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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Many different areas of physics can be described using the same equations and
the same methods from theoretical physics. In condensed matter systems, such
as superconductors, superfluids and Bose-Einstein condensates, at temperatures
down to 100nK and high energy systems, such as the formation of the quark gluon
plasma and the electroweak phase transition at a temperature of 1015K, very similar
phenomena play a role, which are described in terms of universal concepts, such as
the Higgs mechanism.

We are particularly interested in the description of non-equilibrium and non-
perturbative effects that play a role, such as phase transitions. This severely re-
stricts the applicability of many of the standard physical tools such as perturbation
theory, or imaginary time Monte Carlo simulations. In order to describe the afore-
mentioned phenomena, one has to resort to approximations, which are still able to
describe the non-perturbative and non-equilibrium aspects. The study of one of
those, the Hartree approximation will be the topic of this thesis.

Besides the aforementioned systems, there are many more in which the methods
described and studied here, can be applied. Since our main motivation comes from
the early universe, we will give a very brief overview of some of the main events
in its history. A standard reference is still [1], although the latest results are not
described.

1.1.1 HUBBLE EXPANSION

The discovery by Edwin Hubble that the further away stars and galaxies are, the
faster they move away from us, and its logical implication, that the universe is
expanding, has resulted in the Hot Big Bang model, in which the early universe is
extremely hot, dense and rapidly expanding. The further one goes back in time, the
hotter and denser it becomes. In this process several phase transitions have been

1



2 1.1 MOTIVATION

crossed of which the electroweak, already mentioned above, is just one. We will
discuss a few of them in a little more detail in the next sections, going backwards
in time.

1.1.2 THE COSMIC BACKGROUND RADIATION

One of the last important phase transitions occurred when the universe was about
300 000 thousand years old and had a temperature of 3500K, i.e. 0.3eV . At that
point in history the electrons and nuclei (mostly just protons) combined to neutral
atoms. This temperature is considerably lower than the naive estimate of 13.6eV ,
the ionisation energy of hydrogen, due to the small number of protons compared
to photons, which will be discussed later. Till this point in the thermal history, the
nuclei and electrons formed a hot plasma, in which the mean free path for pho-
tons is extremely short. Since the universe suddenly became neutral, the photons
could travel almost freely and have done so ever since. Because of the expansion,
their wavelength has also expanded, about a factor of thousand. Today they are
still “visible” as the Cosmic Microwave Background Radiation (CMBR), which has
a thermal spectrum with a temperature of 2.73K (due to the interaction with the
matter the photons acquired a black body spectrum which, except for the charac-
terizing temperature, is invariant under the expansion). Apart from being direct
evidence for the hot and thermal nature of the early universe, it also provides very
important information about the universe in the 300 000 years previous to its de-
coupling: it has such a strong interaction with the matter in the universe, the spa-
cial inhomogeneities of the universe at the time of recombination left their imprint
on the CMBR. By measuring in the sky the angular correlations in the CMBR and
comparing them with predictions from different cosmological models, such as in-
flation, one can differentiate between them. See also (the introduction of) Ref. [2]
and references therein.

1.1.3 BIG BANG NUCLEOSYNTHESIS

Although the universe was not transparent before the decoupling of photons, there
is direct experimental evidence of the Hot Big Bang model dating from as early as
the first three minutes, from a period in which the temperature lowered from 1 to
0.1MeV (from 1010 till 109 K). In that (very short) period the protons and neutrons
in the universe bound together in nuclei. Up to that point the reaction rates for

n
 p+ + e− + νe (1.1)
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were in chemical equilibrium and the ratio of the proton and neutron densities
satisfied

Np

Nn
∝ e−∆m/T , (1.2)

where ∆m is the mass difference between the proton and neutron. At temperatures
higher than this mass difference, the densities are almost equal. Simultaneously, the
processes of binding nucleons into nuclei and the opposite, in which the nuclei fall
apart again, are also in equilibrium, as in (1.1). However, because of the higher mass
difference, free nucleons are highly favoured. At some point the rate of the weak
interactions driving (1.1) lacks the Hubble expansion rate and the proton/neutron
ratio almost “freezes-out”. This happened at a temperature T ≈ 0.8MeV . Shortly
after, around T ≈ 0.3 − 0.1MeV , the reaction rates for the binding of protons and
neutrons into nuclei, favours nuclei instead of free nucleons and almost all of them
bind into nuclei of the light elements: nucleosynthesis. The abundances of these
light elements, mainly helium, can be calculated and are very accurately repro-
duced by the experimental data. Only one free parameter is needed, the ratio of
the net number of baryons (i.e. baryons minus antibaryons) over photons. This is
a remarkable success of the Hot Big Bang model and puts it on a very firm experi-
mental basis all the way back to times of around 1 minute.

The actual value of the free parameter

η =
nb − nb
nγ

(1.3)

lies somewhere in the range 1.55 · 10−10 . . . 4.45 · 10−10. The fact that it is so small
is the main motivation for baryogenesis, which is discussed in the next section.
For a recent review on Big Bang nucleosynthesis (BBN) and its consequences see
Ref. [3, 4].

1.1.4 BARYOGENESIS

The fact that η is so small has led to the idea that in the beginning of the universe
it may have actually been zero, i.e. all energy resided in photons. However, that
would mean that in a later stage an asymmetry between the number of baryons
and antibaryons must have been created, baryogenesis. As it turns out, there are
three necessary and sufficient conditions, formulated by Sakharov [5], for baryoge-
nesis and all three already are present in the Standard Model (the model describing
the elementary particles and their electromagnetic, weak and strong interactions).
One of the three conditions states that the baryon number should be non conserv-
ing. At low temperatures, the baryon-number is (almost) conserved, the lifetime
of a proton is many times longer than the age of the universe. However, at high
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temperatures, this is no longer the case. This has to do with the Higgs mecha-
nism, giving all particles their mass. At a temperature of 100GeV , there is a phase
transition at which (coming from low temperatures) the vacuum expectation value
(v.e.v.) of the Higgs field goes from a finite value to zero. In the Higgs mechanism
all masses are proportional to this v.e.v. and therefore all particles become massless
above this electroweak phase transition. Furthermore, due to the vanishing of the
Higgs v.e.v., the number of baryons is no longer conserved, any asymmetry exist-
ing above this phase transition, will be washed out. It is therefore most logical that
the baryogenesis process took place around the electroweak phase transition. In
order for a sufficient number of baryons to be created the phase transition has to
be strong enough, the v.e.v. has to jump sufficiently fast from zero to a finite value.
Unfortunately, it seems this is not the case in the Standard Model. Extensions of
Standard Model, in which it is sufficiently strong are under very active investiga-
tion. A recent review of the status of electroweak baryogenesis can be found in
Ref. [6, 7].

1.1.5 QUARK GLUON PLASMA: HEAVY ION COLLISIONS

As a final example in which phase transitions play an important role, we will briefly
discuss the formation of the Quark Gluon Plasma, at the deconfining phase transi-
tion (or the confining phase transition, when coming from high temperatures, such
as in the early universe). From lattice Monte Carlo simulations, it was predicted
that at a temperature of around 150MeV (≈ 1015K) a phase transition should take
place. At low temperatures, the strong force is confining: quarks and gluons attract
each other with a force which becomes stronger and stronger at larger distances,
i.e. at lower typical energies. At very high temperatures on the other hand, their
attraction weakens and the quarks and gluons are asymptotically free. From lattice
studies it was found that there should be a phase transition between the two phases
around T ≈ 150MeV . Above the phase transition, the quarks and gluons form a
plasma while below they are bound in hadrons, such as protons and neutrons.

Since the early universe also once had this temperature, one might hope that
experimental signatures can be found in e.g. the CMBR. However, it seems this
is not the case, all signatures are probably washed out. Fortunately, in contrast
to baryogenesis, the formation can actually be studied in the laboratory, by col-
liding heavy ions of gold, lead, or uranium, at very high speeds. Because of the
very high speeds the ions are Lorentz contracted to very flat “pancakes”. These
go through each other leaving behind a small, highly energised region filled with
quarks and gluons. Because of their interaction the energy is redistributed leading
to thermalization. If this thermalization process is sufficiently fast and to a high
enough temperature, a quark gluon plasma is formed. This in turn expands very
rapidly, similar to the early universe, thereby cooling and passing the confining
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phase transition, after which the quarks and gluons form hadrons, such as baryons
and mesons. One of the difficult but central questions is to find experimental signa-
tures which differentiate between a very hot gas of hadrons and a plasma of quarks
and gluons. After careful re-examination of many data sets, the CERN SPS has
found evidence for the formation of this plasma. Currently the RHIC accelerator
at Brookhaven is acquiring data, giving much more information and in the near
future, the LHC at CERN, will also start operating. For a review of evidence from
SPS and some of the results from RHIC see [8].

1.2 NON-PERTURBATIVE PHYSICS IN REAL TIME

In all the examples discussed in the previous section, non-equilibrium phenom-
ena such as phase transitions, played a crucial role. However, in many computer
simulations and analytical calculations people make use of the equilibrium aspects
by using the imaginary time formulation of quantum field theory. We will need a
real-time formulation to study the non-equilibrium aspects. Furthermore in non-
equilibrium processes it is not always possible to find a small parameter suitable to
make perturbative expansions.Thermal processes, for example, in which the field
can fluctuate from one classical minimum of the potential to the other, make non-
perturbative methods necessary. Finally, the inclusion of a chemical potential in
an imaginary time formulation forms a difficult obstacle for Monte Carlo simula-
tions. Using real-time simulations may thus also give an alternative for equilibrium
calculations.

1.2.1 APPROXIMATION SCHEMES

In order to do such calculations it is necessary to make approximations. One can
make use of the high temperature and make an expansion in 1/T . In the Bose-
Einstein distribution, for example, given by

n(ωk) =
1

eh̄ωk/T − 1
, (1.4)

the inverse temperature occurs in the same way as Planck’s constant and the lead-
ing behaviour in a large T expansion will be the classical behaviour. One can use the
classical equations of motion to describe the non-perturbative dynamics. It is not
necessary to have a thermal state in order for this approximation to be reasonable,
it suffices that the occupation numbers of the field quanta are large.

The classical approximation has given very useful results for the sphaleron rate
(see [9] and [10] for the status in one and three spatial dimensions), thermalization
after preheating [11, 12, 13], non-equilibrium electroweak baryogenesis [14, 15],
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as well as for studies of equilibration and thermalization [16, 17, 18]. With the
inclusion of fermions it has given encouraging results for finite density simulations
[19, 20].

As mentioned earlier, this approximation is reasonable when the occupation
numbers of the field quanta are large, but in field theory there are always modes
with which this is not the case. For instance, at high temperatures the low momen-
tum modes of the fields are highly occupied and follow the classical Boltzmann dis-
tribution, but at large momenta occupation numbers are low and the classical dis-
tribution differs significantly from the quantum Bose-Einstein distribution, thereby
giving rise to Rayleigh-Jeans divergences. To some extent these can be ameliorated
in scalar field theories [21, 22], but for gauge theories the problems are more severe
[23, 24, 25].

Another class of approximations are the large-n approximations, which have
been used for initial value problems, with O(n)-type models. In this approxi-
mation, which is good if n, the number of field components is large, the action
is expanded in the small parameter 1/n. The leading order has given useful re-
sults for the description of preheating dynamics in the early universe (see e.g. [26]
and references therein) and for the possibly disoriented chiral condensate in heavy
ion collisions [27, 28]. However, it is generally considered to contain insufficient
scattering for describing thermalization at larger times. This will be improved in
next order in 1/n, where scattering comes into play, but full implementation in
field theory is hard. Furthermore, within quantum mechanics one finds instabili-
ties [29, 30], and it has been argued that systematically correcting in 1/n does not
prevent the approximation to break down at times of order

√
n [31]. On the other

hand, Schwinger-Dyson-like approaches including scattering diagrams and 2PIΦ-
derivable approaches (see for instance Ref. [32, 33, 34] and references therein) ap-
pear to give more favourable results and have been found to lead to thermalization
in field theory [35, 36].

The leading order large n equations for the O(n) model are almost identical to
the Hartree approximation for the single component scalar field, and so the latter
approximation is also not considered to be able to describe thermalization. Yet, one
can improve on this by allowing the system to be arbitrarily inhomogeneous. This
has the effect that particle-like excitations can scatter through the intermediary of a
mean field fluctuating in time and space. This will be one of the main topics of this
thesis.

1.2.2 THE HARTREE VERSUS CLASSICAL APPROXIMATION

Let us first review the Hartree approximation. It describes the dynamics in terms
of a mean field and a two-point correlation function. It corresponds to a Gaussian
density matrix in field space, centred around the mean field with a width given by
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the two-point function (see e.g. [30]). The two-point function can be conveniently
described in terms of a complete set of mode functions. For a homogeneous initial
state the mean field is translationally invariant and the mode functions can be taken
in the form of plane waves labelled by a wave vector k. Typically, only mode func-
tions in a narrow |k|-band get excited by a time-dependent homogeneous mean
field, through parametric resonance or spinodal instability, see for example [37]
and references therein. The system equilibrates but does not thermalize in this ap-
proximation and particle distribution functions show resonance peaks instead of
approaching the Bose-Einstein distribution (see for example [38]). In order for the
system to thermalize, the particles should be able to scatter, while in the Hartree,
just as in the leading 1/n approximation no direct scattering is present.

We can improve on this however, by writing the initial density operator as an
ensemble of coherent states with generally inhomogeneous mean fields and two-
point functions, in this way we include indirect scattering via the modes of the in-
homogeneous mean field. Before explaining this approach in detail, let us first clar-
ify the motivation by comparing it with the classical approximation. Simulations
in this case indicate no problem of principle with thermalization (see [16, 17, 18]
for quantitative studies). Starting from an initial ensemble of classical field config-
urations ρc[ϕ,π, tin] (with canonical field variables ϕ and π), suitable observables
are found to become distributed according to the classical canonical distribution
exp(−βH[ϕ,π]). This distribution will not be reached starting with strictly homo-
geneous realisations, because then the dynamics is that of a simple system with
only two degrees of freedom, i.e. the spatially constant ϕ and π. As initial condi-
tions aiming at thermalization these are unsuitable realisations, even if ρc[ϕ,π, tin]
is homogeneous. The phase space distribution ρc[ϕ,π, t] may be homogeneous,
but realisations ϕ(x, t), π(x, t) are typically inhomogeneous. Viewing the Hartree
approximation as a semi-classical improvement, we may expect that thermalization
will improve if some analogies of classical realisations are used as initial states.

1.2.3 HARTREE ENSEMBLE APPROXIMATION

To implement the idea, we note that an arbitrary density operator can be formally
written as a superposition of Gaussian pure states:1

ρ̂ =

∫
[dϕdπ] ρq[ϕ,π] |ϕ,π〉〈ϕ,π|. (1.5)

Here the |ϕ,π〉 are coherent states centred around ϕ(x) = 〈ϕ,π|ϕ̂(x)|ϕ,π〉 and
π(x) = 〈ϕ,π|π̂(x)|ϕ,π〉, and ρq[ϕ,π] is a functional representing the density oper-
ator ρ̂. We interpret the |ϕ,π〉〈ϕ,π| as “realisations” of ρ̂. The distribution ρq[ϕ,π]

1Operators are indicated with a caret.
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can be quite singular for non-classical states, but for suitable semi-classical states
or thermal states it is positive and intuitively attractive [39, 40].

A thermal state like exp[−βĤ] cannot be approximated very well by a Gaussian
if there are nontrivial interactions. For example, with a double well potential there
are in general multiple peaks in the field distribution, while a Gaussian has a single
peak. But if in the decomposition (1.5) a Gaussian state |ϕ,π〉〈ϕ,π| has a reason-
able weight, we can take it as an initial state and use the Hartree approximation to
compute the time evolution. We can then compute time averages (as long as the
approximation is good), and finally sum over initial states according to (1.5). Such
a description is semi-classical in so far as the mean field describes a near-classical
path and ρq[ϕ,π] is positive. But note that in the Hartree approximation the Gaus-
sian fluctuations (i.e. the modes comprising the two-point function, these are the
“particle-like excitations” alluded to above) influence the “classical” field, i.e. the
mean field of the “realisation”.

So the full expectation values now consist of a quantum average using the Gaus-
sian quantum density matrix |ϕ,π〉〈ϕ,π| and a classical average using the density
functional ρq[ϕ,π]. Even if the full expectation values describe a homogeneous
system, the realisations are in general inhomogeneous.

We have thus achieved four things. Firstly, we have made contact with the
classical approximation. If the mean field in a coherent state is large compared to
the width of the state, the Gaussian wave packet approximately follows a classi-
cal trajectory and the mean field can be thought of as a classical field. This then
suggests that the individual coherent states in the ensemble may be referred to as
“realisations”. However, by using an ensemble of coherent states rather than clas-
sical fields, we might have a much better description for those modes that have
low occupation numbers for which the classical dynamics is a poor approximation.
Secondly, we have expressed a (typically non-Gaussian) initial density operator in
terms of Gaussian states. These are optimal for the Hartree method, which we
want to use to approximate the dynamics of these states. Thirdly, the mean fields
in the individual coherent states are inhomogeneous, therefore the particles can inter-
act with the inhomogeneous mean field, such that the energy may get distributed
over the full momentum range. As we will see this leads to approximate ther-
malization in coarse grained distributions. Finally, there is another aspect which is
relevant in this context. When non-perturbative field configurations (domain walls,
skyrmions, sphalerons, kinks, etc.) play a role, these can be taken into account with
inhomogeneous background fields (i.e. mean field realisations).

As an example for the expansion (1.5), we derive ρq[ϕ,π] for a free scalar field
at temperature 1/β in Appendix 2.A. The canonical distribution

ρ̂ = exp(−βĤ[ϕ,π]),
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is represented as

ρq[ϕ,π] ∝
∏

k

exp
[
−(eβωk − 1)(π2k +ω2kϕ

2
k)/2ωk

]
, (1.6)

where k labels the modes of the field with frequencyωk.
There is another possible application for this method. For thermal equilibrium

the functional ρq[ϕ,π] is time-independent but it is not known for interacting sys-
tems. If the time evolution could be followed exactly, we would be able to re-
construct its microcanonical version, assuming the system is sufficiently strongly
ergodic. With exact dynamics we can imagine starting from some initial ρq[ϕ,π]
which is reasonably close to the target distribution, wait for equilibration and sub-
sequently compute time averages over an arbitrarily long time span. With only
an approximation to the dynamics (Hartree), the distribution may deteriorate after
some time and we may have to stop and start again.

Crucial questions are now: does the system equilibrate sufficiently in the Hartree
approximation, such that results are insensitive to reasonable choices of the ini-
tial ρq[ϕ,π]? Does it thermalize approximately, e.g. do one-particle distribution
functions get the appropriate thermal forms? How long does it take for the ap-
proximation to break down? And if the answers to these questions are sufficiently
favourable, can we obtain a reasonable approximation to the target equilibrium
distribution at intermediate times starting with a convenient initial one?

1.3 OUTLINE OF THE THESIS

We will review the Hartree approximation in Chapter 2, deriving the equations of
motion for the 1+1 dimensional ϕ4 model, in terms of a mean field and mode func-
tions. These equations can also be derived from an effective Hamiltonian, which
will be presented. Furthermore this Hamiltonian possesses certain symmetries, fol-
lowing from the Hartree approximation, which lead to conserved charges. We will
derive the equilibrium states for the system, which motivate the introduction of
coarse grained particle numbers and frequencies, which will be the main observ-
ables used in this chapter. Since all our results are obtained using lattice field the-
ory, we will discuss some of the peculiarities. The numerical results shown in this
chapter will include a Monte Carlo, to verify the prediction of an approximate Bose-
Einstein thermal distribution in our interacting model and most importantly, we
will show that our Hartree Ensemble Approximation is capable of approximately
reaching this state. This chapter is based on [41], except for Section 2.6, which ap-
peared in [42] and Section 2.7.1, which appeared in [43].

In Chapter 3 we will further investigate the model, focusing on the different
time scales present. We will differentiate between weak and strong coupling. Fur-
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thermore we will show, that in 1+1 dimensions, the plasmon damping rate shows
a very different behaviour from that in 3+1 dimensions. We will perform a cal-
culation, and compare the results with our numerical simulations. Another topic
discussed in this chapter will be numerical optimisations of the method. The com-
putational cost of updating all the inhomogeneous mode functions is high, and
makes it practically impossible to go to higher dimensions. We will investigate the
possibility of reducing the number of modes and make a comparison with the limit
of no mode functions at all: the classical approximation. This chapter is based on
[43], except for Section 3.4, which appeared as two separate publications in [44, 45].

In Chapters 2 and 3 we mainly discussed the “broken phase” of the theory.
However, we also found that in many aspects the “symmetric phase” behaves quite
differently. This will be investigated in detail in Chapter 4, both numerically and
analytically. This chapter is based on [42].

The φ4 theory contains nontrivial topologically stable solutions, kinks. They
are the topic for the final Chapter 5. We will compare their dynamics in the Hartree
and classical approximations, starting from stationary or colliding kink antikink
configurations.



CHAPTER 2

TOWARDS EQUILIBRIUM

In this chapter we will introduce the Hartree approximation, applied to the λϕ4

model. We will discuss the equilibrium states using the effective potential and
calculate the full quantum equilibrium state using a Monte Carlo simulation.

In order to describe the equilibration behaviour, we need to resort to approxi-
mations, of which on the one hand the classical and on the other hand the large n
and Hartree are the most commonly used. In order to study quantum equilibra-
tion, one is forced to use one of the latter two. To prevent subtleties with would-be
Goldstone bosons, we only consider the Hartree approximation.

When using homogeneous initial conditions, Hartree (Gaussian) dynamical ap-
proximations are known to have problems with thermalization, because of insuf-
ficient scattering. We attempt to improve on this by writing an arbitrary density
matrix as a superposition of Gaussian pure states and applying the Hartree ap-
proximation to each member of such an ensemble. Particles can then scatter via
their back-reaction on the typically inhomogeneous mean fields.

We will numerically study this Hartree ensemble approximation, starting from
initial states which are far from equilibrium and numerically compute the time evo-
lution of particle distribution functions. We will see that they do indeed display
approximate thermalization on intermediate time scales by approaching a Bose-
Einstein (BE) form. However, for very large times the distributions drift towards
classical-like equipartition. We will study a very small system at strong coupling
for a long period of time in order to obtain the final equilibrium distribution.

11
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2.1 GAUSSIAN APPROXIMATION

We will study the λϕ4 theory, which has the following action1

L = −∂µϕ∂
µϕ−

1

2
µ2ϕ2 −

1

4
λϕ4, (2.1)

resulting in the following Heisenberg field equation for the quantum field at times
x0 > 0,

(−∂2 + µ2)ϕ̂(x) + λϕ̂(x)3 = 0. (2.2)

For exact evaluation we would have to specify the infinite set of matrix elements
of ϕ̂(x, 0) and ∂0ϕ̂(x, 0) as initial conditions. In practise, of course, less detail is
needed. Taking the expectation value in an initial state at time x0 = 0 leads to

〈ϕ̂(x)〉 = ϕ(x), (2.3a)
〈Tϕ̂(x1)ϕ̂(x2)〉 = ϕ(x1)ϕ(x2) − iG(x1, x2), (2.3b)

〈Tϕ̂(x1)ϕ̂(x2)ϕ̂(x3)〉 = ϕ(x1)ϕ(x2)ϕ(x3) − iϕ(x1)G(x2, x3) + 2 perm.

+ (−i)2G(x1, x2, x3), (2.3c)
〈Tϕ̂(x1) · · · ϕ̂(x4)〉 = ϕ(x1) · · ·ϕ(x4) − iϕ(x1)ϕ(x2)G(x3, x4) + 6 perm.

+ϕ(x1)(−i)
2G(x2, x3, x4) + 3 perm.

+ (−i)2G(x1, x2)G(x3, x4) + 2 perm.

+ (−i)3G(x1, . . . , x4), (2.3d)

etc. Here T denotes time ordering and

〈ϕ̂(x1) · · · ϕ̂(xn)〉 ≡ Tr ρ̂ ϕ̂(x1) · · · ϕ̂(xn), (2.4)

where ρ̂ is the initial density operator; ϕ is the mean field (or classical field) and the
G ′s are correlation functions (connected Green functions). Taking the expectation
value of (2.2) and neglecting the three point correlation functionG(x, x, x) gives the
approximate equation

[−∂2 + µ2 + λϕ(x)2 − 3iλG(x, x)]ϕ(x) = 0. (2.5)

To use it we need an equation for the two-point function. Such an equation can be
found by multiplying (2.2) by ϕ̂(y) and taking again the expectation value in the
initial state. This leads to the approximate equation

[−∂2 + µ2 + 3λϕ(x)2 − 3iλG(x, x)]G(x, y) = δ4(x− y), (2.6)
1Throughout this thesis I will use the metric gµν = diag(−1, 1, 1, 1), in this section we assume 3+1

dimensions.
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where we used the canonical commutation relations and dropped the three and
four-point correlation functions. We shall comment on their neglect at the end of
this section. Since only the two-point function appears, equations (2.5), (2.6) are
exact if the Hamiltonian and density matrix are approximated by Gaussian forms.
Given the neglect of the higher correlation functions the initial density matrix does
not have to be Gaussian per se, but its non-Gaussianity does not enter in eqs. (2.5),
(2.6). For clarity we shall now assume the bra-kets 〈· · ·〉 to refer to a Gaussian density
operator ρ̂. Later we will consider non-Gaussian operators by further averaging over
initial conditions, as in (1.5), which will be indicated by 〈· · ·〉.

An intuitive as well as practical way of computing the two-point function, is in
terms of mode functions fα(x). We write

−iG(x, y) = θ(x0 − y0)C(x, y) + θ(y0 − x0)C(y, x), (2.7)

such that
C(x, y) = 〈[ϕ̂(x) −ϕ(x)][ϕ̂(y) −ϕ(y)]〉. (2.8)

It follows from (2.6) that C(x, y) satisfies the homogeneous equation (i.e. δ4(x −
y)→ 0), in the variable x as well as in y, as if ϕ̂(x)−ϕ(x) satisfies this equation. We
can now introduce mode functions fα(x), satisfying the homogeneous equation

[−∂2 + µ2 + 3λϕ(x)2 + 3λC(x, x)] fα(x) = 0, (2.9)

(−iG(x, x) = C(x, x)) and write:

ϕ̂(x)
g.a.
= ϕ(x) +

∑
α

[
b̂αfα(x) + b̂†αf

∗
α(x)

]
. (2.10)

where the b̂α and b̂†α are spacetime independent and “g.a.” means “Gaussian ap-
proximation”. The wave equation (2.9) for the fα is of the Klein-Gordon type and
we require the mode functions to be orthogonal and complete in the Klein-Gordon
sense (using finite volume notation),∫

d3x [f∗α(x)i∂0fβ(x) − i∂0f
∗
α(x)fβ(x)] = δαβ, (2.11a)∫

d3x [fα(x)i∂0fβ(x) − i∂0fα(x)fβ(x)] = 0, (2.11b)∑
α

[−ifα(x)∂0f
∗
α(y) + if∗α(x)∂0fα(y)]x0=y0 = δ3(x − y), (2.11c)∑

α

[fα(x)f∗α(y) − f∗α(x)fα(y)]x0=y0 = 0, (2.11d)∑
α

[∂0fα(x)∂0f
∗
α(y) − ∂0f

∗
α(x)∂0fα(y)]x0=y0 = 0. (2.11e)



14 2.1 GAUSSIAN APPROXIMATION

The above orthogonality and completeness relations are preserved by the equation
of motion (2.9) for the fα. The canonical commutation relations for ϕ̂ and ∂0ϕ̂
translate into

[b̂α, b̂
†
β] = δαβ, [b̂α, b̂β] = [b̂†α, b̂

†
β] = 0. (2.12)

The initial condition implies 〈b̂α〉 = 0 and we have to specify Eαβ ≡ 〈b̂αb̂β〉 and
Nαβ ≡ 〈b̂†αb̂β〉. The matrices N and E are subject to constraints which follow from
their definition as expectation values of operators in Hilbert space. We shall assume
that a Bogoliubov transformation b̂α → ∑β[Aαβb̂β + Bαβb̂

†
β] can be made such

that Eαβ → 0 and Nαβ ∝ δαβ. This transformation produces new mode functions
which are linear combinations of the f and f∗. In the new basis we only have to
specify as initial conditions

〈b̂†αb̂β〉 ≡ n0α δαβ, n0α ≥ 0, (2.13)

in terms of which

C(x, y) =
∑
α

[
(1+ n0α)fα(x)f∗α(y) + n0αf

∗
α(x)fα(y)

]
. (2.14)

Equation (2.10) expresses the fact that in the Gaussian approximation the field
ϕ̂ ′(x) ≡ ϕ̂(x) − ϕ(x) is a generalised free field, i.e. its correlation functions are
completely determined by the two-point function. Its linear field equation (i.e. (2.9)
with fα → ϕ̂ ′) is equivalent to the Heisenberg equations of motion of the effective
Gaussian Hamiltonian operator

Ĥg.a. =

∫
d3x

[
1

2
π̂′2 +

1

2
(∇ϕ̂ ′)2 +

1

2
m2effϕ̂

′2 + εeff

]
, (2.15)

where the spacetime dependent effective massm2eff is given by

m2eff(x) = 3λϕ(x)2 + 3λC(x, x). (2.16)

We also introduced an effective c-number energy density εeff, which is determined
by requiring 〈Ĥg.a.〉 = 〈Ĥ〉:

εeff(x) =
1

2
π(x)2 +

1

2
[∇ϕ(x)]2 +

1

2
µ2ϕ(x)2 +

1

4
λϕ(x)4 −

3

4
λC(x, x)2. (2.17)

Summarising, the Gaussian approximation consists of the equations (2.5), (2.9),
(2.13) and (2.14), together with the orthogonality and completeness conditions (2.11)
for the mode functions and some initial condition for the mean field and mode
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−i
δΣ

δϕ
= +

Figure 2.1: Diagrammatic illustration of δΣ/δϕ, with Σ the self-energy functional
defined by Γ = S − Σ. The lines and full dots represent the exact propagators
(correlation functions) and vertex functions, the other vertices represent the bare
vertex functions as given by the classical action S.

−i
δ2Σ

δϕ δϕ
= + + · · ·

Figure 2.2: Diagrams for the self-energy part of the inverse correlation function
G−1 = −δ2S/δϕδϕ + δ2Σ/δϕδϕ. The · · · represent the two-loop diagrams ob-
tained by differentiating the diagrams in Fig. 2.1.

functions. For the sake of clarity we write down the equations of motion again,
explicitly specifying space and time derivatives:

ϕ̈ = ∆ϕ − [µ2 + λϕ2 + 3λC]ϕ, (2.18a)

f̈α = ∆fα − [µ2 + 3λϕ2 + 3λC]fα, (2.18b)

with
C =

∑
α

(2n0α + 1)|fα|2, n0α = 〈b̂†αb̂α〉. (2.18c)

The Gaussian approximation can be justified in the limit of large n for the O(n)
model. The resulting field equations are very similar: we only need to make the
replacement 3→ 1 in eqs. (2.5) and (2.9).

The above derivation in terms of the Heisenberg equations of motion can be put
into the systematic framework of the Dyson-Schwinger hierarchy. These equations
follow from functionally differentiating an exact equation of motion δΓ/δϕ = −J
with respect to J and setting J = 0 afterwards. Here Γ is the effective action (with
time integration along the usual Keldysh-Schwinger contour) and J an external
source. We shall not go into details here, instead we just comment on the systemat-
ics, using diagrams (for a derivation, see for instance Ref. [46]). Fig. 2.1 illustrates
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the exact equation for the mean field. The Gaussian approximation (2.5) is obtained
by dropping the two-loop diagram. By differentiating the diagrams in Fig. 2.1 we
get the exact equation for the two-point correlation function illustrated in Fig. 2.2.
The Gaussian approximation (2.6) can be obtained from this by: a) dropping the
two-loop contributions and b) dropping the second one-loop diagram. The neglect
of the two-loop terms may be reasonable at weak coupling, and even the second ap-
proximation may be justifiable if the product of the three point couplings (one bare,
the other dressed) is substantially smaller than the (bare) four point coupling in the
first one-loop diagram. However, since the bare three point vertex δ3S/δϕ3 ∝ λϕ,
we see that this is not likely if ϕ = O(λ−1/2) or larger. Especially this second
approximation b) is worrisome, because on iteration of the integral equations we
would not get all one-loop diagrams correctly . It also has been established that the
approximation does not give exact Goldstone bosons where one expects them, be-
cause the phase transition is incorrectly predicted to be first order, instead of second
order (in 3+1 D) or a cross over (1+1 D). There is a problem with renormalization in
3+1 dimensions [47] (but not in 1+1 D).

It will depend on the circumstances if these troublesome features of the Hartree
approximation are numerically important.

2.2 EFFECTIVE HAMILTONIAN AND CONSERVED

CHARGES

The equations of the Gaussian approximation derived in Section 2.1 are local in
time and they may be derived from a conserved effective Hamiltonian. We shall
present it here and exhibit its symmetries and accompanying conserved charges.
We write

fα(x) =
1√
2

[
fα1(x) − i fα2(x)

]
, (2.19)

ξαa(x) =
(1
2

+ n0α

)1/2
fαa(x), a = 1, 2. (2.20)

ηαa(x) = ∂0ξαa(x), π(x) = ∂0ϕ(x). (2.21)

In terms of the real canonical variables ϕ, π, ξαa and ηαa the effective Hamiltonian
takes the form

Heff =

∫
d3x

[
1

2

(
π2 + η2 + (∇ϕ)2 + (∇ξ)2

)
+

1

2
µ2
(
ϕ2 + ξ2

)
+
1

4
λ
(
ϕ4 + 6ϕ2ξ2 + 3(ξ2)2

)]
,

(2.22)
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where

ξ2 =
∑
α

(
ξ2α1 + ξ2α2

)
, (2.23a)

(∇ξ)2 =
∑
α

[
(∇ξα1)2 + (∇ξα2)2

]
, (2.23b)

η2 =
∑
α

(
η2α1 + η2α2

)
. (2.23c)

It is easy to check that the mean field equation (2.5) and the mode equations (2.9)
are equivalent to the Hamilton equations

∂0ϕ = π, ∂0π = −
δHeff

δϕ
, ∂0ξαa = ηαa, ∂0ηαa = −

δHeff

δξαa
. (2.24)

It is also straightforward to show that Heff is just the expectation value of the quan-
tum Hamiltonian

Ĥ(t) =

∫
d3x

[
1

2
π̂2 +

1

2
(∇ϕ̂)2 +

1

2
µ2ϕ̂2 +

1

4
λϕ̂4

]
, (2.25)

upon inserting the Gaussian approximation (2.10),

Heff = 〈Ĥ〉. (2.26)

The effective Hamiltonian has evidently a large symmetry, corresponding to ro-
tations of the infinite dimensional vectors ξαa and ηαa. For definiteness, let us as-
sume a regularisation of the field theory such that there areMmodes, α = 1, . . . ,M

(e.g. on anN3 periodic latticeM = N3). Then the effective Hamiltonian hasO(2M)
symmetry, implying M(2M − 1) conserved generalised angular momenta of the
general form

Lαa,βb =

∫
d3x (ξαaηβb − ξβbηαa) , (α, a) 6= (β, b). (2.27)

Recalling the orthonormality relations for the mode functions, (2.11a) and (2.11b),
we see that the conserved quantities are given in terms of the initial conditions as

Lα1,α2 =
1

2
+ n0α, (2.28)

with all others vanishing.
It is interesting to compare with the effective Hamiltonian corresponding to the

large n limit of theO(n) model [48], which may be obtained fromHeff above by the
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replacement 3 → 1 (and 6 → 2). This has the effect of producing the combination
λ(ϕ2+ξ2)2, so the symmetry enlarges toO(2M+1). The additional 2M conserved
generalised angular momenta depend on the initial conditions for ϕ and π.2

2.3 EQUILIBRIUM STATES

In a first exploration of the system and of the Gaussian approximation we study
equilibrium states, i.e. stationary states with maximum entropy. This will give
information on the phase structure and quasi-particle excitations as a function of
temperature. From now on we will restrict to 1+1 dimensions, xµ → (t, x), and
assume the system to be confined to a “volume” L with periodic boundary condi-
tions. The coupling λ needs no renormalization while the bare mass parameter µ2

is only logarithmically divergent in the implicit cutoff.
We assume the equilibrium states to be homogeneous and time-independent,

i.e. ϕ(t, x) = v and C(t, x; t, y) = C(0, x − y; 0, 0). Also the various time derivatives
of C evaluated at equal times are assumed to be time-independent. We shall seek
solutions of the form (2.14) in which the mode functions are plane waves,

ϕ(t, x) = v, (2.29a)

fk(t, x) =
eikx−iωkt

√
2ωkL

. (2.29b)

Here the label α has become the wave number k and we write nk for the corre-
sponding (time independent) occupation numbers. With this ansatz the equations
for the mean field and mode functions reduce to

(µ2 + 3λC+ λv2)v = 0, (2.30)

−ω2k + k2 + µ2 + 3λC+ 3λv2 = 0, (2.31)

where C = C(t, x; t, x) is time-independent. In the infinite volume limit it is given
by

C =

∫
dk

2π

(
nk +

1

2

)
1

ωk
. (2.32)

It follows that
ω2k = m2 + k2, m2 = µ2 + 3λC+ 3λv2. (2.33)

2 In [48] the effective Hamiltonian for the homogeneous system was expressed in terms of the radial
variable ξα = (ξ2α1 + ξ2α2)

1/2 (modulo a factor of two), and the rotational symmetries mixing ξα1
and ξα2 are then absent. However, the corresponding equations of motion then suffer from numerical
complications due to the angular momentum barriers.
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To determine the nk we maximise the entropy S subject to the constraint of fixed
energy U ≡ Heff = E, i.e. maximise S + β(E − U), with Lagrange multiplier β. We
shall write these equations in terms of the densities s = S/L, u = U/L, ε = E/Lwith
L→∞. The (unrenormalized) energy density u is given by

u =
Heff

L
=
1

2
µ2v2+

1

4
λv4+

∫
dk

2π

(
nk+

1

2

)ω2k + k2 + µ2 + 3λv2

2ωk
+
3

4
λC2, (2.34)

and for our Gaussian density operator, s can be written as

s = −
1

L
Tr ρ log ρ =

∫
dk

2π
[(nk + 1) log (nk + 1) − nk lognk] . (2.35)

The maximisation equations read

0 =
δ[s+ β(ε− u)]

δnk
= log

(
nk + 1

nk

)
− βωk, u = ε, (2.36)

with the solution
nk =

1

eβωk − 1
(2.37)

and β such that u = ε. So we found equilibrium states of the Hartree evolution
corresponding to the Bose-Einstein distribution with temperature T = β−1. All ef-
fects of the interaction are buried in the temperature dependent massm introduced
in (2.33).

For simplicity of discussion, let us next use a simple momentum cutoff |k| < Λ

and define a renormalized mass parameter µ2r by combining the logarithmically
divergent vacuum value of the mode sum (2.32) at the point m2 = λ with the bare
mass parameter µ2:

µ2r = µ2 + 3λC(m2 = λ, nk = 0). (2.38)

To leading order, µ2r is given by

µ2r = µ2 +
3λ

4π
log

4Λ2

λ
. (2.39)

and (2.33) takes the renormalized form

m2 = µ2r +
3λ

4π
log

λ

m2
+ 3λ

∫∞
0

dk

π

1√
m2 + k2

1

e
√
m2+k2/T − 1

+ 3λv2. (2.40)

At zero temperature the equilibrium state is the vacuum. For v = 0 there is one
solutionm2 for every µ2r ∈ (−∞,∞)

µ2r = m2 +
3λ

4π
log

m2

λ
. (2.41)
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For nonzero vwe get, from (2.30), the relations

m2 = 2λv2, µ2r = −
1

2
m2 +

3λ

4π
log

m2

λ
. (2.42)

The right hand side of this equation has a maximum for m2/λ = 3/(2π), meaning
there are two solutions, provided

µ2r
λ
<
3

4π

[
−1+ log

( 3
2π

)]
≈ −0.415, (2.43)

otherwise there are none. To determine the true ground state we plot in Fig. 2.3a
the effective potential u as a function of ϕ (i.e. with m2 the solution of (2.40), with
v→ ϕ and at T = 0), for various µr. The plot shows that there is a first order phase
transition as a function of µ2r , instead of the expected second order transition for a
model in the universality class of the Ising model. This mis-representation of the
phase transition is a well-known artifact of the Gaussian approximation (see, e.g.
Ref. [47]).

Note that the second order transition would occur at strong coupling λ/m2 →∞, where the Gaussian approximation is suspect. In fact, the two masses at the
transition also imply strong coupling: they are given by λ/m2 ≈ 10, for ϕ = 0 and
λ/m2 ≈ 1.2 for ϕ = vc ≈ 0.65. To avoid fake first order effects we should evidently
choose parameters away from the transition region. For this paper we mostly used
λ/m2 = 1/12 for which there is only one ground state at v2 = 6, well away from
vc ≈ 0.65.

Having determined the groundstate we define the renormalized energyHeff,r by
subtracting from Heff its value in the ground state, such that the vacuum energy is
zero. It can be instructive to split the total energy into a classical (Gaussian mean
field) part and a mode energy, Heff,r = Hmf +Hmodes. We define the mean field part
as

Hmf =

∫
dx

[
1

2
π2 +

1

2
(∇ϕ)2 + Vmf(ϕ)

]
, (2.44a)

Vmf(ϕ) =

{
1
2m

2ϕ2 + 1
4λϕ

4, v = 0,
1
4λ
(
ϕ2 − v2

)2
, v 6= 0,

(2.44b)

wherem2 and v2 are the vacuum values (i.e. at T = 0).
Consider now starting in the broken symmetry phase v 6= 0 at zero temperature

and raising the temperature. In 1+1 dimensions there should be only a cross over
and not a true phase transition. Fig. 2.3b shows the finite temperature effective
potential (free energy density)

f(ϕ) = u(ϕ) − Ts(ϕ), (2.45)
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Figure 2.3: Effective potential versus ϕ, normalised to zero at ϕ = 0.

using the temperature T as independent variable instead of µ2r . Nowm2 = m2(ϕ, T)
is the solution of (2.40), v → ϕ, at finite T . The parameters were chosen such
that v2 = m2(v, 0)/2λ = 6 at T = 0. We see again a fake first order transition,
at Tc ≈ 1.79m(v, 0), with vc = 1.96. Its latent heat ` and surface tension σ are given
by

` = δu = 0.39m(v, 0)2, σ =

∫vc
0

dϕ
√
2f(ϕ) = 0.295m(v, 0). (2.46)

These are not particularly small values and we may not argue that the effects of
the first order transition will be negligible under generic circumstances. However,
in 1+1 dimensions, the critical size of a nucleating bubble is zero, so the bubble
nucleation rate is not suppressed (∝ exp(−2σ/Tc) ≈ exp(−0.17)) and supercooling
will not be strong.

We end this section with some cautionary remarks. First, the fact that the equi-
librium correlation function C(x, y) has the free form (i.e. eq. (2.47), below, with nk
given by the Bose-Einstein form (2.37)) is a result of the Gaussian approximation.
The exact correlation function will have a more complicated form, although the cor-
rections are expected to be small at weak coupling. We will check this explicitly by
a Monte Carlo computation discussed in Section 2.7.1.

Second, it is not clear that the finite temperature equilibrium state found above
will actually be approached at very large times. Any set of numbers nk in con-
junction with eqs. (2.29)–(2.34) gives a stationary solution to the Hartree equations.
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Our derivation of the Bose-Einstein form for nk, used the standard form (2.35) for
the entropy, but we have not shown that this entropy is a large time result of the
dynamics. Of course, this would be trivially the case if we choose the initial occu-
pation numbers n0α = nk. But for a generic Gaussian initial state the correlation
function may still approach a fixed point of the form just discussed (t ≈ t ′),

C(t, x; t ′, x ′) =
∑
α

[
(1+ n0α)fα(t, x)f∗α(t ′, x ′) + n0αf

∗
α(t, x)fα(t ′, x ′)

]
→ ∫ dk

2π

[1+ nk

2ωk
eik(x−x ′)−iωk(t−t ′) +

nk

2ωk
e−ik(x−x ′)+iωk(t−t ′)

]
, (2.47)

where the nk are expected to correspond to maximum entropy in relation to the
dynamics. Since the Hartree dynamics in terms of Heff is classical we may expect
this entropy to take a classical form, which would lead to

nk =
T

ωk
. (2.48)

However, matters are complicated by the presence of the infinitely many conserved
charges (2.28), which are determined by the initial conditions. Note that without
these constraints one would expect nk+1/2 = T/ωk, instead of (2.48), which makes
a big difference because equipartition suggests low T = O(ε/λ) and therefore small
nk. We elaborate on this in Appendix 2.B.

To study such matters numerically we now first introduce a coarse graining of
the correlation function and define a corresponding time dependent distribution
function nk(t).

2.4 COARSE GRAINED PARTICLE NUMBERS

The mode functions may be interpreted as representing particles which interact
through the mean field. This is similar to electrons scattering off each other in
classical electrodynamics, albeit that here the “particles” are treated quantum me-
chanically and their interaction is short ranged. Intuitively, such an interpretation
supposes that the particles are localised, with a correspondingly fluctuating (and
hence inhomogeneous) mean field taking the role of a classical field.

Within such a picture one expects the system to thermalize approximately. We
would like such thermalization to be quantal, e.g. with particle distribution func-
tions which are of the Bose-Einstein type. However, the fact that our equations of
motion have the form of classical Hamilton equations in terms of Heff suggests oth-
erwise, namely a distribution approaching a classical Boltzmann form exp(−βHeff),
subject to the constraints set by the large number of conserved charges (2.27). But



TOWARDS EQUILIBRIUM 23

this may take a very long time. In any case, one way to test the Gaussian approxi-
mation is to study its thermalization properties.

This we do by looking at equal time correlation functions, which are coarse
grained by averaging over a spacetime region. Assuming the system is weakly
coupled we can compare such averages with a free field form in terms of quasi-
particles with effective masses. If the system equilibrates locally in a quantum way,
then the quasi-particle distribution nk should approach the Bose-Einstein form. We
define the correlation functions

S(t, x, y) = 〈ϕ̂(t, x)ϕ̂(t, y)〉− 〈ϕ̂(t, x)〉 〈ϕ̂(t, y)〉, (2.49a)

T(t, x, y) =
1

2
〈[ϕ̂(t, x)π̂(t, y) + π̂(t, y)ϕ̂(t, x)]〉− 〈ϕ̂(t, x)〉 〈π̂(y, t)〉, (2.49b)

U(t, x, y) = 〈π̂(t, x)π̂(t, y)〉− 〈π̂(t, x)〉 〈π̂(t, y)〉, (2.49c)

where the overbar denotes the spacetime averaging as well as a possible average
over initial conditions as in (1.5). Using (2.3a) and (2.8) we can express these quan-
tities in terms of a “classical” (mean field) and a “quantum” contribution,

S(t, x, y) = Sc(t, x, y) + Sq(t, x, y), (2.50a)

Sc(t, x, y) = ϕ(t, x)ϕ(t, y) −ϕ(t, x) ϕ(t, y), (2.50b)

Sq(t, x, y) = C(t, x; t, y), (2.50c)

etc. Note that Sc → 0 in case of averaging over initial conditions and/or spacetime.
For simplicity the spatial average is performed over all of space. For example,

〈ϕ̂(t, x)ϕ̂(t, y)〉 =
1

Lδ

∫t+δ/2
t−δ/2

dt ′
∫L
0

dz 〈ϕ̂(t ′, x+ z)ϕ̂(t ′, y+ z)〉. (2.51)

Because of the periodic boundary conditions S, T and U depend only on the differ-
ence between x and y. Taking the Fourier transform

Sk(t) =
1

L

∫L
0

dxdy e−ik(x−y) S(x, y, t), k = (0,±1,±2, · · · )2π
L
, (2.52)

and similarly for T and U, it is easy to see that S and U are symmetric and positive,
i.e.

Sk(t) = S−k(t) ≥ 0, Uk(t) = U−k(t) ≥ 0, (2.53)

while Tk enjoys no such properties. For a free field with average occupation num-
bers 〈â†kâk〉 = nk and frequenciesωk the correlators are given by

Sk =
nk + n−k + 1

2ωk
, Tk =

nk − n−k

2
, Uk = Skω

2
k. (2.54)
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Note that in this case T is antisymmetric. We now define ωk(t) and nk(t) for the
interacting case by

nk(t) = nsk(t) + nak(t), nsk(t) = ns−k(t), nak(t) = −na−k(t), (2.55)

Sk(t) =

[
nsk(t) +

1

2

]
1

ωk(t)
, (2.56a)

Tak (t) =
1

2
[Tk(t) − T−k(t)] = nak(t), (2.56b)

Uk(t) =

[
nsk(t) +

1

2

]
ωk(t). (2.56c)

These equations can be easily solved in terms ofωk and nk:

ωk = ω−k =
√
Uk/Sk nsk = ωkSk −

1

2
=
√
UkSk −

1

2
(2.57)

and nk follows by adding Tak . In practise nk is positive (it can be shown to be
positive provided the symmetric correlation between ϕ and π vanishes).

There is a more direct interpretation of these formulae in terms of the expecta-
tion value of a number operator â†kâk. Suppose we define time dependent creation
and annihilation operators as

âk(t) =
1√

2ωk(t)L

∫L
0

dx e−ikx [ωk(t)ϕ̂(t, x) + iπ̂(t, x)], (2.58a)

â
†
k(t) = (âk(t))

†
. (2.58b)

Then
〈â†k(t)âk(t)〉 = nk(t). (2.59)

The problem with starting with (2.58) is that one does not know a priori how to
choose the ωk(t). This is especially so if some of the effective squared frequencies
µ2 + 3λϕ2 + 3λC in the equations for the mode functions turn negative. The line of
reasoning leading to (2.55)–(2.56c) solves this problem, but we should keep in mind
that this is by brute force, which can be misleading in extreme situations, e.g. when
the spectral function is not dominated by a sufficiently narrow quasi-particle bump.

The quasi-particles can also be used to define an energy:

Eqp =
∑
k

nkωk (2.60)

where nk can be obtained from the two-point functions of the mean field, of the
mode functions, or of the sum of both. This definition can then be compared with
the effective Hamiltonian.
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2.5 HARTREE ENSEMBLE APPROXIMATION

Above we described the Hartree approximation. In the Hartree ensemble method
this approximation is applied to each individual realisation |ϕ,π〉〈ϕ,π| of the ini-
tial conditions as in (1.5). So in eq. (2.8) the Gaussian brackets stand for 〈·〉 =
〈ϕ,π| · |ϕ,π〉 and the average over ϕ,π is only taken in the evaluation of observ-
ables. Furthermore these states are pure, hence in (2.14), the initial particle density
n0α = 0.

In this way we compute correlation functions with a generally non-Gaussian
density operator ρ̂ =

∑
i pi|ϕ

(i), π(i)〉〈ϕ(i), π(i)|, as

Sxy =
∑
i

pi[C
(i)
xy +ϕ(i)

x ϕ
(i)
y ] −

(∑
i

piϕ
(i)
x

)(∑
j

pjϕ
(j)
y

)
. (2.61)

The C(i)
xy and ϕ(i)

x are computed with Gaussian pure states as in (2.8). This means
that in the time-evolution the Gaussian approximation is used, while expectation
values are calculated using the more general initial density operator.

It should be stressed that for typical realisations the mean field ϕ(i)
x is inhomo-

geneous in space, in contrast to the ensemble average
∑
i piϕ

(i)
x which is in fact

homogeneous for the initial conditions we shall employ.

2.6 IMPLEMENTATION ON A LATTICE

2.6.1 QUANTUM MECHANICS

The discretization of the scalar field theory on a space-time lattice has some elegant
features which we present briefly in this section; for fermions, see Ref. [20]. For
simplicity we start with a simple quantum mechanical system of unit mass, with
action

S = a0
∑
t

{
[q(t+ a0) − q(t)]

2

2a20
− V [q(t)]

}
, (2.62)

where a0 is the time step, t = a0r, with integer r. We define the quantum system
by means of the path integral. The discretized path integral

Z =

∫[∏
t

dq(t)
]
eiS (2.63)

corresponds to an evolution operator in Hilbert space that is a product of single
step evolution operators given by

Û = ÛpÛq, (2.64)



26 2.6 IMPLEMENTATION ON A LATTICE

with
Ûp = e−ia0p̂

2/2, Ûq = e−ia0V(q̂), (2.65)

where p̂ and q̂ are canonical operators satisfying [q̂, p̂] = i. A finite time-evolution
then takes the “Trotter form”

ÛqÛ
r = Ûq . . . ÛpÛqÛpÛqÛpÛq . . . Ûq, (2.66)

The Heisenberg operators

p̂(t) = Ûr†p̂ Ûr, q̂(t) = Ûr†q̂ Ûr, t = a0r, (2.67)

satisfy the discretized equations of motion in leapfrog fashion,

p̂(t+ a0) = p̂(t) − a0V
′(q̂(t)), (2.68a)

q̂(t+ a0) = q̂(t) + a0p̂(t+ a0). (2.68b)

With q̂(t)→ q(t), p̂(t)→ (q(t)−q(t−a0))/a0, the above equations (2.68) are iden-
tical in form to the classical equations obtained from the stationary action principle.

Making a unitary transformation

T̂ = e−ia0V(q̂)/2 Ûeia0V(q̂)/2, (2.69)

we get an equivalent operator T̂ , that becomes the Hermitian and positive transfer
operator upon analytically continuing to imaginary time (see e.g. Ref. [49]), writing
a0 = e−iθ|a0|, θ = 0→ π/2,

T̂ → e−|a0|V(q̂)/2 e−|a0|p̂2/2 e−|a0|V(q̂)/2. (2.70)

Specialising to the harmonic case V(q) = ω2q2/2 we can diagonalize the time
evolution in terms of creation and annihilation operators ĉ† and ĉ,

T̂ ĉT̂ † = eia0ω
(e)

ĉ, T̂ ĉ†T̂ † = e−ia0ω
(e)

ĉ†, (2.71)

with
ĉ =

1√
2ω(n)

(ω(n)q̂+ ip̂), (2.72)

and

cos(a0ω(e)) = 1−
1

2
a20ω

2, (2.73a)

ω(n) =
1

a0
sin(a0ω

(e)) = ω

√
1−

1

4
a20ω

2, (2.73b)
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and the conjugate relation for ĉ†. The creation and annihilation operators satisfy
the standard commutation relation [ĉ, ĉ†] = 1. The superscripts e and n distinguish
the “exponent omega” (eigenvalue omega) ω(e) from the “normalisation omega”
(eigenvector omega) ω(n), and both go over to the “original omega” ω in the con-
tinuous time limit a0 → 0. The ground state is given by

ĉ|0〉 = 0, 〈q|0〉 = νe−ω(n)q2/2, (2.74)

with ν a normalisation constant and

T̂(ĉ†)n|0〉 = e−i(n+1/2)a0ω
(e)

(ĉ†)n|0〉. (2.75)

The evolution becomes unstable when a20ω
2 > 4, for which ω(e)

k is imaginary. The
eigenvalues of T̂ are then no longer phase factors and its eigenfunctions no longer
normalisable, despite its formally unitary form. This is of course avoided by taking
a0 sufficiently small. The discretization errors inω(e) andω(n) are of order a20.

It is natural to identify the Hamiltonian Ĥ from T̂ = exp(−ia0Ĥ), but this
leaves a modulo 2π/a0 ambiguity for the eigenvalues of Ĥ (the imaginary time
version is unambiguous). To pin down Ĥ more precisely we can use the Baker-
Campbell-Hausdorff series for combining the exponents in T̂ , which gives Ĥ =
p̂2/2 + V(q̂) + O(a20). We shall neglect the corrections of order a20. The exact Ĥ is
time-independent. In practise, the expectation value of the approximate Ĥ is con-
stant in time up to small fluctuations, as expected for a leapfrog algorithm.

2.6.2 FIELD THEORY: HARTREE APPROXIMATION

For the application to the Hartree approximation it will be more convenient for us to
work with the unitarily-related creation and annihilation operators that diagonalize
the operator Û,

â = eia0V(q̂)/2 ĉ e−ia0V(q̂)/2

=
1√
2ω(n)

(
1− e−ia0ω

(e)

ia0
q̂+ ip̂

)
,

(2.76a)

ÛâÛ† = eia0ω
(e)

â, (2.76b)

for V = ω2q2/2. Note that â→ ĉ in the limit a0 → 0.
The generalisation of the above quantum mechanical model to our scalar field

is straightforward. The lattice action on a space-time lattice with spatial/temporal
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lattice distance a/a0 is given by

S[ϕ] = a0a
∑
x,t

{
[ϕ(x, t+ a0) −ϕ(t, x)]

2

2a20
−

[ϕ(x+ a, t) −ϕ(t, x)]
2

2a2

−
1

2
µ2ϕ(t, x)2 −

1

4
λϕ(t, x)4

}
,

(2.77)

where we assume a periodic physical size L = Na. The operator description in
Hilbert space follows from the lattice regularised path integral. In the Hartree ap-
proximation we write the operator fields in terms of a complete set of mode func-
tions,

ϕ̂(t, x) = ϕ(t, x) +
∑
k

[b̂kfk(t, x) + b̂†kfk(t, x)
∗], (2.78a)

π̂(t, x) = π(t, x) +
∑
k

[b̂kḟk(t, x) + b̂†kḟk(t, x)
∗], (2.78b)

where the use of

ḟ(t, x) =
f(t, x) − f(x, t− a0)

a0
, (2.79)

is inspired by equation (2.68b) (using instead the forward derivative ḟk(t, x) =
[f(x, t+a0)−f(t, x)]/a0 gives equivalent results). Imposing canonical commutation
relations for both ϕ̂, π̂ and b̂k, b̂†k, leads to the orthonormality and completeness re-
lations

a
∑
x

[iḟk(t, x)f
∗
l (t, x) − ifk(t, x)ḟ

∗
l (t, x)] = δkl, (2.80a)

∑
k

[if∗k(t, x)ḟk(y, t) − ifk(t, x)ḟ
∗
k(y, t)] =

δxy

a
. (2.80b)

The time-independence of the orthonormality conditions corresponds to Noether
charges of symmetries of the effective action on the lattice, as explained in Sec-
tion 2.2. We use the static solutions of the Hartree equations in constructing the set
of mode functions. Their equation of motion

fk(x, t+ a0) − 2fk(t, x) + fk(x, t− a0)

a20
=

fk(x+ a, t) − 2fk(t, x) + fk(x− a, t)

a2
−m2fk(t, x), (2.81)
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can be written in the leapfrog form (2.68). The solution of the recursion relation
(2.81) can be written as

fk(t, x) =
eikx−iω

(e)
k t√

2ω
(n)
k L

, k =
2πj

L
, j = −

N

2
+ 1, . . . ,

N

2
, (2.82)

giving

−
2− 2 cos(ω(e)

k a0)

a20
+
2− 2 cos(ka)

a2
+m2 = 0. (2.83)

Defining a latticeω(a)
k as

ω
(a)
k =

√
m2 +

2− 2 cos(ka)

a2
, (2.84)

we find the analogue of (2.73a),

cos(a0ω
(e)
k ) = 1−

1

2
a20(ω

(a)
k )2, (2.85)

which has real ω(e)
k solutions for a/a0 ≥

√
4+ a2m2. In simulations we used

a/a0 ≥ 10, which amply secured the stability. The normalisation in (2.82) is fixed
by the orthonormality relation (2.80a), which gives the analogue of (2.73b)

ω
(n)
k =

sin(a0ω
(e)
k )

a0
= ω

(a)
k

√
1−

1

4
a20(ω

(a)
k )2, (2.86)

The completeness relation (2.80b) is then also satisfied. When the mode functions
have the form (2.82), the âk defined by

ϕ̂ =
∑
k

âkfk + h.c., π̂ =
∑
k

âkḟk + h.c., (2.87)

are related to ϕ̂ and π̂ as in the quantum mechanical case (2.76a). Note that ω(n)
k ,

ω
(e)
k → ω

(a)
k in the limit a0 → 0, andω(a)

k → √m2 + k2 as a→ 0.

2.6.3 PARTICLE NUMBER

We end this section with a properly discretized version of the instantaneous particle
number nk, using the stationary solution (2.82) and the two-point functions (2.49).
Suppose the mean field is zero and

〈b̂†kb̂k〉 = n0k = n0−k. (2.88)
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Then

Sk(t) =

(
n0k +

1

2

)
1

ω
(n)
k

(2.89a)

Uk(t) =

(
n0k +

1

2

)
(ω

(a)
k )2

ω
(n)
k

, (2.89b)

where we used
ḟk(t, x)ḟ

∗
k(y, t) = (ω

(a)
k )2fk(t, x)f

∗
k(y, t). (2.90)

Inverting (2.89) we find that our definition of the instantaneous particle energy
ωk(t) does not need discretization corrections,

ω
(a)
k =

√
Uk(t)

Sk(t)
≡ ωk(t). (2.91)

On the other hand, compared to (2.57) the definition of instantaneous particle num-
ber needs important corrections for largeωk:

n0k +
1

2
=
√
UkSk

ω
(n)
k

ω
(a)
k

=

√
Uk(Sk −

1

4
a20Uk) ≡ nk(t) +

1

2
, (2.92)

using (2.86) and (2.91).
For larger energies the corrections can become quite important. Denoting the

uncorrected particle number by ñk =
√
UkSk − 1/2, we find

ñk − nk

nk
=
nk + 1

2

nk

( 1√
1− 1

4 (a0ω
(a)
k )2

− 1
)

≈
nk + 1

2

nk

1

8
(a0ω

(a)
k )2.

(2.93)

Using a Bose-Einstein distribution at T = m and the typical value a0m = 1/80

we find that the relative difference becomes unity for ωk/m = 7.5. At the lower
temperature T/m = 0.5 this is the case already forωk/m = 4.3.

2.7 NUMERICAL RESULTS

2.7.1 MONTE CARLO CHECK

In this section we will first check the expectation, that for weakly coupled fields
the equilibrium particle densities, defined according to (2.56), indeed have a Bose-
Einstein distribution, while the energies will have a free quasi-particle dispersion
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Figure 2.4: Dispersion relation computed from a Monte Carlo simulation of the
Euclidean time version of the model. The model parameters are: λ/m2 = 1/2v2 =
1/4, Lm = 25.6, 1/am = 10 and T/m = 1, with 20 steps in the Euclidean time
direction. Here k is the lattice momentum

√
2− 2 cos(ak)/a. The statistical error

bars are smaller than the symbols.

relation, approximately,

nk =
1

eωk/T − 1
, ω2k = m(T)2 +

2− 2 cos(ak)
a2

. (2.94)

The effective massm(T) of the quasi-particles is temperature dependent. In the fol-
lowing we shall use the zero temperature massm ≡ m(T = 0) to scale dimensionful
quantities.

To substantiate this expectation (2.94), we have performed several Monte Carlo
simulations of the Euclidean time version of our model at parameter values in the
same range as we will use for the Hartree simulations. In Fig. 2.4 we show the
dispersion relation computed from such a Monte Carlo simulation. We chose a
temperature T/m = 1 and measured Sxy. We stress that such a Monte Carlo simu-
lation gives the exact (up to statistical errors) results for the finite temperature Green
function. Making the assumption that nk has the BE form, we computed the ωk
from Sxy using (2.56). As can be seen from the figure, the free form (2.94) for the
quasi-particle dispersion relation holds very well, withm(T)/m ≈ 0.43. This value
is close to that found with the effective potential calculations in the Hartree approx-
imation, as described in Section 2.3, which gives m(T)/m ≈ 0.41 at T/m = 1. The
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effects of the temperature and interactions show up almost exclusively in the value
of the effective massm(T).

2.7.2 HARTREE ENSEMBLE APPROXIMATION: INITIAL CONDITIONS

We will now describe some Hartree simulations we used for obtaining the parti-
cle numbers nk(t). The mass and coupling parameters were chosen such that the
system at zero temperature is in the “broken symmetry phase”. The coupling was
weak, v2 = m2/2λ = 6. Here and in the following m is the mass of the particles at
zero temperature.

The system is discretized on a space-time lattice with spatial (temporal) lattice
distance a (a0), with a0/a = 0.1. The number of spatial lattice sites, equal to the
number of independent complex mode functions, will be denoted with N = L/a.
The discretized Lagrangian gives rise to second order difference equations, with a
time evolution which is equivalent to a first order leapfrog algorithm for πx(t) ≡
[ϕx(t+ a0) −ϕx(t)]/a0 and ϕx(t).

The initialisation is similar to that used in [16, 17],

ϕ(i)
x = v, π(i)

x = Am

jmax∑
j=1

cos(2πjx/L−ψ
(i)
j ), (2.95)

with random phases ψj uniformly distributed in [0, 2π). The modes are initialised
with the equilibrium form at zero temperature: the n0k are all zero and the modes
fk(x, 0), ḟk(x, 0) are given by the plane waves (2.82) and their time derivative at
t = 0, together with the definitions (2.85) and (2.86). The density operator is thus a
superposition of coherent pure states as in (1.5).

2.7.3 TOWARDS EQUILIBRIUM

We first describe a simulation for which λ/m2 = 1/12, N = 256, mL = 32, jmax = 4,
A = 1/

√
2, such that the energy density is given by E/Lm2 = A2jmax/4 = 0.5. A

Bose-Einstein distribution describing particles with such an energy density would
have a temperature T/m ≈ 1.08, well below the phase transition at T/m ≈ 1.8,
as calculated from the finite temperature effective potential. We also chose these
parameters so that the system may end up in a low temperature quantum regime
and not in a classical regime with T/m � 1. A boring consequence is that the
volume averaged mean field typically just oscillates around one of the two minima,
we did not encounter an initial condition for which it crossed the barrier after tm >

50.
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of the mean field (lower band) and of the modes (higher band). Also plotted are
the various energy densities in the quasi-particle interpretation,

∑
k nkωk/Lm

2.

Initially the mean field carries all the energy in its low momentum modes 0 <
k/m ≤ π/4 (zero momentum mode excluded). Due to interaction with the inho-
mogeneous mean field, the modes will not keep the vacuum form, but get excited.
Fig. 2.5 shows the time dependence of the energy density for one of the members
of the ensemble. The total energy is conserved up to a numerical accuracy of about
0.2%. The energy in the mean field (cf. (2.44) for its definition), initially equal to the
total energy, is decreasing rapidly and after a time tm ≈ 100 about 50% has been
transferred to the modes. The mean field continues losing energy after that time
but at a time tm of the order 20 000 some 15% is still left.

The development of the particle numbers nk(t) at early times is shown in Fig.
2.6a, including the mean field contribution, cf. (2.50a)–(2.50c).3 Initially the mean
field gives the main contribution since n0k = 0 for the modes, but then the mode
contribution rapidly takes over. Because the mean field contribution fluctuates
strongly we used as many as 500 initial conditions for these early times, without
coarsening over time. Fig. 2.6b shows the mode contribution to nk as a function
of ω (40 initial conditions were used for the data at tm > 200, with no coarsening
over time). It starts out identically zero, rises rapidly and then appears to stabilise.
The figure also shows a fit to the Bose-Einstein distribution with chemical potential
µ at time tm = 990. A chemical potential is expected to develop temporarily at
weak coupling, since elastic scattering dominates over processes like 2↔ 4 scatter-
ing. The fitted temperature (βm = 1.08) is already approaching the earlier estimate

3In this and following figures an average is taken over k = ±|k|. The distributions nk for positive
and negative k are equal within fluctuations.
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Figure 2.6: Particle number nk for early times, time increases from bottom to top.

T/m ≈ 1.1 based on the energy density. The complete distribution function (includ-
ing the mean field contribution) reaches much larger values at these early times (by
a factor 3− 4) and the curves appear closer together. However the plots are noisier,
due to the strongly fluctuating mean field.

To study the tail of the distribution more easily, a plot of log(1 + 1/n) is shown
in Fig. 2.7a. This function is linear in ω for a Bose-Einstein distribution with slope
equal to the inverse temperature β and offset equal to the βµ. We indeed see linear
Bose-Einstein behaviour developing at low momenta with gradual participation of
the higher momentum modes. Including the contribution of the mean field, shown
in Fig. 2.7b, a more rapid convergence and higher occupation numbers can be seen,
giving a higher fitted temperature and smaller chemical potential, compared to the
data in Fig. 2.7a. The trend seen in Figs. 2.7a and 2.7b continues at larger times, as
shown in Fig. 2.8 for the contribution of the modes only. A plot where the mean
field contribution is included looks similar. For this simulation an average is taken
over a time interval tm = 24, approximately 3.5 oscillation periods, and only 10
initial configurations. The straight line is a Bose-Einstein fit with zero chemical
potential at tm = 6200 in the region ω/m < 1.8. We see that the slope is roughly
constant in time and that the thermalized part of the distribution is extending to
higher values ofω, roughly linear in log tm.

In Fig. 2.9a a plot is made of the Bose-Einstein temperatures from the fits (modes
only) as a function of time. For times tm < 3000 the fit is made over the interval
ω/m < 1.4while for later times this is increased toω/m < 1.8. The figure shows an
anti-correlation between T and µ which would be meaningful, i.e. not just a fitting
artifact, if the particle density n =

∑
k nk/L is constant, or has evidently smaller

fluctuations. This seems to be the case indeed: as shown in Fig. 2.9b, the density n



TOWARDS EQUILIBRIUM 35

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

lo
g(

1+
1/

n)

ω/m →

βm=1.08 (tm=990)
µ/m=0.23

tm= 6

tm= 22

tm= 78

tm=280

tm=990

a: Modes only

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

lo
g(

1+
1/

n)

ω/m →

βm=0.70 (tm=140)

tm= 8

tm= 26

tm= 88

tm=300

tm=990

b: Mean field and modes

Figure 2.7: Particle number log(1 + 1/nk) versus ωk for early times. The straight
line is a Bose-Einstein fit for the latest time, overω/m < 1.2.

corresponding to the modes only is quite constant for times tm > 100, and in fact
continues to remain so up to times of over 5000. On a larger time scale of order
10000 or so it drops somewhat. The initial approach of n/m (modes only) to the
value ≈ 0.34 can be fitted to an exponential, which yields an equilibration time
scale τm = 15 – 20, depending on the fitting range.

We have to be careful, however, that our µ is not an artifact of the fitting pro-
cedure. We believe this to be the case for the larger times tm & 40000 where µ
becomes negative. As can be seen (with difficulty) in Fig. 2.8, the distribution starts
to deviate at lowω upwards from the straight line, corresponding to a suppression
of nk compared to the Bose-Einstein form. We interpret this as a contamination by
classical behaviour nk ≈ Tcl/ωk, cf. (2.48), as will be argued later in this section.

Let us now make a comparison with analytical results derived from the equilib-
rium finite temperature effective potential (2.45). Around time tm = 15000 . . . 20000

the temperature measured in the simulation is T/m = 1.1. The effective potential
then gives for the thermal mass m(T = 1.1)/m = v(T = 1.1)/v = 0.93. We derive
the thermal mass in the simulation from the dispersion relation of measuredωk. It
is in very good agreement with a free form: ω2k = m2(T) + k2. A straight line fit of
ω2 versus k2 over the interval tm = 15000 . . . 20000 gives a slope 1.00 and an offset
m(T = 1.1)/m = 0.908. This is also in good agreement with the volume averaged
value of the mean field, which is 0.91. These values are somewhat lower than the
position of the minimum in the effective potential because of its asymmetric shape.
However the difference is small because of the small amplitude of the mean field
oscillations around this minimum.

The quasi-particle aspect can be investigated further by looking at the energy
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∑
k nkωk, as plotted in Fig. 2.5. We have made a distinction between the particle

number as derived from the mean field, quantum and total two-point function. We
see that the total energy in the particles (mean field + modes) is only a few percent
lower than the total energy is the system, as may be expected for a weakly coupled
system. It is also interesting to note that, while the quantum modes initially carry
only a small fraction of the total energy, they thermalize with the same temperature
1.1m the system would have if all energy would be distributed according to a Bose-
Einstein distribution with zero chemical potential.
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2.7.4 LATE TIME BEHAVIOUR

We now turn to the very long time behaviour of the system, where we expect Bose-
Einstein behaviour to be replaced by classical equipartition according to the effec-
tive Hamiltonian (2.22). The numerical computation of the equilibrium distribution
functions in this regime is very difficult as it changes exceedingly slowly (cf. the
slow log t-like population of the high momentum modes in Fig. 2.8). We therefore
have carried out simulations in a smaller system at stronger coupling and at larger
energy densities in order to make time scales a lot shorter. Here we present data for
N = 16, Lm = 1, λ/m2 = 1 and E/Lm2 = 36, for which the system is in the “sym-
metric phase”. In Fig. 2.10 we plotted nkωk (modes + mean field) versus the inte-
ger kL/2π = k/2πm, for different times. Note that it was necessary to initially also
excite the highest momentum modes, otherwise the system would not reach final
equilibrium sufficiently closely even after a time of 12 · 106. Classical equipartition
suggests nkωk = Tcl, giving a straight horizontal line in the plot. We see indeed flat
behaviour, with lower momentum modes tending to have somewhat smaller occu-
pation numbers, except for the zero mode. Runs at small coupling λ/m2 = 1/12 in
larger volumes Lm = 4 and Lm = 16 in the “broken phase” showed similar results,
except that the zero modes were less exceptional.

So we do find approximate classical nk = Tcl/ωk behaviour at very large times.
Classical equipartition leads to small temperatures Tcl = O(1/N). If this behaviour
sets in first for the low momentum modes, then these will appear to be under-
occupied compared to the Bose-Einstein distribution at temperature T > Tcl. This is
indeed the trend noticed earlier in Fig. 2.8, where the low momentum data at times
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tm > 20000 lie above the straight line going through the data at larger momenta.

2.8 DISCUSSION

In this chapter we introduced the Hartree approximation and explained how its
thermalization properties can be improved, by extending it with an initial ensemble
average, thus allowing for the simulation of systems which are non-Gaussian.

We presented results of simulations mainly for a weakly coupled system in the
broken symmetry phase. For such a weakly coupled system a near equilibrium de-
scription in terms of quasi-particles is expected to be reasonable, which we checked
and confirmed in a Monte Carlo simulation.

Starting with distributions which are initially far out of equilibrium, in which
only low momentum modes k . m of the classical field were excited with low en-
ergy density, we observed approximate thermalization with a particle distribution
function approaching the Bose-Einstein form. After a fairly rapid initial thermaliza-
tion at low momenta, the gradual adjustment of progressively higher momentum
modes is very slow. The energy in the mean field gets transferred to the two-point
function and one might think that the system behaves as if the mean field were con-
stant. However, this is not the case: up to large times tm = 80000 the mean field
keeps fluctuating in space and time and carries a non-negligible fraction of the total
energy.

It is hard to assign a time scale for the gradual adjustment of the distribution at
higher momenta, however it appears to be at least two orders of magnitude larger
than the equilibration time τm ≈ 20 for the particle density, found at early times
(tm = O(10)). Slow thermalization was also found in a recent study of the fully
nonlinear classical system in the symmetric phase [18]. Using our parameter com-
bination λT/m3 ≈ 1.1/12 in their empirical fit 1/τm = 5.8 10−6 (6λT/m3)1.39 would
give τm ≈ 4 105.

On a large time scale, perhaps of the order of tm = 10000 or more, the distribu-
tion moves away from the quantum (Bose-Einstein) form towards classical equipar-
tition. We never reached this classical equipartition for the weak coupling and low
temperature used in this study, because of the very long computer time this would
take. Only the use of very small systems, at high energy density and/or coupling
enabled us to reach a situation resembling classical equipartition.

We have carried out many more simulations at higher energy densities, and
larger couplings, in which the approximate quantum nature of the distribution at
intermediate times was also evident. With higher energy density and/or larger
coupling the effective coupling strength nkλ/m2 increases. Things then go quicker
and the time scales of quantum versus classical equilibration get closer and might
even get blurred. Furthermore, the Bose-Einstein distribution, on which we based
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our analysis, might get distorted by non-perturbative effects. We may have seen
such effects already in a significant enhancement of nk at low momenta, in simula-
tions at larger volume.

Summarising, on the one hand our intuitive expectation that there may be quan-
tal thermalization in the Gaussian approximation, due to scattering of the mode
particles via the arbitrary inhomogeneous mean field, appears to be validated, but
on the other hand it is not clear how useful this approximation can be for equilib-
rium physics, e.g. at finite density. It is possible that starting closer to quantum
thermal equilibrium the time to reach thermalization is reduced and the intermedi-
ate time regime of quantal equilibrium can be stretched to do useful computations.
Then it will be interesting to compare the Gaussian approximation with the classi-
cal approximation and see which one fares best. We will address these aspects in
the next chapter. In that chapter we will also investigate the possibility of using
fewer mode functions, in order to safe on the numerical cost of the inhomogeneous
Gaussian approximation, which is substantial: for anNd spatial lattice, the compu-
tational time scales like N2d+1.

2.A DIAGONAL COHERENT STATE REPRESENTATION

To derive the representation (1.5) consider first a quantum mechanical system of
two degrees of freedom with canonical variables p and q. Let |pq〉 be a normalised
coherent state, such that

â|pq〉 =
1√
2ω

(ωq+ ip) |pq〉, â ≡ 1√
2ω

(ωq̂+ ip̂), (2.96a)

〈p ′q ′|pq〉 = exp
{ i
2

(pq ′ − p ′q) −
1

4ω
[ω2(q− q ′)2 + (p− p ′)2]

}
(2.96b)∫

dpdq

2π
|pq〉〈pq| = 1̂. (2.96c)

where ω > 0 is arbitrary. As is well known, the coherent states form a (over)
complete set, so it should be possible to represent an arbitrary operator ρ̂ in the
form

ρ̂ =

∫
dpdq

2π
ρ(p, q) |pq〉〈pq|. (2.97)

In our application ρ̂ is a density operator, for which∫
dpdq

2π
ρ(p, q) = 1. (2.98)
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Taking matrix elements of the above equation with |p ′, q ′〉 and 〈−p ′,−q ′| gives

e(ω2q′2+p′2)/2ω 〈−p ′,−q ′|ρ̂|p ′, q ′〉

=

∫
dpdq

2π
ei(p

′q−pq ′) e−(ω2q2+p2)/2ω ρ(p, q), (2.99)

from which follows that the function ρ(p, q) is given by the inverse Fourier trans-
form

ρ(p, q) =

e(ω2q2+p2)/2ω

∫
dp ′ dq ′

2π
e−i(p ′q−pq ′) e(ω2q′2+p′2)/2ω 〈−p ′,−q ′|ρ̂|p ′, q ′〉. (2.100)

A trivial example is a coherent state centred about (p1, q1), for which ρ(p, q) =
2πδ(p − p1)δ(q − q1). Another simple example is given by the thermal density
operator of the harmonic oscillator with Hamiltonian H = (ω2q2 + p2)/2,

ρ̂ =
1

Z
exp

[
−βω

(
â†â+

1

2

)]
, (2.101)

with Z the partition function, such that Tr ρ̂ = 1. Choosing the ω in the definition
of the coherent states equal to theω appearing in this ρ̂, it follows that

〈−p ′,−q ′|ρ̂|p ′, q ′〉 =
1

Z
exp

[
−
(
e−βω + 1

) 1

2ω

(
ω2q′2 + p′2

)
−
1

2
βω

]
, (2.102)

and

ρ(p, q) =
1

Z
exp

[
−
(
eβω − 1

) 1

2ω

(
ω2q2 + p2

)
+
1

2
βω

]
. (2.103)

We recognise the inverse Bose-Einstein distribution, exp(βω) − 1, in the exponent.
For large temperatures, βω� 1, ρ(p, q) approaches the classical Boltzmann distri-
bution exp(−βH). In the limit of zero temperature we get the distribution repre-
senting the ground state,

ρ(p, q) = 2πδ(p)δ(q). (2.104)

More examples can be found in Ref. [39, 40]. The generalisation to the scalar field
is straightforward.

2.B EQUIPARTITION?

The effective Hamiltonian Heff[ϕ,π, ξ, η] of the Gaussian approximation is con-
served in time. So one may expect that after very large times the system reaches
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classical equilibrium. Assuming ergodicity, time averages will then correspond to
the Boltzmann distribution exp(−Heff/T), under the constraints of the conserved
generalised angular momenta Lαa,βb, cf. (2.27). We shall now derive an approxi-
mate form for the particle distribution function nk, corresponding to this classical
equilibration.

In our derivation we assume the system to be weakly coupled, such that we
may approximate Heff in the Boltzmann distribution by a free field form (possibly
after having shifted ϕ by its equilibrium value v such that 〈ϕ〉 = 0),

Hfree =

∫
dx
[1
2
π2 +

1

2
(∂ϕ)2 +

1

2
m2ϕ2 +

∑
α

(|ηα|2 + |∂ξα|2 +m2|ξα|2)
]
, (2.105)

wherem is an effective mass. For convenience we use a complex formalism for the
mode functions, ξα = (ξα1−iξα2)/

√
2 =

√
n0α + 1/2 fα, cf. (2.21).4 The generalised

angular momenta are just the naturally conserved charges of the complex fields,

Qα = i

∫
dx (ξ∗αη

∗
α − ηαξα) = Lα1,α2 = n0α +

1

2
. (2.106)

We take them into account by introducing chemical potentials µα, such that the av-
erage charges are equal to their values set by the initial conditions,Qα = n0α + 1/2.
It is not immediately clear that this procedure is correct, because these initial values
are not extensive and therefore relative fluctuations will be large, but the emerging
formulae below look reasonable. Imposing the constraints exactly appears to be
quite cumbersome, except forN = 1. Recall thatN is the number of complex mode
functions, which in the lattice regularisation is equal to the number of lattice sites:
N =

∑
k =

∑
α. Here we shall assume a sharp momentum cutoff |k| < Λ, for

simplicity.
The classical grand canonical average will be indicated by an over-bar:

F =
1

Zc

∫
[dϕdπ][

∏
α

dξα dηα] exp
[
−
1

T

(
Hfree −

∑
α

µαQα

)]
F, (2.107)

with Zc the partition function such that 1 = 1. Our approximation for nk is now
given by (ωk =

√
m2 + k2)

S(x, y) =
1

L

∑
k

eik(x−y) nk + 1/2

ωk
,

= ϕ(x)ϕ(y) +
∑
α

[ n0α + 1

n0α + 1/2
ξα(x)ξ∗α(y) +

n0α
n0α + 1/2

ξ∗α(x)ξα(y)
]
.

(2.108)

4We added a superscript 0 to nα to indicate that these are the initial values at time t = 0, in order to
avoid possible confusion with the nk.
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The calculation is a straightforward free field exercise. Introducing the classical
analogues of the creation and annihilation operators,

ϕ(x) =
∑
k

eikx√
2ωkL

(ak + a∗−k), ξα =
∑
k

eikx√
2ωkL

(aαk + b∗α−k), (2.109)

and accordingly for the canonical momenta π and ηα, we get

Hfree =
∑
k

[
|ak|

2 +
∑
α

(
|aαk|

2 + |bαk|
2
)]
ωk, (2.110a)

Qα =
∑
k

[
|aαk|

2 − |bαk|
2
]
. (2.110b)

It follows that

nk +
1

2
= |ak|2 +

∑
α

(
|aαk|2 + |bαk|2

)
=

T

ωk
+
∑
α

(
T

ωk − µα
+

T

ωk + µα

)
.

(2.111)

The µα are to be determined by the conditions

n0α +
1

2
= Qα =

∑
k

(
|aαk|2 − |bαk|2

)
=
∑
k

(
T

ωk − µα
−

T

ωk + µα

)
.

(2.112)

Before turning to the case n0α = 0 used mostly in this paper, we comment on
the properties of the above equations. Suppose there is only one complex mode
function (“quantum mechanics”): N = 1. Then the solution of the equations is
given by

µ =

√
ω2 +

T2

(n0 + 1/2)2
−

T

n0 + 1/2
, (2.113a)

n+
1

2
=

√(
n0 +

1

2

)2
+
T2

ω2
+
T

ω
, (2.113b)

for which n ≥ n0. We see that µ → ω, n → n0 as T → 0, and µ → 0, n → ∞ as
T →∞.
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For finite N, eq. (2.112) for µα can be rewritten as a polynomial equation of
degree 2N by multiplying the LHS and RHS by

∏
k(ω

2
k − µ2α). So there are in

principle 2N solutions for each µα. For T → 0 we have a solution in which α ↔ k

(as in (2.29b), behaving as

µk = ωk − T/(n0k + 1/2) + · · · , nk = n0k + · · · . (2.114)

For the case n0α ≡ 0 it is natural to look for a solution in which all the chemical
potentials are equal, µα = µ. Eq. (2.112) then reduces to

1

2
= 2Tµ

∑
k

1

ω2k − µ2
≈ 2TLµ

∫Λ
0

dk

π

1

m2 + k2 − µ2

≈ TLµ√
m2 − µ2

,

(2.115)

for large volumes mL � 1 and large momentum cutoff Λ/m � 1 (the integral
converges for Λ→∞). It follows that

µ ≈ m√
1+ 4T2L2

. (2.116)

On the other hand, we have from (2.111),

nk +
1

2
=

T

ωk
+
2NTωk

ω2k − µ2
, (2.117)

which depends explicitly on the number of modes N. We see that nk + 1/2 falls
roughly like 1/ωk, and there is a danger that nk may get negative for large ωk,
which should not happen.

In fact, in our numerical simulations we always found the nk to be positive,
however it di not follow the distribution (2.117) for all k. Even after very large
times we usually find that only a limited number of modes are able to thermalize
approximately classically, except for small systems such as in Fig. 2.10.

If we approximate

N =
∑
k

≈ L
∫Λ
0

dk/π = LΛ/π, ωΛ ≈ Λ, (2.118)

the condition
nΛ + 1/2 ≈ 2TN/Λ ≥ 1/2 (2.119)

leads to
LT ≥ π/4. (2.120)
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If this condition is not satisfied, more complicated solutions for the chemical po-
tentials may be needed in which µk ≈ ωk, as in (2.114). We have explored such
solutions on the lattice, using Mathematica. Despite ambiguities (e.g. funny be-
haviour of the alternating lattice modes), such solutions indicate that nkωk is quite
constant (but apparently not exactly), i.e. approximate equipartition.

So we tentatively conclude that, approximately, nk ≈ Tcl/ωk is the predicted
form for the particle distribution at very large times.



CHAPTER 3

STAYING THERMAL

In the previous chapter we introduced the Hartree ensemble approximation, which
allows for non-perturbative inhomogeneous field configurations, as well as for ap-
proximate thermalization. We studied this latter phenomenon starting from far
out-of equilibrium initial conditions. In this chapter we will further investigate the
approximation in order to determine the different time scales present in the theory.
We will therefore use ensembles with a free field thermal distribution as out-of-
equilibrium initial conditions. The time scale characterising the time for which the
system stays in approximate quantum thermal equilibrium is an indication of the
time scales for which the approximation method stays reasonable. In the range of
couplings and temperatures studiedi, it turns out to be two orders of magnitude
larger than the time scale for thermalization.

In order to obtain more information about the intermediate time regime, in
which the slower equilibration of the higher momenta takes place, but when the
system is still behaving as being in approximate thermal equilibrium, we will also
investigate the damping time, which has some unexpected features in 1+1 dimen-
sions.

The final topic addressed in this chapter will be methods to reduce the numeri-
cal cost of solving all the inhomogeneous mode functions. We will therefore study
the possibility of reducing the number of mode functions and its limiting case, the
the use of classical dynamics.

3.1 INITIAL CONDITIONS

In order to solve the equations of motion (2.18), we must specify initial conditions
for the mean field ϕ(i) and the modes f(i)α of the individual Hartree trajectories as
well as the weights pi of the Hartree ensemble (cf. Section 2.5). This amounts to
specifying the initial density operator ρ̂. As explained in the introduction, Chap-
ter 1, we use coherent (pure) states to represent the initial density operator, hence

45
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we use initial modes functions as in the vacuum state (with the initial particle den-
sity n0α equal to zero), as in equation (2.82).

We will not choose the initial ϕ as far out of equilibrium as we did in Chapter 2,
where we took a superposition of only a few low momenta modes. Here we choose
the mean fields from an ensemble with a Bose-Einstein (BE) distribution for the ϕ
and πmomentum modes as in (1.6),

pk(ϕk, πk) ∝ exp[−(eωk/T0 − 1)(π2k +ω2k(ϕk − δk0v)
2)/2ωk]. (3.1)

Then the initial density operator is that of a free field thermal quantum ensemble
(cf. Appendix 2.A),

ρ̂ =
∏
k

∫
dϕkdπk pk(ϕk, πk)|ϕk, πk〉〈ϕk, πk| ∝ e−Ĥ0/T0 . (3.2)

It should be stressed that this ensemble is not in equilibrium, even though the
particle densities we compute from the initial conditions (after averaging over a
large number of realisations) have a BE distribution. This is clear, because the mode
functions do not contribute at all to the initial particle density. In each individ-
ual run we therefore expect quick excitation of the mode functions from their vac-
uum state, i.e. quantum particles will be created, using energy from the mean field.
Moreover we use the free field dispersion relation ω2k = m2 + [2 − 2 cos(ak)]/a2

in the initial distribution (3.1), with the zero temperature mass m ≡ m(0). In ther-
mal equilibrium this should become the temperature dependent mass m(T) of the
quasi-particles. Nonetheless we expect that these initial conditions will lead to a
much faster thermalization than initial conditions of the form (2.95).

3.2 WEAK COUPLING

In the previous chapter, using the far out-of-equilibrium initial conditions (2.95), we
found that particles of increasingly higher energy are created and acquire densities
with a BE distribution. However, this thermalization progressed rather slowly to
high energies, such that the low momentum particle densities already started to
deviate from a BE distribution before particles with energies of a few times the
temperature could participate in the equilibrium. These two phenomena – particles
being created with densities that have a BE distribution and the gradual emerging
of equipartition-like features – will be investigated below using the thermal initial
conditions (3.2).

To probe the large time behaviour we shall use stronger coupling and higher
energy densities than in the previous Chapter 2. However, first we show results
at the same coupling as used there. The coupling constant λ/m2 = 1/2v2 = 1/12
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is in the “broken symmetry phase” of the model. We will use a somewhat smaller
volume Lm = 25.6, with a lattice cut-off 1/am = 10.

As before, we plot log(1 + 1/nk) rather than nk itself, because in this way a
BE distribution shows up as a straight line with a slope equal to the inverse tem-
perature. The scattering in the data points is due to the use of only a few Hartree
realisations (only two initial conditions). The result at low temperature, T0/m = 1,
is plotted in Figures 3.1a-c. It shows the evolution is very slow and there is hardly
a sign of emerging classical features even at the largest time tm ≈ 50 000. Even
though the particle distribution does not change, there is a persistent, slow transfer
of energy from the mean field into the modes. At tm = 200, 50% of the energy is
still in the mean field, at tm = 6000 this has dropped to 25% and at tm = 50 000 it
is still some 15%. The effective mass stays roughly constant,m(T)/m ≈ 0.94, which
is consistent with the prediction from the effective potential for T0/m = 1.

At higher temperature, T0/m = 5, but with the same weak coupling, there is
again a wide window in which the particles have a BE distribution without signif-
icant distortions, see Figures 3.1d-f. However, we see classical-like features emerg-
ing for tm & 4000: compared to the BE distribution, the low momenta modes
become under-occupied, while the high momenta modes become over-occupied.
We find that, at the latest time tm ≈ 50 000, the distribution for ω/m . 7 can be
described reasonably well with an ansatz nk = c0 + Tcl/ωk. Without the constant
c0 ≈ 0.25 the fit would be poor.

In this simulation we find an interesting behaviour of the effective mass, shown
in Fig. 3.2. For comparison, we also show in Fig. 3.3 the effective mass calculated
using the Hartree effective potential at the same model parameters. First the mass is
steadily decreasing, which is appropriate when the temperature is decreasing and
the system is in the hot, symmetric phase. At tm ≈ 14000 there is a sharp turnover
and the mass starts to increase, as in the cold, broken phase. The temperature at that
point Tcl/m ≈ 1.6, obtained from a classical fit, is close to the temperature Tc/m =
1.8 of the first order phase transition, computed from the effective potential.1 Also
the average mean field fluctuates around zero before and around v ≈ 1.8 after the
transition, reasonably close to the effective potential prediction v ≈ 2 for T/m ∼

1.6 − 1.8. The reasonable quantitative agreement between the simulation, which
shows classical features, and the effective potential computation, which assumes a
BE distribution, illustrates that the thermal mass is dominated by the low-energy
particles, for which there is little difference between a BE and classical distribution.

1Recall that in the exact theory there would be a cross-over instead of a first order phase transition.



48 3.3 WEAK COUPLING

1 2 3 4 5 6
ω/m

1

2

3

4

5

6
Log(1+1/n) tm = 49000

c

1 2 3 4 5 6
ω/m

1

2

3

4

5

6
Log(1+1/n) tm = 11100

b

1 2 3 4 5 6
ω/m

1

2

3

4

5

6
Log(1+1/n) tm = 1100

a

Low initial temperature T0/m = 1.

2.5 5 7.5 10 12.5 15 17.5
ω/m

0.5
1

1.5
2

2.5
3

3.5
Log(1+1/n) tm =46600

f

2.5 5 7.5 10 12.5 15 17.5
ω/m

0.5
1

1.5
2

2.5
3

3.5
Log(1+1/n) tm =4600

e

2.5 5 7.5 10 12.5 15 17.5
ω/m

0.5
1

1.5
2

2.5
3

3.5
Log(1+1/n) tm =600

d

High initial temperature T0/m = 5.

Figure 3.1: Particle densities as a function of energy, plotted as log(1 + 1/n). The
model parameters are: λ/m2 = 1/2v2 = 1/12, Lm = 25.6, 1/am = 10.
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Figure 3.2: Time dependence of the ef-
fective thermal mass m(T) for the same
model as shown in Figs. 3.1d-f. The
mass is determined as the lowest energy
ω0 (dotted line) or from a quadratic fit
to the dispersion relation (full line).

Figure 3.3: Temperature dependence
of the effective mass computed us-
ing the Hartree effective potential,
λ/m2 = 1/4 (solid line) and 1/12 (dot-
ted line),mL = 16 (the volume depen-
dence is very small).

3.3 STRONGER COUPLING

We now turn to the stronger coupling λ/m2 = 1/2v2 = 1/4, in order to make
processes evolve faster. In Fig. 3.4a we show particle densities nk computed only
from the mode functions. We ignore the contribution from the mean field in (2.61),
because we want to focus on the particles described by the mode functions. In
Fig. 3.4a one sees that already after a short time, tm & 10, particles have been cre-
ated over a wide range of energies, ω/m . 6. The densities are reasonably well
described by a BE distribution with a time dependent temperature. This tempera-
ture initially increases rapidly from T/m = 0 at tm = 0 to T/m ≈ 0.6 at tm = 10

and then gradually increases further to T/m ≈ 0.9 at tm = 100. (Recall that the
temperature of the initial condition is T0 = m.)

Figs. 3.4b-c, which are obtained using both the modes and mean fields in the
computation of the correlation functions, show that the densities of particles with
large momenta tend to remain at a BE distribution also for later times, with a very
slowly increasing temperature T/m = 0.93 − 1.13. However, one also clearly sees
deviations from the BE distribution developing, starting at the low ω-side of the
spectrum.

From these data we infer two time scales: First there is the rate at which the
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Figure 3.4: The same as Fig. 3.1, but at a stronger coupling λ/m2 = 1/4.
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Figure 3.5: Time dependence of temperatures for the data of Figs. 3.4a-c.

temperature of the BE distribution of the quantum particles is established. Second
there is a rate at which the classical-like distribution sets in. Fig. 3.5 shows the time
dependence of these two processes. The BE temperature was computed by fitting
log(1+ 1/n) = ω/T (only using the mode function contribution) for 2 . ω/m . 4.
The classical temperature was found from fitting n = Tcl/ω forω/m . 2. The time
dependence of these temperatures is reasonably well described by an exponential
approach to an equilibrium value,

TBE(t) = A− Be−t/τBE and Tcl(t) = A ′ + B ′e−t/τcl . (3.3)

We find mτBE ≈ 20 and mτcl ≈ 2500, showing quantitatively that the approxi-
mate BE thermalization happens much faster than the emergence of classical-like
behaviour (Note that Tcl becomes much lower than TBE, which itself is somewhat
smaller than T0, in agreement with the eventually expected classical equipartition).

At higher initial temperature, the distribution roughly follows the same devel-
opment. Surprisingly enough the distribution keeps its approximate BE form much
longer, while at higher temperatures one expects a stronger effective coupling, and
thus shorter time scales. In Figs. 3.4d-f the initial temperature is T0/m = 5. At
this higher temperature and on a correspondingly larger energy scale, the devia-
tions from a BE distribution appear less pronounced at early times. But even at
tm = 4600 the particle densities are reasonably well described by a BE distribution
with a temperature T/m ≈ 4.8. At this time, there is a small reduction of the density
of low momentum particles (n is up to 15% smaller than the BE density, but this is
hard to see on the log-plot). At the same time the density of particles, withω/m in
the region 10 − 12, increases a little. This trend continues and at tm = 22600 there
is classical behaviour forω/m . 12.

The dashed line in Fig. 3.4f is a fit of the form n = Tcl/ω, which gives a “classi-
cal” temperature Tcl/m ≈ 2.1. The good quality of this fit for ω/m . 12 suggests
that the BE distribution gradually turns over into classical equipartition. How-
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λ/m2 1/12 1/4
T0/m 1 5 1 5
mτBE 35 35 25 25
mτcl > 15000 3000-5000 2500-3500 2000-5000

Table 3.1: Results for the BE equilibration time, τBE, and the time scale for the drift
towards classical equipartition, τcl, obtained from fits to TBE and Tcl as in Fig. 3.5,
as well as similar fits to the time dependence of

∑
k nk.

ever, for still larger times the distribution is no longer well described by a simple
n ∝ 1/ω-dependence. We did not determine the final equilibrium distribution,
because of the extremely long (computer) time this would require.

In Table 3.1 we summarise our results for τBE and τcl, including also fits to the
time dependence of the particle density

∑
k nk, computed from the modes only or

mean field plus modes, as in Figs. 3.5. These results do not show a clear depen-
dence on the coupling or temperature, contrary to the expectation of much smaller
time scales at higher temperature and/or stronger coupling. We believe that this
is accidental, due to the fact that at T0/m = 5 and/or λ/m2 = 1/4 the system
is in the “symmetric phase”, while it is in the “broken phase” for T0/m = 1 and
λ/m2 = 1/12. In Chapter 4, where we will discuss the symmetric phase in great
detail, we will see that in this phase the system evolves much more slowly than
in the “broken phase”. Further note that the numbers in the table are subject to
systematic uncertainty, since the mode system starts far from equilibrium and the
time dependence not always follows an unambiguous exponential relaxation. This
applies in particular for the simulation at λ/m2 = 1/4, T0/m = 1, which is very
close to the “phase transition”.

Besides looking at the particle number distribution, it is interesting to follow
the effective mass m(T) in time. Comparing it with the temperature dependence
computed analytically using the Hartree effective potential, as in Section 2.3, gives
another measure for the effective temperature of the system. The simulation of
Figs. 3.4a-c gave an effective mass which increased slightly in the rangem(T)/m =
0.84− 0.89. From the effective potential calculation we then infer that the tempera-
ture should be in the range 0.5 . T/m . 0.7, i.e. in the “low temperature” phase of
the model, cf. Fig. 3.3, this is confirmed by checking the values of the mean field.
This temperature is considerably lower than the BE temperature T/m = 1.0(1), esti-
mated from the particle distribution at higher momenta, but is consistent with the
temperature obtained from fitting nk at the smallerωk with a classical distribution.
The same is found for the high-temperature simulation of Figs. 3.4d-f: m(T)/m de-
creases from 1.12 at the start to 0.60 at tm = 22600, which corresponds, using the
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effective potential, to a decrease from T/m ≈ 5 to T/m ≈ 2, consistent with the
observed Tcl/m ≈ 5 to Tcl/m ≈ 2.1. As mentioned before, the difference between
the classical and BE distribution is unimportant for the dominant nk, those at low
momenta.

3.4 DAMPING RATE: TWIN PEAKS

Thus far, we have discussed the initial equilibration of the low momentum modes
of the λϕ4 system. We found their particle distribution to approach the Bose-
Einstein form, with a time scale of tm = 15 − 20. We also looked at the late time
regime, and studied the approach towards a classical-like distribution, with a time
scale of about two orders of magnitude larger. However, the intermediate regime,
in which the higher momenta modes of the distribution approach the Bose-Einstein
form rather more slowly, we have not yet described in detail. To get more informa-
tion in this regime we will now turn to auto-correlation functions.

3.4.1 INTRODUCTION: NUMERICAL RESULT

For a homogeneous ensemble at finite temperature, the spatial Fourier transform
Fk(t) of the symmetrised auto-correlation function

Fk(t− t ′) =

∫
dx e−ik(x−x ′)

[
1

2
〈{ϕ̂(x, t), ϕ̂(x ′, t ′)}〉− 〈ϕ̂(x, t)〉〈ϕ̂(x ′, t ′)〉

]
(3.4)

can be expressed in terms of the spectral function by standard formulae, which
we will discuss in Section 3.4.2. In case of weak coupling the spectral function is
expected to exhibit a strong peak around the mass shell of the quasi-particles, which
leads to exponential decay of Fk(t) in an intermediate time regime. The decay rate
is called “the plasmon damping rate”.

In the Hartree ensemble approximation Fk(t) can be written as the sum of a
mean field part and a contribution from the mode functions. It is easiest to compute
the mean field part. This would give no information in case of constant mean fields,
since it would be identically zero. However, we expect mean field and modes to be
sufficiently coupled to gain useful information on the damping rate, when only the
mean field part us used. Even at late times tm = 30 000 − 80 000 we observed the
back reaction 3λ

∑
α |fα(x, t)|2 of the modes on the mean field to be strongly fluctu-

ating in space and time. Fluctuations in the modes will then cause corresponding
fluctuations in the mean field.

We have numerically computed the mean field part F0mf(t) at k = 0, obtained
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Figure 3.6: Numerically computed auto-correlation functions log |F0mf(t)| versus
time t in units of the inverse temperature dependent mass mT . The coupling is
weak, λ/m2T = 0.11. The temperature T/mT ≈ 1.4 for the smaller volume (with
significant deviations from the Bose-Einstein distribution) and ≈ 1.6 for the larger
volume (reasonably BE).

by taking a time average after an initial equilibration period t ∈ (0, t0):

F0mf(t) =
1

(t1 − t0)

∫t1
t0

dt ′ ϕ̃0(t+ t ′)ϕ̃0(t
′)

−
1

(t1 − t0)2

∫t1
t0

dt ′ ϕ̃0(t+ t ′)

∫t1
t0

dt ′ ϕ̃0(t
′).

(3.5)

where

ϕ̃0(t) =
1√
L

∫L
0

dxϕ(x, t) (3.6)

No average was taken over initial conditions. Fig. 3.6 shows two examples of
F0mf(t), for which the average was taken, after an equilibration time of t0m ≈
31000, over the interval (t0m, t1m) ≈ (31000, 62000). We see roughly exponential
decay modulated by oscillations. At first the oscillations looked suspicious to us,
as if there were strong memory effects and no damping, but other simulations with
averaging over initial conditions (to be discussed in the next chapter) gave similar
results. A natural question is now, does Fk(t) also have such modulations?
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Figure 3.7: Diagrams leading to thermal damping.

3.4.2 CALCULATION OF F(t)

The function F(t) can be expressed in terms of the zero momentum spectral function
ρ(p0),

F(t) =

∫∞
−∞

dp0

2π
e−ip0t

(
1

ep
0/T − 1

+
1

2

)
ρ(p0), (3.7)

and the latter in turn in terms of the retarded self-energy Σ(p0),

ρ(p0) =
−2ImΣ(p0)

[m2 − (p0 + iε)2 + ReΣ(p0)]2 + [ImΣ(p0)]2
. (3.8)

The self-energy can be calculated in perturbation theory. The one and two loop di-
agrams in the imaginary time formalism which have nontrivial energy-momentum
dependence are shown in Fig. 3.7. Diagrams not shown give only rise to an effective
temperature dependent mass, which we assume to be the mass in the propagators
of the diagrams in Fig. 3.7, after adding a counterterm that sets the real part of Σ to
zero at p0 = m. The one loop diagram is present only in the “broken phase”, for
which 〈ϕ̂〉 6= 0; remember there is really only a symmetric phase in 1+1 dimensions,
but this is due to symmetry restoration by non-perturbative effects which will not
obliterate the one-loop damping. The corresponding self-energy has been calcu-
lated in Ref. [50], for example. It only leads to damping for frequencies p20 > 4m

2,
which are irrelevant for the quasi-particle damping at p20 = m2. So from now on
we concentrate on the two-loop diagram. After analytic continuation to real time
one finds that it is given by the sum of two terms, Σ1 + Σ2 (see e.g. Ref. [51]). The
first has an imaginary part corresponding to 1 ↔ 3 processes requiring p20 > 9m

2,
so it does not contribute to plasmon damping. The second is given by

Σ2 = −
9λ2

16π2

∫
dp2 dp3

E1E2E3

(1+ n1)n2n3 − n1(1+ n2)(1+ n3)

p0 + iε+ E1 − E2 − E3

+
[
(p0 + iε)→ −(p0 + iε)

]
,

(3.9)
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(
i/z+

√
1− 1/z2

)
=

arcsin(1/z), equation (3.11), for z = (p0 + iε−m)/(0.13m),m = 1, ε/m = 10−4.

where λ is the coupling constant (introduced as L1 = −λϕ4/4), and

E1 =

√
m2 + (p2 + p3)2, Ei =

√
m2 + p2i , i = 2, 3;

ni =
1

exp(Ei/T) − 1
, i = 1, 2, 3.

Its imaginary part corresponds to 2 ↔ 2 processes, which contribute to plasmon
damping in the regions near p0 = ±m.

Now the usual definition of the thermal plasmon damping rate (at zero momen-
tum) in terms of the retarded self-energy,

γ = −ImΣ(m)/2m, (3.10)

leads to a logarithmically divergent answer. This is a collinear divergence which is
absent in more than one space dimension. Inspection shows that the singular part
of Σ2 is given by the non-relativistic region of the integral in (3.8). Using polar co-
ordinates p2 = p cosϕ, p3 = p sinϕ this non-relativistic (p < κ � m) contribution
is proportional to ∫κ

0

pdp

∫2π
0

dϕ

2π

1

p0 + iε−m+ (p2/2m) sin 2ϕ

= m

[
−i log

(
i

z
+

√
1−

1

z2

)]
,

(3.11a)

z =
p0 + iε−m

κ2/2m
, (3.11b)
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Figure 3.9: Plot of Σ(p0)/(9λ2/16π2) obtained by linear extrapolation ε = 0.02, 0.01
to zero, together with a matching to the logarithmic singularity (T = m = 1).

where p0 ≈ m. This function is plotted in Fig. 3.8.
A natural way out of this difficulty may be to continue the self-energy analyt-

ically into the lower half of its second Riemann sheet, p0 → m − iγ, and replace
(3.10) by the improved definition

m2 − (m− iγ)2 + Σ(m− iγ) = 0. (3.12)

The analytic continuation of the self-energy into the region Im p0 < 0 poses the
puzzle how to deal with the logarithmic branch point coming from the collinear
singularity at p0 = m. However, the ambiguity is present only in the real part of Σ.
For weak coupling λ/m2 � 1we get, from (3.12), the equation

γ

m
=

9λ2

16πm4
em/T(

em/T − 1
)2 [log

m

γ
+ c(T)

]
. (3.13)

The constant c has to be determined by matching a numerical evaluation of Σ to the
logarithmic singularity, eq. (3.11), at p0 = m.

We evaluatedΣ2, equation (3.9), for T = m by numerical integration with ε/m =
0.02, 0.01 and linear extrapolation ε→ 0. The result is shown in Figs. 3.9a and 3.9b,
together with a matching to the logarithmic singularity, giving c ≈ −0.51. For
example, Eq. (3.13) now gives γ/m = 0.061, for λ/m2 = 0.4.

To see how well this γ describes the decay of the correlator F(t) we evaluated
this function directly from (3.7) and (3.8). The divergence in ImΣ(p0) at p0 = m

leads to a zero in the spectral function ρ(p0). So is there a peak at all in ρ(p0)?
Fig. 3.10 shows what happens: the “usual” peak has separated into two twins!
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Figure 3.10: The spectral function ρ(p0)
near p0 = m = 1, corresponding to the
self-energy shown in Figure 3.9 (T = m,
λ = 0.4m2).

Figure 3.11: Plot of log |F(t)| versus mt
for T = m, λ = 0.4m2. The straight line
represents exp(−γt).
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Figure 3.12: ln |F(t)| versus mt with λ/m2 = 0.11, T/m = 1.63, corresponding to
Fig. 3.6. The straight line is given by exp(0.55− t/67).
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Fig. 3.11 shows the resulting F(t). The effect of the double peak is indeed an oscil-
lating modulation on top of the roughly exponential decay. The decay correspond-
ing to exp(−γt), with γ given by (3.13), is also indicated in the plot: it does not do
a good job in describing the average decay beyond the first interference minimum.
The “Twin Peaks” phenomenon implies that the usual definition of damping rate
(3.12) is unreliable in 1+1 dimensions. Fig. 3.12 shows the result of a calculation of
F(t) with parameters taken from the numerical simulation shown in Fig. 3.6, with
the larger volume. In this case ε was kept finite, ε/m = 0.005, which may be more
realistic, since one expects damping effects in the propagators in the diagrams in
Figure 3.7 to smear out the infinity in ImΣ anyway.

Figs. 3.6 and 3.12 are reasonably similar, the straight lines in Figure 3.6 indicate
damping times τmT ≈ 105 and ≈ 233. We use the finite temperature mass here
to set the scale as it appears naturally in resummed perturbation theory. For the
first example (with the larger volume) the corresponding particle distribution was
found to be reasonably of the Bose-Einstein form, with zero chemical potential and
temperature T/mT ≈ 1.6. The two loop perturbative calculation gives a τmT ≈ 67
for this temperature, which we consider encouragingly close to the Hartree ensem-
ble result ≈ 105. We should however warn the reader that the numerical compu-
tation of auto-correlation functions is quite difficult and that there may be large
statistical errors in the numbers given.

Summarising, we are encouraged by the similarities in the qualitative features
of the numerical and analytical auto-correlation functions. Quantitatively, the damp-
ing times are also of the same order of magnitude (105 versus 67m−1), but a really
accurate computation of the relevant auto-correlation functions has not yet been
done, as it will require a lot more numerical effort. We will leave the subject and
turn to a different topic, numerical improvements of the method.

3.5 REDUCED NUMBER OF MODE FUNCTIONS

If the positive results for the performance of the Hartree ensemble method at short-
er times carry over to more realistic models in 3+1 dimensions, one has to confront
the problem of the high computational cost of this approach. Taking the continuum
limit on a finite volume in d dimensions, i.e. increasing the number of lattice sites
N in each direction, the cost of our approach increases ∝ N2d+1: there are O(Nd)
fields which have to be updated O(N) times, assuming a fixed value of the time-
step a0/a.

Most of this cost comes from having to solve all Nd mode functions fα. How-
ever, many of these modes would represent particles with very high momenta
|k| � T . Such particles have very low densities and should be irrelevant for the
physics at lower scales. This suggests reducing the number of mode functions in
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Figure 3.13: Particle densities at tm = 50, 90, 300, obtained from simulations using
the full number of modes (drawn lines) and using only modes for which ωk/m <

17 ≈ 3T/m. The left figure shows log(1 + 1/nk), the right shows the density nk
itself (Lm = 5.7, 1/am = 22.3 and λm2 = 1/12).

our simulations. We have tested this idea by comparing a simulation, on a lattice
with N = 128 sites, using all 128 mode functions, with the same simulation using
only 32mode functions. This induces a maximum energy

ωmax

m
≈
√
2− 2 cos(32π/128)

am
≈ 17, (3.14)

which is much larger than the temperature T/m ≈ 6.8 that we will use in the test.
The ωmax here refers to the energy of the initial mode functions which are plane
waves.

In order to make as detailed a comparison as possible, we show the results for
the particle density obtained from the mode functions only, leaving out the contri-
bution of the mean field in (2.61). As shown in Fig. 3.13, this partial distribution
changes with time during thermalization (cf. Fig. 3.4a). The drawn lines represent
the data obtained with the full number of mode functions. The dots represent the
results obtained using the reduced number of modes. The left figure shows the
familiar log(1 + 1/nk) form of the density, the other figure shows the density nk
itself. As is evident, these results reproduce the data from the reference simulation,
accurately up to ω/m ≈ 12, which is close to ωmax/m ≈ 17. Notice that the den-
sities, computed from eq. (2.56), drop to n = −0.5 for ω/m & 17 (Fig. 3.13 right).
For these high momenta there are no more mode functions available to provide the
vacuum fluctuations that should lift the density to zero. It indicates that at high mo-
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menta there is still a roughly one-to-one correspondence between mode functions
and momentum labels of the particles.

3.6 CLASSICAL APPROXIMATION

Even using fewer mode functions, the Hartree approach is much more expensive
than the classical approximation (which has no mode functions). So it is important
to check if our results cannot in some way be mimicked by a classical approxima-
tion. The standard way to implement the latter at high temperature, is to average
over initial configurations drawn from the Boltzmann distribution. Up to modifica-
tions by the interactions this implies a classical distribution function n(ω) = T/ω,
with a slow fall off, causing Rayleigh-Jeans type divergences (actually, in 1 + 1 di-
mensions such divergences are absent in ϕϕ-correlation functions [10]).

Here we want to ask a somewhat different question: to what extend can clas-
sical dynamics be used to represent a thermalized system with a Bose-Einstein
distribution for the particle densities? To investigate this we shall use the same
BE-type initial conditions (3.1) as in the Hartree case, as well as the much more out-
of-equilibrium conditions of the form (2.95). We perform similar simulations and
analyses as before, but now without mode functions, and with nk + 1/2 → nk in
(2.56), as there is now no quantum vacuum contribution. Typically, the classical dy-
namics produces data with more noise, since the average contribution of the many
mode functions tends to smoothen results in the Hartree-dynamics. We counter this
noise by averaging over 40-50 initial conditions, which is more than we typically
use with Hartree dynamics. We note in passing, that the necessity to use a larger
ensemble to obtain data of the same quality as with Hartree dynamics, diminishes
the computational advantage of using classical dynamics considerably.

At the same weak coupling and low temperature as in Figs. 3.1a-c, we find that
the classical system also preserves the Bose-Einstein distribution of the initial con-
ditions very well. Even at the largest simulated time, tm = 50 000, there is no com-
pelling sign of equipartition in the particle distribution. This, however, may only
show that the relaxation time scale of the classical dynamics is very long, cf. [18],
and that we are seeing remnants of the initial condition rather than thermalization.

To speed-up the dynamics, we increased the temperature to T0/m = 5 and the
coupling to λ/m2 = 1/4, as was used in Figs. 3.4d-f for Hartree dynamics. The clas-
sical results are shown in Figs. 3.14a-c. Now the initial BE-distribution still persists
for some time, however already at tm ≈ 600 there are clear signs of equiparti-
tion setting in, whereas with Hartree dynamics, effects of similar magnitude only
emerged at tm & 6000. The gradual move from the initial state towards classical
equipartition happens much faster than in the Hartree ensemble simulations.

Of course one might argue that this initial persisting of the BE distribution is
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of little significance, since it only demonstrates that it takes time to loose the effect
of the initial conditions. In more realistic models we might not be able to specify
initial conditions sufficiently close to thermal equilibrium and then one may not
expect to encounter a BE distribution. Yet, somewhat surprisingly, starting with
the far out-of-equilibrium initial condition (2.95), we see that as the model steadily
moves towards classical equipartition, the particles are distributed in a BE-like way
in an intermediate stage. This can be seen in Figs. 3.14d-f, showing particle density
distributions at simulation times in the range tm = 200− 20 000. At tm around 800
the particle densities follow a BE-like distribution over a wide range of energies.
The coupling strength in this simulation is λ/m2 = 1/4, at weaker coupling this
intermediate stage with BE-like distribution persists longer. However, it always
smoothly turns towards classical equipartition on much shorter time scales than
when using Hartree dynamics (although, as mentioned earlier, the final equilibra-
tion to the classical distribution takes place on a very long time scale).

3.7 DISCUSSION

From the results in the previous chapter, combined with those from this chapter, the
following picture has emerged for the 1+1 dimensional λϕ4 model in the “broken
phase”: the initial energy, which is put solely in the mean field of a realisation, is
subsequently transferred to the mode functions. This process takes place fairly lo-
cally in momentum space, i.e. mean field modes with momentum k excite primarily
particle modes with momenta close to k, and the modes then thermalize locally to a
BE distribution. In the previous chapter this approximate thermalization was more
conspicuous because the initial distribution was further out of equilibrium. Here
the BE distribution was put into the initial condition for the mean fields. How-
ever, the corresponding density operator is still out of equilibrium because of the
“wrong” initial thermal mass. The thermalization process is fairly rapid, within a
time τBE ≈ 25−35m−1, for λ/m2 = 1/4, 1/12 and T0/m = 5, 1, as determined from
the time-dependence of the BE temperature or the particle density

∑
k nk (cf. Ta-

ble 3.1).
This time scale is similar to our findings with initial mean fields containing only

low momenta, cf. Chapter 2. The subsequent thermalization of higher momenta is
very slow. We ascribe this to a weakening of the non-linearities when the mean field
looses much of its energy. When the mean field fluctuates around its (temperature
dependent) equilibrium value, with diminishing amplitude, the dynamics becomes
approximately that of Hartree with a homogeneous mean field, suggesting lack of
thermalization. This also explains why the evolution to a classical-like distribu-
tion is much slower with the Hartree ensemble approximation than using classical
dynamics.
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However, the fluctuations die out very slowly and even at very large times of
order 104m−1 there is stillO(10%) of the energy in the fluctuating mean field. Non-
linear fluctuations remain, which lead eventually to classical-like equipartition (ac-
cording to the effective Hamiltonian and conserved “charges”, see Section 2.2). The
time scale for such classical equipartition setting in, is one of the results of this
chapter. We find that the system remains in an approximate quantal thermal state
for times of the order τcl & 100 τBE (cf. Table 3.1).

This is an encouraging result. For example, in a crude application of our 1+1
dimensional results to 3+1 dimensional heavy ion collisions, identifying m with
the mass of the σ-resonance mσ = 600 − 1200 MeV, say 900 MeV, a time-span of
100 τBE = 2000m−1 would correspond to a reasonable length of about 450 Fermi.
Within such a time-span the Hartree ensemble method may be a definite improve-
ment on the classical dynamics usually employed for e.g. the “disoriented chiral
condensate”.

For application to 3+1 dimensions it is important that the numerical efficiency of
the Hartree method can be significantly improved by using only a limited number
of mode functions, corresponding to particles with sufficiently high densities (see
Sect. 3.5).

Leaving out the mode functions altogether, i.e. using classical dynamics, the re-
sults were qualitatively similar to those with Hartree dynamics, but the emergence
of classical particle distributions happens faster by roughly an order of magnitude.
So this may not be good enough for practical applications.

With respect to thermalization, it is good to keep in mind that in the Boltzmann
approximation, the collision term corresponding to 2 − 2 scattering is identically
zero, due to kinematical constraints in the ϕ4 model in 1+1 dimensions. So ther-
malization has to come from inelastic scattering and/or off-shell effects. It is then
important to realise that such effects are more pronounced in the “broken phase”
of the model, which has a three point vertex and finite (as opposed to zero) range
interactions. As mentioned in Chapter 2 and will be explained in detail in Chap-
ter 4, thermalization is drastically less efficient in the “symmetric phase” at simi-
lar values of λ/m2. It is sobering to recall the huge thermalization times found in
Ref. [18] in the classical approximation, in the “symmetric phase”. For example, us-
ing λ/m2 = 1/4, T/m = 0.2, the empirical formula (rewritten in our conventions),

1/mτcl = 5.8 10−6(6λT/m3)1.39, (3.15)

leads to a relaxation timemτcl ≈ 1.3 105. This is much larger than themτcl ≈ 2500
found in the “broken phase” (Sect. 3.3).

An interesting question is how the two time scales τBE and τcl are related to par-
ticle scattering and damping. We presented a perturbative computation (which in-
cludes direct scattering through the setting-sun diagram), indicating that the damp-
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ing time would be of the order of the BE-relaxation time τBE (i.e. much shorter than
the relaxation time away from BE behaviour). Preliminary numerical results for the
damping time were found to be consistent with these values.

This is a favourable result for the Hartree ensemble method. However the grad-
ual drift away from a BE distribution and the corresponding cooling of the system
reveals a shortcoming. This is additional to the incorrect prediction by the Hartree
method, of the order of phase transitions. Further improvements are needed, in
particular if large time scales are to be investigated.
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CHAPTER 4

THE SYMMETRIC PHASE

In Chapter 2 we introduced the Hartree ensemble approximation and studied its
thermalization properties in the “broken phase” at weak coupling. In Chapter 3
we further studied this system and derived time scales for the initial approximate
thermalization and the late time “classicalization”. So far we have not paid much
attention to the “symmetric phase”, and this will be the topic of this chapter. We
will especially focus on the difference in the dynamical evolution of observables
such as the particle distribution, energy exchange and auto-correlation functions.
Approximate thermalization is found only for relatively large energy densities and
couplings.

4.1 INITIAL CONDITIONS

In the simulations which will be discussed in this chapter, we used two different
initial conditions for the mean field, a sum of standing waves with a flat distribu-
tion of phases, which we also used in the broken phase in Chapter 2, and a single
Gaussian wave packet, as studied by Bettencourt et al. [52].

The first is given by equation (2.95):

φ(i)(x) = 0, π(i)(x) = Am

jmax∑
j=1

cos(2πjx/L−ψ
(i)
j ), (4.1)

where the maximum momentum 2πjmax/L is typically of the order of the mass m
and the constants ψ(i)

j are random phases with a flat distribution (i.e. they are uni-
formly distributed in [0, 2π)). We shall call such ρ[φ, π] flat ensembles. The energy,
which is independent of the phases ψj, is given by

E

m
=
A2Lmjmax

4
(4.2)

We use both A and jmax to vary the total energy density.

67
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The second initial condition is a Gaussian wave packet:

π(x) = 0, φ(x) = Φ exp
[
−
x2

2A

]
. (4.3)

Its energy is given by

E

m
=
Φ2

8

√
π

Am2

(
2+ 4Am2 +

√
2AλΦ2

)
. (4.4)

We will restrict ourselves to Am2 = 2 and use Φ to vary the total energy in the
system. For this type of initial conditions we do not average over multiple runs, so
ρ[φ, π] is a delta functional and ρ̂ is a coherent pure state.

4.2 NUMERICAL RESULTS

In this section we will first discuss the particle distribution in order to study its
equilibration behaviour and to search for thermalization. Then we will examine
the energies and auto-correlation function to analyse the time scales in the theory.

4.2.1 FLAT ENSEMBLE

In the flat ensemble of initial conditions, the initial mean field φ of a realisation is
equal to its vacuum expectation value 0, while its momentum is the sum of waves
with random phase, as specified in (4.1). In the simulations an average was taken
over 10 or 20 initial conditions, while all non-zero modes up to kmax = 2πjmax/L =
πm/2were excited. Simulations have been carried out for three different couplings
λ/m2 = 1/6, 1/8, 1/12 and three different energy densities E/Lm2 = 4, 2, 1, as well
as for the combination λ/m2 = 0.1 and E/Lm2 = 0.4. In most simulations, the
number of lattics points N = 128, the volume Lm = 32, and the temporal lattice
distance a0 = a/10.

PARTICLE DISTRIBUTION FUNCTION

Figure 4.1 shows the particle number obtained for coupling λ/m2 = 1/6 and energy
density E/Lm2 = 4. As in the previous chapters we compare the out-of-equilibrium
particle densities with a Bose-Einstein (BE) distribution

nk =
1

e(ωk−µ)/T − 1
, (4.5)
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Figure 4.1: The particle numbers log(1 + 1/nk) in the modes as a function of ωk.
Average over 20 flat ensemble initial conditions. λ/m2 = 1/6, E/Lm2 = 4, at times
up to tm = 104. Time increases from the top curve to the bottom curve.

and therefore log(1 + 1/nk) versus ωk/m is plotted, since a BE distribution then
shows up as a straight line with slope m/T and offset −µ/m (T temperature, µ
chemical potential). For this largest coupling and energy density in our study, we
find approximate thermalization to the BE form, with a temperature T/m = 2.4 and
chemical potential µ/m = 0.6. In contrast to what was found in the broken phase,
a substantial chemical potential is needed to make a reasonable fit. Another dif-
ference is the larger time scale involved: in the broken phase at an energy density
E/Lm2 = 0.5 and the same λ/|µ2ren| = 1/6 (λ/m2 = 1/12), we could already recog-
nise BE behaviour with T/m ≈ 1 at a time tm . 100, while here, at an 8 times larger
energy and roughly 2 times larger effective BE temperature we can only clearly do
so at time tm & 2000. A fit of the local temperature T(t) approaching approximate
equilibrium gives an equilibration-time scale mτBE = 1500 − 1600 (exponential fit
over k/m < 1.7, 100 < t < 6000).

For most parameters used in Bose-Einstein features can be recognised in the low
momentum part of the distributions, and linear fits can be made as in Figure 4.1.
The results of these fits are shown in Table 4.1. Fits marked with a star were made
at tm = 59000 · · · 60000, all others at tm = 9000 · · · 10000. Including the mean field
in the two-point functions, typically gives the same temperature within errors, but
a noticeably larger value (+ 0.05) for µ/m, corresponding to a higher particle num-
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E/Lm2 = 1 E/Lm2 = 2 E/Lm2 = 4

λ/m2 = 1/6 βm 1.12 0.71 0.41
µ/m 0.95 0.83 0.59

λ/m2 = 1/8 βm 0.89∗ 0.60 0.45
µ/m 0.62 0.76 0.80

λ/m2 = 1/12 βm −− 0.68∗ 0.40
µ/m −− 0.76 0.85

Table 4.1: Inverse temperature β and chemical potential µ as derived from a Bose-
Einstein fit to the particle numbers (modes only). See text for further explanation.

ber. The chemical potential is also more sensitive to the exact fit-interval than the
temperature. In the two *-marked runs a thermal distribution could be recognised
only at tm & 20000 (λ/m2 = 1/12) and tm & 45000 (λ/m2 = 1/8).

For the run at λ/m2 = 1/12, E/Lm2 = 1, we did not find a thermal-like dis-
tribution even at the latest simulation time tm = 105. We see that the energy is
transferred from the mean field to the modes and the system equilibrates “locally
in k”, but the total particle number remains roughly unchanged. The same was
found at the lower energy density E/Lm2 = 0.4, and also for the Gaussian wave
packet initial condition. We interpret this as a resonance phenomenon in the equa-
tion of motion of the mode functions, which will be described in Section 4.3.1.

Comparing the results at E/Lm2 = 2 and 4 it seems that the temperature only
depends on the energy density and not on the coupling. This appears to hold even
for the particle distribution function itself, as illustrated in Figure 4.2, where the
distributions for different couplings are plotted at different times. The different
times, at which the curves in the figure overlap, suggest that the equilibration time
scale for the particle distribution is proportional to λ−3. The same power is found in
the simulations at the energy density E/Lm2 = 2. The results in Table 4.1 show that
the temperature is roughly proportional to

√
E/L, which can be understood from

the scaling behaviour in Figure 4.2: there is no other scale left. The same argument
should apply to the chemical potential. However, this quantity is more dependent
on time than the temperature and runs at different parameters are best compared
at different times as in Figure 4.2, which we have not done in Table 4.1.

The independence of coupling suggests that a representation of the energy in
terms of almost free quasi-particles will be reasonably good. This will be checked
in the next section.

Figure 4.3 shows the distribution for late times, when it starts to deviate from
the BE form. Note the difference in vertical scale compared to Figure 4.1. At tm =
15000 − 20000 classical-like deviations become visible in the form of concave be-
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haviour at lowωk: for nk = T/ωk the second derivative⇒ (∂/∂ωk)
2 log(1+1/nk)

is negative.
The mean field in this time region behaves very interestingly. In Figure 4.4 we

plotted the particle numbers at tm = 50 000 · · · 70 000 as a function of momentum
k, both for the mean field alone and for the total two-point function, using a log-log
scale and leaving out the zero mode. While the high-momentum modes are still
exponentially suppressed, the low-momentum modes have acquired a power-law
distribution. The quantum-modes-only distribution does not behave as a power-
law (cf. Figure 4.3). The particle numbers as obtained from the mean field only
and those including the modes have different powers, −1.5 and −0.67 respectively.
Already much earlier, around tm = 8000, this distribution starts to emerge, with
20% larger powers.

The power-law behaviour in the low momentum modes of the mean field ap-
parently influences the quantum modes, in that their low momentum modes are
enhanced in comparison to the classical T/ωk. We have seen this clearly in a plot of
nkωk (→ T for classical thermal equilibrium) which shows a peak at k = 0 and a
“classical plateau” at the interval k/m = 1.0 . . . 2.2. Similar behaviour has also been
found in the other runs at λ/m2 = 1/6, E/Lm2 = 2 and λ/m2 = 1/8, E/Lm2 = 4.

In a purely classical simulation using the same set of parameters power-law
behaviour is not found. This suggests that the interaction of the mean field with
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with the quantum modes plays a crucial role, even though the latter do not show
power-law behaviour.

TIME SCALES FOR ENERGY EXCHANGE

In the previous section we obtained the scaling behaviour ∝ λ−3 for the time scale
of approximate equilibration based on the particle distribution. In this section we
will use the energy density in the different parts of the field, as in (2.44), to find
the short-time equilibration behaviour. Figure 4.5 shows the results from one of the
simulations at λ/m2 = 1/6, E/Lm2 = 4, plotted at different time scales. In Fig-
ure 4.5a, showing the early stage, the energy as obtained from the quasi-particles
is also included. The quasi-particle picture appears to give a reasonable represen-
tation of the energies, with a roughly constant 10% mismatch in the total energy.
We furthermore see that the total energy in the quasi-particle picture is almost con-
stant, corresponding to a quasi-particle number that is itself almost constant. This
is consistent with the chemical potential found in the BE fits. We have checked that
the dispersion relation of the quasi-particle energies is close to that of free particles,

ωk =
√
m2eff + k2, but with an effective mass meff that is larger than m, in concor-

dance which the effective potential. meff can be obtained from e.g. the minimum
values ofωk in Figure 4.1.

Looking at the contributions Emf and Emodes to Heff, we see a relatively rapid
transfer of energy from the mean field to the modes until a time of the order tm ≈
50. This exchange takes place fairly locally in momentum space, as is found by
examining the mean field and mode contributions to nk, a phenomenon that we
call local k-space equilibration. At time tm ≈ 100 most of the particle number
already comes from the modes, whereas the total distribution is still reasonably
close to its initial form. After this time tm ≈ 50, energy is still going to the modes,
but with a slower rate. The behaviour in this second region, from tm ≈ 50 till
tm ≈ 2000, (see Figure 4.5b) can be fitted reasonably well with an exponential form

A+ Be−t/τ, (4.6)

yielding τm ≈ 100 − 150. If we look at the long time behaviour, as plotted in
Figure 4.5c, we see there is also a much longer time scale of the order 6000, on
which energy is going back into the mean field. This time scale is comparable to
the time scale of the emerging power-law behaviour, discussed in Section 4.2.1.
The appearance of this power law is accompanied by a large increase in the particle
number in the zero mode of the mean field and therefore also in the average energy
density of the mean field. We recall that classical behaviour only becomes visible at
larger time scales of the order 15000.
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THE SYMMETRIC PHASE 75

τm E/Lm2 = 1 E/Lm2 = 2 E/Lm2 = 4

λ/m2 = 1/6 137 70 39

(tm < 500)

λ/m2 = 1/8 215 108 50

(tm < 800)

λ/m2 = 1/12 688 207 112

(tm < 2500)

Table 4.2: Initial energy-exchange time scales for the flat-ensemble initial condi-
tions.

τm Peak 1 & 2 Peak 1 & 3
symmetric, Hartree 160± 31 360± 35
symmetric, classical 90± 18 156± 34
broken, Hartree 49± 11 84± 14
broken, classical 41± 14 63± 16

Table 4.3: Auto-correlation times for flat ensemble type initial conditions. In all
cases the coupling λ/|µ2ren| = 1/6. In the symmetric phase v2 = 0, λ/m2 = 1/6 and
E/Lm2 = 4, whereas in the broken phase v2 = 6, λ/m2 = 1/12, and E/Lm2 = 0.5.

In order to make a quantitative comparison between different couplings and
energies for the initial rapid exchange of energy between mean field and modes,
related to the local thermalization, we fitted the energy-density in the mean field
to a function of the form (4.6). The results are summarised in Table 4.2. Using the
energy in the quasi-particle picture, instead of the effective Hamiltonian, gives the
same results.

Leaving out the run at the lowest coupling and energy, λ/m2 = 1/12, E/Lm2 =
1, which we did not see thermalize, the time scale is roughly proportional to E−1 at
constant coupling and to λ−3/2 at constant energy density:

τ−1 ≈ Cm(E/Lm2)(λ/m2)3/2. (4.7)

We have checked this behaviour explicitly by plotting the different energies as a
function of (λ/m2)3/2(E/Lm2) t, from which we obtained C = 0.10.

For the lower energy density E/Lm2 = 0.4 the results are very similar to our
simulation of the Gaussian wave packet, which we will describe in Section 4.2.2.
In particular, we encountered the local k-space equilibration. By initially exciting
only a few modes this process can be seen even more clearly. We have not simulated
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long enough at this low energy density, using the flat initial distribution, to see the
emergence of classical behaviour.

AUTO-CORRELATION TIME SCALES

To further investigate time scales, we also analysed the time-dependent auto-cor-
relation function of the mean field, as in Section 3.4. Using flat ensemble initial
conditions in both the symmetric and the broken phase, with either Hartree or clas-
sical dynamics, the auto-correlation function was obtained from the average mean
field only:

C(t) = 〈φ̄(t0 − t/2)φ̄(t0 + t/2)〉
t0

− d.c. (4.8)

Here φ̄(t) denotes the spatially averaged mean field, the overline indicates averag-
ing over a large time-interval (which greatly reduces fluctuations) and the initial en-
semble, d.c. stands for the disconnected piece. Figure 4.6 shows an example in the
large-time region, where the particle-number distribution has the behaviour shown
in Figure 4.4. The average was taken over the time interval tm = 50 000 . . . 70 000,
and ten initial configurations from the flat ensemble. We recall that the evident
damping is seen also upon using only a single configuration, such as was done in
Section 3.4, it is not caused by the average over initial conditions. The dip-like struc-
ture can be understood as being caused by interfering “twin peaks” in the spectral
function, as explained in Section 3.4.2. The damping time is quantified using a “fit”
of the form exp(−t/τ) through the first and second peak. Using the third peak
would give a roughly twice as large τ. The results are given in Table 4.3, where
the errors are obtained with the jackknife method [53]. In the table a comparison
is made with results from the classical approximation, and with results obtained in
the broken phase.

In the broken phase there is hardly any difference between the classical and the
Hartree result, although the Hartree result seems to indicate a slightly larger value.
We recall that the particle distribution in this case approximates the Bose-Einstein
form reasonably well, and furthermore, that the damping time is within a factor of
two of the analytically computed value using perturbative quantum field theory in
the two-loop approximation.

In the symmetric phase the Hartree result is roughly twice the classical value. It
is hard to interpret this in any detail as the distribution function in the Hartree case
is so “unconventional” (cf. Figure 4.4) and also the classical case is far from thermal-
ized. However, there is a much more striking difference between the broken- and
symmetric-phase results. At an eight times larger energy, the auto-correlation time
in the symmetric phase is not smaller, but instead larger by a factor 3−4. One would
expect qualitatively the opposite effect. For example, for a thermalized system at a
temperature T , the damping rate may be expected to scale, in the classical approx-
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imation, as (λT)1/3, and bluntly using the values λT/m3 = (1/6)(1/0.41) (symmet-
ric, Table 4.1) and (1/12) 1.1 (broken, Section 2.7.3) would give τsymm/τbroken = 0.62

instead of the factor 3− 4.
Comparing with the time scale for energy exchange, we see that at high energy

density the damping time is 4−9 times larger than the energy-exchange time (cf. Ta-
ble 4.3 and the upper-right entry in Table 4.2). The systematics of this are unclear
to us, since at the lowest energy density (and smaller coupling) we find on the con-
trary that the damping time is about half the time scale for energy exchange (see
also Sect. 4.2.2 for the Gaussian wave packet: τdamp ≈ 3500, τexch ≈ 7000).

4.2.2 GAUSSIAN WAVE PACKET

In this section we focus on the initial condition specified by the Gaussian wave
packet (4.3) with λ/m2 = 0.1, Am2 = 2 and Φ = 2.60106 (this value appeared
in the preprint version of [52]), which gives an energy E/m2 = 12.6. We used a
volume Lm = 32, giving an energy density E/Lm2 = 0.394 which is practically
equal to the smallest energy density 0.4 studied in the previous section with the flat
ensemble. It is however still an order of magnitude larger than the highest energy
densities studied in [52]. In this case the number of lattice points N = 256, while
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the temporal lattice distance a0 = a/10, as before. We checked for finite volume
and discretization effects by using different parameters and found that they do not
influence the results discussed.

PARTICLE DISTRIBUTION FUNCTION
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Figure 4.7: Time development of parti-
cle number. The order in the key corre-
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atωk/m = 2.5.

The initial Gaussian wave packet
spreads and oscillates in the course of
time and after t & L/2 the packet meets
itself due to the periodic volume. This
can be seen from the plots of the mean
field φ(x), see Figure 1 in [52], which
we have verified.

The initial wave-packet (4.3) rep-
resents a pure state, that can still be
analysed in terms of particle numbers
and frequencies obtained from the two-
point functions, as in (2.56). It is inter-
esting to compare the so-obtained nk
with the coarse-grained particle distri-
bution at later times. If we assume free-
field evolution we can calculate nk an-
alytically, and it turns out that its aver-
age over (half) an oscillation period is
time-independent and close to the initial distribution, for large volumes. As de-
rived in Appendix 4.A this free-particle distribution for the Gaussian wave packet
initial condition (4.3) is given by

nfree
k =

πAΦ2
√
m2 + k2 e−k2A

L
. (4.9)

In Figure 4.7 we plotted this free form, together with the particle numbers ob-
tained in a simulation. We find it quite remarkable that already the earliest (time-
averaged) distribution deviates significantly from the initial form (4.9). A closer
look shows that this deviation originates entirely from the first period tm = 0 . . . 2π.
After that short time the distribution is almost stationary. Only after a time tm =
O(105) we see deviations arise. However, in the mean time there is an extensive
exchange of energy between the modes and the mean field: initially all particle
number and energy is contained in the mean field, while in the later stage it is just
the opposite.

After tm ≈ 30000− 40000 classical behaviour, i.e. nk → T/ωk, starts to emerge:
the lower-momentum modes become under-occupied, while the higher modes be-
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come over-occupied. At no stage does the distribution resemble the the Bose-
Einstein form (4.5). We recall that also with the flat ensemble we did not see quan-
tum thermalization at similarly low energy densities.
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Figure 4.8: The power spectrum Sk(t) −
Sk(0) and nk(t) − 1/2ωk(t) = Sk(t) −
1/2ωk for tm = 180 · · · 200. The line rep-
resents a power ∝ ω−3 touching the neg-
ative values of Sk(t) − Sk(0).

Bettencourt et al. [52] studied the
power spectrum of the subtracted two-
point function Sk(t) − Sk(0) at times
tm . 200. This appeared to show
power behaviour ∼ k−3 − k−4, which
was interpreted as evidence for the ab-
sence of BE-like thermalization. As
mentioned above we also see no BE
thermalization at this low energy den-
sity, however we find that the power
behaviour is not without ambiguities.
The aim of the subtraction in Sk(t) −
Sk(0) was to eliminate the vacuum con-
tribution 1/2

√
m2 + k2 from Sk. At

large k this is a rather delicate proce-
dure, for instance, a quasi-particle be-
haviour

Sk(t) =
nk(t) + 1/2√
m(t)2 + k2

, (4.10)

with a thermal-like massm(t) that is expected to be larger thanm in the symmetric
phase, would give a negative result at large k,

Sk(t) − Sk(0) ≈ −
m(t)2 −m2

4k3
, (4.11)

were we neglected an assumed exponentially small nk(t).
We would like to stress here the good features of the observables nk and ωk

defined in (2.56). In Fig. 4.8 we have plotted

Sk(t) − 1/2ωk(t) =
nk(t)

2ωk(t)
, (4.12)

as well as Sk(t) − Sk(0), for the same parameters (Φ = 1.838526, Am2 = 2, Lm =
128, N = 1024) and in the same time regime as used in [52]. (We averaged over
tm = 180 − 200, which hardly affects nk(t)/2ωk(t) as it is practically constant.)
The plot of Sk(t) − Sk(0) looks very similar to the ones shown in Ref. [52]. There is
a lot of scatter at largeωk (≈ k) and a more detailed analysis shows negative values
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Figure 4.9: The different energies for the Gaussian wave packet initial condition.

interspersed with positive values (indicated separately for the power spectrum. On
the other hand nk/2ωk shows less scatter and is mostly positive (only for ωk > 4
do negative values occur). Note however, that the largerω region could be affected
by lattice artifacts.

ENERGY DENSITIES AND TIME SCALES

To get an estimate of the time scales involved, we compare the energy densities in
the mean field, in the modes and in the total field for the Gaussian wave packet
initial condition, as we did in Sect. 4.2.1 for the flat ensemble at higher energy den-
sities. For short times these are plotted in Figure 4.9a, together with the energy as
derived from the quasi-particle picture (2.60). For long times they are plotted in
Figure 4.9b.

We see that the quasi-particle representation of the energies is in this case ex-
tremely good, there is hardly any visible difference with the exact energies based
on Heff.

Furthermore, for early times (Fig. 4.9a) there is an oscillatory behaviour with a
period tm ≈ 130. Note that, due to the periodic boundary conditions on the system
with size Lm = 32, the Gaussian packet already “meets itself” after a time tm = 16,
much shorter than this resonance time. The resonance is caused by the difference
between the effective mass terms of the modes and mean field, ≈ 2λφ2. This mass-
difference has a small value, fluctuating around 0.030 − 0.050, corresponding to a
period 210− 126, approximately the observed period.
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The rate at which energy flows to the modes can be seen at long times (Fig. 4.9b).
The energy in the mean field in the interval tm < 60 000 can be fitted reasonably
well to an exponential function of the form (4.6), yielding an equilibration time
scale τm ≈ 7000, roughly two orders of magnitude larger than what was found in
the broken phase at similar energy densities and couplings.

Using a sum of waves as initial condition at similar energy density shows the
same kind of resonance in the energy exchange between mean field and modes,
with period ≈ 170 and mass difference fluctuating around 0.02 − 0.04, consistent
with the found period. When an average is taken over the flat ensemble, the oscil-
lations die out after tm ≈ 4000− 5000.

TIME SCALES FROM THE AUTO-CORRELATION FUNCTION

We also evaluated the auto-correlation function for the Gaussian wave packet. Since
we do not average over initial conditions we cannot calculate a statistical error. We
therefore averaged over two different time intervals, giving some idea of the size
of the statistical uncertainty. The result is plotted in Figure 4.10. At this low energy,
the damping time is roughly half the energy equilibration time. The inset shows
– on a linear scale – the result for classical dynamics, using identical initial con-
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ditions. The exponential curve is a fit to the Hartree result: classically there is no
visible damping.

It would be interesting to compare the result with the flat initial ensemble at the
same energy density. However, for these low energies we need to simulate for very
long times, which is quite a numerical effort. We therefore only calculated the auto-
correlation times for the faster evolving high energy runs discussed in Section 4.2.1.

4.3 SCATTERING

In this section we will discuss scattering features of the Hartree approximation.
We shall give an interpretation of our finding that the initial mean-field particle-
distribution is approximately taken over by the modes, the modes appear to equi-
librate with the mean field, primarily when they have the same wave number. We
call this “local k-space equilibration”. Such a process occurs especially at low en-
ergy density and weak coupling. After a discussion of higher-order scattering and
thermalization we end with a fresh look at the possibility of scattering of two lo-
calised wave packets: they can scatter indeed in the Hartree approximation, espe-
cially in the broken phase.

4.3.1 LOCAL k-SPACE EQUILIBRATION

The effective Hamiltonian (2.22) can be seen as describing interacting classical fields
φ and fα. It will be convenient to split the modes fα in a free part and a perturba-
tion:

fα = f0α + gα, f0α =
eikαx−iωαt

√
2ωαL

, (4.13)

withω2α = m2 + k2α. We will show in the following, that for not too large coupling
and energy, the equation of motion for gα reduces to that of a driven harmonic
oscillator. Making use of the corresponding scattering diagrams we then conclude
that, approximately, the only momentum modes of gα that are excited are those
also present in the mean field. Since we will focus on the initial behaviour, when
the system is still far from equilibrium and there is no temperature yet, we will only
use zero-temperature perturbation theory.

We can write out the effective Hamiltonian in terms of the classical fields φ, gα
and the external field f0α. In the symmetric phase and to second order in gα, this
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leads to the following interaction terms and corresponding vertex factors

1

4
λφ4 6λ (4.14a)

3λφ2
∑
α

Re(f0αg
∗
α) 3λ (4.14b)

3

2
λφ2
∑
α

|gα|2 3λ (4.14c)

6λ
∑
α,β

Re(f0αg
∗
α)Re(f0βg

∗
β) 3λ (4.14d)

whereas in the broken phase, writing φ = v + φ ′, we also have the three-point
interactions

λvφ
′3 6λv (4.15a)

6λvφ ′
∑
α

Re(f0αg
∗
α) 3λv (4.15b)

3λvφ ′
∑
α

|gα|2 3λv (4.15c)

In a first approximation we neglect the back-reaction on the mean field and
assume it is just oscillating around its minimum as a superposition of waves:

φ(x, 0) =

imax∑
i=1

Ai sin(ωKit) cos(Kix−ψi) (4.16)

where ψi are random phases andωKi =
√
m2 + K2i .

The exact Hartree dynamical equation for the mode perturbation gα(x) in terms
of its Fourier transform gαk is given by

(∂2t +ω2k)gαk = −3λ

∫
dx
(
φ(x)2 + Cren(x)

)
×

(
ei(kα−k)x−iωαt

√
2ωα

+
1

L

∑
k ′

ei(k
′−k)xgαk ′

)
. (4.17)

Neglecting for the moment the higher order terms, those containing Cren and gαk
in the integral, the x-integration can be performed, resulting in a sum over plane
waves. The equation is that of a driven harmonic oscillator

(∂2t +ω2k)gαk(t) =
∑
j

Bje
−iΩjt, (4.18)
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Figure 4.11: Tree level scattering diagrams involving a single perturbation mode
gα. Drawn lines denote φ, a dotted line f0α, and the dashed line denotes gα. Time
runs from left to right.

which leads to resonances that grow linearly in time forω2k = Ω2j . By inserting the
explicit form (4.16) in (4.17) we find for each pair Ki, Kj four different resonance
relations:

ωk = ±ωα ±ωKi ±ωKj , (4.19)

(with uncorrelated ±), while the x integration gives four different momentum rela-
tions:

k = kα + η1Ki + η2Kj, (4.20)

where η1,2 = ±1.
These two relations describe energy-momentum conservation in scattering pro-

cesses involving a single 4-point vertex, the interaction (4.14b). Only 2 → 2 pro-
cesses involving this vertex can conserve energy and momentum. Furthermore, in
1 + 1 dimensions (since all particles have the same mass) it follows that the pair of
incoming momenta must be equal to the pair of outgoing momenta. From the en-
ergy relation (4.19) it then follows there are three possible diagrams, drawn in Fig-
ure 4.11, creating a gα particle with momentum k. The momentum relation (4.20)
now gives us three possibilities,

k = η2Kj kα = −η1Ki (4.21a)
k = η1Ki kα = −η2Kj (4.21b)
k = kα η1Ki = −η2Kj (4.21c)

For the last possibility k = kα, the contribution of the φ(x)2 term is just a constant.
These terms only give rise to a time-dependent mass shift between the modes and
mean field. We can conclude that, to leading order, the only excited modes are
given by

g±Ki,±Kj . (4.22)

Note that only if just one mean field mode is exited (i.e. if imax = 1) the modes will
remain diagonal.
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Figure 4.12: Leading 2 → 4 scattering diagrams creating a gα particle in the sym-
metric phase. The intermediate line represents the retarded Green function.

We will now look at the neglected terms. The renormalized mode-sum Cren(x)
is equal to

Cren(x) =
∑
α

(
f0α
∗
(x)gα(x) + f0α(x)g∗α(x) + |gα(x)|2

)
(4.23)

As we just showed, in lowest order, gα is only nonzero for kα ∈ {Ki} and therefore
the only nonzero Fourier components of Cren(x) are the same as those in φ(x)2:
k = ±Ki±Kj. Therefore, including the first order result forCren(x) in equation (4.17)
will not change the set of excited modes. Finally, taking into account the last term
in (4.17), using the first order result (4.22), we can also find its contribution. The x
integration gives a δk ′,k±Ki±Kj . The frequencies of the correction to gα are therefore
of the form ωk±Ki±Kj and we still find exactly the same relation as followed from
(4.19) and (4.20).

The above treatment can be extended by making a systematic expansion in λ,

φ = φ0 + λφ1 + λ2φ2 + · · · , fα = f0α + λf1α + λ2f2α + · · · , (4.24)

and using Green function techniques along the lines of Ref. [22].
As a check we performed a simulation, exciting only two modes K1 and K2 at

low energy (E/Lm2 = 0.04) and small coupling (λ/m2 = 1/12). The assumption of
a free oscillating mean field turned out to be extremely good. We also checked the
explicit form of one of the modes by examining |fK1 |

2. We expect f to contain the
two Fourier modes K1 and K2, and therefore |f|2 to contain momenta 2K1, 2K2, K1+
K2 and K1−K2. These were indeed the only modes found. In similar simulations at
higher energy we found the back-reaction to φ to become more important,however
the set of excited modes remained the same.

4.3.2 HIGHER ORDER SCATTERING

In order for the system to thermalize it is necessary that particles can change their
momenta by scattering. As mentioned above, 2 → 2 scattering cannot change the
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Figure 4.13: Leading 2→ 3 scattering diagrams creating a gkα particle in the broken
phase.

initial momenta in 1+1 dimensions (with re-summed off shell propagators this re-
striction does not apply, cf. the thermalization found in Ref. [54]). Therefore at least
one extra vertex is needed. In the symmetric phase only four-point vertices exist, as
in (4.14). The interaction (4.14b) is leading over (4.14c) and (4.14d), because it is first
order in gα. Furthermore initially all energy is in the mean field and the leading
contribution to g-particle production comes from the two diagrams in Figure 4.12.

At this point it is interesting to realise what happens if the mean field is homo-
geneous. In that case gα always carries momentum kα (Ki = 0, ∀i). For inhomoge-
neous systems this restriction is lifted and thermalization becomes possible.

In the broken phase both the couplings (4.14) and (4.15) contribute and there are
three- and four-point interactions. The leading contribution to g-particle produc-
tion in this case comes from the two diagrams in Figure 4.13. Intuitively one expects
the finite range of the interaction in the broken phase, due to off-shell particle ex-
change, to lead to more efficient thermalization than the zero range interaction in
the symmetric phase. This is indeed what we observed.

4.3.3 SCATTERING OF TWO WAVE PACKETS

We end this section by shortly coming back to the possibility of indirect scattering
in the Hartree approximation. Consider an initial two-particle state described by
wave packets ψ1,2:

|ψ1ψ2〉 = b̂†[ψ1]b̂
†[ψ2]|0〉, b̂†[ψ] =

∑
k

ψkb̂
†
k. (4.25)

Then
Cren(x, t; x, t) = |ψ1(x, t)|2 + |ψ2(x, t)|2 (4.26)

with
ψ(x, t) =

∑
k

ψ∗kfk(x, t). (4.27)
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If we now linearize the Hartree equations in the “broken phase”, writingφ = v+φ ′,
keeping terms linear inφ ′, while treating |ψ|2 as being of the same order asφ ′, gives

(∂2t − ∆+m2)φ ′ = −3λ
(
|ψ1|

2 + |ψ2|
2
)

(4.28a)

(∂2t − ∆+m2 + 6λvφ ′)ψ1,2 = 0. (4.28b)

If the wave packets approach each other within a distance of order 1/m they will
scatter.

So the interaction of the quantum modes with the classical modes of the inho-
mogeneous mean field does lead to indirect scattering. Note that in the symmetric
phase v = 0 and the back-reaction of the mean field disturbance φ ′ to the particle
waves ψ1,2 is suppressed.

4.4 DISCUSSION

We will start this discussion with a summary of the behaviour at high and low en-
ergy density. This appears to be the distinguishing criterion for the thermalization
behaviour of the Hartree approximation for inhomogeneous systems, rather than,
for example, an initial state being pure, as for the Gaussian wave packet, or mixed,
as for the flat ensemble.

At high energy density E/Lm2 � 1, we see that the distribution nk acquires
features of a thermal quantum, i.e. Bose-Einstein distribution. There is a time- and
coupling-dependent chemical potential, of order unity in mass units. The temper-
ature is roughly proportional to

√
E/L and independent of the coupling. The cou-

pling determines the time scale on which the approximate thermalization becomes
visible. The initial rapid exchange of energy between modes and mean field occurs
on a time scale described by (4.7). The quasi-particle picture is reasonable, although
there is a curious mismatch between the total energy as derived from the effective
Hamiltonian and that obtained from the quasi-particles, equations (2.22) and (2.60).

After a very long time the energy flows back into the mean field, which is ac-
companied by the emergence of a power-law distribution for nk as a function of
momentum k. Such power-law behaviour has not been found in the broken phase,
and also classical simulations do not show such a behaviour, indicating that the
back reaction of the modes plays an essential role. It is interesting to note that Boy-
anovsky et al. [55] also found power-law behaviour for the occupation numbers,
although it is unclear if the same mechanism is behind their finding. In their study
of a 3+ 1 dimensional O(N) model in the largeN approximation, the power-law is
caused by a nonlinear resonance of the back reaction of the modes on themselves,
with terms of the form 1/(ωk − m), diverging as 1/k2 in the limit k → 0. This
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would give a 1/k4 behaviour for the particle number, different from what is found
here. Furthermore, we only find power-law behaviour in the total- and mean-field-
particle numbers, but not in that of the modes. The difference in power and the
absence of power-law behaviour in the modes makes it improbable that the physi-
cal mechanism behind the resonances is the same.

In a very recent article [56], Micha and Tkachev obtained a particle distribution,
falling off as 1/ks. In their simulations, the phenomenon is caused by turbulance.
The power s has a value in the range 1.5 − 1.7, for the 3 + 1 dimensions they use,
precisely what we find for the mean field distribution. However, their system is
different from ours in several important ways and we are as yet unable to say if our
finding can be explained by the same turbulance phenomenon.

At low energy density E/Lm2 � 1, for the flat ensemble as well as for the pure-
state wave packet, we do not find approximate thermalization to a BE distribution.
Instead, the form of the total distribution nk remains the same for times that are
many tens of thousands in units of m−1. The distribution then slowly turns over
into a classical distribution. However, there is still an extensive exchange of energy
between the mean field and the modes, leading to what we call local k-space equi-
libration. At low energy, the time scale for this process is much longer than would
follow from (4.7), found at high energy densities. Furthermore, at short times the
energy densities in the mean field and modes separately show a remarkable oscil-
latory behaviour, not seen at higher energies, which is caused by a difference in the
effective mass of the mean field and modes.

We obtained several time scales: for approximate Bose-Einstein thermalization,
for the early-time exchange of energy between mean field and modes, for the auto-
correlation function and for the evolution to a classical distribution. Most of these
are much longer in the symmetric phase than in the broken phase:
• In the previous chapters, we found the BE-thermalization-time scale in the

broken phase is of the order 25 − 35 for E/Lm2 = 0.5, while here, in the symmetric
phase,mτBE = 1500− 1600 for E/Lm2 = 4 (both at λ/|µ2ren| = 1/6).
• The energy-exchange time scale in the broken phase gives a result that is close

to τBE, whereas in the symmetric phase it is related to local k-space equilibration,
much shorter than τBE, and it shows the behaviour (4.7). For E/Lm2 = 0.5 and
λ/|µ2ren| = 1/6, Eq. (4.7) gives τm ≈ 300, much longer than the 25 − 40 we found in
the broken phase at the same energy and coupling,
• Also the damping time, obtained from auto-correlation functions is much

longer than in the broken phase, even at much higher energy and larger coupling.
Compared to the value obtained using classical dynamics, it is roughly twice as
large. In the broken phase, both values are comparable in size. At low energies the
damping time seems to be much longer, but this needs more study.
• The last time scale is that of classical equilibration. Since we are just solving a
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large number (2N2+ 1) of local classical non-linear equations, one may expect clas-
sical equipartition to set in at some point. This equipartition is, however, non-trivial
because of the large number of conserved charges (2.27). For example, the emerg-
ing classical temperature is of order E/N and not E/N2 (recall that for N spatial
lattice sites there are 2N2 real degrees of freedom in the mode functions). Depend-
ing on energy and coupling we can already see a first emergence of classicality at
times τm = O(104). This is still about an order of magnitude longer than what
was found in the broken phase in Chapter3. However, full classical equilibrium
is expected only for huge times, much larger than the τm = O(106) found in the
broken phase for an artificially small system at E/lm2 = 36, Fig. 2.10, and beyond
the already large times of order 105 reached in this study.

Remarkably, the equilibration time scale found in [18] using classical dynamics
appears to be shorter. The empirical formula [18]

1

mτclass
= 5.8 10−6

(
6λT

m3

)1.39
, (4.29)

with T = E/N the classical equilibrium temperature, would give equilibration
times tm = O(105) – O(107) for the various parameters used here. This differ-
ence, in equilibration time scales, can be interpreted as follows. Classical dynamics
has also been studied in the Hartree approximation, the latter then shows up as an
unstable fixed point of the full dynamics [18]. This Hartree fixed point depends on
the initial conditions. In our case the mode functions are initialised with quantum-
vacuum form (2.29b), and the resulting dynamics (seen as a classical system with
order N2 fields) appears to linger for a very long time near a Hartree fixed point,
longer than when using classical dynamics.

For our inhomogeneous initial conditions we have not been able to pin down
the fixed point analytically, but intuitively one may expect the system to be close to
it when the mean field has lost most of its energy and has started fluctuating about
a homogeneous average. Making a homogeneous approximation to this situation
would lead to a Hartree stationary state. Such a state can have an arbitrary particle
distribution nk, which, given our out-of-equilibrium initial conditions, turns out to
have BE features when the energy density E/Lm2 � 1. Apparently, when the en-
ergy density is small, E/Lm2 � 1, the system leaves the fixed-point region before
BE-like thermalization sets in, because we have seen only classical-like equilibra-
tion emerging in this case.

Finally, we comment on the results of Bettencourt et al. [52]. As mentioned
in Sect. 4.2.2, we have essentially confirmed their numerical results. The energy
density in the simulations in [52] was rather low, namely E/Lm2 = 0.00042 and
0.0045, so in view of our results summarised above, no sign of a BE distribution is
to be expected with the Hartree approximation at the times tm . 200 covered in
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[52], nor at any time later.
It is remarkable that at larger energies E/Lm2 � 1 we do find Bose-Einstein

behaviour, but of course, the fact remains that the Hartree approximation needs to
be improved in order to achieve thermalization at all energies. This may take huge
times at low energy densities.

It has been remarked [52] that the Hartree approximation is expected to be valid
up to times tm ∼ m2/λ = O(10). We agree with this statement when applied
to the detailed time-evolution of observables, but it does not necessarily apply to
observables such as our quasi-particle distribution nk(t) or energy ωk(t), that are
coarse-grained in time and space and/or averaged over initial conditions in the
Hartree ensemble approximation. For comparison, consider a gas of classical point
particles with Lennard-Jones interactions. Any numerical approximation to the
detailed time evolution will soon go dismally wrong due to the chaotic nature of the
system, but this does not preclude an accurate evaluation of, say, a coarse-grained
particle-distribution function. With this in mind we have studied our system for
times as large as seemed necessary, which led to very large times indeed. First
experience [57] indicates that the situation is not very different in 3+1 dimensions,
where also large equilibration times may be expected for the φ4 model at moderate
couplings and energy densities.

4.A CALCULATION OF THE PARTICLE NUMBER OF THE

GAUSSIAN WAVE-PACKET

We calculate here the initial two-point functions for the Gaussian wave packet ini-
tial condition (4.3), the corresponding particle number nk and energyωk, and their
subsequent free field expressions. The calculations will be made in the continuum
limit, in a finite periodic volume.

The mean field contributions to the two-point functions are given by

S(x, y)mf = φ(x)φ(y) − φ(x) φ(y), (4.30a)

U(x, y)mf = π(x)π(y) − π(x) π(y), (4.30b)

where we shall average, at first, only over space, e.g.

φ(x)φ(y) =
1

L

∫L
0

dzφ(x+ z)φ(y+ z). (4.31)

The initial mean field is given by (4.3), or in terms of its Fourier transform:

φk =

∫
dx e−ikxφ(x) = Φ

√
2πA e−k2A/2. (4.32)
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Since π(0) = 0, the free-field (i.e. for λ → 0 and µ → µren = m) evolution of φk in
time is given by:

φk(t) = φk(0) cos(ω(0)
k t), (4.33)

whereω(0)
k =

√
m2 + k2. A straightforward calculation gives

Smf
k =

(
1− δk,0

)φ2k cos2(ω(0)
k t)

L
, (4.34a)

Umf
k =

(
1− δk,0

) (ω
(0)
k )2φ2k sin2(ω(0)

k t)

L
, (4.34b)

where the delta functions come from the disconnected pieces. The modes just
contribute the vacuum fluctuations:

Smodes
k =

1

2ω
(0)
k

, Umodes
k =

ω
(0)
k

2
. (4.35)

Adding the contributions in (4.34) and (4.35) and applying the definition (2.56), the
initial instantaneous particle number and frequency become

nk(0) =
1

2

(√
2ω

(0)
k φ2k/L+ 1− 1

)
, (4.36a)

ωk(0) =
ω

(0)
k√

2ω
(0)
k φ2k/L+ 1

. (4.36b)

Using free field dynamics the instantaneous particle number would get an oscil-
lating component according to (4.34). If, apart from the volume average, we also
course-grain in time, the disconnected parts of S andU vanish, while both cos2 and
sin2 → 1/2. We then find

nfree
k =

ω
(0)
k φ2k
2L

, 1 ωfree
k = ω

(0)
k , (4.37)

which are time-independent.
For large volumes 2ω(0)

k φ2k/L � 1, expressions (4.36a) and (4.36b) reduce to
(4.37). For the parameters as used in Section 4.2, A = 2, Φ = 2.60106, Lm = 32, we
find

2ω
(0)
k φ2k
L

≈ 5.3
√
1+ k2/m2 e−2k2/m2 . (4.38)

By plotting nk(0) (or log[1+1/nk(0)]) versusωk(0) we find that this only compares
well with a similar plot of nfree

k versus ωfree
k for k & 2m. So at times tm � 1 it is

best to use the time-averaged free-field determinations for the comparison with the
interacting Hartree evolution.
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CHAPTER 5

KINKS

In the mid-nineteenseventies an extensive number of nontrivial classical solutions
to nonlinear wave equations were found. Their localization in space is an important
aspect of these classical solutions. Furthermore, in this classical theory, they are
often (absolutely) stable as a result of the topology of space, it takes an infinite
amount of energy to remove them. Because of their localised character they are
referred to as solitons.

The φ4 theory, in the broken phase, also contains solitons, the so-called kink.1.
In an infinite volume, the field necessarily has to be in one of the two minima for
x → ±∞, in order to keep the total energy finite. It still leaves two separate sets
of solutions: the field is in the same minimum in both limits, or it is in the two
different minima. The latter “sector” corresponds to the kink or antikink solution.
The field configuration needs to cross the potential barrier at some point in space,
but the exact position doesn’t influence the energy. An infinite set of degenerate
solutions exists, only differing in the point where they go over the barrier.

An excellent introduction on the topic can be found in Ref. [58]. In this final
chapter we will discuss kinks (and antikinks) in the Hartree approximation, com-
paring the results with the classical theory.

5.1 CLASSICAL KINK SOLUTIONS

It is possible to calculate the lowest non-trivial solution using a very elegant and
general method, the Bogomol’nyi equation[59]. In the broken phase the classical

1According to the strict definition of Ref. [58], the φ4 defects should be called solitary waves, since
they cannot pass each other, they can only bounce

93
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static Hamiltonian (energy) is given by

E =

∫
dx
1

2
(φ ′)2 +

λ

4

(
φ2 − v2

)2
=

∫
dx
1

2

(
φ ′ ±

√
λ

2

(
φ2 − v2

))2
∓ φ ′

√
λ

2

(
φ2 − v2

)
=

∫
dx
1

2

(
φ ′ ±

√
λ

2

(
φ2 − v2

))2
∓
[√

λ

2

(1
3
φ3 − v2φ

)∣∣∣∣φ(∞)

φ(−∞)

,

(5.1)

where φ ′ = ∂xφ. The boundary term is equal to a finite constant and determines
the topological sector, trivial or nontrivial. For given boundaries the energy is there-
fore bounded from below by the first term which is larger than or equal to zero, the
so-called Bogomol’nyi bound. The lowest energy state can be found by solving the
simple first order differential equation

φ ′ = ∓
√
λ

2

(
φ2 − v2

)
, (5.2)

which has solutions

φ =

{
±v tanh

[
m
2 (x− x0)

]
±v

(5.3)

Here x0 is the point where φ goes through 0 and m =
√
2λv2 is the mass in the

broken vacuum. In the top line, the + solution corresponds to a kink, the − solution
to an antikink. The width of the kink is inversely proportional to the mass.

The kink energy density can be found from (5.1) using (5.2)

ekink =
λ

2
(φ2 − v2)2 =

1

2
λv4
(

tanh2
[m
2

(x− x0)
]

− 1
)2
. (5.4)

Both the solution (5.3) and the energy density (5.4) are plotted in Fig. 5.1.
The kink mass, defined as the energy of the static kink or antikink, can be found

either by integrating (5.4) or directly, from the boundary term in (5.1)

Mkink =
2

3

√
2λv3 =

2

3
mv2 =

m3

3λ
. (5.5)

Note that it diverges in the limit λ→ 0, showing the non-perturbative nature of the
configuration.

From the static kink solution (5.3) we can easily find a moving kink solution by
a Lorentz transformation:

φ(x, t) = v tanh
[
γ
m

2
(x− x0 − ut)

]
, (5.6)
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a: Classical kink solution at x0 = 0
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b: Energy density of the solution in 5.1a

Figure 5.1: Classical kink solution (5.3) and its energy density (5.4) as a function of
x, spatial distance, in unitsm−1.

where γ = 1/
√
1− u2. Note that this is not a solution of the Bogomol’nyi equa-

tion (5.2), since it is not static. However it is a solution to the manifestly Lorentz
covariant field equations. The total energy of this moving solution is equal to
Ekink = γMkink, as expected for a relativistic particle. A Lorentz boost therefore
has the effect of increasing the kink mass while decreasing its width. Since we do
not change the total volume and the separation between the kink and antikink in
the rest frame, while their width becomes smaller, the relative distance in the co-
moving frame becomes larger and we therefore expect the pair to become much
more stable.

We end this section by mentioning some consequences of the use of a finite vol-
ume. The sector is determined by the kind of boundary conditions: using periodic
boundary conditions there is no net kink number. A kink-antikink pair can be con-
sidered. Although it is inherently unstable, the survival time depends heavily on
the volume, as a result of the exponential attraction between them. When using
anti-periodic boundary conditions, the kink number is ±1. By shifting the kink
over 1 lattice size L through the boundary, the kink number changes sign, i.e. only
its absolute value is conserved.

Another unwanted side effect of the use of a (anti)periodic lattice is radiation,
resulting from discretization errors, which interferes with the kink-antikink them-
selves. Some solutions have been proposed, see for example Gleiser and Sorn-
borger [60] and Speight and Ward [61, 62, 63]. In Ref [60] a damping method is
used to remove the radiation before it can interfere. Speight and Ward propose a
lattice discretization preserving the Bogomol’nyi bound, thereby also removing the
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radiation resulting from the discretization.

Figure 5.2: Kink-antikink initiali-
sation procedure.

However, according to Ref. [64] this solu-
tion is only suitable for free kinks. In dynam-
ical systems a standard discretization would be
simpler and has the same accuracy. We will not
bother too much about this issue. If we want
to accurately follow an approaching pair dur-
ing a long time, large lattices will be used and
the kink and antikink will be put close together
initially: the radiation is mainly emitted back-
wards and reenters via the periodic boundary
condition. By putting them close together it
then takes a long time for the radiation to reach
the soliton pair.

Finally, the use of (anti)periodic boundary
conditions in a finite volume introduces a small mismatch in the derivative of the
field at the edges, especially if the kink and antikink are close. We therefore use
the setup drawn in Figure 5.2: we take several configurations in several adjacent
volumes and use the resulting configuration in one of them:

φKK(x, t)
∣∣∣
t=0,a0

= −v+ v

N∑
n=−N

{
tanh

[
γ
m

2
(x+ [x0 − ut] + n · L)

]
− tanh

[
γ
m

2
(x− [x0 − ut] + n · L)

]}
,

(5.7)

where N is typically around 8.

5.2 HARTREE KINKS AT REST

Although interesting in itself the classical theory is not the full story and it is there-
fore important to study quantized kink solutions. In order to study dynamical
processes, like collisions, one has to use approximation schemes, which are non-
perturbative, real-time and which can handle inhomogeneous configurations. For
this purpose the inhomogeneous Hartree approximation as studied in Chapters 2
and 3 should be particularly appropriate, being a non-perturbative semi-classical
approximation scheme.
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5.2.1 INITIAL CONDITION

Unlike in the classical theory, we cannot use the Bogomol’nyi argument to derive
a static soliton solution to the Hartree equations (2.18). However, if the coupling is
not too large, or more precisely, if the two vacua are well separated and the barrier
between them is high, the quantum corrections will be relatively small. Further-
more, away from the physical position of the kink, the field resides in one of the
vacua and an exact solution of the Hartree equations is known. Therefore using the
classical kink solution as initial condition for the mean field, while using the free
field plane wave solutions for the mode functions will be close to a Hartree kink so-
lution. After the configuration has evolved from such an initial condition using the
Hartree equations of motion, it will, at least for a while, oscillate around the actual
stationary solution, provided that the vacuum expectation value v is (substantially)
larger than 1.

A way to improve on this initial condition is to add a damping term −Γ∂tφ to
the mean field equation (2.5)2 and evolve from the aforementioned initial condition
to obtain an approximately stationary solution, which can then be used as a new
initial condition. We will discuss this setup further in Section 5.3, when considering
colliding kinks.

The numerical results presented in the next subsection are all obtained using the
simple initial condition, with mode functions of free field form and equation (5.7)
for the mean field.

5.2.2 NUMERICAL RESULTS: STATIC KINK DECAY

Here results are presented for the evolution of a kink-antikink configuration, ini-
tially at rest at a maximum distance in the periodic volume. A comparison will be
made, between Hartree and classical dynamics, using identical initial conditions,
in the sense that the mean field in the Hartree simulation is equal to the field in
the classical simulation. Hartree simulations at small and large coupling will also
be compared. In this case the same physical volume will be used. Finally the ef-
fect of damping on the lifetime of the kink-antikink pair is discussed. The com-
bined results are shown in Figure 5.3, in the form of contour plots of the energy-
density for the four different simulations. Figure 5.3a shows a classical simulation
at λ/m2 = 1.25, Figure 5.3b shows the same simulation, using Hartree dynamics,
Figure 5.3c shows the same Hartree simulation, with a damping Γ = 0.4m switched
on while tm ≤ 15. Finally Figure 5.3d shows the result for a Hartree simulation at
a weaker coupling λ/m2 = 1/12, without a damping term in the equations of mo-
tion. We have plotted a contour plot of the (total) energy-density, as it shows the
position of the kink more clearly than the mean field.

2Note that it is not possible to do this at the level of the action or Hamiltonian.
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a: Classical, λ/m2 = 1/1.25. b: Hartree, λ/m2 = 1/1.25.

c: Hartree, λ/m2 = 1/1.25, with damping Γ =
0.4m till tm = 15. Plot energy in mean field.

d: Hartree, λ/m2 = 1/12.

Figure 5.3: Energy density contour plot for kink-antikink annihilation from rest, for
different couplings, classical and Hartree. All plots, except 5.3c, show total energy
density.
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Figures 5.3a and 5.3b, showing the results for two identical initial conditions,
using classical and Hartree dynamics respectively, indicate there is an enormous
difference in annihilation time, mainly caused by the fact that the initial form of the
Hartree pair is only approximately stationary, as explained in the introduction of
this chapter. For such a large coupling the barrier is low, and the mode functions
for a stationary Hartree solution are very different from the plane wave form.

It is important to mention that, although it seems from Figure 5.3b that the
(anti)kink splits into two (anti)kinks, this is not actually the case. The mean field
just “contracts” over the barrier, thereby annihilating both kink and antikink. In
this process some energy is send off in opposite directions, but this cannot be seen
as kink-antikink pairs. This was checked explicitly by making animations of the
mean field.

By comparing the results in Figures 5.3b and 5.3c we see that the difference in
survival time between classical and Hartree does indeed partially come from the
approximately stationary Hartree initial condition: after the damping is switched
off at tm = 15, the kink-antikink pair survives till tm ≈ 450. Switching off the
damping at a later instant increases the surviving time: using tm = 40 instead of
tm = 15 results in a surviving time of tm ≈ 500, i.e. the surviving time increases
by 50 due to an increase in “switch-off” time of 25. When we do not switch off
the damping, the pair survives till at least tm = 2000. We haven’t simulated this
system for longer, but we do not expect it will ever decay.

We checked the influence of the precise value of the damping constant, by also
simulating at Γ = 0.2m and Γ = 0.8m. At the smaller value of Γ = 0.2m, the pair
survived during a slightly shorter time-interval ∆tm = 20, at a larger damping of
Γ = 0.8m the difference is only∆tm = 2. From this we derive, that using a damping
constant Γ = 0.2m during a time tm = 15 already removes almost all of the fluctu-
ations around the stationary configuration. However the remaining configuration
is still much less stable than its classical counterpart. This is further supported by
a comparison of the total energy-density with the depicted mean field energy den-
sity: it turns out that the total energy density is much smoother, apparently the
modes in part cancel out the kink-antikink inhomogeneities, which probably also
facilitates the final annihilation of the pair.

Since there is still oscillatory motion in the configuration left after the damping,
it would be desirable to keep the damping in effect. However, we found it also
has a very long-time effect on the energy-density. Using Γ = 0.4m the energy very
slowly decreases with a time scale of the order 200. This time scale depends on the
volume, so it seems to be a finite volume artifact, however we do not understand
the physical process behind it, it impels us not to damp the equations longer than
tm ≈ 15. Until that time, we see a clear damping in the total energy density, with a
rate corresponding to the damping term in the mean field equation. After this time
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tm ≈ 15, the energy density seems constant for a while, even when the equations
are damped, but after this short time, the large time scale damping sets in. We will
shortly come back to this in the next subsection, when discussing the quantum kink
mass.

Finally, comparing Figure 5.3b at λ/m2 = 1/1.25 with Figure 5.3d, we see that
using the classical kink form for the mean field and plane waves for the modes at
the weaker coupling, is much closer to a stationary solution, even without damp-
ing. The configuration is oscillating around an approximately stable solution for a
extensive period of time, before annihilation. By comparing Figures 5.3d and 5.3c
we find the width of the kink is smaller at the smaller coupling, due to a change
in the effective potential caused by the quantum modes. Classically the width only
depends on the massm, which by construction is the same for both couplings. This
change of width also explains why at larger coupling, the kink-antikink configura-
tion is less stable: relative to their own size, they are closer to each other. Increasing
the volume (and thereby also the initial distance between the kinks) thus also in-
creases the surviving time enormously, as already mentioned above.

5.2.3 NUMERICAL RESULTS: KINK MASS

Classically the kink mass is given by equation (5.5). In the full theory this expres-
sion needs corrections. The first corrections were found by Dashen et al.[65], see
also Rajaraman [58],3 and more recently by Alonso Izquierdo et al.[66]. The result
is obtained using a semi-classical perturbative expansion around the classical kink
solution. The kink mass is then given by the lowest energy level. This mass has to
be renormalized and the net result is:

Mkink =
m3

3λ
+m

(√3
12

−
3

2π

)
+O(λ). (5.8)

A partial calculation of the order λ correction can be found in Ref. [67]. In this
reference and independently also in Ref. [68] a full calculation is done for the kink
mass in the sine-Gordon model.

More recently lattice Monte Carlo studies of the kink mass have been carried
out [69, 70]. In these papers two methods of calculating the kink mass were used:
first using the fluctuation-fluctuation two-point function 〈µ(t)µ(0)〉 introduced in
[71, 72], which in imaginary time should decay as exp(−MKt). The second uses
the difference in the ground state energy when periodic or anti-periodic boundary
conditions are used. Both studies focus on a range of parameters, where λa2 and

3Note that there are two errors in [58]: In equation (5.69)
p
p2 + 1(p2 + 4), in the numerator of the

first term in the integral, should be (p2 + 1)
p
p2 + 4 and

p
p2 + 2 in the numerator of the second term

in the integral should be
p
p2 + 4. This second error comes from the transition of 2k2 → p2.
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−µ20a
2 are of order unity, i.e. at large lattice distances.4 For most of our simulations,

λa2 = 1/(12 · 82) = O(10−3). In Ref. [70] it is found that at low values of −µ20a
2,

the Monte Carlo value lies between the semi-classical and classical regime while at
larger values it lies below both of them. Using our parameters the semi-classical
correction will therefore be too large, compared to the Monte Carlo value.

It is interesting to compare the results in the Hartree approximation with the
semi-classical result from Ref. [65]. We have done this in simulations at weak cou-
pling λ/m2 = 1/12 and at strong coupling λ/m2 = 1/1.25, also discussed in Sub-
section 5.2.2. We found that the Hartree approximation actually does better than
the semi-classical approximation: the kink mass lies between the classical and the
semi-classical value, closer to the exact (Monte Carlo) value.

For the stronger coupling λ/m2 = 1/1.25, the order λ0 correction is larger than
the leading λ−1 term, and expression (5.8) gives a negative result. The Hartree ap-
proximation, using damped equations of motion and anti-periodic boundary con-
ditions, gives a kink mass of about 75–80% of the classical kink mass, again better
than the semi-classical approximation. At the weak coupling λ/m2 = 1/12, the
semi-classical result is Mkink = 3.67, i.e. 92% of the classical kink mass 4, while we
find Mkink ≈ 3.8, 95% of the classical value. In both cases the Hartree result lies
between the semi-classical and the classical value and is closer to the Monte Carlo
than the semi-classical results.

At the strong coupling we used a volume of Lm = 32 and a lattice distance
am = 1/8, with different damping coefficients, Γ/m = 0.2, 0.4, 0.8. All three values
give approximately the same result. At the weaker coupling, we only used one
damping coefficient Γ/m = 0.4, but different lattice sizes, Lm = 8, 16, 32, 64 at a
fixed lattice distance am = 1/8 and different lattice distances am = 1/4, 1/8, 1/16

at a fixed lattice size Lm = 32. The dependence on these both of these parameters
is small and convergent.

After an initial stage during which the system behaves as one would expected
from the damping term, a second stage of very slow damping sets in, during which
energy is drained from the mode functions, while the mean field kinetic energy is
already nearly zero. The damping rate depends on the volume, not on the lattice
distance. We do not understand this stage, and prevent it by switching off the
damping term before it sets in. The initial stage can be fitted well to an exponential
decay, and it nearly damps out before the second stage sets in, we therefore do not
expect to make a large error. Furthermore, we have seen in the previous subsection
that damping longer than a certain time, does not further extend the lifetime of
the highly unstable strong coupling kink-antikink pair any longer. At the smaller
Γ/m = 0.2 it does lead to a slightly higher value of the total energy density by
about 2%, as for this value of Γ the slow rate damping sets in before the initial stage

4Note that the horizontal axis, λ̂, in Fig. 4 of Ref. [70] should be multiplied by 6
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is over.

5.3 MOVING HARTREE KINKS

5.3.1 INITIAL CONDITION

In order to describe kink-antikink collisions, it is necessary to have a description
of a moving Hartree kink as well. In the full quantum theory this poses a difficult
problem, since we do not know how to transform the “quantum cloud” surround-
ing the kink. In the Hartree approximation we are saved by the fact that the field is
completely expressed in terms of ordinary functions of x and t, and we can find a
moving kink by performing a simple Lorentz transformation:

f(x, t)→ f ′(x, t) = f(γ[x− ut], γ[t− ux]), (5.9)

both on the mode functions and the mean field.
However, there are still a number of difficulties with finding a proper initial

condition for a kink-antikink pair, moving toward each other. First of all, from
equation (5.9) it is clear we need the mode functions on a backwards space-time
line, while we do not know them in analytic form, only from a simulation. For the
classical kink solution this problem does not exist, since it is not only stationary,
but also static and known analytically. Secondly, we have to boost the kink and
antikink, with their respective mode-functions, in opposite directions. This means
that they have to be combined in a nontrivial way in the middle, they “shift into
each other”. It also means that we have to double the density of mode functions
in k-space, since the physical space doubles. We have to decide how to do this in
a consistent way. Finally there is the problem that the coordinates γ(x − ut) and
γ(t − ux) will generally not fall onto space-time lattice points in the unboosted
frame.

In order to circumvent these problems, we will just use the vacuum form as ini-
tial conditions of the mode functions. Since the vacuum is invariant under Lorentz
transformations, we can use the same mode functions in a boosted frame. As men-
tioned before, the mode functions will be close to the vacuum form, if the vacuum
expectation value v is large. By boosting the kink solutions, we reduce the width
of the kinks, meaning we effectively increase the relative distance between them,
leading to a much more stable solution, which is even further enhanced by the time
dilatation.

Before we proceed we will outline a set of solutions for the aforementioned
problems, which will yield a very accurate boosted kink-antikink solution and will
therefore also be usable at strong coupling and low speeds. In the simulations we
will in general only use the vacuum form mode functions.
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The way to solve the stability problem of a kink is to use damped equations of
motion, as we already used in the previous subsections, especially in combination
with anti-periodic boundary conditions on the mean field to make the kink abso-
lutely stable. The damping will give us stationary, but time-dependent solutions
for the mode functions in the background of a kink, which subsequently can be
Lorentz boosted.

The problem of the boosted coordinates not resulting from discrete lattice points
in the unboosted coordinate can be adequately solved by linear interpolation, pro-
vided the lattice distance is not too large. The related matching problem is not a
real problem: if the two functions approach each other with speed u, they shift into
each other over a distance ua0 < a, i.e. the mismatch is less than a lattice distance
and the linear interpolation automatically solves the problem.

The remaining problem is combining the two sets of mode functions, of the sep-
arate kink and antikink configurations, into one set which is twice as large. One
possible solution would be to determine both kink and antikink in a volume that
already has the size of the combined configuration and then use an averaging pro-
cedure to combine the modes. This has the disadvantage that oscillatory functions
with different phases are added. Another way, which we suggest, is to determine
the two configurations in their original volume and combine them afterwards into
one set. When using periodic mode functions, it follows from the anti-periodicity
of the mean field that at all times

fk(x, t) = f−k(L− x, t), (5.10)

provided this relation holds at t = 0 and t = a0, which is true for the plane wave
initial conditions we use. Note that at later times the k label is no longer equal to the
Fourier label. We can therefore combine each mode function fk with either itself or
with f−k, since both combinations yield continuous functions. The derivative will
in general be discontinuous, possibly causing trouble in the equation of motion, but
the energy density will be finite and even continuous.

We end this subsection with a summary of the steps one could follow to obtain
a better initial state for a colliding kink antikink pair. First, using anti-periodic
boundary conditions for the mean field and a damping term −γφ̇, one evolves the
Hartree equations, starting from a classical kink with free field mode functions. One
thus obtains a stationary Hartree kink solution. One has to compute the modes and
mean field on a backward space-time line. Then one constructs the mean field from
the kink and its mirror image. The modes are constructed by combining fk(x, t)
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Figure 5.4: Initial and late time form of the particle distribution for a Hartree kink-
antikink collision. The initial form already seems close to a Bose-Einstein distribu-
tion.

with itself and with f−k(x, t) = fk(L− x, t), thereby doubling their number:

fk,1(x, t) =

{
fk(x, t) 0 ≤ x ≤ L
fk(x− L, t) L ≤ x ≤ 2L

(5.11)

fk,2(x, t) =

{
fk(x, t) 0 ≤ x ≤ L
f−k(x− L, t) L ≤ x ≤ 2L

(5.12)

The latter combination can lead to functions in which the second derivative di-
verges as 1/a, but the energy density is finite and continuous in the continuum
limit. However it might cause problems in the equations of motion.

5.3.2 NUMERICAL RESULTS: THERMALIZATION FROM COLLIDING
KINK-ANTIKINKS

We start the discussion of our numerical results with the thermalization properties
of a colliding kink-antikink pair, by looking at the defining relation (2.55)–(2.56) for
nk. We simulated a kink-antikink collision in a volume Lm = 32 at a speed γ = 2,
i.e. at an initial energy density E/Lm2 = 2 · (4+ 4)/32 = 0.5. At this energy density
we found, in Chapter 2, a temperature T/m ≈ 1.0, consistent with the effective
potential (2.45).

In order to enable us to correctly interpret the result, we also measured the “par-
ticle number” at tm = 0. Of course at this time the system is so far from equilibrium
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that we cannot interpret the result as quasi-particles, but it does give us an idea of
the energy distribution as a function of k. The result is plotted in Figure 5.4a. The
similarity with a Bose-Einstein distribution is remarkable and we have to be care-
ful in interpreting the results. One of the indications that it is not a truly thermal
distribution is its very low “temperature”: at an energy density E/Lm2 = 0.5 we
expect to find a temperature around T/m = 1.0, whilst we found an value which
was almost three times smaller. Furthermore, the particle number mainly comes
from the even modes, as a result of the symmetric initial condition.

Figure 5.4b shows the actual particle number at later times, when the kink-
antikink have already annihilated. At this moment we do find a temperature around
1, conform the results of Chapter 2 and the effective potential (2.45). As a compar-
ison we also plotted the result obtained in that chapter using a flat ensemble sim-
ulation, in the same figure. It clearly shows that the temperatures are equal: T is
uniquely determined by the coupling and energy, not by the initial condition. The
initial condition is still visible in which modes have thermalized, and we see that
starting from an annihilating KK allows the system to thermalize faster. The reason
for this is of course the fact, that this initial condition has a more favourable energy
distribution, cf. Fig 5.4a. However the KK initial condition has a delta function
initial density matrix, which is not very suitable for our Hartree ensemble approx-
imation: we do not reduce the statistical errors by averaging over multiple initial
conditions.

Having showed that also this initial condition leads to a thermal Bose-Einstein
distribution in the end, we will now leave the thermalization topic and continue
with a discussion of the actual collisions.

5.3.3 NUMERICAL RESULTS: CRITICAL SPEED

We start this section with a study of classical kink-antikink collisions. An extensive
study of this can be found in Reference [73].

Figure 5.5 shows energy contour plots of Lorentz boosted classical kink-antikink
configurations. The results in these plots demonstrate that they just annihilate at
very low incident speed, while at a certain range of higher speeds, they bounce a
few times and then either annihilate or escape again to infinity, with a slightly lower
speed. At high enough speeds, when u is larger than a certain uc, with a value
between 0.25 and 0.30, the pair immediately escapes after the collision, again with
a lower speed. Part of the kinetic energy is transferred to an internal vibrational
mode of the kink, which can be seen as a wiggling in the contour plots.

These results are consistent with Ref. [73] in which a critical speed uc = 0.2598 is
found, above which colliding kinks always bounce back, while below a speed 0.193,
they always annihilate immediately. Between these speeds they found reflection
and annihilation bands, caused by a resonance between the center of mass motion
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a: ui = 0.19 (γ ≈ 1.019). b: ui = 0.20 (γ ≈ 1.021).

c: ui = 0.21 (γ ≈ 1.023). d: ui = 0.25 (γ ≈ 1.033).

e: ui = 0.30 (γ ≈ 1.048).

Figure 5.5: Colliding classical kink-antikink, λ/m2 = 1/12, above and below the
critical speed.
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a: ui = 0.700 (γ ≈ 1.400). b: ui = 0.750 (γ ≈ 1.512).

c: ui = 0.760 (γ ≈ 1.539). d: ui = 0.765 (γ ≈ 1.553).

e: ui = 0.770 (γ ≈ 1.567). f: ui = 0.800 (γ ≈ 1.667).

Figure 5.6: Colliding Hartree kink-antikink, λ/m2 = 1/12, above and below the
critical speed.
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and the vibrational mode. Except for Fig. 5.5d all shown results are in accordance
with Table I in [73]. Since we used different discretizations etc. and given the
very narrow width of the stability bands found by [73] we can certainly expect
small differences in their precise position, explaining the discrepancy. Finally the
authors of [73] found that the final speed, for an initial speed above uc, satisfies the
following relation

u2f ∝ u2i − u2c, (5.13)

which is consistent with Fig. 5.5e, from which we derive a final speed uf ≈ 0.13 −
0.14.

It is important to note that although breather-like states seem to emerge after a
collision, truly stable breathers do not exist in the λφ4 theory [74]. However, very
long-lived and almost stationary configurations do exist [75] as we have shown
here again. The radiation causes the energy to decay as 1/ log(t), as found analyti-
cally by [74] and confirmed numerically by [75].

We would like to compare these classical results with the Hartree approximation
and to see if in the quantum theory a critical speed still exists. In the classical theory,
one can always use units such that µ = λ = 1, and one expects a critical speed to
be unique, while in the quantum theory, including the Hartree approximation, this
will no longer be possible. However, we will not go further into the question of the
coupling dependence of the critical speed.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.58 0.59 0.60 0.61 0.62 0.63 0.64

u2 f →

u2
i →

N=512, Lm=64, λ/m2=1/12, uc=0.7607

5.34 u2
i-u

2
c

uf
2

Figure 5.7: u2f as a function of u2i in the
Hartree approximation, showing roughly
the same behaviour as in classical theory,
but with a uc = 0.7607.

In Figure 5.6 the results for six dif-
ferent initial speeds are shown. We see
that a critical speed does indeed exist,
with a value somewhere between 0.760
and 0.765, indicating that the quantum
kink pair is less stable than its classical
counterpart, at least at this coupling.
One might think that this instability is
caused by the fact that we only have an
approximate quantum kink-antikink as
initial condition, but as can be seen
from Fig. 5.6, the pair before the colli-
sion looks very stable, there is hardly
any wiggling, while after the collision
the wave packet is dispersing and oscil-
lating and its speed has decreased con-
siderably. The reason for the higher in-
stability is the radiative channel. This

probably also causes the fewer number of breather states found: only at an initial
speed u = 0.760, very close to the critical speed, can we recognise an approximate
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breather state. Bands of stability have not been found and for most simulations
in which the pair does not bounce back immediately, the radiation causes them to
annihilate.

We also have investigated the functional behaviour of uf as a function of ui, to
see if it has the same form (5.13), valid in the classical approximation. The result of
several runs at different initial speeds is plotted in Figure 5.7. We see that close to
the critical speed, uf indeed behaves in the same way as in the classical theory:

u2f = 5.34
(
u2i − u2c

)
. (5.14)

The resulting critical speed uc can be determined very precisely in this way and we
obtain uc = 0.760. Further away from the critical speed the behaviour is not linear
in u2i , in contrast to the classical result, but the corrections are relatively small.

We have done a few simulations at a stronger coupling λ/m2 = 1/6 and they
indicate the behaviour is slightly different. For example at a ui = 0.80 we find
uf = 0.280, while at λ/m2 = 1/12 we found uf = 0.538. The critical speed is
not very different. We did not check as fully as for the smaller coupling, but it
has a value between 0.790 and 0.795, from a linear fit of u2f versus u2i we obtain
uc = 0.793. Since ui = 0.80 is much closer to this value of uc, the value of uf at
ui = 0.80 is much smaller. The prefactor 5.34 also is higher, around 7 to 7.5, but
more data needs to be taken to obtain an accurate answer.

Apart from the factor 3 larger value of the critical speed, their are other impor-
tant differences between Fig. 5.6 and Fig. 5.5. For example a lot of energy is radiated
away after the collision, irrespectively if the pair annihilates or not, in the form of
quasi-particles, moving with approximately the speed of light. One might think
that the radiation is mainly described by the mode function contribution to the en-
ergy density, while the energy density of the surviving kink pair comes from the
mean field. However, by checking the different contributions separately we found
this is not the case, the kinks are mainly described by the mean field, but also have a
contribution from the modes and the radiation is described by both together. Only
the total field is a physical quantity describing both the kink-antikink and the radi-
ated particles. Just as only the total two point functions describe the quasi-particles
which approximately thermalize.

5.3.4 NUMERICAL RESULTS: SCALING

We are interested in the possibility of using kink-antikink collisions as a description
of heavy ion collisions, such as has been conducted at the SPS and are currently be-
ing conducted at RHIC and later at LHC. We therefore look closer at the region just
after the actual impact, in collisions with high γ. In Figure 5.8 we show the results
of four different simulations, at different γ factors and couplings and a comparison
with classical dynamics.
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a: Hartree, λ/m2 = 1/1.25, γ = 20 (u = 0.9987). b: Classical, λ/m2 = 1/1.25, γ = 20 (u = 0.9987).

c: Hartree, λ/m2 = 1/1.25, γ = 10 (u = 0.9950). d: Hartree, λ/m2 = 1/12, γ = 10 (u = 0.9950).

Figure 5.8: Colliding kink-antikink, period around the collision only.
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The plots show a remarkable similarity. In order to investigate this similarity
more quantitatively we made a time-slice shortly after the impact, shown in Fig-
ure 5.9, at a time 11.5, the impact itself was at time 8. In Figure 5.9a we see that a
different impact velocity only influences the resulting energy density in the emerg-
ing kink-antikink, the central plateau is the same for both speeds. In Figure 5.9b we
see the difference for two couplings. We have re-scaled the energy density with the
average density of the whole system in order to compare them. Again, the differ-
ence is small. At the stronger coupling the energy is slightly more concentrated in
the kink-antikink. Finally in Figure 5.9c we compare the difference between Hartree
and classical dynamics. In both simulations the kink-antikink pair region is very
similar. The central plateau shows some differences, although the total Hartree en-
ergy density in this region is very close to the classical energy density. The modes
are essential in this region, the mean field is more concentrated in the kink-antikink.
We can conclude from this that there is a scaling behaviour, an extensive range of
energies and couplings approximately results in one final plateau. Furthermore
at high incident speeds the difference between Hartree and classical is relatively
small. Classical dynamics can be used in the study of these collisions, giving fur-
ther foundation for its use in the study of heavy ion collisions.

It is interesting to compare the results obtained here in kink-antikink collisions
with what is known about heavy ion collisions. According to Bjorken [76] the cen-
tral plateau height is expected to depend only weakly on the incident speed, just as
was found here. Furthermore, only a relatively small fraction of the energy should
be left in the central region, most of it remains in what is left of the colliding ions,
a result which is at least qualitatively consistent with what we find here as well. A
first study of hydrodynamic scaling in a φ4 theory can be found in Reference [77].
The authors calculate the energy momentum tensor, which in our metric equals

Tµν = ∂µφ∂νφ+ ηµνL, (5.15)

in two systems, a colliding kink-antikink5 and a decaying Gaussian wave packet.
For a perfect fluid it can be expressed in the energy density and pressure. The
assumption of a perfect fluid is valid when collisions can be neglected, as in the
(homogeneous) Hartree approximation. For example the trace of Tµν gives (in 1+1
dimensions)

Tµµ = −e+ p = −2V

{
e = 1

2 (∂tφ)2 + 1
2 (∂xφ)2 + V,

V = 1
2µ
2φ2 + 1

4λφ
4 + µ2

λ .
(5.16)

Note that this is a slightly different definition then given by equation (13) in Ref. [77],
since we would like both T00 and T11 to vanish in the vacuum φ = v. From (5.16)

5Note that in [77] a product of a kink and antikink is taken, while we use a sum of the two, equa-
tion (5.7). Of course both are approximate kink-antikink solutions and the difference should be small.
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we find the pressure

p =
1

2
(∂tφ)2 +

1

2
(∂xφ)2 − V. (5.17)

Using the scaling behaviour one can then for example express the speed of sound
in the energy density in the center

e ∝ τ−(1+c20) → t−(1+c20) at x = 0, (5.18)

where τ =
√
t2 − x2 is the proper time and c0 is the speed of sound. For a clas-

sical kink-antikink collision we plotted the central energy density as a function of
time, on a log-log plot in Figure 5.10a and, on a linear scale, together with the cor-
responding pressure, in Figure 5.10b. Both from equation (5.18) and (5.16) we find
that shortly after the collision, the pressure in the central region becomes zero, lead-
ing to a vanishing speed of sound, which is quite a remarkable result. Interestingly
enough, we see that initially the speed of sound is non-zero, but in the range 0.7 to
0.8. It is not clear to us what causes the change from the relativistic phase, to the
pressureless phase.

The result obtained from Hartree dynamics is shown in Figure 5.10c. In this
case we can only find a speed of sound in the first stage, the second stage exhibits
strange oscillations but no power behaviour. The first stage results in a speed of
sound very similar to the classical result.

The result found in the first stage is similar to what was found by Bettencourt
et al. but only for times up to tm ≈ 8. Unlike their study, we are looking for
power behaviour in the wake of a kink-antikink collision instead of a disintegrating
Gaussian wave packet, since the comparison between a KK collision and a heavy
ion collision seems more reasonable.

5.4 THERMAL KINK NUCLEATION

In this section we briefly discuss the thermal creation and annihilation properties of
the kink-antikink pairs. There is a long history of papers on the subject of thermal
nucleation. See for example Reference [78] and reference therein for an analytical
study, and for example References [79, 80, 81, 82, 83] for numerical studies.

These numerical studies so far have only considered the classical kink nucle-
ation rate. The Hartree ensemble approximation method allows us to study the
creation of kink-antikink pairs starting from a thermal Bose-Einstein distribution
and to make a comparison between the classical and Hartree approximation. One
of the problems we are thus faced with is a proper definition of kink number. Since
only pairs, with no net kink number can be created, we need an effective kink num-
ber definition, the winding number will be always 0 or 1 (depending only on the
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volume Lm = 64. Of course this value heavily depends on the exact position of the
kinks.

boundary conditions). Furthermore, in the quantum theory, one might think the
kinks will be fully described by the mean field, while the mode functions just de-
scribe fluctuations around them. However, as we already noticed before, this split-
up cannot be taken so rigorously: the kink number will also be partially described
by the modes and we need a definition based on the ensemble description of our
system, only ensemble averaged quantities are physical.

In the classical theory, a useful quantity to look at, is the following

Qclass = φ(x)2 − φ(x)
2
, (5.19)

where the overline denotes a spatial average. When a kink-antikink pair is present,
this observable will become of the order v2. If the coupling is not too small, it
will therefore give a reasonable indication for their presence. Note that it cannot
distinguish between one or multiple pairs. The advantage is that we can easily
extend its definition to the quantum theory:

Q = 〈φ̂(x)φ̂(x)〉− 〈φ̂(x)〉 〈φ̂(x)〉, (5.20)
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and that it can be easily found from Sk, eq. (2.52). It is however UV divergent and
should be renormalized by subtracting the vacuum contribution:

Qren =
1

L

∑
k

(
Sk −

1

2ωfree
k

)
. (5.21)

We now have a quantum kink indicator, which shows if a pair is present, and that
can be compared to the classical theory. We have done so in two simulations at
λ/m2 = 1/12 in a volume Lm = 64, at an inverse temperature βm = 0.563, just
below the thermal phase transition at βm = 0.562. At such a high temperature we
expect the highest creation rate. In a volume Lm = 64, it follows from Ref. [81, 82],
that we should find about a half to two kinks per total volume, depending on the
counting algorithm. The result for Q is shown in Figure 5.11.

We can clearly see it is different from zero, showing the presence of kink-antikink
pairs. Furthermore, they emerge through the dynamics, initially the number is
lower. Finally, although the quantum number is smaller than the classical, it does
not go away, while looking at the mean fields in different realisations separately, we
find the kink-antikinks do disappear in the Hartree approximation. FromQwe see
that they first are contained in the mean field, while later they are described by the
modes, again showing that only the total two-point functions, from the total field,
describe the physical quantum field. As an example of their emergence from the
dynamics we plotted in Figure 5.12 the mean field of one of the realisations at 4
different times. Initially the field fluctuates around one of its minima, with a rea-
sonable amount of energy, it then forms a KK pair, which subsequently annihilates,
while transferring its energy to the quantum modes. The total two point function
still describes KK pairs, but this cannot be seen from one of the realisations.

5.5 CONCLUSION

In this chapter we looked at the topological defects which can be present in a scalar
λφ4 theory: kinks and antikinks. After a derivation of the classical solutions, we
used both classical and Hartree dynamics in studying their annihilation, both when
at rest and when boosted. We found that classical kink pairs are much more stable
than their Hartree counterparts. Hartree kink pairs at smaller coupling are there-
fore also more stable than at larger couplings. Although we do not know an ex-
act Hartree solution to the equations of motion, by damping the mean field equa-
tion, we can find an approximate solution. This damping can, especially at larger
couplings, prolong the survival time enormously, but is still orders of magnitude
shorter than for a classical kink-antikink pair, due to radiation in the form of quan-
tum particles, the quasi-particles discussed in Chapters 2 and 3. We suggested a
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algorithm to find an accurate numerical and more stable solution for the Hartree
equations of motion, but we have not yet tested it.

Using a damped mean field equation of motion we were also able to find an
approximate quantum kink mass. The Hartree approximation seems to give bet-
ter results than the one-loop semi-classical approximation, especially at larger cou-
plings, where the semi-classical approximation fails. Damping the equations has
some unwanted side-effects, such as the slow damping with a very long time scale,
which sets in after a time tm ≈ 10−20 and which has a strong volume dependence.
It would be interesting to investigate this phenomenon further. In order to check
the validity of the Hartree approximation in the determination of the soliton mass,
it would of course be best to do a lattice Monte Carlo simulation, as in [69, 70], at
our parameters. This is also a topic for future research.

The kink-antikink pair, after annihilation, also leads to an approximate thermal
Bose-Einstein spectrum, just as a flat initial ensemble. The initial energy distribu-
tion has a form which approaches the thermal distribution more easily than the
flat ensemble, as used in Chapter 2. This makes it possible to recognise the Bose-
Einstein already in an early stage, although the statistical errors are larger, since we
cannot average over multiple initial conditions.

In the study of kink collisions, we found once more that the classical kinks are
much more stable: for the classical dynamics, we reproduced the results of [73] on
the critical speed and the existence of approximate breather modes. In the Hartree
approximation the critical speed is considerably higher and we were not able to
find stability bands, i.e. approximate breather solutions. In order to make this
result rigorous, many more simulations have to be done, at higher precision, since
the radiation makes it difficult to see clearly if a short-lived bound state, or breather,
has emerged. It is also important to check the dependence on the coupling. In the
classical theory the dimensionless critical speed is independent of λ as the action
can be rewritten in a way that µ = λ = 1, while in the quantum theory, this is not
possible.

We compared some of the results from these kink-antikink collisions with the
heavy ion collisions such as are carried out at the RHIC in Brookhaven and in the
future at the LHC at CERN in Genève. Although the scalar φ4 theory is much to
simple to serve even as a toy model for this, it is interesting to see that we can com-
pare some of the ingredients: the kinks describing the colliding hadrons or ions
and the quasi-particles describing the “plasma”. After the collision, the resulting
field showed a central plateau, with scaling behaviour: the plateau height only
weakly depends on the initial speed of the kinks, and scales with the coupling in
a very straightforward way. Most of the energy remained in the receding kink-
antikink. The qualitative difference between the Hartree and classical approxima-
tions is small. However, at the quantitative level there are important differences.
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For example, shortly after the collision, both the Hartree and classical dynamics
resulted in a speed of sound of about 0.7 to 0.8, while after a time tm ≈ 8, this
speed in the classical simulation dropped to zero, i.e. vanishing pressure, while
in the Hartree dynamics the energy density became roughly constant, making it
impossible to obtain a speed of sound.

In Ref. [77] the Hartree plasma was also found to behave as a relativistic plasma,
with speed of sound close to 1, similar to what we found until a time tm ≈ 8. How-
ever the result in [77] was obtained from a disintegrating Gaussian wave packet,
instead of a colliding kink-antikink. It would be interesting to find a more accurate
result for the speed of sound in the Hartree approximation.

Finally we have briefly looked at the connection between a thermal Bose-Ein-
stein distribution and the creation and annihilation of kinks in the system. We
found that we need to consider the complete field in the description of kinks, not
only the mean field. This means that we have to look at quantum and ensemble
averages only, the separate realisations give some impression of what is happening
but do not describe the full theory. It is hopeful to see that although the kinks
disappear from the mean field, our rough kink indicator does not go to zero, but
becomes constant, i.e. the creation and annihilation rate are equal. However, we do
find fewer pairs in the Hartree approximation than in the classical theory, probably
related to the higher instability of Hartree kinks. In the Hartree description, more
energy is carried by radiation than in the classical theory.
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SAMENVATTING

In deze samenvatting zal ik proberen, op een voor een algemeen publiek leesbare
wijze, uit te leggen waar dit proefschrift over gaat. Het is hiervoor verhelderend
om eerst op de context in te gaan.

Een interessante ontwikkeling in de hedendaagse fundamentele natuurkunde
is het samenkomen van de fysica van de hele grote afstanden, de kosmologie en
de hele kleine afstanden, de subatomaire fysica. Deze gebieden lijken op het eerste
gezicht weinig met elkaar te maken te hebben, maar zoals zal blijken is voor het
begrijpen van de één de ander nodig. Het onderzoek beschreven in dit proefschrift
heeft zodoende ook toepassingen in beide velden.

Een zeer belangrijke ontdekking, die aan de basis staat van de moderne kos-
mologie is de observatie door Edwin Hubble in 1929 dat, naarmate sterrenstelsels
verder van ons weg staan, ze steeds harder van ons af bewegen. Deze observatie
heeft uiteindelijk geleid tot het “hete oerknal model”. Dit beschrijft, simpel gezegd,
het vroege heelal als een reusachtige explosie, die in feite nu, circa 15 miljard jaar
later, nog steeds doorgaat. Uitdijende gaswolken koelen af, en vergelijkbaar koelt
ook het uitdijende het heelal af. Als we dus teruggaan in de tijd wordt het steeds
heter en neemt de dichtheid steeds verder toe. In deze richting gaande worden
ook de typische deeltjes steeds kleiner: vaste stoffen vallen uit elkaar in losse mo-
leculen en atomen in de vorm van gassen, bij nog hogere temperaturen vallen de
atomen uit elkaar en vormen een plasma van losse kernen en elektronen. Bij nog
weer hogere temperaturen vallen ook de kernen uit elkaar in losse protonen en
neutronen. Ook deze protonen en neutronen vallen uiteindelijk uit elkaar en vor-
men dan een plasma van quarks en gluonen (gluonen zijn de dragers van de sterke
kernkracht, zoals fotonen, oftewel licht, de dragers zijn van de elektromagnetische
kracht). Naar dit quark gluon plasma wordt op dit moment hard gezocht, o.a. bij
de RHIC in Brookhaven en straks bij de LHC van het CERN bij Genève. Er zijn
inmiddels al aanwijzingen voor het bestaan gevonden op grond van eerdere expe-
rimenten met de SPS eveneens van het CERN. Later in deze samenvatting zal ik
nog kort terug komen op het quark gluon plasma.

De hierboven genoemde overgangen worden faseovergangen genoemd en de-
ze gebeurtenissen zijn belangrijk omdat ze vaak leiden tot waarneembare signalen.
Zo dateert bijvoorbeeld de Kosmische Microgolf Achtergrondstraling van de over-
gang van een plasma van kernen en elektronen naar neutrale atomen, circa 300 000
jaar na de oerknal, en is het hete oerknal model in staat de relatieve dichtheden
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van de lichte elementen zoals waterstof en helium, gevormd circa 3 minuten na de
oerknal, correct te voorspellen met als enige vrije parameter de netto hoeveelheid
baryonen (protonen plus neutronen). Met netto wordt hier bedoeld baryonen mi-
nus antibaryonen: van alle (elementaire) deeltjes bestaat ook een antiversie, met
exact dezelfde massa, maar o.a. tegengestelde lading.

Dit netto aantal baryonen blijkt zeer klein te zijn. Een belangrijk onderzoeks-
gebied is het voorspellen en begrijpen van dit kleine maar belangrijke getal, dat
wederom met een faseovergang te maken moet hebben: bij lage temperaturen is
de levensduur van het proton vele malen de leeftijd van het heelal, maar bij hoge
temperaturen wordt het instabiel. Dit gebeurd rond de “elektrozwakke faseover-
gang”, die plaats vond toen de temperatuur van het heelal circa 1015 Kelvin was.
Bij die overgang kregen alle deeltjes hun massa, via het zogeheten Higgs mecha-
nisme en moet ook het netto baryongetal zijn ontstaan, baryogenese: boven de
overgang wordt het netto baryongetal nul door interacties, hier onder kan het niet
veranderen.

De fysica die belangrijk is in het vroege heelal is dus die van elementaire deel-
tjes en fundamentele krachten bij zeer hoge temperaturen en rond faseovergan-
gen. De deeltjes en krachten (behalve de zwaartekracht) worden beschreven met
het zogeheten Standaard Model, dat in staat is gebleken tot zeer grote precisie de
experimenten in de deeltjesversnellers, zoals bij het CERN, te beschrijven. Fase-
overgangen goed beschrijven is echter een lastig probleem. Het Standaard Model
is beschreven met behulp van quantum veldentheorie. Een veel gebruikte techniek
bij berekeningen hierin is storingsrekening. Deze werkt echter niet goed voor het
beschrijven van faseovergangen, zoals ik hieronder zal uitleggen. Verder is het voor
bijvoorbeeld het beschrijven van baryogenese, maar ook de vorming van het quark
gluon plasma, nodig om het systeem te volgen in de tijd, het is niet in evenwicht,
wat een verdere reductie van het aantal beschikbare technieken betekent.

Voor het beschrijven van een klassiek mechanisch systeem is het in principe
voldoende om de potentiaal en de begintoestand te specificeren (klassiek geeft de
potentiaal de hoeveelheid potentiele energie die het deeltje heeft en maakt het mo-
gelijk op een zeer elegantie manier de bewegingsvergelijkingen af te leiden). Klas-
siek, dat wil zeggen niet quantummechanisch, zal een niet bewegend deeltje zich
in een minimum van de potentiaal bevinden. Quantummechanisch kan echter een
deeltje niet stilstaan op een precieze plaats, men kan niet plaats en snelheid onbe-
perkt nauwkeurig bepalen en de deeltjes zullen fluctueren om een minimum van de
potentiaal. Het is daarom een stuk lastiger om toch verwachtingswaardes van fysi-
sche grootheden uit te rekenen. Men maakt hierbij vaak gebruik van storingsreke-
ning: voor een beperkt aantal potentialen kan ook in de quantummechanica exact
worden uitgerekend hoe de verwachtingswaarde van grootheden afhangt van de
potentiaal. Door de fysische potentiaal te schrijven als zo’n exact oplosbare poten-
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tiaal plus een verschil- of storingsterm kan een benadering worden gemaakt van
de verwachtingswaarde in de fysische potentiaal.

In veldentheorie is de zaak wat ingewikkelder, ook daar wordt het systeem ge-
specificeerd door potentiaal en beginvoorwaarden, maar een veld heeft op iedere
plaats in de ruimte een waarde. Dit leidt er toe dat in quantum velden theorie ei-
genlijk alleen de meest simpele situatie nog oplosbaar is, die van een vrije theorie,
beschreven door een harmonische potentiaal (het veldentheoretische analogon van
een deeltje aan een veer). Het verschil tussen de exacte potentiaal en de harmoni-
sche potentiaal is in het algemeen niet geschikt voor storingsrekening. Door alleen
in de buurt van een minimum van de potentiaal te kijken kan dit probleem verhol-
pen worden. Hiervoor is het dus wel nodig dat de fluctuaties rond dat minimum
niet te groot zijn en is het essentieel dat de configuraties rond één minimum fluctu-
eren. Dit is in het algemeen niet het geval bij faseovergangen, wat het gebruik van
storingsrekening drastisch beperkt.

In klassieke veldentheorie is het stukken eenvoudiger om de evolutie van sys-
temen te berekenen. Heel simpel gezegd is het effect van quantum mechanica op
klassieke mechanica het toevoegen van quantum fluctuaties rond de klassieke op-
lossing. Zodoende kunnen we in quantum veldentheorie ook een expansie rond
de klassieke oplossing maken. De niet in storingsrekening te vangen effecten wor-
den beschreven door de klassieke oplossing, terwijl de kleine quantum fluctuaties
eromheen beschreven worden in storingsrekening. De in dit proefschrift gebruikte
Hartree benadering is ook zo’n soort benadering, en is daarmee beter in staat om
processen te beschrijven die niet noodzakelijkerwijs in de buurt van een minimum
van de potentiaal plaats vinden. Een andere benadering is het geheel negeren van
de quantum fluctuaties. Vooral bij hoge temperaturen, zoals in het vroege heelal,
is dit een verdedigbare benadering. Hoewel het op het eerste gezicht slechter lijkt
dan de Hartree benadering, is dat niet per se het geval.

Het andere probleem van het beschrijven van faseovergangen is hun niet-even-
wichts karakter. Als een systeem in evenwicht is, en in het bijzonder bij hoge tem-
peratuur, kunnen allerlei extra benaderingsmethodes gebruikt worden, zoals bij-
voorbeeld Monte Carlo simulaties. Als echter ook de dynamica beschreven moet
kunnen worden, is dit niet langer mogelijk. De klassieke en de Hartree benadering
zijn dan enkele van de weinige resterende mogelijkheden.

Zoals alle benaderingen heeft ook de Hartree benadering zijn beperkingen. Eén
van deze beperkingen is het beschrijven van de gang naar evenwicht. De bena-
dering is goed voor een kort tijdje, maar daarna niet meer. Eén van de oorzaken
hiervoor is dat het te veel van de interacties weggooit. In dit opzicht is de klassie-
ke benadering beter dan de Hartree benadering, en is daarom op haar beurt wel
in staat om de gang naar evenwicht te beschrijven, zij het dan klassiek evenwicht.
Men kan nu hopen dat een geschikte “combinatie benadering” in staat zou zijn om
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de gang naar een quantum evenwicht te beschrijven.
In Hoofdstuk 1 wordt zo’n combinatie benadering geı̈ntroduceerd, de Hartree

ensemble benadering. We bestuderen deze benadering in een eenvoudig model,
waarbij de ruimte beperkt is tot een lijn. In Hoofdstuk 2 wordt vervolgens gekeken
of en hoe deze benadering de gang naar evenwicht kan beschrijven. In Hoofdstuk
3 wordt gekeken of dit evenwicht ook vastgehouden kan worden als het eenmaal
bereikt is, en wordt een vergelijking gemaakt met de puur klassieke benadering.

In deze eerste paar hoofdstukken blijkt dat het beschrijven van equilibratie veel
beter gaat in de zogeheten gebroken fase, dan in de symmetrische fase. Dit begrip
heeft te maken met de vorm van de potentiaal. De potentiaal die we beschouwen
is een zeer veel gebruikte en wordt, naar zijn wiskundige vorm, de φ4 potentiaal
genoemd. Deze potentiaal kan één of twee minima hebben, afhankelijk van een
parameter en de temperatuur. Bij hoge temperaturen, boven een zekere faseover-
gang, is er altijd slechts één minimum. In Hoofdstuk 4 kijken we naar de potentiaal
die voor alle temperaturen slechts één minimum heeft, de symmetrische situatie.
Voor equilibratie is het nodig dat er genoeg interactie is, maar het blijkt dat er in de
symmetrische situatie te weinig zijn om de gang naar evenwicht goed te kunnen
beschrijven in de Hartree benadering.

In Hoofdstuk 5 wordt tenslotte gekeken naar een toepassing van de benade-
ringsmethode in de andere fase van het systeem, die met twee minima. Zoals hier-
boven zeer kort uitgelegd, wordt in storingsrekening gekeken naar de fluctuaties
rond een van de minima. In het geval er twee minima zijn, zal er eentje gekozen
worden. De aanvankelijke symmetrie tussen beide breekt spontaan. Dit kan gezien
worden als het plaatsen van een bal precies op de top van een berg, met aan twee
kanten een dal. De meest minimale verstoring zal het in een van beide laten terecht-
komen, maar welke is niet bij voorbaat vast te stellen, de symmetrie zal spontaan
breken. In veldentheorie is er niet sprake van één deeltje dat op één plaats is, maar
sprake van een veld dat op alle plaatsen een bepaalde waarde heeft (zoals de tem-
peratuur in een kamer). In veldentheorie is spontane symmetriebreking daarmee
ingewikkelder, het veld hoeft niet overal in de ruimte in het zelfde minimum van de
potentiaal terecht te komen. Zo’n veldconfiguratie, waarin het veld op één plaats
in het ene minimum zit en verderop in het andere, wordt een kink genoemd.

In een zeker opzicht kunnen deze kinks gezien worden als de deeltjes die in
deeltjesversnellers op elkaar worden geschoten. Net als die deeltjes hebben ook
kinks hun antiversie en kunnen ze annihileren. In het laatste hoofdstuk wordt ge-
keken naar dit soort botsingsprocessen en wordt gekeken in hoeverre de Hartree
ensemble benadering toegepast op de φ4 theorie kan fungeren als een zeer versim-
peld model voor de zware-ion botsingen bij RHIC en LHC.
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