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Abstract
Both quantummechanics and general relativity are based on principles that defy our daily intuitions,
such as time dilation, quantum interference and entanglement. Because the regimeswhere the two
theories are typically tested are widely separated, their foundational principles are rarely jointly
studied. Recent works have found that novel phenomena appear for quantumparticles with an
internal structure in the presence of time dilation, which can take place at low energies and inweak
gravitational fields.Here we briefly review the effects of time dilation on quantum interference and
generalize the results to a variety of systems. In addition, we provide an extended study of the basic
principles of quantum theory and relativity that are of relevance for the effects and also address several
questions that have been raised, such as the description in different reference frames, the role of the
equivalence principle and the effective irreversibility of the decoherence. Themanuscript clarifies
some of the counterintuitive aspects arisingwhen quantumphenomena and general relativistic effects
are jointly considered.

1. Introduction

The interplay between quantum theory and general relativity offersmany exciting and novel phenomena. The
typical frameworks inwhich such an interplay is studied are quantum field theory in curved background or
quantumgravity theories. Such frameworks are suited to describe high-energy phenomena,most of which lie far
beyond near-future technological possibilities.

A series of recent works [1–3] has shown that, even at low energies and in the absence of quantum field
effects, new phenomena can arise from the combination of quantummechanical and relativistic effects. It was
shown that time dilation causes entanglement between the center ofmass of a quantumparticle and its internal
degrees of freedom. This effect takes place due to relativistic corrections to the dynamics of quantum systems,
and has consequences for quantum interference of composite systems. The time dilation produced by Earth’s
gravity is sufficient to have ameasurable influence on quantum interference in near-future experiments.

Here we give an overview of the findings, derive the effect for various systems and scenarios, and discuss the
relevant physical concepts.While the phenomena can be described in a quantumfield theory setting (see, e.g.,
appendix of [3]), a convenient theoretical framework for these phenomena is the quantumdynamics infirst
quantizationwith relativistic corrections. It highlights the relevant interplay between quantummechanical and
relativistic principles, which is not as apparent in the context of themore commonly studied relativistic
quantumfield theory. For this reason, several questions have been put forward regarding the predicted effects in
ourworks [4–6], and the context inwhich these effects can appear. In addition, in contrast to ourworks, the low-
energy limit of the interplay between quantum theory and gravity is often studied in the context ofmodified
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quantum theories, which include a collapse of thewave function [7, 8] or nonlinear quantumdynamics [9], and
which aremotivated by a fundamental transition to classicality.While we showed that time dilation can cause
decoherence [3], ourworks do not fall into this class ofmodels. In thismanuscript we also provide an extended
study of the relevant physical concepts that are pertinent to the results, and address the various questions. In the
following, we give an overview of the issues addressed and the novel aspects that are discussed in thismanuscript.

1.1.Overview of thismanuscript
Time dilation in quantum interferometry has been the subject of a series of recent studies [1–3]. Relatedworks
and follow-up studies are summarized in section 1.2. In section 2we review the basic principles and results of [1–
3]: the basis of probing time dilationwith classical and localized systems is reviewed in section 2.1, a summary of
theHamiltonian description of time dilation to lowest non-vanishing order is given in section 2.2, and a
derivation of the general effect of time dilation on quantum interference is given in section 2.3.We discuss a
variety of specific systems in section 3, generalizing the results from [1] to two-level systems in arbitrary initial
states in section 3.1 and generalizing the results from [3] to arbitrarymixed states in section 3.2. A number of
conceptual issues are studied in the following sections, which also address raised questions [4–6] (specific replies
can be found in the arxiv version of this paper [arXiv:1508.03296] and in [10]). The description of the results in
different reference frames is studied in section 4, the compatibility of the framework and results with basic
principles of relativity, quantum theory and gravity is addressed in section 5, and the behavior of time dilation
decoherence is discussed in section 6.

In particular, we clarify the reference frame independence in section 4, wherewe show that physically
observable effects, such as fringes in an interference experiment, do not depend on the reference frame used to
describe them. In section 4.1we consider the example of a free-falling particle that is described by a free-falling
and an accelerated observer.We further showhowobservers in relativemotion use different descriptions for the
same physical situation: in section 4.2we study the coordinate dependence of theHamiltonian and in section 4.3
we discuss howdifferent observers can assign different amounts of entanglement to the same system. The
equivalence principle, one of themain cornerstones of general relativity, is discussed in the context of the results
in section 5.1, showing that it is always satisfied in the studied framework. The role of gravity is discussed in
section 5.2.We elucidate in section 5.3 towhat extent afirst-quantized formalism is suitable to describe
relativistic phenomena that do not involve quantum-field effects.We clarify in subsection 5.4 that there is no
mass superselection rule for the physical regime under consideration, which is relativistic and thus not invariant
underGalilean transformations. The behavior and nature of decoherence due to time dilation is discussed in
section 6: the transition from reversible to practically irreversible loss of coherence is discussed in section 6.1 and
in section 6.2we discuss how the effective Gaussian decay arises. In the following sections, we briefly discuss in
what sense the effect is universal (6.3), the relation between decoherence and classicality (6.4) and the difference
to gravitational collapsemodels (6.5).

1.2. Summary of related studies
In recent years, a number ofmanuscripts have explored various aspects of time dilation in quantum
interferometry. Starting in 2011, the effect of time dilation onmatter-wave interferometry with internal clocks
wasfirst considered in [1], which generalized the classical ‘twin paradox’ to a quantum setting that involves
superpositions. A similar scenariowas also studied in [11]. Bothworks also addressed the discussion about the
interpretation of an experiment with atomic fountains [12], namelywhether theCompton frequency can be
associatedwith a physical clock in quantum interferometry [13–17], and showed that this cannot be the case as it
would lead to an additional observable effect on the interferometric visibility.While the time dilation analysis
used formassive particles does not directly apply to the propagation of light, the generalization of [1] to optical
interferometry was studied in [2, 18], where the Shapiro delay of a single photon can lead to a phase shift or loss
of visibility in a quantumoptical interferometer. This effect is considered for potential exploration in future
spacemissions [19, 20], as well as infiber optics based interferometry [21]. Focusing on the evolution of the
internal degrees of freedom, the fundamental limits on the stability of clocks due to the time dilation induced
entanglement between internal and external degrees of freedomwere discussed in [22]. All these effects on
quantum systems stem from the relativistic coupling between internal and external degrees of freedomdue to
time dilation, whichwas further studied in [23–25].

The effect described in [1] for a two-level systemwas recently experimentally simulatedwith a BEC [26]. In
this experiment, a Stern–Gerlach typematter-wave interferometer on an atom chipwas utilized, and an external
inhomogeneousmagnetic fieldwas applied to simulate the effect of time dilation on the spin precession of the
system. The results confirmed the predictions in [1] and opened away to study self-interfering clocks in the
laboratory. A newpathway for experiments to probe the time dilation induced effect was studied in [27], which
proposed to use a single electron in a Penning trap that is in superposition of different radial states. The time
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dilation in this case is special relativistic, due to the non-inertialmotion of the electron. A similar scenario
including a rotating platformwas described in [28].

In our recent work, we have studied how time dilation can lead to decoherence of composite quantum
systems [3]. Some concepts related to the effect were discussed in [4–6, 10, 29], and some questions therein are
addressed in thismanuscript. The decoherence effect was further analyzed in [30], where it was compared to
collisional decoherence and it was shown that revivals occur, albeit at very long time scales. The comparison to
other decoherence sources was also studied in [31], showing that theymask time dilation induced decoherence
in interference of hot systemswith present day experimental capabilities. The time scale associatedwith the
decoherencewas also considered in [32], where the authors also explicitly show that the effect does not directly
depend on external potentials.While our work focused on afixed background space–time fromEarth’s
gravitational field, [33] generalized the decoherence effect to space–times created by the system itself and a
scenario that involves only gravitational interactions. In [34, 35] it was shown that clocks entangle with each
other due to the backaction of their internal energies onto the space–time, which leads to a fundamental limit of
their ability tomeasure time. A decoherencemechanism similar to decoherence due to time dilationwas
considered in [36], which studied loss of interference in a free-falling scenario due to different arrival times of
amplitudes with differentmass. Like time dilation induced decoherence, this effect can take place due to the
mass-energy equivalence, but these two decoherencemechanisms are not the same. The time dilation induced
entanglement and decoherence in a free-falling scenariowas studied in [24], where also the difference to
Newtonian effects was highlighted.

Related to the study of time dilation in quantum interferometry, recent works considered the equivalence
principle in the context of themass-energy equivalence that includes quantum superpositions of internal
energies. This has led to the characterization of genuinely quantummechanical violations of the equivalence
principle [37], and studies of how the new violation parameters can be tested in dedicated experiments [38].

2. Review of the effect of time dilation on quantum systems

2.1. Time dilation in classical and quantum systems
In relativity theory, the physical timemeasured by clocks is the proper time τ. In contrast toNewtonian
mechanics, the proper time depends on the velocity of the clock, as well as the background space–time along the
world line γ of the clock:

( )òt = -
g

mn

n m
t g

x

t

x

t c
d

d

d

d

d

1
, 1

2

where =t x0 is some arbitrary coordinate time that parameterizes the clockʼs world line and mng is themetric
tensor expressed in the chosen systemof coordinates mx . A classic direct test of this predictionwas performed by
Hafele andKeating [39], using initially synchronized clocks thatwere sent on different world lines g1 (on an
airplane) and g2 (on the ground), causing the clocks to record different proper times t1 and t2. The results
confirmed the relativistic predictions for the velocity-dependent and gravitational contributions to the elapsed
time as recorded by the different sets of clocks [40].

According to relativity, all clocks record the proper time and thus time dilation is universal in that it affects
any clock in the sameway, regardless of its internal composition or internalmechanisms. The experiment by
Hafele andKeating used atomic clocks that are described by quantummechanics. Atomic clocks operate by
preparing a superposition of internal states, such as a superposition of the ground and a single excited state:
∣ ( ) (∣ ∣ )y ñ = ñ + ñg e0 1

2
. This state will evolve in time, as it is not an eigenstate of the internalHamiltonian,

whichwe denote byH0. In the co-moving frame of such a clock that follows afixedworld line, the internal
atomic state ∣ yñ thus evolves according to

∣ ( ) ∣ ( ) ( )y t yñ = ñt-e 0 , 2Hi 0

where τ is the proper time along theworld line γ of this clock. Experiments such as the one byHafele and
Keating, or themore recent one byChou et al [41], confirm that the internal evolution of atoms is governed by
proper time as in equation (2), and as predicted by relativity. Butwhile quantumphysics is necessary to describe
the atomic clocks, the external path that governs τ is classically well defined in all such experiments.

However, the possibility to prepare quantum states of external degrees of freedomopens the route for novel
phenomena, as shown in a series of recent works [1–3].When the clock can followdifferent world lines in
superposition, time dilation causes entanglement between the center ofmass of a quantumparticle and its
internal degrees of freedom. Conceptually, this follows directly from the above considerations: the internal
dynamicsmakes the internal state evolve to ∣ ( )y t ñ, where τ is the proper time along the path of the particle. If
the particle follows two different world lines g1 and g2 in superposition, as for example in a quantum
interferometric experiment, the final state that describes both the internal and external degrees of freedom is
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The resulting state is thus an entangled state between the internal degrees of freedom and the state of the center
ofmass. Such a state is conceptually different thanwhat has been probed so far in the context of time dilation,
captured by equation (2). Here, two independent amplitudes of one and the same system are superposed that
evolve according to different proper times. The linearity of quantummechanics together with time dilation,
assuming that both are valid in this regime, give rise to an entangled state. This entanglement and itsmeasurable
consequences have been discussed in the context ofmatter-waves [1, 11], photons [2, 18] and purely
gravitational interactions [31]. An important consequence is that this effect leads to decoherence of the particle’s
motional degrees of freedom, if the internal degrees of freedom constitute a sufficiently large ‘bath’ [3].

2.2.Hamiltonian describing time dilation
A system acting as an ‘ideal clock’ is a point-like systemwith some internal dynamics thatmeasures the passage
of time. Let Lrest be the Lagrangian describing the internal dynamics in the comoving frame. The action of the
ideal clock is then given by

( )ò t=S L d , 4rest

where td is the proper time element and the integral is taken over theworld line of the particle. In classical
physics this is a single world line, while in quantumphysics the clock can follow several world lines in
superposition. The expression for proper time for a post-Newtonianmetric to lowest order in c1 2 is given by

( ) ( )t = - » +
F

-mn
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where t, x and v=dx/dt are, respectively, the coordinate time, position and velocity of the system and ( )F x is
the gravitational potential. For time dilation it is sufficient to consider the external dynamics as fixed and that the
world lines are pre-assigned: the internal dynamics evolves according to theworld line’s proper time according
to equation (2). In a general scenario, the evolution of the external degrees of freedom (i.e. the position of the
particle) is not pre-assigned and has to be treated dynamically. A useful approach is to derive the classical
Hamiltonian corresponding to (4) by a Legendre transformation. TheHamiltonian represents only the
generator of time translation for a specific coordinate time, thus general covariance is less transparent in the
Hamiltonian formulation.However, covariance is guaranteed in the observed effects, as the final results will
always depend on a combination of coordinates that just represent proper time, as can be verified by computing
specific scenarios in different coordinates (see below). Using themetric (5), theHamiltonian corresponding to
(4) is

( ) ( )= + +
F

-
⎛
⎝⎜

⎞
⎠⎟H H H

x

c

p

m c
1

2
, 6ext 0 2

2

2 2

whereH0 and Hext are the internal and external Hamiltonians, respectively, andwe have separated the constant
mass contributionmc2 fromH0 (see also [3], methods). For a free particle, ( )= + + FH mc p m m x2ext

2 2 plus
relativistic corrections. Any additional external forces and potentialsV(x) acting on the system, such as those
required to keep it at some height on Earth or to perform an interferometric experiment, will contribute to Hext

in (6). The additional terms that coupleH0 to x and p are responsible for time dilation and are just a
reformulation of equation (5). TheHamiltonian (6) simply reproduces the effect of time dilation and captures its
parametrization in given coordinates, in particular, its dependence on the position and velocity. Thus, for
classical particles, Hamiltonian (6) captures some of the best-tested effects inmodern physics. The couplingwith

momentum,-H
p

m c0 2

2

2 2 , is simply the velocity-dependent special relativistic time dilation, while the coupling

with position, ( )FH x

c0 2 , is the gravitational redshift. Describing the dynamics on afixed background space–time
in terms of aHamiltonian is standard procedure and higher order relativistic corrections can also be obtained
within a consistent framework [42].

TheHamiltonian treatment allows one to directly study howquantum systems behave in the presence of
time dilation, by considering the canonically quantized dynamics. Note that both, time dilation and the
superposition principle are implicitly built into the formalism and they have been extensively studied
independently: in all classical tests of time dilation, the external degrees of freedom x and p that appear in (6)
were classical, even though the internal degrees of freedom governed byH0 were quantized. In quantum
interferometry, the quantumnature of the external degrees of freedom x and p is probed, but time dilation is not
considered and the observed gravitational effects could be explained byNewtonian gravity. The combination of
these two has not been tested yet, and provides a scenariowhere the quantumdynamics in the presence of post-
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Newtonian effects can be probed. In particular, time dilation acting on the clocks can result in the entanglement
with the clocks’motional degrees of freedom, a purely quantummechanical effect. Using standard techniques to
integrate out the internal degrees of freedom, one obtains the equation ofmotion for the particle’s center of
mass, described by amaster equation, equation (22) below (derived in [3]). In general, this equation predicts the
loss of coherence of particles in superposition along different world lines.

2.3.Quantum interference in the presence of time dilation
A clockwill be affected by time dilation as described by equation (6). The quantum effect is the entanglement
between the internal states of the clock and the external degrees of freedom. This in turn affects the coherence of
the quantum superposition of the external degrees of freedom. The simplest example is a two-way
interferometer, where the system is split into superposition of twoworld lines, and the interference of the
particle ismeasured after recombining the two paths, as schematically depicted inthe space-time diagram in
figure 1. The interferometric visibility is a physicalmeasure of the coherence of the system, given by the off-
diagonal elements of the state of interest. This can be computed directly from equation (3), taking the trace over
the internal degrees of freedom (denoted by the subscript 0): ∣ ∣ [ ]∣ ∣g r g= á ñV 2 Tr1 0 2 , where g1 and g2 are the
two pre-assignedworld lines that the system follows in superposition.With tD being the total proper time
difference between the twoworld lines and r0 the initial state of the internal degrees of freedom, the visibility is

∣ [ ]∣ ( )r= t- DV Tr e . 7H
0

i 0

The above expression has a fewnoteworthy features. It is coordinate invariant, since proper time and the internal
HamiltonianH0 (defined as theHamiltonian in the rest frame of the system) are invariant. The internal
Hamiltonian can be arbitrary, which reflects the universality of time dilation. The internal state r0 is arbitrary,
whichmeans that the visibility is affected by internal pure states, as discussed in [1], as well as internalmixed
states, as in [3]. The visibility is unaffected if either tD = 0, such that the twoworld lines have the same proper
time, or if ∣ ∣r = ñáE E0 0 0 , i.e. the system is in an eigenstate of the internalHamiltonianH0, such that there is no
clock.Wewill discuss these features inmore detail below and in a few concrete examples.

3. Time dilation in quantum interferometry for specific systems

Wewill now consider a few concrete examples to highlight how the interference visibility of various systems is
affected in the presence of time dilation.

3.1. Internal two-level system
The simplest system affected by time dilation is a two-level systemprepared in a coherent superposition of its
internal states, as discussed in [1]. The internal state is thus ∣ ( ) (∣ ∣ )y ñ = ñ + ñ0 1 21

2
, as above, and the

Hamiltonian is ∣ ∣ ∣ ∣= ñá + ñáH E E1 1 2 20 1 2 , withD = -E E E2 1. Note that expression (7) can be rewritten as

Figure 1.World lines of a two-way interferometer. The particle is split at laboratory time t=0 to follow two paths in superposition,
which are recombined again at =t tf to observe interference. If the two paths have different proper times τ, and if the particle has
internal degrees of freedom that are not in their energy eigenstate, its quantum interference ismodulated by the envelope given in
equation (7).
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where the subscript 2 stands for the two-level system. For the simple example of the systemʼs center ofmass
being stationary but in a superposition of two different heights x1 and x2, we have ( ( ) ( ))tD = F - Fx x t c2 1

2 to
lowest order in -c 2, where t is the laboratory time and ( )F x is the gravitational potential at height x. As the
proper time difference depends only on the difference in gravitational potential, it persists even in the limit of a
homogeneous gravitational field, a well-known result for the gravitational redshift. Thus to lowest order, the
visibility is simply ∣ ( ( ))∣» D DV Etg x ccos 2 2 , as in [1]. In a recent experiment, the above predictions have
been simulated in a BEC interference setup in the presence of inhomogeneousmagnetic fields [26].

For amixed internal state, the visibility is affected by time dilation as well. A generic state of a 2-level system
is ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣*r = ñá + ñá + ñá + ñáp p c c1 1 2 2 1 2 2 10 1 2 , with = -p p12 1. In this case, we have

( ) ( )á ñ = + -H p E p E1 11k k k
0 1 1 1 2

and the interferometric visibility becomes
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E
1 4 1 sin

2
. 122 1 1

2

For amixed state with = =p p 1 21 2 , equation (12) reduces exactly to equation (10), whichwas obtained for an
internal coherent superposition. Thus internal coherence is not required for themodulation of the visibility.
However, if the state is in a pure energy eigenstate ( =p 11 or =p 12 ), the visibility remains alwaysV=1 and
the interference is not affected by time dilation. In the intermediate case, the visibility will periodically drop to

= -V p1 2min 1 at ( ) ¯t pD D = +E k h2 1 for Îk 0, and revive to =V 1max at ¯t pD D =E kh2 . The behavior
of the visibility for a single two-level internal degree of freedom is illustrated infigure 2(a).

3.2.N internal degrees of freedomwith arbitrary levels
The results above can be readily generalized to arbitrarymany internal degrees of freedom each having arbitrary
internal levels. For the systems of interest, allN internal degrees of freedom follow the sameworld-lines, namely
the one of the center ofmass, and their spatial extension ismuch smaller than the size overwhich themetric field
considerably changes (such that it still acts as an ideal probe). If theseN internal systems are initially
uncorrelated, we have r r=  =

Ä
j

N
j0 1 . Each internal system can be in a generalmixed state

∣ ∣ ( )( ) ( ) ( )år = ñ á
=

p k k , 13j
i

n

i
j j j

1

where the superscript j denotes theHilbert space of the jth internal state, ∣ ( )ñk j is the energy eigenbasis with
eigenvalues ( )Ek

j andwhere ( )pi
j are the populations for the respective energy levels. Note thatwe neglect internal

coherence, as this is not relevant for the effect as illustrated above. Also, for simplicity we assumed allN internal
degrees of freedom to have the same number of levels n, which in general does not need to be the case. Using
these initial states to compute á ñH k

0 in equation (8) yields

( )( ) ( ) ( )  å= t

= =

- DV p e , 14n
N

j

N

k

n

k
j E

1 1

i k
j

whereVhas now the subscript n that stands for the number of internal levels and the superscriptN that stands
for the number of internal degrees of freedom.WhileV2 for the 2-level system showed a simple periodic
reduction and revival of interference, the case considered here gives rise tomore complicated behavior that
depends on the level structure of the various internal components. For sufficientlymany internal states, the
visibility will initially drop and effectively diminishwithout revival at reasonable times (see also discussion in
section 6.1). The visibility for various systems as described by equation (14) is shown infigure 2.

Formany internal levels we can approximate them to be continuously distributed. If allN states have the
same spectrum and are in a thermal state, the initial state is
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where b = k T1 B with the Boltzmann constant kB and temperatureT. In this case, the visibility (7) becomes
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2 , which is satisfied for the small proper time differences on Earth even for

macroscopic systems, the above expression is approximately ( ) ( )
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same result for the visibility was also derived in [3, 28] for the case ofN internal harmonic oscillators.More
generally, in the limit of small proper time differences, we can directly Taylor expand equation (7)which yields
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whereD = á ñ - á ñE H H2
0
2

0
2 is the variance in internal energy. This expression is valid for tD DE 1, but

holds for arbitrary internal states. This was one of the examples discussed in [3]. For the simple example of a
particle (withmany internal degrees of freedom) being stationary but in a superposition of two different heights
x1 and x2, the loss of visibility is governed by aGaussian decaywith a characteristic decoherence time

( )
t »

D DFE

c2
, 18dec

2

where ( ) ( )DF = F - Fx x2 1 is the difference in gravitational potentials between the two heights, which in the
homogeneous limit becomesDF = Dg x, with g the gravitational acceleration on Earth. Note that the internal
energy varianceDE is for thermal states directly proportional to the heat capacity asD =E T k CVB . Using the

Figure 2.The interferometeric visibility in the presence of time dilation for a variety of systems. (a)A single 2-level system for various
occupation numbers, as given by equation (10). (b)A single n-level systemwith equidistant and equally populated levels for various n.
(c)A single 10-level systemwith a randomdistribution of levels. (d) 5 internal degrees of freedom,with an equal but random
distribution of ten internal levels. For sufficientlymany internal systems, no revival occurs for all practical purposes and the loss of
coherence is governed by equation (18).
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three-dimensional Einsteinmodel to get a simple dependence on the amount of internal degrees of freedomN
givesD =E N k TB . Othermodels for the internal energywere discussed in [31].

In thismanuscript, we do not discuss the experimental feasibility of probing the effect for any of the systems
considered above. Experimental verification of the above predictions, as well as experimental exploration of this
novel regime of quantum theory and relativity are highly desirable.We note that probing the decoherence for a
large thermal system remains very challenging [31], while the effect for smaller systemswith controlled internal
degrees of freedom seems feasible in near-future experiments [1, 27, 28, 43]. Studies of well-suited systems and
specifically designed experimental efforts will help towards experimental realization.

4. Reference frame independence

While entanglement between quantumdegrees of freedom ismost conveniently studied in aHilbert space
formulation of quantummechanics, such a formulation is notmanifestly covariant. The relativistic invariance
of the predicted resultsmay thus not be immediately transparent, which hasmotivated some concerns [4, 6].
Herewe clarify that the coherence of a system is an observable quantity with a physicalmeaningwithin an
experimental setup (for example, bymeasuring the visibility in aMach–Zehnder interferometer). For any
specified experiment, the observed coherencewill not depend on the reference frame, as guaranteed by the
coordinate invariance of action (4) fromwhich the effect is derived. For the case of two superposedworld lines,
decoherence only depends on the proper time difference between them, equation (7), which is independent of
the reference frame used to estimate it. The initial and final points of eachworld line have to be specified tomake
anymeaningful statement about the total proper time. Decoherence does not depend on the reference frame but
on the proper time difference between the amplitudes. Estimating the decoherence for various physical
scenarios thus reduces to an exercise in classical relativity, computing the proper times along each
interferometric path.

4.1. Example of a particle in free fall
Typically, coherence ismeasured in interferometric experiments, inwhich thewave packets have to be
overlapped on, say, a beam-splitter. This case is the one considered in [1–3], where the superposed paths have
common initial andfinal points (whichmay correspond to the first and second beam-splitter, or the source and
detection points on a screen in a double-slit experiment). The outcomes do not depend on the choice of
reference frame to describe the experiments, as is apparent from equation (7) (see also [24]). Onemay however
also consider superimposedworld-lines that do notmeet on afinal beam splitter. The coherence in such a
scenario is not directlymeasurable as interference of thewave packets but it can be given a physicalmeaning in
principle, for example by letting the beams interact with ancillary systems in the chosen space–time points and
later performing appropriatemeasurements on the ancillae. Although less relevant for potential experiments, it
can be instructive to study how such scenarios are described in different reference frames.

Decoherence depends only on the overall time dilation between the superposed amplitudes. One can
consider an experiment performed in a uniformly accelerated laboratory, but with the particle in free fall in
superposition of different amplitudes (as in [4]). For simplicity, we consider here a laboratory accelerating inflat
space–time, instead of onefixed above Earth (the results coincide to leading order, in accordancewith the
equivalence principle). A particle is prepared at time t=0 in superposition of two different heights, x1 and x2.
We assume that the spread of eachwavepacket around each point is negligible and that no additional force is
acting on the particle, so eachwavepacket will follow a classical free-falling trajectory, seefigure 3(a). In order to
estimate the coherence after some time tf, we can rely on equation (7) and have to calculate the proper time along
the twoworld lines. Notice that this is an exercise in classical relativity for which quantummechanics plays no
particular role: we can aswell consider the proper time of two classical clocks following the two saidworld lines.
It is convenient to introduce inertial coordinates:

( ) ( )

=
+

= + - -

⎛
⎝⎜

⎞
⎠⎟t

c

g

cT

X c g

x X c g c T c g

arctanh ,

, 19

2

2 2 2 2 2

whereX,T areMinkowski coordinates and x, tRindler coordinates [44]. The two free-falling world lines are
parameterized byMinkowski timeT and have constantMinkowski positionsX1,X2, respectively (note that
x=X for = =t T 0, soXj=xj, j=1, 2), with proper time equal toMinkowski coordinate time. Importantly,
sincewe are seeking the proper time difference for equalfinalRindler time, the twoworld lines have differentfinal
Minkowski times (see figure 3(b)), yielding the proper time difference
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withD = -x x x2 1. Thus, for an accelerating observer the free-falling superposition appears to decohere.When
looking at the same experiment from the point of view of a freely falling observer, the same proper time
difference and thus the same loss of coherence is attributed.However, in the free-falling reference frame the
experiment considered does not test coherence at a given time, rather the two amplitudes appear to bemeasured
at different times.

One can also askwhether decoherence is observed formeasurements that are synchronous in the free-falling
frame. This is a different experiment and there is no reason to expect the same result as before. Clearly, for
particles at rest inflat space–time andmeasured at equal times inMinkowski coordinates, no proper time
difference and thus no decoherence is observed. However, one should not be led to conclude that no
decoherence (or, equivalently, no time dilation) can be ever observed for systems in free fall (as should also be
clear from the exercise above). In a recent work [33], Gooding andUnruh have shown that the effect discussed
here can provide decoherence in systems that are only subject to gravity (and thus are, by definition, in free fall).

Note that the above example of a free-falling particle is not the example considered in ourworks [1–3], in
which it is assumed that the particle is held in superposition atfixed heights6. For a particle in superposition at
fixed heights in Rindler coordinates, andmeasured at equal Rindler times, onefinds the proper time difference
tD = Dg x t cf 2 confirming that decoherence will occur in this scenario. One can again askwhether

decoherence is observedwhen the same accelerating particle ismeasured at equal times in a free-falling frame,
which is straight-forward to confirm.

In the examples above the twoworld lines do notmeet, as opposed to the situation depicted infigure 1. For
the latter, no arbitrariness in the choice ofmeasurement space-like planes arises, which is thus ofmain physical
relevance.We also stress that it is assumed in [1–3] and in the situation described by figure 1 that the
interferometric paths perfectly overlap on thefinal beam splitter, as opposed to the scenario considered in [36].
The latter work describes a related effect, where loss of interference in a free-falling scenario takes place due to
different arrival times of amplitudes with differentmass.While this effect can occur due to themass-energy
equivalence, which is also responsible for the time dilation induced decoherence, these two decoherence effects
are not the same and occur in different physical scenarios. Time dilation induced decoherence takes place even
when the interfering paths perfectly overlap, as infigure 1, and depends only on the time dilation between the
paths, not on the arrival times of the beams.

Figure 3.Two free-fallingworld lines as seen from an accelerated laboratory frame (a) and from a free-falling frame (b). The twoworld
lines end on an equal-time plane in the laboratory frame (dashed lines), which appear as different times in the free-falling plane. The
proper time difference between theworld lines does not depend on the reference frame.

6
Tofix the particle’s world lines it is necessary to apply a suitable potentialV(x).While relativistic effects will also play a role in the interaction

with the potential, the experienced time dilation is only governed by the proper time of theworld lines, irrespective of the nature of the
potential thatfixes theworld lines. As long as the center ofmass of the system is well defined, the effect described here does not depend on the
potential but only on the proper time, just as for time dilation between two classical systems.More generally, our treatment applies in the
regimewhere the system can be treated as an ‘ideal clock’, where the external potential does not affect the internal structure of the ‘clock’.
Whether this idealization applies in practice can depend on the specific experimental design.

9

New J. Phys. 19 (2017) 025011 I Pikovski et al



4.2. Coordinate dependence of theHamiltonian
AHamiltonian is definedwith respect to a given slicing of space–time in equal-time surfaces and so it is a
coordinate-dependent object. However, the covariance of the overall effect is guaranteed by the fact that the
Hamiltonian is obtained via Legendre transform from the action (4), which ismanifestly coordinate
independent7. For any given experiment, different observers will predict the same results, although theywill in
general use differentHamiltonians.

It can be useful to see explicitly how the interaction terms changewhen changing reference frame. A simple
way to do this is to recall that theHamiltonian is the 0th component of the 4-momentum. The relation between
4-momentumand rest energy is, in arbitrary coordinates

( ) ( )= - +mn
m ng p p mc H c , 210

2

with the signature (−+++) for themetric andwhere mng is the inverse of themetric tensor (see [3]). The
Hamiltonian in the given reference frame is then obtained by solving for p0, which provides ºH cp0 as a
function ofH0, pj and mx (through the position-dependentmetric mng ). The effective coupling betweenH0 and pj
and mx are then obtained by perturbative expansion8. Thus, themetric is all that is needed to know the formof
the interaction Hint in the given coordinates.

The coupling between position and internal energy in equation (6) arises from the expansion of
( ) ( )~ - + Fg x x c1 200

2 , whereΦ is Earth’s gravitational potential. In a free-falling frame, this coupling
disappears, leaving only the couplingwithmomentum. As a result, internal and external degrees of freedomwill
develop a different amount of entanglement in different reference frames, which is discussed in the next section.

4.3. Reference framedependence of the entanglement between internal and external degrees of freedom
As discussed in section 4.2, different observers use different interactionHamiltonians and thuswill observe
different amounts of correlations (and in different bases) between internal and external degrees of freedom. The
key observation here is that a quantum state is defined at a given time on a given space-like surface. The state of a
system ‘at time t’ depends onwhose time t is considered. As soon as the describedwave-packet has a non-
negligible spatial extension, different observers will use different planes of simultaneity and thuswill assign
different states, simply because they are describing different physical situations. Given a particle in superposition
at points x1, x2 at some initial time for observerA, ameasurement of entanglement between internal and external
degrees of freedom at a given later time for observerAwill, for observerB, appear as ameasurement inwhich the
two points are probed at different times, as discussed in detail in section 4.1. Thus the samemeasurement will
not be interpreted byB as ameasure of the entanglement of the state as described byB at afixed time. Even
though the definition of state, and thus the amount of entanglement, depends on the reference frame, different
observers agree on the outcome of anymeasurement and in particular on the visibility of any interferometric
experiment, which only depends on the proper time difference, equation (7).

5. Relevant relativistic and quantummechanical concepts

While time dilation is responsible for the described effect, low-energy quantum theory andweak gravitational
fields are sufficient to derive the time-dilation induced change in interferometeric visibility. Belowwe discuss the
results in light of some basic concepts from relativity and quantum theory.

5.1. Satisfying the equivalence principle
The role of the equivalence principle for the results has been the subject of a number of discussions [4, 6, 29, 36].
Since the predictions are a direct consequence of relativistic time dilation, they automatically satisfy the
equivalence principle, which requires that uniformly accelerated reference frames are physically equivalent to
those stationary in a homogeneous gravitational field. In particular, all results derived for accelerated observers
are equivalent to those derived for stationary observers on Earth in the homogeneous field limit.

Moreover, one can easily see that theweak equivalence principle—requiring that weight and inertia are
equal—is satisfied by theHamiltonian (6). The total rest energy +mc H2

0 gives both: inertia andweight. In
particular, for the leading-order terms in theHamiltonian (6), we can see that the gravitational potential energy
is ( ) ( )f+m H c x0

2 (where ( )fm x is included in Hext), which corresponds to a total weight +m H c0
2.

Likewise, inertia is determined from the kinetic energy term: the non-relativistic term p m22 together with the

7
Note that covariance is still guaranteed if an external potential is added to action(4), provided this is expressed in a covariant form,which is

always possible in a relativistic treatment.
8
In the quantization of higher order terms, an ambiguity arises in the ordering of position andmomentumoperators. A definition of the

Hamiltonian at arbitrary orders can be obtained by expanding theKlein–Gordon equation in curved space–time corresponding to
equation (21) to obtain a Schrödinger-like equationwith relativistic corrections [42].
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momentum coupling-H
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m c0 2

2

2 2 is simply thefirst-order expansion of
( )+

p

m H c2

2

0
2 , whichmeans that inertia is

also equal to +m H c0
2. The equivalence principle formatter waves has been studied in several works [45, 46].

Possible quantumviolations of the equivalence principle, whichwould indicate newphysics, are discussed in
[37] in the context of superpositions of internal energy states.

5.2. No dependence on space–time curvature
As is clear from equation (7), the decoherence effect depends on proper time and thus on themetric, not on
curvature. A typical example of time dilation is one inwhich two clocks are held atfixed heights above Earth.
This effect is invariably referred to as ‘gravitational time dilation’. Similarly, the change in frequency as a light
beam travels away from the Earth’s surface is commonly known as ‘gravitational redshift’. Such effects depend
on the g00 component of themetric and not on curvature. In afirst-order approximation,

( ( ) )f~ - +g x c1 200
2 , where ( )f x is identifiedwithNewton’s potential. In the sameway, the decoherence of

a particle held in superposition at two heights above Earth depends on g00 and is asmuch related to gravity as
gravitational time dilation or redshift. Note that gravity is not necessary for time dilation: a difference in
velocities between superposed paths will also lead to time dilation and thus decoherence. Such a velocity
difference can be achieved by considering interferometry in a non-inertial frame such as on a rotating platform
[28] or superposingmotion of a charged particle at different cyclotron orbits in amagnetic field [27].
Decoherence due to only gravitational effects or only due to kinematic effects as in the examples above are special
cases of decoherence due to time dilation.

Sometimes the viewpoint is advocated that only curvature-related effects are to be considered as
gravitational. In this viewpoint the gravitational redshift, gravitational time dilation, falling apples, and also
decoherence due to time dilation should not be understood as related to gravity. Such a semantic distinction
does not affect the physical predictions of the effects.We note, however, that our analysis applies to arbitrary
curved space–times, as long as quantum-field effects can be neglected and the internal structure of the particle
only contributes to time-dilation effects. It can be an interesting questionwhat type of experiment in this regime
could be used as a probe of space–time curvature orwhat novel effectsmay arise that depend only on curvature.

5.3.Describing the effect of time dilationwithout using quantumfield theory
Any physicalmodel, at least any known to date, has a limited range of applicability. For example, quantumfield
theory in curved space–time cannot describe the back-action ofmass-energy on space–time at arbitrary energy
scales. In ourwork, we considered low-energy quantum systems such as atoms,molecules, nanospheres, etc., in
a regime inwhich high-energy quantum field effects, such as particle creation/annihilation, can be neglected.
This regime can bewell approximated by relativistic quantummechanics infirst quantization. Although it has a
limited range of applicability, relativistic quantummechanics is a well-understood framework that yields
powerful predictions, such as corrections to atomic spectra [47, 48]. General relativistic effects can also be
included in afirst-quantization treatment, for example by including corrections to the non-relativistic
Schrödinger equation [42]. Such a treatment neglects the backaction of the probe systemonto themetric (but
which can also be accounted for in this context, see [33]). The novelty of our analysis is to consider the effects
arising from the internal structure of the quantumparticle, which can be incorporated in theKlein–Gordon
equation by adding the internal energy contribution to themass.

Of course, it should also be possible to derive the same effects within the framework of quantumfield theory
in curved space time. An example of such a derivation, based on simplemodels, was presented in themethods
section of ourwork [3] and in [49].

5.4. Themass superselection rule and relativistic quantummechanics
Themass superselection rule, raised in [6] in the context of our work, is a result in non-relativistic quantum
mechanics and does not apply to the scenario discussed here. It originates from the non-commutativity of the
generators of the boost and translation in the Lie algebra of the representation of theGalilei group on the space of
solutions to the non-relativistic Schrödinger equation [50, 51]. Specifically, in one space dimension, theGalilei
boost generator is ˆ ˆ ˆ= -K mX Pt , where ˆ ˆX P, are the position andmomentumoperators, respectively, andm
is themass of the particle; the generator of translations is P̂ . Thus, [ ˆ ˆ] =K P m, i , whereas in the Lie algebra of
theGalilei group itself these generators commute. Such a representation is called projective and results here in an
additional phase factor proportional to themass, which in turn leads to themass-superselection rule: denote by g
and ¢g theGalilei group elements of a spatial translation by a and a boost by v, respectively. They satisfy
¢ ¢ =- -g g g g 11 1 (identity element of theGalilei group). However, their representations as operators on the

Hilbert space, ˆ ˆ = -U eg
Pai and ˆ ˆ =¢ -U eg

Kvi , satisfy ˆ ˆ ˆ ˆ ˆ=¢
- -

¢
-U U U U Ieg g g g

mva1 1 i . Applying this sequence to a

superposition of states characterized by differentmassesm and ¢m results in a relative phase ( ) - ¢e va m mi and
therefore a different physical state, unless = ¢m m . However, this operation should represent identity of the
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Galilei group and cannot alter physical states. Hence a superposition of states with ¹ ¢m m is considered
unphysical in aGalilei invariant theory and is thus ‘forbidden’—this is the original argument of Bargmann [50]
behind the superselection rule for themass.

In contrast, representations of the Poincaré group in relativistic quantum theory have the same Lie algebra as
the group itself and thus they are unitary—i.e. not projective—representations of the Poincaré group. As a
consequence, there is no superselection rule for themass in relativistic quantummechanics [52]. So if one does
not insist onGalilei invariance, superpositions of states with differentmass-energies are not ‘forbidden’. (This
can also be understood by simply recalling that relativistic quantummechanics has to incorporate both:mass-
energy equivalence of relativity and the superposition principle of quantum theory. As a result superpositions of
internal energiesmust contribute to themass in precisely the sameway as the eigenstates alone.)

6. Aspects of decoherence due to time dilation

In this sectionwe discuss various aspects of the decoherence due to time dilation and compare it to other
physical effects.

6.1. Reversibility of decoherence
Whenever a quantum system gets entangledwith another system, its coherence is reduced.However, the term
‘decoherence’ is typically reserved to situations inwhich the loss of coherence is effectively permanent and
difficult to reverse or avoid. It is therefore important to analyze how the entanglement generated by time dilation
can give rise to decoherence.

Wefirst discuss the effective irreversibility of the effect due to a large bath. An important point to stress is that
any decoherencemechanism stemming from a unitary quantum evolution of a system and its environment is, at
least in principle, reversible: a quantum systemwith discrete energy levels will return infinitelymany times
arbitrarily close to its initial state [53]. Thus, a system getting entangledwith an environment will eventually
‘recohere’. The question is howoften and for how long the system recoheres, and thus the visibility revives. For
the case of decoherence due to time dilation, consider a systemwith internal composition supported on a
subspace spanned by energy eigenstates with energies { } =Em m

n
0. The visibility revives if all the acquired phases

differ by amultiple of p2 . The revival time can be defined as ( )=t k m Tmr where ( ) Îk m and = p
-

Tm E E

2

m 0
,

and is simply the lowest commonmultiple (LCM) of allTm. For equally spaced internal levels tr is equal to the
period of the smallest system’s frequency, but in general the LCM ismuch greater (as infigure 2(d)).Moreover, if
the systemhas at least one pair of incommensurable frequencies, whichmeans ¢T T,m m such that Ï

¢

T

T
m

m
, the

revival time is infinite. Furthermore, the duration of any revival decreases with the number of levels and degrees
of freedom (see alsofigure 2(b) and [28])—and thus systemswith larger energy variance not only decohere faster
but also recohere for shorter times. Note that, very generally, larger systems recohere after longer times: the
recoherence time is exponential in the number of internal levels [54], and revive for a shorter period: since the
energy variance also typically growswith the number of internal states (e.g. for thermal states or equally spaced
energies). Time dilation can cause loss of coherence for practically infinite time andwith negligible duration of
recoherences for systemswith sufficientlymany internal levels and internal degrees of freedom. For a concrete
example: a systemwith Avogadro number of internalmodes at room temperature— »N 1023, »T 300K—
andwith the lowest frequency~10 Hz2 , in a superposition of locations separated by =h 1 mm (vertically on
Earth) loses visibility to<1% after∼2 s (thus also exhibits revivals of duration∼4 s) and recoheres after~1017 s
—the estimated age of theUniverse.

The second question is whether the decoherence due to time dilation can easily be avoided or reversed
through an appropriate control of the external degrees of freedom. Again, this is in principle possible for all
decoherencemechanisms discussed in the literature: as long as the system–environment interaction is unitary,
and given arbitrary control on both, it is in principle possible to engineer the reverse unitary that recoheres the
system. The question is againwhether such a reversal becomes impossible for all practical purposes. For the case
of time-dilation induced decoherence, one could attempt to reverse the decoherence effect by carefully
controlling the interferometric paths. For example, given a system that evolved in superposition of two heights
x1, x2 for a time t, it would be sufficient to swap the heights of the amplitudes for an equal time to bring the
proper time difference tD between the two paths to zero.More generally, no time-dilation induced
decoherencewould be observed if the total interferometric paths are adjusted to have vanishing proper time
difference, see equation (7).What degree of precisionwould this procedure require? From equation (17)we see
that, in order to suppress decoherence, the proper time difference between interferometric paths should be small

as compared to


t = DE
dec . ForN thermal harmonic oscillators in the high-temperature limit,D =E N k TB .

Thus, in this limit, for a particle with anAvogadro number of internalmodes at room temperature, we need to
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control the proper time difference to a precision of t » ´ -5 10dec
26 s. For a second-long experiment in Earth’s

gravitational field, tD » Dxg c2, this translates in an atomic-scale precision control of the amplitude’s
position,D » ´ -x 4 10 10 m.We see that, for increasingly large variance of the internal energy, it becomes
practically unfeasible to control the external position of the particle so to avoid time-dilation induced
decoherence9.

6.2. Gaussian versus exponential decay
TheGaussian decay is a direct consequence of the specific interactionHamiltonian, equation (6). In allmodels of
decoherence, the systemdegrees of freedom couple to some degrees of freedomof the bathwith an interaction
Hamiltonian Hint. The equation ofmotion for the systemof interest, in the interaction picture andBorn
approximation, is

˙ ( ) [ ( ) [ ( ) ( ) ]] ( )
 òr r r= - ¢ ¢ ¢ Ät t H t H t t
1

d Tr , , , 22s

t

B s B2 0
int int

where the trace is taken over all bath degrees of freedom.Writing the interactionHamiltonian as µ ÄH S Bint

for some systemoperator S and bath operatorB, the relevant quantities in the above equation are the bath auto-
correlation functions in the interaction picture, ( ) ( ) [ ( ) ( ) ]rá ¢ ñ = ¢B t B t B t B tTrB B . Inmanymodels of
decoherence, these decay very rapidly such that one can approximate ( ) ( ) ( )dá ¢ ñ µ - ¢B t B t t t . For example, in
microscopicmodels of quantumBrownianmotion [55] one has = åB a Xi i i, i.e. coupling to the positions of
the bath degrees of freedomwith coupling strengths ai, which yields in the high temperature limit10

( ) ( ) ( )g dá ¢ ñ » - ¢B t B t m k T t t4 B , wherem is themass,T the temperature and γ the damping coefficient of the
system.

In contrast, time dilation causes a coupling to the internal energy of the system, =B H0. Thus the bath auto-
correlation functions in the interaction picture remain constant ( ) ( ) ( ¯ )á ¢ ñ = á - ñB t B t H H0 0

2 , where
¯ = á ñH H0 0 is themean internal energy (see alsomethods in [3]). This decoherence is therefore in the opposite
limit than theMarkovianmodels (see also [24] for a discussion of non-Markovianity in this context). A few other
models are of similar form, as for example the one byCucchietti, Paz andZurek [56] in which a spin couples to
the bath spin operators, ( )s= åB i z

i , andwhich also results in aGaussian decay of coherence.We note, however,
that theGaussian decay does not persist for all times (see section 6.1 above), and, like the derivedMaster
equation, describes the behavior for the initial loss of coherence.

6.3. Universality of decoherence due to time dilation
The coupling of position andmomentumwith the internal energyH0, equation (6), does not depend on the
nature of the binding energies and interactions that defineH0, which can describe any internal dynamics. This is
because the coupling is a consequence of time dilation, which does not depend on the construction of the clock
used tomeasure time. This is captured by the arbitrariness ofH0. The experienced proper time τ along the
respective world-lines is the relevant quantity, irrespective of the internalmechanisms. Therefore, decoherence
due to time dilation is as universal as time dilation itself and can affect any composite quantum system.

6.4.Decoherence and classicality
The so-called transition to classicality is a debated issue in the philosophy and foundations of quantum
mechanics [57, 58]. One of the sources of controversy is the very definition of classicality and inwhich sense the
transition is to be understood [5]. One can restrict the discussion to practical questions of why effects such as
quantum interference [59] or violations of Bell inequalities [60] are not observed on everyday scales.
Decoherence explains this fact by considering interactions with an environment which causes a suppression of
coherence in a so-called ‘pointer basis’, such that typical quantum effects cannot be observed. This follows
directly fromquantum theory and the study of open quantum systems. A comparison between the strength of
decoherence due to time dilation and other decoherence sources can be found in [3, 31, 61].

A further problemoften associatedwith the quantum-to-classical transition is the so-calledmeasurement
problem: the questions are why a specific outcome of a quantummeasurement occurs andwhat constitutes a
measurement. As an inherently probabilistic theory, quantummechanics does not provide anymeans to explain
the occurrence of specific outcomes beyond predicting the probability withwhich they occur. In fact, any theory
providing better predictability than quantummechanics would have to be non-local [62] and contextual [63].

9
An intereference experiment in free space, i.e. completely in free fall as awhole, would not be affected by gravitational time dilation.

However, any relative accelerations between the paths or velocities would induce time dilation, and for large enough systems it will be
similarly challenging to avoid or reverse decoherence.
10

Note that a thermal bath does not store any information on the system,which is true for any decoherencemodel including the time
dilationmodel discussed in thismanuscript [25].
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Thus, quantum theory or decoherence cannot answer this aspect of themeasurement problem,which is also
beyond the scope of ourwork.

6.5. Time dilation induced decoherence versus gravitationally induced collapse of thewave function
Gravitationally induced collapsemodels, such as in [7, 8], are based on an inherentmodification of quantum
theory. It is argued that the superposition principle breaks down if the systems reach a sufficient size. For
example, the proposal by Penrose [8] suggests a fundamental collapse time ~ Dt Es, whereDEs is the
gravitational self energy of the system [64]. The philosophicalmotivation for this suggestion is the consideration
of superpositions of differentmetrics and how the amplitudesmight affect each other.However, the
gravitationally induced collapse of thewave function does not follow fromquantum theory and is a speculative
modification thereof. In contrast, the results in [3] stem fully fromwithin quantum theory and the time dilation
originates from an external,fixed background. The dynamics we consider is unitary for the total system—the
decoherence takes place due to correlationswith an environment (the internal degrees of freedomof the
particle), which are induced by time dilation.
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