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We present results for pion and nucleon form factors, as well as the hadronic vacuum polari-
sation contribution to the muon (g − 2) obtained from lattice QCD. By using O(a) improved
Wilson quarks for near-physical pion masses and three values of the lattice spacing we achieve
good control over systematic errors associated with lattice artefacts and extrapolations to the
physical pion mass. Several technical improvements are discussed, including the efficient cal-
culation of quark-disconnected diagrams, the reduction of unwanted excited-state contributions
in baryonic correlation functions, and the impact of using partially twisted boundary conditions.

1 Introduction

Lattice QCD has emerged as a versatile tool for tackling a wide range of topics in strong in-
teraction physics. Lattice calculations of the light hadron spectrum have contributed signif-
icantly to validating QCD as the theory of the strong interaction. Furthermore, lattice QCD
makes precise predictions for Standard Model parameters, such as quark masses and the
strong coupling constant, as well as for mesonic decay constants and form factors, which
are relevant for obtaining accurate estimates of the elements of the Cabibbo-Kobayashi-
Maskawa matrix. These successes have established lattice QCD as a mature field, whose
status is further underlined by the fact that an international collaboration is now preparing
global averages of lattice results, very much in the spirit of the Particle Data Group1.

Lattice calculations are also increasingly important for the interpretation of experimen-
tal results on hadron structure and tests of the Standard Model2. In this contribution we
report on our results for form factors of the pion and the nucleon, as well as on the hadronic
vacuum polarisation contribution to the muon’s anomalous magnetic moment. As will be-
come clear, there are several technical issues which must be addressed before the overall
accuracy of these quantities can be claimed to be comparable or even better than what can
be achieved in other phenomenological approaches.

2 Hadron Structure on the Lattice

The internal structure of hadrons has been the subject of a major experimental programme
at accelerator facilities worldwide, which must be matched by equally precise theoretical
analyses. In particular, one wants to gain a quantitative understanding of structural prop-
erties of the nucleon in terms of QCD. To this end, one confronts precise measurements of
form factors and structure functions to the corresponding predictions of the theory. Lattice
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calculations of baryonic observables are technically much more difficult compared to their
mesonic counterparts. Therefore, quantities such as pion form factors offer an ideal testing
ground for state-of-the-art lattice methods before they are applied in the baryonic sector.

Chiral Perturbation Theory (χPT) is another theoretical tool for studying the strong
interaction at low energies. While lattice QCD seeks to describe hadronic properties in
terms of the fundamental constituents, i.e. quarks and gluons, χPT is an effective theory
based on hadronic degrees of freedom. Lattice QCD and χPT complement each other: on
the one hand, lattice simulations are typically performed at unphysically large light-quark
masses and thus χPT is used to extrapolate lattice data to the physical point; on the other
hand, lattice simulations allow one to compute matrix elements that can also be calculated
in χPT, and thus to determine the low-energy parameters of χPT from first principles.

2.1 The Electromagnetic and Scalar Form Factors of the Pion

The pion – the lightest bound-state in the spectrum of QCD – is best suited to perform a
matching between lattice QCD and χPT. The non-perturbative phenomena governing the
structure of hadrons is encoded in form factors depending on the momentum transfer Q2.
While the electromagnetic form factor of the pion provides information on the distribution
of its charged constituents, namely valence and sea light quarks, the scalar form factor of
the pion describes the coupling of the pion to the Higgs boson.

A comprehensive account of our study of the pion electromagnetic form factor has re-
cently been published3. Here, we briefly report on the most salient aspects of this work. En-
sembles generated by the CLS initiative with two dynamical flavours of non-perturbatively
O(a)-improved Wilson fermions were used. The computation was performed at three dif-
ferent values of the lattice spacing in the range 0.05 − 0.08 fm and pion masses between
280 and 630 MeV at mπ L ≥ 4. The use of partially twisted boundary conditions4, 5 has
allowed for a determination of the form factor with a very fine resolution of the momentum
dependence. Fig. 1 shows a comparison of our results from two ensembles, corresponding
to mπ = 325 MeV and 280 MeV, to determinations from other lattice collaborations and
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Figure 1. Compilation of results for the pion electromagnetic form factor in dynamical lattice QCD and as deter-
mined from experiment. Our measurements are labelled by the name on the ensembles, F6 and F7, corresponding
to mπ = 325 MeV and 280 MeV, respectively. We achieve a high density of points in the immediate vicinity of
Q2 = 0 thanks to the use of twisted boundary conditions.
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from experiment. The dense set of data points near vanishing momentum transfer allows

for a precise and model-independent determination of the pion’s charge radius 〈r2π〉 from

the slope of fππ(Q
2) at Q2 = 0.

In order to better constrain the mass and Q2-dependence of the pion form factor, it is

useful to perform simultaneous fits to the form factor, the pion decay constant and the pion

mass, based on the expressions of χPT. We then observe that χPT at next-to-leading-order

(NLO) fails to produce a consistent description of our lattice data for the entire set of pion

observables in the studied mass range mπ ≥ 280MeV. While individual fits to the pion

mass and the pion decay constant lead to a coherent picture, inconsistencies arise when

data for the form factor are included as well. By contrast, the NNLO expressions allow for

a fully consistent description of all three observables, at the current statistical precision.

The resulting estimate for the charge radius at the physical pion mass reads3

〈r2π〉 = 0.481(33)(13) fm2, (1)

the first error is statistical, while the second is an estimate of the total systematic uncer-

tainty. This estimate is in very good agreement with the result 〈r2π〉 = 0.452(11) fm2

quoted by the PDG6.

The correlation function relevant for the determination of the scalar form factor of the

pion receives contributions from quark-disconnected diagrams, which are notoriously dif-

ficult to evaluate with good statistical accuracy. Several techniques have been developed to

address this challenging computation. In our recent analysis7 we have employed stochas-

tic all-to-all propagators in combination with a hopping parameter expansion8, in order to

evaluate the disconnected contribution. Our findings indicate that the contribution from

disconnected diagrams is far from being negligible, particularly so, near the physical pion

mass. This is illustrated in Fig. 2 for the case of the pion scalar radius, which is related to
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Figure 2. The scalar radius of the pion plotted against the pion mass squared. Dark red points denote the results

obtained from the full (i.e. connected and disconnected) contributions, while yellow points represent the con-

nected contribution only. Labels denote the ensembles computed on JUQUEEN. We observe that the contribution

from disconnected diagrams is far from being negligible, particularly so, near the physical pion mass.
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the derivative of the form factor at Q2 = 0. After performing a chiral extrapolation to the
physical pion mass, based on χPT at NLO, we find

〈r2
π〉s = 0.637(23) fm2, (2)

where the error is statistical. We stress that this estimate is consistent with a phenomeno-
logical determination based on ππ scattering9, but only after including the disconnected
contribution.

2.2 Nucleon Structure

Lattice QCD has produced an impressive collection of phenomenologically relevant results
for masses and decay properties of hadrons. However, the picture for many hadron struc-
ture observables of the nucleon – such as the nucleon axial charge gA or the momentum
fraction 〈x〉u−d – is somewhat less satisfactory. Moreover, the Q2-dependence of iso-
vector electromagnetic form factors of the nucleon obtained in lattice calculations mostly
disagrees with the experimental findings10, 11. Furthermore, calculations of the nucleon ax-
ial charge, gA, tend to underestimate this quantity by typically 10− 15%. There is a broad
consensus that systematic effects are non-negligible for these quantities.

Among the common sources of systematic error are lattice artefacts and the influence
of finite-volume effects. An obvious question is whether the chiral behaviour is sufficiently
controlled in the calculations performed so far, or whether much smaller pion masses are
required in order to make contact with the experimental value. One major issue addressed
by our group12, 13 is the possible contamination of the ground state of correlation functions
by contributions from higher excited states. This is particularly problematic for baryon
correlation functions, since their bad signal-to-noise ratio does not allow for long Euclidean
time separations between the interpolating operators and local currents and densities. To
address this issue, our group has advocated the use of “summed operator insertions”14, in
which excited state contributions are parametrically more strongly suppressed compared
to the conventional ratios of correlation functions.

The construction of interpolating operators which maximise the overlap with the
ground state in correlation functions is crucial for any effort to address the issue of ex-
cited states contamination. Source smearing is widely used in order to create operators
with improved projection properties. The intuition behind this is that a hadron should be
best described by a state created by a spatially extended operator rather than a point-like
one, guided by the principle that the spatial profile of the extended operator resembles the
shape of the hadron in question. We have recently proposed new types of smearing which
allow to achieve a reduction in the noise-to-signal ratio in correlation functions at non-
zero momentum15 or to preserve the shape of the smearing function when performing the
continuum-limit extrapolation16.

Overall, significant progress in addressing the systematic effects present in the quanti-
ties related to baryon structure has been achieved over the last few years. In Fig. 3 the pion
mass dependence of gA obtained from summed insertions is compared to the conventional
method. The summation method clearly produces estimates in much better agreement with
experiment. A chiral extrapolation of our results to the physical pion mass yields13

gA = 1.223(63)(+35
−60) (3)
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Figure 3. Pion mass dependence of the axial charge gA obtained from summed insertions (upper panel) and the
conventional plateau method (lower panel). The blue and red band represent different model functions for the
chiral extrapolation. The left-most point denotes the experimental value.

the first error is statistical. This compares very well with the experimental determination
of gA = 1.2701(25)6. Our study has revealed that the agreement between experiment
and lattice data for gA can be substantially improved when excited state contributions are
properly taken into account.

3 Hadronic Contribution to the Anomalous Magnetic Moment of the
Muon

The magnetic moment of a charged lepton is extracted from the vertex function describing
the interaction between the lepton and a photon in the limit of vanishing photon momen-
tum. The corresponding anomalous magnetic moment al is then defined as half the differ-
ence between the gyromagnetic factor g and its classical value of 2, i. e. al = (gl−2)/2. In
the case of the electron, the quantity is dominated by QED contributions. The anomalous
magnetic moment mediates helicity flip transitions, which implies that quantum corrections
due to heavier particles of mass M , in the Standard Model or beyond, are proportional to
m2
l /M

2. For this reason the muon anomalous magnetic moment aµ is regarded as a sensi-
tive probe for effects of nearby New Physics. However, by the same argument, given that
mµ ≤ mπ , the hadronic contributions to aµ are larger and notoriously difficult to quantify.

While the experimental and theoretical estimates have both reached similar levels of
precision of 0.5 ppm, a tension by 2 or 3 standard deviations between theory and experi-
ment persists. Before invoking “new physics” as the reason for this tension the theoretical
result and, in particular, all contributions due to hadronic effects, must be corroborated.
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The uncertainty is dominated mainly by the leading order hadronic vacuum polarisation
contribution aHVP

µ and secondly by the hadronic light-by-light contributions. Currently
aHVP
µ is estimated via a phenomenological approach based on the evaluation of a disper-

sion integral. In the low-energy regime, the spectral function in the integrand must be
determined experimentally, either from the cross section e+e− → hadrons or from the
rate of hadronic τ -decays. Despite the different systematics, both methods produce results
in broad agreement, provided that isospin breaking effects are properly accounted for17.
None of them, however, reduces the discrepancy between theory and experiment on aµ.
A purely theoretical estimate of aHVP

µ from a first-principles approach is clearly desirable.
Our group has pursued a research programme18 aiming at an accurate determination of
aHVP
µ using lattice QCD.

In the lattice approach, the hadronic vacuum polarisation contribution to (g − 2)µ is
determined by a convolution integral

aHVP
µ = 4α2

∞∫
0

F (Q2)
(
Π(0)−Π(Q2)

)
dQ2 , (4)

where Π(Q2) is the vacuum polarisation function (VPF) computed on the lattice from
the Fourier transform of the current-current correlator. The kernel F (Q2) is a known ana-
lytic function, and α is the fine-structure constant. An important ingredient in our approach
is the use of partially twisted boundary condition, in order to enhance the Q2-resolution
near the origin. This is crucial for the determination of the additive contribution, Π(0),
which enters the convolution integral. Fig. 4 shows the VPF measured on an ensemble
with our lowest pion mass, mπ ≈ 190 MeV, satisfying L ≈ 4 fm. By comparing the Q2-
position and the number of red and blue data points, corresponding to periodic and twisted
boundary conditions, respectively, one clearly observes the advantages provided by the lat-
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Figure 4. Momentum dependence of the vacuum polarisation with periodic and twisted boundary conditions
shown for an ensemble with mπ ∼ 190 MeV, L ∼ 4 fm and a lattice spacing a = 0.063 fm. The different
momentum ranges have been separated by different colours.
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Figure 5. The subtracted vacuum polarisation Π̂(Q2) = Π(Q2)−Π(0) and the Adler function dΠ̂(Q2)/dQ2

using the recently proposed time-momentum method (coloured bands). The data shown in black were obtained
using the standard momentum-space method.

ter choice. This figure also indicates the importance of reaching the small Q2 regime and,
in particular, the left-most yellow region corresponding to Q2 ≤ m2

µ, where the integrand
in Eq. 4 is peaked. The right panel of Fig. 4 shows the relative contribution from data in
different Q2 intervals.

In order to obtain an accurate lattice estimate of aHVP
µ further attempts are necessary

to achieve good control of the low-Q2 region. We have recently tested19 an alternative
method20 based on the time-momentum representation of the vector-vector correlator, in
which Q2 is a tunable parameter. Preliminary results are shown in Fig. 5, where they are
compared to the standard method on the same ensembles. We expect that by combining
the two methods by which we have computed the VPF, a significant improvement in the
determination of aHVP

µ can eventually be achieved.

4 Conclusion

Lattice QCD calculations are increasingly important for the interpretation of experimental
results on hadron structure and for constraining the limits of the Standard Model. In this
contribution we have presented a status report of our ongoing projects aimed at determin-
ing hadronic form factors and the leading-order hadronic vacuum polarisation contribution
to the muon (g − 2) with high precision. Currently, efforts are still focused on controlling
various sources of systematic error, such as excited state contamination, contributions
from disconnected diagrams, or the uncertainty associated with the small-momentum
region. It is expected that the technical improvements discussed above will soon allow for
determinations of these quantities with the accuracy required for having a big impact on
phenomenological studies.
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