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In the Dynamical Dark-Matter (DDM) framework, the dark sector comprises a large number of
constituent dark particles whose individual masses, lifetimes, and cosmological abundances obey specific
scaling relations with respect to each other. In particular, the most natural versions of this framework tend to
require a spectrum of cosmological abundances which scale inversely with mass, so that dark-sector states
with larger masses have smaller abundances. Thus far, DDM model-building has primarily relied on
nonthermal mechanisms for abundance generation such as misalignment production, since these
mechanisms give rise to abundances that have this property. By contrast, the simplest versions of thermal
freeze-out tend to produce abundances that increase, rather than decrease, with the mass of the dark-matter
component. In this paper, we demonstrate that there exist relatively simple modifications of the traditional
thermal freeze-out mechanism which “flip” the resulting abundance spectrum, producing abundances that
scale inversely with mass. Moreover, we demonstrate that a far broader variety of scaling relations between
lifetimes, abundances, and masses can emerge through thermal freeze-out than through the nonthermal
mechanisms previously considered for DDM ensembles. The results of this paper thus extend the DDM
framework into the thermal domain and essentially allow us to “design” our resulting DDM ensembles at
will in order to realize a rich array of resulting dark-matter phenomenologies.
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I. INTRODUCTION

Dynamical Dark Matter (DDM) [1,2] is a framework for
dark-matter physics in which the dark sector is composed
of a large ensemble of dark states exhibiting a variety of
masses, lifetimes, and cosmological abundances. The
phenomenological viability of this framework rests on a
balancing between the lifetimes and abundances of the
individual ensemble constituents, so that states with larger
abundances have longer lifetimes while states with smaller
abundances can have correspondingly smaller lifetimes.
Such a balancing is required in order to satisfy observa-
tional constraints on dark-matter decay.
Scenarios within the DDM framework give rise to

distinctive signatures at colliders [3,4], at direct-detection

experiments [5], and at indirect-detection experiments
[6–8]. Such scenarios also give rise to enhanced comple-
mentarities [9,10] between different types of experimental
probes.Moreover,DDMensembles have been shown to arise
naturally in a number of scenarios for new physics beyond
the Standard Model (SM). These include theories with extra
spacetime dimensions [1,2,11], theories involving strongly
coupled hidden sectors [12], theories involving large sponta-
neously broken symmetry groups [13], and even string
theories [12,14]. In these and other realistic DDM scenarios,
the masses, lifetimes, and abundances of these individual
particles are not arbitrary. Rather, these quantities follow
directly from the underlying physics model and generally
take the form of scaling relations which dictate how these
quantities scale relative to one another across the ensemble
as a whole. Through these scaling relations, the properties
of the ensemble constituents—and thus the properties of
the ensemble itself—are completely specified through only a
small number of free parameters. Thus, even though the
number of particles which contribute to the total dark-matter
abundance is typically quite large, DDMscenarios of this sort
are every bit as predictive as traditional dark-matter scenarios.
One of the most fundamental of these scaling relations is

the one describing the relationship between the masses of
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the individual ensemble constituents and their cosmologi-
cal abundances. This scaling relation in turn depends
crucially on the mechanism through which the abundances
for these constituents are generated. Thus, the properties of
this scaling relation depend not only on the underlying
particle-physics model, but also on the underlying cosmo-
logical history in which it is embedded. For example, in
DDM models in which the ensemble constituents are the
Kaluza-Klein (KK) modes of an axionlike particle propa-
gating in the bulk of a theory with extra spacetime
dimensions, misalignment production provides a natural
abundance-generation mechanism for these constituents
[1,2,11]. Likewise, in DDM models in which the ensemble
constituents are composite states in the confining phase of a
strongly coupled hidden sector, it turns out that residual
gauge interactions at temperatures just below the confine-
ment scale give rise to an appropriate spectrum of abundan-
ces which compensates for the exponential rise in the density
of states [12]. However, these abundance-generation mech-
anisms are only compatible with particular classes of
particle-physics models. It is therefore useful to explore
alternative mechanisms for abundance generation—
mechanisms which might be applicable in a broader variety
of DDM contexts.
Of course, one of the most widely discussed and widely

exploited methods of abundance generation in the dark-
matter literature is thermal freeze-out (for reviews, see, e.g.,
Refs. [15–18]). Indeed, thermal freeze-out provides a natural
and versatile mechanism through which a neutral, weakly
interacting massive particle (WIMP) species χ which is
initially in thermal equilibrium can acquire a present-day
abundance Ωχ on the order of the total present-day dark-
matter abundance ΩCDM ≈ 0.26 [19]. Indeed, this mecha-
nism not only underpins the so-called “WIMP miracle,” but
also generically yields Ωχ ∼ΩCDM for a broader class of
dark-matter particles which do not participate in SM weak
interactions but which nevertheless have annihilation cross-
sections similar to that of a traditionalWIMP [20]. The range
of dark-mattermassesmχ forwhich the freeze-out is typically
relevant isOð1 keVÞ≲mχ ≲Oð100 TeVÞ. The lower limit
to this range stems from the requirement that the dark-matter
candidate be “cold”—i.e., nonrelativistic—during the
freeze-out epoch (see, e.g., Ref. [21]), while the upper limit
stems from considerations related to perturbative unitarity
[22]. However, there are ways of circumventing this upper
bound and broadening the window of applicability. For
example, this bound is considerably relaxed in theories in
which the dark and hidden sectors thermally decouple well
before the freeze-out epoch [23].
The question then arises as to whether thermal freeze-out

can yield a spectrum of cosmological abundances that are
suitable for a DDM ensemble. At first glance, it may seem
that this is not possible. The reason is relatively simple. In a
DDM ensemble, the abundances of the ensemble constitu-
ents must generally scale inversely to their decay widths.

However, the decay widths of such states generally scale as
a positive power of the mass. This then requires the
cosmological abundances of the ensemble constituents to
scale inversely with their masses:

Ωi ∼mγ
i where γ < 0: ð1:1Þ

Unfortunately, while this holds for all of the nonthermal
production mechanisms that have thus far been exploited
for DDM abundance generation, this is generally not a
property of thermal freeze-out. Indeed, as we know, the
WIMP miracle itself rests upon the classic observation that
[20,24–27]

Ωχ ∼
m2

χ

g4χ
; ð1:2Þ

implying the canonical value γ ¼ þ2. Thus, all else being
equal, dark-matter particles with larger masses can be
expected to retain larger cosmological abundances after
freeze-out than those with smaller masses—precisely the
opposite of what is generically needed for a DDM ensemble.
In this paper, we shall demonstrate that an acceptable

spectrum of abundances can nevertheless be generated for a
DDM ensemble through thermal freeze-out, with abundan-
ces Ωi scaling inversely with masses mi across the
ensemble. Indeed, this can occur even if the couplings gi
are universal across all ensemble constituents. Moreover, as
we shall demonstrate, such thermal freeze-out scenarios can
arise completely naturally, without any fine-tuning. Indeed,
we shall find that such scenarios can even give rise to a
wide variety of possible scaling behaviors with a wide
range of possible (negative) scaling exponents γ. Thus,
from a model-building perspective, we shall find that
thermal freeze-out actually provides a versatile tool for
“designing” viable DDM ensembles with different scaling
behaviors and exploring their resulting phenomenologies.
This paper is organized as follows. In Sec. II, we

examine the ways in which the cosmological abundance
of a particle produced by thermal freeze-out depends on the
mass of that particle. We review how the canonical
relationship between abundance and mass arises within
the WIMP paradigm and illustrate how this relationship can
be altered through modifications of the particle physics
alone, without any modification of the background cos-
mology. In Sec. III, we then undertake a somewhat more
general study along the lines of this approach and derive a
general expression for the freeze-out cosmological abun-
dance of an individual ensemble constituent as a function
of the mass, spin, and couplings of the particles involved.
In this way, we find that we can generate a broad range
of negative scaling exponents γ and potentially even dial
between them. In Sec. IV, we then examine how and under
what conditions a suitable balancing of decay widths
against abundances—a balancing which is the hallmark
of the DDM framework—can naturally arise in thermal
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DDM scenarios. Finally, in Sec. V, we conclude with a
summary of the implications of our results for DDM
model-building in a thermal context and possible directions
for future work.

II. FLIPPING THE ABUNDANCE SPECTRUM:
INTEGRATING OUT PRIOR TO

FREEZING OUT

In general, thermal freeze-out of a given dark-matter
particle χ results from a competition between χ annihilation
and the Hubble expansion of the universe. A priori, we can
imagine an annihilation process of the form χ̄χ → ψ̄ψ
where ψ denotes SM states or even states in the dark sector
which are less massive than χ. As the universe expands, the
efficient annihilation and production of χ via this process
and its reverse ensures that χ remains in thermal equilib-
rium with ψ and all other particles that are in thermal
equilibrium with ψ . Once the universe has cooled to a point
at which χ is nonrelativistic, this thermal equilibrium
causes nχ , the particle density of χ, to fall exponentially
as a function of time, which in turn causes the annihilation
rate to fall as well. This situation persists until the
annihilation rate Γ falls below the Hubble parameter H.
At this point, the expansion of the universe has caused nχ to
fall so low that the dark-matter particles can no longer
efficiently find each other in order to annihilate. The
efficient annihilation and production of χ then ends, with
χ falling out of chemical equilibrium and the number of χ
particles remaining essentially constant thereafter. In other
words, χ has experienced thermal freeze-out.
Estimating the resulting post-freeze-out dark-matter

abundance Ωχ therefore requires knowledge of the ther-
mally averaged annihilation cross-section hσvi. Calculating
this quantity in turn requires a set of specific assumptions
concerning how χ annihilates into SM states or other
relatively light states in the dark sector. In general, there
are many processes which can contribute to the overall
annihilation cross-section. However, for the purposes of
this paper, we will concentrate on the relatively simple case
in which this annihilation proceeds through an s-channel
diagram such as that shown in Fig. 1(a) in which two dark-
matter particles χ of mass mχ annihilate into two light

particles ψ through a mediator ϕ: i.e., χ̄χ → ϕ → ψ̄ψ . Note
that we are not assuming that χ or ψ are their own
antiparticles, nor are we even specifying the spins of these
states. However, for simplicity, we shall begin by assuming
that mχ ≫ mϕ, mψ so that both ϕ and ψ can be taken as
effectively massless. We shall likewise take gχ and gψ to be
constants representing the couplings of χ to ϕ and ϕ to ψ ,
respectively. We shall also take each of our incoming
dark-matter particles to be nonrelativistic, with an energy
Eχ ≈mχ . It then immediately follows via dimensional
analysis that our thermally averaged cross-section generi-
cally takes the form [20,24–27]

hσvi ∼ g2χg2ψ
m2

χ
ð2:1Þ

where v denotes the relative velocity of the dark-matter
particles. As we shall discuss below, under rather broad
assumptions the process of thermal freeze-out leads to a
residual abundance Ωχ which scales as hσvi−1. This then
reproduces the traditional “WIMP miracle” result

Ωχ ∼
m2

χ

g2χg2ψ
; ð2:2Þ

thereby yielding the expected scaling behavior Ωχ ∼mγ
χ

with γ ¼ þ2. This behavior can be realized in a number of
other ways as well.
How, then, can we “flip” this result and realize a scaling

behavior in which Ωχ ∼mγ
χ with γ < 0? Note that prior to

utilizing the nonrelativistic approximation E ≈mχ in the
process of deriving Eq. (2.1), the powers of mχ that appear
in Eq. (2.1) had originally been powers of E. Thus, our
interest is really in changing the powers of energy asso-
ciated with the annihilation process. In particular, we
are interested in finding a way to decrease the powers
of energy in our expression for the abundance Ωχ ,
or equivalently to increase the powers of energy in the
cross-section hσvi.
Of course, one way of changing the powers of energy is

already well known: if we imagine that the mediator ϕ has a
nonzero mass mϕ, then there is a natural process we may
follow which amounts to replacing

g2χg2ψ
E2

⟶ G2E2 ð2:3Þ

where we have introduced the dimensionful effective
coupling G≡ gχgψ /m2

ϕ. Indeed, this is nothing but the
process of integrating out the mediator ϕ—i.e., of taking
mϕ ≫ E ≈mχ . This then leaves us with the effective
annihilation process illustrated in Fig. 1(b). Note that the
limit mϕ ≫ mχ which underpins the integrating out of ϕ is
opposite to the limit that yields the traditional result in

(a) (b)

FIG. 1. Diagrams for dark-matter annihilation χ̄χ → ψ̄ψ . (a) An
s-channel diagram in which annihilation proceeds through a
mediator ϕ. (b) A four-point effective contact interaction which
emerges from diagram (a) upon integrating out the mediator ϕ.
This diagram represents the limit of diagram (a) in which
mϕ ≫ mχ , mψ .
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Eq. (2.1). However, there is no conflict in doing this since
we are no longer considering mϕ as parametrically tied to
the weak scale.
As evident in Eq. (2.3), this process of integrating out ϕ

results in a growing, unbounded cross-section whose
unitarization was previously supplied through ϕ. As a
result, even for finite mϕ, those dark-matter particles χ
whose masses are significantly below mϕ experience an
effective annihilation cross-section which grows rather than
shrinks as a function of energy. For such dark-matter
particles, standard thermal freeze-out then yields cosmo-
logical abundances which decrease, rather than increase, as
a function of mχ .
To make these observations more explicit, let us imagine

that we have an ensemble of dark-matter components χi,
i ¼ 1;…; N, with masses mi satisfying miþ1 ≥ mi for all
i ≤ N − 1, whose annihilations are dominated by the
process shown in Fig. 1(a) in which χi and its antiparticle
χ̄i (which may or may not be identified with χi itself)
annihilate into a pair of other, lighter particles ψ and ψ̄
through the exchange of a common mediator ϕ. For
concreteness we shall assume that χi and ψ are Dirac
fermions and that ϕ is a scalar. Here ψ collectively denotes
a SM state or a state in the dark sector which is lighter than
the χi; however, the identities of ψ and ψ̄ are not
particularly important for determining the abundance spec-
trum, and we shall not specify their identities further.
Likewise, we shall assume that the couplings between these
fields take the simple forms gχ χ̄iχiϕ and gψϕψ̄ψ where gχ
and gψ are arbitrary coupling constants. Note, in particular,
that we are taking gχ to be independent of i and hence
universal for the entire ensemble; other options will be
briefly discussed in the Conclusions. Finally, we shall
assume that ϕ and ψ have arbitrary masses mϕ and mψ .
Given these assumptions, a straightforward calculation

of the cross-section σi for the process shown in Fig. 1(a)
then yields the result

σi ¼
g2χg2ψ

πð2EÞ2
ðE2 −m2

i Þ1/2ðE2 −m2
ψÞ3/2

ð4E2 −m2
ϕÞ2

; ð2:4Þ

where E is the energy of each incoming χ particle in the
center-of-mass frame. Because the dark matter is assumed
nonrelativistic at the time of freeze-out, we may approxi-
mate E2 ≈m2

i ð1þ v2/4Þwhere v is the dark-matter relative
velocity, whereupon we find that

σiv ¼ g2χg2ψ
128πm2

i
v2

ð1 −m2
ψ /m2

i Þ3/2
ð1 −m2

ϕ/4m
2
i Þ2

: ð2:5Þ

Recognizing that hv2i ∼ T/mi and that Ti ≈mi/20 up to
logarithmic corrections, where Ti is the freeze-out
temperature of χi, we then obtain the thermally averaged
cross-section

hσivi ∼
g2χg2ψ
m2

i

ð1 −m2
ψ /m2

i Þ3/2
ð1 −m2

ϕ/4m
2
i Þ2

; ð2:6Þ

where we are henceforth disregarding overall numerical
factors.
For any such thermally averaged cross-section, the

process of thermal freeze-out results in a present-day
abundance given to leading order by [24–27]

Ωi ≈ΩCDM

�hσivi
1 pb

�
−1
e−Γitnow ; ð2:7Þ

where tnow ≈ 13.8 Gyr is the present age of the universe
and where Γi denotes the decay rate of the ensemble
constituent χi. Other than the mi-dependence within σi and
Γi, this result is independent of mi, up to logarithmic
corrections. This expression for Ωi is predicated on the
assumption that χi is its own antiparticle; otherwise an
additional overall factor of 2 would appear on the right side
of this equation. For simplicity, we shall henceforth utilize
the leading-order result in Eq. (2.7). We thus find that our
resulting present-day cosmological abundance for this
dark-matter component is given by

Ωi ∼
m2

i

g2χg2ψ

ð1 −m2
ϕ/4m

2
i Þ2

ð1 −m2
ψ /m2

i Þ3/2
e−Γitnow : ð2:8Þ

In the remainder of this paper, we shall focus on those
ensemble constituents χi for which Γitnow ≪ 1—i.e., those
components whose decays have a negligible effect on Ωi.
We do this because these are precisely the ensemble
components which survive today and whose abundances
contribute to the present-day measurement of ΩCDM.
However, in this connection we remark that it is also
possible to use the formalism we develop in this paper to
study the abundances of those components whose lifetimes
τi ≡ 1/Γi are significantly shorter than tnow and which have
therefore already experienced significant decay prior to
tnow. Indeed, for such components one natural approach
would be to concentrate on the abundance ΩiðtÞ of each
component at t ¼ τi, as we expect such abundances to also
obey the same types of inverse scaling relations that we
expect for the abundances of those components surviving
today [1]. However, comparing abundances at different
times τi during cosmological history involves an additional
complication. In particular, we must to take into account
the differing abundance rescalings [1] that arise due to the
differences between the decay time scales τi of the different
ensemble constituents relative to tnow—time scales which
may potentially even extend into different cosmological
epochs.
Within our result in Eq. (2.8), it is natural to assume that

mi ≫ mψ for all i, as this is the condition that underpins
the process χ̄iχi → ϕ → ψ̄ψ which eventually induces the
thermal freeze-out of χi and χ̄i. We shall also assume that
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Γitnow ≪ 1, as described above. Under such circumstances,
we then find that the dark-matter abundance scales with
mi as

Ωi ∼m2
i

�
1 −

m2
ϕ

4m2
i

�2

: ð2:9Þ

In principle, there is no specified relationship betweenmi
andmϕ. However, we see from Eq. (2.9) that whether or not
Ωi increases or decreases with mi depends crucially on this
relationship. In particular, we have the opposite limiting
cases:

mi ≫ mϕ∶ Ωi ∼m2
i ⟹ γ ¼ þ2;

mi ≪ mϕ∶ Ωi ∼m−2
i ⟹ γ ¼ −2: ð2:10Þ

Clearly the first case with an extremely light mediator ϕ
yields the canonical scaling behavior that we already
discussed in connection to the WIMP miracle. However,
as promised, we see that the process of increasing the
mediator mass mϕ and ultimately taking mϕ ≫ mi results
in a flipping of the sign of the scaling exponent γ from
positive to negative values. Thus, in this regime, the
cosmological abundances Ωi resulting from thermal
freeze-out decrease with increasing mass mi—precisely
as desired. Indeed, this result remains true for all ensemble
constituents whose massesmi are significantly smaller than
the intermediary mass mϕ.
For dark-matter ensembles whose constituent masses are

capped at some maximum value mmax, taking mϕ ≫ mmax
ensures that our desired scaling relationship holds across
the entire dark-matter ensemble. Thus, in such cases,
thermal freeze-out can indeed serve as a viable production
mechanism within the DDM framework. However, in many
theoretical constructions our resulting dark-matter ensem-
ble contains an infinite number of constituents whose
masses grow without bound. In such cases, our desired
scaling behavior holds only across that (lighter) portion of
the ensemble for which mi ≪ mϕ. Indeed, as mi increases
and becomes commensurate with mϕ, other effects become
relevant. For example, for constituents with mi ∼mϕ/2,
resonance effects become important. In this regime, pro-
vided that Γϕ is not too small, we find that Ωi ∝ Γ2

ϕ, where
Γϕ is the total width of the mediator. (For an extremely
small mediator width, Ωi is sensitive to the velocity
distribution of χi and thus has a different parametric
dependence [28,29]; moreover, energy-dependent correc-
tions to Γϕ can also have an effect on Ωi, as discussed in
Ref. [30].) Finally, as mi increases even further, the
corresponding abundances Ωi ultimately begin to increase.
Moreover, for mi ≥ mϕ, annihilation to a pair of on-shell
mediators becomes kinematically accessible. Since the
corresponding cross-section does not have the same para-
metric dependence on gχ , mi, and mϕ as in Eq. (2.6), our

scaling relation for the abundances in Eq. (2.8) no longer
holds in this regime.
Within most DDM models it is usually the lighter dark-

matter constituents which play the most significant roles
within the resulting dark-sector phenomenology. This is
true for collider signatures [3,4] as well as constraints
coming from direct- and indirect-detection experiments
[5–8]. Moreover, extremely heavy states within the ensem-
ble may be expected to decay extremely rapidly in the early
universe, potentially prior to the epochs during which such
decays could run afoul of standard cosmological con-
straints and prior to the stage at which such states would
experience thermal freeze-out. Thus, for most practical
concerns, our main focus is usually on those lighter
components of the ensemble which are most likely to
survive to the present day and thus have the greatest
phenomenological relevance. Fortunately, our mechanism
for flipping the scaling of the abundance spectrum applies
precisely for those dark-matter constituents. These issues
will be discussed further in Sec. IV.
Thus, we conclude that thermal freeze-out can serve as a

suitable abundance-production mechanism within the
DDM framework. Indeed, within the annihilation channel
we have considered here, we need only ensure that the
mediator massmϕ significantly exceedsmi over all relevant
portions of the DDM ensemble. The mediator massmϕ can
then serve as a free parameter which may be adjusted so as
to render Ωtot ≡P

iΩi equal to ΩCDM, as desired.

III. GENERATING A SPECTRUM OF SCALING
EXPONENTS: A MORE GENERAL STUDY

Thus far, we have shown that we can flip the sign of the
abundance scaling exponent γ from þ2 to −2. This then
produces a negative scaling exponent, consistent with our
original goal. However, it is interesting for the purpose of
considering many possible dark-sector phenomenologies
and for general model-building purposes to explore the full
range of values of γ which may arise when our underlying
annihilation process is varied. Moreover, even within the
specific annihilation process we have considered, it is
interesting to study more general cases beyond that in
which mϕ/mi is taken to infinity. Finally, as we shall see,
there can also be final-state kinematic effects which we
have thus far ignored but which might also potentially
affect the values of the scaling exponent γ. We shall now
undertake a general study of all of these possibilities.
Clearly, in order to obtain a variety of values of γ, one

might consider a corresponding variety of dark-matter
annihilation processes beyond that sketched in Fig. 1.
Indeed, there is almost no limit to the complexity of
annihilation processes which might be considered.
However, it is also interesting to remain within the class
of annihilation diagrams sharing the very natural topology
of that in Fig. 1, but to consider alternative options for the
spins of the internal and external particles as well as
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alternative Lorentz structures for the couplings between the
dark and visible sectors. We shall follow the latter course in
this paper.
Towards this end, let us reconsider the annihilation

diagram in Fig. 1(a). We shall again consider a toy
DDM model in which the annihilation rate for each
ensemble constituent χi in the early universe is dominated
by this s-channel process, and we shall again not make any
assumptions concerning the specific identities of χi
and ψ except that ψ is presumed lighter than χi for all i.
We shall likewise not specify whether χ and ψ are their own
antiparticles. However, we shall now allow χi and ψ to be
either complex scalars or spin-1/2 fermions. Likewise, we
shall allow ϕ to be either a spin-0 or spin-1 field.
Furthermore, we shall allow the couplings between the
mediator and the dark and visible sectors to have a variety
of Lorentz structures: scalar (S), pseudoscalar (P), vector
(V), or axial vector (A), constrained only as appropriate for
the particle spins involved. In each case, we shall again
assume that these couplings are the same for each ensemble
constituent (and hence independent of the i index), and
in each case we shall again consider only the leading
(renormalizable or super-renormalizable) operators.
The resulting possibilities are enumerated in Tables I

and II. Note that the cases with spinless mediators coupled
to spinless dark or visible matter give rise to super-
renormalizable interactions; they thus depend on an arbi-
trary energy scale μ. Moreover, unlike all other cases, those
involving a spin-1 mediator and spinless dark or visible
matter necessarily require derivative couplings. Finally, for
logical consistency and completeness, we have included
couplings involving the timelike components of vectorial
interactions. However, these operators cannot couple to any
external (initial or final) state regardless of the charge-
conjugation, parity, or angular-momentum quantum num-
bers which that state might carry [31]. These couplings thus
need not be considered further.
Also shown in Tables I and II are the values of certain

corresponding indices ðϵχ ; ϵψ ; r; s; tÞ. The indices ϵχ and ϵψ

indicate the overall power of the energy scale μ that is
needed in the corresponding coupling. (Equivalently, these
indices are given by 4 − dwhere d is the mass dimension of
the corresponding Lagrangian operator.) Likewise, we
define r ¼ 0 if the mediator ϕ can couple to an initial
state with total angular momentum L ¼ 0, and r ¼ 1 if the
mediator can only couple to an initial state with L ¼ 1.
Similarly, we define s ¼ 0 if ϕ can couple to a final state
with L ¼ 0, and s ¼ 1 if ϕ can only couple to a final
state with L ¼ 1. Finally, we define t ¼ 1 if the coupling
between ψ̄ , ψ , and ϕ is chirality-suppressed, and t ¼ 0
otherwise. Note that if ϕ is a spin-1 particle with pseudo-
vector couplings to both χi and ψ , contributions involving
both the timelike and spacelike components of ϕ must be
included. In cases in which ψ is very light, the spacelike
components yield the dominant contribution. By contrast,
when mψ ∼mi/2, the timelike component dominates.
In order for the process χ̄iχi → ϕ → ψ̄ψ to dominate the

annihilation rate for each χi, the contribution to that rate
from coannihilation processes of the form χ̄iχj → ψ̄ψ
with i ≠ j must be suppressed. This occurs naturally, for
example, in scenarios in which each of the χi is nontrivially
charged under a different approximate symmetry. In addi-
tion, the collective contribution to the annihilation rate
from intra-ensemble annihilation processes of the form
χ̄iχi → χ̄jχj, in which heavier ensemble constituents anni-
hilate into lighter ones, must likewise be suppressed. This
occurs naturally in scenarios in which gχμϵχ ≪ gψμϵψ .
However, as we shall see, a suppression of this sort arises
in a variety of other contexts as well.
Given these assumptions concerning the nature of the

dominant dark-matter annihilation processes, we can now
calculate the corresponding cosmological abundances Ωi
that emerge after thermal freeze-out. For each spin/cou-
pling combination in Tables I and II, the corresponding
annihilation matrix elements jMj2, summed over final
states and averaged over initial states, scale as

TABLE II. Values of the indices ϵψ , s, and t which correspond
to different spins and coupling structures for the mediator ϕ and
the particle species ψ into which the ensemble constituents
annihilate.

ϕ ψ coupling ϵψ s t

spin-0 spin-0 S: gψμϕψ�ψ 1 0 0

spin-0 spin-1/2 S: gψϕψ̄ψ 0 1 0
spin-0 spin-1/2 P: gψϕψ̄γ5ψ 0 0 0

spin-1 (time) spin-0 V: gψϕ0ðψ�∂0ψÞ n/a n/a n/a
spin-1 (spatial) spin-0 V: gψϕiðψ�∂iψÞ 0 1 0

spin-1 (time) spin-1/2 V: gψϕ0ψ̄γ0ψ n/a n/a n/a
spin-1 (spatial) spin-1/2 V: gψϕiψ̄γiψ 0 0 0
spin-1 (time) spin-1/2 A: gψϕ0ψ̄γ0γ5ψ 0 0 1
spin-1 (spatial) spin-1/2 A: gψϕiψ̄γiγ5ψ 0 1 0

TABLE I. Values of the indices ϵχ and r which correspond to
different spins and coupling structures for the ensemble con-
stituents χi and the mediator ϕ.

χi ϕ coupling ϵχ r

spin-0 spin-0 S: gχμχ�χϕ 1 0

spin-1/2 spin-0 S: gχ χ̄χϕ 0 1
spin-1/2 spin-0 P: gχ χ̄γ5χϕ 0 0

spin-0 spin-1 (time) V: gχðχ�∂0χÞϕ0 n/a n/a
spin-0 spin-1 (spatial) V: gχðχ�∂iχÞϕi 0 1

spin-1/2 spin-1 (time) V: gχ χ̄γ0χϕ0 n/a n/a
spin-1/2 spin-1 (spatial) V: gχ χ̄γiχϕi 0 0
spin-1/2 spin-1 (time) A: gχ χ̄γ0γ5χϕ0 0 0
spin-1/2 spin-1 (spatial) A: gχ χ̄γiγ5χϕi 0 1
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jMj2 ∼ g2χg2ψv2r
�
μ

mi

�
2ðϵχþϵψ Þ

×
ð1 −m2

ψ /m2
i Þs

ð1 −m2
ϕ/4m

2
i Þ2

�
mψ

mi

�
2t
; ð3:1Þ

where the corresponding values of ϵχ , ϵψ , r, s, and t are
listed in Tables I and II. The corresponding annihilation
cross-sections then scale as

σi ∼
g2χg2ψ
m2

i
v2r−1

�
μ

mi

�
2ðϵχþϵψ Þ

×
ð1 −m2

ψ /m2
i Þsþ1/2

ð1 −m2
ϕ/4m

2
i Þ2

�
mψ

mi

�
2t
: ð3:2Þ

Calculating hσivi from these results is not difficult. As in
Sec. II, we focus on the regime in which each χi freezes out
at a temperature Ti such that xi ≡mi/Ti ≫ 3. In this
regime, the velocity distribution for each χi is already
nonrelativistic, with speed v ≪ 1, by the time freeze-out
occurs. In this regime, the cross-section is reasonably well
approximated by retaining the leading nonvanishing term in
the series expansion

σiv ¼ að0Þi þ að1Þi v2 þ að2Þi v4 þ… ð3:3Þ

in the quantity v2. Recognizing that hv2i ∼ T/mi, we find
that the corresponding thermal average at temperatures
T ∼ Ti is given by [32]

hσivi ≈ að0Þi þ 3

2
að1Þi x−1i þ 15

8
að2Þi x−2i þ…: ð3:4Þ

Thus, in cases in which the annihilation is s-wave and the

constant term að0Þi dominates, the thermal average hσivi
scales with mi and gi across the ensemble in exactly the
same way as σiv itself. Moreover, since the ratio xi depends
only logarithmically on mi and gi (due to the implicit
dependence of Ti on mi), we find that even in cases in

which að0Þi ¼ 0 and the annihilation is p-wave, hσivi still
scales with these parameters in approximately the same
way as σiv, up to logarithmic corrections.
Given these results, we then find from Eq. (2.7) that our

final abundances Ωi scale across the ensemble as

Ωi ∼
m2

i

g2χg2ψ
m

2ðϵχþϵψþtÞ
i

ð1 −m2
ϕ/4m

2
i Þ2

ð1 −m2
ψ /m2

i Þsþ1/2 ; ð3:5Þ

where we continue to assume Γitnow ≪ 1 and thereby
ignore the effects of particle decays, focusing instead on
the original abundance produced by thermal freeze-out. In
this expression, it is easy to understand the origins of each
factor:

(i) the leading factor of m2
i is nothing but the canonical

contribution that already appeared in Eqs. (1.2)
and (2.2);

(ii) the second factor m
2ðϵχþϵψþtÞ
i reflects the possibility

of super-renormalizable couplings in Tables I and II,
and also reflects the possibility of a chirality-
suppressed coupling between the mediator and the
visible sector;

(iii) the third factor ð1 −m2
ϕ/4m

2
i Þ2 reflects the contri-

bution from the mediator; and
(iv) the final factor ð1 −m2

ψ /m2
i Þ−s−1/2 reflects final-state

kinematic effects.
If we consider only the first and third factors, we

reproduce the result in Eq. (2.9). Indeed, we now see that
it is legitimate to consider only the first and third factors in
those cases for which ϵχ ¼ ϵψ ¼ t ¼ 0 (thereby eliminating
the second factor) and for whichmi ≫ mψ for all i (thereby
eliminating the fourth factor). In such cases, we then
reproduce our prior results in Eq. (2.10), with γ flipping
from þ2 to −2 when the mediator is taken from extremely
light to extremely heavy.
It is now apparent, however, that there are additional

effects which can come into play. First, there is the
contribution from the second factor. In general, the con-
tribution from this factor increases the value of the scaling
exponent by an amount

Δγ ≡ 2ðϵχ þ ϵψ þ tÞ: ð3:6Þ

It is immediately apparent from the various self-consistent
coupling and mediator combinations in Tables I and II
that the only allowed values for Δγ are 0, 2, and 4. We thus
see that the possibility of super-renormalizable couplings
and chirality-suppressed mediator/visible-sector couplings
tends to drive γ towards even more positive values. Indeed,
for those combinations with Δγ ¼ 4, this effect completely
cancels the effect from integrating out the mediator (i.e., the
effect from takingmϕ ≫ mi for all i), restoring our positive
traditional scaling exponent γ ¼ 2. However, the case with
Δγ ¼ 2 leaves us with γ ¼ 0, producing cosmological
abundances which are largely independent of the constitu-
ent masses mi to within the leading approximations we
have been making. In such circumstances, it is then the
subleading contributions to thermal freeze-out (coming
perhaps from nondominant annihilation channels and sub-
leading contributions to the thermal averaging process, etc.)
which dictate the overall sign of the scaling exponent γ.
Finally, we consider the final-state kinematic effects

coming from the fourth factor. When mi ≫ mψ for all i,
these effects are essentially independent of mi and thus do
not alter the value of γ. Otherwise, when we merely have
mmin ≳mψ where mmin is the minimum of the mi, this
fourth factor enhances the cosmological abundances Ωi but
does so increasingly weakly as a function of the constituent
mass mi. In other words, this factor is greater than 1 but
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decreases as a function of mi. This then tends to provide a
negative (although mi-dependent) contribution to γ which
can again pull the overall value of the scaling exponent γ
towards negative values.
We thus see that the question of whether the resulting

values of γ are positive or negative depends on the
balancing between a number of factors governing the
annihilation process. The canonical factor gives a contri-
bution γ ¼ 2, and the coupling and chirality factors make a
potential additional positive contribution given in Eq. (3.6).
By contrast, integrating out the mediator ϕ tends to
decrease the value of γ by four units, as we have seen in
Sec. II, and this is then further decreased by the final-state
kinematic effects.
Thus far, we have treated γ as if this scaling exponent

were constant across the entire ensemble. In other words,
we have implicitly assumed that Ωi exhibits a pure power-
law dependence on mi. This is certainly true for the
contribution from the canonical first factor in Eq. (3.5),
and true even for the extra contribution in Eq. (3.6) coming
from the second factor. It is also true for the third factor as
long as we consider the mediator ϕ to be either extremely
light (mϕ ≪ mi for all i) or extremelyheavy (mϕ ≫ mi for all
i), and it is trivially true even for the fourth factor as long as
we consider our final-state particles to also be extremely
light, withmψ ≪ mi for all i. However, the scaling-exponent
contributions from the third and fourth factors in Eq. (3.5) are
generally mi-dependent, which means that our total scaling
exponent γ will also be mi-dependent. Indeed, recognizing
this fact is critical if we wish to extend our analysis beyond
the limiting approximations outlined above.
Fortunately, it is not difficult to obtain the corresponding

results for these mass-dependent scaling exponents γðmÞ.
In general, we have seen from Eq. (3.5) that ΩðmÞ can be
viewed as a continuous function which varies with the
mass scale m within the allowed range mψ < m < mϕ/2
according to

ΩðmÞ ∼ m2

g2χg2ψ
m2ðϵχþϵψþtÞ ð1 −m2

ϕ/4m
2Þ2

ð1 −m2
ψ /m2Þsþ1/2 : ð3:7Þ

Given this, we can define our effective scaling exponent at
any value of m via the relation ΩðmÞ ∼mγ, or equivalently

γðmÞ≡ d lnΩðmÞ
d lnm

¼ m
ΩðmÞ

dΩðmÞ
dm

: ð3:8Þ

For the abundance in Eq. (3.7), we then find

γðmÞ ¼ 2þ Δγ þ 1

m2/m2
ϕ − 1/4

þ 2sþ 1

1 −m2/m2
ψ
; ð3:9Þ

whereΔγ is given in Eq. (3.6). Indeed, the separate terms in
Eq. (3.9) are the contributions from the corresponding
factors in Eq. (3.7).

In Fig. 2 we have plotted the results for ΩðmÞ and γðmÞ
as functions ofm over the mass rangemψ < m < mϕ/2. For
these plots we have taken mϕ ¼ 10mψ . Within this mass
range, we have also chosen a discrete mass spectrum
mi/mψ ¼ f1.2; 1.3; 1.4;…; 4.5g, and we have normalized
the corresponding abundances Ωi [and thus the overall
abundance curve ΩðmÞ on which these abundances lie] so
that Ωtot ≡P

iΩi ¼ ΩCDM ≈ 0.26. We have also taken
our underlying annihilation process to have ϵχ ¼ ϵψ ¼ r ¼
t ¼ 0 and s ¼ 1. Note that our choice of a particular
discrete constituent mass spectrum fmig populating the

FIG. 2. Abundances Ωi (upper panel) and contributions to the
corresponding scaling exponent γ (lower panel) for ϵχ ¼ ϵψ ¼
r ¼ t ¼ 0 and s ¼ 1. We have taken mϕ ¼ 10mψ and assumed a
mass spectrum mi/mψ ¼ f1.2; 1.3; 1.4;…; 4.5g. The correspond-
ing values of Ωi have been normalized so that

P
iΩi ¼

ΩCDM ≈ 0.26. We see from the upper panel that Ωi indeed falls
as a function of mi, as desired, even though these abundances
arise from thermal freeze-out. The solid blue curve in the lower
panel indicates the corresponding scaling exponent γðmÞ, which
is negative throughout the appropriate dark-matter mass range.
This curve receives additive contributions from the canonical
contribution γ ¼ þ2 (red dashed line), the effects of the heavy
mediator ϕ (magenta dashed curve), and the effects of final-state
kinematics (green dashed curve). Given that the canonical
contribution alone leads to γ ¼ þ2, we see that the contributions
from the latter two effects combine to pull this result into the
γ < 0 range and also to introduce a nontrivial mass-dependence
for γðmÞ.
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allowed mass range mψ < m < mϕ/2 allows us to normal-
ize our total cosmological abundance curve ΩðmÞ and
thereby determine a particular partitioning of ΩCDM across
the different contributions Ωi. Our choice of the discrete
mass spectrum fmig along these curves otherwise plays no
essential role in fixing the behavior of ΩðmÞ as a function
of m.
We see from the upper panel of Fig. 2 that the ensemble

abundances Ωi fall as a function of the constituent masses
mi, as desired, even though these abundances arise from
thermal freeze-out. This then verifies explicitly that thermal
freeze-out can yield cosmological abundances which
decrease, rather than increase, as a function of the mass
of the individual dark-matter constituents. Indeed, this
behavior is smooth and resembles the behavior that has
been observed for other nonthermal abundance-production
mechanisms.
The lower panel of Fig. 2 illustrates the corresponding

behavior of the scaling exponent function γðmÞ in Eq. (3.9).
The solid blue curve in the lower panel indicates the total
scaling exponent γðmÞ, which is negative throughout the
appropriate dark-matter mass range. Indeed, this curve
receives additive contributions from the canonical result
γ ¼ þ2 (red dashed line), the effects of the heavy mediator
ϕ (magenta dashed curve), and the effects of final-state
kinematics (green dashed curve). These are respectively the
first, third, and fourth terms in Eq. (3.9). As already noted,
we see that the contributions from the latter two effects
combine to overwhelm the canonical contribution γ ¼ þ2
and pull the resulting scaling exponent into the γ < 0 range.
They also introduce a nontrivial mass-dependence for γ.
In the limit in which mϕ → ∞ (so that the mediator is

fully integrated out of the theory), the magenta curve starts
at γ ¼ −4 and remains essentially flat. Likewise, within
mass regions for which m ≫ mψ , the final-state kinematic
effects disappear and the green curve also becomes essen-
tially flat at γ ¼ 0. Thus, in these limits, we see that our
canonical contribution γ ¼ þ2 is uniformly pulled down by
the mediator effects to γ ¼ −2, as discussed in Sec. II.
However, we now see that for masses m which are not that
far below mϕ/2 or not that far above mψ (i.e., for masses at
the lighter and heavier ends of the allowed mass range), the
net effects of the mediator and the final-state kinematics are
to bend the γðmÞ blue curve further below γ ¼ −2. This
enhances the rates at which the corresponding abundances
fall as functions of the mass. Indeed, with both effects
together, we find that the maximum value of γ plotted in the
lower panel of Fig. 2 is approximately −4 rather than the
value γ ¼ −2 that would have existed without these effects.
Thus even the behavior of the central portion of the dark-
matter ensemble is altered by these effects.
It is important to note that while the specific choice of the

discrete constituent mass spectrum fmig within our overall
allowed mass range has no effect on the behavior of
the scaling exponents γðmÞ, this choice can nevertheless

significantly affect the relative partitioning of the total dark-
matter abundance ΩCDM across the ensemble. For example,
in Fig. 3 we have plotted the abundances for two different
mass spectra: that already plotted in the top panel of Fig. 2
(blue), and the spectrum that results by shifting the mass of
each component downward by Δmi/mψ ¼ −0.1 (red). In
each case, we have normalized the corresponding abun-
dancesΩi [and thus the corresponding generalΩðmÞ curve]
so as to hold the total abundance Ωtot ≡P

iΩi ¼ ΩCDM ≈
0.26 fixed. Two observations are immediately apparent.
First, the blue curve is the same as the red curve except for
an overall multiplicative factor (which in this case is
approximately 1.905). Second, however, the magnitudes
of the relative constituent contributions Ωi to the total
abundance Ωtot are nontrivially altered due to the change
in discrete masses. One useful way to characterize the
abundance distribution of a given DDM ensemble is
through the so-called “tower fraction” η, defined as [1,2]

η≡ 1 −
ΩmaxP

iΩi
where Ωmax ≡maxiΩi: ð3:10Þ

Note that 0 ≤ η < 1. In general, the value of η indicates
how much of the total abundance of the ensemble is carried
by those states which are not the dominant one. Thus
smaller values of η correspond to the more traditional
ensembles in which only one or a few components carry the
bulk of ΩCDM, while larger values of η correspond to more

FIG. 3. Abundances Ωi with s ¼ 1, ϵχ ¼ ϵψ ¼ r ¼ t ¼ 0, and
mϕ/mψ ¼ 10. The blue curve is the same as in the top panel of
Fig. 2, corresponding to the discrete constituent mass spectrum
mi/mψ ¼ f1.2; 1.3; 1.4;…; 4.5g, while the red curve corresponds
to the same mass spectrum shifted downward by Δmi/mψ ¼
−0.1. In each case the corresponding values of Ωi have been
normalized so that

P
iΩi ¼ ΩCDM ≈ 0.26. As a result of the

falling behavior of Ωi as a function of mass mi, we see that the
downward shift of our spectrum induces a renormalization of all
of the states and alters the magnitudes of the relative contributions
to ΩCDM, shifting the abundance distribution of the resulting
DDM ensemble from one with η ≈ 0.65 (blue) to one with
η ≈ 0.52 (red).
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DDM-like ensembles in which the abundance is more
generally distributed across the ensemble. We see from the
abundances plotted in Fig. 3 that the blue curve corre-
sponds to approximately η ≈ 0.65, while the red curve
corresponds to approximately η ≈ 0.52. Thus, for abun-
dances Ωi which fall as a function of mass, shifting the
spectrum of discrete constituent masses towards higher
masses tends to increase the value of η and thereby enhance
the DDM-like nature of the corresponding ensemble.
Thus far we have only considered the case with ϵχ ¼

ϵψ ¼ t ¼ 0. Thus Δγ ¼ 0, and the second factor in
Eq. (3.9) has no effect. Likewise, we have only considered
the case with mϕ/mψ ¼ 10, which is a relatively small
mass hierarchy. In principle—and for phenomenological
purposes—we are interested in much larger values of this
ratio. We therefore turn to examine how the basic picture
outlined above changes for Δγ > 0 and for larger values
of mϕ/mψ .
It is readily apparent that choosing spin and coupling

structures in Tables I and II with nonzero values of fϵχ ; ϵψ ; tg
only serves to shift the γ-curves in Fig. 2 uniformly upwards
by an amount Δγ. For Δγ ¼ 2, it is clear that the blue curve
remains completelywithin the γ < 0 range. Thus, forΔγ ¼ 2

and for the value of mϕ/mψ ¼ 10 chosen for the plots in
Fig. 2, the abundancesΩi continue to scale inverselywith the
dark-matter masses mi throughout the ensemble. However,
when shifted byΔγ ¼ þ4—as occurs when the couplings of
the mediator to the dark and visible sectors are both super-
renormalizable, with ϵχ ¼ ϵψ ¼ 1—the blue curve within
the lower panel of Fig. 2 actually exceeds zero within the
approximate region 1.3≲m/mψ ≲ 2.7. This means that the
corresponding cosmological abundancesΩi fall as a function
of mi for mi/mψ ≲ 1.3 and then rise for 1.3≲mi/mψ ≲ 2.7
before ultimately falling again for mi/mψ ≳ 2.7.
The behavior of the cosmological abundance ΩðmÞ as a

function of m is shown in Fig. 4 for Δγ ¼ 0, 2, and 4. The
upper panel shows the full range of cosmological abun-
dances realized in these scenarios, while the lower panel
shows the lower region of the upper panel in more detail.
For these plots, we have taken mϕ/mψ ¼ 10 and s ¼ 0. We
have also assumed the discrete mass spectrum mi/mψ ¼
1.1; 1.2;…; 4.5 and plotted the corresponding values of Ωi.
In each case, an overall normalization has been chosen so
thatΩtot ¼ ΩCDM ≈ 0.26. The blue curve in the upper panel
(representing the Δγ ¼ 0 case) can be compared with the
red curve in Fig. 3 in order to discern the effects of taking
s ¼ 0 rather than s ¼ 1. However, as expected, we now see
that increasingΔγ has the net effect of decreasing the rate at
which the corresponding abundancesΩi fall as functions of
m. Indeed, increasing Δγ all the way to 4 even manages to
induce a localized mass region in which the abundances Ωi
actually increase as a function of m. Thus, for Δγ ¼ 4, we
see that the effects from both a heavy mediator and final-
state kinematics have conspired to produce not only a

nonmonotonic ΩðmÞ function but, with it, also a local
minimum for ΩðmÞ, as shown in Fig. 4. This could thereby
give rise to a potentially interesting new phenomenology.
Indeed, in such cases we see that thermal freeze-out has
effectively selected a particular mass scale for special
treatment, endowing the corresponding member of the
dark-matter ensemble with a small, extra bit of cosmologi-
cal invisibility as compared with its immediate lighter and
heavier neighbors.
Finally, we consider the behavior that emerges for larger

hierarchies mϕ/mψ . It is important to stress that this is not
the same as integrating out the mediator ϕ, since we are still
considering all possible values of m/mϕ < 1/2 without
requiring m ≪ mϕ. In order to make meaningful compar-
isons with different rescaled values of mϕ/mψ , we simulta-
neously rescale the mass differences across our assumed
discrete mass spectrum. In other words, the discrete mass

FIG. 4. Upper panel: same as the upper panel of Fig. 2 except
with s ¼ 0, plotted for different values of Δγ. The cases with
Δγ ¼ 0, 2, 4 correspond to the blue, orange, and red curves,
respectively. As in the upper panel of Fig. 2, each curve is
individually normalized so that the total abundance

P
iΩi is fixed

at ΩCDM ≈ 0.26. Lower panel: a zoom-in of the small-abundance
portion of the upper panel. We see that the abundance curves are
monotonically decreasing as a function of m for Δγ ¼ 0 and
Δγ ¼ 2, while for Δγ ¼ 4 there is a region 1.3≲m/mψ ≲ 2.7
over which the abundances increase as a function of m before
decreasing again.
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spectrum ðmk −m0Þ/mψ ¼ 0.1k with m0 ≡ 1.1mψ that we
previously took for mϕ/mψ ¼ 10 will now be taken as
ðmk −m0Þ/mψ ¼ 0.01ðmϕ/mψ Þk for any value of mϕ/mψ .
This reduces to the original mass spectrum formϕ/mψ ¼ 10
but otherwise scales so as to similarly fill the allowed range
mψ ≤ m ≤ mϕ/2 while keeping the lightest component
anchored at m0 ¼ 1.1mψ .
The resulting cosmological abundances are shown in

Fig. 5 for mϕ/mψ ¼ 20 (upper panel) and mϕ/mψ ¼ 400
(lower panel). As in Fig. 4, we have once again taken s ¼ 0.
In general, for Δγ ¼ 4, we see that increasing the value of
mϕ/mψ tends to enhance the nonmonotonicity of the
abundance ΩðmÞ as a function of m that we have already
observed in Fig. 4. By contrast, the cases with Δγ ≤ 2
remain completely monotonic.

This behavior survives even as mϕ/mψ → ∞. Indeed, for
mϕ/mψ → ∞, we find that the cosmological abundances
monotonically decrease as a function of m for Δγ ¼ 0, 2.
By contrast, for any Δγ > 2, we find that these abundances
ΩðmÞ monotonically decrease as a function of m within
only two disconnected regions: a very small region at low
masses near mψ given by

m
mψ

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2sþ 1

Δγ − 2

s
; ð3:11Þ

and a significantly larger region at higher masses given by

m
mϕ

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−

1

2þ Δγ

s
: ð3:12Þ

For other ranges of m, the corresponding abundances
decrease as a function of m.
This nonmonotonic behavior gives great flexibility to the

DDM model-builder: one need only select a model with
ensemble constituent masses mi at appropriate locations
along these curves in order to endow these constituents
with cosmological abundances which either rise or fall with
mass, at will. For example, if one wishes to have ensemble
constituents whose cosmological abundances all fall mono-
tonically with mass, one need only choose these constitu-
ents to have masses mi within the ranges specified above
(or choose Δγ ≤ 2, for which the corresponding ranges are
unrestrained). Thus even the cases with Δγ > 2 are capable
of yielding purely monotonically falling abundances Ωi,
as typically desired for DDM. However, the presence of
nonmonotonicities in these cases also allows for other
possibilities. For example, through appropriate choices of
constituent masses mi, one can imagine situations in which
thermal freeze-out yields growing abundances for one dark-
matter species (or one portion of a DDM ensemble) and yet
decreasing abundances for another. Indeed, by adjusting
the values of the constituent masses mi, one can even dial
the relevant value of the scaling exponent γ in a continuous
way. These observations thus significantly enrich the
phenomenological possibilities for DDM model-building.
Thus far, we have considered the cases in which our

final-state particles ψ are spin-0 or spin-1/2. However, it is
also useful to consider the case in which ψ is a spin-1
particle, henceforth to be denoted Aμ. For concreteness, let
us imagine that Aμ is the gauge boson of a (potentially
broken) gauge symmetry, either Abelian or non-Abelian,
and let us endow Aμ with an arbitrary mass mψ ¼ mA.
For concreteness, let us further take χ to be spin-1/2, our
mediator ϕ to be spin-0, and our ϕAμAμ coupling to be of
the form that emerges from the gauge-invariant operator

cA
Λ

ϕFa
μνFμνa: ð3:13Þ

FIG. 5. Same as the lower panel of Fig. 4, except with mϕ/mψ

now increased to mϕ/mψ ¼ 20 (upper panel) and mϕ/mψ ¼ 400
(lower panel), with our discrete constituent mass spectrum
rescaled accordingly. As mϕ/mψ increases, the Δγ ¼ 4 curves
(red) exhibit increasingly pronounced local minima and maxima
while the Δγ ¼ 0, 2 curves (blue and orange) remain monoton-
ically decreasing. The behavior of the curves shown in the lower
panel essentially illustrates the behavior that emerges in the
asymptotic mϕ/mψ → ∞ limit. Thus we see that for all values of
Δγ and mϕ/mψ there exist relatively large (and occasionally
unconstrained) regions of m over which the corresponding
cosmological abundances Ω fall as a function of m.
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Note that we adopt this gauge-invariant coupling structure
in order to accommodate the case with mA ¼ 0, for which
our gauge symmetry is necessarily unbroken. Calculations
similar to those above then lead to a cosmological abun-
danceΩðmÞwhose scaling behavior takes the form given in
Eq. (3.7) with s ¼ t ¼ 0, with gψ → cA and ϵψ → ϵA ¼ −1,
and with the final-state kinematic factor ð1 −m2

ψ /m2Þ−1/2
now multiplied by an additional kinematic factor fðxÞ≡
ð1 − x2 þ 3x4/8Þ−1 where x≡mA/m. For x ≪ 1, we can
approximate fðxÞ ≈ ð1 − x2Þ−1, which is tantamount to our
traditional form in Eq. (3.7) with s ¼ 1 rather than s ¼ 0.
But regardless of the value of x, we see that the primary
effect of taking our final-state particles to be spin-1 with the
coupling indicated in Eq. (3.13) is that ϵψ (now denoted ϵA)
is negative. This is a direct consequence of the fact that the
leading-order gauge-invariant coupling between a spin-0
mediator and two vector fields, as in Eq. (3.13), is non-
renormalizable. This then has the net effect of allowing
situations with Δγ ¼ −2, which only further strengthens
the desired inverse scaling between the abundances and
masses and which produces values for γ which are even
more negative than those which emerge for any other cases
considered thus far.
If we restrict our attention to cases in which the vectors

Aμ are necessarily massive, then the gauge symmetry is
necessarily broken and a fully gauge-invariant coupling
such as that in Eq. (3.13) is not required. In such cases, we
may instead consider a direct super-renormalizable cou-
pling of the form

cAμϕAa
μAμa; ð3:14Þ

which is reminiscent of the couplings for massive vector
mediators in Tables I and II. We then find that the corre-
sponding cosmological abundance ΩðmÞ varies with m
exactly as it does for the ϕFF coupling discussed above,
except with fðxÞ now given by fðxÞ≡ ð1 − x2 þ 3x4/4Þ−1.
Thus, for all intents and purposes, the change of coupling
structure from that in Eq. (3.13) to that in Eq. (3.14) has very
little effect on the resulting scaling of Ω with m. At first
glance, it may seem surprising that we continue to have ϵA ¼
−1 when we are now dealing with the super-renormalizable
operator in Eq. (3.14). However, we can always algebraically
recast our result into a form with ϵA ¼ þ1 by replacing fðxÞ
with gðxÞ≡ ð3x4/4ÞfðxÞ ¼ ð1 − 4x−2/3þ 4x−4/3Þ−1. Of
course, this algebraic manipulation does not change the
underlying scaling behavior, which continues to be the same
as that for the ϕFF coupling. We see, then, that the
abundance function ΩðmÞ resulting from the coupling in
Eq. (3.14) has an almost identical scaling behavior as that
resulting from the coupling in Eq. (3.13). Indeed, in both
cases the resulting scaling exponents γ aremorenegative than
for any other cases we have considered.

IV. BALANCING LIFETIMES AGAINST
ABUNDANCES: GENERAL CONSTRAINTS

FOR DDM VIABILITY

In Secs. II and III, we have discussed the means by
which we can achieve an ensemble of states for which the
cosmological abundances produced through thermal
freeze-out scale inversely with mass. As discussed in the
Introduction, and as we shall further discuss below, this
scaling behavior is a primary ingredient leading to a viable
DDM ensemble.
However, this alone is not sufficient. The DDM frame-

work also requires certain scaling behaviors for the decay
widths Γi of our ensemble constituents, where we assume
that the dominant decay mode of each DDM ensemble
constituent is directly into SM states. Likewise, the DDM
framework also requires certain scaling relations for the
mass distribution of states across the ensemble, or equiv-
alently for the corresponding ensemble density of states.
Indeed, what ultimately matters for the phenomenological
viability of a DDM ensemble is how these different scaling
behaviors balance against each other [1]. In this section we
shall briefly review the scaling relations for the decay
widths and densities of states. We shall also outline some of
the general constraints that they must satisfy, and what our
results for the scaling behaviors of the cosmological
abundances imply about these other scaling relations.
In general, a given ensemble of dark-matter states will

typically have SM decay widths Γi exhibiting simple
scaling behaviors as functions of the constituent masses
mi. For example, let us consider what is perhaps the
simplest decay pattern in which each ensemble constituent
χi decays directly into two final-state particles f and f̄
whose masses are well below those of the constituents:
mf ≪ mi for all i. We also assume that this decay occurs
through a dimension-d contact operator which therefore
takes the form Oi ∼ cχif̄f/Λd−4 where Λ is an appropriate
mass scale. Since the matrix elementM for a 1 → 2 decay
of this form must have mass dimension þ1, we then find
through elementary dimensional analysis that the matrix
element must scale with the constituent mass asM ∼md−3

i .
Since the decay width under such circumstances generally
scales as Γi ∼ jMj2/mi, we then find that

Γi ∼m2d−7
i : ð4:1Þ

Thus the decay widths scale as a positive power of the mass
for d ≥ 4, but with a negative power for d ≤ 3. In general,
we can write our decay-width scaling relation in the form

Γi ∼my
i ð4:2Þ

where y is an appropriate scaling exponent. Of course,
for decays of the simple form described above, we have
y ¼ 2d − 7.
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It is also natural to consider ensembles of states in which
the distribution of constituent masses mi, and thus the
corresponding effective densities of states nm per unit mass,
also obey power-law scaling relations. For example, in
many concrete realizations of DDM ensembles one finds
that the constituent masses are distributed as

mk ∼ kδ ð4:3Þ

where δ > 0 is another scaling exponent. Special bench-
mark cases include δ ¼ 1 (corresponding to the KK
spectrum mk ∼ k/R resulting from compactification on a
circle or orbifold of radius R [1,2,11]) as well as δ ¼ 1/2
(corresponding to the spectrum α0m2

k ∼ k of string excita-
tions [12,14], where α0 is the Regge slope, i.e., the inverse
of the squared string scale, and where k is the string
excitation number). A general scaling relation of the form
in Eq. (4.3) for the ensemble mass spectrum then implies a
corresponding density of states nm per unit mass which
scales with mass as

nm ∼m1/δ−1: ð4:4Þ

We thus have three independent scaling relations that
govern the structure of our DDM ensemble: Ω ∼mγ ,
Γ ∼my, and mk ∼ kδ. Corresponding to these are three
scaling coefficients: γ, y, and δ. In general, there are many
detailed phenomenological constraints that govern the
allowed values of these exponents. However, for our
purposes in this paper we shall concentrate on only the
two most fundamental constraints that ensure the “zeroth-
order” phenomenological self-consistency of the DDM
ensemble as a whole. Indeed, our purpose in this section
is not to develop a detailed phenomenological set of bounds
on these scaling exponents so much as to understand the
general architecture of how these constraints play against
each other across the DDM ensemble. A more detailed
study of the phenomenological constraints on these scaling
relations can be found in Ref. [33].
Our first constraint concerns the decay widths, or

equivalently the lifetimes, of our ensemble states. In
general, any dark-matter particle which decays too rapidly
into SM states is likely to upset big-bang nucleosynthesis
(BBN) and light-element abundances, and also leave
undesirable imprints in the cosmic microwave background
(CMB) and diffuse photon backgrounds. However, if such
a decaying particle carries a sufficiently small cosmological
abundance at the time of its decay, the disruptive effects of
this decay will be minimal and all constraints from BBN,
the CMB, etc., can potentially be satisfied. This then leads
to the fundamental notion [1] which serves as the under-
pinning of the DDM framework, namely that dark-matter
stability is no longer required in a multicomponent context
so long as it is replaced by a balancing of lifetimes against
abundances across the dark-matter ensemble, so that states

carrying larger abundances are longer-lived while states
that are shorter-lived carry smaller abundances. This in turn
requires that abundances scale inversely with decay widths,
i.e., that

Ωi ∼ Γα
i where α < 0: ð4:5Þ

With Ω ∼mγ and Γ ∼my we find that α ¼ γ/y, whereupon
Eq. (4.5) yields

γ/y < 0: ð4:6Þ

Thus γ < 0 corresponds to y > 0, which for a two-body
decay into light fermions leads to the constraint d ≥ 4, as
discussed above.
Strictly speaking, the constraint in Eq. (4.6) should be

understood as applying to only those portions of the DDM
ensemble consisting of dark-matter components whose
decays into SM states have the potential to be phenom-
enologically problematic. For example, extremely heavy
dark-matter states decaying during extremely early periods
of cosmological evolution well before BBN need not
satisfy these bounds, as the decay products rapidly thermal-
ize with the radiation bath. Consequently, while such
decays can potentially induce a later period of reheating,
depending on the abundances of the decaying particles
[34], they typically have few other observable conse-
quences. Thus one could conceivably tolerate having
γ, y > 0 within such portions of the ensemble. This issue
will be discussed in detail in Ref. [33]. Likewise, the
cosmological abundances of dark-matter states whose
lifetimes significantly exceed 109tnow are also uncon-
strained and also may exhibit γ, y > 0. Thus, it is only
within that all-important region of the DDM ensemble
consisting of states with lifetimes τ in the range tBBN ≲
τ ≲ 109tnow that we must demand γ/y < 0.
It is also important to note that in deriving the result in

Eq. (4.6), we have not assumed that γ is a constant
throughout the relevant portion of the DDM ensemble.
Likewise, we have also not assumed that y is a constant
over this range. Instead, we simply need to verify that
Eq. (4.6) holds throughout the relevant portion of the
ensemble. Indeed, both γ and y are free to vary so long as
the constraint in Eq. (4.6) is satisfied.
Our second constraint on these scaling exponents con-

cerns the time-development of the total dark-matter abun-
dance Ωtot ≡P

iΩi, or equivalently the time-development
of the corresponding energy density ρtot, where Ωtot ¼
ρtot/ρcrit. Here ρcrit ¼ 2M2

PH
2, where H is the Hubble

parameter and where MP ≡ ð8πGNÞ−1/2 is the reduced
Planck scale. If each constituent within the ensemble were
stable, the total energy within the ensemble would remain
constant, implying that the energy density ρtot would fall as
a function of time solely because of the Hubble expansion
of the universe, with dρtot/dt ¼ −3Hρtot. In other words,
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the collective equation-of-state parameter weff for the dark-
matter ensemble as a whole, defined as [1]

weffðtÞ≡ −
�

1

3Hρtot

dρtot
dt

þ 1

�
; ð4:7Þ

would vanish. The vanishing of weffðtÞ under such stability
assumptions is of course consistent with the interpretation
of the corresponding energy density of our ensemble as
being associated with dark matter (as opposed to dark
energy or dark radiation), which is in turn consistent with
observational constraints. However, the constituents within
our dark ensemble are not stable: as described above, they
decay with lifetimes that obey certain scaling relations
relative to their cosmological abundances. These decays in
turn cause Ωtot to fall as a function of time, leading to a
positive value of weff . The scaling relations that govern
these decays must therefore be balanced in such a way [1]
that weff not be too far from zero at the present time and also
not have varied significantly within the recent cosmological
past. The first of these requirements ensures that we can
continue to interpret the energy within the DDM ensemble
as associated with dark matter, within experimental con-
straints. By contrast, the second requirement stems from the
observation that the behavior of weffðtÞ has an impact on
the expansion history of the universe, independent of the
constraint in Eq. (4.6). Indeed, the behavior of weffðtÞ is
constrained [35,36] by a combination of CMB data [19,37];
observations of baryon acoustic oscillations in galaxies
[38–40] and in the Lyman-α forest [41,42]; and measure-
ments of the redshifts and luminosity distances of Type-Ia
supernovae [43]. Moreover, modifications to the expansion
rate of the universe can also affect the light-element
abundances generated during the BBN epoch. Thus, for
all practical purposes it is reasonable to identify the “recent
past” over which weffðtÞ should not vary significantly as the
period since BBN.
In this connection, we note that an equation of state is

a property intrinsic to the ensemble. As such, weffðtÞ is
independent of the background cosmological epoch.
Thus the constraints regarding the behavior of weffðtÞ
that we have indicated above are applicable regardless
of whether we are considering a matter- or radiation-
dominated epoch, and likewise also apply across transitions
between epochs.
These constraints were investigated in Ref. [1]. It turns

out that the constraint that w� ≡ weffðtnowÞ not be too far
from zero is ultimately independent of the scaling expo-
nents and only requires suitable overall normalizations for
our abundance and lifetime scaling relations [1]. In other
words, the value of w� ultimately depends on the overall
prefactor coefficients that come into these scaling relations
but not on the scaling exponents themselves. We shall
therefore henceforth assume that this constraint has been
satisfied and that w�, though positive, is extremely small

and ultimately within the experimental bounds consistent
with an interpretation in terms of dark matter.
By contrast, requiring that weffðtÞ not have varied

significantly within the recent past leads directly to a
constraint on our scaling exponents [1]. Following the
discussion in Ref. [1], this constraint may be phrased as
follows. In the limit that our ensemble consists of a large
number of densely packed dark-matter states, we can
imagine that the spectrum of discrete decay widths Γi is
nearly continuous, parametrized by a continuous variable
Γ. In this approximation, we can view the spectrum of
abundances Ωi as a continuous function ΩðΓÞ of decay
widths. We can likewise express our density of states as
a density of states per unit Γ, henceforth denoted nΓ. In
general, both of these quantities will have scaling behaviors
of the form

ΩðΓÞ ∼ Γα; nΓ ∼ Γβ; ð4:8Þ

where α is the same exponent we have already seen in
Eq. (4.5). It then turns out [1] that the corresponding
equation-of-state parameter weffðtÞ depends only on w� and
on the sum x≡ αþ β. Indeed, weff is generally a rather
nontrivial function of these variables. However, for w� ≪ 1,
one finds [1]

weffðtÞ ≈ w�

�
t

tnow

�
−x−1

: ð4:9Þ

Given that w� ≪ 1, we thus see that we must have x ≤ −1
in order for weffðtÞ to have remained small throughout the
recent past. Again we stress that this conclusion holds even
though our definition of “recent past” stretches across both
radiation- and matter-dominated epochs.
Of course, strictly speaking, any value of x ≤ −1 is

permitted for those ensemble states decaying within this
time interval, even values of x which are significantly less
than −1. Taking x ≪ −1 simply means that even though
weffðtÞ has a very small value w� ≪ 1 at the present epoch,
it approaches zero extremely rapidly as we go backwards
in time towards BBN. However, while a choice x ≪ −1
succeeds in guaranteeing weffðtÞ ≪ 1 during the entire
recent period since BBN, such a choice is unnatural from
several points of view. First, if x ≪ 1 for all ensemble states
decaying between BBN and the present epoch, it is natural
to assume that similar values of x would continue to hold
for states immediately beyond this range, i.e., for states
whose decays will occur in the immediate future. However,
this would then cause weffðtÞ to experience a sudden
dramatic growth for t > tnow. While this cannot be ruled
out solely on the grounds of equations of state and their
behaviors, such a sudden dramatic change in weffðtÞ beyond
weff ≪ 1 would effectively single out the present time as a
special epoch in the cosmological timeline. Indeed, the
only way to avoid this would be to assume that x itself must
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experience a sudden change at the beginning of that portion
of the ensemble whose states decay in the present epoch.
However, this too would single out the present epoch as
special. There may also be more direct phenomenological
reasons to exclude having x ≪ −1. Since nonzero values of
weffðtÞ are ultimately due to the decays of our dark-matter
constituents, a sudden, rapid growth in weffðtÞ is likely to be
correlated with a large injection of decay products, poten-
tially including large amounts of radiation. If these decay
products include SM particles, this in turn is likely to cause
issues with diffuse photon backgrounds, etc. This too will
be discussed in more detail in Ref. [33].
Thus, for such reasons, it is more natural to assume that

x≲ −1. In other words, we shall henceforth assume that x,
though less than −1, is not too far below −1. We shall
demand that this be true over that portion of the ensemble
whose states decay between BBN and the present epoch.
This assumption allows us to avoid sudden changes in
either the cosmological evolution or the structure of the
ensemble once the current epoch is reached.
It is straightforward to express the constraint x≲ −1 in

terms of our scaling coefficients fγ; y; δg. We recall that
x≡ αþ β, and we have already seen below Eq. (4.5) that
α ¼ γ/y. To calculate β, we observe that

nΓ ¼ nm

���� dmdΓ
���� ∼m1/δ−1m1−y ∼ Γð1/δ−1Þ/yΓð1−yÞ/y; ð4:10Þ

allowing us to identify β ¼ 1/ðyδÞ − 1. We thus find that

x ¼ γ

y
þ 1

yδ
− 1; ð4:11Þ

whereupon the constraint x≲ −1 reduces to

1

y

�
γ þ 1

δ

�
≲ 0: ð4:12Þ

For positive y we thus find

y > 0∶ γ ≲ −1/δ; ð4:13Þ

while for negative y we find

y < 0∶ γ ≳ −1/δ: ð4:14Þ

In either case, these inequalities can be rewritten in the
common form

δ≳ δmin ≡ −1/γ: ð4:15Þ

Indeed, this constraint holds regardless of the sign of y.
Remarkably, we see that the scaling exponent y has

completely dropped out of this constraint. Moreover, we
observe that this constraint algebraically has the same form

as the constraint that would emerge from demanding that
Ωtot be finite in cases where our ensemble consists of an
infinite tower of states whose masses stretch to infinity.
In such cases we would have

Ωtot ¼
Z

dmnmΩðmÞ ∼
Z

dmm1/δ−1 mγ; ð4:16Þ

and we see that the “ultraviolet” finiteness of this integral
requires that γ ≤ −1/δ. Of course, despite their algebraic
similarity, at a physical level these are ultimately different
constraints since the constraint stemming from Eq. (4.16)
applies for either sign of y and applies only for those states
at the large-mass “ultraviolet” end of the ensemble, while
the constraint in Eq. (4.13) assumes that y is positive and
needs only apply within that portion of the ensemble whose
states decay between BBN and the present epoch. It is
nevertheless interesting that both constraints, operating
over different portions of the ensemble, share a common
algebraic structure.
Just as with the constraint in Eq. (4.6), we emphasize that

Eq. (4.15) must hold only throughout the relevant portions
of the ensemble discussed above. Indeed, both γ and δ are
free to vary so long as Eq. (4.15) holds at each mass scale
within this region.
As indicated above, the constraint in Eq. (4.15) can be

satisfied with γ either positive or negative. Indeed, in either
case we need only require that y and γ have opposite signs,
in accordance with Eq. (4.6). However, these results help to
explain why the situation with γ < 0 is more natural from a
DDM perspective. Note that δ is necessarily positive, since
our states are ordered in terms of increasing mass by
construction. Moreover, when γ is negative, we find that
δmin is positive. This implies that δ can indeed easily satisfy
δ≳ δmin—i.e., it is not difficult for δ to be only slightly
greater than δmin. For γ < 0, by contrast, δmin is negative.
Thus, although any positive value of δ is greater than δmin,
it can be difficult for δ to be both positive and only slightly
greater than δmin. Indeed, this latter requirement becomes
increasingly hard to satisfy when γ is small. There are also
other reasons to prefer γ < 0. In general, it is more natural
for heavier states to have smaller lifetimes and larger decay
widths than lighter states. This requires y > 0, which in
turn requires γ < 0. Indeed, it is for all of these reasons that
it has been crucial to find ways in which we might obtain
abundances with γ < 0 from thermal freeze-out. Of course,
within other regions of the ensemble, no such constraints
need apply. Such regions could then have γ > 0, even while
δ, y > 0.
Turning back to Eq. (4.15), we see that for each value of

γ there is a corresponding minimum mass-distribution
scaling exponent δmin that is permissible in order to ensure
that x≲ −1. In Fig. 6, we have plotted δmin as a function
of m for different values of mϕ/mψ . In each case we have
plotted results for Δγ ¼ 0, 2, 4, corresponding to the curves
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in Figs. 4 and 5, and we have also shown results for
Δγ ¼ −2, corresponding to the case in which thermal
freeze-out occurs due to dark-matter annihilation into pairs

of spin-1 particles. We immediately see that for the entire
allowed mass range, the cases with Δγ ¼ −2 and Δγ ¼ 0
are consistent with not only δ ¼ 1, corresponding to a
DDM ensemble consisting of the KK states resulting from
circle compactification, but also δ ¼ 1/2, corresponding to
a DDM ensemble of stringlike origin. However, we also
learn that these constraints become more exclusive as Δγ
increases, and tend to allow such values of δ only within
certain mass regions. For example, we see that an ensemble
of KK states is consistent with the abundances produced
through a thermal production process with Δγ ¼ 2 and
mϕ/mψ ≫ 1 only within the approximate mass range
m/mψ ≳ 100. Finally, we note that δmin is negative within
those mass ranges for which γ > 0 in Figs. 4 and 5. The
constraint in Eq. (4.15) is then vacuous, and no value of
δmin is plotted in Fig. 6.
Depending on which portions of the allowed mass ranges

are actually populated by the constituents of our DDM
ensemble, we see that entirely different dark-matter phe-
nomenologies can emerge. As a result of the constraints in
Eqs. (4.6) and (4.15), we see that the different classes of
phenomenologically allowed thermal freeze-out processes,
as well as different classes of dark-matter decay processes,
are closely tied to the structure of (and indeed the
corresponding distribution of masses across) the DDM
ensemble. This then provides important correlations
between the particle physics of the ensemble structure,
the particle physics of the annihilations of its constituents,
and the overall (in this case, thermal) cosmological history
in which this particle physics is embedded.

V. DISCUSSION AND CONCLUSIONS

Within the DDM framework, the phenomenological
viability of the dark-matter ensemble is the result of the
interplay between three fundamental relations which govern
how themasses, cosmological abundances, anddecaywidths
of the individual ensemble constituents scale relative to one
another across the ensemble as a whole. While the scaling
relations for masses and decay widths primarily depend on
particle-physics considerations alone, the scaling relation
for cosmological abundances typically depends on a mix of
particle-physics and cosmological considerations. Thus, any
concrete realization of the DDM framework relies on there
being an appropriate abundance-generation mechanism
which not only arises naturally within the corresponding
cosmological model but also gives rise to an abundance
function ΩðmÞ with a suitable scaling behavior.
Most prior work realizing explicit DDM ensembles has

relied on nonthermal abundance-production mechanisms
such as vacuum misalignment, as these can easily give rise
to scaling relations in which the abundances scale inversely
with mass. As we have discussed, phenomenological
constraints tend to prefer this behavior over large portions
of any DDM ensemble. Unfortunately, the simplest thermal
freeze-out mechanisms tend to result in abundances with

FIG. 6. Minimum δ-exponents δmin ≡ −1/γ, plotted as func-
tions of m/mψ for mϕ/mψ ¼ 10 (top panel), 20 (middle panel),
and 400 (bottom panel). Each panel shows results for Δγ ¼ −2
(green), 0 (blue), 2 (orange), and 4 (red); for Δγ ≥ 0 these results
correspond to the Ω plots shown in Figs. 4 and 5. For Δγ < 2, we
see that δmin remains finite for all mϕ/mψ . This remains true even
in the Δγ ¼ 2 case, for which there exist certain mass regions in
which δmin grows significantly as mϕ/mψ → ∞, reflecting the
increasing tendency of the corresponding abundances Ω to
become almost flat as functions of m. For Δγ ¼ 4, by contrast,
δmin actually diverges at the two masses for which the corre-
sponding values of Ω in Figs. 4 and 5 reach local minima or
maxima. Between these masses γ > 0 and the constraint in
Eq. (4.15) becomes vacuous.
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the opposite behavior, growing as a function of mass.
Indeed, this behavior is an intrinsic element underpinning
the so-called “WIMP miracle.” The purpose of this paper
has therefore been to determine whether the scaling
behavior desired for DDM ensembles might also be
realized through thermal freeze-out. This would in turn
determine whether the DDM framework can be extended
into the thermal domain.
The results of this paper provide an answer in the

affirmative. Indeed, we have shown that relatively straight-
forward modifications to standard dark-matter annihilation
processes result in freeze-out abundances which fall, rather
than rise, as functions of constituent mass. In fact, we have
found that a whole spectrum of behaviors is possible, with
abundances that can fall within certain portions of our
DDM ensemble and rise within others. Indeed, by adjusting
the values of the discrete dark-sector mass spectrum fmig,
we can even continuously dial our abundance scaling
exponents γ across a wide range of values. The results
of this paper thus suggest that a rich and flexible dark-
matter phenomenology can result when the DDM frame-
work is extended into the thermal domain. This in turn can
provide a versatile tool for model-building within the DDM
framework. Indeed, we note that the typical mass window
for successful thermal freeze-out is Oð1Þ keV≲m≲
100 TeV. Since this is also the range of mass scales for
which direct-detection experiments and collider searches
for missing transverse energy are typically sensitive, the
kinds of DDM ensembles whose constituents receive their
abundances from thermal freeze-out are also the kinds of
ensembles capable of giving rise to the wealth of distinctive
phenomenological signatures discussed in Refs. [3–5]—
signatures which can potentially serve to distinguish these
ensembles from traditional dark-matter candidates. Thus
we expect thermal DDM ensembles to have immediate
implications for these kinds of experimental signatures and
bounds—even potentially more than for their nonthermal
cousins.
In general, a collection of dark-matter states will sequen-

tially undergo freeze-out in order of their masses mi, with
the heaviest states freezing out first. Indeed, freeze-out of a
given particle generally occurs when the temperature T of
the universe is approximately the mass of the particle, with
xi ≡mi/T ≈Oð20Þ. However, there are subleading loga-
rithmic effects which allow certain states to freeze out with
slightly smaller values of xi than others, and these sub-
leading logarithmic effects depend on the cross-sections
hσivi. It is these effects which ultimately determine the
cosmological abundances with which the states emerge
after freeze-out. Thus, while the massesmi of the states in a
given ensemble determine the order of freeze-out as a
function of time, it is the corresponding cross-sections
hσivi which determine the order of freeze-out as a function
of x. These are, of course, general statements concerning
the physics of the freeze-out process, and they remain true

in our scenarios as well. However, what we have shown in
this paper is that while we cannot adjust the order in which
our ensemble constituents freeze out as a function of time,
we can certainly adjust the order in which they freeze out as
a function of x. Indeed, what we have shown is that there
exist annihilation processes for which the cross-sections
hσivi induce the lighter states to freeze out with smaller
values of x, thereby imparting larger abundances to these
states and producing the desired negative scaling exponent
γ < 0. Moreover, as we have seen, it is even possible to
arrange our states to freeze out in a nonmonotonic order as
a function of x, with the states sitting at the local maxima of
our abundance curves in Figs. 4 and 5 freezing out at the
smallest values of x and those at local minima freezing out
at the largest.
We are not the first to demonstrate that thermal freeze-

out can yield abundance scaling relations that differ from
those associated with the traditional WIMP paradigm.
Recall that standard thermal freeze-out during a radiation-
dominated (RD) epoch yields a dark-matter abundance
which scales with the freeze-out temperature Tf, the mass
mχ of the dark-matter particle, and the thermally averaged
annihilation cross-section hσvi according to the relation

Ωχ ∝
mχ

Tfhσvi
: ð5:1Þ

The ratio mχ /Tf is famously independent of hσvi up to
logarithmic corrections. Thus, in traditional WIMP scenar-
ios, in which hσvi ∝ g4χ /m2

χ , one recovers Eq. (1.2).
However, in scenarios with nonstandard cosmological
histories in which dark-matter freeze-out does not take
place during a RD epoch, this scaling relation is altered.
One example is the case in which freeze-out occurs
immediately prior to a late period of reheating—i.e., during
an epoch in which the universe is dominated by a non-
relativistic particle species (or by the zero mode of a rapidly
oscillating scalar field) which is continually decaying into
radiation. In such scenarios, provided that hσvi is suffi-
ciently large that thermal equilibrium is established
between the dark-matter particles and the radiation bath,
one finds [44,45]

Ωχ ∝
mχT3

RH

T4
fhσvi

; ð5:2Þ

where TRH is the reheat temperature associated with this
late period of reheating. By contrast, if hσvi is small and the
dark matter never thermalizes, the dark matter “freezes in”
[46] rather than freezing out, and one finds [45]

Ωχ ∝
T7
RHhσvi
m5

χ
: ð5:3Þ

Likewise, if thermal freeze-out occurs during an epoch in
which the energy density of the universe is dominated
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by the kinetic energy associated with a rapidly rolling
scalar-field zero mode (as in so-called “kination” scenarios
[47–49]), one finds [50]

Ωχ ∝
mχ

TRHhσvi
; ð5:4Þ

up to logarithmic corrections in Tf/TRH. All of these
scenarios alter the standardmχ-dependence for the resulting
cosmological abundance.
There are also a variety of nonthermal mechanisms

through which a sizable dark-matter abundance can be
generated. As one might expect, these mechanisms lead to
altogether different scaling relations for Ωχ as a function of
mχ . One such mechanism is production through the decays
of some other, heavier particle which comes to dominate
the energy density of the universe at early times. In the
regime in which the dark-matter particles produced in this
way are effectively decoupled from the radiation, the
contribution to Ωχ is proportional [51] to the fraction fχ
of the energy of the heavy decaying particle that is
transferred to χ (rather than to other decay products) and
is approximately independent of mχ . By contrast, in the
opposite regime in which hσvi is sufficiently large that the
dark-matter particles produced by such decays undergo
significant annihilation, the number density nχ of such
particles is depleted by annihilation to nχ ∼HðTRHÞ/hσvi,
where HðTRHÞ is the value of the Hubble parameter at the
reheat temperature associated with the late period of
reheating induced by the decay of the heavy particle. In
this case, one finds [52]

Ωχ ∝
mχ

TRHhσvi
: ð5:5Þ

Of course, other nonthermal mechanisms for abundance
generation exist as well. These include, for example,
misalignment production as well as production via the
decays of topological defects (cosmic strings, domain
walls, etc.) or nontopological solitons (e.g., oscillons
[53–55]). These abundance-generation mechanisms each
have their own characteristic scaling relations with mχ and
with the other relevant parameters of the theory.
These examples illustrate the ways in which modified

cosmologies can produce a variety of possible scaling
relations between the cosmological abundance Ωχ and
quantities such as mχ and hσvi. Indeed, by invoking an
early period of matter domination, kination, etc., one can
achieve almost any scaling behavior one desires. However,
we have shown in this paper that such departures from the
standard cosmology are not necessary in order to obtain the
appropriate scaling relations for a DDM ensemble through
thermal freeze-out. Indeed, we have shown that the desired
relations arise naturally within the standard cosmology and
are realized in a particularly simple class of particle-physics
models. In other words, our approach to modifying the

traditional scaling relations expected from thermal freeze-
out has involved modifying the particle physics rather than
modifying the cosmological narrative in which the particle
physics is embedded.
Our results in this paper suggest many areas for further

research. First, it would be interesting to explore the
phenomenology that might result from thermal freeze-
out due to other, more complex annihilation processes.
For example, given that the DDM framework involves large
multiplicities of dark-matter states, it might be interesting
to consider a strongly interacting massive particle (SIMP)
framework [56,57] within which dark-matter annihilation
might receive significant contributions from 3 → 2 and
perhaps even 4 → 2 processes in which dark-sector par-
ticles annihilate into other dark-sector particles. Likewise,
in this paper we have assumed that our dominant annihi-
lation mode is one in which our dark-sector ensemble
components χi annihilate to states ψ which are outside the
ensemble. However, in a multicomponent framework
such as the DDM framework, there is also the possibility
of intra-ensemble annihilation processes of the form χ̄iχi →
χ̄jχj where χj is lighter than χi, as well as coannihilation
processes of the form χ̄iχj → ψ̄ψ with i ≠ j. Such proc-
esses can potentially alter the freeze-out process in non-
trivial ways. Moreover, the existence of such processes
also implies the existence of inelastic scattering processes
of the form χiψ → χjψ , which can potentially also impact
the dynamics of freeze-out.
Second, throughout our analysis we have assumed that

our dark-matter/mediator couplings gχ are universal
throughout the ensemble. It might therefore be of interest
to allow these couplings to vary across the DDM ensemble,
thereby introducing an additional mass-dependence into the
resulting cosmological abundances. In general, the con-
stituent-dependent dark-matter/mediator coupling gi is the
coupling associated with each constituent at its own freeze-
out temperature. Such couplings gi will therefore experi-
ence an automatic effective “running” as we successively
integrate out lighter and lighter states from the ensemble.
Indeed, such running has already been calculated for the
case in which the ensemble is a tower of KK modes [58].
Third, in this paper, we have restricted our analysis to

situations in which all of the DDM constituents freeze out
while nonrelativistic. It is nevertheless also possible that
very light, very feebly coupled ensemble constituents could
potentially freeze out while still relativistic. This could then
significantly modify the resulting scaling behaviors in
phenomenologically important ways.
Fourth, in this paper we have only examined the most

immediate, “zeroth-order” constraints that might affect our
overall scaling relations. There are, of course, many other
more detailed constraints that must be imposed before
building a viable DDM model. These are ultimately
constraints coming from potential signatures of thermal
DDM scenarios within direct-detection, indirect-detection,
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and collider experiments. The case of indirect detection is
particularly interesting, as there is the possibility of a
correlation—and even a complementarity—between the
fluxes of end-products from dark-matter annihilation and
dark-matter decay. While viable DDM models have been
constructed [2,11] which satisfy all known experimental
and observational constraints on the dark-matter sector,
these models relied on nonthermal abundance-production
mechanisms. It still remains to determine the detailed
phenomenological constraints that must be imposed within
a thermal context, and then to build actual models of this
type. Indeed, this paper represents only the first step in this
direction.
Finally, it would be interesting to examine in more detail

the model-building possibilities that emerge from having
abundances which fall as a function of mass within one
part of a DDM ensemble and rise within another, thereby
experiencing different values of the scaling exponent γ
within different regions of the ensemble. Given that the
different portions of the DDM ensemble can be relevant at
different cosmological time scales due to the variations in
their masses and lifetimes, this flexibility may enable a
single DDM ensemble to simultaneously address many
thorny phenomenological challenges that at first glance
might otherwise appear to be disconnected or perhaps even
contradictory.
We conclude this paper with an important comment. Our

aim throughout this paper has been to examine the scaling
relations which govern a thermal DDM ensemble with as
much generality as possible, without reference to specific
mass or energy scales. From a phenomenological perspec-
tive, however, given the numerous observational constraints
and consistency conditions that apply to thermal freeze-out
scenarios, it is important to assess the natural values for the
masses and couplings which characterize such an ensemble.
In order to obtain a sense of the physical scales involved,

we begin by recalling that both in canonical WIMP
scenarios and in the mi ≫ mϕ, mψ regime of our DDM
analysis, Ωi is essentially determined by the ratio g2χg2ψ /m2

i .
The WIMP miracle is essentially the observation that an
abundance Ωi ≈ ΩCDM is obtained for mi ≈ 250 GeV and
gψ ¼ gχ ≈ 0.65, which yields

m2
i

g2χg2ψ
∼ 0.35 TeV2: ð5:6Þ

By contrast, in the mϕ ≫ mi, mψ regime of our DDM
model, the corresponding quantity which determines the
cross-section is 16g2χg2ψm2

i /m
4
ϕ. For an ensemble of particles

in this regime, Eq. (2.7) implies that Ωtot ∝
P

ihσivi−1.
It therefore follows that in order to reproduce the observed
value of ΩCDM, such an ensemble must satisfy

X
i

m4
ϕ

16g2χg2ψm2
i
≲ 0.35 TeV2: ð5:7Þ

However, by the same token, a total abundance Ωtot >
ΩCDM is problematic, signifying overproduction of dark
matter. This consideration then implies the constraintX

i

�
mϕ

mi

�
2 ≲ g2χg2ψ

�
2.37 TeV

mϕ

�
2

: ð5:8Þ

The masses mi and the parameters gχ , gψ , and mϕ are
constrained by other considerations as well. On the one
hand, we have assumed thatmϕ ≫ mi for all i. On the other
hand, perturbativity considerations require that g2χ , g2ψ ≲ 4π.
Imposing all of these constraints, we find that the

preferred regime for a thermal DM ensemble is one in
which gχ and gψ are large and in which mi ≪ mϕ ≪
OðTeVÞ. However, this is easy to arrange, for example, in
scenarios in which the dark and visible sectors are
approximately decoupled and the ensemble constituents
annihilate primarily into other, lighter dark-sector states.
Indeed, such scenarios can accommodate cold relic particle
masses as low as OðkeVÞ [21]. It is worth noting that
hidden-sector dark-matter models of this sort have a
rich phenomenology despite their suppressed couplings
between the dark and visible sectors (for a review, see, e.g.,
Ref. [59]). We also note that we can always raise the mass
scale of the mediator and the dark matter simply by
increasing the annihilation cross-section. This can be done,
for example, by adding more final states ψ into the
annihilation process, as might be arranged if ψ were to
carry something analogous to a color quantum number. We
also note that in the context of modified cosmologies—for
example, in scenarios in which Ωtot is diluted by entropy
injection after the freeze-out of the lightest constituent—the
bound in Eq. (5.8) can be considerably weakened. Thus, in
such scenarios, an even broader range of mass scales for
thermal DDM ensembles becomes accessible.
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