
 

Vacua with Small Flux Superpotential
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We describe a method for finding flux vacua of type IIB string theory in which the Gukov-Vafa-Witten
superpotential is exponentially small. We present an example with W0 ≈ 2 × 10−8 on an orientifold of a
Calabi-Yau hypersurface with ðh1;1; h2;1Þ ¼ ð2; 272Þ, at large complex structure and weak string coupling.
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Introduction.—To understand the nature of dark energy
in quantum gravity, one can study de Sitter solutions of
string theory. Kachru, Kallosh, Linde, and Trivedi (KKLT)
have argued that there exist de Sitter vacua in compacti-
fications on Calabi-Yau (CY) orientifolds of type IIB string
theory [1]. An essential component of the KKLT scenario is
a small vacuum value of the classical Gukov-Vafa-Witten
[2] flux superpotential,

W0 ≔
ffiffiffi
2

π

r �
eK=2

Z
X
G ∧ Ω

�
: ð1Þ

Here X is the CYorientifold, G is the three-form flux, Ω is
the (3,0) form on X, K is the Kähler potential for the
complex structure moduli and the axiodilaton, and the
brackets denote evaluation on the vacuum expectation
values of these moduli. The stabilized values of the
Kähler moduli are proportional to logðjW0j−1Þ, so control
of the α0 expansion is possible only if jW0j is very small.
String compactifications are characterized by discrete

data, including the topology of the internal space, and
quantized fluxes within it. The number of distinct choices is
vast, and although jW0j ≪ 1 is evidently not typical, strong
evidence for the existence of vacua with jW0j ≪ 1 comes
from the statistical treatment of [3–7], as reviewed in [8].
By approximating the integrally quantized fluxes by
continuous variables, one can compute the expected num-
ber of flux vacua with jW0j ≤ δ, for δ some chosen
threshold. This approach predicts that in an orientifold
with a sufficiently large value of the D3-brane charge
tadpole QD3 there should exist choices of flux giving vacua
with exponentially small jW0j.

We are not aware of any flaw in this statistical approach,
but one can nevertheless ask this: do there in fact exist
orientifolds and choices of flux giving vacua with
jW0j ≪ 1, as the statistical theory predicts? In this Letter
we answer this question in the affirmative.
In the next section, we present a general method

for constructing vacua with small W0 at large complex
structure (LCS) and weak string coupling, building on
[9,10]. Then we give an explicit example [11] where
W0 ≈ 2 × 10−8, in an orientifold of a Calabi-Yau hyper-
surface in CP½1;1;1;6;9�. In the third section, we show that our
result accords well with the statistical predictions of [4]. We
show in the following section that at least one complex
structure modulus in our example is as light as the Kähler
moduli. We explain why this feature occurs in our class of
solutions, and we comment on Kähler moduli stabilization
in our vacuum.
A landscape of weakly coupled flux vacua with small

W0.—Vacua with jW0j ≪ 1 are rare elements in a large
landscape. It is therefore impractical to exhibit vacua with
jW0j ≪ 1 by enumerating general vacua on a massive scale
and filtering out the desired ones. Instead one should
pursue algorithms that preferentially find fluxes that lead
to vacua with small jW0j.
One algorithm of this sort (for an approach via genetic

algorithms see [15]) [9,10] proceeds by finding quantized
fluxes that solve an approximate form of the F-term
equations, with the corresponding approximate superpo-
tential exactly vanishing, at some given point U⋆ in moduli
space. One then solves for nearby moduli values U ¼
U⋆ þ δU that solve the true F-term equations with the
same choice of fluxes. When the approximation made in the
first step is a good one, the true superpotential evaluated at
U ¼ U⋆ þ δU will be small.
We will construct a class of flux vacua along these lines.

The approximate superpotential is obtained by neglecting
nonperturbative corrections to the prepotential for the
complex structure moduli around the LCS locus in moduli
space (recent discussions of flux potentials near LCS
appear in [16–18]). Stabilization near LCS, where these
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nonperturbative terms are exponentially small, then yields
an exponentially small flux superpotential.
We consider an orientifold X of a Calabi-Yau threefold

with −QD3 units of D3-brane charge on seven-branes
and O3 planes. Let fAa; Bbg be a symplectic basis
for H3ðX;ZÞ, with Aa ∩ Ab ¼ 0, Aa ∩ Bb ¼ δba, and
Ba ∩ Bb ¼ 0. We use projective coordinates fUag on the
complex structure moduli space of dimension n≡ h2;1− , and
we work in a gauge in which U0 ¼ 1. Denoting the
prepotential by F and writing F a ¼ ∂UaF , we define
the period vector as

Π ¼
�R

Ba ΩR
Aa
Ω

�
¼

�
F a

Ua

�
: ð2Þ

The integer flux vectors F and H are similarly obtained
from the three-form field strengths F3 and H3 as

F ¼
�R

Ba F3R
Aa
F3

�
; H ¼

�R
Ba H3R
Aa
H3

�
: ð3Þ

Defining the symplectic matrix Σ ¼ ð 0
−I

I
0
Þ, the flux super-

potential and the Kähler potential are [19]

W ¼
ffiffiffi
2

π

r
ðF − τHÞT · Σ · Π; ð4Þ

K ¼ − logð−iΠ† · Σ · ΠÞ − logð−iðτ − τ̄ÞÞ: ð5Þ

The LCS expansion of the prepotential is F ðUÞ ¼
F pertðUÞ þ F instðUÞ [21] with the perturbative terms

F pertðUÞ ¼ −
1

3!
KabcUaUbUc þ 1

2
aabUaUb þ baUa þ ξ;

ð6Þ

and the instanton corrections

F instðUÞ ¼ 1

ð2πiÞ3
X
q⃗

Aq⃗e2πiq⃗·U⃗: ð7Þ

Here Kabc are the triple intersection numbers of the
mirror CY, aab and ba are rational, the sum runs
over the homology classes q⃗ of effective curves in
the mirror CY, with amplitudes Aq⃗ determined by
the corresponding Gromov-Witten invariants, and ξ ¼
−½ζð3Þχ�=½2ð2πiÞ3�, with χ the Euler number of the CY.
We write

W ¼ Wpert þWinst; ð8Þ

with Wpert the portion obtained by using F pertðUÞ in (4),
and Winst the correction from F instðUÞ. We call Wpert the

perturbative superpotential, and Winst the nonperturbative
correction, even though the full flux superpotential W is
classical in the type IIB theory.
The real parts of U⃗ are axionic fields that do not appear

in the perturbative Kähler potential, enjoying discrete
gauged shift symmetries U⃗ ↦ U⃗ þ ν⃗ with ν⃗ ∈ Zn.
Under such a shift, the period and flux vectors undergo
a monodromy transformation fΠ; F;Hg ↦ Mν⃗

∞fΠ; F;Hg
with the monodromy matrix Mν⃗

∞ ∈ Spð2nþ 2;ZÞ. For
generic choices of flux quanta, these discrete axionic shift
symmetries are spontaneously broken, realizing axion
monodromy [22–24]. A discrete shift symmetry remains
unbroken if and only if there exists a monodromy trans-
formation Mν⃗

∞ combined with an SLð2;ZÞ transformation
Tr∶ ðH;FÞ ↦ ðH;F þ rHÞ, r ∈ Z, that leaves the pair of
flux vectors invariant.
Consider a choice of fluxes and moduli values that

solves the F-flatness conditions, has an unbroken shift
symmetry, and has Wpert ¼ 0, all at the level of the
perturbative prepotential F pertðUÞ. We call such a configu-
ration a perturbatively flat vacuum. Here is a sufficient
condition for the existence of such a vacuum.
Lemma: Suppose there exists a pair ðM⃗; K⃗Þ ∈ Zn × Zn

satisfying − 1
2
M⃗ · K⃗ ≤ QD3 such that Nab ≡KabcMc is

invertible, and K⃗TN−1K⃗ ¼ 0, and p⃗≡ N−1K⃗ lies in the
Kähler cone of the mirror CY, and such that a · M⃗ and b⃗ · M⃗
are integer valued. Then there exists a choice of fluxes,
compatible with the tadpole bound set by QD3, for which
a perturbatively flat vacuum exists. The perturbative
F-flatness conditions obtained from (6) are then satisfied
along the one-dimensional locus U⃗ ¼ τp⃗ along whichWpert

vanishes.
To verify the Lemma, one considers the fluxes

F ¼ ðM⃗ · b⃗; M⃗T · a; 0; M⃗TÞ; H ¼ ð0; K⃗T; 0; 0Þ; ð9Þ

which can be shown to be the most general ones leading to
a perturbative superpotential Wpert that is homogeneous of
degree two in the nþ 1 moduli. The monodromy trans-
formation Mν⃗

∞ combined with an appropriate SLð2;ZÞ
transformation leaves (9) invariant, so a discrete shift
symmetry remains unbroken.
Because Wpert is homogeneous, there is a perturbatively

massless modulus corresponding to an overall rescaling of
the moduli. This modulus can be stabilized by the non-
perturbative terms in F . Given ðM⃗; K⃗Þ for which stabiliza-
tion of the rescaling mode occurs at weak coupling, Winst
will be exponentially small. One finds the effective super-
potential

WeffðτÞffiffiffiffiffiffiffiffi
2=π

p ¼ Ma∂aF inst ¼
X
q⃗

Aq⃗M⃗ · q⃗

ð2πiÞ2 e2πiτp⃗·q⃗; ð10Þ
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where we have chosen the axiodilaton τ as a coordinate
along the flat valley. As the inner product p⃗ · q⃗ need not be
integer, it is possible to find flux quanta such that τ can be
stabilized at weak coupling, by realizing a racetrack [25].
This works efficiently if the two most relevant instantons,
which we label as q⃗1 and q⃗2, satisfy p⃗ · q⃗1 ≈ p⃗ · q⃗2.
An example.—We now illustrate our method in an

explicit example, with n ¼ 2. We consider the degree 18
hypersurface in weighted projective space CP½1;1;1;6;9�
studied in [30]. This is a CY with 272 complex structure
moduli, but as explained in [9], it is useful to study a
particular locus in moduli space where the CY becomes
invariant under a G ¼ Z6 × Z18 discrete symmetry. (If we
were to orbifold by this symmetry group and resolve the
singularities we would obtain the mirror CY [31]. We will
not proceed in this direction, but instead stay with the
original CY.) By turning on only flux quanta invariant
under G, we are guaranteed to find solutions of the full set
of F-term equations, by solving only those corresponding
to the directions tangent to the invariant subspace.
Conveniently, the periods in these directions are identical
to the periods of the mirror CY, and are obtained from an
effective two-moduli prepotential as in (6) with the data

K111 ¼ 9; K112 ¼ 3; K122 ¼ 1;

a ¼ 1

2

�
9 3

3 0

�
; b⃗ ¼ 1

4

�
17

6

�
: ð11Þ

The instanton corrections take the form [30]

ð2πiÞ3F inst ¼ F 1 þ F 2 þ � � � ; ð12Þ

F 1 ¼ −540q1 − 3q2; ð13Þ

F 2 ¼ −
1215

2
q21 þ 1080q1q2 þ

45

8
q22; ð14Þ

where qi ¼ expð2πiUiÞ with i ∈ f1; 2g. Note the Oð10−2Þ
hierarchy in the coefficients of the one-instanton terms.
We consider an orientifold involution described in [32],
with two O7-planes, each with four D7-branes, and in
which we find QD3 ¼ 138. The D7-brane tadpole cancels
automatically.
We will now use the Lemma to find a pair ðM⃗; K⃗Þ ∈

Z2 × Z2 yielding a perturbatively flat vacuum. Using (11),
the condition K⃗TN−1K⃗ ¼ 0 becomes

M1 ¼
M2K2ð2K1 − 3K2Þ

ðK1 − 3K2Þ2
; ð15Þ

and the flat direction is given by

U⃗ ¼ τ

�
p1

p2

�
¼ τðK1 − 3K2Þ

M2

�−K2=K1

1

�
: ð16Þ

Once the nonperturbative corrections (12) are included, the
effective superpotential along the flat direction reads

WeffðτÞ ¼ cðe2πip1τ þ Ae2πip2τÞ þ � � � ; ð17Þ

where c and A depend on the pair ðM⃗; K⃗Þ, but not on τ.
A racetrack potential is realized when the two terms
in (17) are of comparable magnitude, which requires
jp1 − p2j ≪ p2. We are thus looking for M⃗ and K⃗
obeying (15) for which Qflux

D3 ≡ − 1
2
M⃗ · K⃗ ≤ 138 and

jK1 þ K2j ≪ jK2j. A suitable choice is

M⃗ ¼
�−16

50

�
; K⃗ ¼

�
3

−4

�
; ð18Þ

which gives Qflux
D3 ¼ 124, A ¼ −ð5=288Þ, and c ¼

−
ffiffiffiffiffiffiffiffiffiffiffiffið2=πÞp ½8640=ð2πiÞ3�. The resulting racetrack potential

is depicted in Fig. 1. The moduli are stabilized at

hτi ¼ 6.856i; hU1i ¼ 2.742i; hU2i ¼ 2.057i; ð19Þ

and we find

jW0j ¼ 2.037 × 10−8: ð20Þ

The instanton expansion is under excellent control: the two-
instanton terms (14) are a factor Oð10−5Þ smaller than the
one-instanton terms (13), and the three-instanton terms are
smaller by a further factor Oð10−5Þ.
Statistics of small W0.—A systematic understanding of

statistical predictions of the flux landscape was developed
in [3–7], in part by approximating the integer fluxes by
continuous variables. Let us compare our result (20) with
the statistical prediction for the smallest possibleW0 in our
orientifold.
We write N ðλ�; QD3Þ for the expected number of vacua

with D3-brane charge in fluxes less than QD3 and with
jW0j2 ≤ λ� ≪ 1. According to [4], N ðλ�; QD3Þ is given for
n ¼ 2 by

FIG. 1. The scalar potential on the positive Imτ axis.
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N ðλ�; QD3Þ ¼
2π4ð2QD3Þ5

5!
λ�

Z
M

⋆e2KF abcF̄ abc; ð21Þ

where M is the axiodilaton and complex structure moduli
space, ⋆ is the Hodge star on M, and F abc ≡ ∂3

abcF .
Taking QD3 ¼ 138 and numerically integrating over the
LCS region 1 < ImðUÞ, we find that N ðλ�; 138Þ < 1 forffiffiffiffiffi
λ�

p ≲ 6 × 10−7. The prediction of [4] is thus that the
smallest value of jW0j expected to exist is of order
6 × 10−7, which agrees reasonably well with (20).
Toward stabilizing all moduli.—Thus far we have found

a class of no-scale vacua in which the complex structure
moduli and axiodilaton F-terms vanish, and W0 is expo-
nentially small. To achieve stabilization of the Kähler
moduli from this promising starting point, two issues must
be addressed: the masses of the complex structure moduli
and axiodilaton, and the nonperturbative superpotential for
the Kähler moduli.
For the example of the second section, we have com-

puted the mass matrix along theG-symmetric locus. Two of
the moduli are heavy, but the third, corresponding to
the perturbatively flat direction τ, has a mass proportional
to jW0j. We are not aware of a reason why any of the
G-breaking combinations should be comparably light, but
checking this directly will be important, and rather chal-
lenging. Assuming that the G-breaking moduli are indeed
heavy, the low energy theory describing Kähler moduli
stabilization will include τ and the Kähler moduli T1, T2.
Provided that the configuration of seven-branes (with

vanishing D7-brane tadpole) wraps divisors that are either
rigid [33], or else are rigidified by the introduction of
fluxes [34–36], we expect a nonperturbative superpotential
of the form

Weffðτ; T1; T2Þ ¼ cðe2πi25τ þ Ae2πi
3
10
τÞ

þ Be−
2π
c1
T1 þ Ce−

2π
c2
T2 : ð22Þ

Here A and c are known coefficients, cf. (17), c1 and c2 are
the dual Coxeter numbers of the confining seven-brane
gauge groups, and ReðTiÞ are the volumes of the corre-
sponding divisors.
The unbroken discrete shift symmetry implies that the

Pfaffian prefactors B and C can be expanded in appropriate
powers of e2πiτ. Provided that there exists an interpolation
to a weakly curved type IIA description, these powers
should be nonnegative, because the objects that break
the continuous shift symmetry to a discrete one are type
IIB D(-1)-brane instantons, and worldsheet instantons of
the type IIA mirror, which are negligible at small string
coupling and large complex structure. By neglecting the
exponentially small corrections, one should then be able
to treat B and C as constants. Verifying this directly would
be informative.

To exhibit vacua with all moduli stabilized in this setting,
one should establish (22) and compute B and C for a seven-
brane configuration in which c1 and c2 are sufficiently large
to ensure control of the α0 expansion. This worthy goal is
beyond the scope of the present work.
Conclusions.—We have described a method for con-

structing flux vacua with exponentially small Gukov-
Vafa-Witten superpotential in compactifications of type
IIB string theory on Calabi-Yau orientifolds, at weak string
coupling and large complex structure. The first step is to
neglect nonperturbative terms in the prepotential expanded
around large complex structure, and find quantized fluxes
that at this level yield vanishing F-terms and vanishing
superpotential along a flat direction in the complex struc-
ture and axiodilaton moduli space. We provided simple and
constructive sufficient conditions for the existence of such
solutions, and we determined the flat direction analytically,
vastly simplifying the search for vacua. Upon restoring the
nonperturbative corrections, one can find full solutions in
which the flat direction is lifted, although it remains
anomalously light, and the flux superpotential is exponen-
tially small.
We gave an explicit example with jW0j ≈ 2 × 10−8 in an

orientifold of the Calabi-Yau hypersurface in CP½1;1;1;6;9�.
This value of jW0j accords well with the statistical expect-
ation derived from the work of Denef and Douglas [4].
Stabilizing the Kähler moduli in this class of vacua, and
then pursuing more explicit de Sitter solutions, are impor-
tant tasks for the future.
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