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I. Introduction 

Recent months have seen a flurry of work on the model first proposed by 

Skyrme nearly a quarter of a century ago’ . This model is just one particular 

choice for a nonlinear sigma model describing the breakdown of the chiral sym- 

metries sum x sum down to isospin. But it has the great advantage of 

being only second-order in time derivatives, and hence, of succumbing to the tra- 

ditional methods of Hamiltonian quantum mechanics. Furthermore, it possesses 

soliton solutions, or ‘skyrmions,’ of finite extent. Thus the Skyrme model is an 

ideal testing ground for Witten’s imaginative proposa12P that-insofar as the '3' 

in SU(3),,~,, can be considered a large number-baryons ought to emerge as 

solitons in the nonlinear sigma model of the pion field. 

In the framework of this model one can calculate many static properties of 

baryons such as magnetic moments, g-factors and charge-radii 4 . Despite some 

glaring exceptions these typically agree with experiment to within 30%, when 

the adjustable parameters of the model are chosen to give the nucleon and delta 

masses correctly. Much less attention, however, has been focused on the dy- 

namical properties of skyrmions. Important progress in this direction was made 

independently by Zahed, Meissner and Kaulfuss5 , Breit and Nappi’ and Wal- 

liser and Eckart’ . Interpreting fluctuations around the soliton as pion-nucleon 

scattering, the authors of Refs. [5] and [6] calculated the phase-shifts in the 

“breathing-mode” 8 of the skyrmion and looked for a resonance in this channel 

by seeing if and when the phase-shift crossed 90’. (We shall adopt a different 

criterion for the existence of a resonance below.) With this criterion there is no 

resonance for the case of massless pions, and a marginal resonance at 1270 MeV 

for massive pions which Breit and Nappi identified with the real-world Roper 
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resonance .Prr (1440). (We shall follow the standard notation ~521,~~ for reso- 

nances, where L = S, P, D, F . . . denotes the partial wave in which the resonance 

is formed, and I and J give the total isospin and angular momentum. Nucleon 

and delta resonances are characterized by I = l/2 and I = 3/2, respectively.) 

This work was greatly extended in the multiple-channel analysis of the group at 

Siegen University; we shall discuss their results at the end of this section. 

In this spirit we have examined the processes TN + AN and TN + nA in 

all channels of isospin and angular momentum for which experimental data was 

available for comparison. This paper can be viewed as a detailed application to 

one particularly tractable model of the more general considerations of Ref. [lo]; 

as such, it constitutes a lowest-order calculation in l/N, with N the number of 

colors of the underlying gauge group. 

We are not motivated by the belief that there is anything especially funda- 

mental about the Skyrme Lagrangian. Rather, we find it instructive to see how 

well the actual spectrum of nucleon and delta resonances can be fit starting from 

a model that contains no explicit baryon fields and only three adjustable param- 

eters. Indeed, in this paper we specialize to a tweparameter fit (one-parameter 

if the proton mass is fixed) by working in the chiral limit m, = 0; the results of 

turning on a pion mass will be presented in a future publication9 . Nevertheless 

our findings are in generally good agreement with the real world for energies up 

to 3 GeV, with masses predicted on the average to within 8% of their actual 

values. (Our baryon-mass predictions are presented in Table I of Section III.) 

This is all the more surprising given the rather drastic nature of our approxi- 

mations, such as completely neglecting baryon recoil. As a bonus we find that 

our ‘best-fit’ values for the Skyrme parameters substantially improve some of the 
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static properties of the model. 

Another noteworthy result of the Skyrme-model calculation concerns the 

qualitative behavior of the TN phase-shifts for adjacent values of L. Specifi- 

cally, for each partial wave L 1 2, the amplitude Lr,2~-r moves much further in 

the unitarity circle than does Lr,z~+i; while in contrast, for the I = 3/2 chan- 

nels, it is L3,2,5+1 that dominates L3,2,5-1. And in fact, with a surprisingly high 

degree of regularity, this is what one finds in Nature. Moreover, in the model 

as in Nature, this pattern becomes more and more pronounced with higher and 

higher L. 

We should at the outset mention some of our disappointments as well. The 

most obvious of these is our failure to find in pion-skyrmion scattering what in the 

real world is the most spectacular baryon resonance of all, the delta itself; likewise 

the Pii and 531 channels at low energies are manifestly in poor agreement with 

experiment. It is not clear to us whether these represent failures of the Skyrme 

model or merely of our approximations near threshold. Either way, we shall argue 

that these discrepancies are not necessarily fatal to the model by showing that 

small perturbations can easily restore the correct low-energy behavior in these 

channels. In particular we can expect the delta to reappear in the next order 

in l/N. One can even take the optimistic view that these chiral soliton models 

provide precisely the right framework for understanding why some of the S-, P- 

and D-wave channels contain clear, low-lying resonances, while others, in stark 

contrast, are marked by repulsive behavior near threshold. We will return to a full 

discussion of these matters in Sec. III, where we take up pion-nucleon scattering, 

but first, in Sec. II, we lay the groundwork by examining the “elementary” 

processes in which a pion scatters elastically off an unrotated skyrmion (as we 
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shall review below, nucleons and deltas should properly be identified with rotating 

solitons). 

While in the process of writing up our results we have learned of similar 

work (albeit from a somewhat different theoretical outlook) carried out at Siegen 

University79 11-12. In particular, much of the development in Sec. II and App. 

A, which concerns such elementary processes, is similar to that of Ref. [7]. 

Furthermore, Eq. (20) below, which we borrow from Ref. [lo], is derived in a 

different manner in Ref. [l2]; this equation gives the prescription for expressing 

physical pion-nucleon scattering as a linear superposition of elementary processes. 

The Argand plots presented in [12] (for F- wave TN scattering only) appear to be 

in good numerical agreement with our own. We thank Dr. Hayashi for bringing 

this work to our attention. 

Finally we should note that, although we assemble all the necessary machin- 

ery in this paper for dealing with TN + rA, we have chosen for the sake of 

conciseness to limit our presentation here to the elastic case TN + TN. We will 

present the analogous zA results in the very near future. 

II. Pion-scattering from unrotated skyrmions 

In order to motivate our approach we begin with a brief review of the Skyrme 

model, essentially following Ref. [4]. The Skyrme Lagrangian with a chiral- 

symmetry-breaking mass-term is given by 

L j = &$JJ&/ut + &Tr[(a,u)ut, (a,u)ut]2 + % 2m”, (TrU - 2) (1) 

with 
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Here fir is the pion decay constant (186 MeV in the real world), m, is the pion 

mass, and e is a new, dimensionless coupling constant peculiar to the model. The 

“small parameter” l/N enters the Lagrangian through jr and e, which behave 

like NQ and N-i in the large-N limit, respectively. 

It is easy to guess that L as given admits a ‘hedgehog’ soliton solution of the 

form 

u. = ,iF(r)iJ . (2) 

Indeed, if we plug this ansatz into (1) and look at small fluctuations about the 

soliton 

F(r)? * F(r)? + gq, t) (3) r 

we obtain the Euler equation 

(i’s i?) [(-2 r + 8 sin2 F)F” + 2r”F’ + 4 sin 2F(F’)2 

4 (4 
- sin2F - -sin2 Fsin2F - iizzf2sinF 

r”2 I 
= 0 

where the derivatives are taken with respect to the dimensionless variable r” = 

e jirr, and Gin- = m, /e jr. Field configurations of the form (2) are thus automat- 

ically stable against angular fluctuations ii = a$ + 64. To render them stable 

against radial fluctuations as well, one requires the expression in square brackets 

to vanish, which gives the defining equation for F(r). It can be shown that the 

boundary conditions F(0) = 1~ and F(oo) = 0 yield a configuration of baryon 

number (i.e., topological charge) unity, as desired. 

The ansatz (2) is of course not the only choice available. In particular, isospin 

rotations of the form A&A-l yield equally acceptable soliton solutions (while 
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preserving the vacuum at infinity). Indeed, it turns out that in order to form soli- 

tonic states of definite spin and isospin (i.e., nucleons and deltas), one must take a 

superposition of all possible A's, weighted by appropriately chosen wavefunctions 

xi,a. (A). Straightforward Hamiltonian quantum mechanics in the “collective co- 

ordinates” A then yields for the nucleon and delta masses” 

mlv=mo+7e3j, ( -2 1 ) 3 5 = 
2 2 

; mA m0 -I- 7e3 jr 

( > 
z x z (5) 

where mo is the mass of the ‘elementary’ (i.e., unrotated) skyrmion (approxi- 

mately 36.2j,/e) and 7 B 4.7 x 10m3. 

This concludes our brief review of the Skyrme model; in the remainder of this 

section we put aside the issue of collective coordinates and focus purely on the 

question of pion-scattering from elementary skyrmions of the form (2). Explicit 

forms of the rather unwieldy differential operators involved are presented in App. 

A. The results for the S-matrix that we obtain in this section will be reassembled 

in the next to yield the amplitudes for the physical processes ?rN + TN. 

We proceed in a straightforward manner, by enforcing the substitution (3) in 

the Skyrme Lagrangian (1). After integration by parts one obtains 

s = -mo -I- 
/ 

d4S ri*(Z, t)&jJ(Z, t) + 0 (T3/ jr) (6) 

with fi a complicated 3 x 3 matrix of second-order differential operators. (We are 

allowing complex pion fields as a convenience; this way we are spared from having 

to take real parts of spherical harmonics and of eiWt throughout.) Consistent with 

the “large-N” spirit that motivates the model we will henceforth drop all terms of 

cubic or higher order in the pion fields; these are damped by powers of jrr - N$ . 
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As a result, the equations of motion for the pion fields that we will derive will be 

linear ones. 

We can make substantial progress by realizing that J?, complicated though it 

may be, preserves the symmetry K = I(pion) + L(pion). Explicitly, 

We can take advantage of this fact by expanding the pion field in terms of the 

vector spherical harmonics (here given in the {+, 0, -} basis) 

( GQK* - 1, w, Kz) YL,K,-1 (q 
IpL = 

L www, Kz) YL,K#) 

WKZ + 1, -1IK Kz) YL,K,+l(q 1 

(8) 

which are states of definite K2 and K,. Accordingly we plug 

K,Kz (9) 

into (6). Parity precludes the $0’~ from mixing with the @A’S; $J+ and $J- can 

mix in this model, however, as they do in Nature, where jumps of two units of 

pion angular momentum are allowed in the process ?rN + rrA . 

The angular integration can be performed, thanks to the identities 

(10) -- YKK. 
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We are left with 

S = -m0+ C 
J 

r2drq!fK**(r,t)i,K$fK*(r,t) 
K,Kz 

+ c / r2dr (t,!J!Kz*(r,f),$$Kz* 
K,Kz 

where the eK’s are complicated second-order differential operators in r and t 

alone. We will refer to the 2 x 2 matrix of operators here as LK and the 2- 

component column-vector of wavefunctions as \kK. 

The determination of phase-shifts now proceeds in a completely straightfor- 

ward manner. The “normal-mode” equations to be solved are 

and 

iK [XIXK(r)eiwt] = 0 

(124 

(124 

for all w; here we are assuming that e and L have been chosen with care to be 
A 

self-adjoint. By time-reversal invariance i and L are real operators, so it suffices 

to consider the real radial wavefunctions that are regular (i.e., square-integrable) 

at the origin and integrate out past the point where the skyrmion profile F(r) 

is negligible. In this regime the theory is one of free pions, so $0” can be fit to 

A(W)jK(kr) + B(w)nK(kr) with k = dw. (We follow Messiah13 in our 

definitions of the spherical Bessel functions.) The S-matrix in this channel is 
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extracted by rewriting this as 

collstimt X (h, - SKKK(W)~;~;) (13) 

yielding 

sKKK(w) = -(B + iA)-‘(B - iA) (14 

which lies on the unit circle. (Following [lo] we will adopt the notational conven- 

tion sKLlL, where L and L’ refer to the incoming and outgoing angular momentum 

of the pion, respectively.) 

The ‘2 x 2’ case (12b) proceeds analogously. Near the origin for each K 2 1 

there are two independent regular solutions Qf and Of , which behave asymp- 

totically as 

qjrK N 
Ai (w)k1 (kr) + Bibh-1 (kr) 

a 
‘G(w)jK+l(kr) + oi(W)nK+l(kr) > 

a= 1,2 (15) 

(The exception is the translational zero-mode (19b) below; the second zero-energy 

solution which is well-behaved at the origin blows up for large r.) If we work in 

the convenient basis in which the incoming pions are in pure (K - 1)-waves or 

(K + l)-waves of orbital angular momentum, the 2 x 2 S-matrices are given by 

SK= SK= 
sK,K-l,K-1 sK,K-l,K-1 sK,K-l,K+l sK,K-l,K+l 

sK,K+l,K-1 sK,K+l,K-1 sK,K+l,K+l sK,K+l,K+l (16) (16) 

B1 +iA1 D1 +iC1 B1 +iA1 D1 +iC1 B1 -iA D1 -X1 B1 -iA D1 -X1 
=- =- 

B2 -I- iA B2 -I- iA D2 -I- iC2 D2 -I- iC2 B2 - iA B2 - iA D2 - iC2 D2 - iC2 

In the next section we shall show that the amplitudes for TN scattering in the 

Eth partial wave are in fact linear superpositions of SL-~,LL, SLLL and SL+~,LL. 
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Note that SK as given is correctly invariant under different choices of regular 

solutions II?: = a\Er + PIP2 and \kk = +y\Er + 6\k2. Furthermore it is trivial to 

prove that a matrix of the form -MB’AI* can be unitary if and only if it is also 

complex-symmetric, so that ~213 = ~231, etc. This result, which follows gener- 

ally from time-reversal invariance” , provides a useful check on one’s numerical 

calculations. Accordingly we can parametrize SK as 

where the phase-shifts and absorption parameters are constrained by unitarity 

to obey 

bK,K-l,K-lb) + bK,K+l,K+l(W) - 26K,K+l,K-I (w) = (n + ;)K (184 

and 

w 
(The superscripts D and OD here stand for diagonal and off-diagonal.) 

We should mention the special case K = 0, for which only the right-most term 

in (9) exists; this is the breathing-mode ii oc ? of the skyrmion. In our notation 

the only nonvanishing component of the S-matrix when K = 0 is se11 = e2i6011. 

We further note that the zero-modes corresponding to translations and rotations 

of the skyrmion, 

and 

(P+r> ($-+yq, II;*(n) + d5 ( 194 
respectively, appear in the model as threshold bound-states. These will play a 
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crucial role in our later discussion. 

Some further details of the above procedure, including explicit expressions 

for eK and iK, are given in App. A. The results of our phase-shift analysis for 

the various S-matrix components SKLL8 with L, L’ 2 7 are plotted in App. B. We 

have restricted our numerical analysis in the present paper to the case m, = 0. 

Fig. 1 of App. B depicts the phase-shifts GKKK graphed against pion-energy 

w, measured in units of efrr. (This number should be thought of as lying some- 

where between 700 and 900 MeV; we will take up this matter in Sec. III.) The 

absence of a resonance for K = 1 is of course due to the presence in this chan- 

nel of the rotational zero-mode (19a). For K > 1 the obvious trend is for the 

resonances to become broader and more massive with increasing K. 

Figs. 2, 3 and 4 present our results for the diagonal components of SK. 

Clearly, for L 2 3, the phase-shifts &-~,L,L rise sooner than SLLL , and certainly 

much more dramatically than JL+~,L,L. As a consequence, the location of the 

resonances in the corresponding channels of ~FN scattering can essentially be 

read off from Fig. 2b. In contrast to L 2 3 note the tepid behavior of &r and 

&& (Fig. 2a). The former is the breathing-mode; as for the latter, the weak rise, 

like that of &rl, is due to mixing with the translational mode (19b). 

Figs. 5 and 6 present the corresponding graphs for the off-diagonal elements 

sK,K+l,K-1. These describe processes in which the orbital angular momentum 

of the pion jumps by two units. By conservation of angular momentum these 

processes are TN + 7rA necessarily, and so we defer discussion to the future. 

At this point we should make a technical comment about how we determined 

the location of resonances. In principle it is unsatisfactory merely to find where 

the phase-shift crosses 90”, due to the often significant effects of background. 
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A much more reliable criterion is to look for a well-defined peak in the speed 

IdS/dwl in those regions where the amplitude is curving counter-clockwise in the 

Argand diagram. Surprisingly, for SK,K+~,K+~ this occurs when the phase-shifts 

are approximately 45’. We turn now to our main topic of pion-nucleon scattering 

in the Skyrme model. 

III. Pion-nucleon scattering 

So far we have discussed the (linearized) equations of motion for pions moving 

in a fixed external skyrmion background. To relate this to zN and 7rA scattering 

requires a little group theory, and we will now just quote the result derived in 

Refs. [12] and [lo]. 

For a given pion energy a physical process zN -+ rrN or ?rN + zA can be 

completely specified by the following quantum numbers: total isospin I, incoming 

and outgoing pion angular momenta L and L’, and total angular momentum J. 

In addition we will let R’ stand for the representation of the final baryon, i.e., 

R’ = l/2 for N and R’ = 3/2 for A. One can show that the S-matrix for any 

such process is given by 

SLL'R'IJ(w) = cpLL+tIJK 'sKLL+) (204 
K 

Here sKLLl refers to the S-matrix for pions scattering from elementary skyrmions 

as discussed in the previous section, and the P-symbols are defined by 

PLLIRRIIJK = (-1)“-Rd(2R + 1)(2R’ + 1)(2K + 1) { ;;}{ ;:} C20b) 

The index K stands for the vector K = I(pion) +L(pion) introduced earlier. Eq. 

(20) can thus best be interpreted as the decomposition of ‘physical’ TN + ?rN 
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or zN + ?TA scattering in terms of pion-scattering from elementary skyrmions, 

where each of these elementary processes is characterized by its own conserved 

value of K. 

Note that Eq. (20) holds quite generally for any chiral-soliton model which 

admits a classical solution of the hedgehog form (2). It is analogous to the 

Wigner-E&art theorem in that a large number of physical matrix elements are 

expressed in terms of a substantially smaller set of ‘reduced’ matrix elements 

weighted by appropriate group-theoretical coefficients. One can carry the anal- 

ogy further by finding those special linear combinations for which the model- 

dependent right-hand-side of (20~) cancels out; the net result will then be a set 

of energy-independent linear relations between physical scattering amplitudes 

that can serve as a test of the applicability of the chiral-soliton ansatz to the 

real world12p10. This program is carried out in detail in Ref. [lo], with generally 

encouraging results. 

We should point out, however, that the derivation of (20) requires the use 

of some fairly drastic approximations. For example, the collective coordinates 

characterizing the baryon are assumed not to change appreciably during the time 

of interaction, and, more seriously, baryon recoil is not taken into account. These 

approximations can be justified in the framework of the large-N expansion’0, but 

in practice - where we would like to consider processes both near threshold and 

at pion energies on the order of the nucleon mass - they ought at least to make 

us wary. 

Bearing this in mind, let us look at the implications of Eq. (20) for zN 

elastic scattering, which in our conventions means R’ = l/2 and L’ = L. The 

left-hand side of (20~) can then be reexpressed in the standard notation L~I,~J, 
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which we shall adopt from now on. From the explicit formulas for the relevant 

P-symbols’0 we deduce 

L1,2L-1 
2L-1 

= TSL-l,L,L + 
L+1 
-SLLL 3L 

L1,2L+1 
L 

= -sLLL -I- 
2L+3 
- 

3L+3 3L+3 fJL+l,L,L 

L3,2L-1 = 
PL-w-l)sL 

6L(2L + 1) 
lLL+ 2L-lsLLL+ 2L+3 

- 1 , 6L -sL+l,L,L 4L+2 

L 
2L-1 2L+3 

3,2L+l - -SL-l,L,L + - 
(L + 2)(2L + 3) 

- 4L + 2 6L+6 sLLL + 6(L + 1) (2L + 1) sL+l’L’L 

(Of course (21~) and (21~) only make sense if L > 0; likewise the first term on 

the right-hand side of (21d) is absent for L = 0.) Thus for example the PII 

channel is given by (1/3)sorr + (2/3) ~111 instead of pure “breathing mode” so11 

as assumed in Refs. [S, 6,7]; this point was made in Ref. [12]. We will return to 

this channel shortly. 

The Argand plots obtained from these equations are presented in App. C, 

juxtaposed with the corresponding experimental results as drawn from HGhler 

et al l5 * ( The experimental graphs are the ‘inner’ ones.) As is customary we have 

graphed the T-matrix instead of the S-matrix; they are related by T = (S- 1)/2i. 

Pion energy w is given in units of e jr for our graphs, while those drawn from Ref. 

[15] are parametrized by total center-of-mass energy W in GeV. For each of our 

resonances we give the corresponding value of w, as well as the mass and width 

in MeV, using our ‘best-fit’ values {e = 4.79, jr = 150 MeV, e jr = 718.5 MeV} 

that we shall obtain at the end of this section16 . The locations of resonances 

in the real-world data are indicated by vertical lines. Note that, as mentioned 
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earlier, a resonance in the Skyrme model (as determined by the speed criterion) 

tends to occur toward the right-hand side of a circle and not at the top. 

Before discussing the successes of the model we should confront its failures; 

these lie in the S- and P-waves. Indeed one’s natural inclination is to turn first 

to the P33 channel, where in one of the cleanest examples of elastic scattering 

in Nature the delta manifests itself dramatically as a full rotation around the 

unitarity circle. Instead, one finds in the Skyrme model initial repulsive (i.e., 

clockwise) behavior, followed by a highly inelastic resonance at w = .34e jr, then 

one that is extremely broad (and poorly defined) at 1.05e jr. A similar sad story, 

albeit somewhat less egregious, is to be found in the Pl1 channel; this is where 

the second-lightest resonance, the N(1440), appears in Nature. 

Yet these results are not necessarily fatal for the model. That is, despite the 

large discrepancies, one can argue that small perturbations in the P-wave sector 

of the theory can cause enormous effects in the corresponding Argand plots which 

could easily produce the observed real-world behavior for the amplitudes. 

To see this, note that the physical P-wave amplitudes (Pll and P33 espe- 

cially) all contain contributions from the elementary S-matrix element ~111, as 

is apparent from (21). This is the channel to which the rotational zero-mode of 

the skyrmion, Eq. (19a), couples at threshold. As a result, in the model, the 

S-matrix has a pole and a zero that have coalesced at the origin of the energy- 

plane for all four P-wave channels of AN scattering. Now, one can easily envision 

effects which perturb these poles and zeroes away from the origin; certainly the 

quantization of the collective coordinates, which involves the next order in the 

l/N expansion, is one such effect. Consequently some of these poles might end 

up in the fourth quadrant, slightly below the positive real axis (Fig. la), while 
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2-85 (b) 501A:Q 

RE T RE T 

2-85 (c) 501OA40 

Fig. 1. Possible movement due to l/N corrections of the poles 
and eeroes of the S-matrix in the complex energy-plane, and the 
resulting effects on the amplitude near threshold. Poles are de- 
noted by a cross and Eeroes by a circle. 
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others might be pushed into the second quadrant (Fig. lb). (These are quadrants 

of the ‘second sheet.‘) 

If this scenario actually takes place in the real world, what would we ac- 

tually observe ? The channels in which the poles have been perturbed into the 

fourth quadrant would contain clear P-wave resonances lying reasonably close 

to threshold: suggestively, the resonances our model lacks, the A(1232) and the 

N(1440) are in fact the two lowest-lying excitations in pion-nucleon scattering. 

In contrast, the channels in which the poles have been pushed into the second 

quadrant would be characterized by precisely the kind of repulsive behavior at 

low energies that one finds in the Pl3 and P31 amplitudes. Thus our scenario 

gives at least a consistent interpretation of the real-world P-wave amplitudes 

near threshold. 

In a sense we already know that the delta-pole must be pushed into the fourth 

quadrant by such higher-order corrections. This, after all, is the essence of the 

calculation in Ref. [4] leading to the mass formula (5). Recall that in the large-N 

expansion jr - N1j2 while e - Ne1i2. Consequently, according to Eq. (5) (which 

of course gets renormalized by additional l/N contributions), the nucleon-delta 

mass-difference is proportional to e3 jr and hence of order l/N, whereas typical 

excitation energies as obtained in the present analysis are measured in units 

of e jr which is of order unity. Thus it would actually have been inconsistent 

for the delta to appear in our lowest-order calculation. (Note that the ratio 

( mA - mN)/mN - 1/N2; this is just a special case of the well-known fact that 

the zero-modes of a soliton, when quantized, produce energy splittings of order 

ii2, which in the large-N approach is equivalent to l/N2 .) 

Before leaving the P-waves we ought to point out that the Pl3 and P31 
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amplitudes are already given quite nicely. (It is of course no coincidence that 

in the model P31 = Pl3 and likewise Ssr = Srs; this is a model-independent 

result that follows directly from Eq. (20).) Indeed the standard lore is that the 

repulsive regions of Argand diagrams are very difficult to concoct in quark models 

of resonances, and so we consider it especially satisfactory to find such behavior 

emerging automatically from such a simple model. Nor is the agreement merely 

qualitative: the ‘cusps’ in the real-world Pl3 and P31 diagrams occur at 1530 and 

1560 MeV, respectively, while the Skyrme-model prediction is 1640 MeV in each 

case. 

We turn next to the S-wave channels, where we find a similar discrepancy. In 

particular the model fails to reproduce the observed initial repulsive behavior of 

the amplitude in the 531 channel. But the S-waves couple to the translational 

modes of the soliton, Eq. (19b). Thus just as for the P-waves one can argue that 

a small perturbation of the form depicted in Fig. lb would induce such behavior. 

The situation for Srr is not so clear: If one considers the real-world resonance at 

1526 MeV to be ‘close’ to threshold than presumably it is Fig. la that gives the 

correct picture; otherwise it is Fig. lc. 

In short, we have outlined a framework according to which all the S- and 

P-wave amplitudes in the real world can be understood as arising from higher- 

order corrections in an underlying chiral-soliton model such as Skyrme’s. In 

particular, repulsive behavior near threshold arises in this picture from S-matrix 

poles that have been perturbed from the origin into the first or second quadrant. 

(Reassuringly, the only amplitude other than Ssr, P31 and Pl3 which exhibits 

such behavior in the real world is 035, and this, too, mixes with the translational 

mode (lgb).) Of course, at higher energies the effect of perturbing a threshold 
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pole becomes negligible and so we would expect to see reasonable agreement once 

again between the model and experiment, as in fact we do in the S- and P-waves. 

We turn now to the higher waves, which fortunately present no such problems. 

We can be brief since the graphs, for better or for worse, speak for themselves. 

By way of a conclusion we offer the following observations: 

1. The partial waves with L 2 2 are on the whole in very satisfactory agree- 

ment with Nature. Many of the discrepancies in the higher waves can obviously 

be accounted for by the fact that our simple approach does not allow for the 

plethora of inelastic processes that occur in the real world; consequently our Ar- 

gand plots stick too closely to the rim of the unitarity circle, and are simply much 

too large. Ideally one should allow for multiple pion production, other mesons 

and/or strangeness. 

2. The F-wave plots are in particularly close correspondence with experi- 

ment; this point has already been made in Ref. [12]. Note that these are the first 

channels which do not mix with the zero-modes of the skyrmion. In the F35 chan- 

nel a speed-analysis actually revealed two overlapping resonances in the model 

at 1831 and 2032 MeV. Suggestively, the experimental data seems likewise char- 

acterized by a double peak, implying “that there might be additional structure, 

but the data do not allow additional structures to be resolved.15 Consequently 

the assignment in the real world is to a single broad (I’ = 260 f 20 MeV) F35 

resonance at 1905 MeV. (Interestingly, a similar splitting of the F35 resonance is 

predicted by the quark model.” ) 

3. Even in those channels where the Argand diagrams are not reproduced 
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very well, the model accurately predicts the locations of resonances with an 

appropriate choice of e and jX ( see Table I). In fact, almost all of the masses 

are given to within 16% of their actual values, and a majority are given to 6%. 

This holds for all known resonances up to 3 GeV, which is surprising for a “low- 

energy” theory. The general rule that masses increase with increasing partial 

wave comes out naturally, while the model correctly pinpoints several exceptions 

to this rule in the lower waves. 

4. A serious discrepancy is that, except for P33 , the model fails to predict 

more than one resonance at reasonable energies in the channels where it should 

do so. In particular the model misses three 3- or 4-star resonances, namely the 

Srr(1650), &r(1900) and Dr3(1700), in addition of course to the delta and the 

Roper resonance as we discussed at length. 

5. Except for the F- and G-waves, the model predicts widths that are too 

large by roughly 50% or more. (Question-marks following some of our width 

assignments indicate a strong background phase-shift to the right of the resonance 

which makes a precise determination of the widths difficult.) Note that, unlike the 

quark model, there is no particular reason in the Skyrme model why resonances 

should be narrow. 

6. Finally, the Skyrme model makes a very strong prediction that, in each 

partial wave starting with the D-wave, the L~,~L-I amplitude will move much 

further in the unitarity circle than the L~JL+~ ; while conversely, for the delta- 

resonance channels, it is the L3,2,5+1 amplitude that dominates the L3,2,5-1. In 

addition this pattern is predicted to become substantially more pronounced with 
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higher L. In fact, with a high degree of regularity, this is precisely what one 

finds in Nature, as a glance at the Argand plots confirms; the only arguable 

exceptions to the rule are the D- and I-wave delta-resonances. This important 

point is discussed in greater detail in Ref. (lo]. 

Our results for the mass spectrum are presented in Table I. They are based 

on a least-squares fit with all resonances weighted equally. In fit #l we fixed 

the proton mass, leaving only one free parameter, while in fit #2 we allowed the 

proton mass to vary. The optimal values for the Skyrme parameters turn out 

to be {e = 6.29, jrr = 142 MeV } and {e = 4.79, jr = 150 MeV }, respectively. 

An alternative approach would be to fix both the proton and the delta mass 

using (S), which gives4 {e = 5.45, jr = 129 MeV }, but this yields a much poorer 

fit to the spectrum as a whole. (This is not too surprising since specifying the 

nucleon-delta mass-difference involves a fine-tuning to order l/N.) In light of 

our earlier discussion we have chosen to compare our lowest-lying excitations 

in the Pl1 and P33 channels, not with the Roper and the delta, but with the 

next-higher resonances in those channels; our ‘predictions’ in Table I for the 

delta-mass merely come from Eq. (5). In all other cases where there was more 

than one resonance in a channel we compared the Argand plots to determine 

which resonance we should actually use. 

Note that fit #l gives a nucleon-delta mass-difference that is much too large; 

in fact, it inverts the ordering of the first two P33 resonances. Furthermore 

the corresponding Skyrme parameters yield substantially worse static properties 

of the model when plugged into the formulas obtained in Ref. [4]. For these 

reasons we prefer fit #2, which actually improves some of these properties, at 

the expense of allowing a proton mass of 1190 MeV (from Eq. (5)); it is these 
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mass assignments that we have noted in the Argand plots. 

Table II lists a handful of static properties that were first calculated4 in 

the Skyrme model by Adkins, Nappi and Witten (ANW). The middle column 

lists their predictions for the proton and neutron magnetic moments, the axial 

coupling constant, and the mean isoscalar and isoscalar magnetic radii; the third 

column gives the same quantities recalculated using the values for the Skyrme 

parameters given by fit #2; and the first column lists the experimental results. 

In summary we find it intriguing that this simple two-parameter model could 

yield a reasonable fit to such a wide range of both static and dynamic properties 

of hadrons . 
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Table I 

Comparison between experiment and Skyrme model predictions 

for baryon resonances 

1424 1 16 
c 

I - -- ---- ---- 

D33 1680 1616 -4 
D35 1901 1607 -15 1730 I -9 I 
F15 1684 1723 2 ii23 8 
F17 2005 1954 -3 2011 0.3 
F3.5 lcxl.5 lR!x" -m ? 19316 1 - -.- ---- ---- 
F37 1913 1714 -10 1816 1 -5 
G17 2140 2034 -5 207.5 --_- 1 -3 
G19 2268 2230 -2 2234 I -I 1 1 
G37 2215 2141 -3 2162 -2 
G39 2468 2043 -17 2083 -16 
H19 2205 2346 6 2327 6 
H39 2217 2444 10 2407 9 

H311 2416 2346 -3 2327 -4 , 
1111 2577 2631 2 2558 -1 
1313 2794 2658 -5 2579 -8 

K113 2612 3032 16 2882 10 
K315 2990 2943 -2 2810 -6 

a Average of two peaks at 1732 and 1981 MeV. 
* Average of two peaks at 1831 and 2032 MeV. 

Fit # 1 - Nucleon mass fixed. 

Fit # 2 - Nucleon mass allowed to vary. 
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Table II 

Static properties in the Skyrme model 
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APPENDIX A 

In this appendix we give some further details concerning the differential equa- 

tions (12~) and (12b). W e will express our results in terms of the dimensionless 

variables r” = efRr and Ci = m/(ef,). 

We consider the ‘1 x 1’ case (12~) first. After multiplying through by 

2F2/ sin2 F the equation turns out to be 

( 1+ 
4 sin2 F d2 

f2 > ~doK+[~+F)(2cotF-%+gs~2F_gs~~F >I -$I@ 

+ (*q-g - 8;p;2F _ ;2 ; 2yF + 8sin2F 
t”2F > 

+ ;2s~2F[ilF”+...]-u2[l+4(F’)2+4~]}$~=0 

The term [P2F” + . ..I denotes the defining equation for F, Eq. (4), which of 

course is identically zero. Near the origin the regular solution satisfies $J? - 

FKA1 [7~. - cur” + 0 (r”“)] where cy G IF’(O) ] E 1; from this we obtain the initial 

conditions needed to carry out the numerical integration. 

The ‘2 x 2’ case (12b) is more complicated. It is convenient to change vari- 

ables to 

and 

(A.2~2) 

(A.2b) 
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We then need to solve the coupled linear equations 

- 2F4r"2(+2 + 8 sin2 F)d,-2 -%+hK-4F4f2(i+4F'sin ZF)-$@+ 1 

2F4[2cos2F+ K(K+ l)][f’ + 4sin2 F] 

+ 2F4[4 sin2 2F - 8f2F" sin 2F + T?Z~?~COSF - 8f2(F')2cos2F] 

- 2F2F4(F2 +8 sin2 F)w2 
> 

d K t@ - 8dmF3F'f2 sin2 F-~!I~ 
(A.3~2) 

F2dm sin2 F(16Fsin2F - 16F2FF” 

+4r2F cotF[l- 4(F')2]+8il(Ft)2)}$F = o 

and 

-2F2F2(P2 +4 sin2 F)-&$+ 

-4F2f3+f2F'( -16F2sin 2F -4F2 cot FF2 + 16Fsin2 F + 4?2F)]g~f 

+ K(K + 1)F2{8 
{ 

sin2 F + 2f2[1+ 4(F')2]} 

+2r"2[-8F2(F')2 - 2F2 +4F sin2 FF"+ SF sin 2F(F')2 + Ft"(2F'+ +F") 

+ 2F cot F?2(F')2 - 8sin2 F(F')2 - 2P2(F')2] - g[i2F"+ . ..] 

- 2w2F2F2[4sin2 F+4?2(F')2 + T2] t,@ +8\/Kmi2F3F'$yL$ 

+ 
P 

8F3dm[2 sin 2F - i.'F"+ z cot F]}$f = 0 

(A.3b) 
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where we have multiplied through by -4?‘F4 and -4f4F4/ sin2 F, respectively. 

(The advantage of the change of variables is that each of these equations is 

second-order in only one variable.) We are relieved to find that, in the case of 

massless pions, Eqs. (A.l) and (A.3) are in agreement with Ref. [7]. One can 

check that the translational mode (19b) is a zero-energy solution of Eq. (A.3) 

when K = 1. 

For Eq. (A.3) th ere are two regular solutions near the origin: 

( +,” > ( FKfl [l + 0 (P)] 

- f@ B*FK*l [& - 1+ O(F)] > 

where 

1 + 2a2K + 10a2 
-1+ 2a2K - 4a2 

and 

It is straightforward to integrate these equations numerically out to large 7”, 

reconstruct $,“, and extract the phase shifts. The development then proceeds as 

outlined in Sec. II. 
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APPENDIX B 

The S-matrix for pion-skyrmion scattering 
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APPENDIX C - 

Argand Plots for Elastic TN Scattering: 

Skyrme Model us. Experiment 

In this appendix we present the.experimental Argand pl06+?~ for TN + TN 

<uxtaposed with the Skyrme model results. (In each pair these are the “inner” 

and “outer” graphs, respectively.) Both the experimental and the Skyrme model 

plots consist of three parts: 

- Imaginary vs. real part of the scattering amplitude T; 

- Imaginary part of T vs. energy; 

- Real part of T us. energy. 

In the Skyrme model plots, the energy in question is pion energy w, which is 

given in units of e jr. Resonance masses are given in terms of this unit, as well 

as in MeV (using our ‘best-fit’ value e jr = 718.5MeV); full widths are given only 

in MeV. The experimental graphs are parametrized by total energy in MeV, and 

masses and widths are likewise in MeV. 
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