
be specified further below. Figure 1 shows the typical initial
profiles used for the numerical analysis.

3.2 Evolution of density profiles

To look at the effect of the relative velocity on voids and wall
formation we develop a code capable of handling test cases
with given initial densities for each species, a given curvature
profile, and a series of profiles for the relative velocity (Vpeak).

In Fig. 2 we display the baryon and CDM density con-
trasts at z = 0 for different initial velocity profiles. As a ref-
erence, we have included the case in which both baryons and
CDM are comoving (LTB solution). We find that even non-
relativistic relative velocity values exert non-trivial effects
on present-day configurations as density contrasts become
non-linear. On the other hand, the void size depends on the
sign of V , so that smaller voids result from initially negative
values for the relative velocity. We also illustrate the evolu-
tion of the density contrast profiles for the specific case of
Vpeak ∼ 7×10−3 (corresponding to the red curves in Fig. 2),
snapshots for different values of z are displayed in Fig. 3.

Notice that as the evolution proceeds the density contrast
at the surrounding wall increases, reaching probably a shell-
crossing singularity. We interpret this as the onset of an intri-
cate virialization process, a stage of structure formation that
marks the limit of validity of the dust model, and that lies
beyond the scope of this work (discussed elsewhere in the
literature [83,84]). Since our purpose is to look at the simulta-
neous evolution of the matter-energy components (CDM and
baryons) within the void before the onset of virialization, we
have chosen z = 23 as the initial time slice, simply because
it is easier to set the initial conditions at this time than at, say,
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Fig. 2 Influence of the initial baryon peculiar velocity on voids and
wall formation. Baryon and CDM density contrasts (δ(i) = ρ(i)/ρ̄(i)−1,
where ρ̄(i) is the value of ρ(i) in the background and i = DM, B) are
depicted by dashed and solid lines, respectively, for different initial
peculiar velocity profiles: all of them Gaussian functions with different
amplitude (Vpeak in Fig. 1) set initially at z = 23. The red lines stand
for Vpeak ∼ 7 × 10−3, the blue lines for Vpeak ∼ 5 × 10−3 and the
green ones for Vpeak ∼ −2.6×10−3. As a reference, we have provided
the case without a relative velocity (LTB model), denoted by a black
line. Note that the solution displayed by the solid blue curve represents
a baryonic matter shell of width ∼ 10 Mpc and density contrast of the
order the unity and peculiar velocity of ∼ 500 km/s with respect to the
CDM comoving frame. This configuration is roughly comparable with
the dynamics of our local group, which has similar size and density
contrast and a dipole velocity of ∼ 600 km/s associated with its local
motion with respect to the CMB frame [82]

the linear regime of the last scattering time z � 1100, well
before gravitational clustering becomes dynamically signif-
icant. However, these initial conditions are idealized but not
fine-tuned or unrealistic, they simply correspond to a spher-
ically symmetric realization of the generic spectrum of ran-
dom CDM and baryon perturbations, characteristic of the
linear regime at the last scattering surface z � 1100, which
evolve to produce a void of the desired size.

3.3 Local expansion of the components

Let us now focus on the effects of a relative velocity in the
measure of kinematic quantities. In the case of a single fluid,
the comoving observers define a natural threading of the
spacetime by the future-directed unit timelike vector field
uμ. In our case, as we stressed before, the choice of the fun-
damental observers is not unique, and observers comoving
with each fluid will measure the kinematic quantities with
different magnitudes. In fact, due to a change of frame, the
local expansion of CDM (HDM ≡ H in this frame) will depart
from the expansion of the baryonic matter HB, which is given
by

3HB = ΘB = hB
ν
μ∇νu

μ
B , (24)

where hB
μν = uμ

B uν
B + gμν is the projection tensor and uμ

B is
the 4-velocity of the baryonic matter given in Eq. (21). We
find by computing (24) a relation between both estimations
of the expansion,

3HB =
[(

2Y,r

Y
− B,r

B

)
V

B2 + V,r

B2 + 3HDM

]
γ

+ V

B2 γ,r + γ̇ ,

�
(

2χ

Y
− B,r

B

)
V

B2 + V,r

B2 + 3HDM + V V̇ , (25)

where in order to derive Eq. (25) we have used the fact that
V � 1 (but its derivatives need not be small) and χ ≡ Y,r .
Hence, the difference in the local expansion due to a change
of frame can be expressed as follows,

3 (HB − HDM) �
(

2χ

Y
− B,r

B

)
V

B2 + V,r

B2 + V V̇ . (26)

Figure 4 shows the difference between the two expansions
HB and HDM at z = 0 for the solutions whose density contrast
are depicted with red and blue lines in Fig. 2, corresponding
to Vpeak equal to 7×10−3 (red lines) and 5×10−3 (blue lines).
Note that this difference can be of the order of km/(s Mpc),
around the maximum of the baryonic matter density (even
larger differences are expected at times close to virialization).
This estimation is roughly that of the discrepancy between
the values of H0 reported by CMB and SNe observations [81,
85,86], thus suggesting that considering a relative velocity
between baryons and CDM may provide interesting clues to
understand this issue (though this task lies beyond the scope
of the present work).

3.4 The baryon-CDM relative velocity

Since for the baryon-CDM mixture the radial component of
the relative velocity, as defined in Eq. (21), can be determined
from the algebraic relation

V = QB/ρB, (27)

with QB and ρB given by Eq. (22d)–(22e), its evolution equa-
tion is

V̇ = (H − 2Σ)
V 3

B2 + Br
B3 V

2 − V,r

B2 V

=
(
H − 2Σ

B2

)
V 3 −

(
V 2

2B2

)

,r
. (28)

where we used (20b), (20c) and A ≡ 0. In order to relate this
equation to the well-studied perturbative case, we drop the
term of order of V 3 to obtain,

123



Eur. Phys. J. C           (2019) 79:106 Page 7 of 13   106 

Fig. 3 The figure shows snapshots of the density contrast of each matter component at different redshifts for the solution depicted with red lines
in Fig. 2

V̇ ≈ −
(

V 2

2B2

)

,r
, (29)

which shows the connection between the time evolution of
the relative velocity and the radial gradients of the velocity
and the metric function B that generalizes the background
scale factor. In a quasi-homogeneous perturbative regime
B ∼ a(t, r) r and thus B,r > 0 should hold, while V,r > 0

should also hold because relative velocities increase from
the centre onwards as r increases. Therefore the derivative
of (V 2)/(2B2) should be positive and thus the right-hand side
of the equation above negative. As a consequence, V̇ < 0
holds and relative velocities dilute asymptotically during cos-
mic expansion. However, this is not applicable to a non-
perturbative regime where large gradients of the involved
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Fig. 4 Differences in the local expansion due to a change of frame. The
left panel shows the difference between the two expansions at z = 0
(Eq. (26)) for two of the solutions depicted in Fig. 2, corresponding to

Vpeak equal to 7 × 10−3 (red lines) and 5 × 10−3 (blue lines). The right
panel shows the local expansion of each component as computed from
the solutions of the system (B.15) and Eq. (26)

variables may occur and/or change signs, so that the relative
velocity can be amplified by a local inhomogeneity.

We can obtain further information on the evolution of V
by looking at a definition of peculiar velocity often used in a
perturbative approach: the difference between the local Hub-
ble flow relative to the Hubble flow of the background, which
can be estimated as vpec = (Hlocal − HFLRW)Y [87]. Then,
once again neglecting the highest power of V in Eq. (26), we
get

Δvpec = (HB − HDM) Y �
(

2χ

Y
− B,r

B

)
Y

B2 V + Y

B2 V,r ,

(30)

which shows that such spatial velocity field is intrinsically
related with the local homogeneities. At large scales (in a per-
turbative regime) this field evolves by approximately dilut-
ing as the inverse of the background scale factor, since in a
regime approaching FLRW-like conditions our variables can
be written as B ∼ a(r, t) and Y ∼ ra(r, t) (see e.g., [88]
for a formal equivalence of LTB models with Cosmological
Perturbation Theory in the linear regime). In an inhomogene-
ity, however, where the spatial gradients are not restricted to
small values, the relative velocity and peculiar velocity must
be found by a non-trivial evolution equation. In particular, for
the numerical solutions showed in this section we found that
the relative velocity decreases, but without following a triv-
ial scaling law in the spatial region identified with the walls.
Note that in such regions the gradients can be large and the
local expansion is slower than the background expansion, in
fact, in part it is locally collapsing.

4 Discussion and final remarks

We have considered the fully relativistic evolution of spher-
ically symmetric cosmic voids made up of a mixture of
two non-comoving dust components, identified as CDM and
baryonic matter. Specifically, we looked at the effects of the
baryon-CDM relative velocity on the void properties. We
found that for baryons converging to the centre of the void,
as seen from the CDM frame, the final density profile shows
an effective reduction on the size of the void (see Fig. 2). On
the other hand, if the baryon component is receding from the
centre, the void presents a deeper (baryonic) underdensity,
and the walls manifest a larger density contrast as illustrated
in Figs. 2 and 3.

The existence of a relative velocity between baryons
and CDM leads to a difference in the expansion of each
component. We find that small initial differences in veloc-
ities between two components (of order 7–5 ×10−3) yield
important differences in local expansion of the order of
km/(s Mpc), similar to the gap between local and CMB
measurements of the expansion parameter H0 [64,81,85,86].
Indeed, this last result may be part of the effects missing in the
usual single frame analysis of peculiar velocities and local
expansion (e.g. curvature effects [67,89], among others).
Related to this, we find significant differences in the pecu-
liar velocities of each component, defined as deviations from
the asymptotic background (common) expansion, reached
at large radii. Such differences could be interpreted as the
velocity bias field, here evolved to non-linear stages. Fig-
ure 5 shows that such bias manifests most prominently at the
peak of the density contrast (walls of the void).

The spherical void model we work with is qualitatively
analogous to earlier models [72–75]. As in these models, we
obtain qualitatively analogous results that depict the expected
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Fig. 5 Peculiar velocity of the void components with respect to the
asymptotic background as defined in [87]. Note that the larger differ-
ences occur at the radii corresponding to the wall structure

streaming of baryons determined by the rapid void expansion,
a characteristic also present in Newtonian models. However,
the dynamical equations employed in the past are based on a
numerical scheme constructed from the Misner-Sharp mass
that is completely tied to spherical symmetry. As a contrast,
the system of evolution equations and constraints here con-
sidered is based on covariant fluid-flow scalars that can be
computed for any spacetime, regardless of the symmetry con-
siderations.

Our approach to void dynamics could also represent an
important improvement over the “silent models” of [67] that
try to address this issue through “emergent” spatial curva-
ture. Silent models (characterized by a non-rotating dust
source with purely electric Weyl tensor) are theoretically
handicapped by the conjecture stating that Einstein’s equa-
tions may not be integrable in general under the “silence”
assumption [90,91] (the models in [67] also neglect match-
ing conditions among the different silent cells). By assuming
dust sources with different (non-comoving) 4-velocities, the
resulting models are based on similar physical assumptions
but are no longer silent because of the non-trivial energy and
momentum flux among the dust sources.

In conclusion, the fully relativistic evolution of baryons
and CDM along different 4-velocity frames can provide
important clues in understanding the observational tension
in the estimation of the value of H0 from local observations
and through interpretation of the Planck data. A concrete
example is furnished by the study of the Hubble flow in the
non-spherical models examined in [64], which tries to under-
stand this tension, but did not consider different 4-velocities
for the baryon and CDM components. This work could be
improved by allowing for a non-comoving baryon 4-velocity
that would provide more degrees of freedom as we have done
in this paper. Likewise the multiple fluid approach can pro-
vide important corrections to the usual study of the process

of formation and growing of large-scale structure in the uni-
verse. Finally, we emphasize the fact that the system of evolu-
tion equations and constraints used in our numerical model-
ing has been constructed with covariant fluid flow variables,
and thus it is readily applicable (under certain restrictions) to
examine self-gravitating systems that are much less idealized
that those under the assumption of spherical symmetry.
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Appendix A: Einstein’s field equations as a first order
“1+ 3” system

Given a 4-velocity field, Einstein’s field equations are equiv-
alent to a set of evolution and constraint equations involv-
ing the kinematic parameters Θ, u̇μ, σμν, ωμν (expansion,
4-aceleration, shear and vorticity), the components of the
energy momentum tensor ρ, p,Πμν, qμ (energy density,
isotropic and anisotropic pressure, energy flux) projected by
the 4-velocity, as well as the electric and magnetic parts of
the Weyl tensor Eμν, Hμν . For spherical symmetry we have
ωμν = Hμν = 0, hence the 1 + 3 system becomes the evo-
lution equations

ρ̇ + 3 (ρ + p) H + 2u̇μqμ + ∇̃μu
μ + πμνσ

μν = 0,

(A.1)

3Ḣ + 3H2 + κ

2
(ρ + 3p) σμνπ

μν − ∇̃μu̇
μ − u̇μu̇

μ = 0,

(A.2)

q̇〈μ〉 + 4Hqμ + (ρ + p) u̇μ + ∇̃μ p + ∇̃νπ
ν
μ + πμν u̇

ν

+σμνq
ν = 0, (A.3)

σ̇〈μν〉 + 2Hσμν + Eμν − κ

2
πμν − ∇̃〈μu̇ν〉 + συ〈μσυ

ν〉
−u̇〈μu̇ν〉 = 0, (A.4)

Ė〈μν〉 + 3HEμν + κ u̇〈μqν〉 − 3συ〈μEυ
ν〉

+κ

2

[
(ρ + p) σμν + π̇〈μν〉 + 3

4
Hπμν + ∇̃〈μqν〉

]
= 0,

(A.5)
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together with the constraints

∇̃νσ
ν
μ − 2∇̃μH + κqμ = 0, (A.6)

∇̃νE
ν
μ − κ

3

(
∇̃μρ − 3Hqμ − 1

2
∇̃νπ

ν
μ

)

−κ

2
σμνq

ν = 0, (A.7)

H2 − κ

3
ρ − 1

6
σμνσ

μν + 1

6
(3)R = 0, (A.8)

where the “dot” and “tilde” respectively denote the con-
vective (projected with uμ) derivative and spacelike gra-
dients (projected orthogonal to uμ), see (3), while indices
enclosed by angle brackets (〈μν〉) denote the spacelike sym-
metric tracefree projection (see (10b)).

In order to apply the system (A.1)–(A.8) to the fluid mix-
ture we need to substitute (14a)–(14d) for the total forms of
ρ, p, πμν and qμ, as well as the forms for the kinematic
parameters and electric Weyl tensor in (4b) and (7).

Notice that the system (A.1)–(A.8) is not only valid for
spherically symmetric spacetimes, but for Petrov type D
spacetime (Hμν = 0) whose source is endowed with an irro-
tational fluid 4-velocity (ωμν = 0). The system can be read-
ily extended to more general spacetimes. While it does not
involve metric functions, information on these functions is
very useful for the numerical solution of the constraints.

Appendix B: The dimensionless system of PDEs

For the CDM-baryon problem where both species are
assumed to be strictly dust fluids (p ≡ 0), Eqs. (17b)
and (20a) imply that,

A ≡ 0, and N = 1, (B.9)

with A defined in (5). Then, redefining the “dot” derivative:

Φ̂ = Φ̇

H∗
= 1

H∗
uμ �μ Φ = Φ,t

H∗N
= Φ,t

H∗
, (B.10)

where H∗ is a constant with inverse-length units sets equal
to the initial background Hubble constant.

We introduce the following dimensionless parameters and
functions:

Y = l∗Y , r = l∗ξ, α = 1/(H∗l∗), (B.11)

S = Σ

H∗
, H = H

H∗
, W = W

H2∗
, χ = Y,ξ , (B.12)

μ = κρ

3H2∗
, p = κp

3H2∗
, (B.13)

M = κM

3H2∗
, Q = κQ

3H2∗
,P = κΠ

3H2∗
, (B.14)

with the characteristic length l∗ ∼ 60 Mpc. From substituting
0 → DM, i → B, and the above-defined dimensionless func-
tions in the system (16), we obtain the desired dimensionless
system of PDEs governing the dynamics of a 2-dust-fluid
mixture:

Ŷ = Y (H + S ) , (B.15a)

χ̂ = −2χS + χH + 3

2α
QY , (B.15b)

B̂ = B (H − 2S ) , (B.15c)

Ĥ = −H 2 − 2S 2 − 1

2
(μ + 3p) , (B.15d)

Ŝ = S 2 − 2H S + 3

2
P − W , (B.15e)

μ̂DM = −3μDMH , (B.15f)

μ̂B = −3(μB + p)H − 6PS − 2αQχ

Y B2

−αQ,ξ

B2 + αQB,ξ

B3 , (B.15g)

Q̂ = −3H Q − αp,ξ + 2αP,ξ + 6αPχ

Y
, (B.15h)

where

μB = γ 2μ∗
B , p ≡ pB = 1

3
γ 2v2μ∗

B , (B.15i)

Q ≡ QB = γ 2μ∗
BV, P ≡ PB = 1

3
γ 2μ∗

Bv
2, (B.15j)

μ = μDM + μB. (B.15k)

At each time the velocity and intrinsic density of the second
(non-comoving) dust is determined by:

V = Q

μB

, and μ∗
B = μ2

B − Q2
B

μB

. (B.15l)

The system is complemented by the following constraints

H 2 = μ − k + S 2, with k = K

H2∗
, (B.15m)

W = −μ

2
+ M

Y 3 − 3P

2
, (B.15n)

where,

M = 1

2
Y

(
Y 2(S + H )2 − α2χ2

B2 + 1

)
. (B.15o)

On the other hand, the Eq. (16f) (redundant) results,

Ŵ + 3

2
P̂ = −3 (H + S )W − 3

2
(μ + p)S

− 3

2
(H − S )P − α

2

B,ξQ

B3 + α

2

Q,ξ

B2 − α

2

χQ

B2Y
,

(B.16)

We employed the Method of Lines to integrate this system
of PDEs. Proceeding in this way the PDEs were discretized
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along the radial variable, setting 1000 grid points within the
interval r/ l∗ ∈ [0, 0.2]. The resulting set of ordinary differ-
ential equations was integrated using an adaptive step-size
Runge–Kutta of 4(5)-th order.

Appendix C: LTB limit

The LTB model is a general inhomogeneous spherically
symmetric solution of the Einstein’s equations for a single
irrotational dust fluid as source Tμν = ρuμuν . The time-
synchronous metric can be cast as follows [92],

ds2 = −dt2+ R2
,r (r, t)

1 + 2E(r)
dr2+R2(r, t)

(
dθ2 + sin2(θ)dφ2

)
.

(C.17)

For a comoving 4-velocity uμ = δ
μ
t the field equations

reduce to:

Ṙ2 = 2M

R
+ 2E, and M,r = κ

2
ρR2R,r . (C.18)

Following a similar approach to that used in the main text, we
rewrite the Einstein’s equations in terms of covariant objects
associated with the 4-velocity and the energy-momentum and
projection tensors, which leads to,

Ḣ = −H2 − κ

6
ρ − 2Σ2, (C.19a)

ρ̇ = −3 ρ H, (C.19b)

Σ̇ = −2 H Σ + Σ2 − W , (C.19c)

Ẇ = −κ

2
ρΣ − 3W (H + Σ) , (C.19d)

together with the constraint (among others not listed here)

H2 = κ

3
ρ − K + Σ2, (C.19e)

where the expansion scalar, the eigenvalues of the shear and
magnetic Weyl tensors as well as the spatial curvature take
the simple form:

3H = 2Ṙ

R
+ Ṙ′

R′ , Σ = −1

3

(
Ṙ,r

R,r
− Ṙ

R

)
, (C.20)

W = − M

R3 + κ

6
ρ, K = −4 (ER),r

6R2R,r
. (C.21)

These previous equations are recovered by specializing the
system (16)–(19) (or its particular case (B.15)) to the single
comoving fluid case. This can be checked by making the
following substitutions:

v → 0, N → 1, Y → R, B → R′

1 + 2E
, 2E → −K .

(C.22)
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