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ONE-LOOP GLUON POLARIZATION TENSOR IN COLOR MAGNETIC
BACKGROUND AT FINITE TEMPERATURE
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]Dnipropetrovsk National University, Dnipropetrovsk, Ukraine

In the framework of SU(2) gluodynamics, we derive the tensor structure of the charged gluon polarization tensor
in an Abelian homogeneous magnetic field at finite temperature and calculate it in one-loop approximation in
the Lorentz background field gauge. The imaginary time formalism and the Schwinger operator method are
used. The polarization tensor turns out to be non transversal. It can be written as a sum of ten tensor structures
with corresponding form factors. We represent the form factors in terms of double parametric integrals and the
temperature sum which can be computed numerically. As applications we calculate the Debye mass of charged
gluons in the background field at high temperature.

1 Introduction

The investigations of QCD at high temperature carried out in recent years have elucidated an important role
of color magnetic fields. In Refs. [1, 2] it was discovered in lattice simulations that sufficiently strong constant
Abelian magnetic fields described by the potential of the form Aaµ = Bδµ2δ

a3, where B is field strength, a
is the index of internal symmetry, µ – Lorentz index, shift the deconfinement phase transition temperature
Tc. On the other hand, in Refs. [3, 4] from the analysis of lattice simulations and in Refs. [2, 6, 7] from
perturbative resummations of daisy graphs in the background field at high temperature it was found that
Abelian chromomagnetic fields of order gB ∼ g4T 2, where g is a the gauge coupling, are spontaneously created.

These results served as motivations for investigations began in our papers Refs.[8, 9], which goal is to deter-
mine the operator structure of the gluon polarization tensor in the constant Abelian chromomagnetic background
field at finite temperature. This is necessary for investigations of the quark-gluon plasma (QGP), first of all,
when resummations of perturbative series are carried out.

In the presence of the background field, for many reasons it is convenient to use the decomposition of gauge
fields in the internal space of the form W±

µ = 1/
√

2(A1± iA2
±), Aµ = A3

µ and consider the former “charged” and
the latter “neutral” gluons separately because of sufficiently different properties of them. That concerns not
only physics but also the calculation procedures required for investigations. In recent paper Ref. [10] a detailed
investigation of the neutral gluons has been done. The tensor structure of the gluon polarization tensor (PT)
as well as the one-loop contributions to its form factors at zero and finite temperature have been obtained and
partially investigated therein.

As the next step the investigation of the charged gluon case is in order. This is the goal of the present
report. We determine the tensor structure of the charged gluon PT at finite temperature in the constant
Abelian background field and calculate it in one-loop approximation. The PT consists of ten tensors and
corresponding form factors. In actual one-loop calculations the Feynman-Lorentz background field gauge is
used. We calculate the form factors as the two parametric integrals over the proper time variables and the
Matsubara temperature sum. This representation is convenient for numeric investigations and asymptotic
expansions. As an application of the results obtained we compute the Debye mass of charged gluons in the
background field at high temperature.

2 Basic notations

We start from the operator structures T
(i)
λλ′ which are allowed by the weak transversality condition,

pλ T
(i)
λλ′ pλ′ = 0 , (1)

which follows from the corresponding relation the PT has to obey. These structures appear in the expansion in
terms of form factors which will be given below.

e-mail: amichael.bordag@itp.uni-leipzig.de; bskalozub@dsu.dp.ua

c© Bordag M., Skalozub V., 2007.



One-loop gluon polarization tensor in color magnetic background. . . 7

In the magnetic background field, the polarization tensor can be constructed out of the vectors lµ, hµ and
dµ,

lµ =




0
0
p3

p4


 , hµ =




p1

p2

0
0


 , dµ =




p2

−p1

0
0


 , (2)

where the third vector is dµ = Fµνpν and we note pλ = lλ + hλ, and the matrixes

δ
||
µλ =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 , δ⊥µλ =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , Fµλ =




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 . (3)

Hence, the operator structures can also be constructed out of these quantities only. Further, for dimensional
reasons the structures can be at most quadratic in the momenta and the following PT must be Hermite. Writing
down all the allowed combinations, the set of linear independent ones is

T
(1)
λλ′ = l2δ

||
λλ′ − lλlλ′ , T

(2)
λλ′ = h2δ⊥λλ′ + 2iFλλ′ − hλhλ′ = dλdλ′ + iFλλ′

T
(3)
λλ′ = h2δ

||
λλ′ + l2δ⊥λλ′ − lλhλ′ − hλlλ′ , T

(4)
λλ′ = i(lλdλ′ − dλlλ′) + il2Fλλ′ − δ||λλ′

T
(5)
λλ′ = h2δ

||
λλ′ − l2δ⊥λλ′ , T

(6a)
λλ′ = δ

||
λλ′ + l2iFλλ′ , T

(6b)
λλ′ = 3δ⊥λλ′ + h2iFλλ′ , (4)

where also the identity i(dλhλ′ − hλdλ′) = ih2Fλλ′ + δ⊥λλ′ was used. In our previous paper [8] we mentioned

instead of the two structures T
(6a)
λλ′ and T

(6b)
λλ′ only their sum,

T
(6)
λλ′ = T

(6a)
λλ′ + T

(6b)
λλ′ . (5)

In the end it will turn out that for the considered one-loop contribution this is sufficient. However, for the

calculations in this section it is convenient to keep temporarily separately both, T
(6a)
λλ′ and T

(6b)
λλ′ .

Another remark on the properties of the structures T
(i)
λλ′ is that the first four are transversal, pλT

(i)
λλ′ =

T
(i)
λλ′pλ′ = 0 holds for i = 1, 2, 3, 4 in addition to (1). The first three structures are just a decomposition of the

kernel of the quadratic part of the action, Eq. (24) in [8],

T
(1)
λλ′ + T

(2)
λλ′ + T

(3)
λλ′ = Kλλ′(p). (6)

In the case of finite temperature, in addition to the magnetic field, we have to account also for the vector
uλ which describes the speed of the heat bath. In the following we assume it to be orthogonal to hλ. In fact
we use uλ = (0, 0, 0, 1). With this vector additional tensor structures obeying the weak transversality condition
(1) can be constructed,

T
(7)
λλ′ = (uλlλ′ + lλuλ′) (up)− δ||λλ′(up)

2 − uλuλ′ l2 ,

T
(8)
λλ′ = (uλhλ′ + hλuλ′) (up)− δ⊥λλ′(up)2 − uλuλ′h2 ,

T
(9)
λλ′ = uλidλ′ − idλuλ′ + 2iFλλ′(up) ,

T
(10a)
λλ′ = δ

||
λλ′(up)

2 − uλuλ′ l2, T
(10b)
λλ′ = δ⊥λλ′(up)2 − uλuλ′h2 . (7)

These structures are linear independent. Below, however, it will turn out that T (10a) and T (10b) appear at the
one-loop level which we consider here only in intermediate steps and drop out from the final result.

In addition to (7) there exists a further structure,

TD
λλ′ = uλuλ′ (8)

which fulfills (1) for p4 = 0 (in an obvious, trivial way). Having in mind that the condition (1) holds only if the
external moment p of the polarization tensor fits into the Matsubara formalism, i.e., if it is given by p4 = 2πT l
(l integer) than (9) makes sense as a structure being present for l = 0 only (or, formally, being proportional to
δl,0). It is just this structure which delivers the Debye mass term. It must be mentioned that TD

λλ′ is contained

as special case also in T
(8)
λλ′ , T

(9)
λλ′ , T

(10a)
λλ′ or in T

(10b)
λλ′ but due to its exceptional role it makes sense to keep it as

separate contribution.
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p

ν

’µ

k k

λ

µ

ν λ

p+k

λ’ ’λ

α α

p

’

Figure 1. The basic Feynman graph for the polarization tensor.

p’=p+k

λ

W −
µW+

ν

p

k
Q

Figure 2. The basic Feyn-
man graph for the polariza-
tion tensor.

Before writing down the expansion of the polarization tensor in terms of form factors we mention one
property which follows directly from the basic commutator relation the momentum pµ obeys, namely pλp

2 =
(p2δλλ′ + 2iFλλ′)pλ′ . As a consequence, for a function of p2 the relations

pλf(p2) = f(p2 + 2iF )λλ′pλ′ , f(p2)pλ = pλ′f(p2 + 2iF )λ′λ (9)

hold where now f must be viewed as a function of a matrix so that it itself becomes a matrix carrying the
indices λ and λ′. The same is true with h2 in place of p2.

The decomposition of the polarization tensor can be written in the form

Πλλ′(p) =
∑

i

Π(i)(l2, h2 + 2iF )λλ′′ T
(i)
λ′′λ′ + ΠDTD

λλ′ . (10)

The sum includes in general all structures T
(i)
λλ′ defined in (4) and in (7). The form factors Π(i)(l2, h2 + 2iF )λλ′

depend on l2 and h2 only (besides their dependence on the matrices in (3)). In (10) the form factors can be
placed also on the right from the operator structures applying both relations (9).

3 Calculation of the polarization tensor

The basic Feynman graph for the polarization tensor is shown in Fig. 1 and the notations of the vertex factors
in Fig. 2. The analytic expression in momentum space reads

Πλλ′(p) =

∫
dk

(2π)4
{ΓλνρGνν′(p− k)Γλ′ν′ρ′Gρρ′(k)

+(p− k)λG(p− k)kλ′G(k) + kλG(p− k)(p− k)λ′G(k)}+ Πtadpol
λλ′ , (11)

where the second line results from the ghost contribution and the tadpole contribution is given by

Πtadpol =

∫
dk

(2π)4
{δλλ′Gρρ(k)−G(k)λλ′}

+

∫
dp′

(2π)4
{δλλ′Gρρ(p

′) +Gλ′λ(p
′)− 2Gλλ′(p′)} . (12)

The vertex factor is
Γλνρ = (k − 2p)ρ δλν + δρν(p− 2k)λ + δρλ(p+ k)ν . (13)

For the following we rearrange it in the form

Γλνρ = (p− 2k)λ δνρ︸ ︷︷ ︸ +2 (pνδλρ − pρδλν)︸ ︷︷ ︸ +(−(p− k)νδλρ + kρδλν)︸ ︷︷ ︸,

≡ Γ
(1)
λ + Γ

(2)
λνρ + Γ

(3)
λνρ,

(14)

where Γ
(3)
λνρ will be temporary further subdivided into two parts,

Γ
(31)
λνρ = −(p− k)νδλρ and Γ

(32)
λνρ = kρδλν . (15)

The momentum integration in the polarization tensor is carried out using the formalism introduced by
Schwinger, [11]. There the propagators (in Feynman gauge, ξ = 1) are represented as parametric integrals,

G(p− k) =

∫ ∞

0

ds e−s(p−k)
2

, G(k) =

∫ ∞

0

dt e−tk
2

(16)
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for the scalar lines and

Gνν′(p− k) =

∫ ∞

0

ds e−s(p−k)
2

Eνν′ , Gρρ′(k) =

∫ ∞

0

dt e−tk
2

δρρ′ (17)

for the vector lines with

Eνν′ ≡ e−2isF = δ
||
λλ′ − iFλλ′ sinh(2s) + δ⊥λλ′ cosh(2s). (18)

In this formalism the momentum integration is written as an averaging procedure in some auxiliary space and
for the basic exponential

Θ̂ = e−s(p−k)
2

e−tk
2

(19)

it holds ∫
dk

(2π)4
Θ̂ = 〈Θ̂〉 = Θ(l2, h2) (20)

with

Θ(l2, h2) =
exp [−H]

(4π)2(s+ t)
√
N
, (21)

which is the result of the corresponding calculations (see [11] for details). The following notations are used,

H =
st

s+ t
l2 +m(s, t)h2 (22)

and

m(s, t) ≡ s− arctanh
p

q
=

1

2
ln

1 + 2t− e−2s

1− (1− 2t)e−2s
(23)

as well as

N =
(
q2 − p2

)
/4 = t2 + t sinh(2s) + p/2 (24)

with the notations

p = cosh(2s)− 1 , q = 2t+ sinh(2s), (25)

which will be met frequently in the following. With these notations the self energy graph for scalar lines becomes
represented by the parametric integrals in the form

Πscalar
(T=0) =

∫
dk

(2π)4
G(p− k)G(k) =

∫
dsdt Θ(l2, h2). (26)

These formulas are derived for T = 0. To include nonzero temperature, within the Matsubara formalism we
are using we have to substitute the integration over the continuous momentum k4 by a discrete sum over l in
k4 = 2πlT , ∫ ∞

−∞

dk4

2π
→ T

∞∑

l=−∞
. (27)

In order to incorporate this into into the parametric integral we represent

T

∞∑

l=−∞
= T

∞∑

l=−∞

∫ ∞

−∞
dk4 δ(k4 − 2πlT ) = T

∞∑

l=−∞

∫ ∞

−∞
dσ e−iσ2πlT

∫ ∞

−∞

dk4

2π
eiσk4 (28)

in this way keeping the original formalism on the expense of accommodating the additional factor exp(iσk4) and
carrying out the integration over σ and the summation over l afterwards. Under the above assumption that the
speed of the heat bath is orthogonal to hλ, the additional factor exp(iσk4) can be incorporated into Schwinger’s
formalism quite trivially because the integration over k4 (in the same way as that over k3) decouples from the
other ones in the sense that the corresponding integrals factorize. For the integration over k4 we have

∫ ∞

−∞

dk4

2π
eiσk4 e−s(p4−k4)

2−tk2
4 =

exp
(
− σ2

4(s+t) + iσsp4s+t − st
s+tp

2
4

)

√
4π(s+ t)

(29)
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and

T

∞∑

l=−∞

∫ ∞

−∞
dσ

∫ ∞

−∞

dk4

2π
e−σk4 e−s(p4−k4)

2−tk2
4 (30)

= T
∞∑

l=−∞
exp

(
−(2πlT )2 + 4πlTs(up)− s2

s+ t
(up)2 − st

s+ t
p2
4

)
.

In this formula we used (up) = p4 because this form of writing will be more convenient below.
Combining these with (20), (21) and (20) we obtain for a graph consisting of scalar lines

Πscalar ≡ T
∞∑

l=−∞

∫
d3k

(2π)3
G(p− k)G(k) (31)

= T

∞∑

l=−∞

∫
dsdt e−(2πlT )2(s+t)+4πlTs(up)− s2

s+t
(up)2

√
4π(s+ t) Θ(l2, h2) .

This representation is still not in a form which is sufficiently convenient for the following, for instance, it contains
still the ultraviolet divergence which appears from small s, t and large l. Using the well known resummation
formula ∑

l

exp
(
−zl2 + al

)
=

√
π

z

∑

N

exp

(
−π

2N2

z
+ iπN

a

z
+

a2

4z2

)
(32)

(both sums run over the integers) we obtain with z → (2πT )2, a→ 4πT (up)

Πscalar =
∑

N

∫
dsdt ΘT (l2, h2) . (33)

Here we introduced the basic average

ΘT (l2, h2) = exp

{
− N2

4(s+ t)T 2
+ 2s(ũp)

}
Θ(l2, h2) , (34)

where Θ(l2, h2) given by Eq.(21) and where the notation

ũλ =
iN

2(s+ t)T
uλ (35)

was introduced. This average is what comes at finite temperature in place of (20),

T
∞∑

l=−∞

∫
d3k

(2π)3
= 〈Θ̂〉T = ΘT (l2, h2) . (36)

In (34) the ultraviolet divergence is in the N = 0 contribution taken at B = 0. The well known basic
properties of the representations as sum over l or as sum over N are that the sum over l is convenient for high
temperature (l = 0 – the so called static mode, gives the leading contribution for T →∞) and the sum over N
gives the low temperature expansion, for instance the N = 0 term is the contribution at T = 0.

We continue with the remark that since below Θ(l2, h2) will become part of the form factors it is meaningful
to write it as a function of h2 + 2iF . This can be done by means of the relation

Θ(l2, h2) = Θ(l2, h2 + 2iF )Z (37)

with

Z = −E> D

D> = δ|| +
α

4N
iF +

β

4N
δ⊥ , (38)

where the notations

α =
(
p2 + q2

)
sinh(2s)− 2pq cosh(2s), β =

(
p2 + q2

)
cosh(2s)− 2pq sinh(2s), (39)

and
A = E − 1 , D = A− 2itF (40)

are introduced.
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From Schwinger’s formalism we need also the commutator relation

pµΘ(l2, h2) = Θ(l2, h2)pµ (41)

with
pµ = (Ep)µ − (Ak)µ . (42)

Here we used obvious short notations like (Ep)µ = Eµµ′pµ′ . Finally, we need the average formulas for vectors,

〈Θ̂kλ〉T = 〈Θ̂〉T
(
A

D
p+ ũ

)

λ

, 〈Θ̂kλkλ′〉T = 〈Θ〉T
[(

A

D
p+ ũ

)

λ

(
A

D
p+ ũ

)

λ′

+

(
iF

D>

)

λλ′

]
, (43)

together with the explicit representation

A

D
=

s

s+ t
δ|| − tp

2N
iF +

p+ t sinh(2s)

2N
δ⊥. (44)

All other quantities can be calculated from these, for example,

iF

D> =
1

2

(−2iF

D

)>
=

1

2t

(
1− A

D

)>
=

1

2

(
δ||

s+ t
+

p

2N
iF +

q

2N
δ⊥
)
. (45)

Perhaps it is useful to remark that all these matrices commute one with the other, that the transposition changes

the sign of F and that the simple algebra δ||
2

= δ||, δ⊥
2

= δ⊥, F 2 = −δ⊥, δ||δ⊥ = δ||F = 0 and δ⊥F = F holds.
The averages in (43) are calculated at T 6= 0. For T = 0 they reduce to the formulas known from [11]. For

T 6= 0 one needs to consider the corresponding generalizations of Eq.(29),

∫ ∞

−∞

dk4

2π
k4 e

iσk4 e−s(p4−k4)
2−tk2

4 . (46)

Replacing the additional factor k4 by i ∂∂σ , after integration over σ an additional factor 2πlT appears in a formula
which generalized Eq.(31). It remains to do the resummation from l to N . Taking the derivative with respect
to a from Eq.(32) after some calculations the first line in (43) for λ = 4 appears. The derivation of (43) is then
finished by the remark that for λ = 1, 2, 3 no additional contributions appear. In a similar way also the second
line in Eq.(43) can be derived.

Now we turn to the calculation of the polarization tensor (11). Using (17), (19), (20) and (41) it can be
written in the form

Πλλ′ =
∑

N

∫
dsdt 〈Θ̂T [ΓλνρEνν′Γλ′ν′ρ + (p− k)λkλ′ + kλ(p− k)λ′ ]〉+ Πtadpol

λλ′ , (47)

where in Γλνρ one needs to substitute p by p.
In the next step we divide the whole expression into parts according to the division made in (14) and (15),

Πλλ′ =
∑

N

∫
dsdt 〈Θ̂T


∑

i,j

M̂ i,j
λλ′ + M̂gh

λλ′


〉+ Πtadpol

λλ′ (48)

with
M̂ i,j
λλ′ = Γ

(i)
λνρEνν′Γ

(j)
λ′ν′ρ (49)

and M̂gh
λλ′ is the corresponding contribution from the ghost loop.

The sums in (48) include also the decomposition (15).
The explicit expressions in this formula are of the type (we write that for the case of M 1,1

λλ′ as an example),

M̂1,1 = (p− 2k)λ (p− 2k)λ′ trE. (50)

Using (42) we rewrite this expression in the form

M̂1,1 = (Ep− (E + 1)k)λ (p− 2k)λ′trE, (51)

Now we apply the average formulas (43) and we pass from Θ(l2, h2) to Θ(l2, h2 + 2iF ) by means of (37) which
brings a factor Z to the M i,j which couples to the index λ, in detail, ZM i,j stands for Zλλ′′M i,j

λ′′λ′ . In this way
we come to

〈Θ̂M̂ i,j〉T = ΘT (l2, h2 + 2iF ) M i,j (52)
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with

M1,1 =

(
(Pp− 2ũ)λ

(
P>p− 2ũ

)
λ′

+ 2Z
2iF

D>

)
trE (53)

Here, again, new notations were introduces, namely

P =

(
1− 2

A

D

)>
= Z

(
E − (E + 1)

A

D

)
= −s− t

s+ t
δ|| − tp

N
iF − p/2− t2

N
δ⊥ ≡ r3 δ|| + α3 iF + β3 δ

⊥,

R = 2
(
E − E>) = −4 sinh(2s) iF ,

Q31 =

(
Z

(
1− A

D

))>
= E
−2itF

D
=

t

s+ t
δ|| + t

p cosh(2s)− q sinh(2s)

2N
iF + t

q cosh(2s)− p sinh(2s)

2N
δ⊥,

≡ s4 δ
|| + γ4 iF + δ4 δ

⊥,

Q32 =

(
EZ

A

D

)>
= E>A

D
=

s

s+ t
δ|| +

p(sinh(2s) + t)

2N
iF +

p cosh(2s) + t sinh(2s)

2N
δ⊥,

≡ s3 δ
|| + γ3 iF + δ3 δ

⊥,

S = Z =

(
E −AA

D

)>
= δ|| +

α

4N
iF +

β

4N
δ⊥ ≡ r1 δ|| + α1 iF + β1 δ

⊥,

T = (EZ)
>

= 1 +A>A

D
= δ|| +

2pq

4N
iF +

p2 + q2

4N
δ⊥ ≡ s2 δ|| + γ2 iF + δ2 δ

⊥,

U =

(
A

D

)>
=

s

s+ t
δ|| +

tp

2N
iF +

p+ t sinh(2s)

2N
δ⊥ ≡ r2 δ|| + α2 iF + β2 δ

⊥,

V = 1− A

D
=

t

s+ t
δ|| +

tp

2N
iF +

tq

2N
δ⊥ ≡ s1 δ|| + γ1 iF + δ1 δ

⊥, (54)

where (38), (44) and (45) were used. Here we listed all the representations which describe other terms of the
polarization tensor. The notations ri αi, βi and δi are introduced here for later use.

As for the dependence on ũ we made use of the fact that only the fourth component of ũµ is nonzero.
In order to continue and, for instance, to find the necessary structures for integration by parts, we divide

the contributions into 4 parts,

1. M1,1 +M1,2 +M2,1 +M2,2,

2. M1,3 +M2,3 +M3,1 +M3,2

3. M3,3 +Mgh

and consider them individually in the following subsections.

3.1 Contribution from M 1,1 +M1,2 +M2,1 +M2,2

We start from M1,1. First of all we note that the relation

−
(
∂

∂s
− ∂

∂t

)(
Pλλ − 2

ũλũλ′

(ũp)

)
= 2Z

2iF

D> (55)

holds which can be verified by differentiation of (38) and (45). It should be mentioned that the term −2 ũλũλ′

(ũp)

in the left hand side vanishes under differentiation. It was added by hindsight.
Eq.(55) allows us to represent the contribution of M 1,1 to the polarization tensor (48) in the form (up to

the sum over N) ∫
dsdt ΘT (l2, h2 + 2iF )

(
−
(
∂

∂s
− ∂

∂t

)(
P − 2

ũλũλ′

(ũp)

))
trE. (56)

In this integral we temporarily change variables to λ and u according to s = λu, t = λ(1 − u) and with(
∂
∂s − ∂

∂t

)
= 1

λ
∂
∂u we integrate the derivative with respect to u by parts,

∫ ∞

0

dλλ

∫ 1

0

du ΘT (l2, h2 + 2iF )

(
− 1

λ

∂

∂u

(
P − 2

ũλũλ′

(ũp)

))
trE

=

∫ ∞

0

dλλ

[
−ΘT (l2, h2 + 2iF )

(
P − 2

ũλũλ′

(ũp)

)
, trE

] ∣∣∣∣∣

1

u=0

+

∫
dsdt ΘT (l2, h2 + 2iF )

{(
P − 2

ũλũλ′

(ũp)

)(
(̃pPp)− 2(ũp)

)
trE + 4 sinh(2s)P

}
, (57)
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where

(pPp) = −
(
∂

∂s
− ∂

∂t

)
H − 1

2N

(
∂

∂s
− ∂

∂t

)
N (58)

follows from (22), (24) and (54) and

−
(
∂

∂s
− ∂

∂t

)
ΘT = ΘT

(
(̃pPp)− 2(ũp)

)
(59)

from (34). We have to take into account that we differentiate a Θ which depends on h2 + 2iF so that we got
in place of (58) in fact

(̃pPp) ≡ (pPp)∣∣
h2→h2+2iF

. (60)

In such expressions we shall use the tilde as notation for this substitution in the following several times. Further
we used trE = 2(1 + cosh(2s)).

As a result from the integration by parts we get surface contributions which have the general form

Msurface =

∫ ∞

0

dλλ ΘT (l2, h2 + 2iF )
∑

i,j

M i,j
sf

∣∣∣∣∣

1

u=0

, (61)

The surface contribution from M 1,1 is then

M1,1
sf = −

(
Pλλ′ − 2

ũλũλ′

(ũp)

)
trE. (62)

Taking the contribution from the last line in (57) we represent up to the surface contribution M 1,1 in the
form

M1,1=

[
(Pp− 2ũ)λ

(
P>p− 2ũ

)
λ′
−
(
Pλλ′ − 2

ũλũλ′

(ũp)

)(
(̃pPp)− 2(ũp)

)]
trE + 4 sinh(2s)

(
Pλλ′− 2

ũλũλ′

(ũp)

)
. (63)

In this way other terms could be transformed.
Thus we get the surface contribution

M1,2
sf = −ΘT (l2, h2 + 2iF )R>

λλ′ (64)

and then we represent

M1,2 +M2,1 = (Pp− 2ũ)λ (Rp)λ′ +
(
R>p

)
λ

(
P>p− 2ũ

)
λ′
−
(
Pλλ′ − 2

ũλũλ′

(ũp)

)
˜(pR>p)

−R>
λλ′

(
(̃pPp)− 2(ũp)

)
− 4 sinh(2s)

(
Pλλ′ − 2

ũλũλ′

(ũp)

)
+ 8 cosh(2s) iFλλ′ . (65)

Finally we turn to M2,2. Here we rewrite

(pSp) = (̃pSp) +
(
S + S>) iF ,

(
pT>p

)
= ˜(pT>p) +

(
T + T>) iF (66)

and represent M2,2 in the form

M2,2 = −4
[
(Sp)λ (Tp)λ′ +

(
T>p

)
λ

(
S>p

)
λ′
− Sλλ′

˜(pT>p)− T>
λλ′ (̃pSp)

]
− 8 cosh(2s)iF. (67)

The last line is the result of a number of cancellations.
We continue with the observation that the last lines in (63), (65) and (67) compensate each other so that

we are left with the corresponding first lines. In this way we get from this subsection the following contribution
to the form factors, which we denote by Ma

i :

Ma
1 = −

(
s−t
s+t

)2

2(1 + cosh(2s)) +8,

Ma
2 = (tp)2−(p/2−t2)2

N2 2(1 + cosh(2s)) −8 sinh(2s) tpN +8 cosh(2s),

Ma
3 = s−t

s+t
t2−p/2
N 2(1 + cosh(2s)) +β+p2+q2

N ,

Ma
4 = − s−ts+t

tp
N 2(1 + ch) +4 sinh(2s) s−ts+t +α−2pq

N

(11) (12) + (21) (22)

(68)

where in the last line the origin of the contribution is indicated.
For the temperature induced contributions we get with µ = 2 iN

2(s+t)T

Ma
7 = −2

iN

2(s+ t)T

r3
(up)

trE, Ma
7 = −2

iN

2(s+ t)T

β3

(up)
trE, Ma

9 = −Ma
(∗) = 2

iN

2(s+ t)T
α3trE . (69)



14 Bordag M., Skalozub V.

3.2 Contribution from M 1,3 +M2,3 +M3,1 +M3,2

In such a way after length cumbersome calculation we obtain the contributions of the terms from M 1,3 +M2,3 +
M3,1 +M3,2. We denote the contributions to the form factors originating from this part by M b

i . These read

M b
2 =

1

2N

(
− cosh2(2s) +

(
2− 4t2

)
cosh(2s)− 12t sinh(2s)

)
,

M b
3 =

1

2(s+ t)N

(
−2t3 − 10st2 − 2

(
t2 + st+ 2

)
cosh(2s)t

−8(s+ t) sinh(2s)t+ 5t− (s+ t) cosh2(2s) + s
)
,

M b
4 =

1

2(s+ t)N

(
4t(t− s)− (s+ t)

(
2t2 + 1

)
sinh(2s)

+ cosh(2s)(4(s− t)t+ (s+ t) sinh(2s))) ,

M b
5 =

1

2N

(
(cosh(2s)− 1)

(
2t2 + cosh(2s)− 1

))
,

M b
6a =

1

2N

((
−2t2 + cosh(2s)− 1

)
sinh(2s)

)
,

M b
6b =

1

2N

((
−2t2 + cosh(2s)− 1

)
sinh(2s)

)
. (70)

We observe that M b
6a and M b

6b are equal. As a consequence, the operators structures T
(6a)
λλ′ and T

(6b)
λλ′ come with

the same form factors, hence these contributions collect into the structure T
(6)
λλ′ , Eq.(5).

Finally we collect the temperature induced part. Its form factors can be written in the form

M b
7 =

iN

2(s+ t)T

1

(up)
(−2r1 + r4 + 2s4 + 2s2 + r3 − 2s3) ,

M b
8 =

iN

2(s+ t)T

1

(up)
(−2β1 + β4 + 2δ4 + 2δ2 + β3 − 2δ3) ,

M b
10a =

iN

2(s+ t)T

1

(up)
(2r1 + r4 − 2s4 − 2s2 + r3 + 2s3) ,

M b
10b =

iN

2(s+ t)T

1

(up)
(2β1 + β4 − 2δ4 − 2δ2 + β3 + 2δ3) ,

M b
9 =

iN

2(s+ t)T
(2α1 + α4 + 2γ4 + 2γ2 − α3 − 2γ4) ,

M b
(∗) =

iN

2(s+ t)T
(2α4 + 2α3) . (71)

The parameters αi, βi, ... where introduced in Eq.(54). Some of them are equal that will be noted below.

3.3 Contribution from M 3,3 +Mghand tadpoles

These contributions need a treatment to some extend different from the preceding two subsections and could
be presented in the form

Π33+gh
λλ′ =−

∑

N

∞∫

0

ds Eλλ′ΘT (l2, h2)

∣∣∣∣
t=∞

t=0

−
∑

N

∞∫

0

dt δλλ′ΘT (l2, h2)

∣∣∣∣
s=∞

s=0

, (72)

where the integration over t or s parameter is assumed and the corresponding limits are marked.
Now we collect the contributions resulting from the tadpole graphs given by Eq.(12) and the surface contri-

butions which appeared in the preceding subsections.
The tadpole contributions can be calculated easily since they are special cases of the basic loop contribution

for s = 0 collapsing the line of the charged gluon and keeping the line of the neutral gluon and for t = 0 which
the lines interchanged. All other rules remain valid so that these contributions can be written down easily,

Πtadpol =
∑

N

∫
dt ΘT (l2, h2) (−δλλ′ + 4δλλ)

∣∣∣
s=0

+
∑

N

∫
ds ΘT (l2, h2)×

×
(
trE δλλ′ − 4 sinh(2s)iF −

(
δ
||
λλ′ + iF sinh(2s) + δ⊥λλ′

)) ∣∣∣
t=0

. (73)

Now we collect the surface terms. A part of them has the form (61),

Msurface =
∑

N

∫ ∞

0

dλ ΘT (l2, h2 + 2iF )Msf

∣∣∣
1

u=0
(74)
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with contributions to Msf from Eqs.(62), (64),

Msf = −
(
Pλλ′ − 2

ũλũλ′

(ũp)

)
trE −R>

λλ′ + 2Q>
31λλ′ − 2Q>

32λλ′ . (75)

which can be rewritten in the form

Πsurface =
∑

N

∫
ds ΘT (l2, h2)Msf

∣∣
t=0
−
∑

N

∫
dt ΘT (l2, h2)Msf

∣∣
s=0

. (76)

Now it can be checked that when adding (73) and (76) and doing the obvious simplification all contributions
cancel except for that which are proportional to uλuλ′ , i.e., to TD

λλ′ , Eq.(9). These collect into ΠD defined in
Eq.(10),

ΠD =
∑

N

∫
ds

iN

2s
ΘT (l2, h2) (−4 + 2trE)

∣∣
t=0
−
∑

N

∫
dt

iN

2t
ΘT (l2, h2) (4− 2trE)

∣∣
s=0

. (77)

Now we need from (21) and (34)

ΘT

∣∣
s=0

=
1

(4π)2t2
exp

(
− N2

4tT 2

)
,

ΘT

∣∣
t=0

=
s

sinh(s)

1

(4π)2s2
exp

(
− N2

4sT 2

)
exp

(
iN

T
p4

)
(78)

and after renaming the integration variables we obtain for the remaining contributions

ΠD =
∑

N

∫ ∞

0

dλ

λ

iN

2Tp4

[
−4ΘT

∣∣
s=0

+ 4ΘT

∣∣
t=0

]
(79)

= − 4

(4π)2

∑

N

∞∫

0

dλ

λ3

iN

2Tp4

(
1− λ cosh(2λ)

sinh(λ)
eiNp4/T

)
exp

(
− N2

4λT 2

)
.

The expression for ΠD can be a bit simplified by writing as a sum over N > 0 (note the contribution from
N = 0 vanishes),

ΠD = − 4

(4π)2

∞∑

N=1

∫ ∞

0

dλ

λ3

sin (Np4/T )

Tp4/N

λ cosh(2λ)

sinh(λ)
exp

(
− N2

4λT 2

)
. (80)

It is obvious that for external momenta obeying p4 = 2πlT (l integer) only the contribution from l = 0 is
nonzero and we arrive at the Debye mass, ΠD = −δl,0m2

D,

m2
D =

1

4π2

∞∑

N=1

∫ ∞

0

dλ

λ2

(
N

T

)2
cosh(2λ)

sinh(λ)
exp

(
− N2

4λT 2

)
. (81)

This expression coincides with the Debye mass of the neutral gluon, Eq.(123) in [10]

4 Conclusions

Here we collect the contributions which were calculated in the preceding subsections. The form factors appearing
in the decomposition (10) of the polarization tensor read

Πi(l2, h2 + 2iF ) =
∑

N

∫ ∞

0

ds

∫ ∞

0

dt ΘT (l2, h2 + 2iF ) Mi (82)
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with

M1 =
4(s+ t)2 − 2(s− t)2 cosh(2s)

(s+ t)2

M2 =
1

N

(
−2t2 + 4 sinh(2s)t+ 2 cosh2(2s) + cosh(2s)

(
4t2 + 2 sinh(2s)t− 3

)
+ 1
)

M3 =
1

4(s+ t)N

(
2(s+ 5t) cosh2(2s) + 4t

(
t2 + 5st− 2

)
cosh(2s) + 2(s+ t)

(
2t2 + 8 sinh(2s)t− 1

))

M4 =
1

2(s+ t)N

(
4(s− t)t cosh2(2s) + (4(s− t)t+ (s− 7t) sinh(2s)) cosh(2s)

+8t(t− s) +
(
−2t3 + 14st2 + 7t− s

)
sinh(2s)

)

M5 =
1

2N

(
(cosh(2s)− 1)

(
2t2 + cosh(2s)− 1

))
,

M6 =
1

2N

((
−2t2 + cosh(2s)− 1

)
sinh(2s)

)
, (83)

with N given by Eq.(24).
The new temperature induced contributions from adding (69) and (71) read

M7 =
iN

2(s+ t)Tp4

4(s− t) cosh(2s)

s+ t
,

M8 =
iN

2(s+ t)Tp4

4 cosh2(2s)− 4
(
2t2 + 1

)
cosh(2s)

2N
, (84)

M9 =
iN

2(s+ t)T
4
t cosh2(2s) + (t+ sinh(2s)) cosh(2s)− 2t+

(
2t2 − 1

)
sinh(2s))

N
.

In derivation of these expressions we have taken into consideration Eq.(54) and accounted for the relations
α4 = α3, β4 = β3.

Furthermore it holds M10a = M10b = 0 and M(∗) = −M9. Here a comment is in order. The vanishing of
M10a and M10b is the result of the calculations done here in one-loop order. At the moment it is not known
whether there is some symmetry behind and whether this persists in higher loops. Similar remarks apply to
the relation between M9 and M(∗). As a result, these two form factors contribute proportional to the tensor
structure

T 9
λλ′ − T (∗)

λλ′ = uλidλ′ − idλuλ′ + iF (up)− uλuλ′

(up)
. (85)

Finally we mention the contribution from the Debye mass, Eqs.(81), which by means of ΠD = δl,0m
2
D,

contributes to Πλλ′ , (10).
These expressions can we used in different applications. For example, it is of interest to calculate the

spectrum of gluon modes propagating in the deconfinement phase. The derived structure of the polarization
tensor is necessary in resummation of series of diagrams under the background considered.
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DECONFINEMENT PHASE TRANSITION
IN 3D U(1) LATTICE GAUGE THEORY

O. Borisenkoa
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A review of compact three-dimensional U(1) gauge theory on asymmetric lattice is presented. A special attention
is paid to the finite-temperature properties of the model, in particular to the deconfinement phase transition. We
discuss how the phase transition exhibits itself in the behaviour of correlation functions, describe the universality
class of the model and its relation to the two-dimensional XY model as well as the problems which remain to be
solved. Then, correlation functions of the Polyakov loops and the ’t Hooft operator are computed perturbatively
at high temperatures. Performing dimensional reduction the effective two-dimensional model is obtained which
describes vortex–anti-vortex dynamics in the high-temperature regime. We explore the effective model to study
in details the critical behaviour. Under standard assumptions we compute critical indices and compare them
with those of the two-dimensional XY model.

1 Overview of the results and problems

All studies of compact three-dimensional (3d) U(1) LGT without dynamical matter fields can be grouped into
the following three categories: 1) 3d U(1) LGT at zero temperature; 2) 3d U(1) LGT on anisotropic lattice; 3)
3d U(1) LGT at finite temperature. Main motivation of these studies is two-fold. Firstly, at zero temperature
the theory has a nonvanishing mass gap and a string tension at arbitrarily small coupling constant. This is a
feature expected from 4d QCD. Secondly, at finite temperature the theory undergoes a deconfinement phase
transition. The corresponding phenomenon takes place in 4d QCD as well. It thus appears that 3d U(1)
gauge theory constitutes one of the simplest model with continuous gauge symmetry which possesses the same
fundamental properties as QCD (at least, its pure gauge sector). Therefore, it is very important to understand
in great details mechanism which underlies permanent confinement and deconfinement phase transition on the
example of simpler three-dimensional abelian model.

1.1 Theory at zero temperature

It seems, it was Polyakov who initiated investigations of compact U(1) model proving permanent confinement in
this model [1]. To be precise, using dilute monopole gas and semiclassical approximations Polyakov has shown
that the string tension σ(j) of the fundamental Wilson loop and the mass gap m behave at small coupling as

a2σ(j = 1) =
8√

2π2β
exp

[
−1

2
π2βG0

]
, (1)

am =
√

8π2β exp

[
−1

2
π2βG0

]
. (2)

Here, β = 1/(g2a) is dimensionless coupling constant and G0 ≈ 0.5054 is zero-distance Green function.
Polyakov’s arguments have been extented to lattice formulation in [3] with the help of the dual representa-
tion of the U(1) model. Much more thorough calculations of the string tension have been accomplished in [3, 4].
A rigorous proof of permanent confinement was given in [5]. The proof uses the Villain formulation of U(1)
LGT. It was shown that the semiclassical expression (1) is just lower bound on the string tension. Extension
of Polyakov’s semiclassical analysis to Wilson loops in higher representations (j ≥ 2) was performed in [1] with
the result

σ(j) ∼ j σ(j = 1). (3)

A very detailed investigation of a lattice version of the Polyakov saddle-point equation was done in [7]. Polyakov’s
scaling for the string tension (1) was verified in various Monte-Carlo (MC) simulations [7, 8] both in the Wilson
and in the Villain formulations. In general, the scaling was confirmed though authors of [7] found essential
difference between Wilson and Villain model which can be indicative that the true asymptotic region has
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not been reached. More recent MC simulations [9] also confirm asymptotic formula (1) but the amplitude of
the exponentially small factor appears to be five times bigger than the semiclassical approximation predicts.
MC computations which use dual formulation of U(1) LGT have been performed in [10]. In particular, a
doubly charged Wilson loop, i.e. the Wilson loop in the representation j = 2 has been computed in the dual
simulations and the result has been reported which supports analytical formula (3). The flux-tubes generated
by static sources were studied numerically both in the dual [10] and in the standard MC simulations [11]. Some
physical quantities like the expectation value of the plaquette, various glueball masses have been computed in
[9, 12].

Some important unsolved problems can be shortly summarized as follows.
1) Monopole dynamics. The role of monopoles in the long distance physics, in particular in producing

the string tension was studied in [13] using cooling method. There is however neither analytical nor MC
computations of such quantities like monopole density, percolation properties of monopole clusters, etc. But
MC computations of various monopole properties have been done at finite temperature (see below).

2) Wilson loop in different representations j. In [14] Polyakov has argued that the string tension for even j
should vanish. In contrast, paper [1] claims that the string tension in arbitrary representation is proportional
to j times the string tension for the fundamental representation (3). Simulation of the dual model confirm this
claim. However, earlier simulations of Ref.[11] support quadratic dependence of the form σ(j) ∼ j2σ(j = 1)
rather than formula (3). Moreover, as can be seen from bounds of [5] (formula 8.3 of the first paper) string
tension should be proportional to j2.

3) Asymptotics of string tension and MC. All available MC results support the exponentially small behaviour
of both the string tension and the mass gap. However, the amplitude at the exponential factor, as is seen in
simulations is five times bigger than the theory predicts [9]. Thus, the theoretical question - how to account
for this difference - is still open. Authors of [9] suppose that quantum corrections can improve the situation.
Indeed, quantum corrections to the saddle-point solution by Polyakov have not been computed so far. Another
possible reason for the disagreement could be the fact that only monopoles with lowest numbers 0,±1 have
been taken into account.

1.2 Theory at finite temperature

First investigations of U(1) LGT at finite temperature have been performed by Polyakov [15] and Susskind
[16]. Their analysis, done for strong coupled Hamiltonian version of 4d model, showed the possibility of the
deconfinement phase transition at high temperatures. Three-dimensional case was studied by Parga using
Lagrangian formulation of the theory [17]. The picture emerging from this study can be described as follows.
At high temperatures the system becomes effectively two-dimensional, in particular the monopoles of the original
U(1) gauge theory become vortices of the 2d system. The partition function turns out to coincide (in the leading
order of the high-temperature expansion) with the 2d XY model in the Villain representation. The effective
coupling of the XY model reads

βeff = 1/(g2β), (4)

while the effective activity of the vortices is

y(β) = exp

[
− π2

2βeff

(
1 +

β2

3

)]
, (5)

where β is the inverse temperature and g2 is coupling constant with dimension a−1. The XY model is known
to have the Berezinskii-Kosterlitz-Thouless (BKT) phase transition of the infinite order [18–20] which occurs
for the Villain model at (a rigorous proof of the BKT phase transition existence was done in [21])

βeff ≈ 2/π. (6)

According to the Svetitsky-Yaffe conjecture the finite-temperature phase transition in the 3d U(1) LGT should
belong to the universality class of the 2d XY model [22]. This means, firstly that the global U(1) symmetry
cannot be broken spontaneously because of the Mermin-Wagner theorem [23] and, consequently the absence of
the local order parameter. Secondly, the correlation function of the Polyakov loops (which become spins of the
XY model) decreases with the power law implying logarithmic potential between heavy electrons

P1(R) � R−η(T ), (7)

where the R� 1 is the distance between test charges (the definition of the Polyakov loop correlation Pj(R) is
given in the Section 2). The critical index η(T ) is known from the renormalization-group analysis of Ref.[20]
and equals η(Tc) = 1/4 at the critical point of the BKT transition. Therefore, it should be the same in the
finite-temperature U(1) model if the Svetitsky-Yaffe conjecture holds in this case.
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The first numerical check of these predictions was performed on the lattices N 2
s ×Nt with Ns = 16, 32 and

Nt = 4, 6, 8 in [24]. Though authors of [24] confirm the expected BKT nature of the phase transition, the
reported critical index is almost three times of that predicted for the XY model, η ≈ 0.78.

Quite an extensive numerical study of the monopole-anti-monopole dynamics both in the confinement and
in the deconfinement phases have been accomplished in [25] on the lattice 323×8. In particular, such quantities
like the monopole density, the second and the fourth Binder cumulants of the total number of monopoles and
anti-monopoles have been computed as well as the temporal and the spatial string tensions.

The major remaining problems are the following.

• Monte-Carlo simulations. It seems to be beyond any doubts that the formula (1) correctly predicts the
scaling of the string tension. Of course, the amplitude can be given incorrectly by the semiclassical
approximation, and this is observed in all MC simulations. Hovewer, in finite-temperature simulations
of Ref.[24] even the scaling was not reached. The problem can be in the finite-size effects. Neither
Ref.[24] nor Ref.[25] addresses the problem of the finite-size scaling (FSS). The BKT phase transition is
rather peculiar phenomenon. In particular, it is rather hard to investigate it numerically because of the
logarithmic corrections. In a review by R.Kenna [26] a summary of recent numerical results on the critical
indices and critical temperature of the XY model is presented. From this review it becomes transparent
that in order to reliably describe all critical properties of the model one should at least use the FSS technics
and/or simulate the model on large thermodynamic lattices, i.e. L� ξ (ξ is the correlation length). None
of these have been accomplished in the simulations of 3d U(1) LGT at finite temperature so far.

• Universality problem. The phase transition in 3d U(1) LGT is of the BKT type. However, the results
of [24] do not support the expected universality of the critical behaviour. In the continuum theory the
problem was only addressed qualitatively. Thus, the problem remains open.

• Monopole dynamics in the vicinity of the phase transition. Despite thorough investigations of monopoles
in [25], a number of issues is still to be solved. There is no any attempt in the literature to compute the
’t Hooft loop expectation value. Certainly, such computations would provide an interesting insight into
the monopole properties near the phase transition point. Percolation properties of the monopole clusters
below and above the critical point have not been studied as well.

In what follows we concentrate on the studying of the universality problem. In the next section we introduce
our conventions and give definition of the compact version of U(1) LGT together with some expectation values.
Investigation of the model at limiting values of anisotropic couplings is presented in the Section 3. In this
limit the BKT critical behaviour is clearly seen. In the Section 4 we derive the effective monopole action for
the Villain version of 3d U(1) LGT at finite temperature in the presence of the Wilson (Polyakov) and/or ’t
Hooft loops. This is accomplished with the aid of the dimensional reduction of the model. The perturbative
calculations of the Polyakov loop correlations at high temperatures are the subject of the Section 5. The
Section 6 is devoted to the investigation of the effective monopole action at high temperatures. Here we give an
analytical predictions for the critical indices of the theory. A summary of our results is presented in the Section
8. Asymptotic properties of the lattice Green function at finite temperatures are given in the appendix.

2 Lattice conventions and definition of the model

We work on a 3d lattice Λ = L2 × Nt with spatial extension L and temporal extension Nt. ~x = (x0, x1, x2),
where x0 ∈ [0, Nt − 1] and x1, x2 ∈ [0, L − 1] denote the sites of the lattice and en, n = 0, 1, 2 denotes a unit
vector in the n-th direction. Periodic boundary conditions (BC) on gauge fields are imposed in all directions.
Notations pt (ps) stay for the temporal (spatial) plaquettes, lt (ls) for the temporal (spatial) links. In three
dimensions temporal plaquettes are dual to spatial links while spatial plaquettes are dual to temporal links. In
what follows we keep notations of the original lattice also for the dual lattice.

Introduce anisotropic dimensionless couplings in a standard way as

βt =
1

g2at
, βs =

ξ

g2as
= βt ξ

2, (8)

where at (as) is lattice spacing in the time (space) direction and ξ is a ratio of lattice spacings

ξ =
at
as
. (9)

g2 is a continuum coupling constant with dimension a−1.
One should distinguish three different limits which can be obtained from the formulation of the theory on

an anisotropic lattice
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1. Euclidean limit is constructed as

ξ → 1, Nt = L, L→∞. (10)

2. Hamiltonian limit is constructed as
ξ → 0, Nt, L →∞. (11)

3. Finite-temperature limit is constructed as

ξ → 0, Nt, L →∞, atNt = β, (12)

where β = 1/T is the inverse temperature.

3d U(1) gauge theory on the anisotropic lattice is defined through its partition function as

Z ≡ Z(Λ;βt, βs) =

∫ 2π

0

∏

l

dωl
2π

expS[ω], (13)

where S is the Wilson action
S[ω] = βs

∑

ps

cosω(ps) + βt
∑

pt

cosω(pt) (14)

and the plaquette angles ω(p) are defined in a standard way.
In the following we shall also need the plaquette and dual formulations of the model (13). The plaquette

formulation on the dual lattice can be easily obtained from the corresponding formulation on the isotropic lattice
[27, 28] and takes the form

Z =

2π∫

0

∏

l

dωl
2π

exp

[
βs
∑

lt

cosω(lt) + βt
∑

ls

cosω(ls)

]
∏

x

J(x), (15)

where J(x) is the periodic delta-function which expresses the lattice Bianchi identity

J(x) =
∞∑

r=−∞
eirωx , ωx =

∑

n

[ωn(x)− ωn(x− en)]. (16)

Integration over plaquette (dual link) variables leads to the corresponding dual representation of the anisotropic
model

Z =

∞∑

r(x)=−∞

∏

x

2∏

n=0

Ir(x)−r(x+en)(βn), (17)

where the product over x runs over all sites of the dual lattice, Ir(z) is the modified Bessel function and we
introduced notations

βn =

{
βs, n = 0

βt, n = 1, 2.
(18)

The Villain formulation of 3D U(1) gauge theory on the anisotropic lattice can be deduced from last formulae.
In particular, the dual formulation reads

Z =

∞∑

r(x)=−∞
exp

[
−
∑

x

2∑

n=0

1

2βn
(r(x)− r(x+ en))

2

]
. (19)

Clearly, the representations (15)-(19) can be viewed as the dimensional continuations of the link and dual
representations of the 2d XY model [29–31].

Now we introduce some expectation values.

1. Wilson loop in representation j

Wj(C) =

〈
exp

[
ij
∑

l∈C
ω(l)

]〉
(20)

can be written in the dual formulation as a ratio of partition functions

Wj(C) =
Zj
Z0
, (21)
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where Z0 = Z and

Zj =
∞∑

r(x)=−∞

∏

x

2∏

n=0

Ir(x)−r(x+en)+ηn(x)(βn). (22)

Here we have introduced sources ηn(x) = η(l) as

η(l) =





j, l ∈ Sd , l = (x, n)

−j, l ∈ Sd , l = (x− en, n)

0, otherwise

(23)

where Sd - surface dual to any surface S for which the contour C serves as a boundary.

2. Formulae (21)-(23) remain valid for the correlation of the Polyakov loops

Pj(R) =

〈
exp

[
ij

Nt−1∑

x0=0

(ω0(x)− ω0(R))

]〉
(24)

if Sd is a surface enclosed between two Polyakov loops.

3. The standard ’t Hooft operator which measures a free energy of the monopole-antimonopole pair is given
in the dual formulation by the following expectation value

T (x, y) = Dπ(x, y) =
〈
(−1)r(x)−r(y)

〉
. (25)

3 Limiting values of anisotropic couplings

We start by examining the limiting values of the anisotropic couplings.
1. The limit βt = 0. This is the strong coupling limit. As follows from (8) it can be realized as the limit

g2 → ∞ such that g2at → ∞ but g2as remains bounded. This is the simplest limit because here the model
reduces to a product of non-interacting two-dimensional gauge models. The solution of 2d gauge models is well
known. For U(1) LGT we thus get

Z(βt = 0, βs) =

[ ∞∑

r=−∞
IL

2

r (βs)

]Nt

. (26)

The model is in the confined phase at all values of βs. The temporal Wilson loop, the Polyakov loop and
all the correlations of the Polyakov loops are vanishing in the limit βt = 0. The spatial Wilson loop in the
thermodynamic limit behaves as

Wj(C) = exp [−αS] , α = ln
I0(βs)

Ij(βs)
. (27)

where S is the area of the loop C.
2. The limit βs = 0. As follows from (8) this limit can be realized as the limit ξ → 0 such that g2at is

non-vanishing. This can be considered as the finite-temperature limit. This is a non-trivial limit which cannot
be solved exactly but in which the U(1) model reduces to the XY -like model. Indeed, from (17), and taking
into account that Ir(0) = δr,0 one gets in the dual formulation

Z(βt, βs = 0) =

∞∑

r(x)=−∞

∏

x

2∏

n=1

INt

r(x)−r(x+en)(βt). (28)

One can prove that the last formula on the original lattice is equivalent to

Z(βt, βs = 0) =

2π∫

0

∏

x

dωx
2π

∏

x,n

[ ∞∑

r=−∞
INt
r (βt) exp [ir(ωx − ωx+en

)]

]
. (29)

Here, eirωx is the Polyakov loop in the representation r.
For Nt = 1 using the formula

∑
r Ir(x)e

irω = ex cosω one finds

Z(βt, βs = 0, Nt = 1) =

2π∫

0

∏

x

dωx
2π

exp

[
βt
∑

x,n

cos(ωx − ωx+en
)

]
(30)
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which is the partition function of the XY model. The formula (28) gives, for Nt = 1, the dual representation
of the XY model. Thus, in this case the dynamics of the system is governed by the XY model with the inverse
temperature βt. For Nt ≥ 2 the model (28), (29) is of the XY -type, i.e. it describes interaction between nearest
neighbours spins (Polyakov loops) and possesses the global U(1) symmetry. There is a little doubts that the
critical behaviour for all Nt is the same as that of the XY model. Indeed, consider two different limits.

2-A. Strong coupling limit βt � 1. In the leading order one can easily find from (29) up to irrelevant
constant

Z(βt � 1, βs = 0) =

2π∫

0

∏

x

dωx
2π

exp

[
h(βt)

∑

x,n

cos(ωx − ωx+en
)

]
(31)

which is again the XY model with the coupling h given by

h(βt) = 2

[
I1βt
I0(βt)

]Nt

.

The Polyakov loop and the spatial Wilson loop vanish while the correlations of the Polyakov loops are given by
to the leading order

Pj(R) = exp [−αNtR] , (32)

where the string tension α coincides with (27) in the leading order.
2-B. Weak coupling limit βt � 1, e.g. at → 0, g2 is fixed or vice-versa. Substituting asymptotics of

the Bessel functions

Ir(x) ∼ exp

[
− 1

2x
r2
]
, x→∞

into (28) we obtain for the partition function up to irrelevant constant

Z(βt � 1, βs = 0) =

∞∑

r(x)=−∞
exp

[
− β̃

2

∑

x

2∑

n=1

(r(x)− r(x+ en))
2

]
. (33)

This is nothing but the Villain version of the XY model in the dual formulation with an effective coupling β̃
given by

β̃ = Nt/βt = g2/T. (34)

This shows that the region βs = 0, βt � 1 is described by the XY model, presumably up to non-universal
corrections.

4 3d U(1) model at finite temperature in the Villain formulation

Here we calculate the effective monopole action at finite temperatures and in the presence of sources using the
Villain version of the theory given by Eq.(19). To introduce sources for both the Wilson and for the ’t Hooft
loops it is adventagous to start from the plaquette representation (15). The Villain approximation reduces then
to the Tailor expansion of the cosine functions in the action and to keeping only the first two terms. Introducing
sources both for the plaqutte variables η(l) and for the auxiliary field s(x) one gets after some rearrangments
of the sums up to a constant

Zηs ≡ Z(Λ;βt, βs; η, s) =

∞∑

r(x)=−∞

2π∫

0

∏

l

dωl
2π

exp

[
−1

2

∑

x,n

βnω
2
n(x)

]

× exp

[
i
∑

x,n

ωn(x)(r(x)− r(x+ en) + ηn(x)) + i
∑

x

s(x)r(x)

]
, (35)

where βn are defined in (18). Using the Poisson summation formula one can perform all Gaussian integrations.
Lengthy but simple computations lead to a result which we present in the following form

Zηs = Zsw(η, s) Zmon(η, s). (36)

The spin-wave contribution is given by

Zsw(η, s) = exp

[
−1

4
η(l)Gll′η(l

′)− 1

4
s(x)Gxx′s(x′)− i

2
s(x)Dl(x)η(l)

]
, (37)
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where here and below the sums over all repeating indices are understood. The monopole contribution reads

Zmon(η, s) =
∞∑

m(x)=−∞
exp


−π2

∑

x,x′

m(x)Gxx′m(x′)− π
∑

x

h(x)m(x)


 . (38)

The sources h(x) are the following combination

h(x) = Gxx′s(x′) + iη(l)Dl(x). (39)

The link Green functions Dl(x) and Gll′ are given by

Dl(x) = β−1
n (Gxy −Gx,y+en

), l = (y, n), (40)

Gll′ = 2β−1
n δll′ − β−1

n β−1
n′ (Gxx′ −Gx+en,x′ −Gx,x′+en′

+Gx+en,x′+en′
). (41)

The Green function Gx on the anisotropic lattice can be written as

Gx =
1

L2

L−1∑

kn=0

1

Nt

Nt−1∑

k0=0

exp
[

2πi
L

∑2
n=1 knxn + 2πi

Nt
k0x0

]

f(k)
, k0 + k1 + k2 6= 0, (42)

where

f(k) =
1

βs

(
1− cos

2πk0

Nt

)
+

1

βt

2∑

n=1

(
1− cos

2πkn
L

)
. (43)

The expression (36) allows one to present any expectation value of the Wilson (Polyakov) and/or the ’t
Hooft loop in the form

Oηs = Zsw(η, s)
Zmon(η, s)

Zmon(0, 0)
. (44)

Sources η(l) can be taken as in (23) dependently on the Wilson and/or the Polyakov loop. Sources s(x) can be
deduced from (25) dependently on the form of the string Lxy for the monopole–anti-monopole pair.

Interactions appearing in (37) have transparent interpretation. The spin waves induce interaction ηGη
between elementary fluxes generated by the Wilson or the Polyakov loop (first term in (37)), the Coulomb
interaction sGs between test magnetic charges (second term in (37)) and the interaction sDη between elementary
fluxes and the magnetic charges (last term in (37)).

Effective monopole action

Smon = −π2
∑

x,x′

m(x)Gxx′m(x′)− π
∑

x

h(x)m(x) (45)

describes the standard Coulomb interaction mGm between dynamical monopoles, the interaction mGs between
dynamical monopoles and the test magnetic charges which is also of the Coulomb type and the interaction mDη
between monopoles and elementary fluxes.

5 Perturbative calculation of the Polyakov loop correlator at high temperatures

Perturbative calculations for abelian models are especially simple in the plaquette formulation (15). The per-
turbation theory on isotropic lattice in the plaquette formulation has been developed in [28]. In that paper, a
calculation of the first two perturbative coefficients of the Wilson loop can be found. An extension of those cal-
culations to the anisotropic lattice is straightforward. Both for the temporal Wilson loop and for the Polyakov
loop we write the result in the form

Pj(C) = 1− g2 C1 + g4 C2 + O(g6) (46)

≈ exp

[
−1

4
η(l) Gll′ η(l

′)− 1

16
η(l) Qll′ η(l

′)

]
, (47)

where

g2 C1 =
1

4
η(l) Gll′ η(l

′), (48)

g4 C2 =
g4

2
C2

1 −
1

16
η(l) Qll′ η(l

′), (49)

Qll′ =
∑

b

βn Gbb Glb Gbl′ (50)
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and the sum over b runs over all links of the (dual) lattice. For example, the first order coefficient of the Wilson
loop of the size R× T with R� 1, T � 1 on the anisotropic lattice can be easily obtained from (48)

C1 =
j2

2π
[(asR) lnT + (atT ) lnR] (51)

what coincides with the result of [33] for j = 1 on isotropic lattice.
These formulae are to be compared with the perturbative expansion of the two-poimt correlation function of

the 2d XY model. If g2 is a dimensionless coupling constant of the XY model then the perturbative expansion
takes the form [31]

ΓXY (x, y) = 1− g2

2
D(x− y) +

g4

8
D(x− y) [D(x− y)− 1] +O(g6). (52)

This result coincides with that quoted in the literature for O(2) model [32]. Taking asymptotics of the D-
function D(x) � (1/π) ln |x| one can show that the β-function is vanishing in the weak coupling region of the
XY model [32].

Now we analyze the weak coupling expansion (46) of the Polyakov loop at finite temperatures. Using the
definition of the link Green function (41) and choosing appropriate sources described in (23), (24) one obtains
after lengthy calculations

C1 =
1

2
j2 β D(R), (53)

C2 =
1

8
j4 β2 D2(R) − 1

4
j2 atβ D(R)

(
1− β−1

t Dn1

)
, (54)

where D(R) = G(0) − G(R) is the two-dimensional Green function appearing in (52) and Dn1
= G0 − Gn1

.
At high temperatures β−1

t Dn1
≈ (2Nt)

−1. Substituting last formulae into (47) one can extract the potential
between test charges

Vj(R) = − 1

β
lnPj(R) =

1

2
g2j2

[
1 +

1

2βt
(1− β−1

t Dn1
)

]
D(R). (55)

Comparing (52) with (53) and (54) one sees that the perturbative coefficients of the Polyakov loop behave
qualitatively and quantitatively similar to those of the two-point correlation function of the 2d XY model.

6 The BKT-phase transition and critical indices

In this section we study the effective monopole theory (38). Our main goal is to compute critical indices η and
ν of the model which are denined as follows. At β ≥ βc the correlation function of the Polyakov loops decreases
with the power law. This defines first critical index

P1(R) � R−η(T ), η(Tc) = 1/4. (56)

For β < βc, t = βc/β − 1 one has

P1(R) � exp [−R/ξ(t)] , ξ ∼ exp(bt−ν), ν = 1/2. (57)

The values 1/4 and 1/2 are predictions of the BKT-theory for the XY model.
The strategy developed in the context of the XY model and described in many reviews and books can be

easily adopted for effective monopole theory (38). In the leading order τ/β � 1 effective 2d vortex model takes
the form at zero sources, x = (x1, x2)

Zvor =

∞∑

m(x)=−∞
δ

[
∑

x

m(x)

]
exp


− π2

g2β

∑

x,x′

m(x)Gxx′m(x′)

−κ0

∑

x

m2(x)− κ1m(x)∆xx′m(x′)

]
, (58)

κ0 = κ
π2β

6g2a2
s

, κ1 = κ
π2β3

180g2a4
s

. (59)

This vortex model can be exactly mapped onto the model of the sine-Gordon type

Zvor =

∫ ∏

x

dαx exp


−

∑

x,x′

αxBxx′αx′ + y
∑

x

cosαx


 , (60)
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where

Bxx′ =
g2β

4π
∆xx′ + κ

g2β5

720a4
s

∆xy∆yy′∆y′x′

and ∆xy is the lattice Laplace operator. Effective fugacity of the XY model reads

y = 2 exp

[
−γπ

2

g2β
+ κ

π2β

6g2a2
s

]
.

The sine-Gordon model can be analyzed by the conventional RG methods [19, 20] where terms proportional
to κ are treated perturbatively. We skip these well-known calculations which predict the XY critical indices
η(Tc) = 1/4 and ν = 1/2 also for our effective monopole theory.

7 Summary

Let us make the brief summary of main results.
At zero temperature 3d U(1) compact gauge theory exhibits permanent confinement at all values of coupling

constant. At finite temperature a deconfinement phase transition takes place to a phase where the potential
between test charges grows logarithmically. This is seen, e.g. from the behaviour of the correlation function
of the Polyakov loops wich have been computed perturbatively at high temperature. In the limit βs = 0 this
is the BKT phase transition which belongs to the XY model universality class. At large values of βs = 0 we
have computed effective static model for monopoles and studied it at high temperature. Assuming validity of
the conventional RG methods we have obtained analytical predictions for the critical indices of the model. Our
result implies that these indices coincide with those of the XY model at all values of couplings. Nevertheless,
since this result relies on certain approximation the numerical check is very desirable. Such MC simulations are
now in progress.

Appendix. Green functions on anisotropic lattice

Here we derive high- and low-temperature asymptotic expansions of the Green function given by the Eq.(42).
Performing summation over k0 one finds in the finite-temperature limit (12) [17]

Gx =
1

2g2asL2

L−1∑

kn=0

exp
[

2πi
L

∑2
n=1 knxn

]

q(k)

cosh βq
as

(
1− 2x0

Nt

)

sinh βq
as

. (61)

Here k1 + k2 6= 0 and q = (
∑2
n=1 sin2 πkn/L)1/2. In the thermodynamic L→∞ and continuum as → 0 limits

one obtains the following expression after integration over momenta kn

Gx ≡ G(R, τ) =
2

πg2β

∞∑

k=1

cos
2π

β
kτ K0

(
2π

β
kR

)
, (62)

where
τ = atx0, R = as(x

2
1 + x2

2)
1/2 (63)

are the physical length and K0(z) is the Mcdonald function.
The asymptotics can be easily derived from the last equations. In the high-temperature limit, β → 0, we

find

Gx =
1

g2β
G2d
x +

β

g2a2
s

B2(τ/β)δx,0 +
β3

6g2a4
s

B4(τ/β)∆x +O(β5), (64)

where G2d
x is the Green function of the 2d model

G2d
x =

1

L2

L−1∑

kn=0

exp
[

2πi
L

∑2
n=1 knxn

]

2−∑2
n=1 cos 2π

L kn
, k1 + k2 6= 0, (65)

∆x is the Laplace operator

∆x =

2∑

n=1

[
δx,0 −

1

2
(δx+en,0 + δx−en,0)

]
(66)

and Bn(z) are the Bernoulli polynomials

B2(z) =
1

6
− z + z2, B4(z) = − 1

30
+ z2 − 2z3 + z4. (67)
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The low-temperature, β →∞, asymptotics is easily obtained from (61)

Gx = G3d
x +

1

2g2asL2

L−1∑

kn=0

exp
[

2πi
L

∑2
n=1 knxn

]

q(k)

∑

r=±1

exp

[
−2qβ

as
| τ
β

+ r |
]
. (68)

Here, G3d
x is the Green function of 3d theory on the anisotropic lattice (42) and which has to be computed in

the Hamilatonian limit (11).

References

[1] A. Polyakov, Nucl.Phys. B120, 429 (1977).

[2] T. Banks, J. Kogut, R. Myerson, Nucl.Phys. B121, 493 (1977).

[3] S. Ben-Menahem, Phys.Rev. D20, 1923 (1979).

[4] J. Ambjorn, A. Hye, S. Otto, Nucl.Phys. B210, 347 (1982).
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1 Introduction

The fact that lattice QCD is able to describe confinement and chiral symmetry breaking is known since a
long time. Actually, one of the pioneering papers of Mike Creutz [1] was already showing that the potential
between static quarks and antiquarks is asymptotically linear rising with the distance. The corresponding
constant force, the string tension, is incredible high, around 1 GeV/fm. The origin of this strong force should
be found in the properties of the QCD vacuum. This is highly non-trivial, filled with quantum fluctuations
and topological excitations which dominate the behaviour of the QCD vacuum at long distance scales. On
the other hand the color electric field between quarks and antiquarks has regular flux lines and does not like
to enter the stochastically fluctuating QCD vacuum. Therefore, it is energetically favourable to compress the
electric flux-lines to a small tunnel between quark and antiquark. The distribution of these colour magnetic flux
was nicely shown in lattice calculations [2]. Despite intensive efforts over three decades there is no derivation
of confinement from first principles nor is there a generally accepted explanation. Candidates for topological
excitations responsible for confinement were mainly instantons, abelian monopoles and vortices. Instantons live
on a length scale of around 0.2 fm and can therefore contribute only little to the large distance force between
heavy quarks [3].

By a transformation to the dual degrees of freedom one can show analytically that confinement in U(1)
lattice gauge theory is due to magnetic monopoles. Kronfeld, Schierholz, and Wiese [4] devised a method for
non-abelian gauge theories to detect monopoles by abelian gauge fixing and abelian projection. The property
that an abelian component of the colour field can explain the full string tension was shown by [5] and was
dubbed Abelian dominance. The monopole confinement mechanism leads to a very nice picture, the dual
superconductor model of confinement, where magnetic monopoles and antimonopoles form a solenoidal current
around the electric flux tube between quark and antiquark. But in ref. [6] we could show that the hypothesis of
Abelian dominance in the maximal Abelian gauge, which was known to work for Wilson loops in the fundamental
representation, fails for Wilson loops in higher group representations. Such a problem does not appear in the
center vortex picture of confinement.

Center vortices are closed magnetic flux lines which carry flux corresponding to the center of the gauge
group. The vortex model was first proposed by ’t Hooft [7], Mack and Petkova [8] and [9]. Due to lack of an
identification method for vortices, almost no numerical investigations were done for 25 years. Maximal center
gauge and center projection gave us means to identify vortices[10] and led to new investigations using the vortex
model. The central idea was to filter out the important infrared degrees of freedom responsible for confinement
and then to simplify the field configurations by projection. Other identification methods for vortices were
proposed, Laplacian center gauge by de Forcrand and coworkers [11, 12], a method by Langfeld it et al. [13]
which combines Laplacian center gauge and direct maximal center gauge, and direct Laplacian center gauge
[14]. All of the center gauges yield qualitatively similar results. The most important achievements are

• Center dominance. The vortices in the projected Z(2) gauge theory, the so called projected or P-vortices
reproduce a good deal of the string tension of the full Yang-Mills theory, see Fig. 1 [14]. A removal of
the P-vortices from the lattice configuration results in a loss of the confining properties [14] as depicted
in Fig. 2.

• Precocious linearity. The projected potential is already linear at two lattice spacings [14], see Fig. 3.

• P-vortices locate thick center vortices. Vortex limited Wilson loops Wn are expectation values of
Wilson loops in the subensemble of those configurations where the minimal area of the loop is pierced by
precisely n P-vortices. As shown in Fig. 4 for large loop area Wn approaches the limit (−1)nWn.
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• Scaling of vortex density. This was first observed by Langfeld et al. [15] and can also be seen in Fig. 3.

• Finite temperature. The P-vortex density across the deconfinement phase transition was first carried
out by Langfeld et al. [16] and Chernodub et al. [17]. At zero temperature vortices are unoriebtable
surfaces and percolate through the lattice [18]. At finite temperature P-vortices exist also in the deconfined
phase. They form cylindric objects which extend in time direction, see Fig. 5. This explains the area law
for space-like Wilson loops and the perimeter law for time-like Wilson loops.

• Casimir scaling. The asymptotic string tension depends on N-ality of the color charge only, so that for
SU(2) σj = σ1/2 for j half-integer σj = 0 for j integer there is still an intermediate range of distances

where Casimir scaling applies (at least approximately), i.e. for SU(2) σj = 1
2j(j + 1). We could show

by a very simple ansatz [19] that for charge distances comparable to the thickness of these vortices the
proportionality of the string tensions to the eigenvalue of the quadratic Casimir operator is very natural
in a thick vortex model (Fig. 6). For distances large compared to the vortex thickness the string tension
reduces to that of the thin vortex model.

• Topological charge. The vortex world-surfaces allow to determine the topological charge of configura-
tions. This was first discussed in the continuum by Cornwall [35, 36], Engelhardt and Reinhardt [37] and
then on the lattice in ref. [38]. The topological charge arises at lattice sites at which the tangent vectors
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(a) (b)

Figure 5. Dual P-plaquettes in a typical field configuration at β = 2.6, on a 2 · 123-lattice. Two successive
z-slices for the x-y-t-subspace are shown. The amputated lines leaving the left figure towards right arrive in the
right figure from the left.[18]
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to the vortex surface span all four space-time directions. Such sites are either self-intersections points or
writhing points, see Fig. 7.

• Relation to monopole confinement. Vortices carry colour magnetic flux, after Abelian projection
this flux appears as a monopole-antimonopole chain, as indicated schematically in Fig. 8 and discussed in
ref. [19].

• Vortices and matter fields. Matter fields lead to a breaking of the gluon string. The interesting
question how matter fields influence vortices was first studied in the SU(2)-Higgs model in the continuum
in refs. [20, 21] and then on the lattice in [22–24].

2 Vortices and chiral symmetry breaking

Concerning chiral symmetry breaking a remarkable result was found by Forcrand and d’Elia[35], removing
vortices from lattice configurations leads to restoration of chiral symmetry.

That smooth vortex configurations give rise to zero-modes of the Dirac operator was shown first in analytical
calculations by the Tbingen group [26]. The zero-modes of the Dirac operator tend to peak at the intersections
as shown in Fig. 10. These plots show the probability density of the zero-mode in a background of two pairs of
intersecting vortex sheets.

Using the chirally improved Dirac operator Gattringer and the Tbingen group[27, 28] have investigated the
influence of center vortices on the properties of the Dirac spectrum. They have shown, see Fig. 11, that the
removal of center vortices eliminates the zero-modes and near-zero modes of the Dirac operator impliying via
the Banks-Casher relation the restoration of chiral symmetry.

It was not understood why the spectra of the center projected configuration, the left diagram in Fig. 11, has
developped a large gap indicating chirally symmetric field configurations. This is a very interesting result. It is
up to now the only case where confinement does not lead to chiral symmetry breaking.
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(a) (b)

Figure 7. Intersection points (a) and writhing points (b) which contribute to the topological charge of a
P-vortex surface. The full lines are space-like and the dashed lines time-like.

Figure 8. Vortex field strength after maximal abelian gauge fixing. Vortex strength is mainly in the horizontal
±s3 direction.

Figure 9. Chiral condensate in quenched lattice configurations before (“Original”) and after (“Modified”)
vortex removal. From de Forcrand and D’Elia, ref.[35].
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3 Dirac operator and exact chiral symmetry

The chiral condensate

ψ̄ψ = ψ̄lψr + ψ̄rψl (1)

is the order parameter which indicates whether chiral symmetry is present or broken. In the chiral symmetric
phase the phase transformations between right and left-handed quarks are independent and average ψ̄ψ to zero.
In the chirally broken phase transformations of left handed quarks lead to phase changes of right handed quarks
and result in ψ̄ψ 6= 0. Lattice calculations indicate that a transition from the confined to the quark-gluon plasma
phase is associate with a transition from the chirally broken to the chiral symmetric phase. This indicates that
both phenomena, confinement and dynamical chiral symmetry breaking may have the same origin. Due to the
strong indications that vortices explain confinement it is very important to investigate the relation of vortices
to chiral symmetry breaking.

The discretisation of fermions in lattice QCD is a hard problem. The reason for this difficlulty lies in the
celebrated no-go theorem of Nielsen and Ninomiya. It states that is impossible to fulfill at the same time the
conditions: no doublers, locality, translational invariance and reality of the bilinear fermion action. The theorem
comes from topological arguments and implies that formulating fermions on a space-time lattice one of these
requirements has to be given up.

The Nielsen-Ninomiya theorem requires

{D, γ5} = 0 (2)

to make the fermion action invariant under the usual continuum chiral rotations

ψ′ = [1 + ieaT aγ5]ψ, ψ̄′ = ψ̄[1 + ieaT aγ5] (3)

T a acts here in flavour space , where the Dirac operator D is proportional to unity. An interesting way around
this dilemma was discovered by Ginsparg and Wilson in 1982[29]. The Ginsparg-Wilson operators obeys

{D, γ5} = 2aDγ5D, (4)

the famous Ginsparg-Wilson relation, where a is the lattice constant. In the continuum limit a→ 0, this reduces
to the usual chiral symmetry, so that actual physics is not affected. It was further shown that the Ginsparg-
Wilson relation implies an exact symmetry of the fermion action[30], which may be regarded as a lattice form of
an infinitesimal chiral rotation. Thus the Ginsparg-Wilson relation offers an exact chiral symmetry. The price
to pay is that such operators are not ultralocal and therefore computationally very demanding.

The Overlap-Dirac operator [31, 32] is a solution of the Ginsparg-Wilson relation and hence a realisation of
chiral symmetry on the lattice

Dov = 1/2
[
1 + γ5ε(H

+
L )
]

(5)
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Figure 12. Two orthogonal pairs of plane vortices intersecting in four points

where ε is the matrix sign function

ε(H) = H/
√
H2 (6)

and

H+
L = γ5Dw(−µ0) (7)

Dw is the usual lattice Wilson Dirac operator with r = 1

(Dw)x,y(µ) = −1

2

∑

µ

[
(1 + γµ)Uµ(x)δx+µ̂,y + (1− γµ)U †

µ(x− µ̂)δx−µ̂,y − (µ+ 4)2δx,y
]

(8)

The chirally improved fermions which were developed by Gattringer and Lang[33, 34] give an approximate
solution of the Ginsparg-Wilson relation. The Dirac spectra shown in Fig. 11 were produced with chirally
improved fermions. It is an interesting question whether the above mentioned failure to get chiral symmetry
breaking from confing P-vortex configurations is a consequence of the approximation in the solution of the
Ginsparg-Wilson relation or whether it is related to some missing properties of the projected vortices.

3.1 Atiyah-Singer index theorem and exact zero-modes

As mentioned above, the vortex world-surfaces allow to determine the topological charge [35–38]. By the Atiyah-
Singer index theorem the topological index, the topological charge, is related to the analytical index, the number
of exact zero-modes.

indD[A] = n− − n+ = Q[A] (9)

with n−,n+ number of left-/right-handed zeromodes. The axial anomaly

γµj
5
µ = − Nf

16π2
Tr (Fµν F̃µν) (10)

on the other hand gives upon inegration again the topological charge.

Q :=

∫
d4xγµj

5
µ (11)

We localise the eigenvectors ~v for the zero-modes. Appropriate observables concerning the localisation are
the scalar density

ρ(x) =
∑

c,d

|~v(x)cd|2, (12)

where the summation indices c and d refer to color und Dirac indices and further the chiral densities ρ+(x) and
ρ−(x)

ρ±(x) =
∑

c,d

~v(x)∗cd
1− γc,d

′

5

2
~v(x)2cd′ (13)

For plane vortices the number of intersection points and the Atiyah-Singer index theorem lead to the correct
topological charge.

Besides plain vortices which are usually of abelian nature it is interesting to study non-abelian vortices which
may have a spherical geometry. We distinguish between an orientable and a non-orientable spherical vortex.
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Figure 13. Thick Spherical SU(2)-vortex (hedgehog, non-orientable) and change of its link phase (α−)

1. The non-orientable spherical vortex of radius R and thickness ∆ is constructed with the following links:

Uµ(x
ν) =

{
exp (iα(r)~n · ~σ) t = 1, µ = 4

1 else
(14)

~n = ~r/r, ~r = (x, y, z), (15)

where the function α is either one from α+, α−, which are defined as

α+(r) =





π r < R− ∆
2

π
2

(
1− r−R

∆/2

)
R− ∆

2 < r < R+ ∆
2 ,

0 R+ ∆
2 < r

α−(r) =





0 r < R− ∆
2

π
2

(
1 + r−R

∆/2

)
R− ∆

2 < r < R+ ∆
2

π R+ ∆
2 < r

(16)

This means that all links are equal to 1 except for the t-links in a single time-slice at fixed t = 1. The
phase changes from 0 to π from inside to outside (or inverse). The graphs of α±(r) for our largest lattice
403× 2 is shown in the right diagrams of fig. 16. In our computations, R is set to half the lattice size, and
∆ is chosen such that only 3 links along any direction are equal to +1 and −1, respectively. The colour
vector ~n changes according to the spatial direction (see fig. 13).

2. The orientable vortex is constructed in a similar way:

Uµ(x
ν) =

{
exp (iα(r) |nk|σk) t = 1, µ = 4

1 else
(17)

|nk| = |xk| /r, ~r = (x, y, z). (18)

Due to the absolut value of the coordinates which enter the definition, the orientable vortex is symmetric
in x, y and z, in distinction to the non-orientable vortex.

The distinction non-/orientable refers to the orientation of the vortex surface assigned by abelian projection.
While the orientable vortex has a global orientation, the non-orientable vortex consists of 2 patches of opposite
orientation separated by a closed monopole worldline. The position of this worldline which can be determined
in maximal abelian gauge depends on the U(1) subgroup which is chosen for the gauge and the projection. In
fig. 14 the loops corresponding to the σ1, σ2 and σ3 subgroups are depicted.

The fundamental difference between an orientable and a non-orientable vortex can be understood by consid-
ering the vector field ~n, which parametrizes the direction of the links in colour space (see fig. 14). The orientation
of a point in abelian projection is obtained by taking the sign of the z-component of the local ~n-vector. Prior to
that, one can however perform a gauge transformation in order to align all vectors along the positive or negative
z-direction. For a non-orientable vortex, this is not possible by a continuous transformation.

For a spherical vortex alone, the topological charge measured on the unsmoothed links is vanishing, since
only the Utα, α = x, y, z plaquettes are non-zero, which gives a zero

Q ∼ εµνρσUµνUρσ (19)

This is independent of the lattice constant and thus holds also in the continuum limit. For the orientable vortex,
the topological charge after cooling and the overlap index are also equal to 0, in keeping with the continuum
expectation.
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Figure 14. Non-orientable vortex surface (l) leads to monopole lines after abelian projection (r)
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However, we find a discrepancy in the case of the non-orientable sphere vortex. First, during cooling the
topological charge rises near to ±1 for α± (fig. 15).

Further, the index of the overlap operator is also non-zero, indD = ±1 for α±. Details are given in the table
below:

type n+ n− indD = n− − n+

non-orientable, α− 3 4 1
non-orientable, α+ 1 0 −1
orientable, α± 0 0 0

The scalar density of the fermionic zeromodes is shown in fig. 16, along with the phase of the links. It appears
that the fermions avoid regions with large link angles, or better, large Polyakov lines (which is a gauge-invariant
quantity).

The non-orientable vortex also gives extra contributions to the index when it is combined with other vortices,
possibly including intersection points which produce “real” topological charge.

More generally, the following empirical rule can be formulated: a non-orientable sphere vortex contributes
to cooled topological charge and Dirac operator index with an integer given by the “winding number” of the
links. To compute this “winding number”, the t-links are seen as a map not from T4, but from the compactified
time-slice t = 1, in which the sphere is located, to SU(2). The time-slice can be compactified to S3 because the
links outside the sphere are all equal to +1.

The discrepancy between overlap index and continuum topological charge is not due to the coarse discretiza-
tion. We have used lattice sizes with Nt = 2 and Ns ranging from 8 to 40 in steps of 4.

The reason for the seeming contradiction is the singular nature of the continuum gauge field corresponding
to a spherical vortex. This singularity invalidates the usual derivation of the index theorem.
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Figure 16. α+- resp. α−-link phase-diagrams with corresponding scalar density of the fermionic zeromodes.

3.2 Investigation of near-zero modes of the Dirac operator

It is an interesing question whether the failure to explain the chiral condensate from center projected con-
figurations is caused by the approximation which is due to the chirally improved fermions or whether pure
P-vortices miss some important information concerning chiral symmetry breaking. This can be compared to
the determination of the topological charge, where orientation information of the vortices is important for the
determination of the topological charge. First we will again use the overlap Dirac operator which is obeying
the Ginsparg-Wilson relation. Therefore the eigenvalues lie on the Ginsparg-Wilson circle, a circle with radius
1/2 and center (1/2, 0) in complex plane. Some results of these eigenvalues are shown in fig. 17.

The results for overlap fermions agree with those for chirally improved fermions [27, 28]. However we find a
different behaviour for staggered fermions. The Dirac operator for massless staggered fermions χ reads:

Dsf =
1

2a

∑

µ

η(x, µ)P (x, µ) (20)

with P (x, µ) =
[
U(x, µ)χ(x+ aµ)− U †(x− aµ, µ)χ(x− aµ)

]
.

η(x, µ) = (−1)
�

ν(<µ) xν are the staggered fermion phases. Its eigenvalues are imaginary and an example for a
spectrum is shown in fig. 18.

We don’t see any gap in center projected and vortex removed configurations in contradiction to overlap and
chirally improved fermions. The gaps reappear again for vortex removed configurations if we use antiperiodic
boundary conditions (see fig. 19).

4 Conclusion

To conclude we summarize the main facts of Center Vortex investigations:

• Confining Disorder ≡ Center Disorder, caused by center vortices.

• P-vortices locate center vortices Wn/W0 = (−1)n



36 Faber M., Jordan G., Höllwieser R.
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Figure 19. Eigenvalues of the Staggered Fermion operator for antiperiodic boundary conditions

• Center Dominance: The projected string tension is close to the asymptotic string tension σ of full Monte-
Carlo configurations χcp(R,R) ≈ σ (R ≥ 2)

• Vortex density shows asymptotic scaling.

• Upon abelian projection, center vortices appear as chains of monopoles and antimonopoles.

• In the deconfined phase, vortices are static.They are composed of space-space plaquettes. They are
orientable and have the topology of a torus.
(Polyakov loop behaviour)

• In the confined phase P-vortices are unorientable.

• Pontryagin index from vortex intersection and writhing points

• Topological susceptibility mainly from writhing points

• Vortex removal restores chiral symmetry

• Index theorem fulfilled for U(1) vortices

• Index theorem puzzeling for SU(2) vortices

• Discrepancy between staggered and overlap fermions for P-vortices
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E.-M. Ilgenfritza
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An introduction is given into current lattice investigations of the non-perturbative gluon and ghost propagators,
in the light of the Gribov-Zwanziger and Kugo-Ojima scenarios of confinement, in the context of results obtained
from the non-perturbative Dyson-Schwinger approach in the continuum and in connection with the vortex
mechanism of confinement.

1 Introduction

In lattice gauge field theory, confinement of quarks is numerically proven although the dynamical origin is still
under debate [1]. An exponential area law holds for Wilson loops in the fundamental representation. What
about gluon confinement? Wilson loops with (static) adjoint charges do not decay with an area law, but gluons
are confined, too. This talk is an introduction to alternative confinement ideas [2–4] and presents a report on
combined efforts by continuum and lattice theorists to understand how they might be realized in Nature.

The infrared behavior of gluon, ghost and quark propagators is the focus of a field-theoretic approach [5]
to confinement. Green’s functions carry all information about the structure of a theory. These propagators,
in distinction to hadron propagators, are gauge-variant. This is the origin of difficulties related to the Gribov
ambiguity which shows up at different places. The first, pioneering study [6] of the gluon propagator in Landau
gauge (on lattices as small as 43×8) dates back to 1987. Gluon and ghost propagators became topics of stronger
interest in the middle of the 90-s. A first review about this activity was given in [7].

To establish a relation between confinement and the gluon and ghost propagators one mostly concentrates
on the infrared momentum range. Is this range, where the asymptotic behavior sets in, O(100) or O(10) MeV
or smaller? In order to probe small momenta, one needs to control the infinite-volume limit. This makes
the problem difficult on the lattice, even with present day lattice sizes and computers. The following are the
signatures of confinement from this point of view:

• The gluon propagator should vanish in the limit q → 0 [8, 9]. The gluon dressing function Z(q2), defined
through

Dab
µν(q) = δab

(
δµν −

qµqν
q2

)
Z(q2)

q2
, (1)

should behave in the infrared as Z(q2) ∝ (q2)κD with κD > 1.

• The ghost propagator ought to be more singular at q → 0 than a free scalar one [3, 10]. This is the horizon
condition. The ghost dressing function, defined through

Gab(q) = δab
J(q2)

q2
, (2)

should behave in the infrared as J(q2) ∝ (q2)κG with κG < 0.

• Positivity of the spectral function is expected [3] to be violated for the gluon propagator, meaning that
the weight function ρ(m2) in the Källen-Lehmann representation

D(q2) =

∫ ∞

0

dm2 ρ(m2)

q2 +m2
, D(t, ~q = 0) =

∫ ∞

0

dm2 ρ(m2) e−mt (3)

would no longer be ρ(m2) ≥ 0 for all m2 .
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• The Kugo-Ojima (KO) confinement criterion [4] is formulated in terms of the ghost propagator Gab
xy =

〈caxc̄by〉. One defines uab(q2) by
∫
d4xeiq(x−y)〈(Dac

µ c
e)x(f

bcdAdν c̄
c)y〉 =

(
δµν −

qµqν
q2

)
uab(q2) (4)

and requires that uab(q2)→ −δab in the limit q2 → 0. This guarantees the absence of colored asymptotic
states. The criterion was derived from the so-called quartet mechanism within the BRST quantization of
Yang-Mills theory.

The practical request from the side of hadron physics has stimulated non-perturbative studies in the contin-
uum of the gluon and ghost propagator that have started ten years ago [5, 8, 9]. The authors were seeking for
solutions of the hierarchy of Dyson-Schwinger equations (DSE) (coupled for both propagators) adopting some
truncations. In this approach infinite volume presents no problem. More recently one has learned how to solve
the DSE in a compactified space, on the 4-torus [11, 12]. The lessons from DSE, for infinite and compactified
space, provide a framework to discuss the status of the lattice calculations. It helps to orient oneself on the
“long march” to the infinite-volume limit.

The particular value of lattice calculations at first consists in their ability to control the assumptions and
truncations made in the DSE approach. At second and even more interesting as I find, they are possible to
assess the importance of special confining field excitations (monopoles and vortices, dyons and calorons) and/or
external conditions on the functional form of the propagators. At third, from the beginning of the lattice studies
it was clear that the Gribov ambiguity would present a hard problem.

Thus, it is left to the lattice studies to elucidate the open theoretical problems how to deal with it. If the
lattice discretization is the definition of QCD in the non-perturbative regime, different prescriptions how to take
into account the Gribov problem could lead to different versions of QCD requiring verification.

The vanishing (divergence) of the gluon (ghost) propagators can be traced back to the restriction inside the
so-called Gribov region Ω of the gauge field representants Aµ (transverse gauge copies) that are contributing
to the path integral. This is the region where the Faddeev-Popov operator M is positive. The problem are
more than one of such copies. In the infinite-volume limit the tendency emerges that the most important
configurations concentrate at the boundary, the Gribov horizon, such that small non-trivial eigenvalues of M
accumulate close to zero with a finite density. This is the Gribov-Zwanziger confinement scenario [3]. The
infrared exponents κD = 2κ ≈ 1.2 and κG = −κ ≈ −0.595 (constrained to 1/2 < κ < 1 [13]) have been obtained
both by the DSE approach [13, 14] and by stochastic quantization [15, 16]. A consequence of the interrelation
between both infrared exponents is an infrared fix-point of the strong coupling, αs(0) = 8.915/Nc .

The positivity violation was noticed very soon [6, 17, 18] in lattice simulations, when the “local mass”
meff (t) = −d logD(t, ~q = 0)/dt > 0 was found to increase with increasing t. For a physical particle in
the asymptotic Hilbert space, the effective mass meff (t) approaches the actual mass from above.

2 The lattice framework

Lattice gauge theory is formulated in a way that circumvents the choice of a gauge. Apart from our task
(to calculate Green’s functions) there are many other contexts in which fixing the gauge is necessary or useful.
Gauge-fixing usually becomes a very time-consuming part of such calculations and deserves particular attention.
The procedure of such a calculation is as follows: An ensemble of gauge configurations {U} is generated with
one’s favorite action using the Monte Carlo (MC) method, either without (“quenched”) or with the back-reaction
of (“dynamical”) quarks through the fermion determinant taken into account. In the quenched approximation
one has just a gluonic inverse “bare coupling” β, and the lattice spacing a is a function of it, a(β), that can
be defined by putting the string tension σ = a−2σL(β) equal to some physical value. Up to a global scale, the
renormalization of the gluon propagator (matching the propagators measured at different β) is an independent
way to define the running lattice scale a(β).

The vector potential needs to be extracted from the basic transporters (“links”) as

Ax+µ̂/2.µ =
(
Uxµ − U †

x,µ

)
traceless

/(2iag).

In order to implement the gauge in question, every gauge configuration {U} has to be gauge-transformed

Ux,µ → Ugx,µ = gxUx,µg
†
x+µ̂ by a suitable {g}.

For example, for the Landau gauge an extremization

FU [g] =
1

Nc

∑

x,µ

Re Tr gxUx,µg
†
x+µ → Max (5)

with respect to {g} solves the problem. A local maximum is found when

(∂µAgµ)x =
∑

µ

(
Agx+µ̂/2,µ −A

g
x−µ̂/2,µ

)
= 0 (6)
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(the transversality condition) is satisfied with high precision. This defines the recommended stopping criterion
for the various iterative gauge-fixing methods. Having found a local maximum {g}, for any infinitesimal g̃, one
has FUg [g̃] < FUg [1]. For the absolute maximum {g}, this should hold for all g̃. Thus, the gauge-fixing problem
has been put into the form of a disordered spin system. The search for the (classical) ground state of a spin
glass is known to be a non-polynomially hard problem.

If extracting physics would depend on the ability to find the absolute maximum one had to stop here. In this
case the measure is said to be restricted to the so-called fundamental modular region Λ. It is possible, however,
to go a bit further and to investigate the convergence of gauge-variant observables with an increasing number
ncopy of Gribov copies. A sequence of replica ensembles labelled by ncopy is recursively created (with ncopy = 0
denoting to the original MC ensemble). Each time one steps from ncopy → ncopy +1, for each MC configuration
a new gauge-fixing attempt is made starting from a random gauge transformation. If a better representant of
the original MC configuration is found, it replaces the “previously best” copy, such that the ncopy-th ensemble
is an ensemble of “currently best” copies after ncopy attempts.

On the other side, Zwanziger [19] gave arguments that in the infinite-volume limit an average over all gauge-
fixed copies in the Gribov region would be the physically correct prescription. This would make the search for
ever better copies obsolete, and it would be just a question of statistics how many gauge copies of one MC
configuration are evaluated.

In any case, for the present lattice sizes it is important to assess the gauge copy dependence of the prop-
agators. Following the “best copy vs. first copy” strategy, one sees that the dependence is stronger at small
momenta and becomes indeed weaker with increasing volume.

In order to do the maximization, methods like overrelaxation (OR), Fourier accelerated gauge-fixing (FA)
and simulated annealing (SA) are practically in use. The latter [20] is a quasi-equilibrium MC process with a
probability distribution ∝ exp(FU [g]/T ). Annealing means that the temperature is guided from Tmax down to
Tmin. The idea is that OR following the SA (until the transversality is satisfied) finds the finally gauge-fixed
copy with only few iterations within one basin of attraction. Therefore, improvement of the gauge-fixing is not
mainly aiming to accelerate the relaxation but to increase the yield of “good” gauge-fixed copies, as close as
possible to the best copy. Given this objective, SA strategies become superior on large lattices [21] also in terms
of computing time.

The gluon propagator is defined immediately in momentum space by correlating Fourier transforms Ãg of
the Ag field,

Dab
µν(q) = 〈Ãgaµ(k)Ãg

b

ν(−k)〉 , (7)

where the finite lattice Fourier transform is calculated for integers kµ ∈ (−Lµ/2, Lµ/2]. The momentum
vector qµ(kµ) = (2/a) sin (πkµ/Lµ) is associated to them. If the gluon propagator is to be calculated for many
momenta, use of fast Fourier transformation is necessary.

The ghost field is not a c-number field in the memory, such that the ghost propagator, similar to a quark
propagator, must be obtained by inversion of the Faddeev-Popov operator

Mab
xy(U) =

∑

µ

(
Aabx,µ(U)δxy −Babx,µ(U)δx+µ̂,y − Cabx,µ(U)δx−µ̂,y

)
, (8)

with Mab
xy → −δab∆xy for Ux,µ → 1. The matrices A, B and C are defined in terms of (gauge fixed) links as

Aabx,µ = Re Tr
[
Ta,Tb (Ux,µ + Ux−µ̂,µ)

]
,

Babx,µ = 2 Re Tr
[
TbTaUx,µ

]
(9)

Cabx,µ = 2 Re Tr
[
TaTbUx−µ̂,µ

]
.

In momentum space the propagator is obtained by inverting M on a plane wave source (for k 6= (0, 0, 0, 0))
∑

b,y

Mab
xyφ

b(c)
y = ψa(c)x = δace2πik·x , (10)

giving

Gab(q) =
1

V (N2
c − 1)

∑

c

∑

x

ψa(c)∗x φb(c)x . (11)

For the inversion the conjugate gradient algorithm is used. For preconditioning one uses the simple (not the
covariant!) Laplacian.

If one defines the strong coupling αs through the ghost-gluon vertex, then, knowing the (renormalized)
dressing functions ZR and JR and assuming for the vertex renormalization constant Z1(q

2) ≈ 1, one obtains [22]
in the MOM-scheme the running coupling as follows

αR(p2) = αR(µ2) ZR(p2, µ2)
[
JR(p2, µ2)

]2
. (12)
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3 Some lattice results

The lattice calculations should give an answer to the following questions:

• Do the propagators show the infrared behavior proposed by DSE?

• What is the infrared limit of the MOM-scheme coupling αs(q
2)?

• What is the impact of Gribov copies on the propagators?

• How fast is the infinite-volume limit reached?

• Which propagators are modified by “unquenching”?

• How are the other confinement criteria fulfilled?

• How do Faddeev-Popov eigenvalues and eigenmodes behave?

• Is the ghost propagator in the infrared dominated by the lowest eigenmodes of M?

Finally, one might ask:

• Are there modified gauge-fixing conditions, equivalent to the common ones in the infinite-volume limit,
that are advantageous for convergence to the infinite volume limit and/or less vulnerable to discretization
effects?

I will present some answers in the following. Our studies have included quenched SU(3) QCD on lattices
from 124 to 724 generated with Wilson gauge action at β = 5.7, 5.8, 6.0 and 6.2. The full QCD configurations
kindly provided by the QCDSF collaboration are 163×32 and 243×48 lattices created with Wilson gauge action
at β = 5.29 and 5.25 and Nf = 2 clover-improved Wilson fermions of varying mass (κ = 0.135 ... 0.13575).
The last question of an improved gauge-fixing was recently investigated in quenched SU(2) gauge theory [23]
where the consequences of enlarging the set of admissible gauge transformations by global Z(N) flips (proposed
in [24]) were further examined.

In Fig. 1a we show the gluon dressing function for quenched QCD [25, 26]. Characteristic is the intermediate
bump of the dressing function. The exact form of the dressing function is not described by the DSE, which
pretend to describe only the infrared and ultraviolet behavior. In particular the bump is underestimated. Fig.
2a shows that this enhancement becomes partly (30 %) depressed by the back-reaction of dynamical quarks [27].
The same is observed for dynamical configurations of the MILC collaboration in [28]. In view of the difficulties
to determine the infrared exponent κD (see below) it is premature to speak about the dynamical-quark effect
on κD. Since the main effect is not in the infrared behavior, the change could be considered irrelevant for the
confinement problem. Indeed, breakdown of gluon confinement is not realistic in the real world with dynamical
quarks. In contrast to that, it is known that dynamical quarks indeed change the confinement property of static
quarks (“string breaking” [29]). In the quenched SU(2) theory the so-called “infrared bump” (sitting, however
in fact at 1 GeV !) is entirely the result of the presence of P-vortices as confining agents seen in Maximal Center
Gauge (MCG) and projection. The enhancement By the same operation confinement [30], topological charges
and chiral symmetry breaking [31] are destroyed. A natural conjecture is that dynamical quarks to some extent
suppress P-vortices. This hypothesis deserves closer investigation. That the opposite effect of unquenching is
observed for the density of monopoles [32] can be explained that there is an “inert” component of monopoles [30]
not related to P-vortices.

Fig. 1b presents the ghost dressing function [25, 26] for the quenched theory. The behavior in the infrared
is opposite to the gluon dressing function and not incompatible with being divergent. In Fig. 2b one sees that
unquenching [27] has no dramatic effect on the ghost propagator, except for the smallest momenta accessible,
where also a splitting according to the quark masses (see the legend) becomes visible.

The infrared increase of the ghost structure function in the quenched theory is obvious, but the fitting of an
infrared exponent does not give the expected κ. For SU(2) gauge theory it is known [34] that the removal of
P-vortices leads to a global change of the ghost dressing function J(q2) which becomes almost constant. One
can say that the global (not only infrared) behavior of the ghost dressing function is the closest relative to
the confinement of quarks. Since vortex removal also removes all non-perturbative attributes [35] (percolating
monopole trajectories, string tension, chiral condensate and the topological charge [31], it is very likely that the
original divergence of the ghost propagator like 1/(q2)1+κ is mainly a result of the topological structure leading
to an enhanced density of low-lying eigenvalues ofM as demonstrated for MC [36] and model configurations [37].
We have found, however, that the direct correspondence between the ghost propagator at lowest momenta and
the lowest-lying Faddeev-Popov eigenmodes is rather weak [38]. The effect of dynamical quarks is not as strong
as vortex removal, but it might be caused indirectly via the gradual suppression (or pairing) of topological



42 Ilgenfritz E.-M.

(a)

0.0

0.5

1.0

1.5

2.0

2.5

0.01 0.1 1 10 100

Z
(q

2
)

q2 [GeV2]

β=5.7 48
4

56
4

β=5.8 24
4

32
4

β=6.0 32
4

48
4

32
3
×64

β=6.2 24
4

(b)

1.0

1.5

2.0

2.5

3.0

0.1 1 10 100

J
(q

2
)

q2 [GeV2]
q2

i

β = 5.8 24
4

32
4

β = 6.0 16
4

24
4

32
4

48
4

β = 6.2 16
4

24
4

Figure 1. The gluon dressing function (a) and the ghost dressing function (b) for quenched QCD. Data from
various lattice sizes and β-values are seen matching on one curve. The little q2

i marks a momentum range
q2 < q2i where a power fit for κ has been attempted. Both propagators give a κ ≈ 0.2 .

objects by light sea quarks, too. The quark mass dependence of the effect might be related to the stronger
string breaking induced by lighter sea quarks.

Our data suggest that both in the quenched and the dynamical case there are apparently no finite-volume
effects on the ghost propagator. This will be made more precise later.

Figs. 1 and 2 for the gluon propagator come from a study where the Gribov ambiguity was ignored. Only
one gauge-fixed copy (“first copy”) was evaluated. I should remark that this procedure is equivalent to the
prescription of averaging over all gauge-fixed copies within the Gribov region (justified in [19]) for a given MC
configuration.

In order to demonstrate that the propagators are all vulnerable to the Gribov ambiguity, but to a different
extent, in Fig. 3 we present (for smaller lattices) the effect of the Gribov ambiguity on the gluon and ghost
propagator (for the quenched case) [25, 26]. In the subpanels (a) and (b) the ratio of the dressing functions
calculated in two different ensembles is shown. The “fc” ensemble is the ensemble of (arbitrary) first gauge-
fixed copies for each MC configuration, “bc” is the ensemble of the best copies after nc = 20 to 30 gauge-fixing
attempts. In the case of the gluon propagator in Fig. 3a we see a relatively broad band of “Gribov noise” that
does not show a distinct momentum or volume tendency. On the other side, for the ghost dressing function
in Fig. 3b a relatively sharp effect of overestimation for the first copy is seen that becomes stronger towards
smaller momenta. The effect is slightly suppressed with increasing physical volume (see the data points for the
lowest β = 5.8), an observation that can be an early hint towards the weakening of the Gribov copy effect at
very large volumes. For smaller lattices, however, the ghost propagator will be overestimated at the smallest
momenta if there is no systematical search for better Gribov copies, i.e. if one averages over Gribov copies.

There are not enough data yet in the region of small enough momenta to get stable fits of the infrared
exponents. If one attempts this, κ is found too small. In order to anticipate whether the gluon propagator
finally may turn to zero in the limit q2 → 0, one looks at the propagator instead of the dressing function. Fig.
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Figure 2. The effect of dynamical quarks (a) on the gluon propagator that becomes depressed in the inter-
mediate momentum range around O(1 GeV) ; (b) on the ghost propagator that becomes depressed only in the
infrared region.

4 shows data for the gluon and the ghost propagator on a 644 lattice at β = 5.7 obtained at the MVS-15000BM
of the Joint Supercomputer Center (JSCC) Moscow. The gluon propagator in Fig. 4a shows at least a kind of
plateau. The leftmost data point represents the gluon propagator at zero momentum, D(0). The decreasing
tendency of D(0) with the lattice volume (not shown here) suggests that the propagator function D(p) also
cannot be taken as the infinite-volume limit. More recent data (on a lattice 804) presented at Lattice 2007
[39] indicate that the plateau extends to |q| below 100 MeV. The ghost propagator in Fig. 4b (shown in a
log-log-plot) suggests already something close to a power law, but the corresponding κ comes also too small
compared with the preferred κ = 0.595.

That means that the now accessible momentum range is probably still pre-asymptotic. DSE results an-
ticipating the approach to the infinite-volume limit indicate how far lattice calculations are from seeing the
asymptotic behavior. The DSE have been formulated and solved on a finite torus [11, 12], and an interesting
pattern of finite-volume deviations for the calculated propagators has been found and compared with our lattice
data (see Figs. 5a and 5b taken from [12]).

For the gluon propagator the approach to the infinite-volume curve is from above, with an enormous over-
shooting towards the lowest momentum for any given lattice volume (see Fig. 5a). For the ghost propagator the
approach is from below and less dramatic. This is shown in Fig. 5b. The insufficient slope κ in the log-log-plot
of the ghost propagator in Fig. 4b is well explained by this type of finite volume effect.

Fig. 6a shows the DSE result for the running coupling with the volume dependence induced by the volume
dependence of the gluon and ghost propagators. This makes clear that it is illusory to see the running coupling
approaching the infrared fix-point before lattices reach a linear size L = O(15 fm). We have checked [26, 41]
on the lattice the assumed q2 independence of the ghost-ghost-gluon vertex renormalization constant, a tacit
assumption in deriving Eq. (12). Fig. 7b shows the result of our calculation of the gluon and ghost dressing
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Figure 3. The ratio between first and best gauge copies used for calculating the dressing function (a) for the
gluon propagator (“Gribov noise”), (b) for the ghost propagator where one sees a systematic Gribov copy effect
becoming weaker with increasing physical volume.

functions, giving the running coupling [26]. The volume is just large enough to reveal the turn-over to an
apparently decreasing behavior of coupling with q2 → 0. But this has nothing to do with the true asymptotic
behavior. In the light of this observation, the optimism of having seen already the approach to the fix-point [42]
seems to be premature.

The violation of positivity and the very slow approach to the KO confinement criterion have been presented
at Lattice 2006 [40]. Recently, the Adelaide group [28] has discussed violation of positivity together with scaling
and the effect of dynamical quarks in much more detail for lattice ensembles provided by the MILC collaboration.

4 Summary

Various effects on the gluon and ghost propagators have already been studied for quenched QCD, and the
effect of dynamical quarks and Gribov copies has been added by our investigations. The infrared exponents
characteristic for the way how “ghosts manage to confine gluons” are still elusive. The infrared asymptotic
region in momenta (volumes) is not yet reached. There are three extrapolations needed before lattice QCD can
be applied to the real world: (a) to take the continuum limit, (b) to control the chiral limit and to extrapolate
to the physical pion mass and (c) to take the infinite-volume limit. The latter is probed by the infrared behavior
of gluon and ghost propagators, and it turns out that the approach is extremely slow. Discretization effects also
show up in the data, but can be easily tamed by suitable momentum cuts. The effects of the vortex mechanism
of quark confinement and of dynamical quarks on the form of the propagators are very interesting and worth
to be microscopically understood.
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A model for electromagnetic form factors of the charged and neutral on-shell K−mesons is developed. The
formalism is based on Lagrangian of Chiral Perturbation Theory which includes vector mesons. Presented
terms describe even- as well as odd-intrinsic-parity interactions up to O(p4). The kaon form factor, calculated
without parameters fine tuning, is compared to experiment for space-like and time-like photon momentum. The
status of the muon anomalous magnetic moment (AMM) is reviewed and contribution of the two-kaon channels
to AMM is calculated.

1 Introduction

K−mesons (or kaons) are the particles with quantum numbers I (JP ) = 1
2 (0−) and nonzero “strangeness”,

which have lead to discovery of many interesting phenomena due to weak interactions, such as strangeness
oscillation, K0 regeneration, CP violation. These particles have the following basic properties [1].

Quark composition of mass eigenstates reads :

K+ = us̄, K0 = ds̄ (strangeness = +1),

K− = K+ = ūs, K̄0 = d̄s (strangeness = −1).

These particles are created in strong-interaction processes.
Time of life is defined and measured for the states participating in weak decays

K± : τ = 1.2× 10−8 s,

KS = (1 + |ε|2)−1/2(K1 + εK2) : τ = 0.9× 10−10 s, short-lived,

KL = (1 + |ε|2)−1/2(K2 + εK1) : τ = 5.2× 10−8 s, long-lived,

where CP -eigenstates are defined as

K1 =
1√
2
(K0 + K̄0) : CP -even,

K2 =
1√
2
(K0 − K̄0) : CP -odd

and parameter ε ∼ 10−3 describes small CP violation effects.
Electromagnetic properties of K−mesons. Experimental information onK−meson electromagnetic (EM)

properties in the time-like region (q2 ≡ s ≥ 4m2
K) of photon momentum q comes from measurements of the

cross section of electron-positron annihilation e+e− → KK̄:

σ(e+e− → KK̄) =
πα2

3q2
(
1− 4m2

K

q2
)3/2|FK(q2)|2. (1)

High precision measurements are performed by CMD-2 and SND Collaborations in Novosibirsk [2, 3], and
KLOE Collaboration in Frascati (Italy) [4].

In the space-like region (q2 ≡ s < 0) the form factor is measured in:
(i) kaon scattering on atomic electrons at relatively small momentum transfer −s < 0.16 GeV2 (CERN,

SPS [5]),
(ii) electron-proton scattering with kaon-hyperon production (ep → eΛK+ and ep → eΣ0K+) at large

momentum transfer up to −s ∼ 3 GeV2 (currently are carried out at Jefferson Laboratory in USA [6]).
Main motivations of the present work are:

e-mail: akorchin@kipt.kharkov.ua, bivashin.s@rambler.ru

c© Korchin A.Yu., Ivashyn S.A., 2007.
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1. Test of effective hadronic models such as
(i) Chiral Perturbation Theory (ChPT) – effective low-energy theory,
(ii) vector-meson dominance of electromagnetic interaction,
(iii) anomalous Lagrangians1.
2. Study of vector mesons (JP = 1−): ρ(770), ω(782), φ(1020), and their radial excitations ρ′ = ρ(1450),

ω′ = ω(1420), φ′ = φ(1680), etc.
3. Calculation of hadronic contribution to the muon anomalous magnetic moment (AMM). Hadronic con-

tribution is the main source of uncertainty in theoretical prediction for muon AMM. The existing discrepancy
between theory and experiment may indicate new physics beyond the Standard Model, thus it is important to
precisely calculate every allowed contribution in Standard Model.

Kaon form factors. The quark EM current is

jµem(x) =
2

3
ū(x)γµu(x)− 1

3
d̄(x)γµd(x)− 1

3
s̄(x)γµs(x). (2)

The EM form factors (FF’s) are defined in terms of this current

〈K(p1)K̄(p2)|jµem(x = 0)|0〉 ≡ (p1 − p2)
µFK(q2), (3)

where q2 = (p1 + p2)
2 ≡ s.

The form factors are analytic functions of q2 and describe both the time-like and space-like regions of photon
momentum.

2 Formalism

Meson interactions in ChPT. At low energies, strong, electromagnetic and weak interactions are described
by effective Lagrangian of Chiral Perturbation Theory (ChPT). The underlying theory of strong interactions –
Quantum Chromodynamics (QCD) – has global chiral symmetry SU(3)L×SU(3)R, if masses of the quarks are
zero, and ChPT has this symmetry built in on the hadronic level.

The version of ChPT which includes explicit vector meson degrees of freedom (Ecker, Gasser, Pich and de
Rafael [7, 8]) has an extended range of applicability. In this approach the vector mesons ρ, ω, φ, ... are not
considered as gauge bosons of chiral symmetry and are treated on equal footing with other mesons.

The chiral symmetric part of Lagrangian is

Lch−sym =
F 2
π

4
Tr(DµUD

µU †) +
eFV

2
√

2
FµνTr(Vµν(uQu

† + u†Qu))

+
iGV√

2
Tr(Vµνu

µuν) + LV, kin + [axial-vector + scalar mesons], (4)

where the nonlinear field representation for pseudoscalar mesons is

U ≡ exp(i
√

2Φ/Fπ), u = U1/2, uµ = iu†(DµU)u†.

Here Φ is octet of pseudoscalar mesons (JP = 0−) – Nambu-Goldstone bosons of spontaneously broken chiral
symmetry

Φ =




π0/
√

2 + η8/
√

6 π+ K+

π− −π0/
√

2 + η8/
√

6 K0

K− K̄0 −2η8/
√

6


 ,

and Fπ = 92.4 MeV is constant of the weak pion decay π+ → µ+νµ. The covariant derivative is defined as

DµU ≡ ∂µU + ıeBµ[U,Q]

with quark charge matrix for flavor SU(3)f

Q ≡ diag

(
2

3
,−1

3
,−1

3

)
,

Bµ – electromagnetic field, F µν = ∂µBν − ∂νBµ, Vµν is nonet of vector mesons (JPC = 1−−)

Vµν =




ρ0/
√

2 + ω8/
√

6 ρ+ K∗+

ρ− −ρ0/
√

2 + ω8/
√

6 K∗0

K∗− K̄∗0 −2ω8/
√

6




µν

+
(ω1)µν√

3
,

1By “anomalous” we mean interactions which do not conserve intrinsic parity and thus do not conserve “normality” quantum
number N .
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Table 1. Electromagnetic coupling constants for vector mesons V = ρ0, ω, φ

ρ0 ω φ

fV = mρ/FV , SU(3): f 3f −3f/
√

2
exper. fV 4.966± 0.038 17.06± 0.29 −13.38± 0.21

Table 2. Vector-meson coupling to two pseudoscalars in SU(3)f

π+π− K+K− K0K̄0

ρ0 GV GV /2 −GV /2
ω – GV /2 GV /2

φ – −GV /
√

2 −GV /
√

2

in the antisymmetric tensor representation of the vector fields. LV, kin is the kinetic term for vector mesons.
The chiral symmetry breaking part

Lch−sym.break =
F 2
π

4
Tr (χU † + χ†U) (5)

arises due to non-vanishing quark masses mu = 1.5− 4 MeV, md = 4− 8 MeV, ms = 80− 130 MeV in QCD
and quark condensate

〈0|q̄q|0〉 ≈ (−240± 10 MeV)3 (at scale µ = 1 GeV)

where the vacuum is assumed SU(3)f symmetric, i.e. 〈0|q̄q|0〉 = 〈0|ūu|0〉 = 〈0|d̄d|0〉 = 〈0|s̄s|0〉.
The condensate value gives typical scale parameter in QCD

−〈0|q̄q|0〉1/3 ≈ ΛQCD = 200− 300 MeV

which rules the energy dependence of the running coupling constant

αs(Q) =
2π

( 11
3 Nc − 2

3Nf ) ln(Q/ΛQCD)
, (6)

where Nf (Nc) is the number of “active” quark flavors (quark colors).
Pion and kaon masses squared are proportional to quark masses and the condensate value, and the quantity

χ is

χ = − 2

F 2
π

diag(mu,md,ms)〈0|q̄q|0〉
SU(2)f

= diag(m2
π,m

2
π, 2m

2
K −m2

π).

Expansion of Lagrangian in powers of meson momenta (or derivatives of meson fields) gives interactions
with even number of pseudoscalar mesons

LγΦΦ = ıeBµTr(Q[∂µΦ,Φ]),

LγγΦΦ = −e
2

2
BµBµTr

(
[Φ, Q]2

)
,

LγV = e
FV√

2
FµνTr(VµνQ), (vector−meson dominance)

LV ΦΦ = ı

√
2GV
F 2
π

Tr(Vµν∂
µΦ∂νΦ).

These interactions conserve “normality” quantum number

N = Parity × (−1)spin.

The coupling constants FV and GV can be found from experimental widths of decays Γ(ρ → e+e−) and
Γ(ρ → ππ), respectively. It will be further convenient to use other constants, g and f , related to FV and GV .
Using the data from [1] we obtain

FV = 156.35 MeV, GV = 65.65 MeV,

f ≡ mρ

FV
= 4.966, g ≡ GVmρ

F 2
π

= 5.965.
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Anomalous meson-meson and meson-photon interactions. Interactions of this type are not de-
scribed by Lagrangians (4) and (5). They are proportional to Levi-Chivita tensor εµναβ , couple odd number of
pseudoscalar mesons and do not conserve “normality” N .

Lagrangian of Wess, Zumino and Witten [9, 10] describes interactions of photons with pseudoscalar mesons

LWZW = L(1)
WZW + L(2)

WZW , (7)

L(1)
WZW = − eNc

48π2
εµναβBµTr

(
Q
[
(∂νU)(∂αU

+)(∂βU)U+

−(∂νU
+)(∂αU)(∂βU

+)U
])
,

L(2)
WZW =

ıe2Nc
24π2

εµναβ(∂µBν)Bα

×Tr
(
Q2(∂βU)U+ +Q2U+(∂βU)

−1

2
QUQ(∂βU

+) +
1

2
QU+Q(∂βU)

)
.

The lowest-order WZW interaction is

LγΦΦΦ = − ı
√

2eNc
12π2F 3

π

εµναβBµTr
(
Q∂νΦ∂αΦ∂βΦ

)
, (8)

LγγΦ = −
√

2e2Nc
8π2Fπ

εµναβ∂µBν∂αBβTr
(
Q2Φ

)
. (9)

The latter in particular describes well-known π0γγ interaction and π0 → γγ decay

Lπ0γγ = − e2Nc
24π2Fπ

εµναβ∂µBν∂αBβπ
0.

ChPT also predicts anomalous interactions of vector mesons with pseudoscalar mesons [11]

LV V Φ = −
√

2σV
Fπ

εµναβTr(∂µVν{Φ, ∂αVβ}), (10)

LV γΦ = −4
√

2ehV
Fπ

εµναβ∂µBνTr(Vα{∂βΦ, Q}), (11)

LV ΦΦΦ = −2i
√

2θV
F 3
π

εµναβTr(Vµ ∂νΦ ∂αΦ ∂βΦ) (12)

with free parameters σV , hV , θV (see Table 3).
An extension of WZW anomaly for vector and axial-vector mesons was suggested by Kaymakcalan, Rajeev,

Schechter, Ko and Rudaz [12]

LV ΦΦΦ =
ıg

4π2F 3
π

εµναβTr(Vµ ∂νΦ ∂αΦ ∂βΦ),

LV V Φ =
3g2

8
√

2π2Fπ
εµναβTr(∂µVν∂αVβΦ)

with g = 5.96 taken from ρ→ ππ decay and EM field is included by the substitution

Vµ → Vµ +

√
2e

g
QBµ

As a result one obtains an effective V γΦ interaction

LV γΦ = − 3eg

4π2Fπ
εµναβ∂µBνTr(QVα∂βΦ).

Now we calculate the kaon form factors which in the present model are

FK+(s) = 1−
∑

V=ρ,ω,φ

gV K+K−

fV (s)
AV (s), (13)

FK0(s) = −
∑

V=ρ,ω,φ

gV K0K̄0

fV (s)
AV (s), (14)

AV (s) ≡ s

s−m2
V −ΠV (s)

,
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Table 3. Values of parameters σV , hV , θV for vector mesons

Coupling constants hV θV σV

“ideal” values [12] 3g

32
√

2π2
= 0.040 g

8
√

2π2
= 0.054 3g2

32π2 = 0.34

fixed by experiment 0.039 0.0011 0.33
Nambu-Jona-Lasinio
model [11]

0.040 0.053 0.33
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Figure 1. Loops included in self-energy of vector
mesons.
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Figure 2. Loop corrections for photon-vector-
meson vertex

where ΠV (s) is self-energy operator of vector meson V = ρ, ω, φ.
The correct normalization conditions at q2 = 0

FK+(0) = 1, FK0(0) = 0 (15)

are fulfilled due to gauge invariance of the theory.
Self-energy operators. Dressed (“exact”, or full) propagator of vector particles includes self-energy

operators ΠV (s) which account for intermediate states, such as π+π−, ωπ0, KK̄, ωπ0 → π0K+K− for ρ
meson, etc. The dominant contributions are (see Fig. 1)

Πρ = Πρ(π0ω)ρ + Πρ(ππ)ρ,

Πω = Πω(π0ρ)ω + Πω(KK)ω + 2Πω(3π,πρ)ω,

Πφ = Πφ(KK)φ,

Imaginary part of self-energy gives rise to energy-dependent widths of vector mesons

ΓV (s) = −m−1
V ImΠV (s)

One can find the imaginary parts of self-energy by applying the Cutkosky rules. To restrict fast growth of the
partial widths with s we have to introduce a cut-off form factors (for details see [13]).

Electromagnetic vertex modification. Vertex corrections (see Fig. 2) are related to self-energy correc-
tions, for example

Im Πγ(π0ω)ρ(s) =

√
2e hV
σV

Im Πρ(π0ω)ρ(s). (16)

Modified (or exact) EM vertex satisfies equation

1

fV (s)
=

1

f
(0)
V

− ı

e s

∑

c

ImΠγ(c)V (s) (17)
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Figure 4. Electromagnetic form factor of K+ (K−).

and at s = m2
V (on the mass shell) describe the leptonic decay widths of vector mesons

∣∣fV (s = m2
V )
∣∣2 =

4

3
πα2 mV

Γ(V → e+e−)
.

This, together with information from “Particle Data Group” compilation [1] allows one to find the “bare”
couplings

f (0)
ρ = 5.026, f (0)

ω = 17.060, f
(0)
φ = −13.382

and then obtain real and imaginary parts of the momentum-dependent couplings fV (s) for arbitrary s (see
Fig. 3).

Fig. 4 schematically illustrates the model for the form factors including self-energy and EM vertex loop
corrections.

Higher vector resonances. Contribution from higher resonances ρ′ = ρ(1450), ω′ = ω(1420) and
φ′ = φ(1680) is

∆FK+(s) = −
∑

V ′=ρ′,ω′,φ′

gV ′K+K−

fV ′(s)
AV ′(s), (18)

∆FK0(s) = −
∑

V ′=ρ′,ω′,φ′

gV ′K0K̄0

fV ′(s)
AV ′(s). (19)

We assume SU(3)f for ratios of the strong and EM couplings for “primed” resonances

gρ′K+K−

fρ′
:
gω′K+K−

fω′
:
gφ′K+K−

fφ′
=

1

2
:

1

6
:

1

3
,

gρ′K0K̄0

fρ′
:
gω′K0K̄0

fω′
:
gφ′K0K̄0

fφ′
= −1

2
:

1

6
:

1

3

and use the known branching ratios from [1], then obtain

gρ′K+K−/fρ′ = −0.063, gω′K+K−/fω′ = −0.021,

gφ′K+K−/fφ′ = −0.036.

High q2 behavior of form factors. On the basis of quark counting rule in perturbative QCD (Lepage,
Brodsky, Farrar and Jackson [14])

FK+(s)→ A

s
at s→ −∞, A = −16πF 2

παs(s). (20)
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Figure 6. Neutral kaon form factor in the time-like region s ≥ 4m2
K0. Data (boxes) are from [17].

In the present model we obtain at s→ −∞

FK+(s)→ B +
A′

s
, (21)

B = 1−
∑

V=ρ,ω,φ

gV K+K−

fV
−

∑

V ′=ρ′,ω′,φ′

gV ′K+K−

fV ′

,

A′ = −
∑

V=ρ,ω,φ

gV K+K−m2
V

fV
−

∑

V ′=ρ′,ω′,φ′

gV ′K+K−m2
V ′

fV ′

.

For the correct asymptotic behavior the constant B should be zero. Contribution from ρ, ω, φ with gV K+K−/fV
taken from experiment does not lead to B = 0. If we add the higher resonances ρ′, ω′, φ′ and choose negative
relative sign of couplings gV ′K+K−/fV ′ with respect to gV K+K−/fV , then B ≈ 0 and asymptotic behavior of
the form factors is improved.

3 Comparison with experiment

In this section we present results for the charged and neutral kaons. Figs. 5 and 6 show FF in the time-like
region, while Fig. 7 shows FF in the space-like region.
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Figure 11. Typical diagrams contributing to muon AMM.

4 KK̄ production and anomalous magnetic moment of muon

If gµ is gyromagnetic ratio defined through the relation between magnetic moment and spin of the muon

~M = gµ
e

2mµ
~s, (22)

and aµ ≡ gµ/2 − 1 is a measure of AMM, then KK̄ contribution to aµ can be determined via the dispersion
integral (Brodsky and de Rafael [20]) which follows from analyticity of the photon polarization operator:

ahad,KK̄µ =
α2

3π2

∫ ∞

4m2
K

W (s)R(s)
ds

s
, (23)

W (s) =

∫ 1

0

x2(1− x)
x2 + (1− x)s/m2

µ

dx,

where mµ is muon mass and R(s) is ratio of cross sections

R(s) =
σ(e+e− → KK̄)

σ(e+e− → µ+µ−)
=

(1− 4m2
K

s )3/2

4(1 + 2
m2

µ

s )(1− 4m2
µ

s )1/2
|FK(s)|2.

The calculated values are presented in Table 4 together with the inaccuracy caused by uncertainty in the
model parameters. The value (34.70± 1.01)× 10−10 is close (within 1.5%) to results from e+e− annihilation by
CMD-2 and SND Collaborations in Novosibirsk [21].

Note that KK̄ channels contribute about 5% of the hadronic contributions to AMM (Fig. 10).
The total AMM in the Standard Model includes various contributions (see Fig. 11) and is equal to [22]

atheorµ = aQEDµ + aweakµ + aγ by γ
µ + ahad, LOµ + ahad, HOµ , (24)

where

aQEDµ = (11658471.81± 1.45 loops ± 0.08α)× 10−10,

aweakµ = (15.4± 0.1had ± 0.2Higgs, 3 loops)× 10−10,

aγ by γµ = (8± 4)× 10−10,

ahad, LOµ = (690.9± 3.9exp + 1.9rad + 0.7QCD)× 10−10,

ahad, HOµ = (−9.79± 0.09exp + 0.03rad)× 10−10.

The difference between the most precise experimental value (g − 2 Collaboration, experiment E821, BNL,
Brookhaven) and the theoretical value is (in units 10−10)

aexpµ − atheorµ = (11659208.0± 6.3)− (11659176.3± 6) = 31.7± 8.7
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Table 4. Contribution of KK̄−channels to muon AMM ahad,KK̄µ

channel K+K− K0K̄0 total KK̄

ahad,KK̄µ , 10−10 19.06± 0.57 15.64± 0.44 34.70± 1.01

The discrepancy is only about 3 × 10−6 of the experimental value. Nevertheless it is more than 3 “standard
deviations” σ and is therefore important. Whether this indicates new physics beyond the Standard Model
remains to be studied further. There are other possible contributions which may add to the theoretical value,
and from the experimental side there is a puzzling discrepancy between results from e+e− → π+π− and τ−decay
τ− → π−π0ντ .

New experiment E969 is scheduled at BNL [23] aiming to reduce experimental error in muon AMM from
6.3× 10−10 to 2.5× 10−10.

5 Conclusions

1. A model for electromagnetic form factors of the K−mesons in the time-like (s ≥ 4m2
K) and space-like (s < 0)

regions of the photon momentum is developed up to O(p4) [13].
2. Agreement with experiments on e+e− → KK̄ annihilation at

√
s = 1 − 1.75 GeV is obtained without

fitting parameters. Deviations from the data at
√
s > 2 GeV are probably related to higher resonances ρ(1700)

and ω(1650).
3. Form factor agrees with the data in the space-like region at −q2 < 0.16 GeV2. Results from Jefferson

Laboratory at large momentum transfer −q2 ∼ 3 GeV2 [6] which are coming soon may help to test further the
model.

4. Contribution of KK̄ channels to anomalous magnetic moment of the muon is found to be:

ahad,K
+K−

µ + ahad,K
0K̄0

µ = (34.70± 1.01)× 10−10

which agrees with e+e− annihilation results from Novosibirsk.
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INDIRECT COLLIDER TESTS FOR LARGE EXTRA DIMENSIONS

A.A. Pankova, A.V. Tsytrinovb

ICTP Affiliated Centre, Pavel Sukhoi Technical University, Gomel, Belarus

New physics signatures arising from different sources may be confused when first observed at future colliders.
Thus it is important to examine how various scenarios may be differentiated given the availability of only limited
information. Arkani-Hamed, Dimopoulous, and Dvali have proposed a model (ADD) of low-scale quantum
gravity featuring large extra dimensions. In this model, the exchange of Kaluza-Klein towers of gravitons can
manifest themselves through deviations of the observables from the Standard Model predictions. Here, we
assess the expected “identification reach” on the ADD model of gravity in large compactified extra dimensions,
against the compositeness-inspired four-fermion contact interaction. As basic observables we take the differential
cross sections for fermion-pair production at a 0.5–1 TeV electron-positron linear collider with both beams
longitudinally polarized. For the four-fermion contact interaction we assume a general linear combination of
the individual models with definite chiralities, with arbitrary coupling constants. In this sense, the estimated
identification reach on the ADD model can be considered as “model-independent”. In the analysis, we give
estimates also for the expected “discovery reaches” on the various scenarios. We emphasize the substantial rôle
of beams polarization in enhancing the sensitivity to the contactlike interactions under consideration.

1 Introduction

Numerous New Physics (NP) scenarios are described by local, contactlike, effective interactions between the
Standard Model (SM) particles. This is the typical case of interactions mediated by exchanges of quanta that are
constrained, by either conceptual or phenomenological considerations, to have a mass, we generically denote as
Λ, in the multi-TeV range. These states may be beyond the kinematical reach of the collider and therefore could
not appear as final products of the studied reactions. Accordingly, the existence of such nonstandard scenarios
can be verified only through their indirect effects, represented by deviations of the measured observables from
the SM predictions. The effective interaction framework leads to the expansion of the deviations caused by these
novel interactions in powers of the corresponding small ratios EC.M./Λ � 1, multiplied by matrix elements of
local operators between initial and final states. Generally, the dominance of the leading power is taken as a
reasonable assumption.

Referring to experiments at planned high energy colliders and their sensitivity to NP, one can define for the
individual contactlike effective interactions the expected discovery reach, as the maximum value of the relevant
Λ for which deviations from the SM predictions can be detected within the foreseen experimental accuracy.
This limit can be assessed by a comparison of theoretical deviations, functions of Λ, and expected experimental
uncertainties by assuming that no such deviations are observed.

Conversely, one can envisage a situation where corrections to the SM predictions are observed, and found
compatible with one of the effective interactions for a certain value of the relevant Λ. In this case, one should
consider that, in principle, different contactlike interactions can cause similar corrections. Therefore, it should
be desirable to attempt the identification of the source of the observed deviations among the various possible
scenarios. To this purpose, one can define the expected identification reach on an individual contact interaction
model, as the maximum value of the corresponding Λ for which not only it can cause observable deviations
but, also, can be discriminated as the source of such corrections, were they observed, against the other effective
interactions for any value of their characteristic Λs. Obviously, the identification reach can only be smaller than
the discovery reach.

Here, we consider as basic observables the differential cross sections for the fermion pair production processes

e+ + e− → f̄ + f, f = e, µ, τ, c, b, (1)

at the International Linear Collider (ILC) with longitudinally polarized electron and positron beams [1]. This
option is considered with great interest in the project for this collider, and its impact on the physics programme
has been reviewed recently in Ref. [2].

e-mail: apankov@ictp.it, batsytrin@ictp.it
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As a significant example, we focus on the identification reach on the ADD model of gravity in large, compact-
ified, extra spatial dimensions [3–5], with respect to the compositeness-inspired four-fermion contact interactions
[6, 7]. Also, we insist on the rôle played by the longitudinal polarization of the e+ and e− beams in enhancing
the identification power of processes (1) on this scenario, at the planned ILC energies and luminosities.

2 Polarized differential observables

The expression of the polarized differential cross section for the process e+e− → ff̄ with f 6= e, t and in
approximation where mf �

√
s can be expressed as [8]:

dσ(P−, P+)

dz
=

D

4

[
(1− Peff)

(
dσLL

dz
+
dσLR

dz

)

+(1 + Peff)

(
dσRR

dz
+
dσRL

dz

)]
. (2)

In Eq. (2), z = cos θ with θ the angle between initial and final fermions in the C.M. frame, and the subscripts
L, R denote the respective helicities. Furthermore, with P− and P+ denoting the degrees of longitudinal
polarization of the e− and e+ beams, respectively, one has

D = 1− P−P+ , Peff =
P− − P+

1− P−P+
. (3)

The SM amplitudes for these processes are determined by γ and Z exchanges in the s-channel.
The polarized differential cross section for the Bhabha process e+e− → e+e−, where γ and Z can be

exchanged also in the t-channel, can be conveniently written as [9–11]:

dσ(P−, P+)

dz
=

(1 + P−) (1− P+)

4

dσR

dz
+

(1− P−) (1 + P+)

4

dσL

dz

+
(1 + P−) (1 + P+)

4

dσRL,t

dz
+

(1− P−) (1− P+)

4

dσLR,t

dz
, (4)

with the decomposition

dσL

dz
=

dσLL

dz
+

dσLR,s

dz
,

dσR

dz
=

dσRR

dz
+

dσRL,s

dz
. (5)

In Eqs. (4) and (5), the subscripts t and s denote helicity cross sections with SM γ and Z exchanges in the
corresponding channels. In terms of helicity amplitudes:

dσLR,t

dz
=

dσRL,t

dz
=

2πα2
e.m.

∣∣GLR,t

∣∣2

s
,

dσLR,s

dz
=

dσRL,s

dz
=

2πα2
e.m.

∣∣GLR,s

∣∣2

s
,

dσLL

dz
=

2πα2
e.m.

∣∣GLL,s +GLL,t

∣∣2

s
,

dσRR

dz
=

2πα2
e.m.

∣∣GRR,s +GRR,t

∣∣2

s
. (6)

The polarized differential cross section (2) for the leptonic channels e+e− → l+l− with l = µ, τ can be
obtained directly from Eq. (4), basically by dropping the t-channel poles. The same is true, after some obvious
adjustments, for the c̄c and b̄b final states.

According to the previous considerations the amplitudes Gαβ,i, with α, β = L,R and i = s, t, are given
by the sum of the SM γ, Z exchanges plus deviations representing the effect of the novel, contactlike, effective
interactions:

GLL,s = u

[
1

s
+

g2
L

s−M2
Z

+ ∆LL,s

]
, GLL,t = u

[
1

t
+

g2
L

t−M2
Z

+ ∆LL,t

]
,

GRR,s = u

[
1

s
+

g2
R

s−M2
Z

+ ∆RR,s

]
, GRR,t = u

[
1

t
+

g2
R

t−M2
Z

+ ∆RR,t

]
,

GLR,s = t

[
1

s
+

gR gL
s−M2

Z

+ ∆LR,s

]
, GLR,t = s

[
1

t
+

gR gL
t−M2

Z

+ ∆LR,t

]
. (7)

Here u, t = −s(1 ± z)/2, gR = tan θW and gL = − cot 2 θW with θW the electroweak mixing angle. The
deviations ∆αβ,i caused by the models of interest here have been tabulated in earlier references, see for example
Refs. [10, 12, 13]. However, for convenience, we report their explicit expressions and briefly comment on their
properties in the next section.
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The contactlike nonstandard interactions considered in the sequel are listed below:
a) The ADD, compactified large extra dimensions, scenario [3–5], motivated by the gauge hierarchy problem.

In this scenario, only gravity can propagate in the full multidimensional space. Correspondingly, a tower of
graviton KK states with equally-spaced spectrum is exchanged in the ordinary four-dimensional space, and
induces indirect corrections to the SM γ and Z exchanges. The relevant Feynman rules have been derived in
Refs. [14, 15]. In the parameterization of Ref. [16], the exchange of such a KK tower is represented by the
effective interaction:

L = i
4λ

Λ4
H

TµνTµν , λ = ±1. (8)

In Eq. (8), Tµν denotes the energy-momentum tensor of the SM particles and ΛH is an ultraviolet cut-off on
the summation over the KK spectrum, expected in the (multi) TeV range. The corresponding corrections to
the SM amplitudes for Bhabha scattering, see Eq. (7), read:

∆LL,s = ∆RR,s =
λ(u+ 3s/4)

παe.m.Λ4
H

, ∆LL,t = ∆RR,t =
λ(u+ 3t/4)

παe.m.Λ4
H

,

∆LR,s = −λ(t+ 3s/4)

παe.m.Λ4
H

, ∆LR,t = −λ(s+ 3t/4)

παe.m.Λ4
H

. (9)

As observed in the previous section, the deviations for the other processes in Eq. (1) can easily be obtained
from Eqs. (9). One can remark, also, that the effective interaction (8) has dimension-8, which explains the high
negative power of the characteristic mass scale ΛH .

b) The dimension-6 four-fermion contact interaction (CI) scenario [6, 7]. With Λαβ (α, β = L,R) the
“compositeness” mass scales, and δef =1 (0) for f = e (f 6= e):

L =
4π

1 + δef

∑

α,β

ηαβ
Λ2
αβ

(ēαγµeα)
(
f̄βγ

µfβ
)
, ηαβ = ±1, 0. (10)

The induced deviations in Eq. (7) are:

∆αβ,s = ∆αβ,t =
1

αe.m.

ηαβ
Λ2
αβ

. (11)

Rather generally, this kind of effective interactions applies to the cases of very massive virtual exchanges, such
as heavy Z ′s, leptoquarks, etc.

Current experimental lower bounds on Λs are mostly derived from nonobservation of deviations at LEP
and Tevatron colliders. At the 95% C.L., they are: ΛH > 1.3TeV [17] and, generically, Λαβ > 10 − 15TeV,
depending on the processes measured and the type of analysis performed [18].

c) In models with TeV−1-scale extra dimensions, the SM gauge bosons may propagate also in the additional
dimensions, and the new, contact-like, effective interaction relevant to the processes of interest here is generated
by the exchange of γ and Z KK excitations [19, 20]. For one additional dimension, and with MC �MW,Z the
inverse of the compactification radius, for e+e− → f̄f it can be written as

LTeV = − π2

3M2
C

[QeQf (ēγµe)(f̄γ
µf)

+ (geLēLγµeL + geRēRγµeR)(gfLf̄γ
µfL + gfRf̄Rγ

µfR)]. (12)

The corresponding deviation can be written as

∆αβ,s = ∆αβ,t = −(QeQf + geα g
f
β)

π2

3M2
C

(13)

For the TeV−1-scale extra dimension scenario the current limit, mostly determined by LEP data, is MC >
6.8TeV [17].

It may be worth noticing that in cases b) and c), Eqs. (11) and (13), the deviations are z-independent and
the appropriate helicity cross sections have the same angular structure as in the case of the SM. Conversely, in
case a), Eq. (9), the deviations introduce extra z-dependencies in the angular distributions. In turns out that,
as a consequence, the ADD model contribution to the integrated cross sections for the annihilation channels in
Eq. (1) is quite small, due to the vanishing interference with the SM amplitudes after integration over the full
angular range −1 ≤ z ≤ 1. This suppresses the possibility of identifying the ADD interaction effects in the total
cross sections for these processes. In these cases, specifically defined integrated asymmetries with polarized
initial beams may be expected to be more efficient contactlike interaction analyzers [8, 21]. In the next section
we discuss the rôle of polarized angular differential distributions themselves, in selecting signatures of ADD
effective interactions at ILC.
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Figure 1. Left panel: relative deviations of the unpolarized Bhabha differential cross section from the SM
prediction as a function of cos θ at

√
s = 0.5 TeV for the CI models: AA (Λ+

AA=48 TeV), VV (Λ+
VV=76 TeV),

LL (Λ+
LL=37 TeV), RR (Λ+

RR=36 TeV), LR (Λ+
LR=60 TeV); for the TeV−1 model (MC=12 TeV) and the ADD±

models (ΛH=4 TeV). The vertical bars represent the statistical uncertainty in each bin for Lint = 100 fb−1.
Right panel: same as in left panel but for e+e− → µ+µ−, for the CI models: AA (Λ+

AA=80 TeV), VV (Λ+
VV=90

TeV), LL (Λ+
LL=45 TeV), RR (Λ+

RR=42 TeV), LR (Λ+
LR=41 TeV), RL (Λ+

RL=43 TeV); for the TeV−1 model
(MC=17 TeV) and the ADD± models (ΛH=2.8 TeV).

3 Discovery and identification reaches

We here briefly outline the derivation of the expected “discovery reaches” on the New Physics scenarios in-
troduced in the previous section. The basic objects are the relative deviations of observables from the SM
predictions due to the NP:

∆(O) =
O(SM + NP)−O(SM)

O(SM)
, (14)

and, as anticipated, we concentrate on the polarized differential cross section, O ≡ dσ/d cos θ. To get an
illustration of the effects induced by the individual NP models, we show in Fig. 1 the angular behaviour of the
relative deviations (14) for the two leptonic processes under consideration (with unpolarized beams), for c.m.
energy

√
s = 0.5 TeV and selected values of the relevant mass scale parameters close to their “discovery reaches”

(unpolarized cross sections). The superscript “+” on the CI mass scales Λαβ denotes the choice ηαβ = 1 in
Eq. (10), while the notation ADD± corresponds to λ = ±1 in Eq. (8). Vertical bars represent the statistical
uncertainty in each angular bin, for an integrated luminosity Lint = 100 fb−1. The comparison of deviations
with statistical uncertainties is an indicator of the sensitivity of an observable to the individual non-standard
effective interaction models.

In this figure, the numerical value chosen for ΛH is such that the interference of the graviton-exchange
with the SM dominates the deviations of the differential cross sections, so that the ADD+ and ADD- models
give corrections of the same size and opposite sign. Moreover, due to the chosen values Λ+

LL ' Λ+
RR, the

corresponding CI models generate almost equal deviations of the differential cross sections because, in the
(dominant) interferences with the SM, numerically g2

L ' g2
R [see Eq. (7)].

To derive the constraints on the models, one has to compare the theoretical deviations from the SM pre-
dictions, that are functions of Λs, to the foreseen experimental uncertainties on the differential cross sec-
tions. To this purpose, taking the polarized angular distributions as basic observables for the analysis, O =
dσ(P−, P+)/dz, we introduce χ2:

χ2(O) =
∑

{P−, P+}

∑

bins

(
∆(O)bin

δObin

)2

. (15)

Here, for the individual processes, the cross sections for the different initial polarization configurations are
combined in the χ2, and δO denotes the expected experimental relative uncertainty (statistical plus systematic
one). As indicated in Eq. (15), we divide the angular range into bins. For Bhabha scattering, the cut angular
range | cos θ| < 0.90 is divided into ten equal-size bins. Similarly, for annihilation into muon, tau and quark
pairs we consider the analogous binning of the cut angular range | cos θ| < 0.98.

For the Bhabha process, we combine the cross sections with the following initial electron and positron
longitudinal polarizations:

(P−, P+) = (|P−|, −|P+|); (−|P−|, |P+|); (|P−|, |P+|); (−|P−|,−|P+|).
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For the “annihilation” processes in Eq. (1), with f 6= e, t, we limit to combining the (P−, P+) = (|P−|,−|P+|)
and (−|P−|, |P+|) polarization configurations. Numerically, we take the “standard” envisaged values |P−| = 0.8
and |P+| = 0.6.

Regarding the ILC energy and time-integrated luminosity, for simplicity we assume the latter to be equally
distributed among the different polarization configurations defined above. The explicit numerical results will
refer to C.M. energy

√
s = 0.5 TeV with time-integrated luminosity Lint = 100 fb−1, and to

√
s = 1 TeV with

Lint = 1000 fb−1. The assumed reconstruction efficiencies, that determine the expected statistical uncertainties,
are 100% for e+e− final pairs; 95% for final l+l− events (l = µ, τ); 35% and 60% for cc̄ and bb̄, respectively.
The major systematic uncertainties are found to originate from uncertainties on beams polarizations and on
the time-integrated luminosity: we assume δP−/P− = δP+/P+ = 0.2% and δLint/Lint = 0.5%, respectively.

As theoretical inputs, for the SM amplitudes we use the effective Born approximation [22] with mtop =
175 GeV and mH = 120 GeV. Concerning the O(α) QED corrections, the (numerically dominant) effects
from initial-state radiation for Bhabha scattering and the annihilation processes in (1) are accounted for by a
structure function approach including both hard and soft photon emission [23], and by a flux factor method
[24], respectively. Effects of radiative flux return to the s-channel Z exchange are minimized by the cut ∆ ≡
Eγ/Ebeam < 1 − M2

Z/s on the radiated photon energy, with ∆ = 0.9. In this way, only interactions that
occur close to the nominal collider energy are included in the analysis and, accordingly, the sensitivity to
the manifestations of the searched for nonstandard physics can be optimized. By a calculation based on the
ZFITTER code [25], other QED effects such as final-state and initial-final state emission are found, in processes
e+e− → l+l− and e+e− → q̄q (q = c, b), to be numerically unimportant for the chosen kinematical cuts.
Finally, correlations between the different polarized cross sections (but not between the individual angular bins)
are taken into account in the derivation of the numerical results presented below.

The expected discovery reaches on the contactlike effective interactions are assessed by assuming a situation
where no deviation from the SM predictions is observed within the experimental uncertainty. Accordingly, the
corresponding upper limits on the accessible values of Λs are determined by the condition χ2(O) ≤ χ2

CL, and
we take χ2

CL = 3.84 for a 95% C.L.
In Table 1, we present the numerical results from the processes listed in the caption, at an ILC with

√
s = 0.5

TeV, Lint = 100 fb−1, and with
√
s = 1 TeV, Lint = 1000 fb−1. Here, l+l− denotes the combination of µ+µ−

and τ+τ− final states, and µ−τ universality has been assumed for the limits on the CI mass scales. In this table,
only the results for positive interference between SM amplitudes and nonstandard contributions are reported,
i.e., the cases λ = 1 for the ADD model of Eq. (8) and ηαβ = 1 for the CI models of Eq. (10). The sensitivity
reach for negative interference turns out to be practically the same. Indeed, the angular dependence of the
corrections to the SM predictions induced by NP is found to be almost symmetric under reversing the sign
of the interference terms, see for example Ref. [10]. Therefore, the interference terms turn out to numerically
dominate over the pure, quadratic, NP contributions.

The results in Table 1 clearly show the enhancement in sensitivity to the considered effective interactions
allowed, for given C.M. energy and luminosity, by beams polarization. This effect is particularly substantial in
the case of the CI models (10), for which the limits on the relevant Λs are quite high compared to the current
ones.

Continuing the previous χ2-based analysis, we now assume that deviations has been observed and are
consistent with the ADD scenario (8) for some value of ΛH . To assess the level at which the ADD model can
be discriminated from the general CI model as the source of the deviations or, equivalently, to determine the
‘model-independent’ identification reach on the effective interaction (8), we introduce in analogy with Eq. (15)
the relative deviations ∆̃ and the corresponding χ̃2:

∆̃(O) =
O(CI)−O(ADD)

O(ADD)
; χ̃2(O) =

∑

{P−, P+}

∑

bins

(
∆̃(O)bin

δ̃Obin

)2

. (16)

In Eq. (16), ∆̃(O) depends on all Λs, and somehow represents the ‘distance’ between the ADD and the CI
model in the parameter space (ΛH ,Λαβ). Moreover, δ̃Obin is the expected relative uncertainty referred to the
cross sections that include the ADD model contributions: its statistical component is therefore determined from
helicity amplitudes with the deviations (9) predicted for the given value of ΛH . In turn, the CI contributions
to the cross sections bring in the dependence of Eq. (16) on the parameters Λαβ of Eq. (11), now considered as
all independent. Therefore, for each of processes (1), χ̃2 is a function of λ/Λ4

H and in general, simultaneously

of the four CI couplings ηαβ/(Λ
ef
αβ)

2.
In this situation we can determine confusion regions in the parameter space, where the CI model can be

considered as consistent with the ADD model, in the sense that it can mimic the differential cross sections of the
individual processes (1) determined by the latter one. At a given C.L., these confusion regions are determined
by the condition

χ̃2 ≤ χ2
CL. (17)
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Table 1. 95% C.L. discovery reaches (in TeV). Left and right entries in each column refer to the polarizations
(|P−|, |P+|)=(0,0) and (0.8,0.6), respectively.

Model
Process

e+e− → e+e− e+e− → l+l− e+e− → b̄b e+e− → c̄c√
s = 0.5 TeV, Lint = 100fb−1

ΛH 4.1; 4.3 3.0; 3.2 3.0; 3.4 3.0; 3.2

ΛefV V 76.2; 86.4 89.7; 99.4 76.1; 96.4 84.0; 94.1

ΛefAA 47.4; 69.1 80.1; 88.9 76.7; 98.2 76.5; 85.9

ΛefLL 37.3; 52.5 53.4; 68.3 63.6; 72.7 54.5; 66.1

ΛefRR 36.0; 52.2 51.3; 68.3 42.5; 71.2 46.3; 66.8

ΛefLR 59.3; 69.1 48.5; 62.8 51.3; 68.7 37.0; 57.7

ΛefRL ΛeeRL = ΛeeLR 48.7; 63.6 46.8; 60.1 52.2; 60.7√
s = 1 TeV, Lint = 1000fb−1

ΛH 8.7; 9.4 6.7; 7.0 6.7; 7.5 6.7; 7.1

ΛefV V 173.6; 205.1 218.8; 244.3 185.6; 238.2 206.2; 232.3

ΛefAA 109.9; 166.1 194.7; 217.9 186.; 242.7 186.4; 210.8

ΛefLL 83.7; 122.8 128.3; 165.5 154.5; 175.8 131.3; 159.6

ΛefRR 80.5; 122.1 123.4; 166.1 103.5; 176.9 111.8; 164.1

ΛefLR 136.6; 166.8 120.5; 156.6 124.9; 170.2 92.7; 144.6

ΛefRL ΛeeRL = ΛeeLR 120.8; 158.3 120.1; 151.9 129.6; 151.1

Table 2. 95% C.L. identification reach on the ADD model parameter ΛH obtained from e+e− → f̄f at√
s = 0.5 (1) TeV and Lint = 102 (103) fb−1 with polarizations (|P−|,|P+|)=(0,0) and (0.8, 0.6), respectively.

√
s

Process
e+e− → e+e− e+e− → l+l− e+e− → b̄b e+e− → c̄c

0.5 TeV 2.2; 2.9 2.3; 2.3 2.6; 2.9 2.3; 2.4
1.0 TeV 5.0; 6.4 4.9; 5.1 5.8; 6.2 5.1; 5.3

According to the number of independent CI couplings active in the different processes, for 95% C.L. we choose
χ2

CL = 7.82 for Bhabha scattering and χ2
CL = 9.49 for lepton (µ+µ−, τ+τ−) and quark (c̄c, b̄b) pair production

processes.
The simple χ2 procedure outlined above is clearly ‘CI model-independent’, and we represent graphically

some examples of the numerical results from Bhabha scattering at
√
s = 0.5TeV and Lint = 100 fb−1. For

this process, Eq. (17) defines a four-dimensional surface enclosing a volume in the (λ/Λ4
H , ηLL/Λ

2
LL, ηRR/Λ

2
RR,

ηLR/Λ
2
LR) parameter space. In Fig. 2, we show the planar surfaces that are obtained by projecting the 95% C.L.

four-dimensional surface, hence the corresponding confusion region that results from the condition χ̃2 = χ2
CL,

onto the two planes (ηLL/Λ
2
LL, λ/Λ4

H) and (ηLR/Λ
2
LR, λ/Λ4

H) (we limit our graphical examples to these pairs of
parameters).

As suggested by Fig. 2, the contour of the confusion region turns out to identify a maximal value of |λ/Λ4
H |

(equivalently, a minimum value of ΛH), for which the CI scenario can be excluded at the 95 % C.L. for any
value of η/Λ2

αβ . This value, ΛID
H , is the identification reach on the ADD scenario, namely, for ΛH < ΛID

H the CI
scenario can be excluded as explanation of deviations from SM predictions attributed to the ADD interaction,
and the latter can therefore be identified.

Fig. 2 shows the dramatic rôle of initial beams polarization in obtaining a restricted region of confusion in
the parameter space or, in other words, in enhancing the identification sensitivity of the differential angular
distributions to ΛID

H . Table 2 shows the numerical results for the foreseeable ‘model-independent’ identification
reaches on ΛH , for the two choices of C.M. energy and luminosity.

4 Concluding remarks

We have presented a simple, χ2-based, estimate of the power for discovering and for distinguishing signatures
of the spin-2 graviton exchange envisaged by the ADD model, that is foreseeable at the polarized ILC with√
s = 0.5-1 TeV. The basic observables in the analysis are the polarized differential cross sections for fermion-

pair production processes. The compositeness-inspired four-fermion contact interaction, from which the ADD
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Figure 2. Two-dimensional projection of the 95% C.L. confusion region onto the planes (ηLL/Λ
2
LL, λ/Λ4

H)
(left panel) and (ηLR/Λ

2
LR, λ/Λ4

H) (right panel) obtained from Bhabha scattering with unpolarized beams
(dot-dashed curve) and with both beams polarized (solid curve).

model should be discriminated in case of observation of corrections to the SM predictions, has been assumed
to be of the general form, i.e., a linear combination of the individual contact interaction operators with definite
chiralities. The coefficients of such a combination have been taken into account simultaneously as independent,
and potentially nonvanishing, constants.

The discovery reaches, as well as the identification reaches, are quite high compared to the current bounds,
and depend on energy and luminosity as shown in Table 1 and in Table 2, respectively. In particular, Table 2
shows that, of the four considered e+e− processes, Bhabha scattering and b̄b pair production definitely have
the best identification sensitivity on the mass scale ΛH characterizing the ADD model for gravity in ‘large’
compactified extra dimensions. The substantial rôle of beams polarization is exemplified by Fig. 2 (where the
confusion region between the considered models is dramatically reduced), and by the discovery reaches on the
models shown in Table 1.

The enhancement of the estimated identification sensitivity on the ADD effective interaction is quite con-
siderable: as exemplified by the entries of Table 2, in the polarized case the identification reach on ΛH ranges
from 2.9 TeV to 6.4 TeV, depending on energy, luminosity and degree of longitudinal polarization. Although
unavoidably somewhat depressed by the penalty due to the general multi-parameter expression assumed for
the CI scenario (that implies taking large values of the χ2

CL), these ‘model-independent’ identification values
of ΛH are still much higher than the current limits. In fact, we find that they are only moderately lower (by
some 10-20%) than the ‘model-dependent’ ones obtained in Ref. [10] by assuming only one nonzero CI coupling
at a time. These nice features reflect in part the small values assumed for the relative uncertainties on elec-
tron and positron beams polarization in the previous section, and call for very high precision on polarimetry
measurements at the ILC.
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CONFINEMENT ON THE LATTICE, NUMERICAL RESULTS AND THEORY

M. I. Polikarpov

Institute of Theoretical and Experimental Physics, Moscow, Russia

I give a short review of lattice study of confinement problem. The topics are: formation and breaking of the
confining string, monopoles and vortices in Abelian and nonabelian gauge theories.

1 Introduction.

The numerical nonperturbative calculations in QCD become possible if we pass from continuous Minkovsky
theory to discreet Euclidean lattice formulation. After the change of the time to the imaginary time, t → i t,
the partition function of a field theory become analogous to the statistical sum:

Z =

∫
eiSM [ϕ]Dϕ→

∫
e−SE [ϕ]Dϕ . (1)

The similarity with the statistical physics become exact after the discretization of the space–time; we consider
finite Euclidean space, 0 < x, y, z, t ≤ R, with periodic boundary conditions, the coordinates have discreet
values. Thus we get the four-dimensional lattice with sites at the points s = (x1, x2, x3, x4), 1 ≤ xk ≤ L = R/a,
where a is the lattice spacing and L is the size of the lattice1. After these changes the partition function of the
theory is reduced to the finite-dimensional integral,

Z =

∫ ∏

s

dϕ(s)e−S[ϕ] , (2)

which can be evaluated numerically using Monte-Carlo method. The continuum limit of the theory corresponds
to the limits L → ∞, a → 0, while numerical calculations are performed at finite values of L and a. The
systematic errors corresponding to the finite volume and finite lattice spacing can be estimated using standard
methods by varying L and a.

In lattice QCD the numerical integration is possible only over the gauge fields, integration over the quark
(fermionic) fields can be performed analytically:

∫
DψDψ̄ eψ̄M̂ψ = det M̂ . (3)

Since matrix M̂ is the function of the gauge field, M̂ = M̂(Aµ), after such integration the gauge action become

effectively nonlocal: S(Aµ) = SGF (Aµ) + log M̂(Aµ), here SGF (Aµ) is the lattice analogue of the gauge action∫
TrF 2

µν d
4x.

Due to nonlocality of the gauge field action the calculations in lattice QCD with dynamical fermions are very
time consuming and realistic spectrum of low lying hadrons can be obtained using only large-scale calculations
on supercomputers. Only recently there appear calculations in QCD with two light and one massive (strange)
quark. The hadron spectrum calculations in such lattice QCD, called (2+1)QCD, can be found in [1].

Calculations in lattice QCD with two light dynamical quarks are much more popular, in Section 2 we
discuss some results of the DIK (DESY-ITEP-Kanazawa) collaboration, and when we refer to ”full QCD” we
mean Nf = 2 lattice QCD with nonperturbatively improved Wilson fermions (review of the results of the DIK
collaboration is given in [2]). SU(2) and SU(3) lattice gluodynamics is much simpler to study in computer
simulations than QCD with dynamical quarks, but, as we show in Section 2, from these simple models we can
get useful information about confining strings. In Section 3 we present two examples of confinement mechanisms
in Abelian gauge models. In Section 4 we discuss monopoles and vortices in lattice gluodynamics as gauge field
fluctuations responsible for confinement of color.
1For calculations at the finite temperature we consider asymmetric lattices L × L × L × Nt (Nt < L), and the temperature of the

system is defined as T = (Nta)−1.

c© Polikarpov M.I., 2007.
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Figure 1. The action density ρA(s)r4
0 of the Abelian flux tube in full (left) and in quenched (right) QCD.

Figure 2. Distribution of the color electric field in full (left figure) and quenched (right figure) QCD.

2 Visualization of confining strings.

We can not strictly prove the confinement of color in nonabelian gauge theories, but we can clearly see the
formation of gluonic cylinder-type object between quark and antiquark. This object called confining string was
first time observed in SU(2) gluodynamics in ref. [3]. The material of this Section is based on papers of the
DIK collaboration [2, 4, 5]. The difference between confining string in gluodynamics (quenched QCD) and in
QCD with dynamical quarks is not very large as it is seen from Fig. 1, the definition of Abelian action density
is given in [4], r0 is the parameter which defines the scale, r0 ≈ 0.5 fm.

In Fig. 2 we show the color electric field in Abelian projection [4]. One can see only small differences between
distributions obtained in full and in quenched QCD. Fig. 2 shows that the electric field is purely longitudinal
in a region between the sources as we expect for the flux tube.

At zero temperature it is hard to observe the confining string breaking due to large statistical noise. At finite
temperature below the phase transition we can observe the formation of the confining string in the static meson,
and also the string breaking. The explanation is simple: the heavy quark potential V (r, T ) is determined from
the Polyakov loop correlator:

V (r, T ) = − 1

Lt
ln
〈
L(~s)L†(~s ′)

〉
. (4)

When r →∞,

〈L(~s)L†(~s ′)〉 −→ |〈L〉|2 , (5)

and |〈L〉|2 6= 0 even below Tc, since global Z3 is broken by fermions. From (4) and (5) it follows that V (r, T )→
const. when r →∞. This flattening of the potential at T < Tc is due to the creation of a quark–antiquark pair
from the vacuum which screen the test sources. The flattening (which corresponds to string breaking) is clearly
seen in Fig.3 where the monopole part of the potential is shown. Below we demonstrate how the mesonic flux
tube breaks when the Q−Q̄ distance R is increasing at a fixed temperature T . We measure profiles of the action
density, the color-electric field and the monopole current at T/Tc = 0.94 for various values of R/r0. The static
quark-antiquark pair is created by Abelian, monopole, and photon Polyakov loops. Fig. 4 shows the profiles of
the action density. We show both the two-dimensional contour plot and the three-dimensional plot for various
distances. In these plots the horizontal axis is directed along the line connecting the static sources. First two
rows of this figure indicate that the flux tube persists for distances R/r0 = 0.98, 1.71 while for R/r0 = 2.42 it
seems to disappear, leaving only lumps of the action density around the sources. The difference between left
and central columns is that in the monopole part the data have much lower noise and two-peaks at locations of
the quark and antiquark are less pronounced. In the photon part only two lumps around sources can be seen
at all distances.

It is important to learn about the forces and the distribution of color electric flux in the 3Q system, a
particularly interesting question is whether a three-body force exists and the confining flux tube is of Y –shape,
or whether the long-range potential is simply the sum of two-body potentials, resulting in a flux tube of ∆–shape.
Several lattice studies give evidence for a ∆–type long-range potential [6, 7], while others show the existence of
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Figure 3. Static potential from monopole Polyakov loop correlators for β = 5.2.

a Y –type potential [8, 9]. The latter result is also being supported by the field correlators method [18]. The
difference between a ∆ and Y –shape potentials is rather small and it is difficult to detect it numerically. The
recent results [5] obtained by DIK collaboration show that the baryon flux tube in quenched lattice QCD and
in full QCD has Y –shape. The example of the density of baryon flux in the full QCD is shown in Fig. 5. The
pick in the center of three quark system support the Y -shape of the flux. To obtain this figure we used the
baryon creation operator (the analogue of the Wilson loop which create the meson state):

W3Q =
1

3!
εijkεi′j′k′U

ii′(C1)U jj
′

(C2)Ukk
′

(C3) , (6)

where U(C) =
∏
s,µ∈C Uµ(s) is the ordered product of link matrices, along the path C, as shown in Fig. 6. As

in case of the meson, if we separate the source quarks by sufficient distance the effect of baryon string breaking
appears. It can be easily seen at finite temperature below the deconfinement temperature, see Fig. 7. In this
figure we use the natural measure of the distance between three quarks for the baryon system, RY, which is the
minimal Y-type distance between the three quarks, i.e. the sum of the distances from the three quarks to the
Fermat point,

R2
Y =

1

2

∑

i>j

r2ij + 2
√

3S∆ , (7)

rij = |~si−~sj |, S∆ is the area of the corresponding triangle. Eq.(7) defines RY when all angles in the three quarks
triangle are less than 2π/3. If one of the angles is equal or larger than 2π/3, then RY =

∑
i>j rij −max rij .

3 Confinement in Abelian theories

The theory of the confining QCD strings discussed in the previous Section is not very well developed. Really
there are only models of confinement in nonabelian theories. Most of these models are based on two confining
mechanisms well known in Abelian theories. These are magnetic monopole and magnetic vortex confining
scenarios.

Magnetic monopole confining mechanism is very well known in compact electrodynamics [11]. It can be
shown that the partition function of compact QED can be rewritten as the partition function of the dual
Abelian Higgs (see e.g. [13]) model in the limit where the bare masses of the gauge and the Higgs bosons are
infinite. The Higgs boson field corresponds to the topological defects of compact QED which are monopoles.
Since monopoles are condensed in the strong coupling phase of 4D compact QED, confinement is due to the
dual Meissner effect, monopole playing the role of the Cooper pairs and electrical charges are connected the by
dual Abrikosov string, which lead to the linearly rising potential.

Confinement by random vortices is well known in Z(2) gauge theory. The topological objects in this theory
are closed lines in 3D and closed surfaces in 4D. When surface spanned on the Wilson loop is intersected by
vortex, the sign of Wilson loop is changed. The expectation value of the plaquette (the elementary Wilson loop)
is (1 − p) · (+1) − p · (−1) = 1 − 2p, where p is the probability that some plaquette intersects with vortex. If
vortices are random (not correlated at the small distances) then the expectation value of the Wilson loop is
equal to the product of the expectation values of the plaquettes: < W >= (1− 2p)S , where S is the number of
plaquettes on the surface spanned on the Wilson loop, thus we get the area low < W >= e−σS , σ = − ln(1−2p).
In this simple derivation we do not specify the shape of the surface spanned on the loop, and the area S is
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Figure 4. The profile of the action density of the mesonic system at T/Tc = 0.94. The sources are made of
Abelian (left), monopole (center) and photon (right) Polyakov loops. The QQ̄ distances are R/r0 = 0.98 (top),
1.71 (middle), 2.42 (bottom).

not definite. To resolve this uncertainty we have to note that the number of intersections of the vortex with
surface spanned on the loop is odd or even independently on the shape of the surface. This follows from the
closeness of the vortex. The next (less nontrivial) step is to show that in the leading order we have to consider
the minimal surface spanned on the loop, that can be proven in the strong coupling expansion of the original
Z(2) gauge theory. After these remarks vortex confinement mechanism become very close to confinement in the
leading order of the strong coupling expansion in lattice gauge theories. Confinement in this case can be found
as for Abelian as for nonabelian gauge groups, and the reason is trivial, it is due to completely uncorrelated
gauge field distribution on the plaquettes.

These are basic known examples of confinement in gauge theories, as we see in the next Section in lattice
gluodynamics we have the synthesis of monopole and vortex confinement.

4 Confinement in nonabelian theories

Now we discuss a possible mechanism of the formation of the flux tube in lattice gluodynamics. Below we
discuss confinement in SU(2) lattice gluodynamics, since main results were obtained in this theory. The first
model of confinement which was carefully studied in lattice gauge theories was the monopole model [12], for
review see [13]. This model explains the formation of the flux tube as the dual Meissner effect, the monopoles
correspond to the Cooper pairs and flux tube is the dual analogue of the Abrikosov string. There are many
numerical facts which confirm this confinement model. The next model of confinement well studied in lattice
gauge theories is the center vortex confinement mechanism [15], for review see [1]. Recently it occurs that at
least for SU(2) lattice gluodynamics these two models are interrelated: monopole trajectories (which are closed
lines in 4D) belong to vortices (closed surfaces in 4D) [16]. Moreover there exist procedures of removing of
monopoles [17] or vortices [18] from the vacuum. It occurs [19] that removing monopoles we remove vortices
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Figure 5. Abelian action density in 3Q system in full QCD.
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and removing vortices we remove monopoles. Moreover removing monopoles (or vortices) we loose confinement
and chiral symmetry breaking2 [18]. This is the most serious numerical indication that monopoles and vortices
are responsible for confinement and chiral symmetry breaking.

The main criticism of the monopole and vortex confinement mechanism is the uncertainty in the gauge
projection. To extract monopole currents from the gauge field configuration we have to choose SU(2) → U(1)
gauge projection and only in Maximal Abelian gauge we have clear indication that monopoles are responsible
for infrared properties of the vacuum3. For center vortices, we have clear results only for direct and indirect
central projections SU(2)→ Z(2). Thus the results seem to be projection dependent. But now we have many
facts showing that Maximal Abelian and Maximal center projections detect gauge invariant objects from the
vacuum. Monopoles and vortices behave in these projections as “physical objects”. By “physical object” we
mean some object which have scaling properties, that is the physical characteristics of the object depend on
the lattice spacing4 as predicted by renormalization group. In this case in the continuum limit such object is
characterized by physical dimensional quantities. For example the length of the percolating monopole cluster
is in physical units in the given four-dimensional volume [21]:

Lmon ≈ 31
V4

fm3
, (8)

here V4 is the total lattice volume in fm. Similarly the area of the of central vortices is in physical units in the
given lattice volume [23]:

Avort ≈ 24
V4

fm2
. (9)

The entropy of the extended objects (monopole trajectories and world sheets of vortices) is infinite in the
continuum limit. To survive in the continuum limit the nonabelian action of such objects should also be
infinite, since the quantity which should be finite is {action − ln(entropy)}. At finite lattice spacing the action
of percolating monopole cluster of length Lperc is [24]:

Smon ≈ 1.9
Lperc
a

, (10)

and the action of center vortex of the area Avort is5 [23]:

Svort ≈ 0.53
Avort
a2

. (11)

Thus it seems that the center gauges detect physical structures which we call Abelian monopoles and center
vortices.

2We presented now a simplified picture, to be precise we have to consider percolating and not percolating clusters of monopoles
and vortices. Only percolating clusters are responsible for the infrared properties of the QCD vacuum, also there exists some
difference in the results of the removing of vortices for different gauge projections, for details see ref. [19].

3Recently there appears the claim [20] that monopoles are responsible for confinement without gauge fixing (in the random
gauge).

4The lattice spacing a playing the role of ultraviolet cutoff: ΛUV = 1/a.
5Smon and Svort are excesses of the actions on the monopole trajectories and on world sheets of vortices over the average

vacuum action Svac =< β(1 − 1

2
Tr UP ) >, which is also ultraviolet divergent, Svac ∝ 1

a4
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Figure 7. Abelian action density (up) and electric field (down) for the baryon system. Static quarks are
created by monopole Polyakov line. Interquark distances are RY/r0 = 2.08 (left), 2.77 (center) and 3.46 (right),
the temperature T = 0.82Tc (κ = 0.1330). Electric field for RY/r0 = 3.46 is not shown, since it is complitely
random.

In addition to above mentioned features there are two important properties of center vortices. The first one
is called “holography” [25]. If we minimize the number of negative links6 by Z(2) gauge transformations then
the gauge is fixed completely and vortices are boundaries of some 3-dimensional volumes. It occurs that these
volumes scale in physical units:

V3 ≈ 2.1
V4

fm
. (12)

If we calculate the expectation value of the Wilson loop then corresponding loop C intersects V3 volumes by
points in 4D space. The distance between these points of intersections is approximately 2 fm. If we kill
confinement removing negative links we change gauge fields in these points of intersections, thus all information
about confinement is encoded in three-dimensional volumes V3. That compression of information about four-
dimensional confinement into three-dimensional volumes is called holography.

The next property is the existence of long range correlations along the vortex. First it was found that the
direction of the monopole current lying on the vortex have a very long range correlation [22], the probability
to have the same direction of the current at the distance l (measured along the monopole trajectory) fall off
exponentially, ∝ exp{−µla}, µ ≈ 260Mev. This number should be compared with the lightest glueball mass
for SU(2) gluodynamics, M0++ = 1.65± 0.05Gev [26]). The complimentary measurement was done in ref. [27]
where the correlation of the action densities was measured for the points which are separated by only one lattice
spacing in four-dimensional space but no less than 6 spacings along the vortex (d4 < 2, d2 ≥ 6). For comparison
the correlation between neighboring vortex plaquettes (d4 < 2, d2 < 2) was also measured. The measured

6By negative link we mean link with negative trace: Tr Ul < 0.
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Figure 8. Correlation between neighboring plaquettes with d4 = 1, d2 ≥ 6 and d4 = 1, d2 < 2

quantity was:

ρ [TrUp,TrUp′ ] =
〈TrUp TrUp′〉 − 〈TrUp〉2
〈(TrUp)

2〉 − 〈TrUp〉2
(13)

which is plotted on Fig. 8. It can be seen that the correlation in four-dimensional space is notably smaller
than along the surface of the vortex, this fact can be indication that some two-dimensional fields (monopoles)
propagate along the vortex. The detailed discussion of such picture is given in ref. [27].

5 Conclusions

Calculations in lattice QCD and in lattice gluodynamics show that objects like monopoles and vortices are
physical objects which are important for description of nonperturbative effects. For the description of the chiral
symmetry breaking and topological properties of the vacuum some low-dimensional multifractal structures are
important [28]. Thus we have serious indications that extended low-dimensional objects play important role in
the dynamics of nonperturbative field theory (see detailed discussion of these questions in reviews [29]).
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The behavior of the interferometry radii in central A+A collisions at different energies and also for different
nuclei or impact parameters indicates the initial transverse flows at very early stage of the matter evolution.
Development of such flows at pre-thermal partonic stage is considered.

1 Introduction

The first results of the femtoscopy, or HBT analysis at RHIC experiments [1] (as it was first announced by the
STAR Collaboration) have revealed unexpected results - the so-called RHIC HBT puzzle [2]. The puzzle implies,
firstly, that the absolute values of the interferometry radii/volume in central Au+Au collisions do not change
essentially at RHIC as compared to the SPS energies for Pb+Pb collisions despite much higher multiplicities.
It was in contrast with, expected at that time, possibility of the proportionality law between the interferometry
volumes and multiplicities. At the same time there is an approximate proportionality between interferometry
volume and different initial volumes which can be associated, e.g., with number of participants (nucleons of
nuclei) in the collision process and, thus, with the multiplicity. Secondly, the ratio of outward to sideward
transverse radii is opposite to what was expected in standard hydrodynamic and hadronic cascade pictures.
The ratio measured by STAR and PHENIX collaborations at RHIC BNL is close to unity in a wide momentum
region. At the first sight these observations are in a contradiction with an existence of quark-gluon plasma
and mixed phase as it implies a long time pion radiation which usually results in the large ratio of outward to
sideward transversal radii. As a result, now the phenomenological parameterizations, like the blast wave model
just ignore the emission from the surface of expanding system despite the fact that it should last at least about
the extracted life-time of the fireball: 10-12 fm/c.

These notes represent the possible explanation of the peculiarities of the observed behaviors of the interfer-
ometry radii based on an analysis of the temporal evolution of observables [3, 4]. As a result, one can conclude
that initial flows in pre-thermal partonic matter, which precede hydrodynamical expansion, should develop in
the system. We discuss the possible scenario of the pre-thermal evolution of partonic matter and estimate the
collective velocities at this early stage of the processes of ultrarelativistic A+A collisions.

2 Analysis and treatment of experimental data

As it was shown in Ref.[3] the phase-space density of thermal pions totally averaged over freeze-out hypersurface
σ and over momenta except the longitudinal one (rapidity is fixed, e.g., y = 0), 〈f〉, is an approximate integral
of motion.

The conservation of the APSD allows one to study the hadronization stage of the matter evolution based
on the possibility to define the APSD of thermal pions at the final stage of the matter evolution through
the integral (over momentum) representation of this value through the observed spectra and interferometry
volumes [3]. The results for the APSD at mid-rapidity for pions at the AGS, SPS, RHIC demonstrate a plateau
at low SPS energies that indicates, apparently, a transformation of an excess of initial energy to non-hadronic
forms of matter, a saturation of the APSD at RHIC energies can be treated as an existence of the limiting
Hagedorn temperature of hadronic matter, or maximal temperature of deconfinement [4].

Let us use these results for an analysis of the behavior of the pion interferometry volumes Vint. If one
consider them at small transverse momenta, then they can be represented approximately through the APSD as
the following:

Vint ' C
dN/dy

〈f〉T 3
eff

(1)

It is easy to see then that at any fixed energy
√
sNN the Vint is nearly constant in time since the values

dN/dy, APSD 〈f〉 and effective temperature Teff in r.h.s. of Eq. (1) are approximately conserved for the

c© Sinyukov Yu.M., Karpenko Iu., Nazarenko A.V., 2007.
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Figure 1. The typical freeze-out hypersurfaces with the fixed f.o. energy density presented in τ − r plane for
Bjorken-like azimuthally symmetric hydrodynamic expansion with equation of state P = ε/3 and zero initial
transverse flow. The curves correspond to the different initial energy densities εi(τi, y, r)=ε0(τi, y, r), 2ε0(τi, y, r),
4ε0(τi, y, r) distributed in r-plane according to the Woods-Saxon formula. The initial proper time is τi = 1 fm/c.

thermal pions during the chemically frozen hydro-evolution. As the result, the HBT microscope at diverse
energies “measures” the radii that are similar to the sizes of colliding nuclei. It explains the experimental
observations that at the same collision energy, the Vint depends strongly on the sizes of colliding nuclei and on
the impact parameters in non-central collisions [5].

The RHIC experiments show clearly that there is no proportionality law between Vint and dNπ/dy: the
later value grows with energy significantly faster than Vint. This fact is the main component of the HBT puzzle.
According to Eq. (1), a proportionality between Vint and the particle numbers dN/dy may be destroyed by
a factor 〈f〉T 3

eff . So, if the APSD and Vint only slightly grow with energy, mostly an increase of T 3
eff could

compensate a growth of dN/dy in Eq. (1). One can see that it is the case: for example, the ratio of cube of
effective temperatures of negative pions at

√
sNN = 200 GeV (RHIC) to one at 40 AGeV (CERN SPS) gives

approximately 2, while the ratio of correspondent mid-rapidity densities is approximately equal to 3. It can be
only in the case of an increase of the pion transverse flows in A+A collisions with energy. If the intensity of flows
grows, it leads to a reduction of the corresponding homogeneity lengths which contribute to the interferometry
radii. This effect can almost compensate a contribution to observed interferometry volumes of the geometrical
system sizes that grow with energy. The question is then: why does the intensity of flow grow? It is clear that
an increase of collision energy

√
s results in a rise of initial energy density ε and hence of (maximal) initial

pressure pmax. At the same time the initial transverse acceleration a = grad(p)/ε ∝ pmax/ε does not change.
Thus, one can conclude that there could be the two reasons for an increase of transverse pion flows with collision
energy. First one is obvious, it is an increase of the time of hydro-evolution that the system needs to reach the
same (or less) freeze-out energy density or temperature at higher initial density (see Fig. 1)

However, apparently, relativistic hydrodynamic picture overestimate the increase of the longitudinal inter-
ferometry radii, that is associated with life-time of the system, as compare to the experimental data.

The another reason for an increase of the observed transverse flows is the presence of the initial transverse
velocity which may develop at the pre-thermal partonic stage and obviously has an influence on the time of
evolution and intensity of transverse flow at freeze-out. Moreover, what is essentially important, this factor
has the direct connection to the second component of HBT puzzle: the unexpectedly small ratio of outward
to sideward interferometry radii. In relativistic hydrodynamics or realistic hydro-inspired parametrization the
freeze-out hypersurface should be enclosed, so the protractive surface emission of pions (hadrons) from fairly
cold periphery of the expanding system take place. Normally, it should lead to large Rout to Rside ratio, however,
as demonstrated in Ref. [6], it is possible, nevertheless, to describe the data successfully, including Rout to Rside
ratio, if there are positive r − t correlations between the radial r coordinates and times t of surface emission of
the particles. The term associated with these correlations gives the negative contribution to Rout interferometry
radius and so compensates the positive contribution to it from long time surface emission.

The only fit with positive r − t correlations, as it presented in Fig.2, results in good description of the
the spectra pions, kaons and protons and pion interferometry data, including Rside and Rout. All details are
presented in Ref.[6].
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Figure 2. The dynamical realization of the freeze-out with positive r − τ correlations at constant energy
density [7] based on the (3+1)D exact analytical solutions of relativistic hydrodynamics [8] with intensive initial
transverse flows

One of the most important observation is that the r− t correlation at the freeze-out hypersurface, according
to equations of relativistic hydrodynamics, can be predominantly positive only if the system has at initial
moment a developed transverse flow. The typical situation presented in Fig.1 and Fig.2. The former figure
corresponds to an absence of the initial transverse flow, the second describe intensive blast-like expansion into
vacuum that starts at early stage of the evolution, say, at τ=1 fm/c. In the first case the negative r − t
correlations between the surface emission points takes place, and it leads to a positive contribution to Rout in
addition to big positive contribution associated with protracted surface emission. In the second case the latter
positive term is compensated by the positive r − t correlation term. It leads to experimentally observed Rout
to Rside ratio in presence of protracted surface emission.

3 Pre-thermal partonic stage : The free-streaming approximation

A problem of formation of the initial transverse velocity at pre-thermal partonic stage leads inevitably to the
complex matter of the initial stage in ultrarelativistic A+A collisons and the problem of thermalization. In
these notes we will not discuss in details this very complicated topic just keeping in mind quite simple physical
picture and apply it phenomenologically.

Let us imagine a box (with size L) that have the ideally reflecting walls and contains the standing (electro-
magnetic) waves inside. Then collide the two such boxes with the energy that allows to crush them completely.
Standing waves then will be destroyed due to a stochastisation that is accompanied by the crashing processes
[9]. In other words, strong correlations between phases of traveling “backward” and “forward” waves, with
discrete momenta, say, 2π/L and −2π/L, caused by ideal reflections from the opposite walls, will vanish and
instead the random phases exp(αpi

) will appear:

sin
2πx

L
=

1

2

(
exp

i2πxT

L
− exp

−i2πxT

L

)
⇒
∑

ρpi
eαpi eipixT .

In the case of very weak field we will see then, say, two incoherent photons traveling, for instance, in transversal
plane in opposite directions.

Let us provide an analogy now with high energy nucleus-nucleus collisions by imaging them as the collisions
of the two “boxes” (containing many “small boxes” – nucleons). Due to the non-commutativity of the gluon
number operator with the operator of Lorenz boost, there is a huge number of coherent partons in the fast
moving box – this state probably can be represent within the Color Glass Condensate (CGC) approach [10].
Correspondingly, after collision there will be not just two gluons but the classical color field (because of large
occupation number) expanding into vacuum. When occupation number reduces, one can see the picture of
the expanding system of incoherent partons. It may call “partonic explosion” when many hidden degrees of
freedom, associated with incoherent partons and carried significant transverse momentum, are liberated almost
suddenly. An estimate of the thermalization time for this system is a rather complicated problem and we just
mention about it later. It seems that partons interact weakly enough and instability mechanism [11] works not



78 Sinyukov Yu.M., Karpenko Iu., Nazarenko A.V.

so fast, as necessary to reach very small time of momentum symmetrization (thermalization?), less then 1 fm/c,
required by hydrodynamics models to describe elliptic flows.

Let us simplify the problem again and consider now the developing of transverse velocity at pre-thermal
partonic stage in an approximation of free streaming for this weakly interacting particles.

We start from the simple non-relativistic example. Let us put the initial momentum distribution of particles
with mass m to be spherically symmetric Gaussian with the width corresponding to thermal Boltzmann distri-
bution with uniform temperature T0, no flows: u(t = 0, r) = 0, and also spherically symmetric Gaussian profile
(with radius R0) for particle density. Let the particles just to free stream. Then according to [3] the collective
velocities, which can be defined at any time t according to Eckart:

ui =

∫
d3p

m4
pif(t,x; p)

are

u(t, r) = r
tT0

mR2
0 + T0t2

.

As one can see the collective velocities in free streaming system grow with decrease of particle mass, grow with
initial parameter T0 for m 6= 0, and are independent of the initial “temperature” at m = 0. Qualitatively, the
same happens for relativistic partonic gas.

Let us consider relativistic partonic picture with the initial momentum distribution at Björken proper time
τ=1 fm/c corresponds to “transverse momentum” Fourier components in the color field in the CGC picture
found in Ref.[12]. Suppose that after collision the similar transverse spectrum will appear for incoherent partons.
As for the longitudinal ones we will use the local 3D isotropic quasi-thermal distribution as it was proposed in
Ref.[13] based on the Schwinger mechanism of the partonic production: the partons created by a pulse of the
strong chromo-electric field during collision process are distributed (locally) quite isotropically since the limited
in time action of the field. Let us use the boost-invariant approximation in mid-rapidity and the Woods-Saxon
initial profile for energy density in transverse plane. Then the partonic distribution function at the initial proper
time τ = τ0 is:

f0 =
1

exp mT

T cosh θ − 1

1

exp 1
δ (rT −R) + 1

, (2)

where θ is the difference between particle and fluid rapidities. The main parameters of the distribution is agreed
with Refs.[12, 13]: T = 0.465Λs, δ = 0.67 fm, Λs = 1.3 GeV, τ0 = 1 fm/c, R = 7.3 fm, partonic mass is taken to
be equal to m = m0 = 0.0358Λs. The evolution of this function is defined by the equation for free streaming,

pµ
∂f

∂xµ
= 0. (3)

The solution of this equation describes the distribution function at any hypersurface τ = const by the use of
the following substitution in the arguments of the function f0 related to the initial proper time τ0=1 fm/c:

rT → rT −
pT

mT

(
τ cosh θ −

√
τ2
0 + τ2 sinh2 θ

)
, (4)

θ → arcsinh

(
τ

τ0
sinh θ

)
. (5)

In what follows we will consider the properties of such a free-streaming expansion of boost-invariant and
cylindrically symmetric finite system into vacuum as a first approximation and discuss the possible whole picture
of the early pre-thermal stage.

4 Collective velocities and local anisotropy in partonic system

Let us study the free-streaming stage of the evolution, supposing, as it was argued above, that incoherent
partonic system arise at the time of order of 1 fm/c as a locally isotopic boost-invariant and weakly interacting
gas. Then gas will free stream into vacuum. The process itself will lead to a local anisotropy which we will study
in this section. The increase of the anisotropy may be compensated by the process of turbulency (instability)
and gradual thermalization associated with Balescu-Lenard term for QCD fields.

The analysis of the local anisotropy of the distribution function can be done in the two ways. The first one
deals with a study of distribution function properties, while the second one deals the difference between spatial
components of the energy-momentum tensor in local rest frames. In both cases, we are forced to consider the
distribution and the energy-momentum tensor in a co-moving reference frame determined by collective velocity.
Here we will apply both Eckart and Landau-Lifshitz definitions of the collective velocities v(x) related to fairly
small elements associated with point (xµ).
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The connection between the global and local rest frame moving with 3-velocity v = (vi), is Lorentz trans-
formation defined by matrix of the form:

(Λµν) =




γ viγ

vjγ δij + vivj(γ − 1)/v2


 , (6)

where γ = 1/
√

1− v2 is a Lorentz factor; v ≡ |v|.
Making use this matrix, the contravariant vector and tensor transformations read

aµ = Λµνa
ν
∗ , aµν = Λµλa

λσ
∗ Λνσ, (7)

where aµ∗ and aµν∗ denote these quantities in co-moving reference frame.
Therefore the 3-vector p is transformed as follows

p = p∗ +
v

v2

(vp∗)(1−
√

1− v2) + v2E∗√
1− v2

, (8)

where E∗ =
√
m2 + p2

∗.
It is possible to examine anisotropy of momentum distribution in different co-moving reference frames asso-

ciated with different spacial points, where 3-momentum p∗ determines p in accordance with Eq. (8).
The local anisotropy reveals itself also in structure of the energy-momentum tensor, which in pseudo-

Cartesian coordinates reads

Tµν(x) =

∫
pµpνf(x, p)pT dpT dy dφ, (9)

where the Lorentz-invariant integration measure d3p/E in Cartesian variables is already re-written in Björken
variables: (pµ) = (mT cosh y, pT cosφ, pT sinφ, mT sinh y).

To find Tµν in central rapidity slice, we numerically calculate energy-momentum tensor (9) at longitudinal
coordinate z = 0 (η = 0), when τ = t. Due to the symmetry properties of distribution, one finds T tz =
T xz = T yz = 0. Let ψ be the angular direction relative to the radial axis x. Note that T xy = 0 at ψ = nπ/2,
n = 0,±1,±2, .... Fixing ψ = 0, the non-vanishing components of the energy-momentum tensor are

(Tµν) =




T tt T tx 0 0
T tx T xx 0 0
0 0 T yy 0
0 0 0 T zz


 . (10)

It is understandable that the direction of collective velocities v in the global (origin) reference frame at z = 0
should coincide with vector rT and therefore v = (v cosψ, v sinψ, 0).

The tensor Tµν∗ in the co-moving reference frame, associated with local velocity v, is defined from (10) by
use of the matrix Λµ

ν inverse to (6). (Actually, matrix Λµ
ν is derived from (6) by replacement vi → −vi.) In

the case of a boost, the components of the energy-momentum tensor in two reference frames are related by

Tµν∗ = Λλ
µTλσΛσ

ν . (11)

4.1 Eckart Frame

Now we are concentrated on the collective velocity computation. In this subsection we deal with 4-velocity
defined by Eckart:

uµE =
Nµ

√
NνNν

, (12)

where

Nµ =

∫
pµf(x, p)pT dpT dy dφ

is the particle flux.
The collective 3-velocity is simply given by vE = uE/uE

0 . The dependence of transverse velocity vE =√
v2
x + v2

y on rT at η = 0 is demonstrated in Fig. 3.

Having got numerically the values of collective velocity, one can re-write the distribution function at the
fixed point of space-time in Eckart co-moving reference frame by means of Lorentz transformation (8). At
τ = τ0 = 1 fm/c, the distribution is isotropic, as must be according to initial conditions. Increasing τ , the
distribution becomes more and more anisotropic that is reflected on the collective velocity development.
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Figure 3. The Eckart collective transverse velocity in weakly interacting partonic system in the approximation
of free streaming. The initial state at 1 fm/c is supposed to be quasi-thermal and corresponds to the distribution
(2). Dashed curve correspond to τ=1.5 fm/c, solid line – 3 fm/c.

Another possibility to observe the anisotropy in the given systemis to compare the components of energy-
momentum tensor in a given co-moving reference frame, which is introduced by means of formula (11). The
result of numerical calculations is shown in Fig. 4. Abbreviation “Arb. units” means that the distribution
function is not normalized.

We find T xx∗ = T yy∗ = T zz∗ at τ = τ0 = 1 fm/c, that also confirms the isotropy at the initial moment.
Changing τ , the value of T zz∗ turns out essentially less than T xx∗ and T yy∗ , which also differ.

Remark that, putting v = vE in Eq. (11), it is impossible to cancel T tx∗ in whole region of values of rT.
Further, we will demonstrate that the requirement T tx∗ = 0 corresponds to definition of Landau-Lifshitz frame.

4.2 Landau-Lifshitz Frame

The Landau-Lifshitz definition of collective velocity can be formulated as

uµL =
TµνuL

ν

uλLTλσu
σ
L

. (13)

In general, this expression is equation with respect to uµL, which should be solved numerically. However, in our
case of cylindrical symmetry, when the free streaming is going on along rT-axis, the collective velocity can be
found explicitly.

Substituting the expression for T µν∗ , the components of the collective 4-velocity in co-moving reference frame
are

(uµ∗L) = (1, 0, 0, 0) =

(
1,
T tx∗
T tt∗

, 0, 0

)
. (14)

It meas that T tx∗ = 0 and then one can get from Eq. (11) the expression for velocity in the global reference
frame:

vL =
T tt + T xx

2T tx

(
1−

√
1− 4(T tx)2

(T tt + T xx)2

)
. (15)

The behavior of vL is shown in Fig. 5. The velocity vL also vanishes at τ = τ0. Although vL is close to vE
(see Fig. 3) they are not completely coincided since the system is not in locally equilibrated state.

In the case of v = vL (see (11)), the anisotropy of energy-momentum tensor is demonstrated in Fig. 6 and
it is qualitatively the same as in the Eckart case presented in Fig. 4.

4.3 Analysis of Weak Anisotropy

As one can see from Figs. 4, 6 the diagonal spatial components of the energy-momentum tensor of partonic
system, even if they were equal at the initial formation time [13], are splitting during free-streaming expansion
so that T yy∗ (x) > T xx∗ (x) > T zz∗ (x). Thus the components of T µν∗ (x) associated with directions of non-zero
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Figure 4. The components of the energy-momentum tensor, T tt∗ (solid), T xx∗ (dashed), T yy∗ (dotted), T zz∗
(dot-dashed), T tx∗ (dot-dot-dashed), at τ =1, 1.5, 3 fm/c and ψ = 0. Eckart co-moving frame.

collective velocities (initial and developed) become suppressed as compare with other ones. Correspondingly,
the particle distribution function gradually looses the local momentum isotropy during the expansion. Let us
parameterize this anisotropy as depending on τ = t and rT at fixed z = 0.

It is useful to analyze the case of weak anisotropy and relate our result to other models. For this aim we
represent distribution function (2), (4), (5) in the form f = F ·W where

F (a) =
1

exp a
T − 1

, W (b) =
1

exp b−R
δ + 1

. (16)

Fixing z = 0, ψ = 0, the arguments of these functions are presented as

a2 = E2 + ξp2
z, (17)

b2 = r2T − 2
rTpx

m2 + p2
T

τ0(
√

1 + ξE − a) +
p2

T

(m2 + p2
T)2

τ2
0 (
√

1 + ξE − a)2,

where we have introduced the parameter of anisotropy ξ(τ) = τ 2/τ2
0 − 1 and E =

√
m2 + p2. Note that the

same dependence of ξ on the proper time has already pointed out in Ref.[14] to account for longitudinally boost
invariant expansion in partonic system.

Let us write distribution function f in the linear approximation in ξ. The form of such a distribution is

f ≈ fiso +
ξ(τ)

2

{
W (rT)

dF (E)

dE

p2
z

E
− F (E)

dW (rT)

drT

pxEτ0
m2 + p2

T

(
1− p2

z

E2

)}
, (18)

where fiso ≡ F (E)W (rT) is the initial isotropic distribution function in the global reference frame.
We see that the first term in the brackets {} corresponds to momentum anisotropy due to initial momentum

inhomogeneity, while the second one is related to the initial inhomogeneity in coordinate space.
Since the axial symmetry we can put ψ = 0, and the transition to the co-moving frame associated with some

point (x, y = 0, z = 0) is determined in the simple way:

px =
px∗ + vE∗√

1− v2
, E =

E∗ + vpx∗√
1− v2

, py = py∗, pz = pz∗, (19)
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Figure 5. The Landau-Lifshitz collective transverse velocity in weakly interacting partonic system in the
approximation of free streaming. The initial state at 1 fm/c is supposed to be quasi-thermal and corresponds
to the distribution (2). Dashed curve correspond to τ=1.5 fm/c, solid line – 3 fm/c.

2 4 6 8 10 12 rT [fm] 2 4 6 8 10 12 rT [fm]

Figure 6. The components of the energy-momentum tensor, T tt∗ (solid), T xx∗ (dashed), T yy∗ (dotted), T zz∗
(dot-dashed), at τ =1.5, 3 fm/c (from left to right) and ψ = 0. Landau-Lifshitz co-moving frame.

where E∗ =
√
m2 + p2

∗.
Limiting ourselves by the linear approximation in the parameters of anisotropy, when v is also supposed to

be small and discarding the term of order vξ, we find

f∗ ≈ f∗iso −W (rT)
dF (E∗)

dE∗ px∗v +
ξ(τ)

2

{
W (rT)

dF (E∗)

dE∗

(pz∗)
2

E∗

−F (E∗)
dW (rT)

drT

px∗E∗τ0
m2 + (p∗

T)2

[
1−

(
pz∗
E∗

)2
]}

, (20)

where f∗iso ≡ F (E∗)W (rT) is the isotropic distribution function in co-moving reference frame.
The radial collective velocity v is actually a dependent parameter. Following the Eckart definition,

vE =

∫
pxf(x, p)

d3p

E

/∫
f(x, p)d3p , (21)

(where we put ψ = 0 again, and then the collective velocity direction coincides with x-axis), we get in linear
approximation

vE ≈ ξ(τ)
λ0∫
fisod3p

, (22)
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where

λn = −τ0
2

∫
p2
xE

nF (E)

m2 + p2
T

(
1− p2

z

E2

)
dW (rT)

drT
d3p. (23)

Similar computations can be also performed to obtain the form of Landau-Lifshitz collective velocity in the
linear approximation in ξ. The result looks like

vL ≈ ξ(τ)
λ1

T iso
tt + T iso

xx

, (24)

where T iso
tt and T iso

xx are the energy-momentum tensor components found on the basis of the isotropic distribution
function fiso ≡ F (E)W (rT) in the global reference frame.

Now let us compare our results with the parametrization proposed by P. Romatschke with collaborators in
Ref.[15]. It was assumed there that the anisotropic distribution function h(p) is independent on space-time
coordinates and constructed from an (arbitrary) isotropic distribution function by the rescaling of one direction
in momentum space,

h(p) = hiso(
√

p2 + ξ(np)2), (25)

where n is the direction of anisotropy, ξ > −1 is a constant parameter reflecting the strength of anisotropy. We
omit here the normalization constant N(ξ) which was used in Ref.[15] as not relevant to our problem since the
particle number conservation during the evolution from initially isotropic state is guaranteed by Eq. (3).

Expanding the distribution h(p), in the linear approximation in ξ one can write that

h(p) ≈ hiso(p) + ξ
dhiso(p)

dp

(np)2

2p
. (26)

It is easy to see that the expression (18) for central slice z = 0, vz = 0 is reduced to the last formula (26) at
ξ = τ2/τ2

0 − 1 and anisotropy vector n directed along z-axis in the particular case supposed in Ref.[15], namely,
spatially homogeneous distribution, W (rT) ≡ const, and massless particles, E = |p∗| ≡ p.

In our inhomogeneous case, we can present linearized form (20) for distribution function in local rest frame
associated with some point (x, y = 0, z = 0) as the following

f∗(τ,x,p∗) ≈ f∗iso(x, |p∗|) + ξ(τ)g(x,p∗). (27)

5 Problem of the evolution at pre-thermal stage

As it was demonstrated in [14, 15] the ansatz (25), is useful for analytical studies of dispersion law and isotropi-
sation driven by instabilities. The latter can be caused by momentum anisotropy in a system of ultrarelativistic
elecro- or color- charged particles. The expression (27) also can be utilized for this aim. However, in our case,
when initial partonic system is supposed to be formed in pseudo-thermal state due to Schwinger production
in the pulse of chromoelectric field, the problem is to estimate whether this state, first, preserve its (local)
isotropy due to instability/turbulency mechanism and, then, if it transforms into true thermal state due to the
interactions. As we see in previous Section, the anisotropy caused by a free expansion of the finite system into
vacuum can be characterized in linear approximation by one parameter ξ, which is a function of proper time τ .
One can estimate the possible rate of anisotropy growth at the following

R(τ) ≡ 1

f∗(τ)

df∗(τ)

dτ
' 2τ

τ2
0

g∗

f∗iso
. (28)

Approximate equality is written down for the case τ/τ0 − 1� 1.
In order to maintain the initial isotropization of the partonic system during the evolution, it is obvious that

the rate R(τ) should be smaller than 1/τiso, where τiso is a characteristic, or relaxation time of isotropization
driven by instability. This time τiso is planning to be estimated in forthcomming work, as well as rate of
thermalisation due to color interaction described by Balescu-Lenard term in the kinetic equation.

In previous section we analize the developing of collective transverse flows in the finite non-thermal partonic
system in the first free-streaming approximation. The results are presented in Figs. 3, 5. Unlike discussed
in a Sec. 3 the specific non-relativistic case, where the initial isotropy in local rest frames of the distribution
function is preserved during the further evolution, the ultra-relativistic evolution is not locally equilibrated, the
distribution function and energy-momentum tensor become anisotropic in the local rest frames, and thus the
development of the transverse velocities is not associated with hydrodynamics of ultrarelativistic gas. Never-
theless, as we demonstrate in Fig. 7, such a development of transverse velocities can be approximated by the
hydrodynamic expansion with abnormal hard EoS: P = 0.45ε (“normal” upper limit P = ε/3 has ultrarelativistic
gas).
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Figure 7. The simulation of the transverse collective velocities (according to Ekkart ≈ Landau-Lifshitz) of
the quasi-free and almost massless partons within ideal hydrodynamics with the same initial conditions as for
partonic system. The velocity is good approximated by such a hydro-evolution with extra-hard EoS P = 0.45ε.
Dashed curve corresponds to a weakly interacting partonic system at τ=3 fm/c and 5 fm/c, solid line - to
hydro-evolution at corresponding proper times.

Therefore, it might be that a short thermalization time is not necessary for development of the observed
radial flows. They can be developed, and even more effectively, at the pre-thermal or pseudo-thermal stage.
The natural objection against such a scenario might mean the problem of not radial but the elliptic flows.
They need earlier thermalization in order to the initial geometrical asymmetry in transverse plane transforms
more effectively into momentum asymmetry. The pre-thermal transverse flows can smear out the asymmetry
in momenta coming from the asymmetry in pressure gradients.

The solution of the problem could be an account for the residual – after the exclusion of the non-participants
– a transversely directed angular momentum which the system of participants has just after collision due to a
shift of the center of masses of colliding nuclei in reaction plane, that is associated with impact parameter [16].
Then, as it is shown in Ref.[17], the corresponding tilt in the major axis of longitudinal expansion gives positive
contribution to the asymmetry of the particle momenta in transverse to beam plane, or in v2 coefficient. The
account for an interplay between the initial pre-thermal transverse velocity and the angular momentum which
the system of participants obtains in non-central collisions can open the new way in an understanding of the
problem of matter evolution in nucleus-nucleus collisions.

6 Conclusions

The approximate conservation of the pion averaged phase-space density (APSD) in A+A collisions during the
hadronic stage of the evolution allows one to explain proportionality between interferometry volume and different
initial volumes, e.g., in non-central collisions, and also explain the relative independence of the interfometry
volumes on energy in central Au+Au and Pb+Pb collisions by an increase of transverse flows with energy. The
hydrodynamic picture with initially non-zero transverse flow can help in description of the latter effect.

The another component of the RHIC HBT puzzle - the relatively small ratio of outward to sideward inter-
ferometry radii at protracted surface emission also needs in intensive initial transvere flows for its explanation.
The reason is that predominantly positive space-time (r − t) correlations for emission points, which reduce the
outward radius, can be realized only in hydrodynamic picture with strong enough transverse flow at initial
moment.

We demonstrate here that the intensive transverse flows can be developed at the very early pre-thermal
partonic stage when many hidden degrees of freedom, associated with incoherent partons, are liberated. It is
shown that the development of the transverse velocities at pre-thermal partonic stage can be approximated by
the hydrodynamic expansion with abnormal hard equation of state. The interplay of those flows and angular
momenta, which the system get in non-central collisions, could lead to new scenario of the matter evolution and
help to describe the experimental data in central and non-central A+A collisions.

Acknowledgements. Yu.S. would like to thanks very much to Tetsufumi Hirano who give possibility to use
the hydrodynamic code to clarify some features of relativistic evolution.
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SEARCH FOR EFFECTS BEYOND THE STANDARD MODEL IN PHOTON
SCATTERINGS AND IN NONMINIMAL GAUGE THEORIES ON LINEAR
COLLIDERS OF NEW GENERATION

T. V. Shishkinaa

Belarusian State University, Minsk, Belarus

The main possibilities of investigation of leptons and bosons production in interaction of polarized photons are
considered. The usage of γγ → f f̄ [+γ] reactions for the luminosity measurement on linear photon collider is
analyzed. The achievable precision of the luminosity measuring is considered and calculated. The first-order
QED correction to γγ → ll̄ scattering is analyzed. All possible polarization states of interacting particles are
investigated. For the detection of deviations from SM predictions at linear γγ colliders with centre of mass
energies running to 1TeV the influence of three possible anomalous couplings on the cross sections of W+W−

productions has been investigated. The significant discrimination between various anomalous contributions is
discovered. The main contribution of high order electroweak effects is considered.

1 Introduction

The Standard Model (SM) has possibility to describe all experimental data up to now with typical precision
around one per mil. Nevertheless the Model is not the final theory valid up to very high scales and at linear
collider that can run at centre of mass energies around 1 TeV one can hope to see finally deviations in precision
measurements occur typically for two reasons.

If the new physics occurs in loop diagrams their effect is usually suppressed by a loop factor α/4π and very
high precision is required to see it. If the new physics is already on the Born level but at very high masses the
effects are suppressed by propagator factor s/(s−m2

NP
− ımNP

Γ) so that is important to work at the highest
possible energies.

Linear lepton colliders will provide the opportunity to investigate photon collisions at energies and luminosi-
ties close to these in e+e− collisions [1].

The possibility to transform the future linear e+e−-colliders into the γγ and γe -colliders with approximately
the same energies and luminosities was shown. The basic e+e−-colliders can be transformed into the eγ- or
γγ-colliders. The intense γ -beams for photon colliders are suggested to be obtained by Compton scattering of
laser lights which is focused on electrons beams of basic e+e−-accelerators.

The electron and photon linear colliders of next generation will attack unexplored higher energy region where
new behaviour can turn up. In this area the photon colliders have a number of advantages.

– The first of the above advantages is connected with the better signal/background ratio at both e+e−- and
eγ/γγ-colliders in comparison with hadron ones.

– The production cross sections at photon colliders are usually larger than those at electron colliders.

– The photon colliders permit to investigate both of the problems of new physics and those ones of ”classical”
hadron physics and QCD.

Compare of above mentioned electron and photon colliders.

1. In the scheme considered the maximal photon energy is slightly less than electron energy E.

To increase the maximal photon energy one can use the laser with the largest frequency. It seems also useful
to do photon spectrum more monochromatic. However with such energy growth the new phenomenon takes
place which destroy the obtained photon beams. The high energy photons disappear from the beam due to
their collisions with laser ones producing e+e− -pairs.

2. The eγ and γγ luminosities can be the same as basic e+e− luminosity or even larger (for instance for γγ
collisions).

3. It seems to be an important advantage of the electron beams that they are the monochromatic ones. It
isn’t correct.

Really the production of the heavy particles in electron colliders can be represented as two-step process. At
the first step an electron emits photons (it is standard bremsstrahlung – initial state radiation). After that the
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electrons with the lower energies collide and produce the heavy particles. Secondly, the electron spectrum is
smoothed due to bremsstrahlung. This spectrum varies during bunch collision.

4. The photon spectrum is nonmonochromatic. Its effective form depends on the conditions of the conversion.
Besides the collisions of electron with a few laser photons simultaneously result in high energy tail of spectrum
(nonlinear QED effect). On the other hand due to angular spread of photons the effective form of their spectrum
varies with the distance between conversion and collision points.

5. Only with using of detailed data on momenta of particles observed one can restore the real energy
dependencies of cross sections. The determination of cross section averaged over the above wide spectra seems
to be useful for very preliminary estimations only.

At the colliders discussed the data processing should be performed with equation of the form:

∫
∂2L(E1, E2)

∂E1∂E2
· σ(W 2)|W 2=4E1E2

· dE1dE2. (1)

Therefore the special measurements of the spectral luminosity dL(E1, E2) (i. e. the distribution of luminosity
in W and in the rapidity of produced system) are necessary. The preliminary estimations shows that one could
use for this aim the Bhabha scattering for electron colliders, the Bethe-Heither eγ → eµ+µ− processes for eγ -
colliders, γγ → µ+µ−µ+µ− process for γγ -colliders.

6. In the e+e− -colliders the region of small angles closed for the observations. The small angle region will
be open for investigation at γγ and γe- colliders.

7. The degree of photon polarization correlates with its energy. The polarization of hard photons can be
calculated: the special measurements for soft tail are needed. The same problem for electrons is due to the
variation of their polarizations induced by bremsstrahlung.

8. In the e+e− -collisions in the most cases the states J = 1 are produces. Therefore, the e+e− -colliders
are suitable for investigation of neutral vector bosons.

At the γγ -colliders all the partial waves are produced. The set physical processes which can be investigated
at the γγ -colliders is richer than that in the e+e−-colliders.

9. The production cross section at γγ collisions are usually larger than those ones at e+e−-collisions and
they are decreased slowly with the energy. It is the source of the additive advantage of γγ colliders because the
detailed investigation of many reactions and particles is preferable for above the threshold.

10. There is no need in the positron beams for the γe and γγ colliders. It is sufficient to have as a base the
e−e− collider only.

So it is exclusively important task to use possibilities of γγ-colliders to realize the experiments of the next
generation.

If a light Higgs exists one of the main tasks of a photon collider will be the measurement of the partial width
Γ(H → γγ). Not to be limited by the error from luminosity determination the luminosity of the collider at the
energy of the Higgs mass has to be known with a precision of around 1%.

To produce scalar Higgses the total angular momentum of the two photons has to be J=0. In this case the
cross section γγ → l+l− is suppressed by factor m2

l /s and thus not usable for luminosity determination.

In the SM the couplings of the gauge bosons and fermions are constrained by the requirements of gauge
symmetry. In the electroweak sector this leads to trilinear and quartic interactions between the gauge bosons
with completely specified couplings.

The trilinear and quartic gauge boson couplings probe different aspects of the weak interactions. The trilinear
couplings directly test the non-Abelian gauge structure, and possible deviations from the SM forms have been
extensively studied. In contrast, the quartic couplings can be regarded as a more direct way of consideration of
electroweak symmetry breaking or, more generally, on new physics which couples to electroweak bosons.

In this respect it is quite possible that the quartic couplings deviate from their SM values while the triple
gauge vertices do not. For example, if the mechanism for electroweak symmetry breaking doesn’t reveal itself
through the discovery of new particles such as the Higgs boson, supersymmetric particles or technipions it
is possible that anomalous quartic couplings could provide the first evidence of new physics in this sector of
electroweak theory.

The production of several vector bosons is the best place to search directly for any anomalous behaviour of
triple and quartic couplings.

By using of transforming a linear e+e− collider in a γγ collider, one can obtain very energetic photons from
an electron or positron beams. Such machines as ILC which will reach a center of mass energy ∼ 1000GeV with
high luminosity (∼ 1033cm−2s−1) will be able to study multiple vector boson production with high statistics.

For obvious kinematic reasons, processes where at least one of the gauge bosons is a photon have the largest
cross sections.

So the photon linear colliders have the great physical potential [2] (Higgs and SUSY particles searching,
study of anomalous gauge boson couplings and hadronic structure of photons etc.). Performing of this set of
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investigations requires a fine measurement of the luminosity of photon beams. For this purpose some of the
well-known and precisely calculated reactions (see, for example, γγ → 2f, 4f [3–8]) are traditionally used.

It was shown that it is convenient to use the events of γγ → l+l− process for measuring the luminosity of
the J = 2-beams (J is the total angular momentum of initial photon couple). Here l is the unpolarized light
lepton (e or µ). It is the dominating QED process on J=2 beams and its events are easily detected.

The difficulties appear in the calibration of photon beams of similar helicity (the total helicity of γγ-system
J =0) since the small magnitude of cross sections of the most QED processes. For example, the leading term
of cross section of γγ → ll̄ scattering on J=0-beams is of order α/π (≈ 0.002).

The exclusive reaction γγ → l+l−γ provides the unique opportunity to measure the luminosity of J = 0
beams on a linear photon collider.

One of the main purposes of the linear photon collider is the s-channel of the Higgs boson production at
energies about

√
s = 120GeV . That is the reason of using this value of c.m.s. energy in our analysis.

2 Two lepton production with photon in γγ-collisions

The two various helicity configuration of the γγ-system leads to the different spectra of final particles and
requires the two mechanisms of beam calibration. We have analyzed [3] the behaviour of the γγ → l+l−γ
reaction on beams with various helicities as a function of the parameters of detectors, and performed the detail
comparison of cross section on γ+γ+- (J = 0) and γ+γ−-beams (J = 2). Since experimental beams are partially
polarized the ratio of cross sections of γγ → l+l−γ scattering on J = 0 to J = 2-beams should be high for the
effective luminosity measurement. We have outlined the conditions that greatly restrict the observation of the
process on J = 2 beams, remaining the J = 0 cross section almost unchanged.

Finally we estimate the precision of luminosity measurement.

Consider the process

γ(p1, λ1) + γ(p2, λ2)→ f(p1
′, e1

′) + f̄(p2
′, e2

′) + γ(p3, λ3), (2)

where λi and ei
′ are the photon and the fermion helicities.

We denote the c.m.s. energy squared by s = (p1 + p2)
2

= 2 p1 ·p2 , the final-state photon energy by w. For
the differential cross section the normalized final-state photon energy (c.m.s. is used) x = w/

√
s is introduced.

The differential cross section dσ/dx appears to be the energy spectrum of final-state photons.

The matrix elements are obtained using two methods: the massless helicity amplitudes [9] for the fast
estimations and the exact covariant analysis [10, 11] including finite fermion mass. Since final-state polarizations
will not be measured we have summarized over all final particles helicities. The integration over the phase space
of final particles is performed numerically using the Monte-Carlo method [12].

The calculations have been performed for various experimental restrictions on the parameters of final par-
ticles. Events are not detected if energies and angles are below the corresponding threshold values. The
considering restrictions on the phase-space of final particles (the cuts) are denotes as follows:

• Minimum final-state photon energy: ωcut,

• Minimum fermions energy: Ef,cut,

• Minimum angle between any final and any initial particles (polar angle cut): Θcut,

• Minimum angle between any pair of final particles: ϕcut.

ÿ
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Figure 1. Final-state photon energy spectrum for J = 0 (solid) and (J = 2) ∗ 0.1 (dotted) at
√
s = 120GeV

and cuts: Θmin=7o, ϕmin=10o (left) and ϕmin=30o (right), Ef,min=1GeV , ωmin=10GeV .
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Consider the energy spectrum of final photons. In Fig. 1 the spectra for J=0 and (J=2) are presented (the
(J=2)-cross section is scaled on factor 0.1 for the convenience). The differential cross section dσ/dx on J = 2
beams decreases while one on J = 0 beams raises with increasing of the final-state photon energy. This leads
to the conclusion that if one increases the threshold on w, the process on J=2 beams will be greatly restricted,
but the rate of J = 0 events remains almost unchanged.

The ratio of events on J=0 and J=2 beams strongly depends on the experimental cuts. We obtained the
region (the configuration of cuts) where the processes on the both J=0 and J=2 beams have the cross sections
close by each other. That is the region of small polar angle cut, high collinear angle cut as well as high minimal
energy of final-state photons. At these parameters the total cross sections of γγ → f f̄γ in experiments using
γ+γ+- and γ+γ−- beams appear to be the same order of magnitude.
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Figure 2. The relative mass contribution to energy spectra of final photon for J =0 (left) and J =2 (right)
beams (wcut=1GeV , Ecut=1GeV , Θcut=7o, ϕcut=3o).

The mass contribution is small in the great part of phase space of final particles. The most significant
contribution is for the J = 0 energy spectra (see Fig. 2). The high value of the contribution corresponds to
regions where the differential cross section is minimal. The mass contribution to the total cross section is below
the 1% level at any realistic set of cuts. It means that the helicity amplitudes is a good approach for study the
γγ → l+l−γ process.

3 Luminosity measurement of J=0 beams.

For analysis the precision of luminosity measurement [3] that can be achieved using the reaction γγ → f f̄γ, the
most interest are offered by the two kinds of measurement. The first one is the measuring of beams luminosity
with the wide energy spectrum. The second one is the same measurement for the narrow band around the
energy of Higgs boson production.

We use for consideration the following parameters:
1. luminosity

L(
√
s′ > 0.8

√
s′max) = 5.3 · 1033cm−2s−1,

L(mH ± 1GeV ) = 3.8 · 1032cm−2s−1;

2. polarization P ≈ 90%.
Our calculations allow to choose the set of cuts with the high J=0 cross section and high ratio σJ=0/σJ=2:

ωcut=20GeV , Ef,cut=5GeV , Θcut=6◦, ϕcut=30◦. For these cuts the total cross sections have the following
values:

σ(J = 0) = 0.82pb,

σ(J = 2) = 1.89pb.

So for the precision of luminosity measurement in a 2 years run (2 · 107s) one can obtain:

∆L
L
(√

s′ > 0.8
√
s′max

)
= 0.35%,

∆L
L (mH ± 1GeV ) = 1.3%.
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+ crossed graphs

Figure 3. QED loop corrections.

+ crossed graphs

Figure 4. Real photon emission diagrams.

4 Lepton-antilepton production in high energy polarized photons interaction

The luminosity measurement at J=2 beams will be performed using the reaction γγ → l+l−. It has the great
cross section that provides the number of events enough for the 0.1% precision of luminosity determination.

The main task is to calculate the cross section with maximal precision. For realization of this purpose we
have calculated the complete one-loop QED radiative corrections to cross section of γγ → l+l− process including
the hard photon bremsstrahlung.

The major feature of γγ → f f̄ process is the small value of cross section if the total angular momentum of
γγ−beams equals zero.

We analyze both the angular spectra and the invariant distributions of final particles. The angular spectrum
of final leptons is calculated in form dσ/d cos Θ(pl, pγ). It is more convenient to use Lorentz-invariant results
for the experimental reasons. Therefore we analyze the process γγ → f f̄ [+γ] including O(α)-corrections using
the method of covariant calculations [10, 11]. The invariant differential cross section is calculated in the form
dσ/d(pl − pγ)2 and can be used in the arbitrary experimental configuration.

The cross section of process 2 to be calculated is

dσ =
1

2s

∣∣∣Mλ1,λ2,e1
′,e2

′,[λk]
fi

∣∣∣
2

· dφ,

where
∫
Adφ2[3] =

1

(2π)
2 ·

d3p′1
2E ′1

· d
3p′2
2E ′2

[· d3k

(2π)
3
2ω

] · δ (p1 + p2 − p′1 − p′2[−k]) .

The matrix elements are obtained using the method of helicity amplitudes [9]:

∣∣M+−+−
2

∣∣2 = 4e4
u

t
= 4e4

1 + cos Θ2,2′

1− cos Θ2,2′

= 4e4
s+ t

−t , (3)

∣∣M+−−+
2

∣∣2 = 4e4
t

u
= 4e4

1− cos Θ2,2′

1 + cos Θ2,2′

= 4e4
−t
s+ t

. (4)

The set of invariants

s = (p1 + p2)
2
, t = (p2

′ − p2)
2
, u = (p2

′ − p1)
2
, y = −t/s,

υ = 2 p1
′ ·k , ν = 2 p2

′ ·k , z = 2 p1 ·k , z′ = 2 p2 ·k

are introduced.
It is essential feature of this process that M++xx

2 and M−−xx
2 amplitudes at the Born approximation have

the order
(
m2/s

)2
and are negligible at high energies.
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The integration over dφ for the γγ → l+l− process is performed as follows:
∫
Adφ2 =

1

8πs

∫
A dt(2) '

1

16π

∫
A d cos Θ2,2′ . (5)

The QED loop corrections are represented by diagrams on Fig. 4. We can factorize them upon the Born
cross section as follows:

dσ+−xx = dσ+−xx
(2) · α

2π
· δ+−xx
V , (6)

δ+−+−
V = 2 ln

s

λ2

(
1− ln

s

m2

)
+ ln2 s

m2
+ ln

s

m2
+ ln2 −u

s
+

+
s2

u2
ln2 −t

s
+

(
1− 2s

u

)
ln
−t
s

+
4π2

3
− 3;

(7)

δ+−−+
V = 2 ln

s

λ2

(
1− ln

s

m2

)
+ ln2 s

m2
+ ln

s

m2
+ ln2 −t

s
+

+
s2

t2
ln2 −u

s
+

(
1− 2s

t

)
ln
−u
s

+
4π2

3
− 3.

(8)

Here we have introduced the finite photon mass λ to remove the infrared divergence.
The real photon emission for this process is a pure QED reaction. It is indistinguishable from the γγ → l+l−

process in the infrared (IR) limit and it’s singularities cancel ones caused by loop corrections.
The integration over dφ leads to (in non-covariant expressions the c.m.s. system is used) [10, 11]

∫
Adφ3 =

1

24π3

∫
J (A) dυ dy =

1

44π3s

∫
J (A)ψυ dυ d cos Θ2,2′ , (9)

here

J (A) =
1

π

∫
d3k

ω
A δ

(
Q2 −m2 − 2Q0ω

)
Θ(Q0 − ω), (10)

Q = p1 + p2 − p2
′.

Using the method of helicity amplitudes [9], one can calculate

∣∣M+−−++
∣∣2 = e6

4 p′1 ·p′2 ( p′2 ·p2 )
2

p′1 ·k p′2 ·k p′1 ·p1 p′2 ·p1
, (11)

The other non-vanishing amplitudes are obtained from |M+−−++| by using C, P, Bose and crossing (between
final and initial particles) symmetries:

dσ−λ1,−λ2,−e1′,−e2′,−λ3 = dσλ1,λ2,e1
′,e2

′,λ3 , (P )

dσ+−+−− = dσ+−−++
|1↔2

, (P +Bose)

dσ+−+−+ = dσ+−−++
|1′↔2′

, (C)

dσ+−−+− = dσ+−−++
| 1↔2
1′↔2′

, (CP +Bose)

dσ+++−− = dσ+−−++
| 3↔2
1′↔2′

, (C + crossing)

dσ++−+− = dσ+++−−
|1′↔2′

. (C)

The last couple of substitutions leads to the non-divergent leading term of γ+ − γ+ – scattering.
It is convenient to perform the integration over the phase-space of the final particles numerically. But

the Monte-Carlo methods of numerical analysis [12] require to eliminate all the divergences in the integration
expressions.

The ”forward-backward” divergences can be deleted by imposing cuts on the scattering angle (in calculation
of dσ/d cos Θ) or on the ( pi ·pf )-invariants (for dσ/dy). Another singularities should be extracted as a single
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expression |M |2sub. After this term has been subtracted the matrix element doesn’t contain divergences and can

be integrated numerically. The singular term |M |2sub should be integrated analytically.
The infrared behaviour of helicity amplitudes can be found by covariant expanding (11) of matrix elements

into a series around pole ωγreal
→ 0:

∣∣M+−+−∣∣2
IR

= 16e6
s

υν

u

t

(
1− ν

s
− υ

s

)
+ 8e6

s

υν

(υ − z)u+ (ν − z)t
t2

,

∣∣M+−−+
∣∣2
IR

= 16e6
s

υν

t

u

(
1− ν

s
− υ

s

)
− 8e6

s

υν

(υ − z)u+ (ν − z)t
u2

.
(12)

The first term of each expression has the usual IR-singularity and the rest one is divergent in the massless
limit.

The divergences caused by pf ·k → 0 can be extracted [11] using the method of peaking approximation:

∣∣M+−+−∣∣2
peak

= 8e6
s

υν

u

t

(
1− ν

s
+
ν2

s2
− υ

s
+
υ2

s2

)
,

∣∣M+−−+
∣∣2
peak

= 8e6
s

υν

t

u

(
1− ν

s
+
ν2

s2
− υ

s
+
υ2

s2

)
.

(13)

Each formula of eqs. (12) and (13) can be combined into the united expression:

∣∣M+−+−∣∣2
sub

= 8e6
s

υν

(
u

t

(
1− ν

s
+
ν2

s2
− υ

s
+
υ2

s2

)
+
tu′ − ut′

t2

)
,

∣∣M+−−+
∣∣2
sub

= 8e6
s

υν

(
t

u

(
1− ν

s
+
ν2

s2
− υ

s
+
υ2

s2

)
− tu′ − ut′

u2

)
.

(14)

This directly leads to eqs. (12) in the IR-limit. And it differs from (13) on the term that vanishes in the
peaking limits due to

(υ − z)u+ (ν − z)t = (tu′ − ut′) peak−→ 0. (15)

The analytical integration of (14) over the phase-space is performed according to (9). The second term in
(14) is only a IR-divergent one. To simplify further calculations we introduce arbitrary value ῡ as an upper
bound for it’s integration (and subtraction). Neither numerical no analytical part of the result does not depend
on ῡ if it is chosen in the region m2� ῡ�s (or m2� ῡ�(s+ t) in case of y-dependent differential cross-section).

The IR-divergences can be factorized upon matrix element in a covariant path as follows

Mλ = eMBorn

(
p1

′
µ

p1
′ ·k −

p2
′
µ

p2
′ ·k

)
εµk , (16)

that after squaring gives

|Mλ|2 = 4e2|MBorn|2
(
s′

υν
− m2

υ2
− m2

ν2

)
. (17)

The m2-dependent terms form (17) do not appear in helicity amplitude expressions since setting mass to zero
but they should be included in calculations for proper cancelation of divergences.

The result of analitical integration over the phase space of final photon for the ”soft” and ”collinear” parts
of bremsstrahlung is

δΘR = 2 ln
s

λ2

(
ln

s

m2
− 1
)
− ln2 s

m2
− ln

s

m2
− 4π2

3
+

13

2
. (18)

Combining loop correction expressions (7, 8) and the bremsstrahlung contribution (18) one can obtain

δΘR + δ+−+−
V = ln2 (1− y) +

1

(1− y)2 ln2 y +

(
1 +

2

1− y

)
ln y +

7

2
, (19)

δΘR + δ+−−+
V = ln2 (y) +

1

y2
ln2 (1− y) +

(
1 +

2

y

)
ln (1− y) +

7

2
. (20)

Here y is the function of angle between initial and final particles:

y =
1

2
(1− cos Θ2,2′) .
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Figure 5. Angular-dependent polarization asymmetry and QED correction contribution δ(A) = Atot − ABorn.

The integration results for the invariant-dependent spectra are so complicated that can’t be outlined here.
The final state polarization can scarcely be measured at experiment. That is the reason for summarizing

over the helicities of all final particles.
We present here plots for polarization asymmetries and O(α)-correction to it (see Figs. 5, 6). The graphs

are composed for c.m.s. energy
√
s=120 GeV (the energy of supposed resonant Higgs boson production [13]).

The major feature of γγ → l+l− process is the small value of cross section if the total angular momentum
of γγ-beams equals zero. This polarization selectivity can be useful at the experiment.
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Figure 6. Polarization asymmetry and QED correction contribution δ(A) = Atot − ABorn.

For the measurement the luminosity of J = 2 beams one will use the events of γγ → l+l− process. The
precision of measurement the luminosity of J = 2 beams that can be achieved using γγ → l+l− process can
be calculated in the same way that one for J = 0 beams. We introduce the ωmax parameter for the maximal
energy of bremsstrahlung photon that will still result the detection of single exclusive γγ → l+l− event. For
the supposed detector parameters (ωmax=1GeV , Ef,cut=1GeV , Θcut=7◦) one can obtain:

∆L
L
(√

s′ > 0.8
√
s′max

)
= 0.04%,

∆L
L (mH ± 1GeV ) = 0.1%.

The achieved precision is sufficient for the huge variety of experiments at the photon collider.

5 Boson production in γγ-collisions

Future high-energy linear e+e− colliders in γe and γγ mode could be a very useful instrument to explore
mechanism of symmetry breaking in electroweak interaction using self couplings test of the W and Z bosons
in non-minimal gauge models. WW -production would be provided mainly by γγ-scattering [14]. The Born
cross section σ(γγ → W+W−) is about 110pb at 1 TeV on unpolarized γ-beams. Corresponding cross section
of WW -production on electron colliders is an order of magnitude smaller and amounts to 10pb. One needs to
consider a reaction γγ → W+W−Z since its cross section becomes about 5%-10% of the cross section WW -
production at energies

√
s ≥ 500 GeV. The anomalous three-linear [15] γWW and ZWW and quartic [16]
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γγWW , γZWW , ZZWW etc. couplings induce deviations of the lowest-order cross section from the Standard
Model.

In order to evaluate contributions of anomalous couplings a cross section of γγ → W+W− must be calcu-
lated with a high precision and extracted from experimental data. Therefore one needs to calculate the main
contribution of high order electroweak effects: one-loop correction, real photon and Z emission.

Lagrangian of three-boson (WWγ and WWZ) interaction in the most general form can be presented as

LWWV = −gWWV i[g
V
1

(
W+
µνW

µV ν −W+
µ VνW

µν
)

+ kVW
+
µ W

νV µν +

+iλV /m
2
WW

+
λµW

µV νλ − gV4 W+
µ W

ν (∂µV ν + ∂νV µ) +

+gV5 ε
µνρσ

(
W+
µ

−→
∂ ρ
←−

Wν

)
Vσ + ikVW

+
µ Wν Ṽ

µν + iλ̃V /m
2
WW

+
λµW

µ
ν V

νλ]. (21)

Here Vµ is the photon or Z-boson field (correspondingly, V = γ or V = Z), Wµ – W−-boson field,

Wµν = ∂µWν − ∂νWµ, Vµν = ∂µVν − ∂νVµ, (22)

Ṽµν = 1
2εµνρσV

ρσ and A
−→
∂ µ
←−

B = A(∂µB)− (∂µA)B. The parameter of interaction gWWV are fixed as follows:

gWWγ = e, gWWZ = e cos θW . (23)

In case of WWγ-interaction the first term corresponds to the minimal interaction (in case of gγ1 = 1). The
parameters of the second and third terms are connected with magnetic momentum and quadrupole electric one
of W -boson correspondingly as

µW =
e

2mW
(1 + kγ + λγ), QW =

e

m2
W

(λγ − kγ). (24)

The last two operators parameters are connected with electric dipole moment dW as well as quadrupole magnetic
moment Q̃W :

dW =
e

2mW
(k̃γ + λ̃γ), Q̃W =

e

m2
W

(λ̃γ − k̃γ). (25)

In frame of the SM WWγ- and WWZ-vertices are determined by gauge group SU(2)⊗U(1). In the lowest
order of perturbative theory only C- and T -invariant corrections exist (in this case kV = 1, λV = 0). However
electroweak radiative corrections (loop diagrams with heavy charged fermions) can give significant contribution
in kV and λV as well as C- and T -violate interaction.

There are four-boson vertices giving additional independent information about gauge structure of electroweak
interaction. The corresponding cross sections give contribution in cross section of boson production in eγ- and
γγ-scattering.

If we will consider only the interactions which conserve P - and C-symmetry, Lagrangian four-boson inter-
action includes two 6-dimension operators

L
(6)
Q = − πα

4m2
W

[
aoFαβF

αβ
(
~Wµ · ~Wµ

)
+ acFαµF

αν
(
~Wµ · ~Wν

)]
, (26)

where Fαβ – tensor of electromagnetic field, ~Wµ represent W -triplet, a0 and ac – anomalous constants. The
first term corresponds to neutral scalar exchange. One-loop corrections due to charged heavy fermions give
contributions with four-boson vertices to the both terms of the Lagrangian (26).

Charged scalars give contribution proportional to a0 only.
Since cross section of photoboson production rises to constant value and cross section of electron-positron

interaction decreases with energy growth as reverse proportional dependence s−1 when central mass is equal to
500 GeV, the photoproduction of boson cross section is an order bigger than e+e− interaction cross section and
is the most important source of information about anomalous boson couplings.

We have considered the anomalous quartic boson vertices. For this purpose the following 6-dimensional
SU(2)C Lagrangian [16, 17] have been chosen:

L0 = − e2

16Λ2
a0F

µνFµν ~W
α · ~Wα,

Lc = − e2

16Λ2
acF

µαFµβ ~W
β · ~Wα,

L̃0 = − e2

16Λ2
ã0F

µαF̃µβ ~W
β · ~Wα.

(27)
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Figure 7. The Feynman diagrams for W +W−-production

Figure 8. Dependencies of the ratio σ/σSM on
the various couplings

Figure 9. Dependencies of the ratio σ/σSM on
the various couplings

where the triplet gauge boson ~Wµ and the field-strength tensors

Fµν = ∂µAν − ∂νAµ, W i
µν = ∂µW

i
ν − ∂νW i

µ, F̃µν =
1

2
εµνρσF

ρσ

are introduced. As one can see the operators L0 and Lc are C-, P - and CP -invariant. L̃0 is the P - and
CP -violating operator.

We start from the explicit expression for the amplitude of the process γγ →W+W−

M = Gνεµ(k1)εν(k2)εα(p+)εβ(p−)Mµναβ
T , (28)

where

Mµναβ
T =

3∑

i=1

Mµναβ
i , (29)

k1, k2, p+, p− are four-momenta for the γ, γ, W+, W− and εµ(k1), εν(k2), εα(p+), εβ(p−) their polarizations
respectively,

Gν = e3 cot θW .

Total cross section of γγ-boson production can be presented as

σ =
1

2s

∑

λ1λ2λ3λ4

∫
|Mλ1λ2λ3λ4

|2dΓ, (30)

whereMλ1λ2λ3λ4
have been defined by eq. (29), dΓ is phase space element of the bosons. The dependence of total

cross section σ(W+W−) on anomalous parameters was investigated at the following experimental conditions:
– The center-of-mass energy of γγ(

√
s) in γγ →W+W− is fixed at 1 TeV;

– Photon luminosity L is supposed to be 100 fb−1/year;
– In ILC experiments for γγ-scattering polarization states of the photon beams will be fixed by J = 0 or J = 2
states; – In addition it is assumed that the final W -bosons will be detected with certain polarization states;
and the results are presented in Figs. 8–13.

It is evident that minima of the curves are close to the Standard Model point ai = 0 since the interference
between anomalous and standard part of cross section is very small. Through the region of ai is small (about
0.05) the cross section with anomalous constants may reach values of 1.6σ. Taking into account a luminosity
of photons and beams energy statistical error will be equal to 0.05 %. Therefore for precision analysis of
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Figure 10. Contour plots on (ac, ã0) for 1δ at
J = 0 photon beams

Figure 11. Contour plots on (a0, ac) for 1δ at
J = 2 photon beams

Figure 12. Contour plots on (a0, ã0) for 1δ Figure 13. Contour plots on (a0, ã0) for 1δ

experimental data it is important to calculate radiative corrections. We calculate O(α) radiative correction
giving maximal contribution to cross section value. It includes real photon emission as well as a set of one-loop
diagrams (see. Fig. 14–15). Since of ILC-beams energy exceeds the threshold of three boson production this
process must be considered as radiative effect too:

dσ(γγ →W+W−) = dσBorn(γγ →W+W−) +
1

s
<(MBornM1−loop*)dΓ(2) + dσsoft(γγ →W+W−γ) +

+dσhard(γγ →W+W−γ) + dσZ(γγ →W+W−Z). (31)

Here dσsoft(γγ →W+W−γ) = dσBorn(γγ →W+W−)Rsoft(ω), where ω is soft photon energy cutoff,

Rsoft =
2α

π

{[
−1 +

1

β

(
1− 2m2

W

s

)
ln

1 + β

1− β

]
×
[
ln 2ω +

1

n− 4
− ln

(
2
√
π +

C

2

)]
+

1

2β
ln

1 + β

1− β+

+
1

2β

(
1− 2m2

W

s

)(
Spence

−2β

1− β − Spence
2β

1− β

)}
. (32)

with β =
√

1− 4m2
W /s. The differential cross section of hard photon emission is given by

dσhard(γγ →W+W−γ) = dσ(γγ →W+W−γ)− dσsoft(γγ →W+W−γ) (33)

and can not be factorized. dσsoft and dσhard are independent from infrared divergence and from cutoff parameter.

Fig. 16 demonstrates the considered radiative correction has significant magnitude and its calculation
increases the precision of anomalous couplings measurement.

It must be noted that consideration of W+W−γ, ZZγ, Zγγ processes in electron-positron annihilation gives
additional information about a0 and ae, but the precision is two orders worse [18]. But e+e− beams open pos-
sibility to measure four-boson connections [18]–[20] such as W+W−W+W−-, W+W−ZZ-, ZZZZ-production
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Figure 14. The Feynman diagrams of one-loop
amplitudes of the γγ →W+W−

Figure 15. The Feynman diagrams of γγ →
W+W− accompanied real photon emission

Figure 16. Contour plots on (a0, ac) for +2δ deviations of σ(W +W−)

that it’s impossible for γγ-physics. Corresponding four-boson anomalous weak interaction are presented by the
Lagrangian with two four-dimension operators:

L
(a)
Q =

1

4
g2
w

[
go

(
~Wµ · ~Wµ

)2

+ gc

(
~Wµ · ~W ν

)(
~Wµ · ~Wν

)]
. (34)

Here the first operator describes the exchange of neutral scalar particle with very high mass, but the second one
corresponds to triplet of massive scalar particles. If four neutral boson vertex (ZZZZ) is absent (e.g. g0 = gc),
interaction can be realized by massive vector boson exchange.

Using eγ modes of two-boson production, W+W−e, Zγe, ZZe, W−γν, W−Zν, one can consider additional
four-boson vertex WWZγ [21]:

L(6)
n = i

πα

m2
V

an ~Wα

(
~Wν · ~Wα

µ

)
~Fµν . (35)

This Lagrangian conserves U(1)EM , C-, P - and SU(2)C-symmetry, but violates SU(2)L ⊗ U(1)Y symmetry.
From all above mentioned processes the most sensitive reactions for a0 and ae investigation are ZZe and

WWe-production. The bounds of these constants magnitudes are one order better than in e+e−-process,
but about 5 times worse than in γγ-mode. The vertices γγγZ and 4γ are absent on tree level. One-loop
contribution contain both fermion loops and W -boson loops. The last ones give contribution to be measured
on photon collider [22].

6 Conclusion

We have analyzed the possible usage of γγ → f f̄γ reaction for the luminosity measurement at J = 0 beams
on linear photon collider. The achievable precision of the luminosity measuring is considered and calculated.
The optimal conditions for that measurement are found (for the high magnitude of J = 0 cross section and
small J=2 background). The first-order QED correction to γγ → ll̄ cross section is calculated and analyzed at
J=2-beams.

The considered process gives the excellent opportunity for luminosity measurements with substantial accu-
racy.
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The investigation of the sensitivity of process of γγ → W+W− and γγ → W+W−Z to genuine anomalous
quartic couplings a0, ac and ã0 was performed at center-of-mass energy

√
s = 1TeV . It was discovered that

two-boson production has great sensitivity to anomalous constants ac and a0 but process γγ → W+W−Z is
more suitable for study of ã0.

The fact that the minimum of the curves are close to the SM point ai = 0 demonstrates the small value of
the anomalous and the standard part interference. The first-order radiative correction to cross section σ(γγ →
W+W−) has significant magnitude and its calculation increases the precision of the a0 and ac measurement.

The theoretical analysis demonstrates that investigation of four-boson anomalous weak interaction in frame
of four-dimension anomalous Lagrangian of γγ scattering as well as in frame of eγ modes of two-boson production
have great importance for reconstruction gauge group of electroweak interaction beyond the Standard theory
of electroweak interaction.
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Conditions for the coherent effect in radiation at collision of relativistic electron with a bunch of relativistic
particles are analysed. The factors leaded to the distruction of this effect are considered. It is shown, that the
transversal distances responsible for this process are greater than the coherent length of the radiation process.
The reason of this is concluded in long-distant type of an electron interaction with the bunch.

1 Introduction

The coherent effect in radiation at collision of relativistic electron with a short and narrow bunch of relativistic
particles is possible. The spectral density of radiation is proportional in this case to the square of particles
number in the bunch [1–5]. In proposed paper conditions for arising of this effect and factors leaded to it’s
distruction are discussed. The main attention was paid to the analysis of longitudinal and transversal distances,
which are important for this process.

2 Radiation by relativistic electron in the field of falling bunch of relativistic particles

Consider the radiation process in the region of low frequencies of radiated waves, arising at collision of relativistic
electron with the falling bunch of relativistic particles. Consideration will been given in the frame of classical
radiation theory. The applicability of this approach in the considered problem was given in [5].

In classical electrodynamics spectral and angular radiation density is determined by the electron trajectory
~r (t) in an external field [6]

dE

dω dΩ
=

e2

4π2

∣∣∣~k × ~I
∣∣∣
2

, ~I = i

∞∫

−∞

dt ei(ωt−
~k~r(t)) d

dt

~v (t)

ω − ~k~v (t)
, (1)

where ~v(t) is the velocity vector of an electron, ω and ~k are the frequency and wave vector of an emitted wave,

ω = |~k|, dΩ is the element of solid angle in the emission direction (we suppose that the speed of light is equal
to unity).

The electron trajectory ~r(t) in the field of incident bunch is determined by the equation of motion

~̇v =
e

ε

[
~E + ~v × ~H − ~v(~v · ~E)

]
, (2)

where ε is the electron energy, ~E and ~H are, respectively, electric and magnetic fields of the moving particle
bunch ( ~E = −∇ϕ − ∂ ~A/∂t, ~H = ∇× ~A). The scalar ϕ and vector ~A potentials of the bunch are determined
by the expressions

ϕ =
∑

n

Q
[
(z − zn + vpt)

2
+ |ρ− ρn|2 /γ2

p

]1/2 , ~A = ~vpϕ, (3)

where Q is the charge of bunch particle, γp is the Lorentz factor of particles in the bunch, (zn, ρn) are the
coordinates of particles at t = 0, z and ρ are the coordinates parallel and orthogonal to the initial electron
velocity ~v0 and ~vp is the velocity of incident particles (~vp is assumed to directed along the negative z semiaxis
and identical for all particles in the bunch). Summation in Eqs. (2) takes over all bunch particles.

Characteristic scattering angles of relativistic electron in the field of bunch particles are small. Therefore
the electron velocity can be written in the form

~v(t) = ~v0(1−
1

2
~v2
⊥) + ~v⊥(t) (4)

c© Shul’ga N.F., Tyutyunnik D.N., 2007.
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where ~v⊥(t) are the electron-velocity components orthogonal to the velocity ~v0 of the incident electron, |v⊥| �
|v0|. The electron is supposed to move along the axis of falling bunch.

Using the smallness of electrons scattering angles ϑ ∼ v⊥/v0, the Eq. (1) can be expanded on this angle. In
the first-order of that approach the spectral density of radiation takes the form [6]

dE

dω
=
e2

2π
ω

∞∫

δ

dq

q2

[
1− 2

δ

q

(
1− δ

q

)] ∣∣∣ ~W (q)
∣∣∣
2

, (5)

where ~W (q) is the Fourier transformation of orthogonal component of an electron acceleration,

~W (q) =

∞∫

−∞

dt eiqt~̇v⊥ (t), (6)

δ = ω/(2γ2), q = ω − ~k ~v0 and q ≥ δ.
The expression (4) holds, if the condition γϑ� 1 is fulfilled. This corresponds to the dipole approximation

in the classical radiation theory [6].

It is necessary to know the transverse electron-velocity component ~v⊥(t) for determination of ~W (q). In view

of the relation ~v × (∇× ~A) = −∇ϕ − ~vp(~v · ∇)ϕ, it is easy to check, that Eq. (2) for ~v⊥(t)can be written, to
the terms of the order of γ−2 and v2

⊥/v
2 in the form

d

dt
~v⊥ = −2e

ε

∂ϕ

∂~ρ
. (7)

Substituting (2) and (1) into (7), we have

~W (q) = −2eQ

ε

∂

∂~ρ(t)

∑

n

∞∫

−∞

dt eiqt
1

[
(z(t)− zn + νpt)

2
+ |~ρ (t)− ~ρn|/γ2

p

]1/2 .

The electron trajectory in the field of particles bunch is close to rectilinear. Therefore the solution of Eq.
(1) can been obtained as an expansion by the potential ϕ. In the first order of such expansion ~r (t) ≈ ~v0t + ~ρ

and for ~W (q) we get the next expression

~W (q) = −2eQ

ε

∂

∂~ρ

∑

n

∞∫

−∞

dt eiqt
1

[
(ν0t− zn + νpt)

2
+ |~ρ− ~ρn|/γ2

p

]1/2 . (8)

Carrying out the substitution t→ t+ zn/(2vp) in this expression, we receive the next expression for (7):

~W (q) = −2eQ

ε

∂

∂~ρ

∑

n

exp
(
i
qzn
2ν

) ∞∫

−∞

dt eiqt
1

[
(2νt)

2
+ |~ρ− ~ρn|/γ2

p

]1/2 . (9)

After integrating by t, we can find that

~W (q) = −eQq
εγ

∑

n

exp
(
i
qzn
2v

) ~ρ− ~ρn
|~ρ− ~ρn|

K1

(
q

2v

|~ρ− ~ρn|
γ

)
, (10)

where K1 (x) is the McDonald first-order function.
If the condition ρ� ρn is hold, the Eq. (2) takes the form

~W (q) = −eQq
εγ

~ρ

ρ
K1

(
q

2v

ρ

γ

)∑

n

exp
(
i
qzn
2v

)
. (11)

3 Coherent effect in radiation

The main contribution in the integral in (4) gives the values q ∼ δ. If the condition δ∆t � 1 is hold, then we
have

~W ≈ v0~ϑN , (12)
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where ∆t is the time interval, when the bunch field has an influence on the particle and ~ϑN is the full scattering
angle of electron on N particles of the bunch,

~ϑN =
2eQ

ε

∑

n

~ρ− ~ρn
|~ρ− ~ρn|2

. (13)

In this case
dE

dω
=

2e2

3π
γ2ϑ2

N . (14)

For distances ρ� ρn we have ~ϑN = N 2eQ
ερ

~ρ
ρ and therefore

dE

dω
= N2 8e4Q2

3πm2ρ2
. (15)

Thus if the conditions δ∆t � 1 and γϑ � 1 are hold the coherent effect in radiation takes place, for which
E′ ∼ N2.

Let us consider now applicability conditions of (10).
If ρ → 0 holds the value E′ has a fast increasing. However this increasing is limited by two applicability

conditions of this formula. First condition is connected with the dispersion of particle positions in the orthogonal
plane. Supposing that this dispersion is Gaussian, we can get the next expression for 〈|ϑN |〉 [7]:

〈|ϑN |〉 =
2NeQ

ερ

[
1− exp

(
−ρ

2

ū2

)]
, (16)

where ū2 is the average square of particle shift relative to the bunch axis.
If ρ → 0 holds the angle value 〈|ϑN |〉 → 0. The maximum of this value has been reached at ρ ∼

√
ū2.

Therefore if ρ�
√
ū2 holds the spectral density E ′ is defined by the formula (10), whereas if ρ→ 0 holds, then

E′ → 0.
This result is true if the condition γ 〈|ϑN |〉 � 1 is hold. But if this condition is violated in the maximum

of Eq. (11), i.e. at ρ ∼
√
ū2, then we must to account the effect, connected with the nondipolity of radiation.

The account of this effect can be simply taken if the condition

δ−1

1 + γ2ϑ2
N

� ∆t (17)

holds. Really, if this condition holds the exponential factor in (1) can be replaced by the unity and therefore

~I = i

(
~v′

ω − ~k~v′
− ~v0

ω − ~k~v0

)
, (18)

where ~v′ is the final vectors of the electron velocity. In this case for the spectral density of radiation we have [6]

dEN
dω

=
2e2

π

[
2ξ2 + 1

ξ
√
ξ2 + 1

ln (ξ +
√
ξ2 + 1)− 1

]
, (19)

where ξ = ξN = γϑN/2 is the nondipolity parameter. If the condition ξN � 1 is hold, the expression (16) is
transformed into the corresponding result of dipole approximation (8). But for the case when ξN � 1, we have

dEN
dω

=
4e2

π
ln 2ξN =

4e2

π
ln

(
N

2eQ

mρ

)
. (20)

Thus, the account of nondipolity effect in radiation at ξN � 1 leads to the suppression of coherent radiation –
square dependence of E′ is replaced by the weak logarithmic dependence with the increasing of N in this case.
This means that the increasing of particles number in the bunch doesn’t have an influence at radiation, if the
condition ξN > 1 holds. This effect of suppression of coherent radiation is an analog of the suppression effect
in radiation by relativistic particles in a thin layer of matter [8].

Thus, the coherent effect in this problem takes place up to the values of N and ρ, which are defined by the
relation

N
2e2

mρ
∼ 1. (21)

If N ∼ 1010, then the coherent effect in radiation is destroyed for a particles, that has an impact parameter
ρ ≤ 10−2 cm.
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4 Efficiency of radiation

Above mentioned formulas are related to the electron radiation for given impact parameter ρ. Let us consider
now peculiarities of radiation for the electron flow. If the distribution of particles in the initial electron flow has
Gaussian form on impact parameters ρ, the average spectral density of radiation has the following form

〈
dE

dω

〉
=

1

π∆̄2

∫
d2ρ exp (−ρ2)/∆̄2 dE

dω
, (22)

where ∆̄2 is the mean square displacement of electrons relative to z-axis.
The formula (8) determines the radiation by homogeneous flow of electrons if ∆̄2 →∞. The mean spectral

density of radiation is connected for this case with the efficiency of radiation dK/dω by the following relation:
〈
dE

dω

〉
=

1

S

dK

dω
, (23)

where S is the orthogonal cross-section for the particles flow and

dK

dω
=

∫
d2ρ

dE (~ρ)

dω
. (24)

Let us determine typical values of ρ which gives the main contribution for efficiency of radiation. Taking into
account that the particle potential in the bunch is a long-distance potential, the special interest will be connected
with the analysis of large ρ values contribution.

At δ∆t � 1 for large ρ values (ρ � ρn) the underintegration function (12) is determined by relation (10).
Using this expression for the spectral dencity dE/dω in (12) we found that the integral on ρ in (12) is divergent
for both low and large values of impact parameters. Let us consider factors which remove these divergences.

This divergence is removed for low values of ρ by taking into account the distribution of bunch particles on
impact parameter. We have according (11) for this case ρmin ∼

√
ū2. But for

√
ū2 → 0 the value ρmin will

determined from validity condition of dipole approximation (7). So

ρmin ∼ max

{ √
ū2

2Ne2/m
. (25)

Let us consider now the range of large ρ values.
The formula (10) for spectral density of radiation is valied if the coherent length lc ∼ δ−1 is larger than the

longitudinal size of the bunch
δ−1 � L/2. (26)

Except, it is needed that the condition
ρ� 2γlc (27)

was fulfilled for q ∼ δ.
For the region ρ� 2γlc according to (5) and (10) we have the exponential decreasing for d/dω. So the main

contribution for efficiency of radiation is determined by the region of impact parameters

ρ ≤ ρmax ∼ 2γlc. (28)

Let us marked that these values of ρmax are in γ times more than the coherence length lc. It is well known that
ρmax ∼ lc for the rest charge. The additional term γ in (28) is caused by relativistic compression of Coulomb
field of bunch particles.

The reason for changing of radiation character at ρ > ρmax relative to ρ < ρmax is in following. At lc � lscat,
where lscat is the length where we have the scattering, for ρ < γlc the scattering is on the distances of bunch
length lscat ∼ L/2. The exponent exp [iqzn/(2v)] in (9) for this case is possible to change by unity and the same
changing is possible to do for the exponential factor in underintegral expression. As a result we obtained the
formula (8) for ~W (q). The electron is received the angle ~ϑN for this case at the distance of lscat ∼ L/2.

For ρ > γlc the exponential factor exp [iqzn/(2v)] in (9) is also possible to change by unity. But it is not
possible to do such changing for the exponential factor exp (iqt) in (9). The scattering angle of the particle
is received for this case on the length lscat ∼ lc. The condition lscat � lc is destroyed and consequently the
formula (10) is not valid.

5 Conclusions

The coherent effect in radiation is possible at collision of relativistic electron with a short and narrow bunch
of relativistic particles. This effect takes place if the coherent radiation length lc is large with respect to the
longitudinal bunch length L and if the validity condition for dipolity of radiation is fulfilled. The orthogonal
distances, for which this effect holds, has the macroscopic size ρmax ∼ γlc. This value ρmax is much more
than the bunch length L and the coherent radiation length lc. Such large values ρmax are caused with the
long-distance Coulomb potential of relativistic particles of bunch.
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A simple extension of the Standard Model demonstrates that New Physics non-reachable through direct pro-
duction at LHC can induce up to 10% corrections to the Standard Model value of parameter εK and to the
frequencies of Bd − B̄d and Bs − B̄s oscillations.

Let us imagine the worst scenario: the only new particle found at the LHC will be the Higgs boson of the
Standard Model (SM). A natural question arises: is it possible to find traces of New Physics in low energy
observables without observing the production of new particles at LHC? Another facet of this question: What
changes of the unitarity triangle can be produced by such particles? This is the problem we will focus on.

In order to influence the quark weak currents the new particles should be strongly interacting. The natural
example would be the fourth quark-lepton family: the fourth generation quarks deform unitarity triangle into
unitarity quadrangle. However since the sequential fourth generation gets masses through Higgs mechanism,
its quarks cannot be heavier than 1 TeV: so, they will be directly produced at LHC. That is why the heavy
particles we are looking for should get their masses from a different source. So their contributions to low energy
observables decouple, being suppressed as (η/M)2, where η = 246 GeV is the Higgs boson neutral component
expectation value and M characterizes new particles masses, M ≥ 5 TeV in order to avoid their production at
LHC. These 1% corrections are too small to be detected taken into account relatively low accuracy of theoretical
formulas. Nevertheless we manage to find a model where corrections are enhanced and can be detected.

Let us study the extension of SM by SU(2)L singlet heavy Dirac quark Q with electric charge +2/3 which
mixes with the top quark. Recently the constraints from the B → Xsγ branching ratio and electroweak precision
observables in this model have been studied [1]. Authors of [1] are interested in manifestations of rather light Q
with mass just above Tevatron bound. As a consequence Q mixes strongly with the top quark in their model. So
our model with much heavier Q which mixes weakly with top (see below) can be considered as complementary
to [1].

The model is described by the following lagrangian:

L = LSM −MQ̄′Q′ +

[
µRQ̄

′
Lt

′
R +

µL

η/
√

2
H+Q̄′

R

(
t′

b′

)

L

+ c.c.

]
, (1)

where LSM is the SM lagrangian, M , µR and µL are the parameters with the dimension of mass. The term
proportional to M contains Dirac mass of the field Q′ which is primed since it is not a state with a definite
mass due to mixing with t-quark. The term proportional to µR describes the mixing of two SU(2)L singlets:
Q′
L and t′R, the latter being the right component of t-quark field in the Standard Model (in the absence of terms

in square brackets). Finally, the term proportional to µL describes mixing of a weak isodoublet with Q′. An
upper component of this isodoublet is the left component of the field t′ which would be t-quark without the
terms in square brackets:

t′L = ULt′t′′t
′′
L + ULt′c′c

′
L + ULt′u′u′L , (2)

where t′′, c′ and u′ are the primary fields of SM lagrangian, while ULik are the matrix elements of matrix UL

which transforms the primary fields c′L and u′L to the left-handed components of the mass eigenstates c and u
and field t′′L to the field t′L which would be the left-handed component of the top quark in the case µL = µR = 0.
We do not mix Q−quark with u− and c− quarks in order to avoid FCNC which may induce too large D0− D̄0

oscillations.
One can easily see that the lower component of the isodoublet is the combination of the down quark fields

with definite masses rotated by CKM matrix V :

b′L = VtbbL + VtssL + VtddL . (3)

In order to find the states with definite masses which result from t′–Q′ mixing, the following matrix should

e-mail: avysotsky@itep.ru

c© Vysotsky M.I., 2007.
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be diagonalized:

(t′Lt
′
RQ

′
LQ

′
R)




0 mt 0 µL
mt 0 µR 0
0 µR 0 −M
µL 0 −M 0







t′L
t′R
Q′
L

Q′
R


 , (4)

where mt is the mass of t-quark in SM. For the squares of masses of the eigenstates we get:

2(λ2)t,Q = M2 + µ2
R + µ2

L +m2
t ∓ (5)

∓
√

(M2 + µ2
R + µ2

L +m2
t )

2 − 4M2m2
t − 4µ2

Lµ
2
R + 8mtµRµLM ,

and the eigenstates look like (in what follows we put mt = 01):

t = t′L + (1− λ2
t

µ2
L

)
µRµL
λtM

t′R +
µL
M

(1− λ2
t

µ2
L

)Q′
L +

λt
µL

Q′
R , (6)

λt =
µRµL
M

(
1− µ2

R + µ2
L

2M2

)
+O(

1

M5
) , (7)

Q = Q′
R + (−λQ

M
+

µ2
L

λQM
)Q′

L +
µL
λQ

t′L +
µR
M

(
µ2
L

λ2
Q

− 1

)
t′R , (8)

λQ = −M +O

(
1

M

)
, (9)

the normalization factors of the quark fields which should be taken into account when calculating Feynman
diagrams are omitted.

Now we are ready to discuss the flavor changing quark transitions.
t̄R(bL, dL, sL)H+ transition vertex originates in our model from QR admixture in the t-quark wave function:

µL

η/
√

2

λt/µL√
µ2

L
µ2

R

λ2
tM

2

(
1− λ2

t

µ2
L

)2

+
λ2

t

µ2
L

t̄Rb
′
LH

+ =

=
λt

η/
√

2

1√
1 + (µL

M )2
(
1− λ2

t

µ2
L

)2
t̄Rb

′
LH

+ , (10)

that is why up to the corrections ∼ (µL/M)2 the box diagrams for Bd,s − B̄d,s, K0 − K̄0 transitions with the
intermediate t-quarks are the same as in SM2.

How large can the term (µL/M)2 be? According to Eq.(1) µL cannot be larger than 500 GeV: in the opposite
case we will be out of the perturbation theory domain and no calculations can be trusted. That is why trying
to have the largest possible deviations from SM we will take µL = 500 GeV in what follows. The smallest value
of M which will prevent the production of Q-quarks at LHC is about 5 TeV, and we will use it in order to
maximize deviations from SM (consequently µR = mtM/µL ≈ 1.7 TeV). At one loop level Q-quark contributes
to Z → bb̄ decay. The analysis of the experimental data made in [1] lead to µL/M ≤ 0.4, and we are on the
safe side. The constraint from B → Xsγ decay is even weaker. The box with two intermediate t-quarks is equal
to that in SM with (µL/M)2 ≈ 1% accuracy. Theoretical uncertainties in matrix elements calculations do not
allow to detect 1% deviation from SM results.

Our model generates extra contributions to ∆F = 2 four-fermion operators due to the boxes with interme-
diate Q-quarks. The boxes with H+ exchanges generate leading contributions in the limit mt,M �MW . The
box with one t-quark substituted by Q gives coefficient ∼ G2

Fm
2
t (µL/M)2 ln(M/mt)

2: once more the correction
is damped by the factor (µL/M)2 ≈ 1% relative to the SM contribution.

The largest correction comes from the box with two intermediate Q-quarks:

( |µL|
η/
√

2

)4
1

M2
(b̄LγµdL)(b̄LγµdL) , (11)

1We did it in order to simplify the formulas a bit; however this can be suggested as an explanation of heaviness of top: t-quark
massless in SM gets all its mass due to mixing with heavy Q.

2Since H+ is the longitudinal W+-boson polarization its interaction is the same as that of W + and the square root in the
denominator from (tR, QR) proper normalization equals that for (tL, QL) component.
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where as an example we present the operator responsible for Bd − B̄d oscillations. In this way we get:

box(QQ)

box(tt)
≈ µ4

L

m2
tM

2
≈ 10% . (12)

The explicit formula which takes into account (tt) and (QQ) boxes can be easily obtained from that of SM
[2]:

∆mBd
=
G2
FBBd

f2
Bd

6π2
mB

[
m2
t I

(
m2
t

M2
W

)
+M2

( |µL|
M

)4

I

(
M2

M2
W

)]
ηB |Vtd|2,

I(ξ) =

{
ξ2 − 11ξ + 4

4(ξ − 1)2
− 3ξ2 ln ξ

2(1− ξ)3
}
,

I(0) = 1; I

(
m2
t

M2
W

)
≈ 0.55; I(∞) = 0.25. (13)

In conclusion we have found a simple extension of SM with one additional heavy quark Q, MQ ≈ 5 TeV (non-
reachable by direct production at LHC), in which the corrections to CP violating factor ε in K − K̄ transitions
and the values of ∆mBd

and ∆mBs
are universal and can reach 10%. We demonstrate that even with no new

particles found at LHC one cannot claim that the Unitarity Triangle is universal and unambiguously extractable
from different observables with the accuracy better than 10%. In our case the triangle determined by angles
found from CP-asymmetries in B-decays and by one side (V ∗

cbVcd) has the value of side (V ∗
tbVtd) which, being

substituted into the SM expression for ∆mBd
, produces the number smaller than the one extracted from the

measurement of the Bd − B̄d oscillation frequency by ≈10%. However, to detect this discrepancy one needs to
have an accuracy in the value of the product f 2

Bd
BBd

better than 10% (the present day accuracy is about 2
times worse [3]).

Heavy quark Q will lead to extra radiative corrections to electroweak observables (MW , MZ , ΓZ ...). In
this way the central value of the higgs mass which is extracted from the fit will be shifted. We plan to make
necessary calculations in the nearest future.

In recent paper [4] the contribution to ∆mBd,s
due to singlet heavy fermion with electric charge +2/3 has

been studied. The analyzed model is motivated by a Little Higgs scenario. In this scenario our factor µL is
substituted by xLη, where 0 ≤ xL ≤ 1 [5]. That is why even for xL = 1 correction to ∆mBd,s

is damped by the
factor 24 = 16 compared to our value.

This talk is based on the paper [6] which originates as the answer to A. Golutvin’s question.
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We study the π+π− and qq̄ annihilation mechanisms of dilepton production during relativistic nuclear colli-
sions. We focus on the modifications caused by the granular structure of the fireball rather than by medium
modification of the ρ-meson spectral density. The main ingredient emerging in our approach is a form-factor of
the multi-pion (multi-quark) system which reflects the granular structure. Replacing the usual delta-function
the form-factor plays the role of distribution which, in some sense, ”connects” the total 4-momenta of the
annihilating and outgoing particles. We obtained that the form-factor of the multi-pion (multi-quark) system
causes broadening of the rate which is most pronounced for small invariant masses, in particular, we obtain a
growth of the rate for the invariant masses below two masses of the annihilating particles.

1 Introduction

Recent theoretical analysis of the correlation data made in Refs. [1, 2] gives a striking evidences of the clus-
terization of a fireball created in relativistic nuclear collisions. Investigating the correlation data which were
presented by PHENIX [3, 4], STAR [5–7] and CERES [8] collaborations the authors of [1, 2] found that the
number of all particles belonging to a single cluster is estimated as Ncl ∼ 6 − 15.

On the other hand, the analysis of the Bose-Einstein correlations made on the basis of the RHIC data (see
[11] and references therein) results in conclusion that the space-time size of the emission region reveals very
weak dependence on the energy of the colliding nuclei. The experimental pion HBT measurements at RHIC
gave the ratio of the radii Rout/Rside ≈ 1 which came in contradiction with theoretical expectations. The
phenomenon was named as the “RHIC puzzle” [9, 10]. These findings give a solid evidence of a spatial (in this
case) clusterization or granulation [12] of the fireball created in relativistic heavy-ion collisions.

We would like to point out above conclusions are in full agreement with our assumption of the granular
structure of the short lived many-particle system (fireball) created in relativistic nuclear collisions [13]. Our
model was proposed in [13] and further developed in [14, 15]. We exploited it in order to evaluate a lepton pair
production in heavy-ion collisions. As an example the pion-pion and quark-quark annihilations were considered
as a source of the lepton pairs. The main idea of the model is the following: due to strong screening effects in a
dense many-particle system with very short life time the wave functions of two sample particles are overlapped
when the particles are not far from one another. First of all this concerns the particles which are created during
collision. Of course the wave functions of the created particles evolve with time but it interests us just during
time span which precedes freeze-out. For instance, two particles can annihilate one another when they are
just “under” freeze-out hyper-surface. By definition of the freeze-out pions or quarks cannot annihilate after
freeze-out. Overlapping of the wave functions of two sample particles is in correspondence with existence of
the Bose-Einstein correlations. Indeed, if one constructs a symmetrized two-particle wave function from two
single-particle states and there is no overlapping of these states, then a second symmetrized term equals zero
and there is no Bose-Einstein correlation at all. Hence, an existence of the Bose-Einstein correlations exhibits
the overlapping of these two single-particle quantum states. If two particles start to “see one another” after
freeze out, then, the distances between them are of order 10 − 20 fm and bigger what corresponds to relative
momentum qrel ∼ 20 − 10 MeV/c and smaller. This region of momenta is so small that it is beyond the
experimental possibilities. In correspondence to STAR data [6, 7] the size of the emitted source is estimated as
4− 6 fm depending on the transverse total momentum of the pion pair. This means that two pions which are
separated by the mean distance r ≈ 6 fm can give contribution to the correlation function. The contribution
from other pairs which are separated by the bigger distances decreases in accordance to the Gaussian dependence.
Actually, this data gives us the mean size of the fireball granular which is achieved on the freeze-out hyper-
surface. Meanwhile, every granular (cluster) starting from the creation evolves with time together with the
fireball. It turns out that an experiment detects just the final stage of the granular evolution, hence we indicate
experimentally just the maximum size of every small subsystem or a size of the particular granular where the
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wave functions of the particles are overlapped. In order to take into account all stages of the granular evolution
in our consideration we investigate the granulars which size is in the range from 1 fm to 10 fm.

So, we concentrate on the modifications which are due rather to intramedium pion and quark states, than on
the discussion of a modification of the ρ-meson spectral density. In accordance with our suggestions, the main
features of a pion wave function follow from the fact that pions live a finite time in the system where they can
take part in the annihilation reaction. As a consequence, the off-shell effects give an appreciable contribution
to the features of the annihilation process specifically in the region of low invariant masses. Moreover, if pions
are the entities of a local subsystem, then the spatial structure of the pion states is far from a plane-wave one
and this also gives the essential contribution to the features of the dilepton spectrum.

The main objective in studying strongly interacting matter, which is formed during relativistic heavy ion
collisions, is identification of the quark-gluon plasma. Lepton pairs and photons created during relativistic
nucleus-nucleus collision do not interact with the highly excited nuclear matter, they leave the reaction zone
without further rescattering. That is why, the dileptons (e+e− and µ+µ− pairs) observed in high-energy heavy
ion collisions carry undistorted information on the dense early stage of the reaction as well as on its dynamics.
The enhancement with an invariant mass of 200÷ 800 MeV observed by the CERES collaboration [1, 2] in the
production of dileptons has received a considerable attention (for the review, see Ref. [3]). It was found that
a large part of the observed enhancement is due to the medium effects (see Refs. [4, 5] and references therein).
Meanwhile, pion annihilation is the main source of dileptons which come from the hadron matter [6, 7] (see also
[23]). That is why, the proper analysis of the dilepton spectra obtained experimentally gives important data
which probe the pion dynamics in the dense nuclear matter. The purpose of the present paper is to look once
more on the π+π− and qq̄ annihilation mechanisms of dilepton production from the hadron and quark-gluon
plasmas by accounting the the granular structure of the fireball.

2 Annihilation of particles in finite space-time volume

To carry out the outlined program, we assume that the pion liquid formed after the equilibration exists in a
finite volume (granular), and the confinement of pions to this volume is a direct consequence of the presence of
the dense hadron environment which prevents the escape of pions during some mean lifetime τ . The same can
be assumed concerning a hot system of quarks which are confined to a quark-gluon droplet. So, we assume the
system of pions (quarks) produced in high-energy heavy-ion collisions is effectively bounded in a finite volume.

We sketch a possible geometry in Fig. 1. A small circle of radius R represents the subsystem of pions which
is in the local equilibrium and moves with collective velocity v.

The pion (quark) wave functions φλ(x), where λ is a quantum number, satisfy the proper boundary conditions
and belong to the complete set of functions. For instance, the stationary wave functions may be taken as the
solutions of the Klein-Gordon equation

(
∇2 + k2

)
φλ(x) = 0, where k2 = E2 −m2, which satisfy the Dirichlet

boundary condition on the surface S: φλ(x)|S = 0. For the box boundary, we get φk(x) =
√

8/V
∏3
i=1 θ(Li −

xi)θ(xi) sin (kixi), where V = L1L2L3 is the box volume, λ ≡ k = (k1, k2, k3), and components of the quasi-
momentum run through the discrete set ki = πni/Li with ni = 1, 2, 3, . . . For the spherical geometry, the

normalized solutions are written as φklm(r) = θ(R − r) (2/r)
1/2

Jl+1/2(kr)Ylm(ϑ, α)/RJl+3/2(kR), where λ =
(k, l,m). Next, the field operators ϕ̂(x) corresponding to the pion field should be expanded in terms of these
eigenfunctions, i.e.

ϕ̂(x) =

∫
d3k

(2π)32ωk

[
a(k)φk(x) + b+(k)φ∗

k
(x)
]
, (1)

where a(k) and b(k) are the annihilation operators of positive and negative pions, respectively. On the
other hand, the states corresponding to confined particles can be written in a common way as φk(x) =√
ρ(x)/V Φk(x), where, for instance,

√
ρ(x) =

∏3
i=1 [θ(Li − xi)θ(xi)] for a box and

√
ρ(x) = θ(R − r)

for a sphere, respectively. The function ρ(x) represents the information about the geometry of a reaction
region or cuts out the volume where the pions (quarks) can annihilate. Hence, for the evaluation of S-
matrix elements wave functions φk(x) should be taken as the pion in-states once annihilating pions belong
to finite system. The amplitude of the pion-pion annihilation to a lepton pair in the first non-vanishing
approximation is calculated via the chain π+π− → ρ → γ∗ → l̄l, where the ρ-meson appears as an in-
termediate state in accordance with the vector meson dominance. The matrix element of the reaction is
〈out|S|in〉 = −

∫
d4x1 d

4x2 〈p+,p−
∣∣T
[
H π
I (x1)H l

I (x2)
] ∣∣k1,k2〉, where H π

I (x) = −e jπµ(x)Aµ(x) and H l
I (x) =

−e jlµ(x)Aµ(x). It is remarkable that the pion density ρ(x) appears as a factor of the pion current. Indeed,

jπµ(x) = −iϕ̂(x)
↔
∂µ ϕ̂

+(x) =
ρ(x)

V

[
−iΦ̂(x)

↔
∂µ Φ̂+(x)

]
, (2)

where the field operator Φ̂(x) is defined in the same way as that in (1) with the functions φk(x) replaced by
Φk(x). Because of this factorization, after the integration over the vertex x the density ρ(x) automatically
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Figure 1. Sketch of an expanding fireball. The
small circle of radius R represents the subsystem
of pions which is in a local equilibrium state and
moves with the collective velocity v.
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Figure 2. The first-order nonvanishing Feynman
graph of the lepton pair creation in the process
π+ π− → ρ → γ∗ → l l. The circle which sur-
rounds the vertex x1 sketches the finite space-time
region of the pion-pion interactions.

cuts out the volume, where the π+π− annihilation reaction is running. At the same time, this means that the
density ρ(x) determines the volume of quantum coherence, i.e. just the particles from this spatial domain are
capable to annihilate one with another and make contribution to the amplitude of the reaction. To obtain the
overall rate, it is necessary then to sum up the rates from every coherent domain of the fireball.

For the sake of simplicity one can assume that the pion states can be approximately represented as φk(x) =√
ρ(x)/V e−ik·x (ρ(x) is the 4-density of pions in the volume V where pions are in a local thermodynamic

equilibrium). In essence, this approximation considers just one mode of the wave function Φk(x) and reflects
the qualitative features of the pion states in a real hadron plasma. In the frame of this approximation a
simple calculation immediately shows that the S-matrix element is proportional to the Fourier-transformed
pion density ρ(x), i.e. 〈out|S|in〉 ∝ ρ(k1 + k2 − p+ − p−), where k1 and k2 are the 4-quasi-momenta of the
initial pion states and p+ and p− are the 4-momenta of the outgoing leptons. This means that the form-factor
of the pion source ρ(k) stands here in place of the delta function which appears in the standard calculations,
i.e. (2π)4δ4(K − P )→ ρ(K − P ), where K = k1 + k2 and P = p+ + p− are the total (quasi-) momenta of pion
and lepton pairs, respectively. An immediate consequence of this is a breaking down of the energy-momentum
conservation in the s-channel of the reaction, which means that the total momentum K of the pion pair is no
longer equal exactly to the total momentum P of the lepton pair. The physical interpretation of this fact is
rather obvious: the effect of the hadron environment on the pion subsystem which prevents the escape of pions
from the fireball can be regarded during the time span τ as the influence of an external nonstationary field.
The latter, as known, breaks down the energy-momentum conservation. From now, the squared form-factor
|ρ(K −P )|2 of the pion system plays the role of a distribution which in some sense ”connects” in s-channel the
annihilating and outgoing particles instead of δ-function. Indeed, the number N (ρ) of produced lepton pairs
from a finite pion system related to an element of the dilepton momentum space, reads

〈
dN (ρ)

d4P

〉
=

∫
d4K|ρ(K − P )|2

〈
dN

d4Kd4P

〉
, (3)

where
〈

dN

d4Kd4P

〉
=

∫
d3k1

(2π)32E1

d3k2

(2π)32E2
δ4(k1 + k2 −K) fBE(E1) fBE(E2) (4)

×
∫

d3p+

(2π)32E+

d3p−
(2π)32E−

δ4(p+ + p− − P )|A0(k1, k2; p+, p−)|2 . (5)

Here, Ei =
√
m2
π + k2

i , i = 1, 2 for pions and Ei =
√
m2
l + p2

i , i = +,− for leptons, respectively. To obtain
Eq.(9), we represent the amplitude of the reaction (see Fig. 2) as

〈out|S(2)|in〉 = ρ(k1 + k2 − p+ − p−)A0(k1, k2; p+, p−) . (6)

Note that not only the form-factor ρ(K−P ) contains information about the pion system. The amplitude A0

carries also new important features, which are related to the violation of the energy-momentum conservation
in the s-channel. The latter is a consequence of the medium effects through a partial confinement of the pion
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states inside fireball what results in the breaking of the translation invariance. Indeed, the pion-pion c.m.s.
moves with the velocity vK = K/K0, whereas the lepton-pair c.m.s. moves with the velocity vP = P/P0.
Hence, these two center-of-mass systems are ”disconnected” now, that is why any quantity should be Lorentz-
transformed when transferred from one c.m.s. to another. Reflection of this is the appearance of the correction

factor
[
1 + 1

3

(
(P ·K)2

P 2K2 − 1
)]

in the formula for the dilepton production rate (for details see [13, 14]).

By the broken brackets in Eq.(9), we denote the thermal averaging over the pion quasi-momentum space.
Actually, we assume a local thermal equilibrium in the multi-hadron (-pion) system. Hence, the Green’s function,
D<(x1, x2) = 〈Φ̂+(x2)Φ̂(x1)〉, which appears after thermal averaging, can be represented as

D<(x1, x2) =

∫
d4k

(2π)4
e−ik·xA(k) fBE(k,X) , (7)

where X = (x1 + x2)/2, x = x1 − x2, and

fBE(k,X) =
1

eβ(X)[k·u(X)−µ(X)] − 1
, (8)

is the Bose-Einstein distribution function, which depends on space-time variables, X = (X0,X), β is the
inverse temperature, u(X) is the hydrodynamical velocity and µ is the chemical potential. For the ideal gas
(infinite life time of the system) the spectral function A(k0,k) indicates that all states are on the mass-shell:
A(k) = 2πδ(k2−m2

π) θ(k
0). In the interacting system the spectral function reflects a collision broadening of the

states which includes as well a global decay of the system if collisions in the system exist during finite time span.
For instance, the fireball, which is nothing else as a system of strongly interacting particles, lives until its decay,
i.e. starting from the creation till the freeze-out, after which there are no strong interactions between particles
at all. In our further consideration we will take into account just a global decay of the multi-pion (multi-quark)
system. Assuming a proper model of the spectral function, A(k), which responsible in the present approach
for finite life time of the system, we incorporate it together with the spatial density ρ(x) to the global system
form-factor ρ(x).

Concerning the physical meaning of Eq. (9), we note that one can regard it as the averaging of the random
quantity

〈
dN

d4Kd4P

〉
with the help of the distribution function |ρ(K−P )|2 centered around the value P , which is

fixed by experimental measurement. In this sense, the hadron medium holding pions in a local spatial region for
some time, which is expressed as the local pion distribution ρ(x), plays the role of an environment randomizing
the pion source. This randomization is a purely quantum one in contrast to the thermal randomization of the
multi-pion system which is already included to the quantity

〈
dN

d4Kd4P

〉
.

3 Dilepton emission rates

In order to transform the distribution of the number of created lepton pairs over the dilepton momentum space
to the distribution over invariant masses, one has to perform additional integration using

〈
dN (ρ)/d4P

〉
from

(9), i.e.
〈
dN(ρ)

dM2

〉
=
∫
d3P
2P0

〈
dN(ρ)

d4P

〉
, where P0 =

√
M2 + P2. This results in:

〈
dN (ρ)

dM2

〉
=

α2

3(2π)8

(
1− 4m2

e

M2

)1/2(
1 +

2m2
e

M2

)
|Fπ(M2)|2

∫
d3P

2P0

∫
d4K

K2

M2

× |ρ(K − P )|2 e−βK0

(
1− 4m2

π

K2

)3/2 [
1 +

1

3

(
(P ·K)2

M2K2
− 1

)]
, (9)

where we take the Boltzmann distribution fBE(E) ≈ exp(−βE). Note, that during integration with respect to a

4-momentum K one should keep the invariant mass of a pion pair, Mπ =
√
K2, not less than two pion masses.

On the other hand, possible finite values of the distribution
〈
dN(ρ)

dM2

〉
below the two-pion mass threshold can

occur just due to the presence of the pion system form-factor ρ(K − P ). The factor in the square brackets on
the r.h.s. of (4) is a correction which is due to the Lorentz transformation of the quantity (k1 − k2)

2 from the
dilepton c.m.s. to the pion-pion c.m.s. This factor gives a remarkable contribution to the dilepton spectrum for
invariant masses below the two-pion mass value. Its influence is especially pronounced for e+e− production as
was shown in [13, 14].

In Eq.(4) the ρ-meson form-factor, Fπ(M
2), is a vacuum one. Actually, there are two ways to take into

account effects of the hadron medium: first, one can account for distortion of the pion states caused by dense
environment; second, one can look for ρ-meson polarization effects during its passing through the hadron
environment. In the present paper we choose the first way of accounting for the medium effects (see also [24]).
Just to elucidate as much as possible the consequences of the contraction of the pion states in the hadron
medium and to prevent a double counting we take the vacuum ρ-meson form-factor.



112 Anchishkin D.V.

0

0.02

0.04

0.06

0.08

0.1

0.12

–4 –3 –2 –1 1 2 3 4

q

Figure 3. Comparison of the Gaussian and θ−function form-factors |ρ(q)|2/V .

For particular evaluations we take as a model of the pion system the Gaussian distribution of the particles
in space and the Gaussian decay of the system (this form-factor succeeded in HBT interferometry):

ρ(x) = exp

(
x2 − 2(u · x)2

2R2

)
, (10)

where u is the hydrodynamical (collective) velocity of the element of the total system which is in a local
thermodynamic equilibrium; R is the spatial radius of the element. In the rest frame of the element the form-
factor looks like: ρ0(t, r) = exp

[
−(t2 + r2)/2R2

]
. To get a proper interpretation in terms of the mean life time

of the system element, τ, one needs to make a scale transformation during integration over the time variable:∫∞
−∞ dt ρ0(t, r)F (t, r) =

∫∞
−∞ dt exp

(
−t2/2τ2 − r2/2R2

)
F0(t, r), where F0(t, r)

= R
τ F (Rτ t, r).
Meanwhile, it can be another choice of the pion source function. Indeed, one can choose, for instance,

a geometry with sharp boundaries which are determined by the θ-function. To show that the final answer
is not sensitive to the form of the cutting function we compare two form-factors (normalized to the unit
volume) which correspond to the Gaussian distribution ρ(r) = exp (−r2/2R2) and to the θ-function distribution
ρ(r) = θ(R − |r|) (see Fig. 3). Only a slight difference between these form-factors is seen and, therefore, the
choice of pion source distribution does not affect much the dilepton production rate.

We evaluate the rate in the rapidity window, ymin ≤ y ≤ ymax, which corresponds to CERES experimental
conditions [1, 2]

dR

dM dy
= 2πM

1

4y

∫ ymax

ymin

dy

∫ ∞

P⊥min

dP⊥ P⊥
dN

d4x d4P
,

where tanh y = P 3/P 0, P 2
⊥ = (P 1)2 +(P 2)2. The results of evaluation of the production rates dR

(ρ)
e+e−/dMdy

and dR
(ρ)
µ+µ−/dMdy for electron-positron and muon-muon pairs, respectively, in pion-pion annihilation are de-

picted in Figs. 4,5. Note, the calculations are carried out in the frame of the element of the system where
particles are in a local thermal equilibrium. Different curves correspond to the different ”spatial sizes” R and
different ”lifetimes” τ (for particular values of these parameters see Figs. 4,5) of a hot pion system at the
temperature T = 180 MeV.

For comparison, we present in Figs. 6,7 the results of evaluation of the rate dR
(ρ)
e+e−/dMdy of electron-positron

pair production in quark-antiquark annihilation
in a hot QGP drop, T = 180 MeV. The evaluation was carried out in the frame of the quark drop under the
same assumptions as for pion-pion annihilation. As in the previous case, an increase in the rate with decrease in
the invariant mass up to two electron masses is seen. This real threshold is close to the total mass of annihilating
quarks M = 2mq ≈ 10 MeV/c2.

4 Conclusions

From two-particle and many-particle correlation experiments (see Introduction) we conclude that the fireball
created in relativistic nuclear collisions has a granular structure. We parameterize the size of a particular
granular (a small subsystem of the fireball) by the Gaussian radius R and the lifetime τ , which accounts for
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Figure 4. Rates of electron-positron productions in
pion-pion annihilation in a small finite system, T =
180 MeV.

infinite R, τ
R = 10 fm, τ = 10 fm/c

R = 5 fm, τ = 5 fm/c
R = 2 fm, τ = 2 fm/c
R = 1 fm, τ = 1 fm/c

INVARIANT MASS (MeV/c2)

y=2.1 .. 2.65

P⊥>200 MeV/c

π+π−
→ µ+µ−

d
R

µ
+

µ
−

d
M

d
y

/
d
N

c
h

d
y

(M
eV

−
1

fm
−

4
)

1000900800700600500400300200100

10−4

10−5

10−6

10−7

10−8

10−9

10−10

10−11

10−12

Figure 5. Rates of muon-muon productions in
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Figure 6. Electron-positron production rates in
quark-antiquark annihilation in a hot QGP drop.
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Figure 7. Electron-positron production rates in
quark-antiquark annihilation in a hot QGP drop.

a time span from creation of the granular till freeze-out times. We notice that the production rate in a finite
small system differs from the rate in an infinite pion gas where pion in-states can be taken as plane waves. The
deviation bigger when the parameters R and τ are smaller. Of course, this is a reflection of the uncertainty
principle which is realized by the presence of the distribution (form-factor) |ρ(K − P )|2 as the integrand factor
in (9). Basically, the presence of the form-factor of the multi-pion system results in a broadening of the rate for
small invariant masses M ≤ 800 MeV/c2 which is wider at the smaller parameters R and τ . This seems natural
because the quantum fluctuations of the momentum are more pronounced in smaller systems. We emphasize as
well that the behavior of the curves in Figs. 4,5 which correspond to a finite system has a similar to the CERES
data tendency [1, 2].

The same behavior of the rate is seen for a hot quark drop (see Figures 6,7): small parameters R and τ in
the region of small invariant masses M ≤ 500 MeV/c2, as compared to the rate for infinite parameters R =∞,
τ =∞, give a rise of quantum fluctuations which are evidently bigger for a smaller size of the QGP drop.

Note, the enhancement of the dilepton production rate for the low invariant mass region is much more
sensitive to the variation in the spatial size of a many-particle (pion, quark) system than to the variation in the
system lifetime (see Fig. 7) [15].
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The temperature and chemical potential dependent surface tension of bags is introduced into the gas of quark-
gluon bags model. The suggested model is solved analytically. It resolves a long standing problem of a unified
description of the first and second order phase transition with the cross-over. Such an approach is necessary
to model the complicated properties of quark-gluon plasma and hadronic matter from the first principles of
statistical mechanics. In addition to the deconfinement phase transition, we found that at the curve of a zero
surface tension coefficient there must exist the surface induced phase tranition of the 2nd or higher order, which
separates the pure quark gluon plasma (QGP) from the cross-over states. Thus, the present model predicts
that the critical endpoint of quantum chromodynamics is the tricritical endpoint.

1 Introduction
The strongly interacting matter properties studied in relativistic nuclear collisions has reached the stage when the
predictions of the lattice quantum chromodynamics (QCD) can be checked experimentally on the existing data
and future mesurements at BNL RHIC, CERN SPS, and GSI FAIR. However, a comparison of the theoretical
results with the experimental data is not straightforward because during the collision process the matter can
have several phase transformations which are difficult to model. The latter reason stimulated the development
of a wide range of phenomenological models of the strongly interacting matter equation of state which are used
in dynamical simulations.

One of these models, the gas of bags model (GBM) [1–3], itself contains two well-known models of deconfined
and confined phases: the bag model of QGP [5] and the hadron gas model [6]. Hence there were hopes [7] that
an exact analytical solution of the GBM found in [2] could be helpful in understanding the properties of strongly
interacting matter. However, this solution does not allow one to introduce the critical end point of the strongly
interacting matter phase diagram. Also, a complicated construction of the line, along which the phase transition
order gradually increases, suggested in [7], does look too artificial. Therefore, the present GBM formulation
lacks an important physical input and is interesting only as a toy example which can be solved analytically.
However, there are the great demands [8–10] for the phenomenilogical models, which can correctly describe the
properties of the end point of the 1st order deconfinement phase transition (PT) to QGP.

In statistical mechanics there are several exactly solvable cluster models with the 1st order PT which describe
the critical point properties very well. These models are built on the assumptions that the difference of the
bulk part (or the volume dependent part) of free energy of two phases disappears at phase equilibrium and
that, in addition, the difference of the surface part (or the surface tension) of free energy vanishes at the critical
point. The most famous of them is the Fisher droplet model (FDM) [12–14] which has been successfully used
to analyze the condensation of a gaseous phase (droplets of all sizes) into a liquid. The FDM has been applied
to many different systems [13, 14].

The other well established statistical model, the statistical multifragmentation model (SMM) [15–17], was
recently solved analytically both for infinite [18, 20] and for finite [21, 22] volumes of the system. In the SMM
the surface tension temperature dependence differs from that one of the FDM, but it was shown [20] that the
value of Fisher exponent τSMM = 1.825 ± 0.025, which contradicts to the FDM value τFDM ≈ 2.16, but is
consistent with ISiS Collaboration data [23] and EOS Collaboration data [24].

From the structure of these models, it follows that the GMB can be drastically improved by the inclusion of
such a vitally important element as the surface tension of the quark-gluon bags. The obtained model is called
the QGBST model. Its detailed dscussion and the full list of related references can be found in [11, 25, 26].

The great success of the SMM initiated the studies of the surface partitions of large clusters within the
Hills and Dales Model [27, 28] and led to a discovery of the origin of the temperature independent surface
entropy similar to the FDM. It was proven that the surface tension coefficient of large clusters consisting of
the discrete constituents should linearly depend on the temperature of the system [27] and must vanish at the
critical endpoint. Thus, the Hills and Dales Model [27, 28] is our main guide in formulating the QGBST model.

c© Bugaev K.A., 2007.
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However, for definiteness we assume a certain dependence of the surface tension coefficient on temperature and
baryonic chemical potential, and concentrate on the impact of surface tension of the quark-gluon bags on the
properties of the deconfinement phase diagram and the QCD critical endpoint.

Here we will show that the existence of a cross-over at low values of the baryonic chemical potential along
with the 1st order deconfinement PT at high baryonic chemical potentials leads to the existence of an additional
PT of the 2nd or higher order along the curve where the surface tension coefficient vanishes [25]. Thus, it turns
out that the QGBST model predicts the existence of the tricritical rather than critical endpoint.

The work is organized as follows. Sect. 2 contains the formulation of the QGBST model and analyze all
possible singularities of its isobaric partition for vanishing baryonic densities. This analysis is generalized to
non-zero baryonic densities in Sect.3. Sect. 4 is devoted to the analysis of the surface tension induced PT which
exists above the deconfinement PT. The conclusions and research perspectives are summarized in Sect. 5.

2 The Role of Surface Tension

I begin with the isobaric partition:

Ẑ(s, T ) ≡
∫ ∞

0

dV exp(−sV ) Z(V, T ) =
1

[s− F (s, T )]
(1)

where the function F (s, T ) is defined as follows

F (s, T ) ≡ FH(s, T ) + FQ(s, T ) =
n∑

j=1

gje
−vjsφ(T,mj) + u(T )

∫ ∞

V0

dv
exp [−v (s− sQ(T ))]

vτ
. (2)

At the moment the particular choice of function FQ(s, T ) in (2) is not important. The key point of my
treatment is that it should have the form of Eq. (2) which has a singularity at s = s∗Q because for s < sQ the
integral over the bag volume v diverges at its upper limit. As will be shown below the isobaric partition (1) has
two kind of singularities: the simple pole s = s∗H and the essential singularity s = sQ The rightmost singularity
defines the phase in which matter exists, whereas a PT occurs when two singularities coincide [2, 18, 25]. All
singularities are defined by the equation

s∗ = F (s∗, T ), (3)

Note that the exponential in (2) is nothing else, but a difference of the bulk free energy of a bag of volume
v, i.e. −Tsv, which is under external pressure Ts, and the bulk free energy of the same bag filled with QGP, i.e.
−TsQv. At phase equilibrium this difference of the bulk free energies vanishes. Despite all positive features,
Eq. (2) lacks the surface part of free energy of bags, which will be called a surface energy hereafter. In addition
to the difference of the bulk free energies the realistic statistical models which demonstrated their validity, the
FDM [12] and SMM [15], have the contribution of the surface energy which plays an important role in defining
the phase diagram structure [18, 22]. Therefore, I modify Eq. (2) by introducing the surface energy of the bags
in a general fashion [20]:

FQ(s, T ) = u(T )

∫ ∞

V0

dv
exp [(sQ(T )− s) v − σ(T ) vκ]

vτ
, (4)

where the ratio of the temperature dependent surface tension coefficient to T (the reduced surface tension

coefficient hereafter) which has the form σ(T ) = σo

T · [(Tcep − T )/Tcep]
2k+1

(k = 0, 1, 2, . . .). Here σo > 0 can be
a smooth function of the temperature, but for simplicity I fix it to be a constant. For k = 0 the two terms in
the surface (free) energy of a v-volume bag have a simple interpretation [12]: thus, the surface energy of such
a bag is σ0v

κ, whereas the free energy, which comes from the surface entropy σoT
−1
cepv

κ, is −TσoT−1
cepv

κ. Note
that the surface entropy of a v-volume bag counts its degeneracy factor or the number of ways to make such a
bag with all possible surfaces. This interpretation can be extended to k > 0 on the basis of the Hills and Dales
Model [27, 28].

In choosing such a simple surface energy parameterization we follow the original Fisher idea [12] which
allows one to account for the surface energy by considering some mean bag of volume v and surface vκ. The
consideration of the general mass-volume-surface bag spectrum is reserved for the future investigation. The
power κ < 1 which describes the bag’s effective surface is a constant which, in principle, can differ from the
typical FDM and SMM value 2/3. This is so because near the deconfinement PT region QGP has low density
and, hence, like in the low density nuclear matter [35], the non-sperical bags (spaghetti-like or lasagna-like [35])
can be favorable (see a [25] and references therein). A similar idea of “polymerization” of gluonic quasiparticles
was introduced recently [36].

The second essential difference with the FDM and SMM surface tension parameterization is that we do not
require the vanishing of σ(T ) above the CEP. As will be shown later, this is the most important assumption
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which, in contrast to the GBM, allows one to naturally describe the cross-over from hadron gas to QGP. Note
that negative value of the reduced surface tension coefficient σ(T ) above the CEP does not mean anything
wrong. As we discussed above, the surface tension coefficient consists of energy and entropy parts which have
opposite signs [12, 27, 28]. Therefore, σ(T ) < 0 does not mean that the surface energy changes the sign, but it
rather means that the surface entropy, i.e. the logarithm of the degeneracy of bags of a fixed volume, simply
exceeds their surface energy. In other words, the number of non-spherical bags of a fixed volume becomes so
large that the Boltzmann exponent, which accounts for the energy ”costs” of these bags, cannot suppress them
anymore.

Finally, the third essential difference with the FDM and SMM is that we assume that the surface tension
in the QGBST model happens at some line in µB − T plane, i.e. Tcep = Tcep(µB). However, in the subsequent
sections we will consider Tcep = const for simplicity, and in Sect. V we will discuss the necessary modifications
of the model with Tcep = Tcep(µB).

The surface energy should, perhaps, be introduced into a discrete part of the mass-volume spectrum FH ,
but a successful fitting of the particle yield ratios [6] with the experimentally determined hadronic spectrum
FH does not indicate such a necessity.

In principle, besides the bulk and surface parts of free energy, the spectrum (4) could include the curvature
part as well, which may be important for small hadronic bubbles or for cosmological PT. We stress, however,
that the curvature term has not been seen in such well established modles like the FDM, the SMM and many
other systems [13, 14]. A special analysis of the free energy of 2- and 3-dimesional Ising clusters, using the
Complement method [37], did not find any traces of the curvature term (see a detailed discussion in Ref. [25]).

According to the general theorem [2] the analysis of PT existence of the GCP is now reduced to the analysis
of the rightmost singularity of the isobaric partition (1). Depending on the sign of the reduced surface tension
coefficient, there are three possibilities.

(I) The first possibility corresponds to σ(T ) > 0. Its treatment is very similar to the GBM choice (2) with
τ > 2 [2]. In this case at low temperatures the QGP pressure TsQ(T ) is negative and, therefore, the rightmost
singularity is a simple pole of the isobaric partition s∗ = sH(T ) = F (sH(T ), T ) > sQ(T ), which is mainly
defined by a discrete part of the mass-volume spectrum FH(s, T ). The last inequality provides the convergence
of the volume integral in (4) (see the left panel in Fig. 1). On the other hand at very high T the QGP pressure
dominates and, hence, the rightmost singularity is the essential singularity of the isobaric partition s∗ = sQ(T ).
The phase transition occurs, when the singularities coincide:

sH(Tc) ≡ pH(Tc)/Tc = sQ(Tc) ≡ pQ(Tc)/Tc, (5)

which is nothing else, but the Gibbs criterion. The graphical solution of Eq. (3) for all these possibilities
is shown in Fig. 1. Like in the GBM [2, 7], the necessary condition for the PT existence is the finiteness
of FQ(sQ(T ), T ) at s = sQ(T ). It can be shown that the sufficient conditions are the following inequalities:
FQ(sQ(T ), T ) > sQ(T ) for low temperatures and F (sQ(T ), T ) < sQ(T ) for T → ∞. These conditions provide
that at low T the rightmost singularity of the isobaric partition is a simple pole, whereas for hight T the essential
singularity sQ(T ) becomes its rightmost one (see Fig. 1 and a detailed analysis of case µB 6= 0).

The PT order can be found from the T -derivatives of sH(T ). Thus, differentiating (3) one finds

s′H =
G + uKτ−1(∆,−σ) · s′Q

1 + uKτ−1(∆,−σ)
, (6)

where the functions G and Kτ−a(∆,−σ) are defined as

G ≡ F ′
H +

u′

u
FQ +

(Tcep − 2kT )σ(T )

(Tcep − T )T
uKτ−κ(∆,−σ), (7)

Kτ−a(∆,−σ) ≡
∫ ∞

Vo

dv
exp [−∆v − σ(T )vκ]

vτ−a
, (8)

where ∆ ≡ sH − sQ.
Now it is easy to see that the transition is of the 1st order, i.e. s′Q(Tc) > s′H(Tc), provided σ(T ) > 0 for

any τ . The 2nd or higher order phase transition takes place provided s′Q(Tc) = s′H(Tc) at T = Tc. The latter
condition is satisfied when Kτ−1 diverges to infinity at T → (Tc − 0), i.e. for T approaching Tc from below.
Like for the GBM choice (2), such a situation can exist for σ(Tc) = 0 and 3/2 < τ ≤ 2 [25]. Studying the higher
T -derivatives of sH(T ) at Tc, one can find a mare general statement, but for our purpose it is not necessary.

(II) The second possibility, σ(T ) ≡ 0, described in the preceding paragraph, does not give anything new
compared to the GBM [2, 7]. If the PT exists, then the graphical picture of singularities is basically similar
to the left panel of Fig. 1. The only difference is that, depending on the PT order, the derivatives of F (s, T )
function with respect to s should diverge at s = sQ(Tc).
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Figure 1. Left panel. Graphical solution of Eq. (3) which corresponds to a PT. The solution of Eq. (3)
is shown by a filled hexagon. The function F (s, ξ) is shown by a solid curve for a few values of the parameter
ξ. The function F (s, ξ) diverges for s < sQ(ξ) (shown by dashed lines), but is finite at s = sQ(ξ) (shown by
black circle). At low values of the parameter ξ = ξA, which can be either T or µB , the simple pole sH is the
rightmost singularity and it corresponds to hadronic phase. For ξ = ξB � ξA the rightmost singularity is an
essential singularity s = sQ(ξB), which describes QGP. At intermediate value ξ = ξC both singularities coincide
sH(ξC) = sQ(ξC) and this condition is a Gibbs criterion. Right panel. Graphical solution of Eq. (3) which
corresponds to a cross-over. The notations are the same as in the left panel. Now the function F (s, ξ) diverges
at s = sQ(ξ) (shown by dashed lines). In this case the simple pole sH is the rightmost singularity for any value
of ξ.

(III) A principally new possibility exists for T > Tcep, where σ(T ) < 0. In this case there exists a cross-over,
if for T ≤ Tcep the rightmost singularity is sH(T ), which corresponds to the leftmost curve in the right panel of
Fig. 1. Under the latter, its existence can be shown as follows. Let us solve the equation for singularities (3)
graphically (see the right panel of Fig. 1). For σ(T ) < 0 the function FQ(s, T ) diverges at s = sQ(T ). On the

other hand, the partial derivatives ∂FH(s,T )
∂s < 0 and

∂FQ(s,T )
∂s < 0 are always negative. Therefore, the function

F (s, T ) ≡ FH(s, T ) +FQ(s, T ) is a monotonically decreasing function of s, which vanishes at s→∞. Since the
left hand side of Eq. (3) is a monotonically increasing function of s, then there can exist a single intersection
s∗ of s and F (s, T ) functions. Moreover, for finite sQ(T ) values this intersection can occur on the right hand
side of the point s = sQ(T ), i.e. s∗ > sQ(T ) (see the right panel of Fig. 1). Thus, in this case the essential
singularity s = sQ(T ) can become the rightmost one for infinite temperature only. In other words, the pressure
of the pure QGP can be reached at infinite T , whereas for finite T the hadronic mass spectrum gives a non-zero
contribution into all thermodynamic functions. Note that such a behavior is typical for the lattice QCD data
at zero baryonic chemical potential [38].

It is clear that in terms of the present model a cross-over existence means a fast transition of energy
or entropy density in a narrow T region from a dominance of the discrete mass-volume spectrum of light
hadrons to a dominance of the continuous spectrum of heavy QGP bags. This is exactly the case for σ(T ) < 0
because in the right vicinity of the point s = sQ(T ) the function F (s, T ) decreases very fast and then it
gradually decreases as function of s-variable. Since, FQ(s, T ) changes fast from F (s, T ) ∼ FQ(s, T ) ∼ sQ(T )
to F (s, T ) ∼ FH(s, T ) ∼ sH(T ), their s-derivatives should change fast as well. Now, recalling that the change
from F (s, T ) ∼ FQ(s, T ) behavior to F (s, T ) ∼ FH(s, T ) in s-variable corresponds to the cooling of the system
(see the right panel of Fig. 1), we conclude that that there exists a narrow region of temperatures, where

the T derivative of system pressure, i.e. the entropy density, drops down from ∂p
∂T ∼ sQ(T ) + T

dsQ(T )
dT to

∂p
∂T ∼ sH(T ) + T dsH(T )

dT very fast compared to other regions of T , if system cools. If, however, in the vicinity of
T = Tcep − 0 the rightmost singularity is sQ(T ), then for T > Tcep the situation is different and the cross-over
does not exist. A detailed analysis of this situation is given in Sect. 4.

Note also that all these nice properties would vanish, if the reduced surface tension coefficient is zero or
positive above Tcep. This is one of the crucial points of the present model which puts forward certain doubts
about the vanishing of the reduced surface tension coefficient in the FDM [12] and SMM [15]. These doubts are
also supported by the first principle results obtained by the Hills and Dales Model [27, 28], because the surface
entropy simply counts the degeneracy of a cluster of a fixed volume and it does not physically affect the surface
energy of this cluster.
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Figure 2. Left panel. A schematic picture of the deconfinement phase transition diagram in the plane of
baryonic density ρB and T for the 2nd order PT at the critical endpoint (CEP), i.e. for 3

2 < τ ≤ 2. For the
3rd (or higher) order PT the boundary of the mixed and hadronic phases (dashed curve) should have the same
slope as the boundary of the mixed phase and QGP (solid curve) at the CEP. Right panel. Same as in the
left panel, but for τ > 2. The critical endpoint in the µB − T plane generates the critical end line (CELine)
in the ρB − T plane shown by the thick horizontal line. This occurs because of the discontinuity of the partial
derivatives of sH and sQ functions with respect to µB and T .

3 Generalization to Non-Zero Baryonic Densities

The possibilities (I)-(III) discussed in the preceding section remain unchanged for non-zero baryonic numbers.
The latter should be included into consideration to make our model more realistic. To keep the presentation
simple, we do not account for strangeness. The inclusion of the baryonic charge of the quark-gluon bags does
not change the two types of singularities of the isobaric partition (1) and the corresponding equation for them
(3), but it leads to the following modifications of the FH and FQ functions:

FH(s, T, µB) =
n∑

j=1

gj exp

(
bjµB
T
− vjs

)
φ(T,mj), (9)

FQ(s, T, µB) = u(T, µB)

∫ ∞

V0

dv
exp [(sQ(T, µB)− s) v − σ(T )vκ]

vτ
. (10)

Here the baryonic chemical potential is denoted as µB , the baryonic charge of the j-th hadron in the discrete
part of the spectrum is bj . The continuous part of the spectrum, FQ can be obtained from some spectrum
ρ(m, v, b) in the spirit of Ref. [26, 29], but this will lead us away from the main subject.

The QGP pressure pQ = TsQ(T, µB) can be also chosen in several ways. Here we use the bag model pressure

pQ =
π2

90
T 4

[
95

2
+

10

π2

(µB
T

)2

+
5

9π4

(µB
T

)4
]
−B,

but the more complicated model pressures, even with the PT of other kind like the transition between the color
superconducting QGP and the usual QGP, can be, in principle, used.

The sufficient conditions for a PT existence are

F ([sQ(T, µB = 0) + 0], T, µB = 0) > sQ(T, µB = 0), (11)

F ([sQ(T, µB) + 0], T, µB) < sQ(T, µB), ∀µB > µA. (12)

The condition (11) provides that the simple pole singularity s∗ = sH(T, µB = 0) is the rightmost one at vanishing
µB = 0 and given T , whereas the condition (12) ensures that s∗ = sQ(T, µB) is the rightmost singularity of
the isobaric partition for all values of the baryonic chemical potential above some positive constant µA. This
can be seen in Fig. 1 for µB being a variable. Since F (s, T, µB), where it exists, is a continuous function of its
parameters, one concludes that, if the conditions (11) and (12), are fulfilled, then at some chemical potential
µcB(T ) the both singularities should be equal. Thus, one arrives at the Gibbs criterion (5), but for two variables

sH [T, µcB(T )] = sQ[T, µcB(T )]. (13)

It is easy to see that the inequalities (11) and (12) are the sufficient conditions of a PT existence for more
complicated functional dependencies of FH(s, T, µB) and FQ(s, T, µB) than the ones used here.
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For our choice (9), (10) of FH(s, T, µB) and FQ(s, T, µB) functions the PT exists at T < Tcep, because the
sufficient conditions (11) and (12) can be easily fulfilled by a proper choice of the bag constant B and the
function u(T, µB) > 0 for the interval T ≤ Tup with the constant Tup > Tcep. Clearly, this is the 1st order PT,
since the surface tension is finite and it provides the convergence of the integrals (7) and (8) in the expression
(6), where the usual T -derivatives should be now understood as the partial ones for µB = const.

Assuming that the conditions (11), (12) are fulfilled by the correct choice of the model parameters B and
u(T, µB) > 0, one can see now that at T = Tcep there exists a PT as well, but its order is defined by the value
of τ . As was discussed in the preceding section for 3/2 < τ ≤ 2 there exists the 2nd order PT. For 1 < τ ≤ 3/2
there exist the PT of higher order, defined by the conditions formulated in [25]. This is a new possibility, which,
to our best knowledge, does not contradict to any general physical principle (see the left panel in Fig. 2).

The case τ > 2 can be ruled out because there must exist the first order PT for T ≥ Tcep, whereas for
T < Tcep there exists the cross-over. Thus, the critical endpoint in T − µB plane will correspond to the critical
interval in the temperature-baryonic density plane. Since such a structure of the phase diagram in the variables
temperature-density has, to our knowledge, never been observed, we conclude that the case τ > 2 is unrealistic
(see the right panel in Fig. 2). Note that a similar phase diagram exists in the FDM with the only difference
that the boundary of the mixed and liquid phases (the latter in the QGBST model corresponds to QGP) is
moved to infinite particle density.

4 Surface Tension Induced Phase Transition

Using our results for the case (III) of the preceding section, we conclude that above Tcep there is a cross-over,
i.e. the QGP and hadrons coexist together up to the infinite values of T and/or µB . Now, however, it is
necessary to answer the question: How can the two different sets of singularities that exist on two sides of the
line T = Tcep provide the continuity of the solution of Eq. (3)?

It is easy to answer this question for µB < µcB(Tcep) because in this case all partial T derivatives of sH(T, µB),
which is the rightmost singularity, exist and are finite at any point of the line T = Tcep. This can be seen from
the fact that for the considered region of parameters sH(T, µB) is the rightmost singularity and, consequently,
sH(T, µB) > sQ(T, µB). The latter inequality provides the existence and finiteness of the volume integral in
FQ(s, T, µB). In combination with the power T dependence of the reduced surface tension coefficient σ(T ) the
same inequality provides the existence and finiteness of all its partial T derivatives of FQ(s, T, µB) regardless to
the sign of σ(T ). Thus, using the Taylor expansion in powers of (T −Tcep) at any point of the interval T = Tcep
and µB < µcB(Tcep), one can calculate sH(T, µB) for the values of T > Tcep which are inside the convergency
radius of the Taylor expansion.

The other situation is for µB ≥ µcB(Tcep) and T > Tcep, namely in this case above the deconfinement PT
there must exist a weaker PT induced by the disappearance of the reduced surface tension coefficient. To
demonstrate this we have solve Eq. (3) in the limit, when T approaches the curve T = Tcep from above, i.e.
for T → Tcep + 0, and study the behavior of T derivatives of the solution of Eq. (3) s∗ for fixed values of
µB . For this purpose we have to evaluate the integrals Kτ (∆, γ2) introduced in Eq. (8). Here the notations
∆ ≡ s∗ − sQ(T, µB) and γ2 ≡ −σ(T ) > 0 are introduced for convenience.

To avoid the unpleasant behavior for τ ≤ 2 it is convenient to transform (8) further on by integrating by
parts:

Kτ (∆, γ2) ≡ gτ (V0)−
∆

τ − 1
Kτ−1(∆, γ

2) +
κ γ2

τ − 1
Kτ−κ(∆, γ2), (14)

where the regular function gτ (V0) is defined as

gτ (V0) ≡
1

(τ − 1)V τ−1
0

exp
[
−∆V0 + γ2V κ0

]
. (15)

For τ − a > 1 one can change the variable of integration v → z/∆ and rewrite Kτ−a(∆, γ2) as

Kτ−a(∆, γ2) = ∆τ−a−1

∫ ∞

V0∆

dz
exp

[
−z + γ2∆−κzκ

]

zτ−a
≡ ∆τ−a−1Kτ−a

(
1, γ2∆−κ) . (16)

This result shows that in the limit γ → 0, when the rightmost singularity must approach sQ(T, µB) from above,
i.e. ∆→ 0+, the function (16) behaves as Kτ−a(∆, γ2) ∼ ∆τ−a−1 +O(∆τ−a). This is so because for γ → 0 the
ratio γ2∆−κ cannot go to infinity, otherwise the function Kτ−1

(
1, γ2∆−κ), which enters into the right hand

side of (14), would diverge exponentially and this makes impossible an existence of the solution of Eq. (3)
for T = Tcep. The analysis shows that for γ → 0 there exist two possibilities: either ν ≡ γ2∆−κ → const
or ν ≡ γ2∆−κ → 0. The most straightforward way to analyze these possibilities for γ → 0 is to assume the
following behavior

∆ = Aγα +O(γα+1), ⇒ ∂∆

∂T
=
∂γ

∂T

[
Aαγα−1 +O(γα)

]
∼ (2k + 1)Aαγα

2(T − Tcep)
, (17)
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Figure 3. A schematic picture of the deconfinement phase transition diagram (full curve) in the plane
of baryonic chemical potential µB and T for the 2nd order PT at the tricritical endpoint (CEP). The model
predicts an existence of the surface induced PT of the 2nd or higher order (depending on the model parameters).
This PT starts at the CEP and goes to higher values of T and/or µB . Here it is shown by the dashed curve
CEP-A, if the phase diagram is endless, or by the dashed-dot curve CEP-B, if the phase diagram ends at T = 0,
or by the dashed-double-dot curve CEP-C, if the phase diagram ends at µB = 0. Below (above) each of A
or B curves the reduced surface tension coefficient is positive (negative). For the curve C the surface tension
coefficient is positive outside of it.

and find out the α value by equating the T derivative of ∆ with the T derivative (6).
The analysis shows [25] that for ∆2−τ ≤ γγ′∆1−κ one finds

γα−2 ∼ ∆1−κ ⇒ ακ = 2 for τ ≤ 1 +
κ

2k + 1
. (18)

Similarly, for ∆2−τ ≥ γγ′∆1−κ one obtains γα−1γ′ ∼ ∆2−τ and, consequently,

α =
2

(τ − 1)(2k + 1)
for τ ≥ 1 +

κ

2k + 1
. (19)

Summarizing our results for γ → 0, we can write the expression for the second derivative of ∆ as [25]:

∂2∆

∂T 2
∼
{

[(T − Tcep)/Tcep](2k+1)/κ−2
, τ ≤ 1 + κ/(2k + 1),

[(T − Tcep)/Tcep](3−2τ)/(τ−1)
, τ ≥ 1 + κ/(2k + 1).

(20)

The last result shows us that, depending on κ and k values, the second derivatives of s∗ and sQ(T, µB) can
differ from each other for 3/2 < τ < 2 or can be equal for 1 < τ ≤ 3/2. In other words, we found that at the
line T = Tcep there exists the 2nd order PT for 3/2 < τ < 2 and the higher order PT for 1 < τ ≤ 3/2, which
separates the pure QGP phase from the region of a cross-over, i.e. the mixed states of hadronic and QGP bags.
Since it exists at the line of a zero surface tension, this PT will be called the surface induced PT. For instance,
from (20) it follows that for k = 0 and κ > 1

2 there is the 2nd order PT, whereas for k = 0 and κ = 1/2 or for
k > 0 and κ < 1 there is the 3d order PT, and so on.

Since the analysis performed in the present section did not include any µB derivatives of ∆, it remains valid
for the µB dependence of the reduced surface tension coefficient, i.e. for Tcep(µB). Only it is necessary to make
a few comments on a possible location of the surface tension null line Tcep(µB). In principle, such a null line
can be located anywhere, if its location does not contradict to the sufficient conditions (11) and (12) of the
1st deconfinement PT existence. Thus, the surface tension null line must cross the deconfinement line in the
µB − T plane at a single point which is the tricritical endpoint (µcepB ;Tcep(µ

cep
B )), whereas for µB > µcepB the

null line should have higher temperature for the same µB than the deconfinement one, i.e. Tcep(µB) > Tc(µB)
(see Fig. 3). Clearly, there exist two distinct cases for the surface tension null line: either it is endless, or it
ends at zero temperature or at other singularity, like the Color-Flavor-Locked phase. From the present lattice
QCD data [38] it follows that the case C in Fig. 3 is the least possible.

To understand the meaning of the surface induced PT it is instructive to quantify the difference between
phases by looking into the mean size of the bag:

〈v〉 ≡ −∂ lnF (s, T, µB)

∂s

∣∣∣∣
s=s∗−0

. (21)
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As was shown in hadronic phase phase ∆ > 0 and, hence, it consists of the bags of finite mean volumes, whereas,
by construction, the QGP phase is a single infinite bag. For the cross-over states ∆ > 0 and, therefore, they are
the bags of finite mean volumes, which gradually increase, if the rightmost singularity approaches sQ(T, µB), i.e.
at very large values T and/or µB . Such a classification is useful to distinguish QCD phases of present model:
it shows that hadronic and cross-over states are separated from the QGP phase by the 1st order deconfinement
PT and by the 2nd or higher order PT, respectively.

5 Conclusions and Perspectives

Here we discussed an analytically solvable statistical model which simultaneously describes the 1st and 2nd

order PTs with a cross-over. The approach is general and can be used for more complicated parameterizations
of the hadronic mass-volume spectrum, if in the vicinity of the deconfinement PT region the discrete and
continuous parts of this spectrum can be expressed in the form of Eqs. (9) and (10), respectively. Also the
actual parameterization of the QGP pressure p = TsQ(T, µB) was not used so far, which means that our result
can be extended to more complicated functions, that can contain other phase transformations (chiral PT, or the
PT to color superconducting phase) provided that the sufficient conditions (11) and (12) for the deconfinement
PT existence are satisfied.

In this model the desired properties of the deconfinement phase diagram are achieved by accounting for the
temperature dependent surface tension of the quark-gluon bags. As we showed, it is crucial for the cross-over
existence that at T = Tcep the reduced surface tension coefficient vanishes and remains negative for temperatures
above Tcep. Then the deconfinement µB − T phase diagram has the 1st PT at µB > µcB(Tcep) for 3/2 < τ < 2
, which degenerates into the 2nd order PT (or higher order PT for 3/2 ≥ τ > 1) at µB = µcB(Tcep), and a
cross-over for 0 ≤ µB < µcB(Tcep). These two ingredients drastically change the critical properties of the GBM
[2] and resolve the long standing problem of a unified description of the 1st and 2nd order PTs and a cross-over,
which, despite all claims, was not resolved in Ref. [7]. In addition, we found that at the null line of the surface
tension there must exist the surface induced PT of the 2nd or higher order, which separates the pure QGP from
the mixed states of hadrons and QGP bags, that coexist above the cross-over region (see Fig. 3). Thus, the
QGBST model predicts that the QCD critical endpoint is the tricritical endpoint. It would be interesting to
verify this prediction with the help of the lattice QCD analysis. For this one will need to study the behavior of
the bulk and surface contributions to the free energy of the QGP bags and/or the string connecting the static
quark-antiquark pair.

Also in the QGBST model the pressure of the deconfined phase is generated by the infinite bag, whereas the
discrete part of the mass-volume spectrum plays an auxiliary role even above the cross-over region. Therefore,
there is no reason to believe that any quantitative changes of the properties of low lying hadronic states generated
by the surrounding media (like the mass shift of the ω and ρ mesons [39]) would be the robust signals of the
deconfinement PT. On the other hand, the QGP bags created in the experiments have finite mass and volume
and, hence, the strong discontinuities which are typical for the 1st order PT should be smeared out which
would make them hardly distinguishable from the cross-over. Thus, to seriously discuss the signals of the 1st

order deconfinement PT and/or the tricritical endpoint, one needs to solve the finite volume version of the
QGBST model like it was done for the SMM [21] and the GBM [22]. This, however, is not sufficient because,
in order to make any reliable prediction for experiments, the finite volume equation of state must be used in
hydrodynamic equations which, unfortunately, are not suited for such a purpose. Thus, we are facing a necessity
to return to the foundations of heavy ion phenomenology and to modify them according to the requirements of
the experiments.

To apply the QGBST model to the experiments it is necessary to refine it: it seems that for the mixture of
hadrons and QGP bags above the cross-over line it is necessary to include the relativistic treatment of hard core
repulsion [40, 41] for lightest hadrons and to include into statistical description the medium dependent width of
resonances and QGP bags, which can, in principal, change our understanding of the cross-over mechanism [42].

Acknowledgments. I am cordially thankful to the organizers of the seminar-workshop “New Physics and
Quantum Chromodynamics at External Conditions” for a warm hospitality and the chance to visit my naitive
city Dnipropetrovsk and discuss there the physics which is at the frontier line of research.
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The spontaneous generation of the chromomagnetic field at high temperature is investigated in a lattice formu-
lation of the SU(2)-gluodynamics. The procedure of studying this phenomenon is developed. The Monte Carlo
simulations of the free energy on the lattices 2× 83, 2× 163 and 4× 83 at various temperatures are carried out.
The creation of the field is indicated by means of the χ2-analysis of the data set accumulating 5–10 millions
MC configurations. A comparison with the results of other approaches is done.

1 Introduction

Among interesting problems of modern cosmology the origin of large-scale magnetic fields is intensively attacked
nowadays. Various mechanisms of the field generation at different stages of the universe evolution were proposed
[1]. Basically they are grounded on the idea of Fermi, Chandrasekhar and Zel’dovich that to have the present day
galaxy magnetic fields of order ∼ 1µG correlated on a scale ∼ 1Mpc seed magnetic fields must be present in the
early universe. These fields had been frozen in a cosmic plasma and then amplified by some of the mechanisms
of the field amplification. One of the ways to produce seed fields is a spontaneous vacuum magnetization
at high temperature T [2–5]. Actually, this is an extension of the Savvidy model for the QCD vacuum [6],
proposed already at T = 0 and describing the creation of the Abelian chromomagnetic fields due to a vacuum
polarization, in case of nonzero temperature. At zero temperature this field configuration is unstable because of
the tachyonic mode in the gluon spectrum. At T 6= 0, the possibility of having strong temperature-dependent
and stable magnetic fields was discovered [4]. The field stabilization is ensured by the temperature and field
dependent gluon magnetic mass.

Another related field of interest is the deconfinement phase of QCD. As it was realized recently, this is not
the gas of free quarks and gluons, but a complicate interacting system of them. This was discovered at RHIC
experiments [7] and observed in either perturbative [4, 8] or nonperturbative [9] investigations of the vacuum
state with magnetic fields at high temperature. In Refs. [4, 8] the spontaneous creation of the chromomagnetic
fields of order gB ∼ g4T 2 was observed in SU(2)- and SU(3)-gluodynamics within the one-loop plus daisy
resummation accounted for. In Ref. [9] the chromomagnetic condensate of same order was obtained in stochastic
QCD vacuum model and method of dimensional reduction by comparison with lattice data. In Refs. [10] the
response of the vacuum to the influence of strong external fields at different temperatures has been investigated
and it was shown that the confinement is restored by increasing the strength of the applied field. These results
stimulated the present investigation.

We are going to determine the spontaneous creation of magnetic fields in lattice simulations of SU(2)-
gluodynamics. In contrast to the problems in the external field, in the case of interest the field strength is a
dynamical variable which values at different temperatures have to be determined by means of the minimization
of the free energy. This procedure is not a simple one as in continuum because the field strength on a lattice
is quantized. To deal with this peculiarity, we consider magnetic fluxes on a lattice as the main objects to be
investigated. The fluxes take continuous values, and therefore the minimization of the free energy in presence
of magnetic field can be fulfilled in a usual way. These speculations serve as an explanation of the strategy of
our calculations.

One of the methods to introduce a magnetic flux on a lattice is to use the twisted boundary conditions
(t.b.c.) [11]. In this approach the flux is a continuous quantity. So, in what follows we consider the free energy
F (ϕ) with the magnetic flux ϕ on a lattice in the SU(2)-gluodynamics and calculate its values at different
temperatures by means of Monte Carlo (MC) simulations. We will show that the global minimum of F (ϕ) is
located at some non-zero value ϕmin dependent on the temperature. It means the spontaneous creation of the
temperature-dependent magnetic fields in the deconfinement phase.

The paper is organized as follows. In sect. 2 some necessary information about the magnetic fluxes on a
lattice is adduced. In sect. 3 the calculation details and the results are given. Section 4 is devoted to discussion.
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2 Magnetic fields on a lattice

In perturbation theory, the value of the macroscopic (classical) magnetic field generated inside a system is de-
termined by the minimization of the free energy functional. The interaction with the classical field is introduced
by splitting the gauge field potential in two parts: Aµ = Āµ + ARµ , where ARµ describes a radiation field and

Āµ = (0, 0, Hx1, 0) corresponds to the constant magnetic field directed along the third axis. However, on a
lattice, the direct detection of the spontaneously generated field strength by straightforward analysis of the
configurations, which are produced in the MC simulations, seems to be problematic. Therefore, it is reasonable
to follow the approach used in the continuum field theory.

First, let us write down the free energy density,

F (ϕ) = − log
Z(ϕ)

Z(0)
, Z(ϕ) =

∫
[DU(ϕ)] exp{−S(U(ϕ))}. (1)

Here, Z(ϕ) and Z(0) are the partition function at finite and zero magnetic fluxes, respectively; the link variable
U is the lattice analogue of the potential Aµ.

The free energy density relates to the effective action as follows,

F (ϕ) = S̄(ϕ)− S̄(0), (2)

where S̄(ϕ) and S̄(0) are the effective lattice actions with and without magnetic field, correspondingly.
To detect the spontaneous creation of the field it is necessary to show that the free energy density has the

global minimum at a non-zero magnetic flux, ϕmin 6= 0.
In what follows, we use the hypercubic lattice Lt × L3

s (Lt < Ls) with the hypertorus geometry; Lt and Ls
are the temporal and the spatial sizes of the lattice, respectively. In the limit of Ls →∞ the temporal size Lt
is related to physical temperature. The one-plaquette action of the SU(2) lattice gauge theory can be written
as

SW = β
∑

x

∑

µ>ν

[
1− 1

2
Tr Uµν(x)

]
; (3)

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x), (4)

where β = 4/g2 is the lattice coupling constant, g is the bare coupling, Uµ(x) is the link variable located on the
link leaving the lattice site x in the µ direction, Uµν(x) is the ordered product of the link variables.

The effective action S̄ in (2) is the Wilson action averaged over the Boltzmann configurations, produced in
the MC simulations.

The lattice variable Uµ(x) can be decomposed in terms of the unity, I, and Pauli, σj , matrices in the color
space,

Uµ(x) = IU0
µ(x) + iσjU

j
µ(x) =

(
U0
µ(x) + iU3

µ(x) U2
µ(x) + iU1

µ(x)
−U2

µ(x) + iU1
µ(x) U0

µ(x)− iU3
µ(x)

)
. (5)

The four components U jµ(x) are subjected to the normalization condition∑
j U

j
µ(x)U

j
µ(x) = 1. Hence, only three components are independent.

Since the spontaneously generated magnetic field is to be the Abelian one, the Abelian parametrization of
the lattice variables is used to introduce the magnetic field,

Uµ(x) =

(
cosφµ(x)e

iθµ(x) sinφµ(x)e
iχµ(x)

− sinφµ(x)e
−iχµ(x) cosφµ(x)e

−iθµ(x)

)
, (6)

where the angular variables are changed in the following ranges θ, χ ∈ [−π; +π), φ ∈ [0;π/2).
The Abelian part of the lattice variables is represented by the diagonal components of the matrix and the

condensate Abelian magnetic field influences the field θµ(x), only.
The second important task is to incorporate the magnetic flux in this formalism. The most natural way

was proposed by ’t Hooft [11]. In his approach, the constant homogeneous external flux ϕ in the third spatial
direction can be introduced by applying the following t.b.c.:

Uµ(Lt, x1, x2, x3)↔ Uµ(0, x1, x2, x3), Uµ(x0, Ls, x2, x3)↔ Uµ(x0, 0, x2, x3),

Uµ(x0, x1, Ls, x3)↔ eiϕUµ(x0, x1, 0, x3), Uµ(x0, x1, x2, Ls)↔ Uµ(x0, x1, x2, 0). (7)

It could be seen, the edge links in all directions are identified as usual periodic boundary conditions except for
the links in the second spatial direction, for which the additional phase ϕ is added (Fig. 1). In the continuum
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Figure 1. The plaquette presentation of the twisted boundary conditions.

limit, such t.b.c. settle the magnetic field with the potential Aµ(x) = (0, 0, Hx1, 0). The magnetic flux ϕ is
measured in angular units and can take a value from 0 to 2π.

The lattice variables (in the Abelian parametrization) in the presence of the magnetic flux ϕ are

Uµ(x) =

(
cosφµ(x)e

i(θµ(x)+ϕµ(x)) sinφµ(x)e
iχµ(x)

− sinφµ(x)e
−iχµ(x) cosφµ(x)e

−i(θµ(x)+ϕµ(x))

)
, (8)

where ϕµ(x) = ϕ for the edge links at x = (x0, x1, Ls, x3) with µ = 2 and ϕµ(x) = 0 for other links.
The total flux through the plane spanned by the plaquettes p, which affects the edge links at x = (x0, x1, Ls, x3)

with µ = 2, is

gΦ =
∑

p∈plane
(θp + ϕ), θp = θµν(x) = θµ(x) + θν(x+ aµ̂)− θµ(x+ aν̂)− θν(x). (9)

Eq. (9) is the lattice analogue of the flux in the continuum:

Φc =

∫

S

d2σµνFµν . (10)

In this approach the variable ϕ describes a flux through the whole lattice plane, not just through an elementary
plaquette.

The t.b.c. for the components (8),

U0
µ(x) = cos(θµ(x) + ϕµ(x)) cosφµ(x), U1

µ(x) = sinφµ(x) cosχµ(x),

U2
µ(x) = sinφµ(x) sinχµ(x), U3

µ(x) = sin(θµ(x) + ϕµ(x)) cosφµ(x), (11)

read

U0
µ(x)↔

{
U0
µ(x) cosϕ− U3

µ(x) sinϕ for x = {x0, x1, Ls, x3}, µ = 2,
U0
µ(x) for other links,

(12)

U3
µ(x)↔

{
U0
µ(x) sinϕ+ U3

µ(x) cosϕ for x = {x0, x1, Ls, x3}, µ = 2,
U3
µ(x) for other links.

(13)

The relations (12) and (13) have been implemented into the kernel of the MC procedure in order to produce
the configurations with the magnetic flux ϕ. In this case the flux ϕ is accounted for in obtaining a Boltzmann
ensemble at each MC iteration.

3 Description of simulations and data fits

The MC simulations are carried out by means of the heat bath method. The lattices 2×83, 2×163 and 4×83 at
β = 3.0, 5.0 are considered. These values of the coupling constant correspond to the deconfinement phase and
perturbative regime. To thermalize the system, 200-500 iterations are fulfilled. At each working iteration, the
plaquette value (4) is averaged over the whole lattice leading to the Wilson action (3). Then the effective action
is calculated by averaging over the 1000-5000 working iterations. By setting a set of magnetic fluxes ϕ in the
MC simulations we obtain the corresponding set of values of the effective action. The value of the condensed
magnetic flux ϕmin is obtained as the result of the minimization of the free energy density (2).
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Figure 2. χ2-fit of the free energy density on lattice 2× 83 (left figure) and 2× 163 (right figure) for β = 3.0

(grey regions describe the ϕmin = 0.019+0.013
−0.012 and ϕmin = 0.0069+0.0022

−0.0057, at the 95% C.L., correspondingly).

The spontaneous generation of magnetic field is the effect of order ∼ g4 [4]. The results of MC simulations
show the comparably large dispersion. So, the large amount of the MC data is collected and the standard χ2-
method for the analysis of data is applied to determine the effect. We consider the results of the MC simulations
as observed “experimental data”.

The effective action depends smoothly on the flux ϕ in the region ϕ ∼ 0. Therefore, the free energy density
can be fitted by the quadratic function of the flux ϕ,

F (ϕ) = Fmin + b(ϕ− ϕmin)2. (14)

This choice is motivated also by the results obtained already in continuum field theory [13] where it was
determined that free energy has a global minimum at ϕ 6= 0. The parametrization (14) is the most reasonable
in this case. It is based on the effective action accounting for the one-loop plus daisy diagrams [13],

F (H) =
H2

2
+

11

48

g2

π2
H2 log

T 2

µ2
− 1

3

(gH)3/2T

π
− 1

12
Tr [Π00(0)]

3/2
, (15)

having g2 and (g2)3/2 orders in coupling constant. Here, H is field strength (flux ϕ ∼ H), T is the temperature,
µ is the normalization point, Π00(0) is the zero–zero component of the gluon polarazation operator calculated
in the external field at the finite temperature and taken at zero momentum. The value of β = 3, which was
used, corresponds to a deep perturbation regime. So, a comparison with perturbation results is reasonable. The
systematic errors in fitting function (14) could come from not taking into account the high-order diagrams in
(15). However, as it is well known [15], the lack of an expansion parameter at finite temperature starts from
the three-loop diagram contributions that is of g6 order and could not remove an effect derived in g2 and g3

orders. As the finite-size effects are concerned, in the present investigation we just made calculations for two
lattices 2 × 83 and 2 × 163 and have derived the same results for the ϕmin (as it will be seen below). A more
detailed investigation of this issue requires much more computer resources, which were limited.

There are 3 unknown parameters, Fmin, b and ϕmin in Eq.(14). The parameter ϕmin denotes the minimum
position of the free energy, whereas the Fmin and b are the free energy density at the minimum and the curvature
of the free energy function, correspondingly.

The value ϕmin is obtained as the result of the minimization of the χ2-function

χ2(Fmin, b, ϕmin) =
∑

i

(Fmin + b(ϕi − ϕmin)2 − F (ϕi))
2

D(F (ϕi))
, (16)

where ϕi is the array of the set fluxes and D(F (ϕi)) is the data dispersion. It can be obtained by collecting the
data into the bins (as a function of flux),

D(F (ϕi)) =
∑

i∈bin

(F (ϕi)− F̂bin)2
nbin − 1

, (17)

where nbin is the number of points in the considered bin, F̂bin is the mean value of free energy density in the
considered bin. As it is determined in the data analysis, the dispersion is independent of the magnetic flux
values ϕ. The deviation of ϕmin from zero indicates the presence of spontaneously generated field.

The fit results are given in the Table 1. As one can see, ϕmin demonstrates the 2σ-deviation from zero. The
dependence of ϕmin on the temperature is also in accordance with the results known in perturbation theory:
the increase in temperature results in the increase of the field strength [4].
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Table 1. The values of the generated fluxes ϕmin for different lattices (at the 95% C.L.).

2× 83 2× 163 4× 83

β = 3.0 0.019+0.013
−0.012 0.0069+0.0022

−0.0057 0.005+0.005
−0.003

β = 5.0 0.020+0.011
−0.010

Figure 3. The 95% C.L. area for the parameters Fmin and ϕmin, determining the free energy density
dependence on the flux ϕmin on lattice 2 × 83 for β = 3.0 (left figure). The 95% C.L. area for the parameters
Fmin and b , determining the free energy density dependence on the flux ϕmin on lattice 2 × 163 for β = 3.0
(right figure).

The fits for the lattices 2×83 and 2×163 at β = 3.0 are shown in Fig. 2. The maximum-likelihood estimate
of F (ϕ) by the whole data set is shown as the solid curve. In addition, all ϕ values are divided into 15 bins.
The mean values and the 95% confidence intervals are presented as points for each bin. The first 9 bins contain
about 600-2000 points per bin. The large number of points in the bins allow to find the free energy F with the
accuracy which substantively exceeds the dispersion,

√
D(F (ϕi)) ∼ 10−4. It makes possible to detect the effect

of interest. As it is also seen, the maximum-likelihood estimate of F (ϕ) is in a good accordance with the bins
pointed, because the solid line is located in the 95% confidence intervals of all bins.

The 95% C.L. area of the parameters Fmin (b for the right figure) and ϕmin is represented in Fig. 3. The
black cross marks the position of the maximum-likelihood values of Fmin (b for the right figure) and ϕmin. It
can be seen that the flux is positive determined. The 95% C.L. area becomes more symmetric with the center
at the Fmin, b and ϕmin when the statistics is increasing. This also confirms the results of the fitting.

4 Discussion

The main conclusion from the results obtained is that the spontaneously created temperature-dependent chro-
momagnetic field is present in the deconfinement phase of QCD. This supports the results derived already in
the continuum quantum field theory [4, 12] and in lattice data analysis [9].

Let us first discuss the stability of the magnetic field at high temperature. It was observed in Refs. [4, 12] that
the stabilization happens due to the gluon magnetic mass calculated from the one-loop polarization operator
in the field at temperature. This mass has the order m2

magn ∼ g2(gH)1/2T ∼ g4T 2 as it should be because the

chromomagnetic field is of order (gH)1/2 ∼ g2T [4]. The stabilization is a nontrivial fact that, in principle, could
be changed when the higher order Feynman diagrams to be accounted for. Now we see that the stabilization of
the field really takes place.

Our approach based on the joining of calculation of the free energy functional and the consequent statistical
analysis of its minimum positions at various temperatures and flux values. This overcomes the difficulties
peculiar to the description of the field on a lattice. Here we mean that the field strength on a lattice is
quantized and therefore a nontrivial tuning of the coupling constant, temperature and field strength values has
to be done in order to determine the spontaneously created magnetic field.

We also would like to note that in the present paper the flux dependence on temperature remains not
investigated in details. This is because of the small lattice size considered. That restricts the number of points
permissible to study. However, at this stage we have determined the effect of interest as a whole. Even at
the small lattice, one needs to take into consideration thousands points of free energy (that corresponds to
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an analysis of 5-10 millions MC configurations for different lattices) to determine the flux value ϕmin at the
95% C.L. In case of larger lattices this number and corresponding computer resources should be increased
considerably. This problem is left for the future.

As we mentioned in Section 2, the finite-size effects have not been investigated in detail. However, these
effects are important near the phase transition temperature. They make difficult to distinguish a first-order
phase transition from a second-order one. In our case, the temperature is far from Tc. The fact that external
field penetrates the Coulomb phase is well known [10, 16], so the only really new thing is that this field is
spontaneously created. It was first observed in continuum [4], where the field strength of order g4 in coupling
constant was established. Finite-size effects are not able to remove this result. The values ϕmin obtained on
the lattices 2× 83 and 2× 163 (see the Table 1) are in a good agrement with each other, within the statistical
errors at 95% C.L.

One could speculate that the lattice sizes 2× 83 and 2× 163 are not sufficient. However, these lattice sizes
were used in the Refs. [17]. The main aim of present paper is to show a possibility of spontaneous generation of
chromomagnetic field at high temperature in lattice simulation, which was investigated already by perturbative
methods [4, 8].

It is interesting to compare our results with that of in Ref. [10] where the response of the vacuum on the
external field was investigated. These authors have observed in lattice simulations for the SU(2)- and SU(3)-
gluodynamics that the external field is completely screened by the vacuum at low temperatures, as it should be
in the confinement phase. With the temperature increase, the field penetrates into the vacuum and, moreover,
increase in temperature results in existing more strong external fields in the vacuum. On the other hand,
increase in the applied external field strength leads to the decreasing of the deconfinement temperature. These
interesting properties are closely related to the studies in the present work. Actually, we have also investigated
the vacuum properties as an external field problem when the field is described in terms of fluxes. This was the
first step of the calculations. The next step was the statistical analysis of the minimum position of free energy,
in order to determine the spontaneous creation of the field. In fact, at the first step we reproduced the results
of Refs. [10] (in terms of fluxes).

Note that the present investigations also correspond to the case of the early universe. They support our
previous results on the magnetic field generation in the standard model [13] and in the minimal supersymmetric
standard model [14]. As it was discussed by Pollock [5], the field generated by this mechanism at the Planck
era might serve as a seed field to produce the present day magnetic fields in galaxies.

We would like to conclude with the note that the deconfinement phase of gauge theories is a very interesting
object to study. The temperature dependent magnetic fields, which are present in this state, influence various
processes that should be taken into consideration to have an adequate concept about them.
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In SU(2) gluodynamics, the structure of the exact Green function of neural gluons in an Abelian homogeneous
magnetic field at finite temperature is derived. It is expressed through 10 tensors, which form an algebra with
respect to anticommutation operation, and corresponding form factors. The structure constants of the algebra
are calculated. The spectrum of gluons is derived from the pole positions of this Green function for the form
factors calculated in one-loop order. The high temperature limits for these form factors are computed. The
spectra of different gluon states are obtained.

1 Introduction

Recent investigations of QCD at high temperature revealed an important role of colored magnetic fields. In
particular, it has been elucidated in gluodynamics that color magnetic fields are spontaneously created at
high temperature [1, 2, 6]. It is reasonable to suppose that the spontaneous generation of magnetic fields is
also responsible for producing of seed magnetic fields in the early universe. From the analysis of the lattice
simulations [4], and using the perturbative daisy resummations in the external field at high temperature [6] it
was discovered that Abelian chromomagnetic fields of order gB ∼ g4T 2, where g is a gauge coupling constant,
are spontaneously created.

To investigate physics in this case one has to calculate the spectra of quarks and gluons in the background
field and at finite temperature. As a first step, the operator structure of the gluon Green function and the
spectra for this background should be calculated.

Let us divide the gauge field potential Aaµ(x) into the background Abelian homogeneous magnetic field Ba
µ(x)

and the quantum fluctuations Qaµ(x),

Aaµ(x) = Baµ(x) +Qaµ(x). (1)

The background field Baµ(x) is directed along the third axis in both the color and the configuration spaces. Its
vector potential is

Baµ(x) = δa3δµ2x1B (2)

and the corresponding field strength tensor equals to

F aij = δa3Fij = δa3Bε3ij , (3)

where only the spatial components (i, j = 1, 2, 3) are nonzero. In the field presence it is convenient to turn to
the so-called ”charged basis” W±

µ = (Q1
µ ± iQ2

µ)/
√

2, Qµ = Q3
µ, with the interpretation of W±

µ as color charged
fields (“charged” gluons) and Qµ as color neutral fields (“neutral” gluons). The neutral gluon has continuous
momentum, whereas charged one forms the discrete Landau levels in the perpendicular with respect to the field
direction. In Ref. [5] the gluon polarization tensor at zero temperature was derived. In Ref. [6] that has been
done for the finite temperature case. In the present paper we investigate the properties of the exact neutral
gluon Green function in the external field at zero and finite temperature.

We use the Feynman gauge where the propagator of neutral gluon in Euclidean’s metric with a momentum
kµ is

D(0)
µν =

δµν
k2

. (4)

In a tree approximation, the spectrum can be determined from the pole position of D
(0)
µν , that is from the

equation k2 = 0. The aim of the present paper is to determine the gluon spectrum in the field Ba
µ(x) derived

from the pole position of the exact Green function. First we describe the tensor structure of the neutral gluon
Green function at zero and finite temperature.

e-mail: askalozub@dsu.dp.ua
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2 The structure of the polarization tensor

The exact Green function Dµν of neutral gluons in the field Baµ(x) is a function of two vectors formed from
momentum components: hλ = (k1, k2, 0, 0), lµ = (0, 0, k3, k4) and the field induction B. It is given by the
operator Schwinger-Dyson equation

D =
1

(k2 −Π)
, (5)

were Π is the polarization tensor (PT).
As it was shown in Ref. [5], in a magnetic field the PT is not transversal. This means that the condition

kµΠµν = 0 does not hold. So, a weaker condition was used

kµΠµνkν = 0. (6)

In Ref. [6] the following tensor structure of the neutral gluon PT at finite temperature was derived

Πµν =

10∑

i=1

Π(i)T (i)
µν (7)

with

T
(1)
λλ′ = l2δ

||
λλ′ − lλlλ′ , T

(2)
λλ′ = h2δ⊥λλ′ − hλhλ′ = dλdλ′ ,

T
(3)
λλ′ = h2δ

||
λλ′ + l2δ⊥λλ′ − lλhλ′ − hλlλ′ , T

(4)
λλ′ = h2δ

||
λλ′ − l2δ⊥λλ′ ,

T
(5)
λλ′ = i(lλdλ′ − dλlλ′) + il2Fλλ′ , T

(6)
λλ′ = iFλλ′ , (8)

where we use the notation

δ
||
λλ′ =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 , δ⊥λλ′ =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , Fλλ′ =




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 ,

lλ = (0, 0, k3, k4), hλ = (k1, k2, 0, 0), dλ = (k2,−k1, 0, 0). (9)

The first four tensors T (i) are transversal, kµTµν = 0, whereas the last two obey the Eq. (6), only. At finite
temperature, we have to take into consideration the additional vector u = (0, 0, 0, 1) – the thermostat velocity.
Using the vector u one can construct four additional tensors:

T
(7)
λλ′ = (uk)(uλlλ′ + lλuλ′)− δ||λλ′(uk)

2 − uλuλ′ l2, T
(8)
λλ′ = (uk)(uλhλ′ + hλuλ′)− δ⊥λλ′(uk)2 − uλuλ′h2,

T
(9)
λλ′ = i(uλdλ′ − dλuλ′) + iFλλ′(uk), T

(10)
λλ′ = k2δλλ′ − (k2)2uλuλ′

(uk)2
. (10)

Here the scalar product (uk) = k4 is the fourth component of the momentum. The tensors T (7), T (8), and T (9)

are transversal, whereas T (10) satisfies only the weaker condition (6).

It is possible to check that the set of tensors (8)–(10) together with the identity matrix T
(0)
µν = k2(δ

||
µν + δ⊥µν)

forms an algebra
{T (i), T (j)} = 2Cijk T

(k). (11)

Its structure constants Cijk were calculated from explicit expressions for tensors T (i), where the indices run the
values i, j = 0, 1, . . . , 10. This is assumed below. Due to completeness of the set of operators T (i), one can
obtain D as a linear combination

Dµν =

10∑

i=0

D(i)T (i)
µν , (12)

where D(i) are some scalar functions of the form factors Π(j).They will be calculated in the next section.

3 The gluon Green function at finite temperature

First we notice that T (i) are the functions of hµ = (k1, k2, 0, 0), lµ = (0, 0, k3, k4) and uµ = (0, 0, 0, 1). The
convolution of T (i) and some linear combination of hµ, lµ and uµ is again a linear combination of these vectors

with other coefficients, (αlµ + βlµ + γuµ)T
(i)
µν = xlν + yhν + zuµ. Let us consider a tensor

P (α, β, γ, x, y, z)µν ≡ (αlµ + βhµ + γuµ)(xlν + yhν + zuν) (13)
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and its convolution with D. From Eq. (12) we obtain

P (α, β, γ, x, y, z)µνDµν = (αlµ + βhµ + γuµ)Dµν(xlν + yhν + zuν) =
10∑

i=0

D(i) (αlµ + βhµ + γuµ)T
(i)
µν (xlν + yhν + zuν). (14)

On the other hand, we can substitute (k2 −Π)−1
µν for Dµν in Eq. (14) and get some functions which depend

on the form factors Π(i),

P (α, β, γ, x, y, z)µν

[
1

(k2 −Π)

]

νµ

=
1

k2

∞∑

t=0

1

k2t

[
(αlµ + βhµ + γuµ)Π

t
µν

]
(xlν + yhν + zuν). (15)

Here we expressed the function of Π in the form of series to find

(αlµ + βhµ + γuµ)Πµν = α1lν + β1hν + γ1uν . (16)

In the operator form we get

A




α
β
γ


 =




α1

β1

γ1


 , (17)

where A is a transformation matrix. Obviously that

(αlµ + βlµ + γuµ)Π
t
µν = αtlν + βthν + γtuν , (18)

where (
αt, βt, γt

)T
= At (α, β, γ)T . (19)

So, if we have a function of Π we can replace it by A:

P (α, β, γ, x, y, z)µν

[
1

(k2 −Π)

]

νµ

=
(
α′lµ + β′hµ + γ′uµ

)(
xlµ + yhµ + zuµ

)
, (20)

where
(
α′, β′, γ′

)T
= (k2 −A)−1 (α, β, γ)T .

In our case, the matrix A has the following elements:

A11 = h2(Π(3) + Π(5)) + (uk)2(Π(7) −Π(8));

A12 = −l2Π(3) + (uk)2Π(8); A13 = −h2Π(8);

A21 = −h2Π(3); A22 = l2(Π(3) −Π(5)); A23 = h2Π(8);

A31 = (uk)2Π(1); A32 = (uk)2(Π(3) + Π(8));

A33 = l2Π(1) + h2(Π(3) + Π(5)) + ((uk)2 − h2)Π(8). (21)

By specifying the values of coefficients α, β, γ, x, y, z we can derive the factors D(i):

D(0) =
B11 +B12 +B21 +B22

ψ k2
,

D(1) = − ω + (uk)2Π(7)δ

k2 − l2Π(1) − h2[Π(3) + Π(5)] + (uk)2Π(7)
,

D(2) =
−k2Π(2) + h2Π(2)[Π(3) + Π(5)] + h2Π(3)2 + (uk)2Π(8)[Π(2) −Π(8)]

ψ
[
k2 − h2Π(2) − l2(Π(3) −Π(5)) + (uk)2Π(8)

] ,

D(3) = − B12 +B32

ψ h2[l2 + (uk)2]
,

D(5) =
(uk)2 − k2

ψ k2h2[(uk)2 − l2]

[
B11 +B13 +B31 +

h2

(uk)2 − k2
B32

]
,

D(7) = − ω + (uk)2Π(7)δ

k2 − l2Π(1) − h2(Π(3) + Π(5)) + (uk)2Π(7)
− δ,

D(8) =
1

ψ h2[l2 + (uk)2]

[
B12 +

l2

(uk)2
B32

]
,

D(10) =
B21 +B31 +B22 +B32 l

2/(uk)2

ψ k4[1− l2/(uk)2] , (22)



The Green function of neutral gluons. . . 133

where we denoted ψ = det[k2 −A], and Bij are the matrix elements of B = (k2 −A)−1ψ, δ = (B31 +B32)[l
2 −

(uk)2]−1ψ−1, ω = [k2Π(1)D0 + h2Π(1)(D3 + D5) + h2Π(3)D1]. Having calculated the factors in Eqs. (22) we
derive the tensor structure of the exact neutral gluon Green function in the external magnetic field at finite
temperature. Note that the coefficient Π(i) are arbitrary functions of their arguments. In principle, they can
be calculated in loop expansion or in a nonperturbative way.

To obtain the spectral equations for the neutral gluons we have to consider the pole positions of the Green
function. There are three spectral equations, two of them are linear with respect to k2, and one is the cubic
equation in k2:

k2 − h2Π(2) − l2(Π(3) −Π(5)) + (uk)2Π(8) = 0, (23)

k2 − l2Π(1) − h2(Π(3) + Π(5)) + (uk)2Π(7) = 0, ψ = 0. (24)

The next step is to calculate the form factors Π(i) in order to determine the spectra in a chosen approximation.

4 Form factors in one-loop order

In Ref. [6] the form factors Π(i) have been calculated as the two-parametric integrals of the form:

Π(i)(k) =
∞∑

N=−∞

∫ ∞

0

ds dtM (i)(s, t)ΘT , (25)

where the functions M (i)(s, t) are

M (1) = 4− 2

(
ξ

q

)2

cosh(2q), M (2) = 4
1− cosh(q) cosh(ξ)

sinh2 q
− 2 + 8 cosh(q) cosh(ξ),

M (3) = −2 cosh(2q)
ξ sinh ξ

q sinh q
− 2 + 6 cosh(ξ) cosh(q),

M (4) = −2 + 2 cosh(q) cosh(ξ), M (5) = 2
ξ

q

[
sinh(2q)− cosh q − cosh ξ

sinh q

]
− 6 cosh(q) sinh(ξ),

M
(6)
(1) = 2

[
ξ

q
coth(q)(1− 3 sinh2 q) + sinh(ξ) cosh(q)

]
l2

+ 2

[
sinh ξ

sinh q
coth(q)(1− 3 sinh2 q) + 2 sinh(ξ) cosh(q)

]
h2,

M
(6)
(2) = 2

iN

qT
k4 (sinh(2q)− coth q) ,

M (7) = −2
iN

qT

1

k4

ξ

q
cosh(2q), M (8) =

iN

qT

1

k4

[
−2

sinh ξ

sinh q
− 4 sinh(q) sinh(ξ)

]
,

M (9) =
iN

qT
2

[
cosh q − cosh ξ

sinh q
− sinh(2q)− 2 sinh(q) cosh(ξ)

]
, M (10) = 0, (26)

and ξ = s− t, q = s+ t. The symmetric form factors have to be multiplied by

Θs
T =

1

2
〈Θ(s, t)〉

[
exp

(
ik4N

qT
t

)
+ exp

(
ik4N

qT
s

)]
exp

(
−N

2B

4T 2q

)
, (27)

and the antisymmetric ones – by

Θa
T =

1

2
〈Θ(s, t)〉

[
exp

(
ik4N

qT
t

)
− exp

(
ik4N

qT
s

)]
exp

(
−N

2B

4T 2q

)
. (28)

The function 〈Θ〉 equals to

〈Θ〉 = 1

(4π)2(s+ t) sinh(s+ t)
exp

[
− k
B

(
δ||

st

s+ t
+ δ⊥

ST

S + T

)
k

]
, (29)

where S ≡ tanh s and T ≡ tanh t.
In this paper we are interested in the spectrum at high temperature

√
B/T � 0 in the limit of k4 = 0, ~k → 0.

For this case we calculate the following asymptotic form for the form factors,

Π(n)(k) =
T√

B(4π)3/2

(
an −

k2
3

B
bn −

h2

B
cn

)
− θn. (30)
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Table 1. The coefficients a, b, c in Eq. (30)
n an bn cn
1 10.56832− 0.59082i 1.85028 + 0.08862i 1.64935 + 0.29541i
2 −5.79894− 7.08982i −4.16625 + 3.54491i −4.63238− 1.77245i
3 1.04427− 8.86227i −4.16625 + 3.54491i −2.84292− 3.10179i
4 0 0 0
5 −4.21405− 1.77245i −1.60873 + 0.88622i −1.58031 + 0.44311i
6 0 0 0
7 −1.40468− 0.59082i −0.10712 + 0.08862i 0.13310 + 0.29541i
8 1.71341− 3.54491i −1.90805− 1.77245i 0.38174− 1.77245i
9 0 0 0

The corresponding coefficients a, b, c are shown in Table 1, and θ are found to be

θn =
10

3(4π)2
ln

T 2

B
, n = 1, 2, 3; θn = 0, n 6= 1, 2, 3. (31)

The imaginary part is signaling the instability of the state because of the tachyonic mode presenting in the
spectrum of charged gluons (see, for instance, Ref. [5]), and the real part is responsible for the screening of
transversal gluon fields. It is important to note that at finite temperature all the states are unstable because
of the Landau damping. So the ratio of the imaginary and the real parts, ρ, is an important parameter
characterizing the stability of a state. If this ratio is less then 1, we consider corresponding state as a quasi-
stable one. And in the opposite case this state is unstable. In other words, the tachyonic instability is not
distinguishable from the usual instability of quasiparticles at finite temperature. As one can see from Table 1,
for different form factors these ratios are different, smaller or larger than unit. This has an important role for
resummation of perturbation series in order to improve the infrared behaviour of the corresponding state. In
case of small ρ the form factor could not be resummed. For ρ > 1 the form factor should be resummed.

In the same way we can calculate the form factors with the fourth momentum component k4 = 2πnkT, nk 6=
0. In this case we obtain the following results

Π(m)(k) =
T

(4π)3/2

(
1

k4
ãm −

~k2

k3
4

c̃m +

√
B

k2
4

b̃m

)
− θm, m = 1, 2, 3, 7, 8,

Π(5)(k) =
T
√
B

4π

[
(1 + i)

1

k2
4

− (1− i)B
k4
4

− 1 + i

2

~k2

k4
4

]
, Π(4)(k) = Π(6)(k) = Π(9)(k) = 0. (32)

For the coefficients ãm, b̃m and c̃m the following expressions have been obtained:

ã1 = ã2 = ã3 = 21.7315 +
2

(4π)2
k4

T

∫ 1

0

dx [1 + 4x(1− x)]
∑

N 6=0,−nk

(
2πT√

k2
4x(1− x) + (k4x+ 2πNT )2

− 1

|N |

)
,

ã7 = ã8 = −1.8906 +
1

4π

k4

T

∫ 1

0

dx (1− 2x)
∑

N 6=0,−nk

k4x+ 2πNT√
(k4(1− x) + 2πNT )2 + k2

4x(1− x)
;

b̃1 = 1.0248 + 7.0898i, b̃2 = 20.2447 + 14, 1796i, b̃3 = 11.6595 + 17.7245i, b̃7 = b̃8 = 0;

c̃1 = c̃2 = c̃3 = 6.8873 + k3
4

√
π

∑

N 6=0,−nk

1∫

0

dx[1 + 4x(1− x)]
[k2

4x(1− x) + (k4x+ 2πNT )2]3/2
,

c̃7 = c̃8 = 0.2708 + k2
4 2
√
π

∫ 1

0

dx
∑

N 6=0,−nk

(1− 2x)x(1− x)(k4x+ 2πNT )

[(k4(1− x) + 2πNT )2 + k2
4x(1− x)]3/2

. (33)

Function θm is the same as in Eq. (31). Substituting B = 0 in Eq. (32) we obtain the polarization tensor in
the high temperature limit at zero field. In this case non-transversal form factor Π(5) equals to zero, the form
factors Π(1), Π(2), Π(3) and Π(7), Π(8) become equal to each other. This is an expected result.

5 Conclusions

In the framework of SU(2) gluodynamics, we derived the tensor structure of the exact neutral gluon Green func-
tion in an Abelian homogeneous magnetic field at finite temperature. It is presented as the linear combination
of ten tensors T (i) introduced already in Ref. [6]. It was discovered that these tensors form an algebra with
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Figure 1. Dispersion relations for the transversal modes in case of motion along the field h2 → 0. Two
cases are considered: T/

√
B = 5 and T/

√
B = 20. Curves represent dependence between square of the gluon

frequency w2 and square of the momentum ~k2 = k2
3. Dot line is a trivial spectrum w2 = k2

3. Solid line is a first
solution of the Eq. (24), dash line is the other.

respect to the operation of anticommutation, which structure constants have been calculated. To obtain the
coefficients at the tensors in the Green function we have applied the method which can be useful in the more
complicated case of SU(3) gluodynamics. For the one-loop form factors we obtain the explicit formulas in case
of the motion along the field direction. The spectrum of gluons is derived from the pole position of the exact
Green function with the one-loop form factors been accounted for. Spectral equations were obtained. In the case
of T 6= 0 the high temperature limit for the form factors was computed. It is found that in this approximation
all the form factors contain imaginary parts. Therefore a resummation of perturbation series should be carry
out in order to obtain a stable spectrum. That can be done on the base of solution of the Schwinger-Dyson
equation where, to calculate the polarization tensor, as the neutral gluon propagator the derived Green function
should be substituted.
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Z ′ SIGNALS FROM THE LEP2 DATA
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The LEP2 data on e+e− → e+e−, µ+µ−, τ+τ− processes are fitted to estimate possible signals of the Abelian
Z ′-boson. In the many-parametric fits, four independent parameters must be fitted, if the derived already
low-energy relations between the Z ′ couplings to the standard model fermions are taken into consideration. No
signals are found for the complete LEP2 data set for these processes. In the fit of the backward bins, the hint
at the 1.25σ CL is detected. The Z ′ couplings to the vector and axial-vector lepton currents are constrained.
The comparisons with the one-parameter fits are fulfilled.

1 Introduction

The standard model (SM) was precisely tested in LEP experiments, and all the parameters and particle masses
were determined at the level of radiation corrections [1–3]. At the same time, these experiments afforded an
opportunity for searching for signals of new heavy particles predicted by various models extending the SM.
Although no new particles were discovered, a general believe is that the energy scale of new physics to be of
order 1 TeV, that may serve as a guide for experiments at the LHC. In this situation, any information about
new heavy particles obtained on the base of the present day data is desirable and important.

A lot of extended models includes the massive neutral vector particle associated with the extra U(1) subgroup
of an underlying group. This particle is usually called the Z ′-boson. Searching for Z ′-boson as a virtual state
in the either model-dependent or model-independent approaches is widely discussed in the literature (see for
references [4]). In our papers [5–7] a new approach for the model-independent search for Z ′-boson was proposed
which, in contrast to other model-independent searches, gives a possibility to pick out uniquely this virtual state
and determine its characteristics. Our consideration is based on two constituents: 1) The relations between
the effective low-energy couplings derived from the renormalization group (RG) equation for fermion scattering
amplitudes. We called them the RG relations. Due to these relations, a number of unknown Z ′ parameters
entering the amplitudes of different scattering processes considerably decreases. 2) When these relations are
accounted for, some kinematics properties of the amplitude become uniquely correlated with this virtual state
and the Z ′ signals exhibit themselves.

In Refs. [5–7] the one-parametric observables were introduced and the signals of the Z ′ have been estimated
at the 1σ CL in the e+e− → µ+µ− process, and at the 2σ CL in the Bhabha process. The Z ′ mass was
estimated to be 1–1.2 TeV. An increase in statistics could make these signals more pronounced and there is a
good chance to discover this particle at the LHC.

Recently the final data of the LEP collaborations DELPHI and OPAL [2, 3] were published and new more
precise estimates could be obtained. In the present paper we update the results of the one-parameter fit and
perform the complete many-parametric fit of the LEP2 data to estimate a possible signal of the Z ′-boson.
Usually, in a many-parametric fit the uncertainty of the result increases drastically because of extra parameters.
On the contrary, in our approach due to the RG relations between the low-energy couplings there are only 2-3
independent parameters for the LEP scattering processes. Therefore, we believe that an inevitable increase of
confidence areas (CA) in the many-parametric space could be compensated by accounting for all the accessible
experimental information. As it will be shown, the uncertainty of the many-parametric fit can be comparable
with the uncertainty of the previous one-parametric fits in Refs. [6, 7]. In this approach the combined data fit
for all lepton processes is also possible.

2 The Abelian Z ′ boson at low energies

At low energies, the Z ′-boson can manifest itself by means of the couplings to the SM fermions and scalars
as a virtual intermediate state. Moreover, the Z-boson couplings are also modified due to a Z–Z ′ mixing. In
principle, arbitrary effective Z ′ interactions to the SM fields could be considered at low energies. However,
the couplings of non-renormalizable types have to be suppressed by heavy mass scales because of decoupling.
Therefore, significant signals beyond the SM can be inspired by the couplings of renormalizable types. Such
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couplings can be derived by adding the new Ũ(1)-terms to the electroweak covariant derivatives Dew in the
Lagrangian [4]

L =

∣∣∣∣
(
Dew
µ − i

ỹφ
2
Z̃µ

)
φ

∣∣∣∣
2

+ i
∑

f=fL,fR

f̄γµ
(
Dew
µ − i

ỹf
2
Z̃µ

)
f, (1)

where φ is the SM scalar doublet; fL, fR are the SM left-handed fermion doublets and right-handed fermion
singlets; Z̃µ denotes the Ũ(1) symmetry eigenstate; and ỹφ, ỹfL

and ỹfR
mean the unknown couplings char-

acterizing the model beyond the SM. Instead of the couplings to the left-handed and right-handed fermion
states it is convenient to introduce the couplings to the axial-vector and vector currents: af = (ỹfR

− ỹfL
)/2,

vf = (ỹfL
+ ỹfR

)/2.
The spontaneous breaking of the electroweak symmetry leads to the Z–Z ′ mixing. In case of the Abelian

Z ′-boson, the Z–Z ′ mixing angle θ0 is determined by the coupling ỹφ as follows [5]

θ0 =
sin θW cos θW√

4παem

m2
Z

m2
Z′

ỹφ +O

(
m4
Z

m4
Z′

)
, (2)

where θW is the SM Weinberg angle, and αem is the electromagnetic fine structure constant. Although the
mixing angle is a small quantity of order m−2

Z′ , it contributes to the Z-boson exchange amplitude and cannot
be neglected at the LEP energies.

The Lagrangian (1) leads to the following interactions between the fermions and the Z and Z ′ mass eigen-
states:

LZf̄f =
1

2
iZµf̄γ

µ
[
(vSM
fZ + γ5aSM

fZ ) cos θ0 + (vf + γ5af ) sin θ0
]
f,

LZ′f̄f =
1

2
iZ ′
µf̄γ

µ
[
(vf + γ5af ) cos θ0 − (vSM

fZ + γ5aSM
fZ ) sin θ0

]
f, (3)

where f is an arbitrary SM fermion state; vSM
fZ , aSM

fZ are the SM couplings of the Z-boson.
In a particular model the couplings vf and af take some specific values. In case when the model is unknown,

these parameters and the mixing angle remain potentially arbitrary numbers. However, this is not the case if
one assumes that the underlying extended model is a renormalizable one. As it was shown in Ref. [5], some of
them have to be correlated due to renormalizability. The corresponding relations are

vf − af = vf? − af? , af = T3,f ỹφ, (4)

where f? is the SU(2) partner of a fermion f , and T3,f is the third component of the fermion isospin. They are
motivated by the renormalization group equations at the Z ′ decoupling energies and also connected with the
Ũ(1) gauge symmetry of the Lagrangian. These relations cover all the popular models of the Abelian Z ′ boson
allowing the model-independent searches for this particle.

The relations (2) incorporate the most common features of the Abelian Z ′-boson. As it is seen, the axial-
vector coupling is universal for all the fermion flavors. So, in what follows we will use the shorthand notation a =
ae = aµ = aτ . The axial-vector coupling determines also the coupling to the scalar doublet and, consequently,
the mixing angle. As a result, the number of independent couplings is significantly reduced. Considering the
leptonic processes e+e− → `+`− (` = e, µ, τ), one has to keep 4 unknown couplings: a, ve, vµ, and vτ . Moreover,
the RG relations serve to uniquely specify a kinematic domain of deviations from the SM predictions due to
the virtual Z ′ boson. Thereof a unique definition of the Z ′ signal can be done.

In our analysis, as the SM values of the cross-sections we use the quantities calculated by the LEP2 collab-
orations [2, 3, 8, 9]. They account for either the one-loop radiative corrections or initial and final state radiation
effects (together with the event selection rules, which are specific for each experiment). In our analysis the 2%
theoretical error of the SM values is also added to the statistical and systematic ones.

The deviation from the SM is computed in the improved Born approximation. This approximation is
sufficient for our analysis leading to the systematic error of the fit results less than 5-10 per cents. To convince
ourselves that this is the case, we have altered the theoretical uncertainty of the deviations for 10-20 per cents,
and the obtained results are not changed qualitatively.

The deviation from the SM of the differential cross-section for the process e+e− → `+`− can be expressed
through various quadratic combinations of couplings a, ve, vµ, vτ . For the Bhabha process it reads

dσ

dz
− dσSM

dz
= fee1 (z)

a2

m2
Z′

+ fee2 (z)
v2
e

m2
Z′

+ fee3 (z)
ave
m2
Z′

, (5)

where the factors are known functions of the center-of-mass energy and the cosine of the electron scattering
angle z. The deviation of the cross-section for e+e− → µ+µ− (τ+τ−) processes has a similar form

dσ

dz
− dσSM

dz
= fµµ1 (z)

a2

m2
Z′

+ fµµ2 (z)
vevµ
m2
Z′

+ fµµ3 (z)
ave
m2
Z′

+ fµµ4 (z)
avµ
m2
Z′

. (6)
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Since the Z ′ couplings enter the cross-section together with the inverse Z ′ mass, it is convenient to introduce
the dimensionless couplings

āf =
mZ√
4πmZ′

af , v̄f =
mZ√
4πmZ′

vf , (7)

which can be constrained by experiments.
Note again that the cross-sections in Eqs. (3)–(4) account for the relations (2) through the functions f1(z),

f3(z), f4(z), since the coupling ỹφ (the mixing angle θ0) is substituted by the axial coupling constant a. Usually,
when a four-fermion effective Lagrangian is applied to describe physics beyond the SM, this dependence on the
scalar field coupling is neglected at all. However, in our case, when we are interested in searching for signals of
the Z ′-boson on the base of the effective low-energy Lagrangian (1), these contributions to the cross-section are
essential.

3 Many-parameter fits

As the basic observable to fit the LEP2 experiment data on the Bhabha process we propose the differential
cross-section

dσBhabha

dz
− dσBhabha,SM

dz

∣∣∣∣
z=zi,

√
s=

√
si

, (8)

where i runs over the bins at various center-of-mass energies
√
s. The final differential cross-sections measured

by the ALEPH (130-183 GeV, [8]), DELPHI (189-207 GeV, [3]), L3 (183-189 GeV, [9]), and OPAL (130-207
GeV, [2]) collaborations are taken into consideration (299 bins).

As the observables for e+e− → µ+µ−, τ+τ− processes, we consider the total cross-section and the forward-
backward asymmetry

σ`
+`−

T − σ`
+`−,SM
T , A`

+`−

FB −A`
+`−,SM
FB

∣∣∣√
s=

√
si

, (9)

where i runs over 12 center-of-mass energies
√
s from 130 to 207 GeV. We consider the combined LEP2 data

[1] for these observables (24 data entries for each process). These data are more precise as the corresponding
differential cross-sections. Our analysis is based on the fact that the kinematics of s-channel processes is rather
simple and the differential cross-section is effectively a two-parametric function of the scattering angle. The total
cross-section and the forward-backward asymmetry incorporate complete information about the kinematics of
the process and therefore are an adequate alternative for the differential cross-sections.

The data are analysed by means of the χ2 fit. Denoting the observables (6)–(7) by σi, one can construct the
χ2-function,

χ2(ā, v̄e, v̄µ, v̄τ ) =
∑

i

[
σex
i − σth

i (ā, v̄e, v̄µ, v̄τ )

δσi

]2
, (10)

where σex and δσ are the experimental values and the uncertainties of the observables, and σth are their
theoretical expressions presented in Eqs. (3)–(4). The sum in Eq. (10) refers to either the data for one specific
process or the combined data for several processes.

By minimizing the χ2-function, the maximal-likelihood estimate for the Z ′ couplings can be derived. The
χ2-function is also used to plot the CA in the space of parameters ā, v̄e, v̄µ, and v̄τ . The CA corresponding to
the probability β can be defined as [10]:

χ2 ≤ χ2
min + χ2

CL,β(M), (11)

where χ2
CL,β(M) is the β-level of the χ2-distribution with M d.o.f., and M is the number of linear-independent

terms in the observables σth.
In the Bhabha process, the Z ′ effects are determined by 3 linear-independent contributions coming from ā2,

v̄2
e , and āv̄e (M = 3). As for the e+e− → µ+µ−, τ+τ− processes, the observables depend on 4 linear-independent

terms for each process: ā2, v̄ev̄µ, v̄eā, āv̄µ for e+e− → µ+µ−; and ā2, v̄ev̄τ , v̄eā, āv̄τ for e+e− → τ+τ− (M = 4).
Note that some terms in the observables for different processes are the same. Therefore, the number of χ2 d.o.f.
in the combined fits is less than the sum of d.o.f. for separate processes. Hence, the predictive power of the
larger set of data is not drastically spoiled by the increased number of d.o.f. In fact, combining the data of
the Bhabha and e+e− → µ+µ− (τ+τ−) processes together we have to treat 5 linear-independent terms. The
complete data set for all the lepton processes is ruled by 7 d.o.f. As a consequence, the combination of the data
for all the lepton processes is possible.

The parametric space of couplings (ā, v̄e, v̄µ, v̄τ ) is four-dimensional. However, for the Bhabha process it is
reduced to the plane (ā, v̄e), and to the three-dimensional volumes (ā, v̄e, v̄µ), (ā, v̄e, v̄τ ) for the e+e− → µ+µ−

and e+e− → τ+τ− processes, correspondingly. The predictive power of data is distributed not uniformly
over the parameters. The parameters ā and v̄e are present in all the considered processes and appear to be
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Figure 1. The 95% CL areas in the (ā, v̄e) plane
for the Bhabha, e+e− → µ+µ−, and e+e− →
τ+τ− processes.
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Figure 2. The projection of the 95% CL
area onto the (ā, v̄e) plane for the combination of
e+e− → e+e−, µ+µ−, τ+τ− processes.

significantly constrained. The couplings v̄µ or v̄τ enter when the processes e+e− → µ+µ− or e+e− → τ+τ− are
accounted for. So, in these processes, we also study the projection of the CA onto the plane (ā, v̄e).

The origin of the parametric space, ā = v̄e = 0, corresponds to the absence of the Z ′ signal. This is the SM
value of the observables. This point could occur inside or outside of the CA at a fixed CL. When it lays out
of the CA, this means the distinct signal of the Abelian Z ′. Then the signal probability can be defined as the
probability that the data agree with the Abelian Z ′ boson existence and exclude the SM value. This probability
corresponds to the most stringent CL (the largest χ2

CL) at which the point ā = v̄e = 0 is excluded. If the SM
value is inside the CA, the Z ′ boson is indistinguishable from the SM. In this case, upper bounds on the Z ′

couplings can be determined.
The 95% CL areas in the (ā, v̄e) plane for the separate processes are plotted in Fig. 1. As it is seen,

the Bhabha process constrains both the axial-vector and vector couplings. As for the e+e− → µ+µ−, τ+τ−

processes, the axial-vector coupling is significantly constrained, only. The CAs include the SM point at the
meaningful CLs, so the experiment could not pick out clearly the Z ′ signal from the SM. An important conclusion
from these plots is that the experiment significantly constrains only the couplings entering sign-definite terms
in the cross-sections.

The combination of all the lepton processes is presented in Fig. 2. There is no visible signal beyond the
SM. The couplings to the vector and axial-vector electron currents are constrained by the many-parameter fit
as |v̄e| < 0.013, |ā| < 0.019 at the 95% CL. If the charge corresponding to the Z ′ interactions is assumed to
be of order of the electromagnetic one, then the Z ′ mass should be greater than 0.67 TeV. For the charge of
order of the SM SU(2)L coupling constant mZ′ ≥ 1.4 TeV. One can see that the constraint is not too severe to
exclude the Z ′ searches at the LHC.

Let us compare the obtained results with the one-parameter fits in Ref. [7]. Fitting the current data with
the one-parameter observable, we find the updated values of the Z ′ coupling to the electron vector current
together with their 1σ uncertainties:

ALEPH : v̄2
e = −0.11± 6.53× 10−4

DELPHI : v̄2
e = 1.60± 1.46× 10−4

L3 : v̄2
e = 5.42± 3.72× 10−4

OPAL : v̄2
e = 2.42± 1.27× 10−4

Combined : v̄2
e = 2.24± 0.92× 10−4.

As one can see, the most precise data of DELPHI and OPAL collaborations are resulted in the Abelian Z ′

hints at one and two standard deviation level, correspondingly. The combined value shows the 2σ hint, which
corresponds to 0.006 ≤ |v̄e| ≤ 0.020.

On the other hand, our many-parameter fit constrains the Z ′ coupling to the electron vector current as
|v̄e| ≤ 0.013 with no evident signal. Why does the one-parameter fit of the Bhabha process show the 2σ CL
hint whereas there is no signal in the two-parameter one? Our one-parameter observable accounts mainly for
the backward bins. This is in accordance with the kinematic features of the process: the backward bins depend
mainly on the vector coupling v̄2

e , whereas the contributions of other couplings are kinematically suppressed.
Therefore, the difference of the results can be inspired by the data sets used. To check this, we perform the
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Figure 3. The 68% CL area in the (ā, v̄e) plane from the backward bins of the Bhabha process in the LEP2
experiments (the shaded area). The hatched area is the 68% CL area from the LEP 1 data on the Bhabha
process.

many-parameter fit with the 113 backward bins (z ≤ 0), only. The χ2 minimum, χ2
min = 99.7, is found in the

non-zero point |ā| = 0.00018, v̄e = 0.015. This value of the Z ′ coupling v̄e is in an excellent agreement with the
mean value obtained in the one-parameter fit. The 68% CA in the (ā, v̄e) plane is plotted in Fig. 3. There is
a visible hint of the Abelian Z ′ boson. The zero point ā = v̄e = 0 (the absence of the Z ′ boson) corresponds
to χ2 = 104.2. It is covered by the CA with 1.25σ CL. Thus, the backward bins show the 1.25σ hint of the
Abelian Z ′ boson in the many-parameter fit. So, the many-parameter fit is less precise than the analysis of the
one-parameter observables.

From the analysis carried out we come to conclusion that, in principle, the LEP experiments were able to
detect the Z ′-boson signals if the statistics had been sufficient.

4 Discussion

LEP collaborations have reported about a good agreement between the experimental data and the predictions
of the SM [2, 3, 8, 9]. That means that the experiments have not shown any statistically significant deviations
from its predictions. The analysis of the leptonic processes based on the same data set and the same SM values
of cross-sections lead us to the conclusion that the existence of Z ′ boson with the mass of order 1-1.2 TeV is not
excluded at the 1-2σ CL. We observed that in the one-parameter fits in Refs.[6, 7] and in the many-parameter fit
of the backward bins in the present investigation. The estimated Z ′ parameters derived by different methods are
in a good agreement with each other. So, we conclude that there is a discrepancy which needs some explanations.
We believe that the reason is in the RG relations playing a crucial role in our treating of experimental data. As
it was showed, the RG relations have served to reduce a number of unknown parameters that gave a possibility
to extract maximal information about the Z ′ signals from the experimental data set. If these relations are
not taken into account (as this is the case in Refs.[2, 3, 8, 9]), no signals could be found. LEP collaborations
performed also model-dependent fits concerning popular Z ′ models. These models suit the RG relations (2).
So, it is interesting to compare their analysis with our results. In the experiments reported in Refs. [1–3, 8, 9]
the low bound on the Z ′ mass was obtained. It varies from 400 GeV to 800 GeV at the 95% CL dependently
on the specific model. These bounds allow the Z ′ boson with the mass of order 1 TeV that is in an agreement
with our results. On the other hand, the possibility to select the Z ′ signals in specific scattering processes was
not discussed in the papers mentioned.

As we have shown in Ref. [7], there is the 2σ hint of the Abelian Z ′ boson in the one-parameter fit of
LEP2 data for the Bhabha process. This result is reproduced also in the present paper by fitting the updated
experimental data. In the present analysis, we applied the many-parameter fits of the leptonic processes for
different sets of bins included. In particular, for the backward bins (responsible for the signal due to the
kinematics of the process) the 1.25σ hint of the particle is found. The fit of the complete set of bins constrains
the Z ′ couplings to vector and axial-vector electron currents allowing the Z ′ boson with the mass of order 1
TeV. Thus, we have to conclude that the LEP2 data allow the existence of the quite light Z ′-boson which has
a chance to be discovered in the nearest future. We believe that the RG relations used in the present analysis
will be also important in searches for the Z ′ boson at the LHC.
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Theoretical and experimental studies of high multiplicity events are analyzed. Some interesting phenomena can
be revealed at high multiplicities. Preliminary results of project Thermalization are reported.

1 Introduction

The multiparticle production (MP) study at high energies is one of the actual topics of high energy physics.
The different theoretical approaches and the experimental programs are developed. The Quark-Gluon Matter
search is the complicated problem of hadron and nucleus interactions [1]. We consider that our MP study at
lower energies may be useful. The purpose of the ”Thermalization” experiment [2] is to investigate the collective
behavior of MP particles in proton and proton-nucleus interactions

p+ p(A)→ nππ + 2N (1)

at the proton energy Elab = 70 GeV. We use modernized setup SVD-2 - Spectrometer with Vertex Detector
(SVD). It was created to study of production and decay of charm particles, but had the basic components
necessary for performance of the physical program of the Thermalization project.

At present multiplicity distributions (MD) at this energy is measured up to the number of charged particles
nch = 18 ([3]-[4]). In the region of high multiplicity (HM) nch > 20 we expect [5]: formation of high density
thermalized hadronic system, transition to pion condensate or cold QGP, increase of partial cross section σ(n) is
expected in comparison with commonly accepted extrapolation, enhanced rate of direct soft photons. We will be
continue to search for new phenomena: Bose-Einstein condensate (BEC), events with ring topology (Cherenkov
gluon radiation). The available MP models and MC codes (PYTHIA) are distinguished considerably at the HM
region. We also research hadronization mechanism and connected questions.

The review is organized as follows: sect. 2 presents a description of setup SVD-2, sect. 3 gives alignment
results, sect. 4 informs about of new phenomena searching and our preliminary data of 2002 run. We summarize
in sect. 5.

2 Experimental setup

2.1 Setup schematic

The layout of the SVD installation at U − 70 accelerator is shown on Figure 1. The basic requirements to the
equipment consisted in the following:
∗ The study is carried out on the extracted beam of protons with energy 70 GeV and intensity ∼ 107 in a cycle
of the accelerator.
∗ The liquid hydrogen target is used.
∗ Installation is capable to detect of events with HM of charged particles and γ quanta. Multiplicity of photons
makes up to ≤ 100. The lower energy threshold of the photon registration is 50 MeV.
∗ The HM trigger system is capable to select rare events with multiplicity nπ = 20÷30. The suppression factor
of events with low multiplicity nπ < 20 is 104.
∗ The magnetic spectrometer has the momentum resolution δp/p ≈ 1.5% in the interval p = 0.3 ÷ 5.0 GeV/c.
At the beginning the experiment and subsequent data analysis the generator was developed. It is based on the
assumption that in the HM region the particles in c.m.s. should have isotropic angular distribution and their
energy distribution is Maxwell or Bose-Einstein type [5].

2.2 Liquid hydrogen target

For a target accommodation in the design of installation there is a space along a beam only 7 cm. Design and
manufacture of liquid hydrogen target is under a a complete JINR responsibility. The target has 7 cm thick and
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Figure 1. Schematic of the SVD installation at U-70.

3.5 cm in diameter vassal of liquid hydrogen. Thermostat is equipped with a thin (200 µm) lavsan windows to
suppress background scattering. Successful tests of a whole target system had indicated to advanced reduction
of helium consumption in which resulting factor is expected in order of 1.5.

2.3 Straw tube chambers

Straw tube chamber system is a new addition of SVD setup. This detector has been designed in the department
of V. Peshehonov from LPP of JINR . It implements front end boards with preamplifiers produced in Minsk (NC
PHEP BSU) and TDC modules produced in Protvino (IHEP) allowing to detect several pulses, consequently
coming from the anode on each trigger signal. Typical plane dimension is 70 x 70 cm2. The total of channels
is about 2400.

2.4 HM trigger

Our experiment owes to carry out at suppression of low multiplicity events by a trigger. It is urgent request for
it. For this purpose the scintillation hodoscope or HM trigger was designed and manufactured. It suppresses
interactions with track multiplicity below 20. Beyond this it is as so thin as not distorts an angular and
momentum resolution of the setup to any kind fake signal. The scintillator counter array may operate at higher
counting rate and more resistant to many kinds of noise.

2.5 Vertex detector

The vertex detector (VD) is necessary constituent of SVD setup because it allows to vertex position identify.
Vertex front-end uses a integrated circuit called GASSIPLEX. As the GASSIPLEX is 16-channel design, only
1280 channels of detector may be placed on one board. For 50 µm pitch detector the largest sensitive area
dimension is 64 mm. To overcome this restriction the Collaboration had taken the decision to use integrated
128-channel circuits VIKING. JINR provides important technical support in this development. Now we had
purchased a requisite consignment of these circuits and are installing in VD.

2.6 Magnetic spectrometer, Gamma-detector

The magnet MC-7A having length on the beam 3 m is used in spectrometer. Magnet field in the center is
equal to 1.1 T at a current 4000 A. The detection system of the spectrometer includes 18 planes of proportional
chambers (PC). The data analysis give the following characteristics of the spectrometer: average PC efficiency is
80%; coordinate accuracy on the reconstructed tracks is 1 mm; the momentum resolution on beam tracks (p=70
GeV/c) is 3 %; the momentum resolution on the secondary tracks is ∼1 %. Magnetic spectrometer electronics
allows to register up to 1.5 thousand events per 1 accelerator cycle. Some of PC had been repaired, anode
wires in beam region are covered with insulator to make them insensitive to beam particles. This modification
improves efficiency of central part of chamber at high beam intensity 107 required for Thermalization project.

The gamma-detector consists of 1536 full absorption Cherenkov counters. Radiators from a lead glass have
the size 38× 38× 505 mm3 and are connected with PMT-84-3. Total fiducial area of the detector is 1.8× 1.2
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Figure 3. Event with multiplicity 21.

m2. The energy resolution on 15 GeV electrons is 12%. Accuracy of the γ quantum coordinate reconstruction
is ∼ 2 mm. At run 2007 the gamma-detector calibration was carried out and gamma- quantum events were
recorded.

3 Alignment

The importance task of any experiment is to provide reconstruction of charged particle tracks. Spatial char-
acteristics and geometric position of detector modules can be differ from its design values. Possible reasons of
detector misalignments are the limited accuracy of initial hardware, inaccuracies in placing of detectors and
their internal dimensions. The alignment procedure intends to compensate such misalignment by a mathemat-
ical way. We use for alignment procedure more robust, efficient and high precision method based on the Linear
Least Squares (LLS) [6].

At 2006 technical run we had obtained data on hydrogen target. We had picked out some events with good
identification of 787 (single) space tracks on hits in vertex detector and carried out alignment. Histograms
of χ2/ndf for local fits before and after alignment procedure are in Fig. 2. At present it is continued data
processing and high multiplicity event searching. One of such events is shown on Fig. 3. Preliminary multiplicity
distribution of charged particles was obtained based on VERTEX detector data. It is shown on Fig. 4.
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4 Search for new phenomena

The HM region study is important, because MP models and Monte-Carlo generators are differed at high multi-
plicity (n > n(s)) very considerably. There are the theoretical predictions about manifestation such phenomena
as Cherenkov-like (gluon) radiation [7], Bose-Einstein condensation (BEC) of pions [8, 9], excess of soft photon
rate [10] and other collective phenomena. We like to reveal their in our findings.

For multiparticle dynamics insight and the MD description in hadron interactions we had proposed the
Gluon Dominance model (GDM) [11]. In the framework of this model we research quark-gluon matter and
hadronization stage detail by using MD of the charged and neutral particles and their moments [12]. GDM
bases on the essentials of QCD and phenomenological scheme of hadronization. Our model studies had shown:
valent quarks of initial protons are staying in leading particles (from 70 to 800 GeV/c and higher). MP is
realized by gluons. We called them active ones.

Some of active gluons (∼ 50%) are staying inside quark-gluon system and do not fragment to hadrons. New
formed hadrons catching up them, are excited and throw down excess of energy by soft photons (SP). We use
the black body emission spectrum at the assumption that quark-gluon system or excited new formed hadrons
set in almost equilibrium state during a short period. This assumption permits to estimate the line size of the
SP emission region [13]. It is known that in this region hadronization is occurred.

Our model confirms the recombination mechanism of MP. We had obtained limitations on the number
charged, neutral and total multiplicities in pp interactions at 70 GeV/c and higher. In project Thermalization
we plan to verify these. There are many of experimental and theoretical results, which evidence of cluster nature
of MP by significant short-range multiplicity correlations [14], the observed scaling of the dynamical fluctuations
of mean transverse-momentum [15].

In GDM the evaporation of gluon sources may be realized by single gluons and also groups consisted from
two or more fission gluons. The superposition of them explains the shoulder structure of MD at ISR and higher
energies [11]. Our approach gives the possible interpretation of soft and semi-hard components [16].

We modified GDM by including of the intermediate quark topologies to explain the experimental differences
between pp and pp inelastic topological cross sections and second correlation moment behavior at few GeV/c
[17]. The high multiplicity in this process originates from ”4” or ”6”-topologies. Our scheme of hadronization
describes well MD for hadron interactions at 70 GeV and higher and could be use to study the central nuclear
collisions at low and high energies.

The Cherenkov type radiation can be emitted in the projectile and target particles. This leads to two
peaks of dense groups of particles (spikes) distribution in rapidity phase-space. At the same time the particle
distribution at the azimuthal angle is uniform. Study of the spike center distribution [18] in central C-Cu
collisions at 4.5 GeV/c/A (all charged particles) and Mg-Mg collisions at 4.3 GeV/c/A (only negative charged
particles) were found to be in agreement with the hypothesis of mesonic Cherenkov radiation. For this goal it
was used transformation of pseudorapidity spectra from η variable to η̃ with the uniform spectrum. In each
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Figure 5. The pseudorapidity spectra in pPb at n > 18.

case the distance between peaks for these experiments is in agreement with Cherenkov radiation hypothesis,
the charged-dependence was absent.

The ring-like substructures of secondary in 208Pb at 158 A GeV/c and 197Au at 11.6 GeV/c induced inter-
actions with Ag(Br) nuclei in emulsion detector were investigated [19]. The good agreement was obtained with
idea of Cherenkov radiation.

It must be emphasized that such events are rare, and represent at about 1% of full statistics. Therefore
high luminosity and high multiplicity trigger of SVD setup agrees to collect enough statistics to study this
phenomenon. The preliminary indications to the manifestation of the ring events are in Figure 12. This
pseudorapidity spectra for pPb-interactions at high multiplicity (n > 18) shows up such behavior.

As it was mentioned the Bose-Einstein condensation is very interesting phenomenon. The considerable efforts
are necessary to confirm it experimentally. At HM events the plentiful number of pions (charged and neutral)
are produced. All of them are bosons. When the multiplicity increase moments of them are approaching to zero.
In the case of relativistic ideal Bose gas the pion number fluctuations may give a clear signal of approaching
the BEC point [9]. When the temperature T decreases, the chemical potential increases and becomes equal to
µπ=mπ at BEC temperature T = TC . At this point the total number of particles takes up the lowest energy
state.

M.I. Gorenstein and V.V. Begun had viewed the case of HM events in p+ p interactions with beam energy
of 70 GeV [9]. The volume of pion system was estimated as, V = E/ε(T, µπ), and the number of pions was
determined as, Nπ = V ρπ(T, µπ). In the vicinity of the BEC point they revealed an abrupt and anomalous
increase of the scaled variance of neutral and charged pion number fluctuations. Our experiment permits to
experimental test of this phenomena. We are expected to take a lot of high multiplicity event statistics with
reconstructed by gamma quantum neutral mesons and study scaled variance of neutral and charged pion number
fluctuations,

5 Summary

We are continueing our work to making of program packets for data processing and new phenomena study at
HM region.
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A new approach to the two-body problem based on the extension of the SL(2, C) group to the Sp(4, C) one is
developed. The wave equation with the Lorentz-scalar and Lorentz-vector potential interactions for the system
of one spin-1/2 and one spin-0 particle with unequal masses is constructed.

1 Introduction

The relativistic two-body problem has numerous applications in particle and nuclear physics. Because the Bethe-
Salpeter equation [1] is exceedingly difficult to solve, even numerically, different approaches to this problem
have been developed. They include: reductions of the Bethe-Salpeter equation resulting in the quasipotential
approach [2] and the Breit-type equations [3–5]; relativistic quantum mechanics with constraints [7, 8, 10] that
uses a system of two coupled equations describing individual particles; the Barut method [9, 10] for deriving
a single two-body wave equation from a field-theoretical action; Lorentz-invariant two-body wave equations
having the Schrödinger-like [11] or Dirac-like [9] form.

In the last works the wave functions transform according to the more complicated representations than the
one-particle wave functions that can be regarded as involving the extended Lorentz symmetry. The explicit
extensions of the Lorentz group, including the symplectic [13] and the general complex [14] ones, have been
studied, too.

Recently, the extension of the SL(2, C) group to the Sp(4, C) one has allowed us to formulate a new approach
to the relativistic two-body problem [16]. The goal of the present work is to apply this technique for constructing
the wave equation for the system composed of the spin-1/2 and spin-0 particles with unequal masses.

2 Symplectic space-time extension

The relativistic theory is usually formulated in the Minkowski space with the homogeneous Lorentz group
SO(1, 3) as the local symmetry group. However, since the SO(1, 3) group is covered by the SL(2, C) ≡ Sp(2, C)
group, the relativistic field theory can equivalently be formulated entirely within the framework of the Sp(2, C)
Weyl spinors [16].

Recall that the symplectic Sp(2l, C) group is the group of 2l × 2l matrices with complex elements and
determinant equal to one [17]. These matrices act on 2l-component Weyl spinors and preserve an antisymmetric
bilinear form which plays the role of ”metrics” in the spinor space. For the Sp(4, C) group, we denote this
form by ηαβ = −ηβα (α, β = 1, 2, 3, 4). Then the Sp(4, C) Weyl spinors ϕα with lower indices and their
complex conjugatives ϕ̄ᾱ = (ϕα)∗ are related to spinors with upper indices by transformations ϕα = ηαβϕ

β and

ϕ̄ᾱ = η∗
ᾱβ̄
ϕ̄β̄ .

Further, there exists one-to-one correspondence between Sp(2l, C) Hermitian spin-tensors of second rank
and (2l)2-component real vectors. In the case of the Sp(2, C) group, they are ordinary Minkowski four-vectors.
For the case of Sp(4, C) group, we define the relationship between the Hermitian spin-tensor, Pαᾱ, and a real
vector PM by

Pαᾱ = µMαᾱPM , PM =
1

4
µ̃MᾱαPαᾱ (1)

where µMαᾱ (M = 1 ÷ 16) are matrices of the basis in the space of 4 × 4 Hermitian matrices and tilde labels
the transposed matrix with uppered spinor indices. In what follows, the spinor indices will be suppressed when
possible.

To clarify the relationship between the discussed vector space and the Minkowski space R
4, we represent 16

values of the vector index of PM through 4 × 4 combinations of two indices, M = (a,m), with both a and m
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running from 0 to 3. Then the metrics of the discussed vector space is reduced to the factorized form

gMN ≡ g(a,m)(b,n) = ĥabhmn (2)

where hmn = diag(1,−1,−1,−1) is the usual Minkowski metrics and ĥab = diag(1, 1,−1, 1) is caused by the
group extension.

The factorization of the metrics means that the vector from R
16 may be decomposed into four Minkowski

four-vectors. As a consequence, we can use these 16-component vectors or, equivalently, Sp(4, C) Hermitian
spin-tensors to construct the wave equation for a few-body system.

3 Wave equation for a fermion-boson system

Let us consider a system consisted of one spin-1/2 and one spin-0 particle. With the total spin of the system
being equal to 1/2, the wave equation must have the form of the Dirac-like equation in which the wave function
is represented by a Dirac spinor or, in our case, by two Sp(4, C) Weyl spinors as

Pαᾱχ̄
ᾱ = mϕα, P̃ ᾱαϕα = mχ̄ᾱ (3)

where Pαᾱ is the Sp(4, C) momentum spin-tensor and m is a mass parameter. According to the splitting of the
vector indices, we have

P = µ(a,m)P(a,m) = Σ0 ⊗ σmwm + Σ1 ⊗ σmpm + Σ2 ⊗ σmrm + Σ3 ⊗ σmqm (4)

where wm, pm, rm, qm are the Minkowski four-momenta and matrices Σa, σm may be expressed in terms of
2× 2 unit matrix I and the Pauli matrices τ i.

It has been shown [16] that the wave equation (3) describes the fermion-boson system with the equal mass
constituents. Now we are going to generalize it to the case of the particles with unequal masses. For this
purpose, let us replace the mass parameter in the right hand of Eq.(3) by a suitable matrix term which can be
expressed as a combination of direct products of matrices. Though such term breaks the Sp(4, C) symmetry of
the wave equation, but the Lorentz SO(1, 3) ⊂ Sp(4, C) symmetry is retained. It becomes obvious if the second
matrix in the direct product is chosen as a unit matrix and the first one is written through the matrices Σa,
like in Eq.(4). There are two equivalent possibilities, with the matrix Σa chosen as Σ1 = τ1 or Σ3 = τ3 (Σ0 = I

is the trivial choice), that result in the plus sign in the metrics ĥab defined by Eq.(2). In view of this we replace
the mass parameter as follows

m→ (m1 +m2)/2 + τ1 ⊗ I(m1 −m2)/2, (5)

so that the additional term vanishes if m1 = m2.
Thus, the wave equation for the fermion-boson system with unequal masses takes the form

Pχ̄ = (m+ + τ1 ⊗ Im−)ϕ, P̃ϕ = (m+ + τ1 ⊗ Im−)χ̄ (6)

where m± = (m1 ±m2)/2.
Now, for elucidating the two-particle interpretation of the proposed equation, we consider the structure of

the the Sp(4, C) momentum spin-tensor given by Eq.(4). It should be stressed that the description of the two-
particle system requires only two four-momenta whereas the Sp(4, C) momentum spin-tensor corresponds to
four four-momenta, collected in a 16-component vector. Therefore the number of the independent components
of wm, pm, rm and qm must be decreased that can be implemented with subsiduary conditions.

In order to derive the subsiduary conditions we transform Eq.(6) to the form of the Klein-Gordon equation.
By eliminating χ̄ and using Eq.(4), we obtain

(w2 + p2 − r2 + q2 − 2m−
m+

wp−m2
+ +m2

− +

5∑

A=1

γAK
A)ϕ = 0 (7)

where w2 = (w0)2−w2, p2 = (p0)2−p2 etc, γA are direct products of the Pauli matrices, and KA are quadratic
forms with respect to the four-momenta.

Because in this equation the non-diagonal terms γAK
A have no analog in the case of the ordinary Klein-

Gordon equation, we put γAK
A = 0 that yields

(m2
+ −m2

−)(wp−m+m−)−m+m−(r2 − q2) = 0,

m+wq −m−pq = 0,

m+rp−m−rw = 0, (8)

rq = 0,

m+(rmwn − rnwm − εmnklpkql)−m−(rmpn − rnpm − εmnklwkql) = 0,
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with εmnkl being the totally antisymmetric tensor (ε0123 = +1).
Thus, the imposed conditions and the Klein-Gordon-like equation set ten components of wm, pm, rm, qm to

be the independent ones. For the connection of these four-momenta with the four-momenta, p1m and p2m, of
the constituent particles we assume

wm =
1

2
(p1m + p2m), pm =

1

2
(p1m − p2m), rm = 0, qm = 0. (9)

Then the only one condition from Eqs.(8) remains non-trivial that reads

(wp−m+m−) ≡ (p2
1 − p2

2 −m2
1 +m2

2)/4 = 0. (10)

This equality implies that the total spinor wave function does not depend on the relative time of the particles.
Further, the wave equation (6) and the condition (10) can be reduced to the one-particle Dirac and Klein-

Gordon equations for the constituents of our system. Indeed, with decomposing the spinor wave functions into
the projections

ϕ± =
1

2
(1± τ1 ⊗ I)ϕ, χ̄± =

1

2
(1± τ1 ⊗ I)χ̄ (11)

which are two-component Sp(2, C) Weyl spinors as well, Eqs.(6) and (10) reduce to two uncoupled sets of
equations

p1mσ
mχ̄+ = m1ϕ+, p1mσ̃

mϕ+ = m1χ̄+ (12)

(p2
2 −m2

2)ϕ+ = 0, (p2
2 −m2

2)χ̄+ = 0 (13)

and
p2mσ

mχ̄− = m2ϕ−, p2mσ̃
mϕ− = m2χ̄−, (14)

(p2
1 −m2

1)ϕ− = 0, (p2
1 −m2

1)χ̄− = 0, (15)

consisted of the free one-particle Dirac equations written in the Weyl spinor formalism [18] and the free Klein-
Gordon equations.

Hence it appears that the wave equation (6) supplemented with the subsiduary conditions (8) describes two
systems composed of the spin-1/2 and spin-0 particles. These systems differ from each other only in permutation
of masses of the particles. As a next step, we must include the potential interaction in our equations.

4 Inclusion of the potential interaction

A generally accepted receipt of introducing the interaction consists in the replacement of the four-momenta
of the particles in the minimal manner by the generalized momenta (pmi → πmi = pmi − Ami , i=1,2), so that
each particle is in an external potential of the other. This kind of coupling is referred to as the Lorentz-vector
interaction. Another possibility uses the mass-potential substitution, mi → mi + Si, that corresponds to the
Lorentz-scalar interaction.

In our approach the masses and four-momenta of the particles are involved through the quantities wm, pm,m+,m−.
For this reason, we introduce the Lorentz-vector and Lorentz-scalar interactions by the replacements

wm → ωm = wm −Am, m+ →M+ = m+ + S+,

pm → πm = pm −Bm, m− →M− = m− + S−. (16)

Here the involved potentials Am, Bm, S+, S− may depend on the coordinates and momenta of the particles
but the shape of these potentials is restricted. This restriction is caused by the requirement that the wave
equation must be compatible with the subsiduary condition (10) written after the replacements (16) as

L ≡ ωπ + πω −M+M− −M−M+ = 0 (17)

A sufficient condition for this compatibility is that the operator L of the subsiduary condition should commute
with the operators in the wave equation:

[L, ωm] ≈ 0, [L, πm] ≈ 0, [L,M+] ≈ 0, [L,M−] ≈ 0 (18)

where the weak equality sign means that the commutator may give an expression proportional to L itself which,
on account of Eq.(17), equals to zero.

Because of the quantity wp appearing in Eqs.(16) and (17), we have [wp, xm]
6= 0 but [wp, x⊥m] = 0, the conditions in Eqs.(18) require that the potentials depend on the relative coordinate
xm = x1m − x2m only through its transverse with respect to the total momentum part

xm⊥ = (hmn − wmwn/w2)xn (19)
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where the total momentum wm is assumed to be a constant of motion.
The simplest solution to the compatibility condition (18) comes from the following ansatz

ωπ + πω = 2Cwp, M+M− +M−M+ = 2Cm+m−, (20)

where C = C(x2
⊥) is an arbitrary function. Then the subsiduary condition (17) takes the form of Eq.(10), which

describes the case without interaction, that brings at once to vanishing commutators.
Finally, let us derive an explicit form of the wave equation for the fermion-boson system with the potential

interactions. With substituting the generalized momenta and the mass-potential terms (16) into Eqs. (4) and
(6), we obtain

(I ⊗ σmωm + τ1 ⊗ σmπm)χ̄ = (M+ + τ1 ⊗ IM−)ϕ,

(I ⊗ σ̃mωm + τ1 ⊗ σ̃mπm)ϕ = (M+ + τ1 ⊗ IM−)χ̄. (21)

Here the quantities ωm, πm,M+,M− involve the interaction and satisfy the ansatz (20). Using this ansatz,
we can introduce both the potential interaction described by the time-component of the Lorentz vector and the
confinement potential included in the Lorentz-scalar term or in the spatial part of the Lorentz vector.

Thus, a new approach to the two-body problem based on the extension of the SL(2, C) group to the Sp(4, C)
one has been developed. It permits us to construct the relativistic wave equation for the system consisted of
spin-1/2 and spin-0 particles with unequal masses, involving the various forms of interaction.
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An approach based on the extension of the SL(2, C) group to the Sp(4, C) one is applied to the three-body
problem. The relativistic wave equation for the three-body system with total spin 1/2 is constructed. For the
system with oscillator interaction, involved through the linear in coordinates generalized momenta, a complete
set of spatial wave functions is obtained.

1 Introduction

The harmonic oscillator occupies an important place in nuclear and particle physics. In hadron physics a
relativistic equation for the symmetric quark model with harmonic interaction was proposed by Feynman,
Kislinger and Ravndal [1] as far back as 1971. Since their work, the concept of relativistic oscillator has been
used for describing the spectra of the both ordinary hadrons [2–4] and glueballs [5]. Of course, these models
are purely phenomenological ones. But, through its covariant formulation, the relativistic oscillator is able to
deal in a simple way with retardation effects, which are rather complicated in other approaches.

Up to now, different models of the relativistic two-body oscillators with spin-0 [6, 7] or spin-1/2 [8, 9] con-
stituents, or with mixed spin-0-spin-1/2 content [10] have been offered. In contrast, for the three-body case, to
the best of our knowledge there are only the models of the oscillators composed of the Klein-Gordon particles
[11–13]. Generally, the three-body problems with fermions are approached by using the coupled one-particle
wave equations [14] or the three-body versions of the Bethe-Salpeter equation [15].

Recently, a new approach to the relativistic two-body problem, based on the extension of the SL(2, C) group
to the Sp(4, C) one, has been developed [16]. In the present work we intend to generalize this approach to the
three-particle case and apply it to construct a model for the relativistic three-body oscillator with total spin
1/2.

The plan of the work is as follows. Section 2 is devoted to deriving the wave equation for a free three-body
system with total spin 1/2 via the extension of the SL(2, C) group. In Section 3 we consider the three-body
system with oscillator interaction involved through the generalized momenta linear in coordinates, in spirit of
the Dirac-oscillator model [17]. We show that the wave equation for our system can be reduced to the equation
describing two coupled three-dimensional harmonic oscillators with additional spin-orbit interaction. Finally,
in Section 4, a complete set of spatial wave functions for this system is obtained.

2 Wave equation for a three-body system

We start with the symplectic symmetry which is laid in the basis of our construction of the relativistic equations
in the Minkowski space. The homogeneous Lorentz group SO(1, 3) is covered by the SL(2, C) ≡ Sp(2, C) group.
As a consequence, there exists one-to-one correspondence between the Sp(2, C) Hermitian spin-tensors of second
rank and the Minkowski four-vectors. It means that the space-time position of a relativistic particle can be
parametrized by the Sp(2, C) Hermitian spin-tensor.

In order to describe few-particle systems, we extend the Sp(2, C) group to the Sp(4, C) one. This is the
minimal extension that preserves a non-degenerate antisymmetric bilinear form ηαβ = −ηβα (α, β = 1, 2, 3, 4)
in the spinor space.

In terms of the 4-component Sp(4, C) Weyl spinors ϕα and χ̄ᾱ, the Dirac-like equation takes the form

Pαᾱχ̄
ᾱ = mϕα, P̃ ᾱαϕα = mχ̄ᾱ (1)

where Pαᾱ is the Sp(4, C) momentum spin-tensor and m is a mass parameter. Because the wave functions are
the spinors of first rank, the proposed wave equation can be adapted for the description of a three-body system
with total spin equal to 1/2.
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For construction of such an equation, let us at first consider the structure of the Sp(4, C) momentum
spin-tensor. According to our previous analysis [16], this spin-tensor, with suppressed spinor indices, can be
decomposed into four Minkowski four-momenta as

P = Σ0 ⊗ σmwm + Σ1 ⊗ σmpm + Σ2 ⊗ σmrm + Σ3 ⊗ σmqm (2)

where wm, pm, rm, qm (m = 0, 1, 2, 3) are the Minkowski four-momenta, and quantities Σa and σm are 2 × 2
Hermitian matrices for which in following we use the matrix representation from Ref.[16].

It should be stressed that the description of the three-particle system requires one time-like and nine space-
like variables whereas the Sp(4, C) momentum spin-tensor has sixteen components. In order to decrease the
number of the independent components, we must supplement the wave equation with subsiduary conditions
having the Sp(4, C)-invariant form.

For deriving these conditions, we transform Eq.(1) into the Klein-Gordon-like equation analogous to that of
the three-boson model [13]. Upon eliminating χ̄ᾱ and using Eq.(2), we obtain

(PP̃ −m2)ϕ ≡ (w2 + p2 − r2 + q2 −m2 +
5∑

A=1

γAK
A)ϕ = 0 (3)

where w2 = (w0)2−w2, p2 = (p0)2−p2 etc, γA are direct products of the Pauli matrices, and KA are quadratic
forms with respect to the four-momenta.

Five quantities KA are components of a complex vector that transforms according to the representation
SO(5, C) ⊂ Sp(4, C). For restoring the form of the Klein-Gordon equation, we put KA = 0 on the wave
functions. This condition does indeed be invariant under transformations of the Sp(4, C) group, because if a
vector equals to zero in one frame then it equals to zero also in all frames.

Being written in terms of the four-momenta, the imposed equality KA = 0 reads

wp = 0, wq = 0, rp = 0, rq = 0,

rmwn − rnwm − εmnklpkql = 0 (4)

where εmnkl is the totally antisymmetric tensor (ε0123 = +1).
Thus, the Klein-Gordon-like equation (3) with the conditions (4) set ten components of wm, pm, rm, qm to

be the independent ones.
Now we introduce an explicit three-body interpretation. Let the above four-momenta be expressed through

the four-momenta, pm1 , pm2 and pm3 , of the constituent particles in the standard manner [18, 19] as

wm =
pm1 + pm2 + pm3√

3
, pm =

pm1 − pm2√
2

, qm =

√
2

3

(
pm1 + pm2

2
− pm3

)
. (5)

Since the considered three-body system is an isolated one, the total four-momentum wm must be a constant
of motion. Then for an arbitrary four-vector am we can introduce its transverse and longitudinal, with respect
to wm, parts

am⊥ = (hmn − wmwn/w2)an, am‖ = (wmwn/w2)an (6)

where hmn = diag(1,−1,−1,−1) is the Minkowski metrics.
With this notation, the subsiduary conditions (4) take the form

pm‖ = 0, qm‖ = 0, rm =
1

w2
εmnklw

npkql. (7)

It is became evident that the first two equalities remove the relative time variables which correspond to pm‖
and qm‖ . The last equality says that the four-momentum rm is also expressed through the four-momenta of the

constituent particles. Thus, we conclude that the wave equation (1), based on the extension of the SL(2, C)
group and supplemented with the subsiduary conditions (4), indeed describes the free three-particle system
with the total spin 1/2.

3 The system with oscillator interaction

Now we intend to include the potential interaction in our description. This can be made by replacing the
four-momenta of particles by the generalized momenta (pmi → πmi = pmi − Ami , i=1,2,3), so that each particle
is in an external potential of the others.

Because the generalized momenta do not, generally, commute with each other, the question on the compati-
bility of the subsiduary conditions among themselves arises. In the language of the Dirac’s quantum mechanics
with constraints, the subsiduary conditions (4) are the first-class constraints. Then a sufficient condition of their
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compatibility implies that they must commute with each other and with the wave equation without producing
second-class constraints.

Under this restriction, we can choose the simplest form of the generalized momenta with involving the linear
in coordinates interaction

πm1 = pm1 +
λ√
3
(xm2⊥ − xm3⊥), πm2 = pm2 +

λ√
3
(xm3⊥ − xm1⊥),

πm3 = pm3 +
λ√
3
(xm1⊥ − xm2⊥) (8)

where λ is a constant.
In terms of the relative momenta this means that

pm → Pm = pm + λym⊥ , qm → Qm = qm − λxm⊥ (9)

and the following commutation relations are valid

[pm, xn] = ihmn, [qm, yn] = ihmn (10)

where hmn is the Minkowski metrics, and the relative coordinates are introduced as

xm =
xm1 − xm2√

2
, ym =

√
2

3

(
xm1 + xm2

2
− xm3

)
. (11)

Furthermore, with the generalized momenta (9) inserted, the subsiduary conditions (4) remain unaltered in
the form and satisfy the compatibility requirement as before.

Now let us show that the included interaction is the oscillator one similar to the interaction in the model of
the Dirac oscillator [17]. Remind that the Dirac oscillator is obtained from the one-particle Dirac Hamiltonian
by the non-minimal substitution for the momentum, p → p − imωβx, where ω is the oscillator frequency and
β is the Dirac matrix. Inserting Eq.(9) into the Sp(4, C) momentum spin-tensor (2) and rearranging its terms,
so that each relative momentum should be accompanied with the corresponding coordinate, we get

P = Σ0 ⊗ σmwm + Σ1 ⊗ σm(pm + iλΣ2 ⊗ Ixm) (12)

+ Σ2 ⊗ σmrm + Σ3 ⊗ σm(qm + iλΣ2 ⊗ Iym).

It is seen that the expressions in parentheses in the last equation involve the Hermitian matrix times imaginary
unit, similarly to the non-minimal substitution used in the Dirac oscillator model.

In order to obtain an explicit oscillator-type equation for our three-body system, we use the center-of-mass
frame in which w = 0. Then E =

√
3w0 is the total energy and the dynamics of the relative motion is described

by the coordinates x⊥ = x and y⊥ = y. From Eq.(7) it follows that P0 = Q0 = r0 = 0, and the wave equation
(1) with the momentum spin-tensor (2), rewritten through the vectors of generalized relative momenta, P and
Q, and the Pauli matrices τ i, becomes

(
E√
3
− τ1 ⊗ τP− τ3 ⊗ τQ +

2
√

3λ

E
τ2 ⊗ τM

)
χ̄ = mϕ (13)

(
E√
3

+ τ1 ⊗ τP + τ3 ⊗ τQ +
2
√

3λ

E
τ2 ⊗ τM

)
ϕ = mχ̄

where

M =
1

2λ
P×Q ≡ 1

2λ
(p + λy)× (q− λx). (14)

It can be verified that, for this equation, the total angular momentum J = x×p+y×q+ τ/2 is conserved.
Moreover, the quantity

K = τ2 ⊗ (τM + I), (15)

playing the same role as the spin-orbit coupling operator in the one-particle Dirac equation, and the quantity
N given by

N = − 1

2λ
(p− λy)× (q + λx) (16)

are conserved, too. The conservation of N implies that the energy spectrum of the model possesses an ”acci-
dental” degeneracy.



Wave functions of the relativistic three-body oscillator. . . 155

At last, after substitution ψ = ϕ+ χ̄, Eq.(13) is indeed transformed into the oscillator-type equation

[(
E√
3

+
2
√

3λK

E
)2 − (m+

2
√

3λ

E
τ2 ⊗ I)2]ψ = (17)

[p2 + λ2x2 + q2 + λ2y2 + λ(yp− xq + 2K + τ2 ⊗ I)]ψ.

The derived equation describes two coupled three-dimensional harmonic oscillators with the additional spin-
orbit interaction. The latter appears due to the quantity K having the product of the spin-1/2 Pauli matrix τ

and the orbital angular momentum incoming in the quantity M.

4 Spatial wave functions of the three-body oscillator

The next step is to derive the spatial wave functions for the obtained equations. Before proceeding further, let
us make some comments. For the three-body problem, several sets of spatial basis functions are known such as
the K-harmonics [18] and the harmonic-oscillator functions [19, ?]. However, the problem under consideration
has a peculiarity. Namely, two oscillators entering Eq.(17) are the coupled ones. In view of this, we are going
to construct a new set of basis functions that will be well-suited for the described system.

In what follows we consider only the spatial part of the wave functions. Upon excluding the spin-dependent
terms from Eq.(17), we arrive at the quantity

O = P2 + Q2 ≡ p2 + λ2x2 + q2 + λ2y2 + λ(yp− xq) (18)

describing two coupled harmonic oscillators.
This quantity commutes with the orbital angular momentum L = x × p + y × q which can be written as

the sum of two parts
L = M + N (19)

where M and N, defined by Eq.(14) and Eq.(16), obey the usual commutation relations for angular momenta
and commute with each other.

Moreover, the momenta M and N commute with O separately. Hence, the spatial wave functions for our
system can be expressed through the eigenstates of these two momenta determined by

M2Φ = M(M + 1)Φ, M3Φ = mΦ,

N2Φ = N(N + 1)Φ, N3Φ = nΦ. (20)

Further, it is convenient to use the lowering and raising operators

M± = M1 ± iM2, N± = N1 ± iN2 (21)

which do not change the representation defined by the pair of values M and N .
All solutions of the system (20), which we denote as ΦMm,Nn, may be easily obtained if we find the state

ΦMM,NN having the highest weight in the representation and, consequently, satisfying the equations

M+ΦMM,NN = 0, N+ΦMM,NN = 0,

M3ΦMM,NN = MΦMM,NN , N3ΦMM,NN = NΦMM,NN . (22)

The consideration can be simplified very much by introducing, as in the method of K-harmonics [18], two
complex vectors

z = (x + iy)/
√

2, z̄ = (x− iy)/
√

2 (23)

where bar means complex conjugation.
Now, if we pass from the cartesian components of z and z̄ to their combinations

u = (z1 + iz2)/
√

2, v = (z̄1 + iz̄2)/
√

2 (24)

the explicit expressions for the operators in Eqs.(22) become

M+ =
1√
2λ

[(λz̄3 − ∂z3) (λu+ ∂ū)− (λv − ∂v̄) (λz3 + ∂z̄3)] ,

M− =
1√
2λ

[(λz3 + ∂z̄3) (λū− ∂u)− (λv̄ + ∂v) (λz̄3 − ∂z3)] ,

M3 =
1

2λ
[(λv − ∂v̄) (λv̄ + ∂v)− (λū− ∂u) (λu+ ∂ū)] (25)
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whereas the expressions for N± and N3 are obtained from these equations on replacing λ→ −λ.
After solving Eqs.(22), we get the state with the highest weight in the following form

ΦMM,NN = CMM,NN exp (−λzz̄)vMuN (26)

where CMM,NN is a normalization constant. The subsequent application of the lowering operators yields

ΦMm,Nn = CMm,Nn(M−)M−m(N−)N−n exp (−λzz̄)vMuN (27)

which are the solutions for the system (20) and, hence, form a complete set of spatial basis functions for the
three-body problem. Knowing the eigenstates of M and N, we can construct the eigenstates of the orbital
angular momentum L = M + N by using the conventional Clebsch-Gordan coefficients.

It should be pointed that for the states with N = 0 the obtained expression essentially simplifies. Because
for these states the orbital angular momentum has the definite value L = M , the spatial wave function (27)
takes the form

ΦLm,00 = ALm exp (−λzz̄)YLm(z̄) (28)

where ALm is a normalization constant and YLm(z̄) is the solid harmonic. If we compare this result with the
ground-state wave functions from the two-oscillator basis [19], the distinction will be in the dependence of the
solid harmonic in Eq.(28) on the complex vector z̄ = (x− iy)/

√
2 rather than on the relative coordinate x or y.

In conclusion, the approach, based on the extension of the SL(2, C) group to the Sp(4, C) one, has been
applied to construct the relativistic wave equation for the three-body system with total spin 1/2. Upon inserting
the linear in coordinates generalized momenta into this equation, the model for the relativistic three-body
oscillator that represents two coupled three-dimensional harmonic oscillators with the additional spin-orbit
interaction has been obtained. For this system, a complete set of spatial wave functions is derived. The
discussion of the energy spectrum of the model will be published elsewhere.
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The impact of filling up the Fermi sphere with the quarks, which dynamically generated their masses on the
instanton liquid at finite temperature and baryonic/quark number density, is investigated. It is demonstrated, in
particular, that the boundary of chiral symmetry restoration phase transition is shifted to the larger (about 100
MeV more) value of quark chemical potential compared to the magnitude inherent in the Nambu-Jona-Lasinio
model.

1 Introduction

Impressive results obtained in experimental study of ultrarelativistic ion collisions at RHIC (Brookhaven) and
the experiments which are planned for the near future at ALICE LHC (CERN) [2] are standing in need of
more accurate and precise theoretical predictions for possible signatures of new states of strongly interacting
matter with fastly growing acuity. However, the theoretical advancement is much less appreciable especially
in the latest years. For example, the predictions of various approaches for the behaviour of gluon condensate
at finite T and non-zero values of baryonic/quark chemical potential µ which is a key quantity for theoretical
analysis are still inconsistent as before and at times simply conflicting. The possible changes appearing in the
gluon sector at such conditions and usually described by varying the constants of multiquark interactions as the
functions of T and µ in the Nambu–Jona-Lasinio (NJL) model [2], need drawing almost inevitably the lattice
numerical calculations of the gluon condensate [3] to be analysed. Practically to the same extent this remark
is justified for the predictions of the chiral perturbation theory (CHPT) [4] and the QCD sum rules (SR) [5].
Both approaches have rather limited reliability for results of calculations around the critical parameter values.
Actually, in Ref. [1] we have already tried to estimate the gluon condensate behaviour in hot and dense medium
using the instanton liquid (IL) model [4, 8, 9] as an operative tool. In this case the screening impact of quarks
filling the Fermi sphere up1 on the gluon condensate has been calculated for the massless quarks.

In this paper we consider the influence of quarks with the finite masses on the gluon condensate. In the
IL model the calculation of dynamical quark mass at zero temperature is grounded on making use the zero
mode approximation [12]. However, even that calculation runs into rather serious technical difficulty (see also
[13]) while interpreting the loop quark diagrams at the chemical potential values exceeding the magnitude
of dynamical quark mass µ ≥ Mq. We are treating this point here based on the NJL model and are not
interested in the asymptotic large values of µ and T (see, for example, [14]) and omit an analysis of the colour
superconducting phase as well as the discussion of the difficulty in stabilizing the instanton ensemble which is
rather often resulted in the speculations about the ’realistic’ structure of vaccum configurations.

2 Approximating the vacuum configurations at finite T and µ

Our purpose here is to find the practical and effective tool for evaluating the gluon condensate under extreme
conditions. Obviously, such a task has been pending for rather long time and the prevailing number of scenarios
to resolve it is grounded on the mean field approximation which supposes, actually, the simplified description of
a system. It will be a guiding element of our approach while dealing with the instanton ensemble. For example,
vacuum correlation function 〈Aµ(x)Aν(y)〉 of mean field description is transformed into the correlator which
in the context of our approach leads to the mass generation for gluon field and, hence, to the colour screening
factor.

As well known in the IL model at zero values of µ and T the superposition of (anti-)instantons in the singular

1Following [10] we take this effect as the dominating one at high temperature though there exist the other interesting possibilities
[11].

c© Molodtsov S.V., Dorokhov A.E., Zinovjev G.M., 2007.
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gauge

Aaµ(x; γ) =
2

g
ωabη̄bµν aν(y) , aν(y) =

ρ2

y2 + ρ2

yν
y2 , y = x− z , (1)

(where µ, ν = 1, 2, 3, 4, ρ is a pseudo-particle size, ω is a matrix of its colour orientation and z is its center
coordinate) is considered as the ground vacuum field saturating the QCD generating functional (dealing with
anti-instantons one has to change the’t Hooft symbol η̄ → η). The QCD generating functional is evaluated to
be as

Y =
∞∑

N=1

1

N !

N∏

i=1

∫
dγi d0(ρi) e

−β Uint(γ) =
∞∑

N=1

1

N !

N∏

i=1

∫
dγi e

−E(γ) , (2)

E(γ) = β Uint(γ)−
∑

ln d0(ρi) , γ = (z, ρ, ω) ,

here

d0(ρ) =
1

ρ5 β̃2Nc e−β(ρ) (3)

is the distribution function over the size of individual instanton (dilute instanton gas approximation) [4], dγi =
d4zi dωi dρi is the integration element,

β(ρ) =
8π2

g2 = −b ln(C
1/b
Nc

Λρ)

is the single instanton action (Λ = ΛMS = 0.92ΛP.V.) with the constant CNc
depending on the renormalization

scheme

CNc
≈ 4.66 exp(−1.68Nc)

π2(Nc − 1)!(Nc − 2)!

with another parameter b = (11 Nc − 2 Nf )/3. The auxiliary coefficients β̃ = −b ln(Λρ̄) β in the exponent
of Eq. (9) are fixed at the characteristic scale ρ̄ (pseudo-particle average size). Assuming the topologically
neutral instanton liquid we do not differ the instantons and anti-instantons and N denotes (when used) the
total number of pseudo-particles which occupy the volume V .

Taking into account the interaction of instantons with vacuum fluctuations is effectively presented by ap-
pearance of the screening factor in the distribution (2)

d(ρ) =
1

ρ5 β̃2Nc e−β(ρ)−ζρ2 , (4)

where the magnitude of screening coefficient ζ is dependent on the choice of superposition ansatz. For the
pseudo-particles in the singular gauge the interaction term taken in the pair interaction approximation is [9]

∫
dω1 dω2 dz1 dz2 Uint(γ1, γ2) = V ξ2 ρ2

1 ρ
2
2 ,

with the constant ξ2 = 27 π2

4
Nc

N2
c − 1

. It is interesting to notice here that the configurations used in the

valley method [15] result in the significantly smaller value (about one order) of coefficient ξ [16]. Besides, the
screening factor can be steadily extracted from the lattice data as λA ∼ 0.22 fm [17] with the configuration
cooling procedure. The corresponding configurations are reasonably well fitted by the instanton ensemble as
was shown [18], although the analysis of optimal instanton configurations in the mean field approximation is
worthy of special study and will be done in the separate paper [19].

The convexity property of exponential function allows us to estimate the partial contribution into the
generating functional Eq. (9) at each value of N by the following approximating form

Y ≥ Yapprox = Y1 exp(−〈E − E1〉) , (5)

which can be presented [9] as

Yapprox = e−X , X = N
(ν

2
+ 1
)

[ln(n/Λ4)− 1]−N ln

[
CNc

β̃2Nc(βξ2ν)−ν/2
Γ(ν)

2

]
, (6)

where n = N/V , ν = (b − 4)/2. Then the respective parameters of IL are defined by the maximum in n of
generating functional with the interrelation of instanton average size and its density taken into account

ν

ρ2
= βξ2nρ2 . (7)
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Now calculating the maximum of X in n we have to resolve the following equation

−
(ν

2
+ 1
)

ln(n/Λ4) + ln

[
CNc

β̃2Nc(βξ2ν)−ν/2
Γ(ν)

2

]
+ n

2Nc

β̃

dβ̃

dn
− n ν

2β

dβ

dn
= 0 . (8)

Owing to the relation (5) we have
1

β

dβ

dρ̄
+

1

n

dn

dρ̄
+

4

ρ̄
= 0 .

From the other side
dβ
dρ̄

= − bρ̄ ,
dβ̃
dρ̄

=
dβ
dρ̄

. Rewriting the derivative of β in the density as
dβ
dn

=
dβ
dρ̄
/dn
dρ̄

, we

come to the system of equations

dβ

dn
=

1

n

b β

4β − b ,
dβ̃

dn
=
dβ

dn
. (9)

Finally resolving the system of transcendental equations we can determine the equilibrium IL parameters.
At the finite temperature the configuration saturating the generating functional is changed by the super-

position of (anti-)colorons [20], [21] which are the periodical in the Euclidean ’time’ (with the period of T−1)
solutions of the Yang-Mills equations [5] i.e.

Aaµ(x, γ, T ) = −1

g
ωab η̄bµν ∂ν ln Φ(x, T ), Φ(x, T ) = 1 +

πρ2T

r

sinh(2πrT )

cosh(2πrT )− cos(2πτT )
. (10)

Here r = |x − z| defines the distance from the coloron center z in three-dimensional space, τ = x4 − z4 is
the ’time’ interval. It can be easily seen that the solution is transformed into the (anti-)instanton one in the
singular gauge at temperature going to zero. Clearly, the distribution function over the coloron size [10], [23] is
also changed

d(ρ;µ, T ) = d(ρ) e−η
2(µ,T )ρ2 , η2(µ, T ) = 2π2


Nc

3
T 2 +

Nf∑

f=1

Πf (µ, T )


 . (11)

The first term of the screening factor describes the one-loop gluon contribution into the effective action and the
second term generated by quark contribution in one-loop approximation can be exactly calculated and is free
of the ’bad’ singularities [24]. The ’time’ component of polarization tensor generated by quark of fixed colour
has the form

Πf
44(k4, ω) =

k2

π2ω2

∫ ∞

0

dp p2

εp
np

[
1 +

4ε2p − k2

8pk
ln

(k2 + 2pω)2 + 4ε2pk
2
4

(k2 − 2pω)2 + 4ε2pk
2
4

− εpk4

pω
arctan

8pω εpk4

4ε2pk
2
4 − 4p2ω2 + k4

]
,

here ω = |k|, k2 = ω2 +k2
4, εp = (M2

q +p2)1/2 where Mq is the quark mass, np = n−
p +n+

p , n−p = (e
εp−µ

T +1)−1,

n+
p = (e

εp+µ

T + 1)−1 (n−
p , n

+
p are the densities of anti-quarks and quarks, respectively). When summed up over

all the components the polarization tensor can be presented in the following form

Πf
µµ(k4, ω) =

2

π2

∫ ∞

0

dp p2

εp
np

[
1 +

2M2
q − k2

8pk
ln

(k2 + 2pω)2 + 4ε2pk
2
4

(k2 − 2pω)2 + 4ε2pk
2
4

]
. (12)

It is clear when the zero-component k4 = 0 the dominant contribution into the gluon mass at small values of ω
comes from the first term (a unit) and the space components are negligible. In particular, at ω = 0 it will be

Πf (µ, T ) = Πf
44(0, 0) =

2

π2

∫ ∞

0

dp p2

εp
np . (13)

Then at T = 0 we have

Πf (µ, 0) =

[
(µ2 −M2

q )1/2µ

π2 − M2
q

π2 ln
µ+ (µ2 −M2

q )1/2

Mq

]
.

In order to calculate the IL equilibrium parameters as the functions of µ and T one has to minimize the
approximating functional (4) making the substitutions of (5) and (9) for

ν

ρ2
= η2 + βξ2nρ2 , (14)

and
n

β

dβ

dn
=

b

4β − b+ 2η2ρ̄2β
ν−η2ρ̄2

. (15)

correspondingly.
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3 Quark mass generation in stochastic field

It is anticipated that in the IL model the quarks are considered to ’live’ (and to be influenced) in the stochastic
(anti-)instanton ensemble which is defined by the following generating functional

Z =

∫
D[ψ]D[ψ̄] 〈e

�
dx Lq 〉A , Lq = ψ̄(x)

(
i∂̂x +

N∑

k=1

gÂ(x; γk)

)
ψ(x) , (16)

where the averaging over (anti-)instanton ensemble is implied. The consistency requirement for effective La-
grangian in the Hartree approximation results in the equation for the quark Green function [25] which reads
as

M(p) = −N
V

1

Nc

∞∑

n=2

∫ n∏

k=1

dqk
(2π)4

(2π)4 δ4

(
n∑

i=1

qi

)
Tr
[
g Â(q1) S(p− q1) . . . g Â(qn)

]
. (17)

Being summed up the right hand side of Eq. (12) can be presented in the compact form as [26]

M(p) =
1

NcV
Tr

N∑

i=1

〈p|
[
S − (g Â(qi))

−1
]−1

|p〉 , (18)

(in such a form the averaging over the pseudo-particle location z and calculation of colour trace is meant).
Analyzing the solution in the form

S(p) =
1

p̂− iM(p)
, (19)

where M(p) denotes the quark mass, one can calculate the highest term of expansion in the IL density (presented
by the zero quark mode Φ(p) in the instanton field) as [26]

M(p) ∼ n1/2 p2 Φ2(p)
[∫ dp

(2π)4
p2 Φ4(p)

]1/2 .

At finite quark chemical potential the derivative i∂̂ in Eq. (8) should be substituted for i∂̂− iµ̂ where µ̂ = µγ4.
Then quark Green function (11) develops the following form

S(p;µ) =
1

p̂+ iµ̂− iM(p;µ)
. (20)

where

M(p;µ) ∼ n1/2 (p+ iµ)2 Φ2(p;µ)
[∫ dp

(2π)4
(p+ iµ)2 Φ2(p;µ) Φ2(p;µ)

]1/2 ,

and the overt expression of the zero mode could be found, for example, in [27]. With the chemical potential
increasing and reaching the values of dynamical quark mass order (µ ∼Mq) the quark mass magnitude M(p;µ)
begins to increase as a power. The similar situation with the dynamical mass increase takes place for the
approach in which the unperturbated quark Green function S0 is approximated by the zero modes [27], [28]2.
Such a behaviour is non-physical and contradicts to the intuitive expectations. It seems, the situation could be
improved by taking into account the non-zero mode contributions but very complicated analytical structure of
the corresponding expressions makes this calculation practicaly hopeless. Thus, the question about the estimate
of non-zero mode contribution is still vague (see, however, [29]). The proposition to treat poles as in Ref. [13]
leads, unfortunately, to unphysically small values of the chemical potential of chiral symmetry restoration phase
transition. It is interesting to notice here that the zero mode approximation is quite reliable even at the finite
temperature if one confines oneself to work with the chemical potential values not larger than the dynamical
quark mass µ ∼ 300 MeV. The quark condensate estimates are quite suitable in this case even if one makes
use simply non-coloron zero mode. These results put forward the task of searching the effective approximations

2Determining the saddle point parameter in this case one encounters the problem of calculating a loop integral in which the pole
of Eq. (26) appears on the real axis. The treatment of that integral as a principle value gives its real part only which is not enough,
of course. However, this problem is softened by the situation that the pole appearance on the real axis occurs in the local vicinity
of transition point into the colour superconducting phase and, therefore, more precise definition of the saddle point parameter looks
superfluous. However, the general problem of calculating the loop integrals is entirely hot and actual in the context of analyzing
the chiral symmetry restoration. (Prof. T. Hatsuda has drawn our attention to this aspect of the problem and the authors are very
grateful to him for that.)
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for the equations of type (12). The significant progress in studying the systems of quarks at finite temperature
and chemical potential has been reached in the framework of NJL approach. (Let us remember here that at
finite temperature the integration over the fourth component in Eq. (8) should be performed in the interval
from zero till T−1 and gluon fields obey the periodic boundary conditions whereas the fermion fields obey the
anti-periodic ones.)

As it is difficult to handle (anti-)instanton ensemble directly we are going to retain some essential features
of (anti-)instanton configuration contribution and approximate it with the simplest form. Actually, we suppose
the existence of superposition of stochastic randomly oriented color gluon fields in the Euclidean space. These
fields have the δ-function form with their randomly distributed centers z, i.e.

Aµ(x) = U †τaU aaµ (2π)4 δ(4)(x− z) , Aµ(p) = U †τaU aaµ (2π)4 eipz = Aµ eipz. (21)

It is clear if one considers one-particle correlations only (just what is done for the pseudo-particle ensemble) the
simplest non-trivial correlation function 〈Â(x1)Â(x2)〉z,U will lead to the point-like interaction of quarks

〈Â(x1)Â(x2)〉z,U ∼ δ(4)(x1 − x2)

which is specific for NJL. In further analysis we do not need to know the concrete form of stochastic factor Â
and do not specify it here. Searching the solution of Eq. (12) in the form M(p) = M we introduce the auxiliary
function ψ(q, p) the following way

M =
−i n
Nc

∫
dq

(2π)4
Tr 〈Â(q − p) 1

q̂ + iµ̂− iM ψ(q, p)〉z,U ,

(22)

ψ(p, p′) = Â(p− p′) +

∫
dq

(2π)4
Â(q − p) 1

q̂ + iµ̂− iM ψ(q, p′) ,

(of course, we imply non-zero quark chemical potential). Presenting the solution for ψ(q, p) in the form ψ(q, p) =
ψ ei(q−p)z we are able to obtain the following equation to determine the function ψ of our interest 3

ψ = Â+ Â

∫
dq

(2π)4
1

q̂ + iµ̂− iM ψ . (23)

As in the NJL model Eq. (17) requires the regularization. Here we are using the conventional procedure of
three-dimensional momentum regularization [2] which allows us to obtain

I =

∫
dq

(2π)4
1

q̂ + iµ̂− iM = iC γ4 + iDM , C = −θ(µ−M)

(2π)2
(µ2 −M2)3/2

3
,

D =





1
8π2

[
Λ̃
√

Λ̃2 +M2 −M2 ln

∣∣∣∣
Λ̃ +

√
Λ̃2 +M2

M

∣∣∣∣
]
, µ ≤M

1
8π2

[
Λ̃
√

Λ̃2 +M2− µ
√
µ2 −M2−M2 ln

∣∣∣∣
Λ̃ +

√
Λ̃2 +M2

µ+
√
µ2 −M2

∣∣∣∣
]
, µ > M

Λ̃ denotes here the cut-off value of three dimensional momentum in the I integral. Finally, we have for the
solution of Eq. (17) the following result

ψ =
B + C2A2

B(1 +D2A2M2)
(Â+ iDA2M) +

iC

B(1 +D2A2M2)
(Â+ iDA2M) γ4 (Â+ iDA2M), (24)

where B = 1−2iCA4−C2A2 +D2A2M2. Using this solution in Eq. (16), averaging over the colour orientation
and holding the highest terms of the Nc expansion we come to the mass gap equation

M = 4n
DA2M

1 +D2A2M2 − C2A2 . (25)

3Another utmost regime where the correlation length is supposed to be infinitely large 〈A(x)A(y)〉 = A2 is also very interesting.
It was analyzed in the Keldysh model [30] and the exact solution was found out. The complete summation of series for the quark
Green function results in the expression as

S(p) =
1

(2π)1/2

�
∞

−∞

dt e
−

t2
2

1

p̂ + µ̂ − t A
,

(it is given here in the Minkowski space). Apparently, it has no poles similar to the non-relativistic Green function as well as the
’analytical’ model of confinement [31].
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Figure 1. The effective potential W as the func-
tion of quark mass for different values of chemical
potential µ = 0 (lower curve), µ = 100, µ = 200,
µ = 300, µ = 400 µ = 450, µ = 500 MeV.

Figure 2. The IL density as the function of the
temperature T . The lower curve corresponds to
the calculation with massless quarks.

It enables to formulate the condition which signals the breakdown of chiral symmetry (the generation of quark
mass) if such a constraint is obeyed

A2 >
1

4n D −D2M2 + C2 . (26)

If one neglects the contributions proportional to A2 in the denominator of Eq. (20) the gap equation of the
NJL model with the coupling constant G of four-fermion interaction is exactly reproduced

G = 4n A2 Λ̃2

8π2 . (27)

In order to receive the qualitative estimates it is worthwhile using the characteristic cutoff parameter of the
NJL phenomenology Λ̃ ∼ 600 MeV. In our estimates we rely on the constraints D2M2A2 � 1, C2A2 � 1 only.
The estimate of A2 for instanton ensemble could be obtained from the corresponding correlation function [32]

〈A(x− z) A(y − z)〉z,U = F (x− y) .

Actually, we have F (0) = 4π2

N2
c − 1

ρ2, which means A2
x ∼ 1

ρ2 and then we receive for the Fourier component

A2
p ∼ ρ6. Taking into account that ρ ∼ Λ̃−1 and D ∼ Λ̃2 (see Eq. (10)) we obtain D2A2M2 ∼ M2

Λ̃2
. The

standard parameter values of the NJL model provide us with the small magnitude of this factor and it could
be neglected. Surely, it is a fairly serious argument in favour of using the developed approach.

4 Approximation of NJL and IL model

Our above analysis demonstrates that approximating the instanton correlator with the delta- function form
and using the regularized NJL model at the same time is the fully compatible procedure. Moreover, Eq. (22)
provides us with the possibility to consider the interrelation of gluon and quark sectors. It relates the constant
G and the IL parameters such as the IL density n and average potential A and G is related to the dynamical
quark mass M = M(0) which defines the screening effect.

Let us now remind that the generating functional of the NJL model has the following form [2]

Z = e−Ω,

Ω = G0σ
2 − NfNc

π2

∫ �Λ

0

p2εpdp−
NfNc
π2 T

∫ �Λ

0

p2

[
ln

(
1 + e

−εp + µ
T

)
+ ln

(
1 + e

−εp − µ
T

)]
dp, (28)

where εp = (M2 + p2)1/2, M = m− 2G0 σ, m is the current quark mass and for the quark condensate we have

〈ψ̄ψ〉 = −M Nc
π2

∫ �Λ

0

p2

εp
(1− n−

p − n+
p ) dp , σ = Nf 〈ψ̄ψ〉 (29)

The quark mass is defined by calculating the minimum of Ω as the function of M (or quark condensate σ)

and the coupling constant G0 together with the cutoff parameter Λ̃ is fixed phenomenologically (by fitting the
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experimental data). We suppose to take this quantity as an estimate of quark determinant while quarks are in
the stochastic field of (anti-)instantons and modify the determinant aiming to include the interrelation of quark
and gluon sectors. In this way we use (instead of G) in Eq. (23) G → n

n0
G0 where n0, G0 are the IL density

and the constant of fourquark interaction at zero temperature and zero chemical potential. In full analogy
with the IL model it is easy to understand the parameter Â should generate the factor of the ρ3 type and the

substitution of the coupling constant for
nρ6

n0ρ
6
0
G0 looks quite natural. On the other hand as the simplest option

we could take the cutoff parameter in the quark sector Λ̃ unchanging as the parameter Â ∼ Λ̃−3. Thus, for the
quarks in stochastic instanton ensemble we should change Ω in Eq. (23) for

Ω =
n

n0
G0σ

2 − NfNc
π2

∫ �Λ

0

p2εpdp−
NfNc
π2 T

∫ �Λ

0

p2

[
ln

(
1 + e

−εp + µ
T

)
+ ln

(
1 + e

−εp − µ
T

)]
dp. (30)

Apparently, the vacuum parameters of the IL model and the NJL one should not change. In order to realize
that one should make the corresponding subtractions just to retain the effect caused by the quarks filling the
Fermi sphere up because the interrelation of vacuum (at zero T and µ) quark and gluon fields has been already
discounted effectively in the running coupling constant and by tuning the NJL model parameters. The (anti-
)instanton ensemble and quark field are described by the product of functionls Yapprox and Z. Therefore, for
the effective potential we have

W = X + Ω .

The equilibriumn IL parameters are defined by the effective potential minimum on the IL density, i.e. by
∂W
∂n

= 0. However, as was declared the following subtraction

∂X

∂n
+
∂Ω

∂n
− ∂Ω

∂n
|µ=0,T=0 = 0 . (31)

should be done. Similar operation should be executed at determining the quark mass ∂W
∂M

= 0, i.e.

∂X

∂η2

∂η2

∂M
− ∂X

∂η2

∂η2

∂M
|µ=0,T=0 +

∂Ω

∂M
= 0 . (32)

Two first terms of Eq. (36) are the result of the fact that the overt dependence on the quark mass in the
contribution into the effective potential is available in the screening factor η2 only. Strictly speaking one should
integrate till the momentum order of Λ̃ in Eq. (13), too. However, such an amplification is superfluous as
the detailed analysis shows. In practice, obviously, it is simpler not to resolve the transcendental equation
(which has two branches, at least) but calculate simply the minimum of effective potential in M . It is easy
to understand that for the concrete form of our quark effective potential Ω the equation for determining the
equilibrium IL parameters coincides with the vacuum one because the direct dependence on the IL density n is
present in the first term of Eq. (30) only. Just because of that reason two last terms of Eq. (35) are canceled.

The subtraction in the second equation of (36) should not be performed as ∂X
∂η2 = −nρ̄

2

2 and the function η2 = 0

at µ < M . Thus, the equilibrium IL parameters are defined by the same scheme as before [1] and minimum of
the generating functional W in M fixes the dynamical quark mass.

Here we are using the following set of the NJL model parameters [2] (T. Hatsuda, T. Kunihiro). We take

for the current mass of u and d quarks the same value m = 5.5 MeV, for the cutoff parameter as Λ̃ = 631 MeV

and for the ratio of the coupling constant to its critical value as α = G0/Gc = 1.33/Nf ,

(
Gc = π2

NcΛ̃
2

)
. Such a

set of parameters results in the following values of the π-meson mass mπ = 139 MeV and the constant of pion
decay Fπ = 93 MeV.

The Fig. 1 shows the effective potential W as the quark mass function for the different values of chemical
potential µ. The lower curve corresponds to zero value of chemical potential and is in full coincidence with the
respective curve of the NJL model. With the chemical potential increasing the process of filling up the Fermi
sphere starts and it is easy to see that the effect of pseudo-particle field screening by the quarks of small masses
occurs dominating (see Eq. (13) and the next one). The screening effect leads to diminishing the absolute value
of gluon condensate and, hence, the effective potential of (anti-)instanton and quark system is increasing. It is
distinctly visible in Fig. 1 in the region of small quark masses. With the quark mass increasing, the impact of
the filling up process is amplified. Starting on some value of small quark mass the saturation regime manifest
itself and the gluon condensate is suppressed. The plateau is formed and it is well seen in Fig. 1. At the
larger values of chemical potential the chiral symmetry restoration starts and the corresponding curve is shown
with the dashed curve in Fig. 1. More detailed analysis allows us to conclude the simplifications made do not
depreciate the qualitative picture of screening.
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Figure 3. The dynamical quark mass as the
function of chemical potential for different temper-
ature values T = 0 (upper line), T = 50, T = 100,
T = 150, T = 200 MeV.

Figure 4. The quark matter density as the
function of chemical potential. The last right
curve corresponds to the zero temperature. The
next left curve corresponds to the temperature 50
MeV, then 100 MeV, and eventually T=150 MeV.
n0q = 0.062 fm−3 is the normal density of quark
matter calculated from the normal baryon matter
density nB = 0.45 fm−3.

The IL density as the function of chemical potential at the various values of temperature (with the temper-
ature increasing the IL density is decreasing) is plotted in the Fig. ??. The dashed curve which was obtained
by us in [1] (the similar mechanism of screening was discussed also in [10], [20]) corresponds to the calculation
with the massless quarks. The mechanism of forming the observable plateau is quite understandable. Until the
chiral symmetry restoration does not take place the quarks are ineffecive in the gluon field screening and the
gluon condensate practically does not change.

Fig. 2 presents the dependence of IL density on the temperature. As it was expected the density is larger
for the massive quarks than for the massless ones in the region of low temperature (below 200 MeV). This
result agrees qualitatively with the observation done in [33]. Some lattice calculations support this scenario of
screening. For example, in [34] it was proven that the Debye screening mass behaves as mel ∼ gT and depends
on the quark flavours (see Eq. (7)). Exponential suppression of gluon field with increasing temperature was
also found out in the lattice measurements of correlation functions dealing with the cooled configurations [35].
In fact, gazing into the detailed analysis of the problem under consideration we collected a lot of reasons to
have the topological solution with the suppressed chromoelectrical component instead of the (anti-)coloron one
to construct more realistic approach. In particular, it was noticed in [36] the coloron solution mainly does not
fit the lattice data. However, we understand such global pretension (as a disproving conclusion) is rather naive
because our result here shows the coloron solution is quite practical for estimating the screening effect.

Analyzing the quark sector we calculated the behaviour of dynamical quark mass as the function of chemical
potential and plotted it in Fig. 3 for various values of temperature. The upper curve corresponds to zero
temperature and the quark mass behaviour along this curve coincides with the NJL model up to the chemical
potential value of µ ∼ 300 MeV. With a further increase of µ the quark mass increases. It is quite understandable
qualitatively if one looks at Fig. 1. At the commencement of chemical potential increase the screening effect
does not produce any noticeable impact on the minimum of effective potential W . In spite of effective potential
increase in the region of small quark mass the threshold value of chemical potential should be reached at which
the forming plateau begins to expel the effective potential minimum to the larger mass values. The size of
region in which the quark mass increase takes place is comparable with the quark mass (order of 100 MeV)
and is of interest, in particular, for investigating the equation of the state of strongly interacting matter. In
the version of the NJL model with the parameter choice suggested by T. Hatsuda and T. Kunihiro [2] the
chiral symmetry restoration occurs at quite low density (the order of normal nuclear matter density). In our
approach the significant decrease of quark mass is shifted (drags on) to the region of large chemical potential
values approximately 100 MeV larger, which agrees entirely with an intuitive expectation. Fig. 4 is devoted to
analyzing the quark matter density as the function of chemical potential. It seems the shift of chiral symmetry
restoration phase transition to the region of larger chemical potential values (order of 400 MeV), could generate
an essential increase of quark matter density. However, Fig. 4 demonstrates the change in this interval is
inessential (the increase of quark mass nq ∼ (µ2 −M2)3/2 provides the compensation), and in actual fact we
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Figure 5. The ratio of quark condensate value to
its magnitude at zero temperature and zero chemi-
cal potential as the function of temperature at the
various values of chemical potential µ = 0 (last
right curve corresponds to the zero value of chemi-
cal potential), µ = 110, µ = 200, µ = 300, µ = 400
MeV (last left curve).

Figure 6. The masses of π- and σ-mesons as the
functions of chemical potential at different values
of temperature T = 0, T = 50, T = 100, T = 150
MeV. The dashed lines correspond to the σ-meson
and the upper dashed line corresponds to the zero
temperature. Last right solid line shows the π-
meson mass behaviour at zero temperature.

have to deal with the same vacuum quarks as at µ < 300 MeV.
The quark condensate normalized to its value at zero temperature and zero chemical potential is depicted

in Fig. 5 as the function of temperature for different values of chemical potential. The behaviours shown are
in full agreement with the predictions of the other models. Finally, two last Figs give more information on the
masses of π- and σ-mesons which are also calculated in the NJL model (see, for example, M.K. Volkov, A.E.
Radzhabov [2]). The π-meson mass is given by

M2
π = g2

πqq

m

2GM
, (33)

where g2
πqq = 1

4I2
is the renormalized constant of meson field interaction including the following auxiliary

integral

I2 =
Nc
8π2

∫ �Λ

0

p2

ε3p
(1− n−

p − n+
p ) dp .

The mass of σ-meson is defined by the mass of π-meson and dynamical quark mass as

M2
σ = M2

π + 4M2 . (34)

Pion decay constant which is a key element of model tuning is defined as Fπ = M
gπqq . Fig. 6 presents the

masses of π- and σ-mesons as the functions of chemical potential for various values of temperature. The dashed
curves correspond to σ-meson. The upper dashed line shows behaviour at zero temperature and the solid lower
line corresponds to zero temperature behaviour of the π-meson mass. The interval in which the σ- and π-
meson masses become identical defines the parameters (on the µ-T plot) corresponding to the chiral symmetry
restoration. It is clear from Fig. 6 that such a restoration at zero temperature occurs around µ ' 460 MeV,
at T = 50 MeV around µ ' 410 NeV, at T = 100 MeV around µ ' 350 MeV and at T = 150 MeV around
µ ' 220 MeV. Besides, this plot allows us to fix the line mσ = 2mπ on which the strong decay channel of
σ-meson is close. At low temperature (T < 100 MeV) the π-meson mass undergoes a significant change in
the region of chiral symmetry restoration only and the estimate that the line mσ = 2mπ approximates chiral
symmetry restoration curve (mσ = mπ) looks rather practical. At T = 100 MeV the chemical potential for the
line mσ = 2mπ is about µ ' 320 MeV and at T = 150 we have µ ' 0 MeV. The details of this line behaviour
could be quite indicative for searching the mixed phase in relativistic heavy ion collisions [37].

5 Conclusion

In the present paper we investigated the effect of gluon condensate screening with the massive quarks filling
up the Fermi sphere. We developed the approach based on the NJL model highlights which allows us to
get informative qualitative estimates. In particular, we argue that one of the manifestations of filling up the
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Fermi sphere could be an increase of the quark mass and, hence, the shift of chiral symmetry restoration phase
transition to the larger values (about ' 100 MeV) of quark chemical potential. Another instructive result
obtained implies that the gluon condensate does not die out completely in the parameter region characteristic
for this phase transition even at the most advantegeous regime of vacuum gluon field screening. The lattice
measurements of the same quantity confirm such a conclusion allowing us to predict that gluon condensate are
surviving even in the region of parameters essentially beyond the values admissible for our approximation.
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The effect of external colour field impact on the instanton liquid is studied. In the course of this study the
corresponding effective Lagrangians are derived for both regimes of weak and strong external field and in long
wave-length approximation. The example of Euclidean colour point-like source is analyzed in detail and the
feedback of field on the instanton liquid is estimated as a function of source intensity.

1 Introduction

The declarations of discovering new state(s) of matter in relativistic heavy ion collisions at RHIC which are
actively wandering in the papers nowadays are sometimes based on the results of different nature. From one side
it is the striking result of direct experimental measurements of a strong suppression (comparing to pp and pA
collisions) of particle production at high transverse momentum well-known as a jet quenching. And although
the jet reconstruction in these experiments is a nontrivial task the (and accompanying) result(s) is(are) inter-
preted as a degradation of hard parton (initiating a jet) energy induced by medium (new thermalized matter)
produced in collision long before hadronizing in the QCD vacuum. On the other hand the convincing success
of phenomenological analysis of the other measurable characteristics based on the perfect liquid hydrodynamics
results in the question about the sort of quark-gluon plasma (QGP) (if produced) and intimately related one
about the origin of the QCD vacuum Ref.[1]. These investigations devoted to exploring collisions of ultrarela-
tivistic heavy ions and aimed at producing quark-gluon plasma under laboratory conditions pose the interesting
problem of studying the effect of intense gluon fields on the QCD physical vacuum. It is assumed that such
fields can be generated in the collision process within a relatively macroscopic region and that they can be de-
scribed in the semiclassical approximation. Currently available models of radiative gluon fields rely on various
premises, but they do not provide an unambiguous and sound prediction for the intensity of the field (see, for
example, [2]). These difficulties could have been sidestepped if the detailed structure of the physical vacuum
had been known. The corresponding threshold value could then have been extracted on the basis of knowledge
of characteristic vacuum-fluctuation fields. Unfortunatelly, we know at the present time only rather general
features of the physical vacuum, such as gluon condensates, preliminary data on virtualities [3], and data from
some lattice simulations [4]. In this situation, it only remains to estimate relevant effects on the basis of some
plausible models of the QCD vacuum. The instanton liquid model seems to be of great value in this respect.
The present study is devoted to describing the effects of the screening of an external color field precisely within
this model. In general, this formulation of the problem may seem somewhat unexpected from the point of view
of the model, since the additional components are introduced in an instanton liquid in order to describe the
confining component and to remove simultaneously the problem of large-size instantons [5, 6].

In the case of a week external field, we adopt a diametrically opposite approach in a sense, assuming that it
will play as if subordinate role. Nevertheless, the conclusions at which we are arrive will perfectly correspond to
the phenomenology of strong interactions. An instanton liquid will be considered within the simplest approxi-
mation – a the stochastic ensemble of instantons in the singular gauge. The generating functional is estimated
on the basis of the variational principle proposed in Ref.[7]. Comparative simplicity of the superposition ansatz
and variational procedure allows us to analyze the effects almost analytically, but, in principle, our analysis is
applicable to any other saturating configuration. Further, we proceed to estimate the effect of a strong external
field on the instanton liquid. We consider the simplest model problem of an Euclidean pointlike color source in
order to get an idea of the characteristic scale of the phenomenon.

c© Molodtsov S.V., Zinovjev G.M., 2007.
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2 External weak field in an instanton liquid

As a major configuration saturating the generating functional

Z =

∫
D[A] e−S(A) (1)

where S(A) is a standard Yang-Mills action we take the approximate solution for the Yang-Mills equations in
the form of the following superposition

Aaµ(x) = Baµ(x) +

N∑

i=1

Aaµ(x; γi), (2)

here Aaµ implies the field of (anti-)instantons in the singular gauge

Aaµ(x) =
2

g
ωabη̄bµνaν(y), aν(y) =

ρ2

y2 + ρ2

yν
y2 , y = x− z, (3)

with the parameters γi = (ρi, zi, ωi) describing the i-th instanton of the ρ size centered at the pseudo-particle
coordinate z, with the matrix of colour orientation ω, and g denotes the coupling constant of non-abelian field;
for the anti-instanton the ’t Hooft symbols should be changed according to η̄ → η; and Ba

µ(x) is an external
field. As was indicated in introduction, we are interested in quite a specific configuration generated in heavy-ion
collisions rather than in an arbitrary external field. The localization of this field within a nuclear-size scale and
its semiclassical character might be features peculiar to such configurations. An analogy with electrodynamics
suggests that such fields can be approximately described by means of a multipole expansion. It is precisely this
qualitative pattern that we will use here as a guideline.

The non-abelian strength tensor from external field and individual pseudo-particle is defined by

Gaµν(A) = ∂µAaν − ∂νAaµ + g fabcAbµAcν = Gaµν(B) +Gaµν(A) +Gaµν(A,B) (4)

with entirely anti-symmetric tensor fabc, where the first two terms in the second relation correspond to standard
strength tensors of non-abelian field. In particular,

Gaµν(A) = −4

g
ωakη̄kαβMµαMνβ

ρ2

(y2 + ρ2)2
, (5)

where Mµν = δµν − 2ŷµŷν , ŷµ = yµ/|y|. The ‘mixed’ component of the instanton strength field looks like

Gaµν(A,B) = g fabc(BbµA
c
ν −BbνAcµ) = g fabcωcd

2

g
(Bbµη̄dνα −Bbν η̄dµα)aα(y). (6)

Calculating now G2 we receive the partial contributions of external field and each separate pseudo-particle as

GaµνG
a
µν = Gaµν(B)Gaµν(B) +Gaµν(A)Gaµν(A) +Gaµν(A,B)Gaµν(A,B)

+2Gaµν(B)Gaµν(A) + 2Gaµν(B)Gaµν(A,B) + 2Gaµν(A)Gaµν(A,B). (7)

In order to keep the further steps as simple and transparent as possible we limit ourselves with the standard
sum of partial contributions in the superposition ansatz action and hold the highest in IL density (precisely in
packing fraction parameter nρ4) one particle contributions

S(B, γ) =

∫
dx

Gaµν G
a
µν

4
'
∑

i

∫
dx

Gaµν(i) G
a
µν(i)

4
. (8)

The crossing terms of different pseudo-particles (which are proportional to the IL density squared) are neglected
here because of very small packing fraction parameter characteristic to IL, i.e. nρ4 ∼ 0.01. Thus, the regularized
generating functional for the IL model takes the following form (for denotations see Ref.[7])

Y =

∫
D[B]

1

N !

∫ N∏

i=1

dγi e−S(B,γ). (9)

First we consider the case of weak external field. We assume that the characteristic parameters of the instanton
liquid, such as average pseudoparticle size ρ̄ and the IL density n, do not change, coinciding with their vacuum
magnitudes. For the saturating configuration chosen here, these values of the pseudoparticle size is immaterial.
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In order to avoid cumbersome expressions, we therefore assume that all pseudoparticles have the same size, ρ̄.
Those are fixed by some repulsive mechanism (see, however, the remark at the end of paper) for the particular
choice of saturating configuration done above1. In calculating the generating functional (10), it therefore only
remains to perform averaging over the pseudoparticle positions and color orientations.

In order to calculate the effective action, it is necessary to find the contribution of the fields of quantum
fluctuation in the vicinity of the saturating configuration (1). By convention, this contribution can be written
in terms of the running coupling constant as a function of the external field and characteristic pseudoparticle
size, g(ρ,B). With the aid of this quantity, one can correctly go over to the relevant scale. For the goals
pursued in the present study, however, it is sufficient to use an approximate expression that is obtained upon
the substitution g(ρ̄, B) → g(ρ̄). Indeed, the fields at short distances (where according to our assumption,
the external field is concentrated) are not singular by virtue of asymptotic freedeom. Dangerous singularities
may arise at long distances, but an ensemble of pseudoparticles controls the situation there. Thus, we will
describe the external field less accurately (but we do not aim at reaching a high accuracy here) but will not miss
dangerous singular contributions. It turns out that even this extremely simple estimate of generating functional
at the saddle point leads to the emergence of an infrared singularity, and we now proceed to describe it.

Making use the cluster decomposition we obtain the corresponding average of exponential as

〈exp(−S)〉ωz = exp

(
∑

k

(−1)k

k!
〈〈Sk〉〉ωz

)
, (10)

where 〈S1〉 = 〈〈S1〉〉, 〈S1S2〉 = 〈S1〉〈S2〉 + 〈〈S1S2〉〉, . . . . The first cumulant is simply defined by the action
averaged. Taking into account the direct form of field strength tensors (4) and (5) it is evident that the
following terms will only be present in the partial contribution after averaging over colour orientation

〈GaµνGaµν〉ω = Gaµν(B)Gaµν(B) + 〈Gaµν(A)Gaµν(A)〉ω + 〈Gaµν(A,B)Gaµν(A,B)〉ω + 2〈Gaµν(A)Gaµν(A,B)〉ω. (11)

The colour averaging is performed by the help of equality

〈ωakωcd〉 = δacδkd

N2
c − 1

, (12)

implying Nc as the number of colours. Averaging over the pseudo-particle positions results in the following
integral ∫

dz

V
aα(y) aγ(y) = δαγ

1

V

π2

4
ρ2, (13)

because the basic IL parameters, as we agreed, are unchanged. Handling the ’mixed’ component average we
have it in the form as reads (all the other terms disappear)

〈Gaµν(A,B) Gaµν(A,B)〉ωz =
18 π2 ρ2

V

Nc
N2
c − 1

Bbµ B
b
µ, (14)

Finally, collecting all appropriate terms we find the effective action for the external field in IL as

〈〈S〉〉ωz =

∫
dx

(
G(B) G(B)

4
+
m2

2
B2

)
+N β, (15)

m2 = 9π2 n ρ2 Nc
N2
c − 1

, (16)

here N is the full number of particles in volume V with n = N/V and a single pseudo-particle action β = 8π2/g2.
The last term of Eq.(16) introduces the contribution of purely instanton component 〈G(A)G(A)〉ωz. The
contribution of repulsive term which fixes the pseudo-particle size in IL is omitted in Eq.(16) so long as it is
not a principal point in this context and adding it, leads to the insignificant correction to the last condensate
term in Eq.(16). An amusing point is that the mass term of Eq.(17) has been well-known for rather long time
and as a matter of fact fixing the pseudo-particle size in the variational procedure of Ref.[7] is provided just
by this mechanism of mass generation. With the characteristic IL parameters (Nc = 3 and number of flavours
Nf = 2) n/Λ4

QCD = 1.2, ρ̄ΛQCD = 0.27, β = 18, see for example [32], the mass estimate is m ∼ 440MeV for
ρ̄ ∼ 1GeV and ΛQCD in the interval of 200 — 300 MeV. The screening properties of the repulsive interaction
were highlighted in [7], and the value of m ∼ 350MeV was presented there for the screening mass. The studies
of Hütter [10], where the estimate m ∼ 480MeV was obtained for the mass of the gluon in an instanton medium,

1In the literature three mechanisms for fixing ensemble of pseudoparticles are discussed: repulsive [7]; freezing of the coupling
constant [8]; stabilization due to influence of confining vacuum component
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is also worthly of note. One can see that all these estimates are rather close since, in all of the cases, the effect
arises owing to the mixed term in the field strength (5). We also note that the compatibility conditions for
the equations resulting from Eq.(16) is ∂µBµ = 0 which is satisfied by the pseudo-particle field Eq.(9) as well.
There may arise the question of why pseudoparticles oriented at random in color space lead to screening —
which component plays the role of a distribution function. In the present case (in non-Abelian theory), this is
the exponential function featuring the Yang–Mills action functional. A nontrivial contribution originating from
mixed term in the field strength (5) is generated in it. In the Abelian case, there are no such contributions by
virtue of the superposition principle.

Turning now to the next term of cluster decomposition to calculate the effective Lagrangian corrections we
conclude immediately that in the second cumulant

1

2

〈〈∫
dxx

G G

4

∫
dx2

G2 G2

4

〉〉
, (17)

there are two nontrivial terms

1

2

〈∫
dx1 2

Gaµν(B)Gaµν(A)

4

∫
dx2 2

Gbαβ(B2)G
b
αβ(A2)

4

〉
, (18)

1

2

〈∫
dx1 2

Gaµν(A)Gaµν(A,B)

4

∫
dx2 2

Gbαβ(A2)G
b
αβ(A2, B2)

4

〉
, (19)

here the index 2 underlines the fact that corresponding functions are dependent on x2. The remaining terms
originate from either the interference terms (and are cancelled by the contribution of the first cumulant squared)
or lead to the contributions anharmonic in B which are not in our interest for this paper. It was analyzed for the
first time in Ref.[11] that G(B)G(A) in (6) generates the dipole interaction. However, this interaction does not
manifest itself in the first term of cluster decomposition if the averaging over the colour orientation is performed.
It comes into focus starting on the second order of decomposing. In particular Eq.(10) can be presented in the
following form

1

2

〈∫
dx1 2

Gaµν(B)Gaµν(A)

4

∫
dx2 2

Gbαβ(B2)G
b
αβ(A2)

4

〉

ω

=

=
1

2

1

N2
c − 1

∫
dx1 dx2

Gaµν(B)Gbαβ(B2)

4
Gbµν(A)Gbαβ(A2), (20)

if one exploits Eq.(4) and Eq.(12) keeping in mind that Gbµν(A)Gbαβ(A2) is colour independent because of the

identity ωabωac = δbc. Eq.(20) should be also averaged over the pseudo-particle positions which results in the
correlation function for the instantons in singular gauge developing the following form obtained in Ref.[1]

∫
dz

V
Gaµν(A)Gaαβ(A2) =

1

V

16

g2 (δµαδνβ − δµβδνα + εµναβ) Is

(
∆

ρ

)
, (21)

where ∆ = |x1 − x2|, and for the anti-instanton the substitution ε → −ε should be done. The analytical
form of function Is is not our priority here, however, it is shown in Fig.1. If the numbers of instantons and
anti-instantons are balanced then the term proportional to the tensor ε disappears.

Now collecting the terms together we find the contribution of Eq.(10) in the IL approach as

16

g2

1

N2
c − 1

n

∫
dx1dx2 Is

(
∆

ρ

)
Gaµν(B)Gaµν(B2). (22)

Clearly, it leads to an abatement of initial action and it is more convenient for analyzing to present the non-local
factor of dielectrical susceptibility type in the Fourier components Ref.[11]

∫
dk

(
1− 16

g2

1

N2
c − 1

n Ĩs(kρ)

)
Gaµν [B(k)]Gaµν [B(−k)]. (23)

Numerical estimate of Ĩs(kρ) at the zero value of argument is Ĩs(0) ∼ 6ρ4, and at Nc = 3, Nf = 2 the correction
coefficient can be estimated as

κ =
16

g2

1

N2
c − 1

n Ĩs(0) ∼ 0.013. (24)
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Figure 1. Correlation function Is is given by
solid line and the correlation functions J1 and J2

are given by the dashed lines.

Figure 2. Pseudo-particle mean size as a func-
tion of applied external field.

Analyzing now the term Eq.(11) we present it as

1

2

〈∫
dx1 2

Gaµν(A) Gaµν(A,B)

4

∫
dx2 2

Gbαβ(A2) G
b
αβ(A2, B2)

4

〉

ω

=

=
1

2

〈∫
dx1 dx2 ω

ak Gkµν(A) famn ωnl(Bmµ η̄lνγ −Bmν η̄lµγ) aγ×

×ωbc Gkαβ(A2) f
bde ωef (Bd2α η̄fβδ −Bd2β η̄fαδ) a2δ

〉
ω
. (25)

and imply the dependence of G on the colour matrix ω might be given by the common factor (without in-
troducing new symbol for G). Formally, this term looks like the next one expanding in 1/Nc, i.e. (∼ ω4).
However, using the identity for colour matrices fmanωakωnl = εklgωmg, we have 〈fmanωakωnlfdbeωbc × ωef 〉 =
δmd

(
δkcδlf − δkfδlc

)
/(N2

c − 1), and then Eq.(21) receives the following form

1

2

〈∫
dx1 2

Gaµν(A) Gaµν(A,B)

4

∫
dx2 2

Gbαβ(A2) G
b
αβ(A2, B2)

4

〉

ω

=

= 2
1

N2
c − 1

∫
dx1dx2

[
Gkµν(A)Gkαβ(A2)η̄lνγ η̄lβδ −Gkµν(A)Glαβ(A2)η̄kβδ η̄lνγ

]
aγa2δB

m
µ B

m
2α, (26)

The lower line here develops this form because of an asymmetric property of tensor G. Averaging over the
pseudo-particle positions we may extract the correlation function in the following form

∫
dz

V

[
Gkµν(A) Gkαβ(A2) η̄lνγ η̄lβδ −Gkµν(A) Glαβ(A2) η̄kβδ η̄lνγ

]
aγa2δ =

=
16

g2

1

V

[
J1

(
∆

ρ

)
δµα + J2

(
∆

ρ

)
∆̂µ∆̂α

]
, (27)

where ∆̂ = x2 − x1/|x2 − x1| is the unity vector.
The simple algebra allows us to calculate the functions

J1 =

∫
dy
ρ8(16t3 − 8t+ 4pq + 6(p2 + q2)t− 12t2pq)

3(y2 + ρ2)3(z2 + ρ2)3|y| |z| ,

J2 =

∫
dy

4ρ8(4t3 + 5t− 4pq − 6(p2 + q2)t+ 12t2pq)

3(y2 + ρ2)3(z2 + ρ2)3|y| |z| , (28)

with z = y + ∆, t = (y z)
|y||z| , p = (y ∆)

|y||∆| , q = (z ∆)
|z||∆| . Similarly to Is we do not need their explicit forms here but

one may estimate their behaviours looking at the dashed lines in Fig.1. Finally, the additional contribution to
the mass term reads as

1

N2
c − 1

32

g2 n

∫
dx1dx2

[
J1

(
∆

ρ

)
δµα + J2

(
∆

ρ

)
∆̂µ∆̂α

]
BaµB

a
2α, (29)
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and in the Fourier components as

∫
dk

[
m2

2
− 32

g2

1

N2
c − 1

n
(
J̃1(kρ)δµα + J̃2(kρ)k̂µk̂α

)]
Baµ(k)B

a
α(−k). (30)

Estimating numerically the nonlocal correction to the mass we find out that J̃1(0) ∼ −1.4 ρ2 unlikely above
result. Then the mass term and corresponding correction in Eq.(22) come about at zero momentum 9π2 Nc and
(− 4β

π2 1.4), respectively. At the characteristic value β ∼ 18 it means the quantitative correction smallness or,
globally, the corrections initiated by the second term of cumulant expansion are negligible at the contemporary
values of basic IL parameters. There is another contribution to the effective Lagrangian which comes from the
interaction of sources generating the external field with (anti-)instanton superposition

Sint =

N∑

i=1

∫
dx jaµ(x)A

a
µ(x; γi) .

Making use the cluster decomposition one expects the possibility to calculate corresponding small contributions
(if the sources are treated in the quasiclassical approximation) which are given by the correlation functions of
the form 〈Aaµ(x; γ)Abν(y; γ)〉γ Ref.[11].

To conclude this section, we will consider, for the effective Lagrangian in (16) a somewhat different inter-
pretation following which one can obtain the infrared singularity mentioned at the beginning of this section,
see also Ref.[13]. Let us suppose that the quasi-classical field B is described in the infra-red momentum region
by the initial Yang-Mills action without the term breaking down gauge symmetry as before. In particular, we
consider the field of point-like Euclidean source of intensity e with only one non-zero n-th component

Baµ(x) = (0, δan ϕ), ϕ =
e

4π

1

|x| .

Then B2 integrated over the 4-dimensional space gives

∫
dx

(
e

4π |x|

)2

=
e2

4π
X4 L ,

where X4, L are some formal upper limits of corresponding integrals. In this approach the contribution of the
first cumulant Eq.(16) could be written down as

〈〈S〉〉ωz = E X4, E =
e2

4π

1

r0
+ σ L+ β nL3, (31)

with σ = 9π
8

Nc

N2
c −1 e

2 nρ2. The first term in defining E comes from the Coulomb energy of point-like source and

r0 represents a formal particle radius. The last term is originated by the gluon condensate and the previous
term looks like negligibly small correction to the condensate term. However, this contribution linearly increasing
with L is proportional to e2 and has different physical meaning as a term additional to the self-energy of source.
In other words, it demonstrates an impossibility for the source with an open colour to be available in IL because
the amplitude of such a state is very strongly suppressed (e−S) comparing to the condensate contribution if
the screening effects are not taken into account. For the dipole in ’isosinglet’ (s) and ‘isotriplet’ (t) states (i.e.
Nc = 2) we obtain

Baµ(x) = (0, δa3 ϕ), ϕ =
e

4π

(
1

|x− z1|
∓ 1

|x− z2|

)
,

where z1, z2 are the dipole coordinates what leads to

∫
dx B2

s =
e2

4π
X4 l ,

∫
dx B2

t =
e2

4π
X4 (4 L− l) ,

with l = |z1 − z2| to be the distance separating sources. We have another confirmation of suppression effect
for the states with open colour in IL, i.e. the energy of ’isosinglet’ dipole state increases with l enlarging and
the corresponding coefficient is σ ∼ 0.6 GeV/fm if we take e ∼ g. In principle the same situation for arbitrary
oriented in color space charges is valid, as comes from analysis of corresponding exact solution obtained in [14].

Thus, we are quite allowed to conclude the regime of weak external field in IL is described by effective
Lagrangian Eq.(16) and basic IL parameters are within a well adapted interval. Moreover all the corrections
originated by the second cumulant should be certainly neglected.
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3 Long-wave approximation for a strong field

In the preceeding section, we have derived the effective action for a weak external field under the assumption
that the parameters describing the state of the instanton liquid remain unchanged, but we did not formulate a
corresponding criterion of weakness of the external field. In the case of a strong external field, the validity of the
naive approximate solution to the Yang–Mills equations (1) is naturally questionable, since a substantial distor-
sion of the pseudoparticle fields may be expected here. In order to estimate these effects, we have investigated
in detail the behaviour of an (anti)instanton in the field of an Euclidean pointlike color source. The instanton-
like configurations (9) having a variable size ρ→ R(x, z) and a variable color orientation ωab → Ωab(x, z) were
considered in [15]. The singular nature of the solution used in the instanton liquid model for the pseudoparticles
makes it possible to apply the multipole expansions of deformation fields; that is,

Rin(x, z) = ρ+ cµ yµ + cµν yµ yν + . . . , |y| ≤ L,
Rout(x, z) = ρ+ dµ

yµ
y2 + dµν

yµ
y2

yν
y2 + . . . , |y| > L, (32)

(the same concerns instanton orientation in color space Ω(x, z)). Here, L is a parameter that determines the
radius of the sphere where the multipole expansion increasing with distance gives way to a decrising one, in
accordance with requirement that the deformations be regular. The coefficients cµ, cµ,nu, . . . and dµ, dµ,nu, . . .
are functions of the external field and are determined by solving the corresponding variational problem. It
can easily be seen that, at nonzero coefficients, the opposite parts of a pseudoparticle may have different sizes
and different color orientations. In view of this, we reffered to these configurations as crumpled instantons.
Investigations revealed that, in the problem being considered, there appears a characteristic scale that is on
the same order of magnitude as the pseudoparticle size and at which deformations become significant, but
repulsion effects remain dominant. In a rough approximation, we can discard deformations completely since the
instanton liquid density decreases fast at short distances from the source, as well see below. We also note that
the deformation fields are of interest in themselves because they make it possible to describe excited states of
instanton liquid [16].

We are going to modify slightly the variational procedure of Ref.[7] to implement possibility of the changing
IL parameters. We retain here the same designations to demonstrate precisely where the changes are introduced
and imply S(B, γ) in Eq.(10) in the following form

S(B, γ) = −
∑

ln d(ρi) + β Uint +
∑

Uext(γi, B) + S(B). (33)

The first term here describes one-instanton contributions with the following distribution function over the
(anti-)instanton sizes

d(ρ) = CNc
ΛbQCD ρb−5β̃2Nc , (34)

where b = 11
3 Nc− 2

3Nf , β̃ = −b ln(ΛQCD ρ̄), ΛQCD = ΛMS = 0.92ΛP.V.) with CNc
dependent on renormalization

scheme

CNc
≈ 4.66 exp(−1.68Nc)

π2(Nc − 1)!(Nc − 2)!
.

The second term of Eq.(33) is responsible for providing pseudo-particles with repulsive interaction which fixes
their sizes. The characteristic single instanton action is defined on the scale of average pseudo-particle size
β = β(ρ̄) where β(ρ) = − lnCNc

− b ln(ΛQCD ρ).
The partial pseudo-particle contributions grouped in the third term and we take only

Uext(γi, B) =

∫
dx

Gaµν(Ai, B) Gaµν(Ai, B)

4
,

because the other contributions at the standard IL parameters are small as we have seen. At last, the fourth
term represents simply the Yang-Mills action of the B field

S(B) =

∫
dx

Gaµν(B) Gaµν(B)

4
.

The well-known property of exponential makes it possible to estimate the generating functional of Eq.(10)
with the approximating functional as

Y ≥ Y1 exp(−〈S − S1〉), (35)

where

Y1 =

∫
D[B]

1

N !

∫ N∏

i=1

dγi e−S1(B,γ)−S(B) , S1(B, γ) = −
∑

lnµ(ρi),
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Figure 3. The IL density as a function of applied
external field.

Figure 4. Free energy density as a function of
external field B.

and µ(ρ) is an effective one-particle distribution function which may be derived with the variational procedure.
In our particular situation a mean value of corresponding difference is given by

〈S − S1〉 =
1

Y1N !

∫ N∏

i=1

dγi[β Uint + Uext(γ,B)−
∑

ln d(ρi) +
∑

lnµ(ρi)]e
�

lnµ(ρi)

=
N

µ0

∫
dρµ(ρ) ln

µ(ρ)

d(ρ)
+
β

2

N2

V 2µ2
0

∫
dγ1dγ2 Uint(γ1, γ2)µ(ρ1)µ(ρ2) +

∫
dx

N

V µ0

∫
dρµ(ρ)ρ2ζ B2

=

∫
dx n

(
1

µ0

∫
dρ µ(ρ) ln

µ(ρ)

d(ρ)
+
βξ2

2
n
(
ρ2
)2

+ ζρ2 B2

)
, (36)

with ζ = 9 π2

2
Nc

N2
c −1 , ξ2 = 27

4
Nc

N2
c −1π

2, µ0 =
∫
dρ µ(ρ). Here we estimate the functional in the adiabatic (long

wave-length) approximation. It means we consider the IL elements of some characteristic size (of the same
order of magnitude as the mean distance between pseudo-particles) being equilibrated by the presence of some
fixed field B. Then calculating the optimal configurations of pseudo-particles we found out the effective action
in the mean field. Eq.(36) is given just in the form underlining that an integration is performed over liquid
elements and the proper parameters describing their states could be dependent on the external field, i.e. could
be the functions of coordinate x. Physical meaning of such a functional is quite transparent, it implies that
each separate element of IL possesses a characteristic aptitude of screening external field assessed by Uext.

Calculating the variation of 〈S − S1〉 in µ(ρ) we have

µ(ρ) = C d(ρ) e−(nβξ2ρ2+ζ B2)ρ2 ,

where C is an arbitrary constant and we fix it demanding the coincidence of its value when the external field is
absent with its vacuum average. Then

µ(ρ) = CNc
β̃2NcΛbQCDρ

b−5 e−(nβξ2ρ2+ζ B2)ρ2 . (37)

and making use the definition of an average as

ρ2 =

∫
dρ ρ2 µ(ρ)

µ0
,

we obtain the practical relation between mean pseudo-particle size and the IL density

(n β ξ2 ρ2 + ζ B2) ρ2 ' ν, (38)

where ν = (b− 4)/2. Apparently, it results in a well-known form of pseudo-particle size distribution

µ(ρ) = CNc
β̃2NcΛbQCDρ

b−5 e−ν ρ
2/ρ2 . (39)

Now Eq.(38) allows us to formulate the criterion we are interested in. It looks like ζB2 � n β ξ2 ρ2 and for the
IL parameters mentioned above it is B � 400 MeV.
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Figure 5. The IL density a a function of r for
different values of intensity. Extreme right hand
side line corresponds to e/4π = 1. Going to the
left corresponds to changing e/4π with a pace of
0.1 up to e/4π = 0.1 what corresponds to extreme
left hand side line.

Figure 6. ln(Br) as a function of r for four
various solutions. The upper line corresponds to
e/4π = 1. Going down the lines correspond to
decreasing e/4π with spacing 0.1.

Dealing with Eq.(36) and Eq.(39) the generating functional estimate Eq.(35) may be presented as

Y ≥
∫
D[B] e−S(B) e−F , (40)

F =

∫
dx n

{
ln

n

Λ4
QCD

− 1− ν

2
+
ζ ρ2 B2

2
− ln[Γ(ν) CNc

β̃2Nc ]− ν ln
ρ2

ν

}
.

Making use of the relation Eq.(38) it is not difficult to find the maximum of functional Eq.(40) in the IL
parameters at the fixed B value as a solution of transcendental equation ( dFdρ̄ = 0). As an information we give
the simple expression of its derivative in n

F ′
n = ln

n

Λ4
QCD

+
1

4

n2ξ4β b (ρ2)3

2nβ ξ2 ρ2 ζ B2 − n ξ2 b
2 ρ

2
− ln[Γ(ν) CNc

β̃2Nc ]− 2Nc n
β̃′
n

β̃
− ν ln

ρ2

ν
.

Fig.2 and Fig.3 demonstrate the solutions for ρ̄ and n at Nc = 3 and Nf = 2 as the functions of field B. Fig.4
shows the plot of free energy density f/Λ4

QCD where F =
∫
dx f and convinces IL is steady as to an impact of

external field. At strong external field the IL parameters are given by the following asymptotic formulae

ρ2 ' ν

ζ B2

(
1− n ν βξ2

ζ2 B4

)
, n ' Γ(ν) CNc

β̃2Nc

(ζ B2)ν

(
1 +

Γ(ν) CNc
β̃2Nc

(ζ B2)ν
Nc b ν β ξ

2

ζ2 B4

)
.

This regime starts somewhere around BΛ−1
QCD ∼ 10 at all the plots given.

Thus, the effective action for the B field is given by the following nonlinear functional

Seff =

∫
dx

(
Gaµν(B) Gaµν(B)

4
+ f [B]

)
. (41)

This functional makes possible to calculate the external field as a function of x and IL parameters ρ̄[B] and
n[B].

It is interesting to note that the variant of variational principle applied here makes it possible obtain self-
consistent description of the instanton ensemble, with sligtly deviated parameters in comparison with singular
instanton profile, see Ref. [17].

4 Charged sphere in an instanton liquid

To get any estimate of the IL feedback on the presence of external field could be very practical for instanton
liquid model. If so let us try to extract such an estimate from very simple example. Now we will search the
minimum of effective action resolving the following boundary value problem

4rB =
df [B]

dB
, B|r=r0 = p(e), ∇rB |r=r0 = − e

4π

1

r20
.
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The source intensity here is controlled by e, and parameter r0 sets a radius of colour ball which we take as
∼ 0.1ρ̄ (albeit it is unessential) in order to avoid the difficulties in resolving the singular boundary value problem
of Eq.(42). The solution could be accomplished numerically probing such values of potential p(e) which provide
with the solution going to zero magnitude at large values of r.

The IL density as a function of r is plotted in Fig.5 for ten various quantities of intensity. The extreme right
hand side line corresponds to e/4π = 1 and the extreme left hand side corresponds to e/4π = 0.1. The same
quantity of spacing corresponds to the lines running to the right with intensity increasing. As it was expected
the solution has the Yukawa like behaviour which is well seen in Fig.6 where ln(Br) is plotted as a function of
r for four various values of intensity with the pace of 0.1 and e/4π = 1 for the upper line. Fitting it with the
linear function gives the estimate of screening radius which looks as follows

Rd ∼ (1.24 ΛQCD)−1 ,

Amazingly, this results remains practically unchanged for the whole interval of the intensities from e/4π = 0.1
to e/4π = 1 and implies that such a parameter characterizes (at least in this interval of values) the screening
properties of IL itself. In a context of the model it looks like rather soft scale for the screening radius and might
be taken as another confirmation of adiabatic approximation relevance for the Coulomb external field.

Eventually let us comment on how it is essential that we are dealing with singular (anti-)instanton ensemble
as a saturating configuration. Apparently, the screening properties of effective Lagrangian for external field B
could be provided by any stochastic configuration of small characteristic size. The assumption of superposition
ansatz validity occurs crucial to have all the leading contributions coming from the ’mixed’ (repulsive) component
of G(A,B) again. Another solution of the problem may appear, of course, in the quantum approach but this
discussion is out of this paper scope. Studying the pseudo-particle behaviour while inside (anti-)instanton
medium (n 6= 0) one could explore the interrelation of two mechanisms (the repulsive interaction and freezing
the coupling constant out Ref.[8]) of fixing instanton size.

5 Conclusion

To summarize the foregoing, we will list the main results of our study. The effect of the screening of an external
color field in an instanton liquid has been studied. For the case of a weak field and for the case of strong field in
the long-wave approximation, we have derived the corresponding effective Lgrangians. It should be noted that,
in the case of a strong field, there is a pronounced trend toward the restoration of gauge invariance. Thus, the
Lagrangian in (41) demonstrates that it is possible to describe correctly the introduction of external sources at a
qualitative level and to take effectively into account charge conservation [even within the simplest superposition
form of an approximate solution to the Yang–Mills equations (1)], wherein precisely lies the physical meaning
of gauge invariance. One encounters a similar situation in the case of superconductivity in Abelian theory (see,
for example, [18]). We have derived a criterion that specifies the field strength above which the effect of the field
on the instanton liquid may prove to be significant. For example of the model problem of an Euclidean charged
color source, we have estimated the variations in the instanton liquid parameters versus the coupling constant.
Also we have obtained an estimate for the Debye screening radius. We have indicated that the interplay of
two mechanisms fixing the pseudoparticle size in an instanton liquid (repulsion and freezing of the coupling
constant) is possible.
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We review some cracks and gaps in the Stringy description of Strong interactions and the recent particular
progress in their filling.

1 Introduction

Some years ago new physics got started with dual models of Strong interactions. Now it is referred to as String
theory, a model of unification of the Fundamental Forces, early days of which was recently reviewed in [1].
Having the success as a Unified Theory, String theory was not so winning in hadronic physics. Nonetheless,
some progress on this way was achieved last time, so String theory regaines control of this sector of Particle
Physics stepwise. In this notes, prepared mostly for Particle (i.e. non-Stringy) Physics audience, we recall some
of the old problems in the Stringy description of Strong interactions, reasons of neglecting the dual models in
favor of Quantum Chromodynamics, what is wrong with QCD in the regimes where String theory works good
and why it is reasonable to imagine on getting String theory back. We end up with reviewing the recent progress
in phenomenological applications of Strings en route to realistic theory.

2 Different descriptions of hadronic physics

Hadronic physics can be divided into four regions of “phase space” which includes

1. Low energy limit;

2. Spectrum;

3. High energy limit, soft (with small scattering angles) processes;

4. High energy limit, hard (with large scattering angles) processes.

Depending on the standpoint in such a “phase space” one should take into account essentially different points
of view on the description of hadrons. Low energy (in compare with a natural for QCD scale ΛQCD ∼ 300MeV)
limit is described by non-perturbative methods like QCD on lattices, instantons, as well as by some phenomeno-
logical models, examples of which are non-linear chiral sigma-models and non-relativistic quarks models. Per-
turbative QCD is handled with hard processes at high energy, and to lesser extent with soft processes. Regge
theory is suited well for soft processes, describes the spectrum, and is consistent with low energy. Here we will
mainly focus on the Regge approach.

Regge theory [2] describes the spectrum of hadrons and soft scattering amplitudes in terms of Regge tra-
jectories α(t) (t is the Mandelstam variable, the c.m.s. energy in the cross-channel). The spectrum consists of
infinite number of states with spin J , and at mass M

J = α(M2). (1)

The soft scattering amplitudes go as
sα(t), (2)

where we have introduced another Mandelstam variable s (the c.m.s. energy in the direct-channel).
Experiments have verified that up to 10% amplitudes of hadrons inelastic scattering can be presented either

as the sum of the direct channel resonances or as the sum of the Regge poles in the cross channel, see Fig.1 for
four-point amplitudes. Such a feature of hadrons interactions was christened (global or Dolen-Horn-Schmid [3])
Duality. Applying Duality gives essentially better results of calculations in compare to summing up contributions
of different channels required by QFT. It is worth mentioning that Duality is not exact, it is based on the “narrow
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Figure 1. Duality of Strong interactions amplitudes.

Figure 2. The Chew-Frautschi plot for the neutron Regge trajectory. Taken from Ref. [7].

resonances” approximation and does not take into account corrections to amplitudes coming from Unitarity of
S-matrix [4].

The most striking confirmation of the Regge behavior (2) is the appearance of the known hadrons (up to
spin as high as 4) on very linear trajectories

α(t) = α(0) + α′(0) · t, (3)

with the Regge intercept α(0) and the Regge slop α′. This result is also not exact, it is known as the Chew-
Frautschi conjecture [5] that allowed to divide hadrons into different w.r.t. Regge trajectories sets [6]. Then
one may place all known hadrons and resonances at special plots as in Fig.2, where the Chew-Frautschi plot for
neutron and corresponding baryonic resonances is given.

This example clearly demonstrates the relevance of an early proposal by Blankenbecler and Goldberger [8]
that the nucleon is only the J = 1/2 member of family which could also include higher J members. There are
not “quarks” in the approach, any particles (stable/unstable) enter the theory on equal footing thus realizing
“nuclear democracy”, and self-reproducing each other (“bootstrup” conjecture) [9, 10].

The Duality conjecture can be pushed forward with the requirement of local Duality. The latter is nicely
described by the following duality-symmetric amplitude postulated by Veneziano [11]

A(s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)− α(t))
, (4)

α(s) = α(0) + α′(0) · s, α(t) = α(0) + α′(0) · t.
Under the assumption that Im α(s, t) = 0, and taking into account the asymptotic of Gamma-function, we get

A(s→∞, t→ 0) ∼ sα(t), A(t→∞, s→ 0) ∼ tα(s). (5)

On this account the spectrum is formed with equidistant resonances with masses

m2
n =

(n− α(0))

α′(0)
, (6)
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Figure 3. Reggeization of Feynman diagrams.

Figure 4. Reggeon exchange in closed string theory.

and such resonances may be treated as oscillations of a string. Hence properties of hadronic physics are encoded
in the geometry of the string surface that appears after Reggeization of Feynman diagrams. This process is
outlined in Fig.3. Duality can be recognized then as the topological equivalence of “rubber strips” in different
channels.

There are general restrictions on a theory which have to be satisfied quite independently on a way of the
theory formulation. One of them is the Froissart bound [12], which is a bound on the total cross section of
s-channel at s→∞. Unitarity requires the following bound saturation

σtotal ∼ ln2 s

s0
, (7)

that corresponds to the amplitude

Atotal ∼ s ln2 s

s0
. (8)

A single particle of spin J exchange amplitude behaves as AJ ∼ sJ (s→∞, t – fixed). Clearly, once J > 1
we will get into trouble since the high spin single particle exchange violates the Froissart bound. This situation
is improved in dual models (that is, in string theory), where we have a multiparticle with spin J = α(M 2)
exchange (Fig.4, Fig.5). It does not violate the Unitary bound iff α(t) ≤ 1 at high energies in s-channel.

However, string theory predicts the soft scattering amplitudes at fixed angles (corresponding to the limit of
s→∞ with s/t fixed) to be

AVeneziano ∼ exp (−α′sf(θ)), (9)

with some function of the scattering angle f(θ). Meanwhile, experiments show a power law scattering

Aexperimental ∼ s2−∆/2. (10)

∆ in (10) is the number of external particles taking the part in the process, and the amplitude behavior (10) is
successfully reproduced from QCD [13], [14].

There also are other obstacles coming from strings, e.g.: 1) The conformal anomaly that leads to very high
(D=26 for bosonic, D=10 for fermionic strings) critical dimensions, in which the anomaly may be removed; 2)

Figure 5. Pomeron exchange in open string theory.
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Zero-mass gauge and spin-2 fields in the spectra of strings. They are hard to be associated with known hadronic
resonances; 3) The tachyonic field as the ground state of bosonic strings.

All these and other facts remained little place for string theory as the theory of strong interactions, mainly
favored QCD on this role.

QCD has been tested and confirmed with success in numerous high energy experiments. But QCD is not
so much predictable for low energy physics, since it is non-perturbative there. Honestly speaking, confinement
and mass generation still luck a satisfactory description. Another problem is to describe the interaction of high
spin hadronic resonances in terms of QCD, when the Froissart bound should be presumably violated. Summing
up, one may wonder about a compromise between string theory and QCD as a right way in the quest of more
realistic theory.

3 Duality between strings and QCD

An apparent question then is how to make the happy marriage of strings and QCD? The concept of Duality
helps to (at least particularly) answer the question.

Duality often means different things, but it commonly is the description of the same physics in terms of
different concepts. For instance, we deal with particle-wave duality in QM, there is duality between Resonances
and Regge poles, one may encounter strong-weak duality in statistical physics, Dirac monopole theory etc.

An early connection between SU(N) gauge theories in the N → ∞ limit and string theory was realized
long ago by ’tHooft [15]. There is was drawn that the large N Yang-Mills (YM) theory Feynman diagrams are
topologically the same as the planar diagrams of a string in flavor space of the model with a quark at the ends.
But such an interpretation has nothing to do with space-time strings of the dual models.

More important result which relates superstring theory on AdS5×S5 with N = 4 superconformal Yang-Mills
SU(N) for large N theory was obtained by Maldacena [16]. This is known as AdS/CFT correspondence [17],
[18]. Within the conjecture on AdS/CFT we have the exact duality between a four dimensional gauge theory
and ten dimensional string theory compactifying on a five sphere S5. After compactifying, the string modes
propagate in the bulk of Anti-de-Sitter (AdS) five-dimensional space-time, while the dual gauge theory lives on
the four dimensional time-like boundary of AdS space.

3.1 A few words on AdS space and its boundary

Anti-de-Sitter space is a maximally-symmetric constant curvature space. It in particular means that the cur-
vature tensor of AdS space obeys

Rmnpq =
1

R2
(gmpgnq − gmqgnp) . (11)

R is a constant that characterize the size of AdS (the AdS radius).
As for Minkowski (d+1)-dimensional flat space with SO(1, d) isometry group of the metric

ds2 = −dx2
0 +

d∑

i=1

dx2
i , (12)

AdS space in (d+2)-dimensions has SO(2, d+ 1) isometry group corresponding to the following metric

ds2 = −dx2
0 − dx2

d+2 +
d+1∑

i=1

dx2
i . (13)

The boundary-bulk relation between AdS and Minkowski space can be simply realized with their Euclidis-
ation (see e.g. [19]). Minkowski space becomes d+1-dimensional Euclidean space which is isomorphic (through
the stereographic projection) to the (d+1)-sphere, while AdS in (d+2) transforms into Minkowski space in
(d+2) which is projected (like in the Poincare model) to the (d+2)-dimensional disk. Clearly, the d+1-sphere is
the boundary of the (d+2)-disk. Getting back to usual (non-Euclidean) AdS and Minkowski space-times does
not change the conclusion on the bulk-boundary relation.

3.2 AdS/CFT correspondence on a nutshell

Let’s now consider how Duality does the job. Our aim is to figure out a stringy way to describe D=4 YM.
There is a spin-1 gauge field in the open string spectrum, hence we will use an open string. Open strings end
on D(irichlet)-branes, thus U(1) gauge field is also confined on a D-brane. Taking a stack of N D-branes results
in the enhancement of U(1) to U(N). It happens due to open strings which end on different D-branes, Fig.6.

Since we are interested in a 4-dim. D-brane that corresponds to our visible world, the main candidate on
this role is a D3-brane of (type IIB) superstring theory in D=10. Type IIB closed string theory with D3 branes
is schematically described by the following effective action (see, for instance, [20] for details)

Seff. = Sstr. eff. + SD3br. eff. + Sbulk−brane int. (14)
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Figure 6. Interactions of D-branes via open strings.

The first term is the string theory effective action which in the low-energy limit is described by the type IIB
supergravity action

SIIB eff. =
1

k2

∫ √−gR+ . . . (15)

The D-dimensional gravitation coupling constant k is expressed through the string coupling constant gs and

the Regge slop α′ as k = gs(α
′)

(D−2)
4 . In D=10 space-time k = gs(α

′)2 and once the string coupling constant
becomes small, the effective action (15) gets transformed into the linearized action

SIIB eff. ∼
∫

(∂h)2 + k(∂2h)2h+ . . . , gmn = ηmn + khmn. (16)

Moreover, since the bulk-brane interaction term depends on k, the brane decouples from the bulk at k → 0.
On the other hand the D3-brane is a solution to type IIB supergravity eqs. of motion [19], in particular with

ds2 = f−1/2
3∑

m,n=0

dxmηmndx
n + f1/2(dr2 + r2dΩ2

5), (17)

f = 1 +
R4

r4
, R4 ∼ gsα′ 2N.

On this side N is the magnetic charge of D3-branes counting via a 4th rank antisymmetric tensor gauge field
A4

N =

∫

S5

∗F5, F5 = dA4 + . . . (18)

The solution (17) is similar to that of the Black Hole type, with the horizon at r = 0. In the near horizon
region r << R we get

ds2 =
r2

R2

3∑

m,n=0

dxmηmndx
n +R2 dr

2

r2
+R2dΩ2

5. (19)

The latter metric is the metric of AdS5 × S5.
Since two open strings can form a closed string, g2

YM ∼ gs. We also have

g2
YM N ∼ gsN ∼

R4

l4s
=
R4

α′ 2 . (20)

Once N is large and the string coupling constant is fixed and small we get the regime where the supergravity
approximation is valid

R4

l4s
� 1. (21)

On the other side, the regime with the small ’tHooft coupling constant corresponds to the perturbative Super-
conformal YM (SYM)

g2
YM N ∼ gsN ∼

R4

l4s
� 1. (22)

The common of two different sides is a D3-brane which in one regime describes the SYM theory, while in the
other it corresponds to small fluctuations of supergravity fields over the AdS bulk metric. Hence we describe
the same object in terms of different concepts. This is Duality.
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Within the superconformal theory there is no room for massive particles, thus to construct the realistic QCD
with massive quarks we have to break both SUSY and conformal invariance. It may be realized in many ways,
most popular of which are

• Introducing a cut-off on the AdS geometry (see e.g. [21])

ds2 =
R2

z2

(
∑

i

dx2
i − dz2

)
+ dΩ2

5, (23)

0 ≤ z ≤ zmax, zmax ∼ Λ−1
QCD,

• Introducing a Black Hole which cuts-off AdS at the horizon [22]

ds2 =
R2

z2

[
−f(z)dx2

0 + dx2
i + f(z)−1dz2

]
+ dΩ2

5, (24)

f(z) = 1− z4/z4
T .

Such a cut-off is also equivalent to introducing the non-zero temperature T = (πzT )−1.

3.3 High energy QCD amplitudes from strings

Duality and String theory on AdS lead to a significant result [23]: the QCD high-energy amplitude power-law
behavour, eq. (10), is reproduced from the dual string theory. It comes in brief as follows. Consider the dual
string on AdS5 × S5, i.e. with the metric of D=10 space-time to be (19). Then, the gauge theory momentum
is related to the string momentum as

pYM =
r

R
Pstr.. (25)

Introducing the cut-off on AdS, rmin ∼ ΛR2 with the scale Λ to be of the lightest glueball mass, one relates the
string tension to that of in the confining gauge theory

√
α′Pstr. =

√
α̃′pYM

rmin

r
≤
√
α̃′pYM. (26)

Hence a high energy process in gauge theory may involve all energy range processes on the string theory side.
Suppose that glueballs correspond to the closed string dilaton. We take Φ = eipxϕ(r,Ω) and in the large

N limit we get a very slow variation of the dilaton in the transverse to the AdS directions. Therefore, the
amplitude of the gauge theory is that of the string theory integrated over transverse coordinates

A(pYM) =

∫
dr d5Ω

√−gAstr.(Pstr.)
∏

ϕi(r,Ω). (27)

We will also assume that the string scattering amplitude is dominated by the momenta at the string scale,
i.e. rscatt. ∼ rmin(

√
α̃′pYM). Then if

√
α̃′pYM � 1, that corresponds to the high-energy limit of gauge theory,

the main contribution to the integral is at rscatt. � rmin; and

ϕ(r,Ω) ∼ f(r/rmin)F (Ω) ∼ (r/rmin)−∆ F (Ω). (28)

The latter relation comes from the superconformal side of AdS/CFT, since in the conformal theory a state f
is completely defined by its conformal dimension ∆ (see [19] for details), and f ∼ r−∆. Though the considered
case is non-conformal, f ∼ r−∆ still applies for large rscatt..

Summing up the above we arrive at

A(pYM) ∼
∫

dr r3
[∏

(rmin/r)
∆
]
Astr.(pYMR/r) ∼

(
Λ

pYM

)∆−4

(29)

that is the same as in QCD result.

4 Resumé

The recent progress in the description of QCD within the AdS/CFT correspondence that was successful in

1. Realizing the hard scattering power law from string theory on AdS [23] (see also [24]);

2. Calculating the lightest glueball states masses [21, 25, 26];

3. Computing the spectrum of light hadrons [27];
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4. Evaluating the amplitude of the single Pomeron exchange in a good agreement with the BFKL Pomeron
on the QCD side [28]

strongly suggests that many failures of string theory as a good model of physics of Strong interactions are
due to not to having the wrong string theory, but to putting the right string theory on the wrong space-time
background, i.e. on flat Minkowski space.

At the same time the development of String theory applications to hadronic physics is far from complete.
Many problems have to be solved on this way; the longstanding Pomeron problem (see [28] for a review, and
Refs therein) is among them, and clearly requires more sophisticated ideas than just AdS/CFT.
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DEEP INELASTIC SCATTERING

S. N. Sevbitova, T. V. Shishkinab

Belarusian State University, Minsk, Belarus

The processes of lepton-nucleon scattering, including ones with both polarized beams, at high energy pro-
vide relevant information about interaction and particles structure, allowing to analyze nucleon spin structure.
As energy and experimental accuracy rise, necessity to improve Born cross sections and polarized asymme-
tries with higher order radiative corrections becomes substantial. In this report we stress on lowest order
bremsstrahlung corrections treatment using helicity amplitudes method as applied to actual nowadays charged
current lepton-nucleon deep inelastic processes, that allows to simplify matrix element calculation procedure.
Real photon emission contribution is calculated by means of Lorentz-invariant formalism. Kinematical pecu-
liarities on bremsstrahlung correction are discussed.

1 Introduction

The processes of deep inelastic lepton-nucleon scattering (DIS) are of interest at present and planned experi-
ments, today with particular emphasis on both polarized beams interaction investigation, as it provides essential
data on the internal structure of the nucleon spin. Special interest to charged current interaction is connected
with the absence of large electromagnetic effects contribution to these processes. Some extensive reviews on
nowadays and forthcoming experimental facilities on such processes can be found for instance in refs. [1, 2].
Asymmetries withdrew from phenomenological interaction parameters on certain experiments allow to extract
detailed information on nucleon’s spin, concealed in polarized structure functions g1 and g2(5,6) or individual
quark contributions to nucleon’s spin. As expected, obtained information can be used to expand and to refine
nucleon nature knowledge, to compare experimental data with other related experiments on nucleon structure
(e.g. neutral current or pure electromagnetic DIS ones, which have been studied at a stretch of many years, see
for instance refs. [3–5]) as well as with Standard Model predictions or perhaps to search deviations from it.

Processes in question have been investigated before mainly at Born approach, for instance in our previous
papers (see in refs. [6, 7]) we realized Born level phenomenological analysis in comparison with quark-parton
model approach, Born asymmetry analysis with stress on polarized structure functions extraction scheme. In
this report we restrict oneself to detailed treatment of the bremsstrahlung correction calculation, as correct
treatment with observed experimental data at high energies requires allowance for various radiative effects.
Here to perform calculations we use the formalism of helicity amplitudes method offered firstly in ref. [8, 9]
relevant for single and multiply bremsstrahlung processes. Using of such analytical method allows to practically
avoid intermediate operations with traces of Dirac matrices products and undesirable calculations of cross-
elements of S-matrix. This method of matrix element calculation mainly consists in special representation of
4-vectors of the photon polarization through expressions with bispinors, in using of special transformation rules
likewise Chisholm identities and in treatment with ū∓(p)u±(k) constructions as simple scalar function of p and
k to cancellate unnecessary terms.

2 Radiative corrections

To calculate radiative corrections we employ quark-parton model, which allows to obtain reasonable quantitative
predictions for nucleon and leptonic bremsstrahlung contributions. Feynman diagrams of processes in question

l(l̄) +N → ν(ν̄) +X, ν(ν̄) +N → l(l̄) +X,

are presented in FIG.1 (one of the diagram in particular case vanishes, as neutrino contain no charge).
Let’s consider firstly the case of li = l, lf = νl, qi, qf . To make use of helicity amplitudes method one

should represent photon polarization vectors as following:

ε̂± = ε̂±q = Nq

[
q̂′′q̂′k̂(1∓ γ5)− k̂q̂′′q̂′(1± γ5)

]
,
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Figure 1. Photon bremsstrahlung diagrams for charged current lepton-nucleon DIS processes.

Nq =
(
4
√
−(q′′q′)(q′′k)(q′k)

)−1

, ε± = 2Nq

[
q̂′′q̂′k̂(1∓ γ5)− k̂q̂′′q̂′(1± γ5)∓ εναβγq′′αq′βkγ

]
,

where q′, q′′, p′i, p
′′
f correspond to incoming l or outgoing νl leptons and quarks qi qf momenta, k is emitted photon

momentum. This representation conserves common requirements ε±ε± = 0, ε±ε±
∗

= ε±ε∓∗ = 1, ε±k = 0.
Given form suitable for calculation of the leptonic bremsstrahlung term. For hadronic terms one should involve
form, dependent on quark’s momenta as following

ε̂± = ε̂±p = e±i ϕNp
[
p̂′′f p̂

′
ik̂(1∓ γ5)− k̂p̂′′f p̂′i(1± γ5)

]
+ β±k̂, Np =

(
4
√
−(p′′fp

′
i)(p

′′
fk)(p

′
ik)
)−1

,

where

e±i ϕ = (ε±q ε
∓
p ) =

1

4
Sp
(
ε̂±q ε̂

∓
p

)
= NpNqSp

[
p̂′′f p̂

′
ik̂q̂

′′q̂′k̂(1∓ γ5)
]
.

Free parameter β can be omitted, as longitudinal component.
One can get the following expressions for matrix element using technique thoroughly described in ref. [9]

M−−+−− = −8
ANpe

+i ϕef√
2k0p′i0p

′′
f0

ū(q′′)q̂′u(p′i) ū(p
′′
f )p̂

′
iu(q

′) DW ,

M−−−−− = −8
A
[
Nq +Npe

−i ϕei
]

√
2k0p′i0p

′′
f0

ū(q′′)p̂′′fu(p
′
i) ū(p

′′
f )q̂

′′u(q′) DW , |A|2 =
e2G2

FM
4
W

2

1

4q′0q
′′
0

.

Here DW – W -boson propagator, signs ± refer to the particle helicity and photon polarization in the following
order: l, νl, γ, qi, qf ; ei and ef – initial and final quark’s charges.

The advantage of using helicity amplitudes method is that it allows to obtain squared matrix element directly
without interference terms common in straightforward calculations. It is readily to show, that squared matrix
element of the lepton-quark process lqi → νlqf with real photon emission have the following form

|M−−+−−|2 + |M−−−−−|2 =
4e2G2

F

q′0q
′′
0k0p′i0p

′′
f0

M4
W

(Q2 +M2
W )2

×
{

1

2

(p′′fq
′′)2

(p′ik)(p
′′
fk)(q

′k)(q′′k)

[
ei(q

′k)(q′′k)

(
q′

q′k
− q′′

q′′k

)
+ + (p′ik)(p

′′
fk)

(
p′i
p′′i k
−

p′′f
p′′fk

)]2

−ef (q
′q′′)(p′iq

′)2

(p′ik)(p
′′
fk)

}
.

Similar formulas for other cases of electroweak lepton-quark scattering can be evolved using transformation
rules

lq̄i → νlq̄f : p′i ↔ p′′f , ei ↔ ef
l̄ qi → ν̄lqf : q′ ↔ q′′,
l̄ q̄i → ν̄lq̄f : q′ ↔ q′′, p′i ↔ p′′f , ei ↔ ef .

We use here the following common notations for kinematical variables:

{
Ql = q′ − q′′, Q2

l ≈ −2q′q′′,
Qh = Ql − k = p′′f − p′i, Q2

h ≈ −2p′ip
′′
f ,

{
Xi = −2p′iq

′′,
Si = −2p′iq

′,





u = −2p′ik, z2 = −2q′′k,
v = −2p′′fk = u−Q2

l +Q2
h,

z1 = −2q′k = z2 −Q2
l +Q2

h,
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where xh[l] = −Q2
h[l]/2p

′Qh, yh[l] = −2p′Qh[l]/S – standard hadron and lepton scaling variables, p′ and p′′ –
nucleon and jet 4-momenta. To obtain cross sections or polarized asymmetry including radiative corrections one
should switch from lepton-quark interaction to lepton-nucleon one integrating over quark momenta being carried
in the nucleon, and over radiated photon momentum. If we suppose quark to possess momentum p′i = xihp

′ with
the probability of f(xih), the first integration over p′i could be performed by means of the following substitutions:

f(xih)→
f(xh)

−2p′Qh
=
f(xh)

yhS
, Si → xihS → xhS =

Q2
h

yh
,

Xi → xihX → xhX =
Q2
h

yh
(1− yh)S, u→ xihu→ xhu, v → xhu−Q2

l +Q2
h,

keeping Q2
h = (Ql − k)2, Q2

l , z1 and z2 unaltered. Here S = −(p′ + q′)2.
To integrate over photon momentum one can use covariant method of integration described, for instance, in

ref. [10, 11], permitting to integrate directly over Lorentz-invariant kinematical variables. Covariant calculation
has advantage of missing of the sophisticated Monte-Carlo techniques but presence of the analytical integration
as well as it can be carried out for various kinematical experimental configurations.

Firstly, lets imply the following suitable phase space transformation, allowing to derive from its general form
the expression containing introduced before invariant variables:

dΓ = dM2
h

d3p′′

2p′′0

d3q′′

2q′′0

d3k

2k0
δ(4)(Ql − k −Qh) = dM2

hdQ
2
h

d3q′′

2q′′0

d3k

2k0
δ
[
(Ql − k)2 +M2

h

]
δ
[
Q2
h − (p′′ − p′)2

]
=

=
πS

2
dyldQ

2
l dyhdQ

2
h

dz

2
√
Rz

.

Here Rz is the Gram determinant [12] of 4-vectors q′, p′, q′′, p′′

Rz = −∆4(q
′, p′, q′′, p′′) = −

∣∣∣∣∣∣∣∣

q′2 q′p′ q′q′′ q′p′′

p′q′ p′2 p′q′′ p′p′′

q′′q′ q′′p′ q′′2 q′′p′′

p′′q′ p′′p′ p′′q′′ p′′2

∣∣∣∣∣∣∣∣
,

which can be expressed as quadratic polynomial of z1 or z2 variables defined before

Rz = −Az2 + 2Bz − C,

where the coefficients in the ultrarelativistic limit are

A1,2 = y2
l S

2 + 4M2Q2
l ,

B1 = −2M2Q2
l (Q

2
l −Q2

h) + (ylQ
2
h − yhQ2

l )S
2+

+(1− yl)S2Q2
l (yl − yh)−m2(2M2Q2

h + 2M2Q2
l − S2yhyl),

B2 = 2M2Q2
l (Q

2
l −Q2

h) + (1− yl)(ylQ2
h − yhQ2

l )S
2+

+S2Q2
l (yl − yh)−m2(2M2Q2

h + 2M2Q2
l − S2yhyl),

C1 = S2[Q2
h + (−1 + yl − yh)Q2

l ]
2 + 4m2Q2

l (yl − yh)3(1− yl),
C2 = S2[(1− yl)Q2

h − (1− yh)Q2
l ]

2 + 4m2Q2
l (yl − yh)3(1− yl)−1.

In presented above expression we simplified common phase space by means of auxiliary invariant variables z1

or z2. Next one can employ the following integration scheme:

dσ ∼
yh max∫

yh min

dyh

Q2
h max∫

Q2
h min

dQ2
h

zmax∫

zmin

dz dyl dQ
2
l

yhS
√
Rz

A,

or

dσ ∼
yl max∫

yl min

dyl

Q2
l max∫

Q2
l min

dQ2
l

zmax∫

zmin

dz dyh dQ
2
h

yhS
√
Rz

A,

A = |M |2 fi(xh, Q2
h),
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and so on, dependently on desired final variables. Here matrix element |M |2 expressed in terms of Q2
l[h], yl[h]

and z1[2] have the following form:

∣∣M(Si, Xi, Qh, Ql, z[1,2])
∣∣2 ∼

e2fS
2
iQ

2
l

2uv
+
(
z2 −Q2

l −Xl

)2×

×
[
Q2
huv +

(
e2iQ

2
l z1z2 − eiQ2

l u(z1 + z2) + eiQ
2
l (u− v)(Siz2 −Xiz1)

)]

2uvz1z2

for li = l, lf = νl, qi, qf and

∣∣M(Si, Xi, Qh, Ql, z[1,2])
∣∣2 ∼ Q2

hX
2
l

2z1z2
+
e2fQ

2
lX

2
l

2uv
+
e2iQ

2
l

(
z1 +Q2

l − Si
)2

2uv
+

+
efX

2
l

[
uQ2

l (z1 + z2)− (u− v)(Siz2 −Xiz1)
]

2uvz1z2

for li = l, lf = νl, q̄i, q̄f .
Calculation of the integral over z can be carried out using simple table integrals of the form

I =

zmax∫

zmin

zn

A(z − zmin)(zmax − z)
dz, n = −2 . . . 2.

To evaluate remaining integrals one should firstly use some parameterizations on quark distribution functions
fi(xh, Q

2
h), for instance QCD-based fits from ref. [13], and then choose final variables in which result cross-

section or asymmetry will be expressed.
In order to calculate infrared contribution, one can apply the limits lim

k→0
(u − v) = 0 and lim

k→0
(z2 − z1) = 0

to presented above relations. When calculating this part requires using of some regularization method as being
infrared divergent part, for instance by introducing virtual photon mass or applying dimensional regularization
method. Here we didn’t stress on soft photon emission contribution calculation, as virtual loop contribution
and soft emission one, infrared divergent separately, compensate partly each other, remaining uncompensated
part have minor influence on the asymmetries for processes in question as reduced factor.

Kinematical peculiarities and variables limits for these integrals are thoroughly described e.g. in ref. [12], here
we give only kinematical relations, necessary for determination of the integration bounds. Imposed constrains
on the physical region of invariants have the following form in terms of kinematical λ-functions (see [12])

λ(λS , λl, λq) ≤ 0, λ(λq, λh, λk) ≤ 0,

λ(λS , λτ , λh) ≤ 0,

λk = (yl − yh)2S2, λS = S2 − 4m2M2,

λl = (1− yl)2S2, λq = y2
l S

2 + 4M2Q2
l ,

λh = y2
hS

2 + 4M2Q2
h, λτ = (1− yh)2S2 − 4M2z2,

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz.

The boundary equations for this conditions can be expressed in the form of three equations

M2(Q2
l −m2)2 +Q2

l ylS
2 −m2S2yl(1− yl)−Q2

l λS = 0,

y2
l S

2Q2
h + y2

hS
2Q2

l −M2(Q2
l −Q2

h)
2 − ylyh(Q2

l +Q2
h)S

2 = 0,

(2M2z2
2 − 2m2M2 + yhS

2 + 2M2Q2
h)

2 − λSλh = 0,

consequently.
One can obtain certain integration bounds for chosen final variables by combining these constraints with

zmin,max
1 and zmin,max

2 emerging from the condition Rz1,2
≥ 0.

In ref. [6, 7] we numerically calculated hard real photon emission contribution with low photon energy cut
parameter εcut, where unpolarized quark distribution functions from ref. [13] with polarized one from ref. [14]
were used. In FIG.2 we cite comparison of the corrected polarized asymmetry

A‖ =

(
d2σ↑⇑

dxdy
− d2σ↑⇓

dxdy

)
/

(
d2σ↑⇑

dxdy
+
d2σ↑⇓

dxdy

)
,
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Figure 2. Born (solid line) and next to Born order (dotted line) longitudinal polarized asymmetry A‖(xl, yl)
for lN → νlX at E = 100 GeV and εcut = 1 MeV.

d2σ/dxdy – differential cross section, ↑ (↓) corresponds to lepton helicity value −1(1), ⇑ (⇓) for nucleon spin,
parallel (antiparallel) to lepton momentum, with the Born one in lepton scaling variables xl and yl. Discussion
of this result can be found in ref. [6, 7], here we only stress on significance of such contribution as it can be seen
from Fig. 2.

As for multiply bremsstrahlung, such contributions can be obtained on the basis of single one by applying
renormalization group equations, and will be treated hereafter.

In conclusion, real photon bremsstrahlung contribution calculated here affects significantly cross-sections
and polarized asymmetries, so it’s necessary to take into account such contribution, in that way it can be used
for certain future experimental needs with the aim of precision DIS data extraction to improve accuracy of
quark distribution functions as well as to detail nucleon’s spin structure.
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The electroweak phase transition in a hypermagnetic field is analyzed within two approximations to the effective
potential. One (weak field approximation to the Green functions) is recently applied in Ref. [1] where it was
obtained that the external field makes the phase transition stronger first order. It is compared with other
calculations which are based on the exact propagators and result in the phase transition which becomes weaker
when the field strength is increased.

1 Introduction

Baryogenesis in the early universe is one of outstanding problems which is not solved, yet. Different scenarios
are discussed in the literature. The most popular was proposed by Sakharov [2] 40 years ago. It requires as a
necessary element a departure from thermal equilibrium. One of natural ways to produce that is the electroweak
phase transition which must be strongly first order [3]. As it is known [4], in the standard model of elementary
particles this transition is of first order for the Higgs boson masses mH < 75−80 GeV and becomes crossover or
second order for heavier masses. So, for the realistic masses one has to consider some external conditions which
are able to create the strong first-order phase transition. One of possibilities by analogy to superconductivity
is an external magnetic field presence.

The electroweak phase transition in either external hypermagnetic field HY or external magnetic field H
has been investigated in Refs. [5, 6] by means of different methods and in different approximations and different
conclusions were obtained. In Refs. [5, 7] it was claimed that as in superconductivity the hypermagnetic field
acts to increase the strength of the first order phase transition. On the contrary, in Refs. [6, 8] it was obtained
that the phase transition becomes weaker when the additional terms omitted in the former papers were taken
into consideration. A final conclusion within investigations carried out by analytic methods has been given in
the survey [8] where, in particular, it was argued that due to the contributions of fermions, the electroweak
phase transition in the standard model for the values of the mass mH > 75 GeV is crossover or second order.
That is in correspondence with the results obtained in lattice simulations [9].

In recent paper by Sanchez, Ayala, Piccinelli [1] (SAP in what follows) the problem on the electroweak phase
transition in a hypermagnetic field was investigated once else within a weak field approximation to the Green
functions of charged particles. It has been concluded that the phase transition is of first order and becomes
stronger if the external field is increased. The authors of this paper relate this obvious discrepancy with the
results in Refs. [6, 8] with the approximation adopted in their approach. They consider the calculations in Refs.
[6, 8] (BDS in what follows) as “strong external field approximation”. Because of the importance of the results
mentioned the question on the cause of the discrepancies needs in a detailed analysis. That is the goal of the
present paper. In fact, we will analyze not only the results obtained in different approximations to Green’s
functions but also other peculiarities of calculations to make a reliable conclusion about the influence of the
field on the electroweak phase transition.

2 The approach of SAP

The main goal announced in Ref. [1] is to investigate the influence of the ring diagram contributions on the
electroweak phase transition in the hypermagnetic field. These terms play an important role because they give
the first next-to-leading contributions to the effective potential at finite temperature having the order λ3/2 in
coupling constant whereas the two-loop terms are of order λ2, where λ stands for any coupling of the standard
model: the weak isospin gauge coupling g2, the hypercharge gauge coupling g2

Y , the scalar field self-interaction
λ [10, 11].

To analyze the results of the SAP paper, let us describe the approximations used therein. First of all we
note that the contribution of fermion sector was restricted to the top quark only, the lepton part was omitted
at all. Second that has been systematically applied was the so-called weak field approximation to the Green
functions of charged fields. In practice that results in the replacement of the exact propagators of charged
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particles in the external hypermagnetic field by the truncated ones. The latter were obtained by the expansion
of the former ones in a series in powers of gYHY up to the second order. These truncated functions were used
in loop integrations. The authors claimed that this procedure corresponds to the relation gYHY � m2 � T 2

between the field strength, the typical mass in the problem and the temperature at the phase transition. Next,
it was also assumed that the W -bosons do not interact with HY in the broken phase. As a result, to calculate
the W -boson contributions to the effective potential the free-field propagator was substituted. As concerns
the ring diagram parts, they also were calculated with the truncated propagators and moreover a number of
next-to-leading terms have also been accounted for. As the authors noted themselves, just due to these parts
of the effective potential (special type ring diagram contributions) the phase transition becomes a more strong
first order as compared to the case when the effective potential takes into consideration the one-loop plus ring
diagrams without the external field. In fact, this is the main conclusion. Its origin was not discussed in details
therein.

3 The approach of BDS

In calculations carried out in Refs. [6, 8] the following assumptions and approximations were used: 1) The
complete set of all the particles of the standard model – light and heavy fermions and bosons – was accounted for.
2) The exact propagators of charged particles in the external field HY were substituted into internal lines of the
one-loop and ring diagrams. The reason for consideration of light fermions is that because at high temperatures
in the field presence the effective potential contains the terms of the type ∼ (gYHY )2 log(πT 2/m2

f ) which are

nonperturbative. They are important for small fermion masses m2
f = m2

D + f2φ2, where m2
D = 1/3 g2T 2 is

the Debye temperature mass for fermion, f is the Yukawa coupling of the fermion to the scalar field φ. 3) For
different relations between the temperature, the field strength and the particle masses the different terms of
the exact with respect to the external field effective potential are dominant. So, in the analysis of the phase
transition numeric calculations were used. It was also observed that these results are in a qualitative agreement
with that of obtained with the high temperature expansion of the derived effective potential. 4) The ring
diagram contributions were calculated with exact propagators and the leading ∼ T 2 and the next-to-leading
∼ (gYHY )1/2T terms which obviously are also nonperturbative have been included. This point is very important
and will be discussed in more detail below. 5) The contributions of the W -bosons in the broken phase is field-
dependent. This is obvious and important for consistency of calculations. Really, the hypermagnetic field HY is
generated by a current jY which in the broken phase is partially screened by the Z-field mass. But partially it
contributes to other orthogonal combination which is massless and forms a familiar magnetic field H. Just this
constituent of HY interacts with the W -bosons in the broken phase. This is a very important point because
in the broken phase the W -boson spectrum in the field contains the mode ε2tach. = p2

|| +m2
W − eH which may

become unstable for eH > m2
W [8]. Here p|| is the momentum component parallel to the external field direction.

To treat this instability the ring diagrams of a special type must be accounted for also. Due to these terms the
effective potential becomes real at high temperature and consistent. Thus, within the noted assumptions the
calculations in Refs. [6, 8] have been carried out. The conclusion obtained was that due to the contribution of
fermions in the field at finite temperature the phase transition becomes weaker not stronger as it is claimed in
Ref. [5] and the SAP approach.

4 Comparison of SAP and BDS approaches

In this section we compare the explicit formulas for the effective potentials used in Ref. [1] and Refs. [6, 8].
First of all we note that because of the approximations used the results in the former paper actually correspond
to the ones obtained in Ref. [5] in tree approximation, which actually has initiated the investigations and where
the fermion contributions were neglected at all. In fact, we need to estimate and compare the role of two
factors which are mainly the causes of the discrepancy in conclusion: 1) the influence of nonperturbative terms
containing in the effective potential calculated with the exact propagators in BDS approach as compared to the
truncated ones in SAP approach. 2) to compare in more detail the ring diagram contributions used in both
approaches.

Remind once again that the role of fermions is crucial in the conclusions derived in BDS approach. One of
the terms of the effective potential relevant is (see Eq.(58) in Ref. [8])

V (1)(mf , HY ) = −αY
6π

∑

f

q2fH
2
Y log

(
πT 2

m2
f

)
, (1)

where mf is a fermion mass at finite temperature, T – temperature, qf – fermion charge in units of positron
charge |e|, αY = g2

Y /4π. Here we have substituted the asymptotic term of the effective potential in the limit
of T → ∞. At high temperatures light fermions give dominant contributions. On the other hand, this term is
nonperturbative and therefore absent in Ref. [1].
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Now, let us consider the contributions of ring diagrams. In the SAP approach, the contributions of either
charged scalars or gauge bosons were included. They are of the form (Eqs. (57), (64) in Ref. [1])

V
(ring)
Higgs = −

4∑

i=1

T

12π

[
(m2

i + Π1)
3/2 −m3

i

]
+

4∑

i=1

(gYHY )2

4π

Π1

48

T

(m2
i + Π1)3/2

, (2)

where i accounts for the charged scalars with the masses mi,

Π1 =
T 2

4

(
3

4
g2 +

1

4
g2
Y + 2λ+ f2

)
(3)

is the leading temperature contribution to the scalar field self-energies coming from the one-loop polarization
tensor, g, gY , λ, f are the coupling constants of the standard model. Similar term stands for the gauge boson
contributions. For simplicity of comparison let us consider that in the restored phase. In this case the terms in
the first line behave as ∼ T 4 and the ones in the second line are temperature independent ∼ (gYHY )2.

In BDS approach the corresponding part of the effective potential is given by the first line of Eq. (2) where
one has to substitute Π1 by Πφ(0) from Ref. [8] Eq.(38):

Πφ(0) = Π1 − 0.39
g2
Y

8π
(gYHY )

1/2
T − g2

Y

2π2
|qfgYHY |

m2
f

m2
H

. (4)

Here mf and mH are the fermion and Higgs boson masses and for comparison we have substituted only
the top quark term mf = mt. We see again that the polarization tensor Πφ(0) contains the terms which
could not be calculated by perturbation method. We present them in the high temperature limit for brevity.
In the restored phase, this expression results in a number of temperature and field dependent terms in the
effective potential which were missed in calculations with the truncated propagators. They are of the orders:
∼ (gYHY )1/2T 3, ∼ (gYHY )T 2, ∼ (gYHY )3/2T . Other ones are inverse in temperature and could be neglected
in given approximation. Thus, we come to the conclusion that if the truncated propagators were used the only
one nonleading term ∼ (gYHY )2 is taken into account in the ring diagram part that does not reproduce the
properties of the exact with respect to the external field potential.

Next, the ring diagram part Eq. (2) possesses other shortcoming which needs a discussion. Remind that
the ring contributions have the order ∼ g3

Y and are next-to-leading terms in coupling constant. This is seen
from the first line of this equation as well as from Eq. (4). The two-loop diagram contributions have the order
∼ g4

Y . To obtain a correct estimate for the second line we note that the expansion parameters in the problem
are (gYHY )/T 2, m2/T 2, and (gYHY )/m2. By multiplying and dividing the terms of interest by T 4 one finds
their order ∼ g−1

Y . Formally, for small couplings, they give dominant contributions which are more essential
than the one-loop ones. However, hence one has to conclude that this is inconsistent. The conclusions derived
on this ground are not reliable.

Now let us compare the HY dependent terms in Eqs. (1) and (2) at high temperature in the restored phase.
In this case φ = mi = 0 and the factor standing under logarithm is 3π/g2

Y that is of order ∼ 100 for gY ∼ 0.1.
The value of logarithmic function is positive and not small. On the other hand, this contribution is of the type
of the last one in Eq. (2) but having the opposite sign. That is important for the results obtained. But it was
omitted in SAP paper.

As it follows from this and previous sections, the usage of the truncated propagators instead exact ones
in not a good idea when the symmetry behavior in the external fields is investigated. The loop integration
and the expansion in the field strength do not commute that results in different type effective potentials even
in the weak field approximation. To convince ourselves in the correctness of our already obtained results, we
have checked the calculations with the exact propagators and again came to the conclusion that due to the
temperature and field dependent fermion part the increase in the field strength makes the phase transition
weaker, not stronger. The accounting for the W -boson interaction in the broken phase plays an essential role.
It influences the parameters of the first-order phase transition.
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ELECTRODYNAMICS OF CONTINUOUS MEDIA TAKING INTO ACCOUNT
CORRELATIONS OF ELECTROMAGNETIC FIELD
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System of electromagnetic field and medium of nonrelativistic charged particles is considered. Investigation
of statistical properties of electromagnetic field in the medium is conducted taking into account spatial corre-
lations of the field on the basis of microscopic dynamics and the Bogolyubov method of reduced description
of nonequilibrium processes. Equations for electromagnetic field in the medium are built and evolution of its
correlations is investigated. The obtained results can be applied in various areas of theoretical physics.

1 Introduction

Description of electromagnetic (EM) processes in a medium is usually carried out only by Maxwell equations
for average electric and magnetic fields En(x, t), Bn(x, t), i.e. for condensate, using terminology of statistical
physics. Description of the field besides of these parameters also by the normal and anomalous (in the presence
of the condensate) distribution functions of photons corresponds to the study of kinetic stage of evolution of
the EM field and is a natural generalization of the EM theory. The Fourier-transformed distribution functions
give the binary correlation functions of the electric and magnetic fields. In our consideration subsystem of EM
field is equal in rights with the subsystem of charged particles. Because of a macroscopic quantity and principle
uncertainty of microscopic initial values of phase variables of particles and the EM field an investigation of the
system should based on statistical mechanics even in the case of a classical theory. In this investigation EM
field is considered as a random value and its complete description is given not only by average field but by all
its correlation functions too.

Research of dynamics of correlations of the EM field began in statistical radiophysics on the basis of phe-
nomenological Langevine methods. Significant contribution to the study of dynamics of correlations of the field
was done in the quasilinear theory of plasma. However, this approach was based on phenomenological assump-
tion about a randomness of phases of the field and degrees of freedom, which are described by correlations
of the EM field, were not enough studied in it. Fundamental approach to description of statistical properties
of the EM field in a medium was developed by Yu.L. Klimontovich, proceed from the hierarchy of equations
for distribution functions of charged particles and transversal EM field obtained on the basis of microscopic
dynamics. However, to truncate the hierarchy he used artificial procedures that can be applied only for some
special cases. Last years investigations, in particular, conducted by Kharkiv school of statistical physics, showed
universality of the N.N. Bogolyubov reduced description method (RDM) in theory on nonequilibrium processes.
Nevertheless, in its study of kinetics of the transversal field in a hydrodynamic medium on the basis of the
RDM equations for binary correlations of the field were not obtained, but the necessity of their accounting was
discussed. Thus, in our work an actual problem is investigated, research of which will improve understanding of
the course of electromagnetic processes in a medium, will give an example of consequent study of the fluctuation
(correlation) phenomena.

The RDM was widely developed in works of the Kharkiv school of theoretical physics (S.V. Peletminsky and
collaborators). Nonequilibrium states of the system are completely described by its statistical operator (SO)
ρ(t), which satisfies the quantum Liouville equation

∂tρ(t) = − i
~

[
Ĥ, ρ (t)

]
≡ Lρ(t) (1)

(Ĥ is the Hamilton operator, L is the Liouville operator). According to the RDM in the presence in a system of
several characteristic times its evolution passes through a series of stages. At each stage state of the system can
be completely described by the relatively narrow set of parameters Sp ρ(t)η̂a (the reduced description parameters
= RDP). For a stage at t� τ0 SO of system depends on time only through the RDP ηa(t, ρ0)

ρ(t) ≡ etLρ0−−−−→
t�τ0

ρ(η(t, ρ0)) (ηa ≡ Sp ρ(η)η̂a), (2)
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where SO ρ(η) does not depend on the initial SO of the system ρ0. This relation expresses a general idea of
the Bogolyubov functional hypothesis, which is basis of the RDM. Time τ0 is duration of transition processes
to the considered stage. Important tool of the RDM is the ergodic relation, which is the functional hypothesis
taken in the leading order in a small parameters of the theory. In the case of small interaction in the system it
can be written as follows

eτ L0ρ0−−−−→
τ�τ0

eτ L0ρ(0)(η(0)(0, ρ0)). (3)

Ergodic relation can be used as a boundary condition to the Liouville equation (1) that allows to build a
solvable in the perturbation theory integral equations for SO ρ(η) by a standard procedure. In our investigation
perturbation theories in interaction and gradients were constructed.

2 Kinetics of the EM field in an equilibrium medium

Equations of motion for the EM field with average field and its correlations as the RDP have been obtained.
Developed theory can be called the fluctuation electrodynamics (FED) in a equilibrium medium of the charged
particles (or FED2 in the case of account only binary correlations of the field). Equations of this theory give
justified known results: theories of radiation transfer (for a weak nonuniform EM field), and the Vlasov theory
with the self-consistent field (after an additional expansion in interaction). New motions of the correlation
functions of the field are predicted. In nonrelativistic case a time equation for generating functional of the EM
field is obtained.

In the Coulomb gauge and within the first order in interaction statistical operator of the system [1]

ρ (η) = ρq (η)w +
i

c~

∞∫

0

dτ

∫
dx
[
Ân (x, τ) ĵn (x, τ) , ρq (η)w

]
(4)

is obtained. Here Ân(x, t), ĵn(x, t) are vector potential of the transversal EM field and current in the Dirac
picture

ĵn(x, t) ≡ etL0 ĵn(x), Ân (x, t) ≡ etL0Ân (x) =

∫
dx′unl (x− x′, t)B̂l (x′) +

∫
dx′v (x− x′, t) Ên (x′);

unl (x) ≡ i
∫

dk

(2π)3
cosωkt

k
k̃mεnmle

ikx, v (x, t) ≡ −
∫

dk

(2π)3
sinωkt

k
eikx (5)

(ρq(η) is quasi-equilibrium SO of free EM field; k̃n ≡ kn/k ). The linear system of equations for the average
field En(x, t), Bn(x, t)

∂t ~E = c rot ~B − 4π ~J tr, ∂t ~B = −c rot ~E, div ~E = 0, div ~B = 0, J trn (x, t) = Sp ρ(η(t))Ĵ trn (x) (6)

and its binary correlations

∂t(E
x
nE

x′

l )t = c rotn( ~B
xEx

′

l )t + c rot′l(E
x
n
~Bx

′

)t − 4π{(J tr,xn Ex
′

l )t + (ExnJ
tr,x′

l )t},

∂t(E
x
nB

x′

l )t = c rotn( ~B
xBx

′

l )t − c rot′l(E
x
n
~Ex

′

)t − 4π(J tr,xn Bx
′

l )t,

∂t(B
x
nE

x′

l )t = −c rotn( ~E
xEx

′

l )t + c rot′l(B
x
n
~Bx

′

)t − 4π(BxnJ
tr,x′

l )t,

∂t(B
x
nB

x′

l )t = −c rotn( ~E
xEx

′

l )t − c rot′l(E
x
n
~Ex

′

)t (7)

is received ((ExnE
x′

l )t ≡ Sp ρ(t){Ên(x), Êl(x′)} − 2En(x, t)El(x
′, t), etc; Ĵn(x) is gauge invariant current). For-

mulae (5) and (6) are equations of the fluctuation electrodynamics (i.e. equations of the FED2). Material
equations for average transversal current J trn (x, t) and current-field correlations are given by expressions

J trn (x, t) =

∫
dx′M (x− x′)En (x′, t) +

∫
dx′Nnl (x− x′)Bl (x′, t); (8)

(BxnJ
tr,x′

l )t =

∫
dx′′{M (x′ − x′′) (BxnE

x′′

l )t +Nlm (x′ − x′′) (BxnB
x′′

m )t}+ Snl (x− x′) ,

(J tr,xn Bx
′

l )t =

∫
dx′′{M (x− x′′) (Ex

′′

n Bx
′

l )t +Nlm (x− x′′) (Bx
′′

m Bx
′

l )t}+ Snl (x− x′) ,

(ExnJ
tr,x′

l )t =

∫
dx′′{M (x′ − x′′) (ExnE

x′′

l )t +Nlm (x′ − x′′) (ExnB
x′′

m )t}+ Tnl (x− x′) ,
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(J tr,xn Ex
′

l )t =

∫
dx′′{M (x− x′′) (Ex

′′

n Ex
′

l )t +Nlm (x− x′′) (Bx
′′

m Ex
′

l )t}+ Tnl (x− x′) (9)

and confirm the Onsager principle. Microscopic expressions for kinetic coefficients M(x− x′), Nnl(x− x′) and
free terms Tnl(x), Snl(x) are found taking into account spatial dispersion:

Mk =
ImG (k, ωk)

ωk
, Nnl,k = iεnmlk̃m

ReG (k, ωk)− χ
ωk

≡ iεnmlkmNk; (10)

Snl,k = −8πTNnl,k, Tnl,k = −8πTδtrnlMk (11)

(G(k, ω) is transversal part of the current-current Green function; δtrnl ≡ δnl − k̃nk̃l ). In stochastic approaches
terms Tnl(x), Snl(x) can be introduced as correlations of the Langevin forces. Values Mk, Nk/c are conductivity
and magnetic susceptibility of the system respectively. According equations (5), (7) dispersion relation for the
transversal waves of the average EM field ω = ±ωtr (k)− iδtr (k) is given by relations

ωtr(k) ≡
√

ω2
k + Ω2 − 4πReG (k, ωk)−

(
2π

ωk
ImG (k, ωk)

)2

, δtr (k) ≡ −2π

ωk
ImG (k, ωk) , (12)

which after additional expansion in interaction coincide with the results of other authors. For the first time
concept of waves of binary correlations of the EM field is introduced and their dispersion relation is found

(
EknE

k′

l

)
: δ(k, k′) = δtr(k) + δtr(k′), ω(k, k′) = ±ωt(k)± ωt(k′). (13)

The obtained by us equilibrium values of the correlations coincide with known ones.
For the EM field in equilibrium plasma kinetic equation for one-particle density matrix of photons nkα,k′α′(t) ≡

Sp ρ(η(t))c+kαck′α′ in the presence of the average field En(x, t), Bn(x, t) (we describe it by values c̄kα(t) ≡
Sp ρ(η(t))ckα) is obtained [2]:

∂tnkα,k′α′ = i (ω̃k − ω̃k′)nkα,k′α′ − 2π (Mk +Mk′)
(
nkα,k′α′ − neqkα,k′α′

)
+ i(ak c̄−kαc̄k′α′ − c.c.) (14)

(ak ≡ −2π(Nk+ iMk)). Equation (26) is derived in the Coulomb gauge with an accuracy up to the second order
in interaction and have to be considered together with the Maxwell equations (5), (7). In the framework of
these equations frequencies of the EM waves ωtr(k), decrement of their attenuation δtr(k) and also renormalized
photon frequencies ω̃k and relaxation time of the photon gas are found:

ω̃k = ωk − 2πcNk, neqkα,k′α′ =
δk,k′δα,α′

e~ωk/T − 1
, τkk′ = 1/2π (Mk +Mk′) . (15)

In the case of nearly equal and large wave vectors, that corresponds to a weak nonuniform and fast changing EM
field, dispersion relations for the waves of correlations coincide with the results described by (13). Consequently,
theory of radiation transfer based on equation (26) is a special case of equations (6) for the correlation moments
of the field.

We have studied nonrelativistic processes in the EM field interacting with classic equilibrium plasma too
[3]. Consideration is performed in the Hamilton gauge within the second order in the field-plasma interaction.
As RDP additional to standard ones (the average field En(x, t), Bn(x, t)) binary correlations of the EM field
are taken. Analogous to (5), (6) time equations for the mentioned RDP are obtained on the basis of the RDM.
However, the medium is considered here only in the leading approximation i.e. as an ideal gas (the Maxwell
plasma). The identity of the received Maxwell equations and results of the selfconsistent field approximation
based on the Vlasov equation is proved after an additional expansion of the time dispersion with the help of
formula

En (t− τ) = Spρ (t− τ) Ên = Spρ(t)e−τLEn ' Spρ(t)e−τL0Ên.

In this consideration contrary to the paper [1] the current has a longitudinal component and material equation
is given by the formula

Jn (k, ω) = M̃nl,kEl (k, ω) + Ñnl,kBl (k, ω) (16)

with kinetic coefficients M̃nl,k, Ñnl,k. Material equations for the current-field correlation functions have a similar

to (10) form with replacement of M(x) by M̃nl(x). In the Maxwell plasma approximation is shown that
equations for correlation moments correspond to the Onsager principle. For this case the known frequencies of
the transversal EM waves are received ωtr(k) =

√
c2k2 + Ω2, which do not attenuate for the Maxwell plasma.

It is also shown that for small wave lengths, which are less that the Debye radius, the longitudinal EM waves do
not exist ωl(k) = 0 and this is explained by the effect of Cherenkov absorption. The equilibrium expressions for
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the binary correlations of the field are obtained too, which coincide with ones calculated from the fluctuation-
dissipation theorem. The waves of binary correlations are also considered with result similar to (13). The case
of isotropic and homogeneous EM field is additionally analyzed, in which the average EM field is absent, and
only transversal waves of binary correlations of the field with frequency 2ωtr(k) are possible. It is necessary to
emphasize that general consideration in paper [3] takes into account dynamics of the longitudinal EM field and
can be applied not only for the Maxwell plasma.

The use of the Hamilton gauge in kinetics of the EM field gives an advantage connected with understanding
of the vector potential of the field as its generalized coordinate. In this approach in the terms of the average
field as RDP field kinetics in a quantum equilibrium medium is considered [4,5] and general expressions for the
dispersion laws of the transversal and longitudinal EM waves are found. In the case of transversal waves results
coincide with received in (12). It is shown that the Bogolyubov RDM can be used not only for obtaining of
equations for RDP but also for calculation of an effective Hamilton operator of a subsystem. It was established
that the effective Hamilton operator of the EM field in a equilibrium medium Ĥef =

∑
k,α ~ωα(k)(c+kαckα+1/2)

describes quanta of waves of the average field. Studying of the EM field in a medium in the terms of quasiparticles
is possible only for the case of a weak attenuation of the corresponding waves.

Next, in the Hamilton gauge equations of the FED for classical EM field in an equilibrium medium are built as
a theory that describes nonequilibrium states of the field by the average field ξµ(t) ≡ ξin(x, t) : En(x, t), Bn(x, t)
and all its correlations gµ1...µs

(t) (or by all moments ηµ1...µs
(t) ) [6]. With this purpose a classical perturbation

theory for solution of the integral equation for the system SO is developed. The FED equations written in the
terms of the generating functional of the field moments

F (η, u) = 1 +
∞∑

s=1

1

s!

∑

µ1...µs

uµ1
...uµs

ηµ1...µs

(ηµ ≡ ξµ) have the form

∂tF (η(t), u) = F (η(t), u+
∂

∂ξ
)
∑

µ

uµLµ(u, ξ)|ξ→0, Lµ(u, ξ) ≡ i
∑

µ

cµµ′ξµ′ − 4πIµ(ξ + 4πTu), (17)

where Lµ(u = 0, ξ) it is the right hand side of equations for the average field in absence of correlations. Here
Iµ(ξ) is the average current, which is calculated with an accuracy up to the fourth order in EM interaction
inclusive, that gives a material equation of the theory. It was established that dependence of electric current
on correlations of the field is given by the formula Iµ(ξ, g) = e[G(g,∂/∂ξ)]Iµ(ξ), where G(g, u) is the generating
functional of correlations. Function Iµ(ξ, g) is nonlinear, local in time, but nonlocal in space taking into account
spatial dispersion of material coefficients of the theory. A relation of the developed theory to description of
the EM field by the average field and its binary correlations (i.e. to FED2) is discussed. It is shown that
the equilibrium field is Gaussian (all its spatial correlations except of the binary ones (ξµξµ′) are equal to
zero) and (ξµξµ′) = 4πTδµµ′ . Standard approach to solution of the obtained equation is discussed, in which
nonlinear contributions to the current Iµ(ξ) are considered as small values in accordance with their order in EM
interaction. The current Iµ(ξ) has been found up to the cubic terms in the field inclusive that allows on the basis
of the obtained equations of the FED (17) to study problems of the nonlinear optics. In this consideration the
Fourier transformed correlation function has dispersion ω (k1, .., kn) =

∑n
i=1 ω(ki) i.e. is equivalent to product

of the corresponding waves of the average EM field. Among subsequent applications of the FED equations
theory of the Rayleigh scattering of the EM waves is considered.

3 Kinetics of the EM field in a hydrodynamic medium

A closed set of equations consisting of equations of hydrodynamics of a plasma medium and fluctuation elec-
trodynamics taking into account binary correlations of the field (FED2 in a hydrodynamic medium) has been
built. New branches of oscillations in plasma are predicted that are related to effects of the correlations of
the EM field. In particular, connected due to the EM interaction waves of transversal correlations of the field
and medium densities are considered and their dispersion laws are found. Furthermore, an acoustic-optic effect
for correlations of the field (i.e. an influence of sound waves on correlation of the EM field) is predicted. In
homogeneous case for collisionless plasma oscillations of energies of subsystems of the field and plasma with
double plasma frequency are found.

In the Hamilton gauge a new system of equations of electrodynamics in hydrodynamic medium is built that
takes into account correlations of the field as new independent RDP [7, 8]

∂tEn = c∆nlAl − 4πJn, ∂tAn = −cEn; (18)

∂t(E
x
nE

x′

l )t = c∆nm(AxmE
x′

l )t + c∆′
lm(ExnA

x′

m)t − 4π{(JxnEx
′

l )t + (ExnJ
x′

l )t},
∂t(E

x
nA

x′

l )t = c∆nm(AxmA
x′

l )t − c(ExnEx
′

l )t − 4π(JxnA
x′

l )t,



198 Sokolovsky A.I., Stupka A.A.

∂t(A
x
nE

x′

l )t = −c(ExnEx
′

l )t + c∆′
lm(AxnA

x′

m)t − 4π(AxnJ
x′

l )t;

∂t(A
x
nA

x′

l )t = −c(ExnAx
′

l )t − c(AxnEx
′

l )t,

∂tπn = −∂tnl
∂xl

+ {ρEn +
1

c
enlmJlBm}+

1

2
{(ρEn)t +

1

c
enlm(JlBm)t},

∂tσa = −∂ian
∂xn

, ∂tε = − ∂qn
∂xn

+ JnEn +
1

2
(JnEn)t (19)

((JnBl) ≡ (JxnB
x
l ), etc.; ∆nl ≡ ∂2

/
∂xn∂xl − δnl∆; σa, πn, ε – densities of mass components, momentum,

energy of the medium). For equations (10), (11) (FED2 in a hydrodynamic medium) the corresponding system
of material equations is obtained, which generalizes equations (7), (10) and contains new material equations for
contributions of the field in hydrodynamic fluxes.

The waves of the average EM field and the waves of its binary correlations in an equilibrium medium were
studied in the [1]. On the basis of the system of equations (10), (11) it is possible to study interaction of the
mentioned waves with the sound waves in the medium. It leads to correction of dispersion laws of all waves
in the system including effects of correlations of the field as new RDP. In the case of equilibrium medium
obtained system of equations (10), (11) gives equations built in [3], where medium is considered as the Maxwell
plasma, and equations (5), (6), where only dynamics of the transversal EM field is discussed. Among possible
applications of equations (11) it is worth to mention construction of equations of radiation hydrodynamics.
In the Hamilton gauge a homogeneous and isotropic system of plasma and EM field, described only by the
correlations, is studied too [9]. An effect of the coupled oscillations of transversal correlations of the field
and temperature of quasi-equilibrium medium with frequency that for the Maxwell plasma is approximately
equal two plasma frequencies ω ' 2Ω is predicted. The obtained corresponding time equation for density of
the medium energy has the form ∂tε(t) = 1

2V

∫
d3x(JxnE

x
n)t. The predicted phenomenon is the most obvious

correlation effect in this system. Besides, motion of a probe particle is studied in the mentioned EM field with
the fixed wave vector. The effect of oscillations of its squared velocity is predicted with frequency of oscillations

of correlations of the field 〈υ2〉t = (EA)trΩ2

2mcωtr(k) sin 2ωtr(k)t.

Equations (10), (11) (the FED2 in a hydrodynamic medium) obtained in the paper [7] are applied to the
local equilibrium Maxwell plasma. For simplification correlations of the field are considered in a small radius
limit. A closed system of equations for the Fourier components of deviations from the equilibrium of mass
density, velocity and temperature of the plasma and correlations of the EM field is placed in the form [10]

∂tδσk = −iknσδunk, ∂tδTk = −iknwδunk +
i

2

Ω2

qc
δ(EnZn)k,

∂tδunk = −ikn(ασδσk + αT δTk) + i
Ω2

2c2r
k̃n{δ(ZlZl)k − 8πδTk}; (20)

∂tδ(EnZl)k = −ickδ(ZnZl)t − i
Ω2

ck
{δ(ZnZl)k − 4πδtrnlδTk}, ∂tδ(ZnZl)k = −ickδ(EnZl)k (21)

(Znk ≡ εnmlk̃mBlk = −ikAtnk, ασ ≡ T/mσ, αT ≡ 1/m, w ≡ 2T/3; q, r are constant parameters of the theory).
On the basis of these equations interaction of transversal waves of correlations of the field (case of isotropic
correlations) and sound waves is studied. Corrections to the dispersion laws of these waves due to EM interaction
are found. An acoustic-optic effect for correlations of the field (an influence of sound waves on the waves of
correlations) is predicted. In particular, the phenomenon of acoustic modulation of oscillations of correlations

ω =
√
k2
fc

2 + Ω2 ± ksu is studied, which is similar to acoustic modulation of light by a sound wave. A new

effect of oscillations of correlations with hydrodynamic frequencies ω = ksu, 2ksu is predicted. In the Hamilton
gauge a system of equations of FED2 for the EM field in hydrodynamic nondissipative plasma with different
velocities and temperatures of components is obtained too [11]. On the basis of these equations it is possible
to study the influence of binary correlations of the EM field on processes in manycomponent plasma. In the
case of coincided velocities and temperatures of the components the obtained equations give equations (10),
(11) in the absence of dissipation. In the Hamilton gauge a system of equations FED2 for a medium with one
hydrodynamic and other equilibrium components is also derived [12]. Expressions for frequency and decrement
of attenuation of longitudinal waves of the average EM field and its correlations of small radius are found. It is
shown that only consequent account of dynamics of the system can give correct results

ωl(k) =
{
Ω− ξ2/8Ω +O(λ3)

}
+
{
u2/2Ω− [8 θ (ψ (θ + 8πλ 1) + ∆ )+

+ 4 (3 ψθ + ∆ ) ξ + 3 u2 ξ2]/16Ω3 +O(λ3)
}
k2 +O(k3) (22)

δl(k) =
{
ξ/2 +O(λ3)

}
+
{
−( ψ θ + ∆ + u2ξ)

/
2Ω2 +O(λ3)

}
k2 +O(k3) (23)

(here u is velocity of the sound; θ, ξ,∆ are kinetic coefficients of the theory, λ is small parameter of EM
interactions).



4. Conclusions 199

4 Conclusions

A nonrelativistic medium that consists of the charged and neutral particles was studied in the present research.
Frequency of their collisions can be different in relation to time of observation, therefore cases of equilibrium,
quasi-equilibrium and hydrodynamic medium were considered. The most nonequilibrium hydrodynamic states
of the plasma medium is described in the consideration by mass densities, velocities and temperatures of the
components. Frequency of EM interaction was estimated by us as the Langmuir one and considered as a
value, which is much less than characteristic frequencies of motions in the medium. This allows to expand time
dispersion everywhere in interaction and select spatial correlation functions of the EM field together with average
field as the RDP. The most complete information about the system is contained in its statistical operator, which
is a solution of the Liouville equation. This solution was obtained here in the terms of the mentioned RDP by
the Bogolyubov reduced description method. Operators of the RDP satisfy the Peletminsky-Yatsenko condition
and this simplifies the consideration. We use also a more general statistical operator of the leading order in
small interaction. The system is studied at times, to which transition processes to the reduced description
were finished, and there is a possibility to avoid using of the effective initial conditions. New nonrelativistic
perturbation theories in EM interaction are developed that lead to the gauge invariant equations for the RDP.
The performed analytical calculations lead to new contributions in equations of motion for RDP and generating
functionals compared with stochastic theories. Wave solutions of the obtained equations have been studied. As
a result description of the EM field in equilibrium medium by the Wigner distribution function of photons was
elaborated. The coupled system of the hydrodynamic equations for plasma and equations for the average EM
field and its binary spatial correlations was obtained too. Their wave solutions are found for the homogeneous
and isotropic states of the system and in limit of small radius of correlations of the field. Extending of knowledge
about the electromagnetic field by an investigation of properties of its correlations is the main result of the
presented research.
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A nonperturbative method based on variational perturbation theory in quantum chromodynamics is developed.
A summation of threshold singularities and the nonperturbative character of the light quark masses are involved
into consideration. The method is applied to find hadronic contributions to different physical quantities. It is
shown that the approach allows us to describe well such objects as the hadronic contribution to the anomalous
magnetic moment of the muon, the ratio of hadronic to leptonic tau-decay widths in the vector channel, the
Adler function, the smeared function, and the hadronic contribution to the evolution of the fine structure
constant.

1 Introduction

In comparing theoretical results with experimental data, it is important to connect measured quantities with
“simplest” theoretical objects to check direct consequences of the theory without using model assumptions in an
essential manner. Some single-argument functions which are directly connected with experimentally measured
quantities can play the role of these objects. To compare theoretical results and experimental data one often
uses the concept of quark-hadron duality, which establishes a bridge between quarks and gluons, a language of
theoreticians, and real measurements with hadrons performed by experimentalists. The idea of quark-hadron
duality was formulated in the paper by Poggio, Quinn, and Weinberg [1] as follows: Inclusive hadronic cross
sections, once they are appropriately averaged over an energy interval, must approximately coincide with the
corresponding quantities derived from the quark-gluon picture.

For many physical quantities and functions the corresponding interval of integration involves an infrared
region and in this case nonperturbative effects may play an important role in their description. The following
quantities and functions will be considered here:

• the ratio of hadronic to leptonic τ -decay widths in the vector channel

RVτ = R(0)

M2
τ∫

0

ds

M2
τ

(
1− s

M2
τ

)2(
1 +

2s

M2
τ

)
R(s); (1)

• the “light” Adler function, which is constructed from τ -decay data

D(Q2) = −Q2 dΠ(−Q2)

dQ2
= Q2

∞∫

0

ds
R(s)

(s+Q2)2
; (2)

• the smeared R∆ function

R∆(s) =
∆

π

∞∫

0

ds′
R(s′)

(s− s′)2 + ∆2
; (3)

• the hadronic contribution to the anomalous magnetic moment of the muon (in the leading order in elec-
tromagnetic coupling constant)

ahad
µ =

1

3

(α
π

)2
∞∫

0

ds

s
K(s)R(s), (4)

where K(s) is the vacuum polarization factor;
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• and the strong interaction contribution to the running of the fine structure constant:

∆α
(5)
had(M2

Z) = −α(0)

3π
M2
Z P

∞∫

0

ds

s

R(s)

s−M2
Z

. (5)

A common feature of all these quantities and functions is that they are defined through the function R(s),
the normalized hadronic cross-section, integrated with some other functions. By definition, all these quantities
and functions include an infrared region as a part of the interval of integration and, therefore, they cannot be
directly calculated within perturbative quantum chromodynamics.

The approach that we use here to describe the quantities and functions mentioned above is based on the
nonperturbative expansion method [2–5]. In the case of QCD the method leads to a new small expansion
parameter. Even going into the infrared region of small momenta where the running coupling becomes large
and the standard perturbative expansion fails, the nonperturbative expansion parameter remains small and the
approach holds valid. We formulate a model that also incorporates a summation of threshold singularities [6]
and takes into account the nonperturbative character of the light quark masses [26].

2 Method

Here we formulate a method allowing us to derive nonperturbatively the Drell ratio R(s) within QCD. The
approach based on a nonperturbative expansion method, variational perturbation theory, includes a summation
of infinite number of threshold singularities and involves into analysis nonperturbative character of the quark
masses.

2.1 Variational perturbation theory in QCD

The method on which we construct a description of the R-related quantities is variational perturbation theory
(VPT). Within this approach, a quantity under consideration is represented in the form of the so-called floating
or variational series. A certain variational procedure is combined with the possibility of calculating corrections
to the principal contribution which allows the possibility of probing the validity of the leading contribution and
the region of applicability of the results obtained. The VPT series is different from the conventional perturbative
expansion and can be used to go beyond the weak-coupling regime. This allows one to deal with considerably
lower energies than in the case of perturbation theory.

The new expansion parameter a is connected with the initial coupling constant g by the relation

λ =
g2

(4π)
2 =

αs
4π

=
1

C

a2

(1− a)3
, (6)

where C is a positive constant. As follows from (6), for any value of the coupling constant g, the expansion
parameter a obeys the inequality

0 ≤ a < 1 . (7)

While remaining within the range of applicability of the a-expansion, one can deal with low-energy processes
where αs is no longer small.

Spacelike region

The positive parameter C plays the role of an auxiliary parameter of a variational type, which is associated with
the use of a floating series. The original quantity, which is approximated by this expansion, does not depend
on the parameter C; however, any finite approximation depends on it due to the truncation of the series.
Here we will fix this parameter using some further information, coming from the potential approach to meson
spectroscopy. In the framework of this approach consider the following approximations to the renormalization
group β-function, the functions β(3) and β(5), which are obtained if one takes into consideration the terms O(a3)
and O(a5) in the corresponding renormalization constant Zλ. As has been shown in Ref. [3], C is determined
by requiring that −β(k)(λ)/λ tends to 1 for sufficiently large λ, which gives C3 = 4.1 and C5 = 21.5. The
increase of Ck with the order of the expansion is explained by the necessity to compensate for the higher order
contributions. A similar phenomenon takes place also in zero- and one-dimensional models. The behavior of the
functions −β(k)(λ)/λ gives evidence for the convergence of the results, in accordance with the phenomenon of
induced convergence.1 The behavior of the β-function at large value of the coupling constant, −β(k)(λ)/λ ' 1,
corresponds to the infrared singularity of the running coupling: αs(Q

2) ∼ Q−2 at small Q2. In the potential
quark model this Q2 behavior is associated with the linear growth of the quark-antiquark potential.

1It has been observed empirically [8, 9] that the results seem to converge if the variational parameter is chosen, in each order,
according to some variational principle. This induced-convergence phenomenon is also discussed in [10].
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The renormalization group β-function of the expansion parameter a is

βa(a) = µ2 ∂ a

∂ µ2
=

2β0

C

1

F ′(a)
, (8)

where β0 = 11 − 2f/3 is the one-loop coefficient of the β-function in the usual perturbative expansion, and f
is the number of active quarks, has a zero at a = 1 that demonstrates the existence of the infrared fixed point
of the expansion parameter and its freezing-like behavior in the infrared region. By finding the renormalization
constants in the massless renormalization scheme with an accuracy O(a3), we find for the function F (a)

F (3)(a) =
2

a2
− 6

a
− 48 ln a− 18

11

1

1− a +
624

121
ln(1− a) +

5184

121
ln

(
1 +

9

2
a

)
. (9)

By solving the renormalization group equation (8) we find the momentum dependence of the running ex-
pansion parameter a(Q2) as a solution of the following transcendental equation

ln
Q2

Q2
0

=
C

2β0
[F (a) − F (a0) ] . (10)

For any values of Q2, this equation has a unique solution a = a(Q2) in the interval between 0 and 1.
By working at O(a5) we obtain a more complicated result

F (5)(a) =
1

5(5 + 3B)

3∑

i=1

xi J(a, bi) (11)

with B = β1/(2Cβ0), where the two-loop coefficient β1 = 102− 3f/3, and

J(a, b) = − 2

a2b
− 4

ab2
− 12

ab
− 9

(1− a)(1− b) +
4 + 12b+ 21b2

b3
ln a

+
30− 21b

(1− b)2 ln(1− a)− (2 + b)2

b3(1− b)2 ln(a− b) (12)

with

xi =
1

(bi − bj)(bi − bk)
. (13)

Here indices {ijk} are {123} and cyclic permutations. The values of bi are the roots of the equation ψ(bi) = 0,
where the function ψ(a) is related to the β-function and is

ψ(a) = 1 +
9

2
a+ 2(6 + a)a2 + 5(5 + 3B)a3 . (14)

Timelike region

The VPT approach allows one to perform the analytic continuation from the Euclidean to Minkowskian region
self-consistently [11]. This situation is similar to the analytic approach in QCD [12, 13], where the connection
space- and timelike regions can also be establish self-consistently [14, 15]. A problem of transition from the
spacelike region, where the running coupling is initially defined by the renormalization group method, to the
timelike region within perturbation theory has been discussed in [16–18].

Within the a-expansion method the timelike running coupling can be written as

λ(i)
s (s) =

1

2π i

1

2β0

[
φ(i)(a+) − φ(i)(a−)

]
, (15)

where a± obey the equation

F (a±) = F (a0) +
2β0

C

(
ln

s

Q2
0

± i π

)
. (16)

At the level O(a3), the function φ(a) has the form

φ(3)(a) = −4 ln a− 72

11

1

1− a +
318

121
ln(1− a) +

256

363
ln

(
1 +

9

2
a

)
. (17)

Similarly, a more complicated expression for the O(a5) level, we will use, can be derived.
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2.2 Threshold singularities

In describing a charged particle-antiparticle system near threshold, it is well known from QED that the so-
called Coulomb resummation factor plays an important role. This resummation, performed on the basis of
the nonrelativistic Schrödinger equation with the Coulomb potential V (r) = −α/r, leads to the Sommerfeld--
Sakharov S-factor [19, 20]. In the threshold region one cannot truncate the perturbative series and the S-factor
should be taken into account in its entirety. The S-factor appears in the parametrization of the imaginary part
of the quark current correlator, which can be approximated by the Bethe-Salpeter amplitude of the two charged
particles, χBS(x = 0) [21]. The nonrelativistic replacement of this amplitude by the wave function, which obeys
the Schrödinger equation with the Coulomb potential, leads to the appearance of the resummation factor in the
parametrization of the R(s)-function discussed above.

For a systematic relativistic analysis of quark-antiquark systems, it is essential from the very beginning to
have a relativistic generalization of the S-factor. A new form for this relativistic factor in the case of QCD has
been proposed in [6]

S(χ) =
X(χ)

1− exp [−X(χ)]
, X(χ) =

π α

sinhχ
, (18)

where χ is the rapidity which related to s by 2m coshχ =
√
s, α → 4αs/3 in QCD. The function X(χ) can

be expressed in terms of v =
√

1− 4m2/s: X(χ) = πα
√

1− v2/v. The relativistic resummation factor (18)
reproduces both the expected nonrelativistic and ultrarelativistic limits and corresponds to a QCD-like Coulomb
potential. Here we consider the vector channel for which a threshold resummation S-factor for the s-wave states
is used. For the axial-vector channel the P -factor is required. The corresponding relativistic factor has recently
been found in [27].

To incorporate the quark mass effects one usually uses the approximate expression proposed in [1, 22, 23]
above the quark-antiquark threshold

R(s) = T (v) [1 + g(v)r(s)] , (19)

where

T (v) = v
3− v2

2
, g(v) =

4π

3

[
π

2v
− 3 + v

4

(
π

2
− 3

4π

)]
, vf =

√

1−
4m2

f

s
. (20)

The function g(v) is taken in the Schwinger approximation [24].
One cannot directly use the perturbative expression for r(s) in Eq. (19), which contains unphysical singu-

larities, to calculate, for example, the Adler D-function. Instead, one can use the VPT representation for r(s).
Besides this replacement, one has to modify the expression (19) in such a way as to take into account summation
of an arbitrary number of threshold singularities. Including the threshold resummation factor (18) leads to the
following modification of the expression (19) (see [25] and [26]) for a particular quark flavor f

Rf (s) = [R0,f (s) +R1,f (s)] Θ(s− 4m2
f ), R0(s) = T (v)S(χ), R1(s) = T (v)

[
rvpt(s) g(v)−

1

2
X(χ)

]
. (21)

The usage of the resummation factor (18) reflects the assumption that the coupling is taken in the V renor-
malization scheme. To avoid double counting, the function R1 contains the subtraction of X(χ). The potential
term corresponding to the R0 function gives the principal contribution to R(s), the correction R1 amounting
to less than twenty percent for the whole energy interval [27].

2.3 Quark masses

The following considerations suggest the behavior of the mass function of the light quarks in the infrared region.
A solution of the Schwinger-Dyson equations [28–31] demonstrates a fixed infrared behavior of the invariant
charge and the quark mass function. The mass function of the light quarks at small momentum looks like a
plateau with a height approximately equal to the constituent mass, then with increasing momentum the mass
function rapidly decreases and approaches the small current mass.

This behavior can be understood by using the concept of the dynamical quark mass. This mass has an
essentially nonperturbative nature. Its connection with the quark condensate has been established in [32]. By
using an analysis based on the Schwinger-Dyson equations a similar relation has been found in [33]. It has been
demonstrated in [34] that on the mass-shall one has a gauge-independent result for the dynamical mass

m3 = −4

3
παs〈0|q̄ q|0〉. (22)

A result obtained in [35] demonstrates the step-like behavior of the mass function. The height m of the plateau
is given by the quark condensate (22). According to these results it is reasonable to assume that at small p2
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Figure 1. Effective quark mass.

Table 1. mf
0 and Mf

0 .
f u d s c b t

mf
0 (GeV) 0.004 0.007 0.130 1.35 4.4 174

Mf
0 (GeV) 0.260 0.260 0.450 1.35 4.4 174.0

the function m(p2) is rather smooth (nearly constant). In the region p2 > 1–2 GeV the principal behavior of
the function m(p2) is defined by perturbation theory with the renormalization group improvement.

The following analysis was performed by using the model mass function m(p2) that is shown in Fig. 1. We
take the curve that connects the points p a and p b to have the form A3/(p2−B2). The parameters m0 are taken
from the known values of the running (current) masses at p b = 2 GeV. The quantities considered here are not too

sensitive to the parameters of the heavy quarks and we take for c, b and t quarks mf (p2) = mf
0 = Mf

0 = const.

The values of mf
0 at 2 GeV [36] and typical values of M f

0 are shown in Table 1.

3 Quantities and functions generated by R(s)

In this section we apply the model we have formulated to describe the physical quantities and functions connected
with R(s), described in the Introduction.

3.1 Inclusive decay of the τ-lepton

The ratio of hadronic to leptonic τ -decay widths in the vector channel is expressed by Eq. (20), where R(0) =
3 |Vud|2 SEW/2, |Vud| = 0.9752± 0.0007 is the CKM matrix element, SEW = 1.0194± 0.0040 is the electroweak
factor, and Mτ = 1776.99+0.29

−0.26 MeV is the mass of the τ -lepton.[36] The experimental data obtained by the
ALEPH and OPAL collaborations for this ratio is [1, 2, 38]: RALEPH

τ,V = 1.775± 0.017, ROPAL
τ,V = 1.764± 0.016.

In our analysis we use the nonstrange vector channel spectral function obtained by the ALEPH collab-
oration [1] and keep in all further calculations the value RALEPH

τ,V as the normalization point. The range of

estimates are obtained by varying the quark masses in the interval Mu,d
0 = 260 ± 10 MeV (this band is fixed

rather definitely by the D-function considered below) and M sL
0 = 450± 100 MeV.

3.2 DV -function

The experimental information obtained by the ALEPH and OPAL collaborations allows us to construct the
nonstrange vector channel “experimental” D-function. Within the analytic approach this function has been
analyzed in [25]. Here we improve our method of constructing the “light” D-function by taking into account the
global duality relation. We demonstrate that this Euclidean object is useful from the point of view of defining
the effective masses of the light quarks.

In order to construct the Euclidean D-function (2) we use for R(s) the following expression

R(s) = Rexpt(s) θ(s0 − s) +Rtheor(s) θ(s− s0) . (23)

The continuum threshold s0 we find from the global duality relation [27]

s0∫

0

dsRexpt(s) =

s0∫

0

dsRtheor(s). (24)
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Figure 2. D-function for m = const. Figure 3. D-function for m = m(p2).

This gives s0 ' 1.5 GeV2. The value of s0 agrees with the results of papers [41–43]. A similar value of the
continuum parameter is used in the QCD sum rules [28, 44]. Note, for some parameters there are two possible
solutions of the duality condition (24). We exclude the second solution, s0 ' 2.5 GeV2, at this stage of the
analysis due to the requirement of describing, in a self-consistent manner, different experimental data.

The low energy τ -data in the nonstrange vector channel results in the curve for D(Q2) in Fig. 2. In this
figure we also plot three theoretical curves corresponding to masses of the light quarks of 150, 260 and 350 MeV.
Fig. 2 demonstrates that the shape of the infrared tail of the D-function is quite sensitive to the value of the
light quark masses. Note the experimental D-function turns out to be a smooth function without any trace
of resonance structure. The D-function obtained in [46] from the data for electron-positron annihilation into
hadrons also has a similar property.

The measured quantity RVτ defined in Eq. (20) is less sensitive to mu and md values than the infrared tail of
theDV -function. Varying the light quark masses over a wide range one finds RVτ = 1.79 formu = md = 150 MeV
and RVτ = 1.66 for 350 MeV. The values of masses mu = md ' 260 MeV agree with the experimental value
RVτ = 1.775 ± 0.017 [1]. The values of the light quark masses are close to the constituent quark masses and
therefore incorporate nonperturbative effects. These values are consistent with other results in [47, 48] and [49]
and with the analysis performed in [41, 50] and [51].

3.3 Smeared R∆-function

To compare experimental and theoretical results from the point of view of the quark-hadron duality, in Ref. [1]
it was proposed to use the smeared function R∆(s). Instead of the Drell ratio R(s) defined in terms of the
discontinuity of the correlation function Π(q2) across the physical cut

R(s) =
1

2π i
[Π(s+ iε)−Π(s− iε)] , (25)

the smeared function R∆(s) is defined as

R∆(s) =
1

2π i
[ Π(s+ i∆)−Π(s− i∆) ] , (26)

with a finite value of ∆ to keep away from the cut. If ∆ is sufficiently large and both the experimental data
and the theory prediction are smeared, it is possible to compare theory with experiment.

Equation (26) and the dispersion relation for the correlator Π(q2) give the representation (3). Note that the
smeared function R∆(s) is defined both in the Minkowskian region of positive s, where a trace of resonances
still remains for not too large ∆, and in the Euclidean domain of negative argument s, where like the Adler
function D(Q2) the function R∆(s) is smooth and monotone.

As with the Adler function we will construct the “light” experimental function R∆(s). For this purpose we
match the experimental data taken with s < s0 to the theoretical result taken with s > s0 as in (25). The value
s0 ' 1.6 GeV2 is found from the duality relation (24).

For the charm region the value of ∆ is about 3 GeV2. An adequate choice in the case of the light smeared
function is ∆ ' 0.5–1.0 GeV2. In Figs. 4 and 5 the experimental and theoretical curves for ∆ = 0.5 GeV2,
∆ = 1.0 GeV2 and m = m(p2) are shown. Let us emphasize that, for reasonable values of ∆, in the spacelike
region (s < 0) there is a good agreement between data and theory starting from s = 0.
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Figure 4. Smeared function for ∆ = 0.5 GeV2. Figure 5. Smeared function for ∆ = 1.0 GeV2.

Table 2. Dependence of ahad
µ on light quark masses.

ahad
µ × 1010

mq (MeV) LO NNLO
q = u, d q = s mq = const mq 6= const mq = const mq 6= const

250 400 736 760 725 763
250 500 716 736 705 726
260 400 691 715 682 711
260 500 671 690 661 685

3.4 Hadronic contribution to aµ

The hadronic contribution to the anomalous magnetic moment of the muon in the leading order in the elec-
tromagnetic coupling constant is defined by (4), where α−1 = α(0)−1 = 137.035 999 11(46), [36] and (see, for
example, Ref. [24])

K(s) =

1∫

0

dx
x2(1− x)

x2 + (1− x)s/m2
µ

. (27)

The muon mass is mµ = 105.7 MeV.
The expression (4) can be rewritten in terms of the D-function

ahad
µ =

1

3

(α
π

)2 1

2

1∫

0

dx

x
(1− x)(2− x)D

(
x2

1− x m
2
µ

)
. (28)

It is should be emphasized that the expressions (4) and (28) are equivalent due to the analytic properties of
the function Π(q2). If one uses a method that does not maintain the required properties of Π(q2), expressions
(4) and (28) will no longer be equivalent and will imply different results (see Ref. [52] for details). This situation
is similar to that which occurs in the analysis of inclusive τ -decay, [53] where the initial integral, performed
over an interval including a nonperturbative region, for which a perturbative QCD calculation is not valid, is
transformed based on the analytic properties into a contour representation. Within VPT one is justified in
doing this, and can use equally well either the expression (4) or the expression (28).

The value of ahad
µ is not very sensitive to the values of the heavy quark masses, which we take as given

in Table 1. The relative contributions of u and d quarks are about 72 and 19 %, respectively. The relative
factor of 4 between u and d contributions is explained by the ratio of quark charges. The relative contribution
of the s-quark to ahad

µ is about 5–9 % for M s
0 = 400–500 MeV. The contribution of the c-quark is about 2%.

Contributions of b and t quarks are very small.
There is a significant dependence on the mass parameters of the light quarks. This dependence we illustrate

in Table 2. In our calculations we take into account the matching conditions at quark thresholds according to
the procedure described in [15]. The mass parameters of u and d quarks are fixed rather well by the infrared

tail of the light D-function and the value of RVτ . If we take for the parameter Mu,d
0 in the function m = m(p2)

the best fit value 260 MeV and vary M s
0 = 400–500 MeV, we get

ahad
µ = (702± 16)× 10−10. (29)
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Note the method based on the analytic perturbation theory leads to very close result: ahad
µ = (698±13)×10−10

[26].
Alternative “theoretical” values of ahad

µ are extracted from e+e− annihilation and τ decay data: (696.3 ±
6.2exp±3.6rad)×10−10 (e+e−-based), [54] which is 1.9σ below the BNL experiment; [55] (711.0±5.0exp±0.8rad±
2.8SU(2))×10−10 (τ -based), [54] which is within 0.7σ of experiment; and (693.4±5.3exp±3.5rad)×10−10 (e+e−-
based),[56] 2.7σ below experiment. An even lower value (692.4 ± 5.9exp ± 2.4rad) × 10−10 is given in [57].
The quantity ahad

µ is rather sensitive to the light quark mass parameters, which are known only with large
uncertainties. For this reason our estimations at this stage cannot give a preference to one or another of the
above-mentioned fits to experimental data.

3.5 Hadronic contributions to ∆α

Consider the hadronic correction to the electromagnetic fine structure constant α at the Z-boson scale. The
evolution of the running electromagnetic coupling is described by

α(s) =
α(0)

1−∆αlept(s)−∆α
(5)
had(s)−∆αtop

had(s)
. (30)

The leptonic part ∆αlept(s) is known to the three loop level, ∆αlept(M
2
Z) = 0.03149769.[58] It is conventional

to separate the contribution ∆α
(5)
had(s) coming from the first five quark flavors. The contribution of the t-quark

is estimated as ∆αtop
had(M2

Z) = −0.000070(05) [59].

The quantity ∆α
(5)
had(s) at the Z-boson scale can be represented in the form of the dispersion integral (5).

The total function R(s) is

R(s) = 3
∑

f

Q2
fRf (s), (31)

where Qf is the quark electric charge of flavour f . For the calculation of R(s) we use (31) with five quark flavors
f = u, d, s, c, b. Varying the parameters as has been described above and using mc = 1.3–1.5 GeV, we get

∆α
(5)
had(M2

Z) = (279.9± 4.0)× 10−4. (32)

This value is to be compared with predictions extracted from a wide range of data describing e+e− →
hadrons [57]:

∆α
(5)
had(M2

Z) = (275.5± 1.9expt ± 1.3rad)× 10−4. (33)

The result based on the analytic perturbation theory is ∆α
(5)
had(M2

Z) = (278.2 ± 3.5) × 10−4 [26]. We see that
our result (32) is consistent with previous theoretical/experimental evaluations, with comparable uncertainties.

The relative error in (32) is substantially less than the error that appears in the quantity ahad
µ and therefore

one can obtain a more exact result. In comparison with the ahad
µ result, where the contribution of the c-quark

was about 2%, now it is about 30%. The contribution of the b-quark is about 5% and the relative contribution
of the t-quark is a fraction of a percent.

4 Summary

A method of performing QCD calculations in the nonperturbative domain has been developed. This method is
based on the variational perturbation theory in QCD, takes into account the summation of threshold singularities
and the involvement of nonperturbative light quark masses.

The following quantities have been analysed: the inclusive τ -decay characteristic in the vector channel, RVτ ;
the light-quark Adler function, D(Q2); the smeared R∆-function; the hadronic contribution to the anomalous

magnetic moment of the muon, ahad
µ ; and the hadronic contribution to the fine structure constant, ∆α

(5)
had(M2

Z).
We have demonstrated that the proposed method allows us to describe these quantities rather well.

Acknowledgments. It is a pleasure to thank D.V. Shirkov, A.N. Sissakian and O.P. Solovtsova for interest in
the work and useful discussion. This work was supported in part by the International Program of Cooperation
between the Republic of Belarus and JINR, the BRFBR, contract F06D-002.

References

[1] E. C. Poggio, H. R. Quinn and S. Weinberg, Phys. Rev. D13, 1958 (1976).

[2] I.L. Solovtsov, Phys. Lett. B327, 335 (1994).

[3] I.L. Solovtsov, Phys. Lett. B340, 245 (1994).

[4] A.N. Sissakian and I.L. Solovtsov, Phys. Part. Nucl. 25, 478 (1994).

[5] A.N. Sissakian and I.L. Solovtsov, Phys. Part. Nucl. 30, 461 (1999).



208 Solovtsov I.L.

[6] K. A. Milton and I. L. Solovtsov, Mod. Phys. Lett. A16, 2213 (2001).
[7] K.A. Milton, I.L. Solovtsov and O.P. Solovtsova, Mod. Phys. Lett. A21, 1355 (2006).
[8] W.E. Caswell, Ann. Phys. 123, 153 (1979).
[9] J. Killingbeck, J. Phys. A14, 1005 (1981).

[10] P.M. Stevenson, Nucl. Phys. B231, 65 (1984).
[11] H.F. Jones and I.L. Solovtsov, Phys. Lett. B349, 519 (1995).
[12] D.V. Shirkov and I.L. Solovtsov, JINR Rapid Comm. No.2[76]-96, 5, hep-ph/9604363.
[13] D.V. Shirkov and I.L. Solovtsov, Phys. Rev. Lett. 79, 1209 (1997).
[14] K.A. Milton and I.L. Solovtsov, Phys. Rev. D55, 5295 (1997).
[15] K.A. Milton and O.P. Solovtsova, Phys. Rev. D57, 5402 (1998).
[16] A.V. Radyushkin, Optimized Lambda-parametrization for the QCD running coupling constant in spacelike

and timelike region, Preprint E2-82-159, JINR (1982), hep-ph/9907228.
[17] N.V. Krasnikov and A.A. Pivovarov, Phys. Lett. B116, 168 (1982).
[18] J. D. Bjorken, Two Topics In Quantum Chromodynamics, Preprint PUB-5103, SLAC (1989).
[19] A. Sommerfeld, Atombau und Spektrallinien, Vol. 2 (Vieweg, Braunschweig, 1939).
[20] A.D. Sakharov, Sov. Phys. JETP, 18, 631 (1948).
[21] R. Barbieri, P. Christillin and E. Remiddi, Phys. Rev. D8, 2266 (1973).
[22] T. Appelquist and H.D. Politzer, Phys. Rev. Lett. 34, 43 (1975).
[23] T. Appelquist and H.D. Politzer, Phys. Rev. D12, 1404 (1975).
[24] J. Schwinger, Particles, Sources and Fields, Vol. 2 (New York, Addison-Wesley, 1973, Perseus, 1998).
[25] K. A. Milton, I. L. Solovtsov and O. P. Solovtsova, Phys. Rev. D 64, 016005 (2001).
[26] A.N. Sissakian, I.L. Solovtsov and O.P. Solovtsova, JETP Lett. 73, 166 (2001).
[27] I.L Solovtsov, O.P. Solovtsova and Yu.D. Chernichenko, Phys. Part. Nuclei Lett. 2, No. 4, 199 (2005).
[28] C.D. Roberts and S.M. Schmidt, Prog. Part. Nucl. Phys. 45, S1 (2000).
[29] C.S. Fisher and R. Alkofer, Phys. Lett. B536, 177 (2002).
[30] C.S. Fisher and R. Alkofer, Phys. Rev. D67, 094020 (2003).
[31] A.C. Aguilar, A.V. Nesterenko and J. Papavassiliou, hep-ph/0510117.
[32] H.D. Politzer, Nucl. Phys. B117, 397 (1976).
[33] N.V. Krasnikov and A.A. Pivovarov, Sov. Phys. J. 25, 55 (1982).
[34] V. Elias and M.D. Scadron, Phys. Rev. D30, 647 (1984).
[35] L.J. Reinders and K. Stam, Phys. Lett. B195, 465 (1987).
[36] Particle Data Group, S. Eidelman et al., Phys. Lett. B592, 1 (2004).
[37] ALEPH Collab., R. Barate et al., Eur. Phys. J. C4, 409 (1998).
[38] M. Davier and Ch. Yuan, Nucl. Phys. B (Proc. Suppl.) 123, 47 (2003).
[39] OPAL Collab., K. Ackerstaff et al., Eur. Phys. J. C7, 571 (1999).
[40] S. Peris, M. Perrottet and E. de Rafael, JHEP 9805, 011 (1998).
[41] A.E. Dorokhov, Phys. Rev. D70, 094011 (2004).
[42] E. de Rafael, Phys. Lett. B322, 239 (1994).
[43] S. Narison, Nucl. Phys. B (Proc. Suppl.) 96, 364 (2001).
[44] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147, 385 (1979); Nucl. Phys. B147, 448

(1979); Nucl. Phys. B147, 519 (1979).
[45] L.J. Reinders, H.R. Rubinstein and S. Yazaki, Phys. Rep. 127, 1 (1985).
[46] S. Eidelman, F. Jegerlehner, A.L. Kataev, O. Veretin, Phys. Lett. B454, 369 (1999).
[47] A.I. Sanda, Phys. Rev. Lett. 42, 1658 (1979).
[48] J.J. Sakurai, K. Scilcher and M.D. Tran, Phys. Lett. B102, 55 (1981).
[49] D.V. Shirkov and I.L. Solovtsov, in: Proc. Int. Workshop on e+e− Collisions from φ to J/Ψ, eds. G. V.

Fedotovich and S. I. Redin (Budker Inst. Phys., Novosibirsk, 2000) pp. 122-124, hep-ph/9906495.
[50] A.E. Dorokhov, Acta Phys. Polon. B36, 3751 (2005).
[51] A.E. Dorokhov and W. Broniowski, Eur. Phys. J. C32, 79 (2003).
[52] K.A. Milton and O.P. Solovtsova, Int. J. Mod. Phys. A17, 3789 (2002).
[53] K.A. Milton, I.L. Solovtsov and O.P. Solovtsova, Phys. Lett. B415, 104 (1997).
[54] M. Davier, S. Eidelman, A. Hocker and Z. Zhang, Eur. Phys. J. C31, 503 (2003).
[55] Muon g − 2 Collab., G.W. Bennett et al., Phys. Rev. Lett. 92, 161802 (2004).
[56] A. Hocker, in: Proc. the XXXII Int. Conf. ICHEP’04, eds. H. Chen et al. (World Scientific, 2005), Vol. 2.,

p. 710, hep-ph/0410081.
[57] K. Hagiwara, A.D. Martin, D. Nomura, and T. Teubner, Phys. Rev. D69, 093003 (2004).
[58] M. Steinhauser, Phys. Lett. B429, 158 (1998).
[59] J.H. Kuhn and M. Steinhauser, Phys. Lett. B437, 425 (1998).



Proceedings of the International School-seminar
“New Physics and Quantum Chromodynamics
at external Conditions”, pp. 209 – 216,
3-6 May 2007, Dnipropetrovsk, Ukraine

ADVANTAGES OF APT IN QCD STUDY OF HADRONIC TAU DECAYS

O. P. Solovtsovaa

Gomel State Technical University, Gomel, Belarus

A comparative analysis of different forms of approximations, which are applied to the description of the hadronic
decays of the tau lepton, is given. Advantages and self-consistency of the method called analytic perturbation
theory (APT) are demonstrated. It is shown that the use of the APT leads to the good description of certain
inclusive functions associated with vector and axial-vector non-strange quark currents down to the lowest energy
scale.

1 Introduction

The experimental data on the τ lepton decay into hadrons obtained with a record accuracy for hadronic processes
[1–3] give a unique possibility for testing QCD at low energy scale. The τ lepton is the only lepton known at
present whose mass, Mτ = 1.777GeV, is large enough in order to produce decays with a hadronic mode. At the
same time, in the context of QCD, the mass is sufficiently small to allow one to investigate perturbative and
non-perturbative QCD effects. The theoretical analysis of the hadronic decays of a heavy lepton was performed
Tsai [4] before the experimental discovery of the τ lepton in 1975 and since then this process is intensively
studied.

It is known, that perturbation theory (PT), which is a basic tool of calculations in quantum field theory, as
a rule cannot be exhaustive in the low energy region of QCD. However, a structure of an initial perturbative
approximation of some quantity is not a rigid construction fixed once and for all, but admits a considerable
modification due to specific properties of quantum field theory. Such modification is based on further information
of a general character about the sum of the series. In particular, the properties of renormalization-group (RG)
invariance [5], which is lost in a finite order of the initial expansion, allow rearrangements of the perturbative
series in terms of the invariant charge. In this case, the properties of the series change essentially. In distinction
to the initial expression containing large logarithms, the expansion obtained within the RG method can be used
for analyzing the ultraviolet region. However, the perturbative series so derived are ill-defined in the infrared
region and the correct analytic properties of the series in the complex Q2-plane are violated due to unphysical
singularities of the perturbative running coupling, a ghost pole in the one-loop approximation (see discussion
in [6, 7]). The difficulty associated with these unphysical singularities is overcome in the analytic approach
proposed by Shirkov and Solovtsov [8]. This approach modifies the perturbative expansion on the basis of
general properties of the theory so that the new approximations reflect fundamental principles of the theory—
renormalization invariance, spectrality, and causality. In the new expansion the correct analytic properties are
restored, and the property of RG invariance is preserved [8]. Further developments and applications of the
Shirkov–Solovtsov analytic approach have been considered in many papers (see [9] as the recent review).

The original theoretical expression for the width Γ(τ− → hadrons ντ ) involves integration over small values
of timelike momentum [4]. The perturbative description with the standard running coupling becomes ill-defined
in this region and some additional ansatz has to be applied to get a finite result for the hadronic width. To this
end, one usually transforms the initial expression, by using Cauchy’s theorem, to a contour representation for
Rτ [10], which allows one to give meaning to the initial expression and, in principle, perform calculations in the
framework of perturbative QCD. Assuming the validity of this transformation it is possible to present results
in the form of a truncated power series with αs(Mτ ) as the expansion parameter [11, 12]. There are also other
approaches to evaluating the contour integral. The Le Diberder and Pich prescription [13] allows one to improve
the convergence properties of the approximate series and reduce the renormalization scheme (RS) dependence
of theoretical predictions. The possibility of using different approaches in the perturbative description of τ
lepton decay leads to an uncertainty in the value of αs(Mτ ) extracted from the experimental data. Moreover,
any perturbative description is based on this contour representation, i.e., on the possibility of converting the
initial expression involving integration over timelike momenta into a contour integral in the complex momentum
plane. To carry out this transition by using Cauchy’s theorem requires certain analytic properties of the hadronic
correlator or of the corresponding Adler function. However, the occurrence of incorrect analytic properties in
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the conventional perturbative approximation makes it impossible to exploit Cauchy’s theorem in this manner
and, therefore, prevents rewriting the initial expression for Rτ in the form of a contour integral in the complex
momentum-plane.

The method based on the Shirkov–Solovtsov analytic approach and called analytic perturbation theory
(APT) [14] ensures the correct analytic properties of such important objects as the hadronic correlator or of
the corresponding Adler function, leads to equality between the initial theoretical expression for the width
Γ(τ− → hadrons ντ ) and the corresponding contour representation.

The aim of this paper is to reveal features of the application of PT and APT expansions in studying the
process of τ decay into hadrons, and in application the APT method for the description of hadronic widths
associated with vector and axial-vector non-strange quark currents, and also for Adler functions, which are
connected to these currents, down to the lowest energy scale.

2 Analytic perturbation theory

A main object in a description of hadronic decays of the τ lepton and of many other physical processes is the
correlator Π(q2) or the corresponding Adler function D(Q2), which is connected to the correlator by the formula

D(Q2) = −Q2 dΠ(−Q2)

dQ2
. (1)

We use the standard convention Q2 = −q2 > 0 in the Euclidean region.
The integral representation for the D-function is given in terms of the function R(s) ≡ Im Π(s)/π:

D(Q2) = Q2

∫ ∞

0

ds

(s+Q2)
2 R(s) . (2)

The representation (2) defines the function D(Q2) as the analytic function in the complex Q2-plane with the
cut along the negative real axis.

It is convenient to separate QCD contributions, d(Q2) and r(s), in the functions D ∝ 1 + d and R ∝ 1 + r ,
respectively, which are related by the formulae

d(Q2) = Q2

∫ ∞

0

ds

(s+Q2)
2 r(s), (3)

r(s) = − 1

2πi

∫ s+iε

s−iε

dz

z
d(−z) . (4)

The integration contour in (4) lies in the region of analyticity of the integrand and encircles the cut of d(−z)
on the positive real z axis.

In the APT the basic object is a spectral function ρ(σ) which enters into some integral representation. In
particular, for two-point functions, it is the Källén–Lehmann representation; whereas for structure functions for
inelastic lepton–hadron scattering, the integral representation is that of Jost–Lehmann–Dyson. The spectral
function ρ(σ) for the objects under consideration here can be obtained by using the perturbative series as
a initial approach. Truncated at the three-loop level, the perturbative d-function, rewritten in terms of the
perturbative running coupling, apt(Q

2) = ᾱs(Q
2)/π, is

dpt(Q
2) = apt(Q

2) + d1a
2
pt(Q

2) + d2a
3
pt(Q

2) , (5)

where in the MS scheme for three active quarks (nf = 3) relevant in τ decay, the expansion coefficients are

dMS
1 = 1.6398 and dMS

2 = 6.3710 [15].
This expansion generates the following approximation to the spectral function ρ(σ):

ρ(σ) = %0(σ) + d1%1(σ) + d2%2(σ) , (6)

where the coefficients d1 and d2 are the same as in the PT series (5) and the expansion functions are determined
by the discontinuity of the corresponding power of the perturbative running coupling, %n(σ) = Im[an+1

pt (−σ−iε)].
By using the spectral function (6), we obtain the d-function in the form of the expansion (not a power series

in a)
dan(Q2) = ∆(1)

an (Q2) + d1∆
(2)
an (Q2) + d2 ∆(3)

an (Q2) , (7)

where the ∆
(n)
an are analytic functions and ∆

(1)
an (Q2) = aan(Q2) (see [16] for details).

The Euclidean running coupling aan(Q2) and the running coupling ãan(s) defined in the Minkowskian region
are expressed through the function %0(σ) [9, 17]. In the leading order

%
(1)
0 (σ) =

1

β0

π

ln2(σ/Λ2) + π2
, β0 = (11− 2nf/3)/4 , (8)
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Figure 1. Renormalization scheme dependence of the d-function as a function of Q2 for the PT and APT
approaches. The APT results are shown as solid lines which are very close to each other and practically merge
into one curve.

a(1)
an (Q2) =

1

β0

[
1

ln(Q2/Λ2)
+

Λ2

Λ2 −Q2

]
, (9)

ã(1)
an (s) =

1

β0

[
1

2
− 1

π
arctan

ln(s/Λ2)

π

]
. (10)

The expression in the Euclidean region (9) contains the usual logarithmic term that coincides with the
perturbation expression containing the ghost pole at Q2 = Λ2. The contribution of this pole is compensated
by the second term in Eq. (9) of a power character in Q2. Written in terms of the initial apt, this term is of
the structure of exp(−1/apt) and therefore makes no contribution to the power series expansion in the coupling
apt. That is, the Q2-power contribution in the Euclidean running coupling (9), invisible in PT, is restored
automatically on the basis of the analyticity principle. In contrast to the PT running coupling apt(Q

2), the
analytic function aan(Q2) has no unphysical singularities: the ghost pole and corresponding branch points
(which appear in higher order) are absent. It should be stressed, the APT and PT coincide with each other
in the asymptotic region of high energies. A value of the running coupling defined in the Minkowskian region,
ãan(s), is less than a value of the running coupling in the Euclidean region, aan(Q2), at the same magnitude of
argument [17, 18].

3 Renormalization scheme dependence

A significant source of theoretical uncertainty arises from the RS dependence of the results obtained due to the
inevitable inclusion of only a finite number of terms in the PT series. In QCD, that uncertainty is the greater,
than smaller a value of typical energy of the process.

There are no general principles that give preference to a particular RS, and in this sense, all schemes
are equivalent. The APT method improves this situation and gives very stable results over a wide range of
renormalization schemes. To demonstrate this fact, in Fig. 1 we plot functions dpt(Q

2) and dan(Q2) in different
RS. It is seen that predictions in the perturbative approach for d(Q2) obtained within different RS diverge
considerably (see dashed curves A and B). Note should be made of the fact that the schemes A and B are
similar to each other and to the optimal PMS [19] and ECH [20] schemes in the sense of the cancellation index
[21]: CA ' CB ' 2. For the ECH method, the cancellation index is minimal, equaling unity. The cancellation
index for the MS scheme turns out to be somewhat bigger, CMS ' 3.1. In Fig. 1, we also draw the curves
representing PT results in the PMS, ECH, MS and K schemes. For the same schemes, in Fig. 1 we also present
results obtained in the APT approach. In this case the scheme arbitrariness is extremely small, and all the
curves corresponding to the schemes A, B, PMS, ECH, MS, and K merge into one thick solid curve. Thus, in the
APT, the scheme arbitrariness is very dramatically reduced as compared to that in analogous PT calculations.

4 Ratio Rτ

The total hadronic width of the τ lepton is given by difference of its total width and the partial widths for the
electronic and muonic decays Γ(τ− → hadrons ντ ) = Γtot − Γe − Γµ. In an analogy to well-known Drell-ratio
for the e+e− annihilation into hadrons, one can define a ratio Rτ

Rτ ≡
Γ(τ− → hadrons ντ )

Γ(τ− → ` ν̄` ντ )
.
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The theoretical expression for Rτ can be presented as follows

Rτ = 3 (|Vud|2 + |Vus|2) SEW (1 + δτ ) , (11)

where Vud and Vus are elements of the CKM quark mixing matrix, SEW is the electroweak factor, and the QCD
contribution, δτ , is expressed via r(s) as

δτ = 2

∫ M2
τ

0

ds

M2
τ

(
1− s

M2
τ

)2(
1 + 2

s

M2
τ

)
r(s) . (12)

This expression is a starting point of our analysis. Within the PT the integral (12) cannot be evaluated
directly due to unphysical singularities of the PT running coupling lying in the range of integration.

The most useful trick to rescue the situation is to appeal to analytic properties of the correlator Π(q2). The
relations between the functions r(s) and d(Q2) allow us to represent δτ as a contour integral in the complex z
plane by choosing the contour to be a circle of radius |z| = M 2

τ [11]

δτ =
1

2πi

∮

|z|=M2
τ

dz

z

(
1− z

M2
τ

)3(
1 +

z

M2
τ

)
d(−z) . (13)

It should be stressed that expressions (12) and (13) are equivalent only when the above-mentioned analytic
properties are maintained.

It would seem that the transformation to the contour representation (13) allows one to avoid this difficulty,
since in this case unphysical singularities of the running coupling lie outside of the contour, and the procedure
of integration can formally be easily accomplished. However, in our opinion, this trick (“sweeping the difficulty
under the rug”) does by no means solve the problem. Actually, incorrect analytic properties of the running
coupling result in Eqs. (12) and (13) for δτ being no longer equivalent [14, 22], and, if one remains within PT,
nothing can be said about the errors introduced by this transition. The APT may eliminate these problems.

The PT description is based on the contour representation and can be developed in the following two ways.
In the Braaten’s (Br) method [12] the quantity (13) is represented in the form of truncated power series with
the expansion parameter aτ = ᾱs(M

2
τ )/π. In this case the three-loop representation for δτ is

δBr
τ = aτ + r1 a

2
τ + r2 a

3
τ , (14)

where the coefficients r1 and r2 in the MS scheme with three active flavors are r1 = 5.2023 and r2 = 26.366 [12].
The method proposed by Le Diberder and Pich (LP) [13] uses the PT expansion of the d-function (5). It

results to the following non-power representation

δLP
τ = A(1)(a) + d1A

(2)(a) + d2A
(3)(a) (15)

with

A(n)(a) =
1

2πi

∮

|z|=M2
τ

dz

z

(
1− z

M2
τ

)3(
1 +

z

M2
τ

)
an(z) . (16)

Both these PT approaches, are widely used in the analysis of τ -decay data. However, their status is different.
The formula (14) can be obtained self-consistently. In expression (12) one has to use for r(s) the initial
perturbative approximation with the expansion parameter aµ. Then, after integration over s, the logarithmic
terms containing ln(M2

τ /µ
2) are removed by setting µ2 = M2

τ . The same result is obtained if the contour
representation (13) is used and the d-function is taken in the form the initial perturbative approximation which
preserves the required analytic properties. As for the representation (15), it will be consistent with expressions
(12) and (13), if a(z) has analytic properties of the Källén–Lehmann type. The use of the standard PT running
coupling with unphysical singularities in (16) breaks this consistency.

The APT description can be equivalently phrased either on the basis of the original expression (12), which
involves the Minkowskian quantity r(s), or on the contour representation (13), which involves the Euclidean
quantity d(q2). Within the framework of the APT approach, both forms can be rewritten in terms of the
spectral function ρ(σ) as [14]

δτ =
1

π

∫ ∞

0

dσ

σ
ρ(σ)− 1

π

∫ M2
τ

0

dσ

σ

(
1− σ

M2
τ

)3(
1 +

σ

M2
τ

)
ρ(σ) . (17)

In Fig. 2, we illustrate the dependence of the Rτ -ratio on the running coupling in the PT(Br) and APT
approaches, comparing the convergence properties in the one-loop (dotted lines), two-loop (dashed lines), and
three-loop (solid lines) approximations. Numbers above the curves specify the order of the approximation. The
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Figure 2. The PT(Br) and APT predictions for the Rτ ratio vs. the running coupling in the MS scheme. The
numbers labelling the curves denote the level of the loop expansion used.

shaded area shows the corridor of experimental errors for Rexpt
τ = 3.646±0.022 [23]. The convergence properties

of the APT expansion seem to be much improved compared to those of the PT expansions.

The APT approach allows one to construct a series for which RS dependence is dramatically reduced. For
the hadronic τ decay it is easy for understanding if one takes into account the result which is shown in Fig. 1
for d-functions in different RS: instead of RS unstable and rapidly changing PT results, the APT predictions
are practically RS independent.

In the case of massless quarks, the detailed APT analysis of the inclusive τ decay on the three-loop level
has been performed in [24]. This investigation together with other results allows us to formulate the following
features of the APT method: (i) this approach maintains the correct analytic properties and leads to a self-
consistent procedure of analytic continuation from the spacelike to the timelike region; (ii) it has much improved
convergence properties and turns out to be stable with respect to higher-loop corrections; (iii) renormalization
scheme dependence of the results obtained within this method is reduced dramatically.

5 Vector and axial-vector channels in τ decay

In this section we compare our theoretical result with results that we get from the τ -data presented by the
ALEPH Collaboration [3]. These data have been extensively used in various QCD studies including the deter-
mination of the strong coupling constant, the test of the conception of quark-hadron duality, the application in
the evaluation of the anomalous magnetic moment of the muon and the determination of ρ-meson parameters.

From the complete analysis of the τ branching ratios [3], it is possible to separate the non-strange vector
and axial-vector hadronic τ decay channels, V −ντ and A−ντ , respectively. The inclusive observable Rτ -ratio
can be written down as

Rτ = Rτ,V + Rτ,A + Rτ,S , (18)

where Rτ,V and Rτ,A are contributions corresponding to the vector and axial-vector non-strange quark currents,
Γ(τ− → hadronsS=0), and Rτ,S includes strange decays, Γ(τ− → hadronsS=−1). Note, for the strange hadronic
width vector and axial-vector contributions are not separated so far due to the lack of the corresponding
experimental information for the Cabibbo-suppressed modes.

Within the perturbative approximation with massless quarks the vector and axial-vector contributions to
Rτ coincide with each other

Rτ,V = Rτ,A =
3

2
|Vud|2(1 + δτ ) , (19)

where δτ is given by the expression (12). However, the experimental measurements shown that these components
are not equal to each other.

Figs. 3 and 4 show the ALEPH measurements for the vector and the axial-vector non-strange quark currents,
functions RV (s) and RA(s), respectively. These figures clearly demonstrate that the vector current function
RV (s) indicates a dominant large ρ−(770) resonance and the axial-vector function RA(s) indicates a1(1260)
resonance. Note that the normalization of the ALEPH functions v1 (s) and a1 (s) differ from that we use here:
at the parton-level our function R(s) is equal to 1, therefore RV/A(s) = 2 v1 (s)/a1 (s).
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Figure 3. The total inclusive vector current func-
tion.

Figure 4. The inclusive τ axial-vector function
(without the pion pole).

The ratios Rτ,V and Rτ,A can be obtained through vector and axial-vector functions, RV (s) and RA(s), as

R
exp/theor
τ,V/A = R0

M2
τ∫

0

ds

M2
τ

(
1− s

M2
τ

)2(
1 +

2s

M2
τ

)
R

exp/theor
V/A (s), (20)

where R0 ≡ 3|Vud|2SEW, |Vud| = 0.9752 ± 0.0007 and SEW = 1.0194 ± 0.0040 (see [3] for details). The
experimental value obtained by the ALEPH collaboration for the vector channel is

Rexp
τ,V = 1.787± 0.013. (21)

Based on the APT, involving a summation of threshold singularities [25] and taking into account the nonper-
turbative character of the light quark masses, as it in details has been described in [26], we take as an input, the
value of the running coupling defined in the Minkowskian region in MS renormalization scheme ãs(M

2
τ ) = 0.33

and reproduce the central experimental value of the ALEPH data for the vector ratio

Rtheor
τ,V = 1.79 = Rexp ,centr

τ,V . (22)

The experimental value obtained by the ALEPH collaboration for the total axial-vector channel is Rexp,tot
τ,A =

1.695 ± 0.013. The inclusive axial-vector function which show in Fig. 4 does not contain the pion pole. The
branching fraction for the π−ν mode is given as (10.83± 0.11)% [3]. After subtraction of this pole contribution,
we get

Rexp
τ,A1 = 1.087± 0.015. (23)

The ALEPH measurements allows us to study the D-function in the non-strange vector and axial-vector
channels:

D
exp/theor
V/A (Q2) = Q2

∫ ∞

0

ds
R

exp/theor
V/A (s)

(s+Q2)2
. (24)

Although the function RV/A(s) experimentally is not known for all values of s, it is possible to use the
following expression

RV/A(s) = Rexp
V/A(s) θ(s0 − s) +Rtheor

V/A (s) θ(s− s0) , (25)

where, for example, the continuum threshold s0 can be found from the global duality relation [27], that usually
gives s0 = 1.35÷ 1.75 GeV2.

Within the analytic approach the DV -function has been analyzed in [16]. The improved studying has been
done in [26]. These results are close to each other. In complete analogy to vector case [26], we consider the
non-strange axial-vector DA-function. As a first step, we use a simple model for the function RA(s), that usually
used in the QCD sum rules

Rhad
A (s) =

2π

g2
A

m2
A δ(s−m2

A) +

(
1 +

α
(0)
s

π

)
θ(s− s0). (26)
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Figure 5. Experimental and theoretical DA-functions for axial-vector channel.

This model expression leads to the function

Dhad
A (Q2) =

2π

g2
A

Q2m2
A

(Q2 +m2
A)2

+

(
1 +

α
(0)
s

π

)
Q2

Q2 + s0
, (27)

which reproduces well the “experimental” curve Dexp
A (Q2) constructed by using experimental data shown in

Fig. 4 with the parameters: mA = 1260 MeV, g−2
A = 1.65, α

(0)
s = 0.4, and s0 = 1.75 GeV2. The values of these

parameters are close to the parameters that one usually uses in the sum rules method [28].
In Fig. 5 we plot the DA-function obtained in the APT approach (solid curve) and the experimental curve

(dashed line) constructed by using the ALEPH data. The DA-function turns out to be a smooth function
without any traces of resonance structure and, therefore, is useful to use in a theoretical analysis as the Euclidian
characteristic of the inclusive process. Fig. 5 demonstrates a good agreement of our result with the experimental
curve for whole interval of Q2. Note here that an use of any finite order of the operator product expansion
cannot adequately describe the D-function in the infrared region of low energy scale. The curve corresponding
to model expression (27) coincides with the dashed line.

It is important to note, that we obtained the value of Rtheor
τ,V which agrees well with the experimental data

(21) and, at the same time, within the the same theoretical framework, we obtained the value of Rtheor
τ,A = 1.045

which is very close to the experimental value (23).

6 Conclusions

The analytic approach proposed by Shirkov and Solovtsov modifies the perturbative expansions such that the
new approximations reflect basic principles of the theory, such as renormalization invariance, spectrality, and
causality. Analytic perturbation theory, which was used here, gives a self-consistent description of both the
spacelike and timelike regions. This method was applied to describe some physical quantities and functions an
experimental information for which can be extracted from the τ lepton decay data.

We performed a comparative analysis of the advantages and disadvantages of different forms of perturbative
expansion both from the general standpoint and in the context of application to the inclusive τ decay. We
presented the arguments in favor of the APT, which not only agrees with the general principles of the theory
but also has a number of practical advantages. In the analytic approach, the two methods for describing the
inclusive τ lepton decay in terms of timelike or spacelike variables are equivalent.

Within the APT, the dependence of the results on the choice of the renormalization prescription is essentially
reduced, and we can speak of the practical independence of the three-loop expressions from the renormalization
scheme. The calculations based on the APT thus considerably reduce the theoretical uncertainty of the results.
Therefore, using it as the perturbative component increases the reliability of information about the QCD
parameters obtained from the experimental data known with high accuracy for the τ lepton decay.

We considered the Adler function corresponding to the non-strange vector and axial-vector channels. These
functions, defined in the Euclidean region, are smooth functions and represent a convenient testing ground
for theoretical methods. The conventional method of approximating these function as a sum of perturbative
terms and power corrections cannot describe the low energy scale region because both the logarithmic and
power expansions diverge at small momenta. We have shown that our approach allows us to describe well the
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experimental data for τ decay in terms of the DV/A-functions down to the lowest energy scale and for Rτ in
the non-strange vector axial-vector channels.

Acknowledgments. The author would like to thank the organizers of the NPQCD-2007 School-seminar for
their warm hospitality, support, and the interesting scientific program. This work was supported in part by the
BRFBR (contract F06D-002) and the grant of the Ministry of Education of Belarus.

References

[1] R. Barate et al. (ALEPH Collab.), Eur. Phys. J.C 4, 409 (1998).

[2] K. Ackerstaff et al. (OPAL Collab.), Eur. Phys. J. C 7, 571 (1999).

[3] S. Schael et al. (ALEPH Collab.), Phys. Rept. 421, 191 (2005).

[4] Y.S. Tsai, Phys. Rev. D 4, 2821 (1971).

[5] N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1959
and 1980).

[6] H.F. Jones and I.L. Solovtsov, Phys. Lett. B 349, 519 (1995).

[7] K.A. Milton and O.P. Solovtsova, Phys. Rev. D 57, 5402 (1998).

[8] D.V. Shirkov and I.L. Solovtsov, Phys. Rev. Lett. 79, 1209 (1997).

[9] D.V. Shirkov and I.L. Solovtsov, Theor. Math. Phys. 150, 132 (2007).

[10] C.S. Lam and T.M. Yan, Phys. Rev. D 16, 703 (1977).

[11] E. Braaten, Phys. Rev. Lett. 60, 1606 (1988).

[12] E. Braaten, S. Narison, and A. Pich, Nucl. Phys. B 373, 581 (1992).

[13] F. Le Diberder and A. Pich, Phys. Lett. B 286, 147 (1992).

[14] K.A. Milton, I.L. Solovtsov, and O.P. Solovtsova, Phys. Lett. B 415, 104 (1997).

[15] S.G. Gorishny, A.L. Kataev, S.A. Larin, and L.R. Surguladze, Phys. Rev. D 43, 1633 (1991).

[16] K.A. Milton, I.L. Solovtsov, and O.P. Solovtsova, Phys. Rev. D 64, 016005 (2001).

[17] K.A. Milton and I.L. Solovtsov, Phys. Rev. D 55, 5295 (1997).

[18] D.V. Shirkov, Eur. Phys. J. C 22, 331 (2001).

[19] P.M. Stevenson, Phys. Rev. D 23, 2916 (1981).

[20] G. Grunberg, Phys. Rev. D 29, 2315 (1984).

[21] P.A. Ra̧czka, Z. Phys. C 65, 481 (1995).

[22] K.A. Milton and O.P. Solovtsova, Int J. Mod. Phys. A 26, 3789 (2002).

[23] D.E. Groom et al. (Particle Data Group), Eur. Phys. J. C 15, 1 (2000); Yao W.-M. et al. (Particle Data
Group), J. Phys. G 33, 1 (2006).

[24] K.A. Milton, I.L. Solovtsov, O.P. Solovtsova, and V.I. Yasnov, Eur. Phys. J. C 14, 495 (2000).

[25] K.A. Milton and I.L. Solovtsov, Mod. Phys. Lett. A 16, 2213 (2001).

[26] K.A. Milton, I.L. Solovtsov, O.P.Solovtsova, Mod. Phys. Lett. A 21, 1355 (2006).

[27] S. Peris, M. Perrottet, and E. de Rafael, JHEP 9805 001 (1998).

[28] L.J. Reinders, H.R. Rubinstein, and S. Yazaki, Phys. Rep. 127, 1 (1985).



Proceedings of the International School-seminar
“New Physics and Quantum Chromodynamics
at external Conditions”, pp. 217 – 222,
3-6 May 2007, Dnipropetrovsk, Ukraine

ON THE ONE-LOOP RENORMALIZATION OF NONCOMMUTATIVE GAUGE
THEORIES

Alexei Strelchenkoa

Dnipropetrovsk National University, Dnipropetrovsk, Ukraine

The first three non-zero heat trace coefficients of the non-minimal U(N) gauge field kinetic operator on the
Moyal plane taken in an arbitrary background are calculated. We show that the non-planar part of the heat
trace asymptotics is determined by U(1) sector of the gauge model. The non-planar or mixed heat kernel
coefficients are shown to be gauge-fixing dependent in any dimension of space-time. In the case of the degener-
ate deformation parameter the lowest mixed coefficients in the heat expansion produce non-local gauge-fixing
dependent singularities of the one-loop effective action that destroy the renormalizability of the U(N) model at
one-loop level.

1 Introduction

The heat kernel of (pseudo)differential operators has become one of the most powerful and actively developed
tools in quantum field theory and spectral geometry (see [1–4] where the implementation of the heat kernel
technique in a variety of physical and mathematical problems is discussed in details). Nowadays this topic has
acquired particular interest in the context of noncommutative geometry and quantum field theories on non-
commutative spaces [5–10]. The main result here is that the heat trace for a differential operator on a (flat)
noncommutative manifold, e.g. so-called generalized star-Laplacian arising, for instance, in the noncommutative
scalar λϕ4 theory, can be expanded in a power series in the ”proper time” parameter that resembles, in some
respect, the heat trace expansion for its commutative counterpart. This observation is of fundamental impor-
tance since makes it possible to employ the heat kernel machinery in many applications to noncommutative
models such as the investigation of one-loop divergences or quantum anomalies [9].

Another interesting aspect of the heat kernel on noncommutative spaces is closely related to the UV/IR
mixing phenomenon [11–13]. Namely, in the most general case when a star-differential operator involves both
left and right Moyal multiplications (as it is for the generalized Laplacian mentioned above), its heat trace
asymptotics contains a contribution produced by star-non-local terms that are singular when the deformation
parameter vanishes. Clearly, it defines the non-planar part of the heat kernel expansion which is, in particular,
responsible for the UV/IR mixing [7, 9]. The situation gets even more intriguing in the case when the deforma-
tion parameter is degenerate (that corresponds to space-like noncommutativity). In this case the non-planar
contribution to the heat expansion becomes dangerous since it can affect the one-loop renormalization of a
theory under consideration [10, 14].

The present talk is devoted to the investigation of renormalization properties of noncommutative gauge
theories by means of the heat kernel technic. In particular, we will obtain the heat trace asymptotics for non-
minimal operators appearing in the non-commutative U(N) gauge theory (on noncommutative non-compact flat
manifolds) in the background field formalism. To be precise, we are concerned with gauge field kinetic operator
on the Moyal plane taken in the covariant background gauge with an arbitrary gauge-fixing parameter. In the
commutative case non-minimal operators (in various physical systems) were investigated by many authors [15–
21]. In our study of the heat asymptotics we will follow the calculating method by Endo allowing to reduce the
whole task to the computation of the heat trace coefficients for minimal operators by means of some algebraic
relations between the heat kernel matrix elements [15, 19]. Indeed, this method turns out to be especially
convenient within the background field formalism; at the same time, its purely algebraic nature allows one to
generalize it easily to the noncommutative case.

2 Non-minimal operators in noncommutative
gauge theories

Consider a self-adjoint second order non-minimal star-differential operator that corresponds to the kinetic
operator of gauge particles propagating on Moyal plane in an external background. It can be represented in the
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form

(Dξ
µν)αβ = −

[
δµν∇2 + (

1

ξ
− 1)∇µ∇ν + 2[F̂µν , · ]?

]
αβ
, (1)

where
∇µ = ∂µ + L(Bµ)−R(Bµ)

is an anti-Hermitian covariant-derivative operator in the background field Bµ, ξ is a numerical gauge-fixing
parameter and Fµν is the curvature tensor of the gauge connection Bµ. Such an operator naturally appears
in the NC U(N) theory in the background field formalism; it defines, in particular, the quadratic in quantum
gauge fields part of the total action written in a covariant background gauge:

S2[Q] = −1

2

∫

Rn

dnx trN Qµ(x)D
ξ
µνQν(x),

where trN means trace over internal indices (although we do not write them explicitly) and Qµ describes
quantum fluctuations of the gauge fields. Functional integration of the expression expS2[Q], as known, gives
the one-loop effective action, Γgauge[B] = 1

2 ln det(Dξ), that is invariant under the background field (star)gauge
transformations of the form δBµ(x) = ∇µλ(x). Some aspects of the background field formalism in NC field
theories can be found, for instance, in Ref. [22].

We define also the operator D0 := −∇2 which is a self-adjoint non-negative operator corresponding to the
inverse propagator of ghost particles. In the following we assume that the operators D0 and Dξ

µν have no
zero-modes.

To simplify our analysis let us consider the case of U(1) gauge symmetry (generalization to the case of U(N)
symmetry will be discussed in details in the next section). The heat trace for the kinetic operator (1) is defined
as

Kξ(t) = TrL2 exp(−tDξ), (2)

where t is a (positive) spectral parameter and the trace is taken on the space of square integrable functions [3],
[4]. Usually this expression is regularized by subtracting the heat trace of the Laplacian 4 = −∂µ∂µ since the
small t asymptotic expansion of the quantity TrL2 exp(−tDξ) contains a volume term that is divergent on a
non-compact manifold.

We wish to compute the heat trace in the limit of small spectral parameter t → 0 by means of the Fock-
Schwinger-DeWitt proper-time method. To this aim we introduce two abstract Hilbert spaces spanned by basis
vectors |x〉 and |µ, x〉, respectively, and define ”Hamiltonian” operators D̂0 and D̂ξ associated with D0 and Dξ

µν

by1

〈x|D̂0|x′〉 = D0〈x|x′〉, 〈x, µ|D̂ξ|ν, x′〉 = Dξ
µλ〈x, λ|ν, x′〉. (3)

Operators on the right hand sides of these expressions are viewed as differential operators with respect to the
variable x. The basis vectors satisfy the orthonormality conditions

〈x|x′〉 = δ(x, x′), 〈x, µ|ν, x′〉 = δµνδ(x, x
′).

Note that, in the case of an arbitrary manifold, index of |µ, x〉 (as well as that of the conjugate 〈x, µ|) is regarded
as that of a covariant vector density of weight 1/2 [23].

Next, the proper-time transformation functions, or heat kernels, for the operators D0 and Dξ
µν are introduced

by

K0(x, x
′; t) = 〈x| exp[−tD̂0]|x′〉, Kξ

µν(x, x
′; t) = 〈x, µ| exp[−tD̂ξ]|ν, x′〉, (4)

where t is interpreted as the proper-time parameter2. By making use of (3) it can be straightforwardly checked
that the kernels K0(x, x

′; t) and Kξ
µν(x, x

′; t) satisfy the heat equations:

(
∂

∂t
+D0

)
K0(x, x

′; t) = 0,

(
δµλ

∂

∂t
+Dξ

µλ

)
Kξ
λν(x, x

′; t) = 0, (5)

with the boundary conditions

lim
t→0

K0(x, x
′; t) = δ(x, x′), lim

t→0
Kξ
µν(x, x

′; t) = δµνδ(x, x
′). (6)

1In this paper we are dealing with flat Euclidean space and therefore the distinction between upper and lower indices is irrelevant.
2That is, the exponential operators on the right hand sides of (4) can be regarded as evolution operators of a ”particle” in the

proper time t [24].
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From the kernels (4) one can obtain the one-loop effective action of pure NC Yang-Mills theory using the
standard formal expressions:

Γ(1)[B] = Γgauge[B] + Γghost[B],

Γgauge[B] =
1

2
ln det(Dξ) = −1

2

∫

Rn

dx

∫ ∞

0

dt

t
trVK

ξ
µν(x, x; t), (7)

Γghost[B] = − ln det(D) =

∫

Rn

dx

∫ ∞

0

dt

t
trVK0(x, x; t),

where the first term, Γgauge[B], describes a contribution to the effective action coming from the gauge sector of
the model while the second term, Γghost[B], stands for the ghost contribution; trV means trace over Euclidean
vector and, in general, internal indices. As is well-known, the expression for Γ(1)[B] is divergent and must be
regularized. This can be done, for instance, by replacing 1/t in the integrands of (7) with µ2ε/t1−ε, where ε
is a complex parameter and µ is a dimensional quantity introduced to keep the total mass dimension of the
expression unchanged. Now all information on the one-loop effective action contains in the heat traces which
at t→ 0+ can be expanded in series over the spectral (proper time) parameter :

TrK(D; t) '
∞∑

k=0

t(k−n)/2ak(D). (8)

The coefficients ak(D) here define the asymptotics of the heat trace as t→ 0. On the manifold without boundary
odd-numbered coefficients are equal to zero. From the expressions (7) and (8) one sees that terms with k ≤ n
in the heat kernel expansion can potentially give rise to divergences in the effective action.

In the commutative case the heat kernel coefficients ak, known also as diagonal Seeley-Gilkey-DeWitt co-
efficients [23], [25], [26], are expressed only in terms of local gauge covariant quantities, such as matter fields,
gauge field strength tensor and their covariant derivatives, and, hence, are manifestly gauge invariant objects
(see review article [4]). However, on θ-deformed manifolds, there appears another type of coefficients in the
heat kernel expansion (8), so-called mixed coefficients, that reflect the non-local nature of NC field theories [7],
[9]. As we have mentioned earlier, the contribution of these mixed terms is equivalent to the contribution of
non-planar diagrams to the effective action. In particular, it can develop non-local singularities as ε→ 0 if the
deformation parameter is degenerate [14].

3 Noncommutative Endo formula

Consider the heat trace for the operator (1), TrKξ
µν(x, x; t), and compute the first three non-zero heat kernel

coefficients in the small t asymptotic expansion for this quantity. In the Feynman gauge (ξ = 1) it can be done
by means of the calculating procedure described in Refs. [5], [6], [9]. To apply it in the more general case of an
arbitrary value of the gauge-fixing parameter we will reproduce in what follows the non-commutative version
of the Endo formula [15], [19]. To simplify our computations we suppose that the background field satisfies the
equation of motion:

∇µFµν = ∂µFµν + [Bµ, Fµν ]? = 0. (9)

Then the following relation holds (see Ref [28] for details):

Kξ
µν(x, x

′; t) = Kξ=1
µν (x, x′; t)−

∫ t
ξ

t

dτ ∇µ∇′
νK0(x, x

′; τ), (10)

where and prime over nabla indicates that this operator acts on x′ variable. Accordingly, one can write down
the similar relation for the corresponding heat traces3:

Kξ
(
t,D(ξ)

)
= Kξ=1

(
t,D(ξ=1)

)

−
∫ t/ξ

t

dτ

∫

M
d4x

(
∇µ∇′

µK0(x, x
′; τ)− ∂µ∂′µK ′

0(x, x
′; τ)

)
|x=x′ , (11)

where K ′
0(x, x

′; τ) := 〈x|e−t∂2 |x′〉. Formula (11) is the starting point of our computations. More precisely, we
are going to investigate the heat asymptotics for the trace of the kernel (11). In this connection it is necessary to
note that the operators exp (−tDξ=1) and exp (−tD0) are trace-class for positive values of the spectral parameter
t and, hence, the asymptotic expansions for the kernels in RHS of (11) are well-defined [5], [6], [9], [10].

3Notice that one has to eliminate volume divergences by adding appropriate terms.
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4 U(N) gauge symmetry

Let TA, A = 0, 1, ..., N2 − 1, be the generators of the U(N) group in the fundamental representation. The
background potential is represented as Bµ = BAµ T

A that is a N ×N matrix in the group space. We normalize

the U(1) generator as follows T 0 = 1√
2N

, so that

trN TATB =
1

2
δAB .

The generators of the SU(N) subgroup obey the algebra [T a, T b] = ıfabcT c, where fabc are totally antisymmetric
structure constants of the gauge group. One can also define an anticommutator as {T a, T b} = 1

N δ
ab + dabcT c

with symmetric structure constants dabc. The completeness relation is written in the form (here, as usual, the
repeated indices are summed over)

T aαβT
a
γδ =

1

2
δαδδβγ −

1

2N
δαβδγδ

which can be used to derive the following useful identities:

T aαβT
a
βγ =

N2 − 1

2N
δαγ , TAαβT

A
βγ =

N

2
δαγ . (12)

It can be easily seen that the relations (9)-(10) remain unchanged with the only difference that now one looks
at them as matrix relations. Similarly, to define heat kernels for the operators (D0)αβ and (Dξ

µν)αβ one can
introduce two abstract Hilbert spaces spanned by basis vectors |x,A〉 and |µ, x,A〉, respectively, which satisfy
the orthonormality conditions

〈A, x|x′, B〉 = δ(x, x′)δAB ,

〈A, x, µ|ν, x′, B〉 = δµνδ(x, x
′)δAB .

Then the heat kernels for the operators D0 and Dξ
µν are defined by

K0(x, x
′; t) = (x| exp[−tD̂0]|x′),

Kξ
µν(x, x

′; t) = (x, µ| exp[−tD̂ξ]|ν, x′), (13)

where we denote (x| = TA〈A, x| := ∑N2

A=1 T
A〈A, x| and (x, µ| = TA〈A, x, µ|.

As an example, consider the planar contribution to the non-minimal (ξ-dependent) term of the quantity
(11). In the U(N) case it reads

∫

Rn

dx trN

[
{∇Lµ∇Lµe−tD

L
0 +∇Rµ∇Rµ e−tD

R
0 − 2∂2et∂

2}(x | x′)
]
x=x′

. (14)

With the help of (12) and the orthonormality condition one has

(x | x′)αβ = TAαγ〈A, x|x′, B〉TBγβ = TAαγT
A
γβ〈x|x′〉 =

N

2
δαβ〈x|x′〉.

By making use of the plane-wave basis and applying the calculating technique of the preceding section one
obtains:

ãplanar2 (∇2, D0) =
1

(4π)
n
2

N

2

∫

Rn

dx
4− n
24

trN Fµν ? Fµν , (15)

ãplanar4 (∇2, D0) =
1

(4π)
n
2

N

2

∫

Rn

dx
n− 6

360
trN (6Fµν ? Fνλ ? Fλµ

+ 2∇µFνλ ?∇µFνλ −∇µFµλ ?∇νFνλ).

where trN means trace over internal indices. The mixed terms are treated in a similar way. One gets, in
particular,

ãmixedn (∇2, D0) = −2(det θ)−1(2π)−n
∫

Rn

dx

∫

Rn

dy trN Bµ(x)T
DBµ(y)T

D. (16)

Next,

trN TATDTCTD = trN

(
1

2N
TATC + TAT dTCT d

)

= trN

(
1

2N
TATC

)
+

1

2
TAααT

C
ββ −

1

2N
TAαβT

C
βα =

1

2
trNT

A trNT
C ,
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where we used the completeness relation for the generators of the SU(N) group. Hence one arrived at the
following expression for ãmixedn :

ãmixedn (∇2, D0) = − (det θ)−1

(2π)n

∫

Rn

dx

∫

Rn

dy trNBµ(x) trNBµ(y)

= − (det θ)−1

2(2π)n

∫

Rn

dx

∫

Rn

dy B0
µ(x) B

0
µ(y). (17)

According to the formula (11), the planar heat kernel coefficients for the operator (1) are given by

aplanar4 =
1

(4π)
n
2

N

2

∫

Rn

dx

(
n

6
− 1 +

1

12
(1− ξ n−4

2 )

)
trN Fµν ? Fµν ,

aplanar6 =
1

(4π)
n
2

1

360

N

2

∫

Rn

dx trN {120Fµν ? Fνλ ? Fλµ (18)

− 60Fµν ?∇2Fµν − 2[n+ 1− ξ n−6
2 ](6Fµν ? Fνλ ? Fλµ

+ 2∇µFνλ ?∇µFνλ −∇µFµλ ?∇νFνλ)}.
The first non-zero mixed coefficient is written as

amixedn+2 = {2(n− 1) + ξ−1} (det θ)
−1

2(2π)n

∫

Rn

dx

∫

Rn

dy B0
µ(x) B

0
µ(y). (19)

This expression is manifestly gauge invariant and depends only upon zeroth component of the gauge potential.

5 Discussion

Let us make a few remarks about the obtained results. We consider the particular case of dimension n = 4
for the purpose of definiteness. First, it is seen from (18) that the fourth heat kernel coefficient do not depend
upon the gauge fixing parameter ξ. Thus, the one-loop β-function is a gauge-fixing independent object as it is
in the commutative Yang-Mills theory (see, for instance, Refs. [16], [18]).

Second, in the case of a non-degenerate θ matrix the one-loop renormalization of the theory is not affected
by the mixed coefficients. Moreover, they are completely determined by U(1) sector of the model. In the
diagrammatic approach this implies the known fact that non-planar one-loop U(N) diagrams contribute only
to the U(1) part of the theory [12], [29]. As it was mentioned, such coefficients are responsible for the UV/IR
mixing phenomenon [6], [9].

Third, in the case of a degenerate deformation parameter the first non-trivial mixed contribution appears
already in a4-coefficient (see also the recent paper [10]). To see this let us examine the space-like noncommu-
tativity when components θ0i, i = 1, 2, 3 are equal to zero. For convenience, we adopt the same conventions as
in Ref. [14] (see Appendix B for details). Then after simple manipulations one gets

amixed4 =
(detθ2)

−1

32π3
(8 + ln ξ)

∫

R2

dx̃

∫

R2×R2

dx dy
∑

i=2,3

B0
i (x̃, x) B

0
i (x̃, y), (20)

where tensor θ2 corresponds to the i = 2, 3 plane. Note that, contrary to its planar counterpart, this coefficient
itself is dependent on the gauge-fixing parameter. Next, it can be easily shown that a non-planar divergent part
of the one-loop effective action for the U(1) sector of the model is presented by4

Γdiv.NP [B0] = − µ2ε

32π3detθ2
(8 + ln ξ)

∫ ∞

0

dt

tε

∫

R2

dx̃

∫

R2×R2

dx dy

×
∑

i=2,3

B0
i (x̃, x) B

0
i (x̃, y) exp[− t(x− y)

2

detθ2
],

which gives the non-local, singular (as ε→ 0) and, in addition, gauge-fixing dependent contribution to the 1PI
2-point Green function of the form [14]

Γdiv.ij U(1)(x1 − x2) = − µ2ε

16π3detθ2
δij (8 + ln ξ)Γ(ε)δ2(x̃1 − x̃2)

(
(x1 − x2)

2

detθ2

)−ε
.

Hence we come to the conclusion that the renormalization properties of NC U(N) theory are actually ruined by
its U(1) sector in the degenerate case. It looks rather surprising but even this crucial drawback of the space-like
noncommutative models may be bypassed in the context of so-called twisted gauge transformations considered
in the next section.

4For the sake of brevity we do not consider the ghost contribution here. We remark only that this contribution does not change
our conclusion.
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The explicit semiclassical treatment of the logarithmic perturbation theory for the bound-state problem for
the spherical anharmonic oscillator and the screened Coulomb potential is developed. Based upon the ~-
expansions and suitable quantization conditions a new procedure for deriving perturbation expansions is offered.
Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form
both for ground and excited states have been obtained. As examples, the perturbation expansions for the energy
eigenvalues of the quartic anharmonic oscillator and the Debye potential are considered.

1 Introduction

The main task in application of the quantum mechanics is to solve the Schrödinger equations with different
potentials. Unfortunately, realistic physical problems can practically never be solved exactly. Then one has
to resort to some approximations. Most widely used among them is the perturbation theory. However, the
explicit calculation with the Rayleigh–Schrödinger perturbation theory, described in most quantum mechanics
textbooks, runs into the difficulty of the summation over all intermediate unperturbed eigenstates. To avoid
this difficulty, various alternative perturbation procedures have been proposed [1–13].

Nevertheless up to now, one of the principal approximation techniques is the logarithmic perturbation theory
[14–21]. Within the framework of this approach, the conventional way to solve a quantum-mechanical bound-
state problem consists in changing from the wave function to its logarithmic derivative and converting the
time-independent Schrödinger equation into the nonlinear Riccati equation.

In the case of ground states, the consequent expansion in a small parameter leads to handy recursion
relations that permit us to derive easily the corrections to the energy as well as to the wave function for
each order. However, when radially excited states are considered, the standard technique of the logarithmic
perturbation theory becomes extremely cumbersome and, practically, inapplicable for describing higher orders
of expansions.

Recently, a new procedure based on specific quantization conditions has been proposed to get series of the
logarithmic perturbation theory via the ~-expansion technique within the framework of the one-dimensional
Schrödinger equation [22]. Avoiding the disadvantages of the standard approach, this straightforward semiclas-
sical procedure results in new handy recursion formulae with the same simple form both for the ground state
and excited states.

The object of the present work is to extend the above mentioned formalism to the bound-state problems
within the framework of the three-dimensional Schrödinger equation with central potentials, such as the anhar-
monic scillator potential and the screened Coulomb one, which are widely used in practice.

2 Basic concepts of the method

We study the bound-state problem for a non-relativistic particle moving in a central potential admitted bounded
eigenfunctions and having in consequence a discrete energy spectrum. Let us therefore consider the reduced
radial part of the Schrödinger equation

− ~2

2m
U ′′(r) +

[
~2l(l + 1)

2mr2
+ V (r)

]
U(r) = EU(r), (1)

with the effective potential having only one simple minimum.
Following usual practice, we apply the substitution, C(r) = ~U ′(r)/U(r), accepted in the logarithmic per-

turbation theory and go over from the Schrödinger equation (1) to the Riccati equation

~C ′(r) + C2(r) =
~2l(l + 1)

r2
+ 2mV (r)− 2mE. (2)

e-mail: atutik@ff.dsu.dp.ua, bdobrovolska@resonance.zp.ua

c© Tutik R.S., Dobrovolska I.V., 2007.
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According to our assumption, we are seeking the eigenvalues and the eigenfunctions of this equation explicitly
in a semiclassical manner with series expansions in powers of the Planck constant

E =

∞∑

k=k1

Ek~
k, C(r) =

∞∑

k=k2

Ck(r)~
k, (3)

where the order in ~ of these quantities, i.e. the values of k1 and k2, should be defined as a preliminary.

As in the standard approach, the substitution of these expansions into the Riccati equation leads to the simple
recursion system. This system can be solved successively in the case of ground states, while the description of
the excited states has some problems with taking into account the nodes of wave functions. For avoiding these
problems, we shall attempt to use the quantization condition and the formalism of the theory of functions of a
complex variable.

Remind that, in the complex plane, a number of zeros N of a regular function inside a closed contour
is defined by the principle of argument known from the complex analysis. Being applied to the logarithmic
derivative, C(r), it means that

1

2πi

∮
C(r) dr =

1

2πi

∞∑

k=0

~k
∮
Ck(r) dr = ~N. (4)

This quantization condition is exact and is widely used for deriving higher-order corrections to the WKB-
approximation [23, 24] and the 1/N -expansions [25–27]. There is, however, one important point to note. Because
the radial and orbital quantum numbers, n and l, correspondingly, are specific quantum notions, the quantization
condition (4) must be supplemented with a rule of achieving a classical limit for these quantities. It is this rule
that stipulates the kind of the semiclassical approximation.

In particular, within the framework of the WKB-approach the passage to the classical limit is implemented
using the rule

~→ 0, n→∞, l→∞, ~n = const, ~l = const, (5)

whereas the 1/N -expansion requires the condition [25–27]

~→ 0, n = const, l→∞, ~n→ 0, ~l = const. (6)

The proposed semiclassical treatment of the logarithmic perturbation theory involves the alternative possi-
bility:

~→ 0, n = const, l = const, ~n→ 0, ~l→ 0. (7)

With the last rule, the right-hand side of the equation (4) has the first order in ~ and the quantization
condition now takes the simple form

1

2πi

∮
C1(r) dr = N,

1

2πi

∮
Ck(r) dr = 0, k 6= 1. (8)

However, this definition of the quantization condition is incomplete since we have not pointed out the path
of integration. We shall now show that the suitable choice of the contour of integration and the consequent
integration with application of the Cauchy residue theorem easily solves the problem of describing radially
excited states.

3 The anharmonic oscillator

Quantization conditions. The discussion of details of the proposed technique we begin with the case of the
anharmonic oscillator potential which is given by a symmetric function V (r) that can be written as a Taylor
series expansion

V (r) =
1

2
mω2r2 +

∑

i≥1

fir
2i+2. (9)

In the first place, let us consider the rule (7) of achieving the classical limit from the physical point of
view. Since ~l → 0 as ~ → 0, the centrifugal term, ~2l (l + 1) /r2, has the second order in ~ and disappears in
the classical limit that corresponds to falling a particle into the center. This means that a particle drops into
the bottom of the potential well as ~ → 0 and its classical energy becomes E0 = minV (r) = 0. Hence, the
series expansions in powers of the Planck constant for the energy eigenvalues and the C(r) must now read as
E =

∑∞
k=1Ek~

k and C(r) =
∑∞
k=0 Ck(r)~

k.
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Upon inserting these expansions into the Riccati equation (2) and collecting coefficients of equal powers of
~, we obtain the following hierarchy of equations

C2
0 (r) = 2 mV (r),

C ′
0(r) + 2 C0(r)C1(r) = −2 mE1,

C ′
1(r) + 2 C0(r)C2(r) + C2

1 (r) =
l(l + 1)

r2
− 2 mE2,

· · ·

C ′
k−1(r) +

k∑

i=0

Ci(r)Ck−i(r) = −2 mEk, k > 2. (10)

In the case of ground states, this recurrence system can be solved as straightforwardly as in the standard
approach. For excited states, we intend to take into account the nodes of the wave function with the quantization
condition (8) for which we must define the contour of integration.

It should be stressed that our technique is quite distinguished from the WKB method not only in the rule of
achieving a classical limit but also in the choice of a contour of integration in the complex plane. With a view
to elucidate the last difference let us now sketch out the WKB treatment of this bound-state problem. In the
complex plane, because the potential is described by the symmetric function (9), there are two pairs of turning
points, i.e. zeros of the classical momentum, on the real axis. Therefore we have two cuts between these points:
in the region r > 0 as well as in the region r < 0. In spite of only one cut lies in the physical region r > 0, the
contour of integration in the WKB quantization condition has to encircle both cuts for the correct result for
the harmonic oscillator to be obtained [28].

In our approach, when a particle is dropping into the bottom of the potential well these four turning points
are drawing nearer and, at last, are joining together at the origin. Consequently, all zeros of the wave function
are now removed from both positive and negative sides of the real axis into the origin and our contour of
integration must enclose only this point and no other singularities.

Further, let us count the multiplicity of a zero formed in the wave function at r = 0. Imposed by the
requirement of the regularity, the behavior rl+1 as r → 0 brings the value l + 1. The number of nodes in the
physical region r > 0 is equal to the radial quantum number n. But, because the potential (9) is a symmetric
function, the same number of zeros must be in the region r < 0, too. Then the total number of zeros inside the
contour becomes equal to N = 2n+ l + 1.

For evaluation of the contour integrals in the quantization condition (8), let us consider the system (10) and
investigate the behavior of the functions Ck(r). From the first equation of this system, it follows instantly that
the C0(r) can be written as

C0(r) = − [2mV (r)]
1/2

= −mω r

(
1 +

2

mω2

∞∑

i=1

fi r
2i

)1/2

= r

∞∑

i=0

C0
i r

2i, (11)

where the minus sign is chosen from the boundary conditions and coefficients C0
i are defined by parameters of

the potential through the relations

C0
0 = −mω, C0

i =
1

2mω

(
i−1∑

p=1

C0
pC

0
i−p − 2mfi

)
, i ≥ 1. (12)

At the origin, on account of the equality C0(0) = 0, a simple pole arises for the function C1(r), while Ck(r)
has a pole of the order (2k − 1). Thus Ck(r) can be represented by the Laurent series

Ck(r) = r1−2k
∞∑

i=0

Cki r
2i, k ≥ 1. (13)

Finally, with applying the residue theorem, the quantization condition (8) expressed explicitly in terms of
the coefficients Cki takes the especially simple form

Ckk−1 = Nδ1,k, (14)

where N = 2n+ l + 1 .

It is this quantization condition that makes possible the common consideration of the ground and excited
states and permits us to derive the simple recursion formulae.
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Recursion formulae and the example of application. The substitution of the series (12) and (13) into the
system (10) in the case i 6= k− 1 yields the recursion relation for obtaining the Laurent-series coefficients of the
logarithmic derivative of the wave function

Cki = − 1

2C0
0


(3− 2k + 2i)Ck−1

i +
k−1∑

j=1

i∑

p=0

CjpC
k−j
i−p +2

i∑

p=1

C0
pC

k
i−p − l(l + 1)δ2,kδ0,i


 . (15)

If i = k − 1, by equating the expression (15) for Ckk−1 to the quantization condition (14) we arrive at the
recursion formulae for the energy eigenvalues

2mEk = −Ck−1
k−1 −

k∑

j=0

k−1∑

p=0

CjpC
k−j
k−1−p . (16)

Derived in this way, first corrections to the energy eigenvalues of the spherical anharmonic oscillator take
the form

E1 =
1 + 2N

2
ω, E2 =

(3− 2L+ 6 η) f1
4m2 ω2

,

E3 =
1 + 2N

8m4 ω5

[
(−21 + 9L− 17 η) f1

2 +m (15− 6L+ 10 η) ω2 f2
]
,

E4 =
1

16m6 ω8

([
333 + 11L2 − 3L (67 + 86 η) + 3 η (347 + 125 η)

]
f1

3

−6m
[
60 + 3 (−13 + L) L+ 175 η − 42Lη + 55 η2

]
ω2 f1 f2

+m2
[
6L2 − 12L (6 + 5 η) + 35 (3 + 2 η (4 + η))

]
ω4 f3

)
,

E5 = − 1 + 2N

128m8 ω11

([
30885 + 909L2 − 27L (613 + 330 η)

+η (49927 + 10689 η)] f1
4 − 4m

[
11220 + 393L2

−6L (1011 + 475 η) + η (16342 + 3129 η)] ω 2 f1
2 f2

+16m2
[
33L2 − L (501 + 190 η) + 63 (15 + η (19 + 3 η))

]
ω4 f1 f3

+2m2
[
3495 + 138L2 + 4538 η + 786 η2 − 30L (63 + 26 η)

]
ω4 f2

2

−4m3
[
30L2 − 20L (24 + 7 η) + 63 (15 + 2 η (8 + η))

]
ω6 f4

)
, (17)

where N = 2 n+ l + 1, η = N (N + 1), L = l(l + 1).
As it was expected, the obtained expansion is indeed the series of the logarithmic perturbation theory in

powers of the Taylor-series coefficients for the potential function, with the first approximation being equal to
the energy of the three-dimensional harmonic oscillator

E1 =

(
2n+ l +

3

2

)
ω. (18)

Thus, the problem of obtaining the energy eigenvalues and eigenfunctions for the bound-state problem for
the anharmonic oscillator can be considered solved. The equations (15)-(16) have the same simple form both
for the ground and excited states and define a useful procedure for the successive calculation of higher orders
of expansions of the logarithmic perturbation theory.

As an example, we examine eigenenergies for the anharmonic oscillator with the potential

V (r) = mω2r2/2 + λr4, λ > 0. (19)

Then the equations (17) are rewritten as

E1 =

(
1

2
+N

)
ω, E2 =

(3− 2L+ 6 η)

4m2 ω2
λ, E3 =

− (1 + 2N) (21− 9L+ 17 η)

8m4 ω5
λ2,

E4 =

(
333 + 11L2 − 3L (67 + 86 η) + 3 η (347 + 125 η)

)

16m6 ω8
λ3,

E5 =
− (1 + 2N)

128m8 ω11

[
30885 + 909L2 − 27L (613 + 330 η) + η (49927 + 10689 η)

]
λ4. (20)
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We recall that here N = 2 n+ l + 1, η = N (N + 1), L = l(l + 1).
It is readily seen that the use of the ~-expansion technique does lead to the explicit perturbation expansion

in powers of the small parameter λ.
In the case of ground states, obtained expansions for the energy eigenvalues coincide with those listed in

Ref. [29]. In the case of excited states, our corrections coincide with corrections up to the second order which
are just only calculated in Ref. [30].

As it is known, the expansions for the anharmonic oscillator are asymptotic and diverge for any finite value
of the parameter λ that requires the use of some procedures of improving the convergence (for references see
[31]). It should be noted, that the proposed technique is easily adapted to apply any scheme of the series
renormalization [32].

4 The screened Coulomb potential

Quantization conditions. Now let us consider the case of the screened Coulomb potential which in common
practice has a form

V (r) =
1

r
F (κ, r). (21)

where κ is a small parameter.
In what following, we do not single out explicitly the screening parameter, but incorporate it into coefficients

Vi of the Taylor series expansion of this potential

V (r) =
1

r

∑

i=0

Vir
i. (22)

Note, that after performing the scale transformation r → ~2r powers of the screening parameter appear in
common with powers of Planck’s constant squared. Hence, the perturbation series must be, as a matter of fact,
not only κ-expansions but also the semiclassical ~2 -expansions, too.

In the classical limit, when a particle falls into the center, its energy eventually approaches infinity. Hence,
the expansions (3) must be represented as E = ~−2

∑∞
k=0Ek~

2k and C(r) = ~−1
∑∞
k=0 Ck(r)~

k that results in
the recurrent system

C2
0 (r) = −2mE0 ,

C0(r)C1(r) = m
[
V (r)− E1

]
,

C ′
1(r) + 2C0(r)C2(r) + C2

1 (r) =
l(l + 1)

r2
− 2mE2 ,

· · ·

C ′
k−1(r) +

k∑

j=0

Cj(r)Ck−j(r) = −2mEk , k > 2. (23)

which changes only in the first two equations in comparison with (10).
Now, let us consider the choice of the contour of integration in the quantization relation. Since in the

classical limit a particle falls into center, the classical turning points again draw to the origin and the nodes of
the wave function are joined together at r = 0. Then, as well as in the anharmonic oscillator case, the contour
of integration must enclose only the origin. However, now the nodes of the function come into the origin only
from the positive region of the real axis. Thus, with the number of nodes and the value l+ 1 included,the total
number of zeros in the quantization condition (4) becomes equal to N = n+ l + 1.

Further, from (23) it appears that C0(r) is the constant and its Taylor-series coefficients are

C0
0 = −

√
−2mE0 , C

i
0 = 0, (24)

Owing to the Coulomb behavior of the potential at the origin, the C1(r) has a simple pole at this point, while
the function Ck(r) has a pole of the order k and may be represented as

Ck(r) = r−k
∞∑

i=0

Cki r
i, (25)

that leads to the known quantization condition

Ckk−1 = Nδ1,k, (26)

where N = n+ l + 1 .
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Recursion formulae and the example of application. After substitution (24)-(25) into (23), when (i 6= k), we
have:

C1
i =

m

C0
0

[
Vi − E1δi,1

]
,

Cki = − 1

2C0
0

[
(i− k + 1)Ck−1

i +
k−1∑

j=1

i∑

p=0

CjpC
k−j
i−p + 2mEk δi,k − l(l + 1) δi,0δk,2

]
, k > 1. (27)

In the case i = k, from (26) and (27), we obtain

E0 = −mV
2
0

2N2
, E1 = V1 , Ek = − 1

2m

[
Ck−1
k +

k−1∑

j=1

k∑

p=0

CjpC
k−j
k−p + 2C0

0C
k
k

]
, k > 1, (28)

that, through the the Taylor-series coefficients for the potential function, is

E0 = −mV
2
0

2N2
, E1 = V1 , E2 =

(
L− 3N2

)
V2

2mV0
, E3 =

N2

2m2 V0
2

(
1− 3L+ 5N2

)
V3 ,

E4 =
N2

8m3 V0
4

((
3L2 − 5N2 − 7N4

)
V2

2 +
(
3L (2− L)− 5N2 (5− 6L)− 35N4

)
V0 V4

)
,

E5 =
N4

8m4 V0
5

((
−5L (2 + 3L) + 7N2 (9− 2L) + 45N4

)
V2 V3+

(
12− 50L+ 15L2 + 35N2 (3− 2L) + 63N4

)
V0 V5

)
, (29)

where N = n+ l + 1 and L = l(l + 1).
We see that the zero approximation gives the exact solution for the Coulomb problem.
As an example of application, we consider the case of the Debye potential, which is widely used in many

branches of physics:

V (r) = −α
r

exp(−κr). (30)

For this potential, the first corrections to the energy eigenvalues take the form

E0 = −mα
2

2N2
, E1 = ακ , E2 =

(
L− 3N2

)

4m
κ2 ,

E3 =
N2

12m2 α

(
1− 3L+ 5N2

)
κ3 ,

E4 =
N2

192m3 α2

[
3L (2 + 5L)− 5 (11− 6L) N2 + 77N4

]
κ4 ,

E5 =
N4

320m4 α3

[
4− 50L− 45L2 + 35 (7− 2L) N2 + 171N4

]
κ5, (31)

where N = n+ l + 1, and L = l(l + 1).
And again we recognize the explicit perturbation expansion in powers of the small parameter κ.
Typical results of the calculation with these formulae are presented in the Table I where the sequences of

the partial sums of K corrections to the energy eigenvalues for the Debye potential V (r) = −α exp(−κr)/r is
compared with results of the numerical integration, Enum, in Coulomb units ~ = m = α = 1. It is seen that
for small values of the screening parameter, the convergence of the series is quite sufficient for the use them
without any renormalization.

5 Summary

In conclusion, a new useful technique for deriving results of the logarithmic perturbation theory has been
developed. Based upon the ~-expansions and suitable quantization conditions, new handy recursion relations for
solving the bound-state problem for a spherical anharmonic oscillator and a static screened-Coulomb potential
have been obtained. These relations can be applied to excited states exactly in the same manner as to ground
states providing, in principle, the calculation of the perturbation corrections of large orders in the analytic or
numerical form. Besides this remarkable advantage over the standard approach to the logarithmic perturbation
theory, our method does not imply knowledge of the exact solution for the zero approximation, which is obtained
automatically. And at last, the recursion formulae at hand, having the same simple form both for the ground
state and excited states, can be easily adapted to applying any renormalization scheme for improving the
convergence of obtained series, as it is described in [32].

Acknowledgments. This research was supported by a grant N 0106U000782 from the Ministry of Education
and Science of Ukraine which is gratefully acknowledged.
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Table 1. The partial sums of K corrections to the energy eigenvalues for the Debye potential compared with
results of the numerical integration, Enum, in Coulomb units ~ = m = α = 1.

K
n = 0, l = 0,
κ = 0.2

n = 1, l = 0,
κ = 0.04

n = 1, l = 1,
κ = 0.02

0 0.5000000000 0.1250000000 0.05555555556
1 0.3000000000 0.0750000000 0.03555555556
2 0.3300000000 0.0825000000 0.03805555556
3 0.3260000000 0.0816250000 0.03781555556
4 0.3271000000 0.0818140625 0.03786145556
5 0.3266800000 0.0817559375 0.03784969436
10 0.3268179839 0.0817715528 0.03785241171
15 0.3268059572 0.0817711705 0.03785238868
20 0.3268100537 0.0817711991 0.03785238922
25 0.3268067333 0.0817711961 0.03785238920

Enum 0.3268085112 0.0817711958 0.03785238920
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PLASMA PHOTONS ARE ABLE TO EMIT AXIONS

V. S. Vanyashin

Dnipropetrovsk National University, Dnipropetrovsk, Ukraine

Hypothetical axions [1] have direct electromagnetic coupling similar to that of neutral pions:

LAγ = gAγ ϕAE ·H. (1)

Stellar plasma photons γ̃ undergo the Primakoff conversion to axions A. The best upper limit for the
axion-photon coupling constant gAγ was obtained from the requirement that stellar evolution time scales are
not appreciably affected by the axionic energy-loss channel [2]:

gAγ < 0.6× 10−10GeV−1. (2)

It should be noted that the Primakoff conversion is complemented by another axion producing process which
is caused by the two factors: the plasma photon instability and the axion mass smallness.

Photons in plasma are quasi-particles having limited lifetime. So they can emit low-mass particles within
the range of their energy spreading. For the transversal photons in stellar interiors the energy spreading is
orders of magnitude greater than the upper limit for the invisible axion mass [2]

mA < 10−3eV. (3)

The probability per unit time for the ”decay” of a transversal plasma photon γ̃ −→ γ̃ + A is given by the
expression:

1

τ
=

g2
Aγ

16πEp

∞∫

0

dK K2

1∫

−1

dx
1

eω/T − 1

1

1− e−ω′/T

[(
1 + (n · n′)

2
)(k2ω′

ω
+
k′2ω

ω′

)
− 4

(
k · k′)

]
×

1

π

Γ(ω)/2 + Γ(ω′)/2

(ω − ω′ − Ep)2 + [Γ(ω) + Γ(ω′)]2/4
, (4)

where

ω ≈
√
ω2

Le + k2, ω′ ≈
√
ω2

Le + k′2, k = K +
p

2
, k′ = K− p

2
, x =

K · p
Kp

. (5)

In this formula initial k and final k′ plasma photon momenta are integrated over the Plank distribution,
while the axion energy Ep =

√
mA

2 + p2 is kept fixed. That is adapted for calculating of the additional axionic
flux, which, certainly, will diminish the existing stellar evolution [2] and laboratory [3] upper limits for the
axion-photon coupling constant.
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Using a plaquette formulation for lattice gauge models we describe monopoles of the 3D SU(2) theory which
appear as configurations in the complete axial gauge and violate the continuum Bianchi identity. Furthemore
we derive a dual representation for the Wilson loop in arbitrary representation and calculate the form of the
interaction between generated electric flux and monopoles in the region of weak coupling relevant for the
continuum limit. The effective theory which controls the interaction is a generalized version of the sine-Gordon
model. The mechanism of confinement is proposed on the basis of the effective model obtained.

1 Introduction

The problem of the permanent confinement of quarks inside hadrons attracts attention of the theoretical physi-
cists for the last three decades (see [1] and refs. therein for a recent review of the problem). Two of the most
popular and the most elaborated mechanisms of confinement are based on the condensation of certain topologi-
cally nontrivial configurations - the so-called center vortices or monopoles. In this paper we are interested in the
second of these configurations. It was proposed in [2] in the context of continuum compact three dimensional
(3D) electrodynamics that the string tension is nonvanishing in this theory at any positive coupling constant,
and the contribution of monopoles to the Wilson loop was estimated in the semiclassical approximation. Later
this consideration was extended to U(1) lattice gauge theory (LGT) in 3D [3]. It turns out that these are pre-
cisely monopole configurations which make the string tension nonvanishing at all couplings. A rigorous proof of
this property was done in [4]. While monopoles of abelian gauge models can be given a gauge invariant definition
it is not the case for nonabelian models. The most popular approach consists in a partial gauge fixing such that
some abelian subgroup of the full nonabelian group remains unbroken. Then, one can define monopoles in a
nonabelian theory as monopoles of the unbroken abelian subgroup. Here we propose a different route to define
monopoles in nonabelian models. Its main feature is complete gauge fixing. Monopoles appear as defects of
smooth gauge fields which violate the Bianchi identity in the continuum limit, in the full analogy with abelian
models. Our principal approach is to rewrite the compact LGT in the plaquette (continuum field-strength)
representation and to find a dual form of the nonabelian theory. The Bianchi identity appears in such formu-
lation as a condition on the admissible configurations. This allows to reveal the relevant field configurations
contributing to the partition function and various observables. Such a program was accomplished for the abelian
LGT in [3]. Here we are going to work out the corresponding approach for nonabelian models on the example
of 3D SU(2) LGT.

2 Plaquette formulation and monopoles

The standard and possibly the only one available now tool of an investigation of such nonperturbative phe-
nomenon like confinement is a quantization of the gauge fields on the lattice. Originally, LGT was formulated
by K. Wilson in terms of group valued matrices on links of the lattice as fundamental degrees of freedom [5].
The partition function reads

Z =

∫
DU exp{−βS[Uµ(x)]}, (1)

where S is the standard Wilson action and the integral is calculated over the Haar measure on the group at
every link of the lattice.

The plaquette representation has been invented originally in the continuum theory by M. Halpern and
extended to lattice models by G. Batrouni [6]. In this representation the plaquette matrices play the role of the
dynamical degrees of freedom and satisfy certain constraints expressed through Bianchi identities in every cube
of the lattice. In papers [7], [8], [9] we have developed a different plaquette formulation which we outline below.

e-mail: asun-burn@yandex.ru, boleg@bitp.kiev.ua
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In the complete axial gauge

U3(x, y, z) = U2(x, y, 0) = U1(x, 0, 0) = I (2)

the partition function (1) can be identically rewritten on the dual lattice as

Z =

∫ ∏

l

dVl exp[β
∑

l

Re TrVl]

4∏

i=1

∏

x(i)

J
(
V (i)
x

)
. (3)

Here, Vl is a plaquette (dual link l) matrix which satisfies constraint expressed through the group delta-function

J(Vx) =
∑

r

drχr (Vx) , (4)

where the sum over r is a sum over all representations of SU(N) , χr is character of r-th representation and
dr = χr(I). Vx is a certain product of plaquette matrices around a cube (dual site x) of the lattice taken with
the corresponding connectors. Connectors provide correct parallel transport of opposite sites of a given cube
for nonabelian theory. In abelain models connectors are canceled out of group delta-functions. There appear
four different types of connectors in our construction. E.g., Vx for the first type is of the form

V (1)
x = V †

l5
Vl1V

†
l6
C~x(1) Vl2Vl3V

†
l4
C†
~x(1), (5)

C~x(1) =
1∏

k=zi−1

Vn2
(xi, yi − 1, k)

zi−1∏

p=1

Vn1
(xi − 1, yi, p). (6)

In what follows we consider the SU(2) gauge group. In this case it is easy to show that the constraint (4)
expressed through elements of an algebra of SU(2) reads

[
∑

k

ω2
k(x)

]1/2

= 2πm(x), (7)

where m(x) is arbitrary integers and

ωk(x) =
6∑

i=1

θk(li)− εkmn




6∑

i<j

θm(li)θn(lj) + 2
∑

b∈C
θm(b)

6∑

i=4

θn(li) + . . .


 . (8)

In the continuum limit the last constraint reduces to the familiar Bianchi identity if one takes m(x) = 0 for
all x. However, when m(x) differs from zero one gets violation of the continuum Bianchi identity at the point
x. This is genuine feature of compact gauge models. Below we want to clarify a role of these configurations
in producing the string tension. Clearly, m(x) 6= 0 configuration corresponds to the monopole configuration of
nonabelian gauge field. Therefore, we may interpret the summation overm(x), appearing below, as a summation
over monopole charges which exist due to the periodicity of SU(2) delta-function (in close analogy with U(1)
model).

Substituting (7) into (4) one can prove that the partition function (3) can be exactly rewritten to the
following form [10]

ZSU(2) =

∫ ∏

l

[
sin2Wl

W 2
l

∏

k

dωk(l)

]
exp

[
2β
∑

l

cosWl

]
∏

x

Wx

sinWx

∏

x

∞∑

m(x)=−∞

∫ ∏

k

dαk(x) exp

[
−i
∑

k

αk(x)ωk(x) + 2πim(x)α(x)

]
, (9)

where α(x) = (
∑
k α

2
k(x))

1/2.
The Wilson loop of the size R× T in some representation j gets the following form

Wj(C) = Tr

0∏

n=R/2−1

(
z+T−1∏

z1=0

V †
1 (x, y + 2n+ 1, z1)

0∏

z2=z+T−1

V †
1 (x, y + 2n, z2)

)
. (10)

We have supposed, for simplicity that the loop contour lies in the y − z plane, one side of the loop lies in the
plane z = 0 and R, T are even.



Monopole contribution to the Wilson loop. . . 233

3 Effective monopole model for the Wilson loop

Here we would like to calculate the contribution of monopole configurations to the Wilson loop and estimate
the string tension. We remind first the computations for the U(1) compact model and then proceed to the
nonabelian theory.

3.1 Monopoles in U(1) LGT

The plaquette formulation of the U(1) LGT on the dual lattice reads

Z(h) =

∫ 2π

0

∏

l

dωl exp [β cosωl]

∫ ∞

−∞

∏

x

drx

∞∑

mx=−∞
exp

[
i
∑

l

ωl(rx − rx+n) + 2πi
∑

x

rxmx + i
∑

l

ωlhl

]
, (11)

where the Bianchi identity has the form

ωx =
∑

l∈x
ωl = 2πmx. (12)

Sources hl have been introduced to represent the Wilson loop. Configurations withmx 6= 0 violate the continuum
Bianchi identity in the same way as they do for the compact SU(2) model.

Consider the Wilson loop in the representation j. Let Sdxy be some surface dual to the surface Sxy which is
bounded by the loop C and consisting of links dual to plaquettes of the original lattice. Let b denote links from
Sdxy. Then, the expectation value of the Wilson loop takes the following form

〈W (C)〉 =
1

Z(0)
exp


− j

2

4β

∑

b,b′∈Sd
xy

Gbb′




∞∑

mx=−∞
exp


−π2βmxGx,x′mx′ + iπj

∑

b∈Sd
xy

Db(x
′)mx′


 , (13)

where we have introduced the link Green functions Gll′ and Dl(x) (see [7]). Following strategy of [2], [3] one
can use the dilute monopole gas approximation to perform summation over mx. We skip all technical details
which are well known. The resulting theory appears to be of the sin-Gordon type

〈W (C)〉 = exp


− j

2

4β

∑

bb′∈Sd
xy

Gbb′



∫ ∏

x

dφx exp

[
− 1

2β

∑

x,n

(φx − φx+n)2
]

× exp


2m2

∑

x

cos


πφx + πj

∑

b∈Sd
xy

Db(x)




 1

Z(0)
, (14)

where m2 is a mass of the dual photons (it is exponentially small in β). To analyze this theory one can use the
semiclassical approximation. The saddle-point equation is

∆α(x) = 2πjδ
′

(x)−m2 sinα(x) . (15)

Far from the boundaries of the contour C the saddle-point equation (15) is essentially one dimensional and has
the solution for j = 1

α(z) =

{
4 arctan(e−mz), z > 0

−4 arctan(emz), z < 0 .

Substituting this solution into (14) one can easily gets the area law for the Wilson loop

〈Wj(C)〉 = e−σ(j=1)S

with the string tension given by

a2σ(j = 1) =
8√

2π2β
exp

[
−1

2
π2βG0

]
. (16)

Here, β = 1/(g2a) is dimensionless coupling constant and G0 ≈ 0.5054 is zero-distance Green function. A
rigorous proof of permanent confinement was given in [4]. It was shown that the semiclassical expression (16)
gives lower bound on the string tension.
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3.2 SU(2) LGT. Representation for the Wilson loop

Here we would like to extend calculations of the previous section to SU(2) gauge theory. In doing this we
use three approximations. First of all, we neglect connectors of the Bianchi identity because they do not
contribute to the string tension in the leading orders of the strong coupling expansion. We thus assume that at
weak couplings connectors produce smooth corrections to spin waves. The second approximation consists in an
expansion of the Wilson loop in a power series 1/β. Finally, we restrict ourselves to monopole configurations
m = 0,±1, precisely like for the U(1) model. At large β, and using first of our approximations one obtains from
(9) the following expression

ZSU(2) =

∞∑

m(x)=−∞

∫ ∞

−∞

∏

l,k

dωk(l)

∫ ∞

−∞

∏

x,k

dαk(x)×

exp[−1

2
ω2
k(l)− iωk(l) (αk(x+ en)− αk(x)) + 2πi

√
2β
∑

x

α(x)m(x)]. (17)

Obviously, the last expression is an analog of the formula (11) for the U(1) model. However, even in this case
all integrations cannot be done exactly due to non-linear couplings of monopoles with auxiliary fields.

As before, Sdxy denotes some surface dual to the surface Sxy which is bounded by the loop C. Then, the
expectation value of W (C) at β →∞ we present in the form

〈Wj(C)〉 =
∏

l∈S

∫ π

0

sinαldαl

∫ 2π

0

ϕl√
4π

TR(C) Hj ,

where

Hj ≡ Hj(αl, ϕl) =

〈
∏

l∈S
Qj(l)

〉
(18)

and

TR(C) =

j∑

ml=−j

ν[S]∏

l=1

1

2j + 1

∑

λ,k

√
2λ+ 1 Cjnjm λkYλk (α,ϕ) .

Here Ccγaα bβ is the Clebsch-Gordan coefficient, Yλk is the spherical function and ν(S) is a number of dual links
that belong to the Wilson loop. Since at large β the plaquette matrix fluctuates smoothly around unit matrix
ω(l) ≈ 0 it is allowed to use asymptotics of Qj(l) in (18) at ω ≈ 0 uniformly valid in j. This asymptotics is

Qj(l) = exp[−ijk(l)ωk(l)] ,

where
ω1 = ω cos θ, ω2 = ω sin θ cosφ, ω3 = ω sin θ sinφ

and
j1 =

√
j(j + 1) cosα, j2 =

√
j(j + 1) sinα cosϕ, j3 =

√
j(j + 1) sinα sinϕ .

Introducing sources like

Jk(l) =

{
jk(l)/

√
2β, l ∈ S

0, l 6= S
(19)

the effective monopole theory can be written down as

Hj =
1

Z

∞∑

m(x)=−∞

∫ ∞

−∞

∏

l,k

dωk(l) exp

[
−ω

2
k(l)

2
− iωk(l) [αk(x+ en)− αk(x)]

+2πi
√

2β
∑

x

α(x)m(x)− iJk(l)ωk(l)
]
. (20)

We use the following representation to perform the integration over αk(x)

∞∑

m(x)=−∞
exp[2πi

√
2β
∑

x

α(x)m(x)] =

∞∑

m(x)=−∞

√
m(x)

(
1 + ξ

∂

∂ξ

)

×
∫ 3∏

k=1

dσk(x)
δ(m2(x)−∑k σ

2
k(x))

V (S2)
exp [iξαk(x)σk(x)] , (21)
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where ξ = 2π
√

2β. Integration over ωk(l) and αk(x) gives

Hj = Hgl
j Hmon

j , (22)

Hgl
j = exp[−1

4
Jk(l)Gll′Jk(l

′)] ,

Hmon
j =

1

Z

∞∑

m(x)=−∞

√
mx

(
1 + ξ

∂

∂ξ

)∫ 3∏

k=1

dσk(x)
δ
(∑

k σ
2
k(x)− 1

)

V (S2)
exp [Seff ]

where the effective action Seff is of the form

Seff = −1

4
ξxm(x)σk(x)Gxx′σk(x

′)m(x′)ξx′ +
i

2
Dl(x)ξxm(x)σk(x)Jk(l) .

Derivatives are calculated at ξx = ξ = 2π
√

2β. One proves that at large j this leads to the representation

〈Wj(C)〉 =

∫ π

0

sinαdα

∫ 2π

0

dϕ√
4π

Hj(α,ϕ).

As is known the dual photon contribution Hgl
j produces only the perimeter law. In the next subsection we

evaluate in the semiclassical approximation contribution of Hmon
j to the Wilson loop.

3.3 SU(2) LGT. Sine-Gordon type model

In order to perform the summation over monopole configurations mx = 0,±1 we follow the strategy of Refs.[4],
[11]. Using decomposition

Gxx′ = Bxx′ +Gxx′(M) ,

where

Gxx′(M) =
1

L3

∑

kn

e
2π
L
kn(x−x′)n

3−∑n cos[ 2πL kn] +
1
2M

2
,

Gxx′ = Gxx′(M = 0) , Bxx′ = Gxx′ −Gxx′(M)

we rewrite the effective action in the form (ηk(x) = ξxm(x)σk(x))

Seff = −1

4
ηk(x)Bxx′ηk(x

′)− 1

4
G0

∑

x

ξ2xm
2
x

− 1

4

∑

x6=x′

ηk(x)Gxx′(M)ηk(x
′) +

i

2
Dl(x)ηxJk(l). (23)

The first term in (23) is presented as

exp

[
−1

4
ηk(x)Bxx′ηk(x

′)

]
= (detB−1

xx′)
3/2

×
∫ ∞

−∞

∏

x,k

dαk(x) exp
[
−αk(x)B−1

xx′αk(x
′) + iαk(x)ηk(x)

]
. (24)

The behaviour of Gxx′(M) in the thermodynamic and continuum limits is well known

Gxx′(M) =
2

πR
e−MR/2, R =

[
∑

k

(xk − x′k)2
]1/2

. (25)

This behaviour allows us to keep only self-energy of monopoles if MR� 1, i.e. the term

SSEeff = −1

4
G0(M)ξ2

∑

x

m2
x . (26)

Inserting (24) into (23) and taking into account (26) one can integrate out σk(x). After taking all derivatives
we keep in the sums over monopoles only configurations m = 0,±1. This finally gives the effective model which
appears to be of the sine-Gordon type

Hmon
j =

∫ ∞

−∞

∏

x,k

dαk(x) exp

[
−αk(x)B−1

xx′αk(x
′) + γ

∑

x

V [α(x)]

]
,
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where

V [α(x)] = cos ξµ(x)− 1

2
G0(M)ξ

sin(ξµ(x))

ξµ(x)
,

γ = 2 exp[−2π2βG0(M)], µ(x) =

(
∑

k

µ2
k(x)

)1/2

,

µk(x) = αk(x) +
1

2
Dl(x)Jk(l).

Collecting all formulae together we get for the Wilson loop

〈Wj(C)〉 = exp

[
−1

4
Jk(l)Gll′Jk(l

′)

] ∫ π

0

sinαdα

∫ 2π

0

dϕ√
4π

Hmon
j . (27)

Making use of the fact that B−1
xx′(M) ≈ G−1

xx′ for M sufficiently large, one obtains after a shift

αk(x)→ αk(x)−
1

2

∑

l

Dl(x)Jk(l) ≡ αk(x)− hk(x) (28)

the following expression for the monopole contribution

Hmon
j =

∫ ∞

−∞

∏

x,k

dαk(x) exp[−Smeff ], (29)

where
Smoneff [αk(x)] = − [αk(x)− hk(x)]G−1

xx′ [αk(x
′)− hk(x′)] + γ

∑

x

V [α(x)] , (30)

V [α(x)] = cos ξα(x)− 1

2
G0(M)ξ

sin(ξα(x))

α(x)
. (31)

To make semiclassical calculations we take the continuum limit. In this limit the saddle-point equation reads

∆αk(x) = 2πµk(x)−m2αk(x)

α(x)
W [α(x)] , (32)

µk(x) =
∑

l∈S
jk(l)θ(l) =

∑

y∈S
jk(y, n)θn(x− y) ,

where n is fixed and orthogonal to S and

θn(x− y) =





−1, x = y

+1, x = y + n

0, otherwise .

Here we have introduced the Debye mass

m2 = 16π2β exp
[
−2π2βG0(M)

]
. (33)

In the continuum limit one has

W [α(x)] = sinα(x) + 4π2βG0(M)

[
cosα(x)

α(x)
− sinα(x)

α2(x)

]
,

µk(x) =

∫

y∈S
dy jk(y, n = 3) δ

′

3(x− y).

To find a solution of the saddle-point equation we insert the anzatz

αk(x) = jk(z, n = 3)α(z).

This gives

∆α̃(z) = π(2j + 1)δ
′

z(z)−m2

(
sin α̃(z) + 4π2βG0(M)

[
cos α̃(z)

α̃(z)
− sin α̃(z)

α̃2(z)

])
,
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where
α̃(z) = (2j + 1)α(z) .

One can easily construct the approximate solution if one takes βG0(M) ≈ 0. Then for j = 1/2 the saddle-point
equation reduces to the form (15). It leads to the desirable area law

〈Wj(C)〉 = e−σ(j=1/2)S

with the string tension

σ =
4m

π2β
.

The mass of dual photons are given in (33). This result coincides with that qouted in [11].

4 Conclusion

In this paper we calculated nontrivial 2D theory for the expectation value of the Wilson loop at large values of
β valid for all values of representations j and which takes into account both the dual photon and the monopole
contributions. For the fundamental representation in the semiclassical approximation we have found that the
Wilson loop obeys the area law and σ(j = 1/2) ∼ m. The most important conclusion is that the monopole
contribution is sufficient to produce the area law and thus to explain confinement in 3D nonabelian models.
It remains unclear at the moment if this contribution is also necessary condition of confinement. Another
open problem is to compute the Wilson loop in the adjoint representation. It is well known that the adjoint
string tension vanishes at large distances therefore it is important to understand if the proposed mechanism of
confinement is able to reproduce this essential feature of the theory.
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