
EFFORTLESS CREATION OF CONTROL & DATA ACQUISITION
GRAPHICAL USER INTERFACES WITH TAURUS

C. Pascual-Izarra#, G. Cuní, C. Falcón-Torres, D. Fernández-Carreiras, Z. Reszela, M. Rosanes,
ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain

T. Coutinho, ESRF, Grenoble, France

Abstract
Creating and supporting Graphical User Interfaces (GUIs)
for experiment control and data acquisition has
traditionally been a major drain of time and resources for
laboratories. GUIs often need to be adapted to new
equipment or methods, but typical users lack the technical
skills to perform the required modifications, let alone to
create new GUIs. Here we present the Taurus [1]
framework which allows a non-programmer to create a
fully-featured GUI (with forms, plots, synoptics, etc.)
from scratch in a few minutes using a "wizard" as well as
to customize and expand it by drag-and-dropping
elements around at execution time. Moreover, Taurus also
gives full control to more advanced users to access, create
and customize a GUI programmatically using Python [2].
Taurus is a free, open source, multi-platform pure Python
module (it uses PyQt [3] for the GUI). Its support and
development are driven by an active and welcoming
community participated by several major laboratories and
companies which use it for their developments. While
Taurus was originally designed within the Sardana [4]
suite for the Tango [5] control system, now it can also
support other control systems (even simultaneously) via
plug-ins.

INTRODUCTION
Taurus is a framework for creating user interfaces (both

GUIs and command-line based) to interact with scientific
and industrial control systems as well as with other
related data sources.

In this work we first give a brief overview of Taurus
and then we focus on one of its key assets: the possibility
of deploying powerful, customizable and flexible control
and data acquisition GUIs within minutes without
requiring to write a single line of code. Finally, we discuss
the current development efforts and the future plans.

OVERVIEW

Background
Taurus was originally conceived (under early internal

names such as Tauico, Tauiwi, and Tau) as the ALBA [6]
synchrotron's in-house solution for connecting client side
applications to Tango device servers [7]. It provided the
user interface code for the Sardana suite [8], which is

used in ALBA for control and data acquisition of both the
accelerator and all the beamlines.

After its first public release in 2011, Taurus has been
adopted by several large laboratories and companies, and
it has become very popular among many newcomers to
the Tango Collaboration1.

Since 2012 much effort has been put into bringing
control system agnosticity into Taurus: proof-of-concept
plugins for supporting EPICS [9] and SPEC [10] were
developed and the Taurus core has been refactored in
order to isolate the Tango dependencies into an optional
plugin for the next major release (Taurus 4)2.

Community
The Taurus Community largely intersects with the

Sardana Community (from which it spun off to reflect the
fact that Taurus can be used independently of Sardana)
and shares its organizational characteristics and open
development model [11, 12]: public code review process,
proposal-driven decision taking [13], periodical meetings
(~yearly), free licensing (LGPLv3+ [14]), etc.

FAST GUI CREATION

Model-View-Controller Approach
Taurus uses the Model-View-Controller (MVC) pattern

[15] to build interfaces3.

The taurus.core module uses plugins (known as
schemes) to provide TaurusModel objects that abstract the
interactions with specific sources of data and/or control
objects. Some schemes are already implemented for
accessing control system libraries (the “tango”, “epics”
and “spec” schemes) as well as for data-processing via a
Python interpreter (the “evaluation” scheme).

Every TaurusModel object can be of type Authority,
Device or Attribute, and has a unique name in the form of
a Unified Resource Identifier (URI). See Table 1 for some
examples of model names. Each scheme implements a

__
#cpascual@cells.es

__

1 While early adopters of Taurus were mostly synchrotrons (Desy,
MAX-IV, Solaris, ESRF,...) other scientific institutions such as the ELI-
ALPS and LULI-APOLLON large laser installations or the ONERA
wind tunnel are currently using it. Companies such as Cosylab, Nexeya,
Tata Consultancy Services and Observatory Sciences are providing
services based on Taurus to a growing number of institutions, including
the world largest radio telescope (SKA).
2 Unless explicitly stated otherwise, in the rest of the article the
situation described corresponds to the current Taurus4 state.
3 Many Taurus components combine the View and Controller roles.
Those cases could be referred to as “Model-View” instead of MVC.

THHC3O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1138C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

Factory object that takes model names and returns the
corresponding TaurusModel objects.

The Taurus view and controller components can be
implemented in many forms: command line interfaces
such as Sardana's spock, web based applications such as
those demonstrated in the taurus.web module (just a proof
of concept for now) or, the most common, PyQt based
GUIs.

The taurus.qt module provides a set of basic widgets
(labels, LEDs, editors, forms, plots, tables, buttons,
synoptics,...) that extend related Qt widgets with the
capability of attaching to Taurus core models in order to
display and/or change their data in pre-defined ways. For
example, a TaurusPlot widget will display a curve for
each attribute model to which it is attached if its value is a
one-dimensional numerical array. Similarly, a
TaurusForm widget will allow the user to interact with the
data represented by its attached models (Fig. 1). The
actual association of a view (widget) with a model is done
by providing the model name to the widget.

Figure 1: TaurusForm widget attached to models from
tango, epics and python evaluation schemes (#2, #3,
#4, #5, #6 and #7 from Table 1).

Note that thanks to the model abstraction provided by
the scheme plugins, Taurus based applications can
transparently mix data from different sources, as
demonstrated in Fig. 1.

TaurusGui vs Qt Designer
The Taurus widgets behave just as any other Qt widget,

and as such, developers could use them to create GUIs in
a regular way, both programmatically or using the Qt
designer (Taurus extends the Qt designer catalogue with
its own widgets).

Figure 2: TaurusGUI (in the background) showing the
“New Panel Catalogue” in the foreground.

However, Taurus provides an even simpler and much
more dynamic way of creating GUIs: the TaurusGUI
framework, which allows the users to create a skeleton of
a GUI with a few clicks on a wizard and then populate it
at run time with panels containing any arbitrary widget
from the Taurus catalogue or from an external module
(see Fig. 2). The layout of the panels in the application is

Table 1: Taurus Model Name Examples

Model name (URI) Model
type

Scheme Represented source of data/control object

1 tango://foo:1234 Authority tango Tango database listening to port 1234 of host foo

2 tango://foo:1234/a/b/c Device tango Tango Device a/b/c registered on the above database (#1)

3 tango:a/b/c/state (1) Attribute tango state attribute of Device #2 when database #1 is the default (1)

4 tango://foo:1234/a/b/c/d (or tango:a/b/c/d (1)) Attribute tango Tango Attribute d of device #2 (and its implicit DB form (1))

5 epics:XXX:m1.VAL (1) Attribute epics (2) EPICS process variable XXX:m1.VAL

6 eval:({tango:a/b/c/d}+{epics:XXX:m1.VAL})*0.5 (1) Attribute evaluation Calculated average of the values of #4 and #5

7 eval:rand(256) (1) Attribute evaluation Random generated array of 256 values

8 msenv://foo:1234/macroserver/bar/1/ScanDir Attribute msenv (3) ScanDir environment variable from Sardana's msenv scheme

9 h5file:/mydir/myfile.hdf5 (1) Device h5file(3) File in HDF5 format saved at /mydir/myfile

10 h5file:/mydir/myfile.hdf5:data/energy (1) Attribute h5file(3) HDF5 dataset energy of group data from file #9

11 ssheet:myfile.ods:Sheet1.A1 (1) Attribute ssheet(3) Contents of cell A1 of Sheet1 of myfile.ods spreadsheet

Notes:
(1) Some parts of the model URI (e.g. the authority segment) may be omitted if default values are defined.
(2) The epics scheme implementation is still a proof-of-concept. URI syntax may vary in its final implementation.
(3) These schemes are only in discussion stage. URI syntax may vary when implemented.

Proceedings of ICALEPCS2015, Melbourne, Australia THHC3O03

User Interfaces and Tools

ISBN 978-3-95450-148-9

1139 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

completely customizable (they can be dragged around,
stacked, hidden, made into tabs,...), and different view
configurations, called perspectives, can be saved and
retrieved at any moment to adapt to the task or to the user
preferences.

The Taurus widgets can be associated with models
when they are added to the GUI and, in many cases, they
may also accept drag & drop of the model name(s) from
other widgets (or from a model selector) at any time, e.g.:
the user can start plotting the time evolution of a given
value by just dragging its name from a TaurusForm and
“dropping” it into a TaurusTrend widget.

TaurusGUIs can be modified (e.g., an extra plot widget
may be added on-demand) without coding and users even
create whole new temporary TaurusGUIs from scratch to
solve particular tasks.

Simplicity for Users, Control for Experts
All the convenience described above does not limit the

control that experts may want for tweaking and adapting
the system to their needs. This extra control can be
exerted at several levels:

First, it is possible to edit the configuration files that
define a TaurusGUI-based application. These are
declarative python and XML files (editable as plain text)
complemented by Qt settings files (editable with the
provided taurusconfigbrowser application).

On a lower level, custom specific widgets (created
either programmatically or via the Qt designer) can be
added as panels to a TaurusGUI application. At this level,
it is also possible to do simple inter-panel communication
thanks to the SharedDataManager broker component
provided by the TaurusGUI framework (see broker
pattern in [15]). This is used by many Taurus-based GUIs
such as VACCA [16] to provide synoptic-based GUI
navigation: the visual representation of an instrument in a
synoptic can be clicked to show the panel associated with
it and, conversely, the synoptic element gets highlighted if
its associated panel is selected.

Finally, the maximum level of control can be achieved
by programmatically accessing the TaurusGUI class itself.
In this way, all the higher level features described before
are still available, while there are no limitations on the
customizations that can be done.

CURRENT & FUTURE DEVELOPMENTS

Taurus 4.x
At the moment of writing, the latest production-ready

release of Taurus is at the 3.6 version, and the next major
version (Taurus 4.x) which is currently under
development (the core is ready and the widgets are being
adapted to it), is planned to be released soon.

Taurus4 implements the TEP3 and TEP14 enhancement
proposals [13], simplifying the Application Programming
Interface (API) of the core, e.g.: the distinction between

an Attribute and its Configuration disappears, many
redundant methods are deprecated and the model name
syntax is made RFC3986-compliant [17]. This facilitates
the creation of new scheme plugins. Also, as part of this
refactoring, all the dependencies on PyTango, as well as
many tango-influenced APIs have been isolated in the
tango scheme plugin, making it possible to run Taurus on
a machine without Tango.

Another key improvement from TEP14 is the support
for measurement units: all numerical values from the
models representing a physical quantity (e.g., the read
value, the limits, etc.) will be Quantity objects from the
Pint module [18], enabling user-friendly unit conversions
and enforcing dimensional consistency when operating
with them.

Taurus4 also brings a significant leap in unit test
coverage since many of its features have been
implemented using test-driven development.

One of the main concerns when implementing the
above mentioned changes was to maintain the backwards-
compatibility with the previous version (i.e., that
programs developed for Taurus 3.x should ideally work
with 4.x). This has been achieved to a large degree by
implementing a backwards-compatibility API that
translates 3.x API calls to their 4.x equivalents while
issuing deprecation warnings). Only in a few cases it has
not been possible to implement such an automatic
transition (mostly related to tango-centric APIs that
cannot be generalized to other schemes), and in these
cases a deprecation error is raised. We expect that most
GUIs will be able to transition to 4.x without modification
(with possibly some non-critical warnings that can be
solved at a later moment). The rest may need some minor
modifications to run on 4.x, but as long as the basic
Taurus widgets are not heavily modified, the update effort
should be moderate.

Technology Stack Update
Keeping Taurus up-to-date with the evolution of the

technologies is a continuous effort that allows us to
guarantee the maintainability of Taurus.

At this moment Taurus is compatible with Python 2.6
and 2.7. We intend to add support to Python 3 too
(probably we will drop the support for 2.6 to facilitate
maintaining a common codebase for 2.7 and 3.x).

Similarly, we currently support PyQt 4.4 and newer but
not PyQt 5.x or PySide since we are limited by PyQt 4.4
to use old-style signals. In the near future, we intend to
adopt new-style signals and support all PyQt versions
from 4.8 (5.x included) as well as PySide.

Regarding graphics visualization, the plot and
extra_guiqwt Taurus modules4 depend on the no longer

__

4 taurus.qt.qtgui.plot provides 2D plots and trends, while
taurus.qt.qtgui.extra_guiqwt provides contour/colour plots and image
visualization as well as alternative implementations of the 2D plots and
trends

THHC3O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1140C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

maintained PyQwt 5.2 module [19]. The Taurus
Community is currently discussing about the best
alternatives for the future of the graphics in Taurus. The
options being considered are: a) base all the plotting on
guiqwt [20], or b) to contribute to the incipient
PythonQwt module [21] to bring it to a point where it is a
viable drop-in replacement for PyQwt in Taurus, or c)
start a new plotting infrastructure based on PyQtGraph
[22] or PyMca [23] (which would require more initial
effort but would open the possibility to provide OpenGL-
based 3D data visualization).

Unification of Extension APIs
Another pressing priority in Taurus is the

implementation of a formal API for providing extensions
(plugins). At this moment, different mechanisms to
support extensions are already implemented in various
subsystems of Taurus, such as the schemes in the core, the
widgets in taurus.qt.qtgui, the panel catalogue in
TaurusGUI, the icons, the extension API in the tango
factory, etc. (see the TEP13 [13] for more details). Most
of these mechanisms, being ad hoc implementations, are
quite specific and present limitations such as requiring the
plugin to have privileged access to Taurus installation
directories, or not having a well defined interface, or not
managing dependencies/incompatibilities among plugins.

This situation will be improved by adopting a generic
extension mechanism (e.g., stevedore [24] or yapsy [25])
and using it throughout the whole Taurus library. Apart
from facilitating the improvement and maintainability of
the code (removing multiple different implementations
and APIs), the Taurus library will become simpler to
extend and lighter, since many sub-packages that are
currently monolithic may be reimplemented as a
collection of optional extensions to be installed and/or
loaded on-demand.

As a side-effect, other projects currently extending
Taurus like Sardana, VACCA or PANIC [26] will also
benefit from a supported extension API in Taurus: first, by
formally registering themselves as Taurus extensions and
second, by internally using the same API for their own
plugins (e.g., the macros, controllers and recorders in
Sardana).

From a community point of view, we expect that the
increased modularization resulting from this change will
facilitate collaborations since external developers will
find it easier to experiment and contribute their changes
with less worries of breaking critical components.

Multi-Model API
Another foreseen improvement in Taurus is to extend

the existing API for attaching widgets to models. The
current API only supports one model per widget, and
those widgets requiring to attach to more than one model
need to improvise ad hoc solutions. A proposal based on
using class decorators to provide multi-model support is
being evaluated.

New Schemes
The core refactoring done in Taurus 4 has been the

main blocker for the creation of new schemes. Once
Taurus 4 is released, we expect that several schemes will
be (re)implemented: apart from those mentioned as
incomplete in Table 1 (epics, h5file, msenv, ssheet), other
schemes have been proposed to support the following data
sources: the MADOCA-II control system [27]; LIMA
devices [28]; archiving systems [29]; SQL databases;
plain text files containing tabular data, etc.

CONCLUSION
Our experience shows that the TaurusGUI framework

greatly improves the way that control and data acquisition
interfaces are deployed: users (even the non-programmer
ones) create and/or customize their own GUIs, gaining in
autonomy and minimizing both their waiting time and the
burden on support engineers.

Taurus is already a reference within the Tango
community, but its full potential outside it (both in large
and small installations) is still open to be explored and
will be enabled by the release of Taurus 4.

ACKNOWLEDGEMENT
We would like to thank the Taurus, Sardana and Tango

community members and the ALBA Controls Group and,
specially, to Teresa Nuñez (Desy), Jan Kotanski (Desy),
Valentin Valls (ESRF) and Sergi Rubio (ALBA) for their
contributions to Taurus. We would also like to thank
Frederic Picca (Soleil) for his suggestions and for
packaging Taurus and Sardana for Debian. Finally, we are
indebted to all those who participated in the seminal
discussions that gave birth to Tau.

REFERENCES
[1] Taurus website: http://www.taurus- scada.org
[2] Python website: http://www.python.org
[3] PyQt website:

http://www.riverbankcomputing.com/software/pyqt/
[4] Sardana website: http://www.sardana- controls.org
[5] Tango website: http://www.tango- controls.org
[6] ALBA website: http://www.albasynchrotron.es
[7] D. Fernandez-Carreiras et al., “ALBA, a Tango

Based Control System in Python”, THP016,
ICALEPCS2009, Kobe, Japan, (2009).

[8] T. Coutinho et al. “Sardana, the Software for
Building SCADAs in Scientific Environments”,
WEAAUST01, ICALEPCS2011, Grenoble, France,
(2011).

[9] EPICS website: http://www.aps.anl.gov/epics/
[10] SPEC website: http://www.certif.com/content/spec/
[11] Z. Reszela et al., “Sardana – a Python Based

Software Package for Building Scientific SCADA
Applications”, WCO206, PCaPAC2014, Karlsruhe,
Germany, (2014).

Proceedings of ICALEPCS2015, Melbourne, Australia THHC3O03

User Interfaces and Tools

ISBN 978-3-95450-148-9

1141 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

[12] Z. Reszela et al., “Bringing Quality in the Controls
Software Delivery Process”, MOPGF171,
ICALEPCS2015, Melbourne, Australia, (2015).

[13] Taurus Enhancement Proposals:
http://sf.net/p/tauruslib/wiki/TEP/

[14] Lesser General Public License:
https://www.gnu.org/licenses/lgpl.html

[15] F. Buschmann et al., Pattern-oriented software
architecture: a system of patterns, (New York: Wiley,
1996), 125.

[16] S. Rubio-Manrique et al., “Unifying All TANGO
Control Services in a Customizable Graphical User
Interface”, WEPGF148, ICALEPCS2015,
Melbourne, Australia, (2015).

[17] Berners-Lee et al., "Uniform Resource Identifiers
(URI): Generic Syntax". Internet Engineering Task
Force. http://tools.ietf.org/html/rfc3986

[18] Pint website: http://pint.readthedocs.org
[19] PyQwt website: http://pyqwt.sourceforge.net
[20] guiqwt website: https://pythonhosted.org/guiqwt/
[21] PythonQwt website:

http://pythonhosted.org/PythonQwt/

[22] PyQtGraph website: http://pyqtgraph.org
[23] V.A. Solé et al., A multiplatform code for the analysis

of energy-dispersive X-ray fluorescence spectra,
Spectrochim. Acta Part B 62 (2007) 63-68.

[24] stevedore website:
http://docs.openstack.org/developer/stevedore/

[25] yapsy website: http://yapsy.sourceforge.net/
[26] S. Rubio-Manrique et al., “PANIC, a suite for

visualization, logging and notification of incidents”,
FCO206, PCaPAC2014, Karlsruhe, Germany, (2014).

[27] T. Matsumoto et al., “Next-Generation MADOCA
for the SPRING-8 Control Framework”,
TUCOCB01, ICALEPCS2013, San Francisco, USA,
(2013).

[28] A. Homs et al., “LIMA: a Generic Library for High
Throughput Image Acquisition”, WEMAU011.
ICALEPCS2011, Grenoble, France, (2011).

[29] S. Rubio-Manrique et al, “Validation of a MySQL
based archiving system for Alba Synchrotron”,
WEP010, ICALEPCS2009, Kobe, Japan, (2009)

THHC3O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1142C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

