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Abstract An exact solution of Einstein’s equations representing the static gravita-
tional field of a quasi-spherical source endowed with both mass and mass quadrupole
moment is considered. It belongs to the Weyl class of solutions and reduces to the
Schwarzschild solution when the quadrupole moment vanishes. The geometric
properties of timelike circular orbits (including geodesics) in this spacetime are
investigated. Moreover, a comparison between geodesic motion in the spacetime
of a quasi-spherical source and non-geodesic motion of an extended body also
endowed with both mass and mass quadrupole moment as described by Dixon’s
model in the gravitational field of a Schwarzschild black hole is discussed. Cer-
tain “reciprocity relations” between the source and the particle parameters are
obtained, providing a further argument in favor of the acceptability of Dixon’s
model for extended bodies in general relativity.

Keywords Extended bodies in general relativity, Dixon’s model

1 Introduction

The fully relativistic multipole moments of a stationary spacetime have been intro-
duced by Hansen [1], generalizing previous results by Geroch [2] valid for static
spacetimes only. Hansen’s formulation reduces to Geroch’s one in the static limit,
in the sense that the recursive definitions of moments are the same but with a dif-
ferent potential. Beig [3] contributed to clarify Hansen’s approach considering a
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different definition of center of mass; in this way the expansion of the Hansen
moments around the center of mass determines the multipole moments uniquely.
Beig and Simon [4; 5] also applied the above mentioned definition to the case of
stationary axisymmetric spacetimes. Thorne [6], before the works of Beig and col-
laborators, gave another definition of multipole moments which later Gursel [7]
has shown to be equivalent to Hansen’s definition for a source with nonzero rest
mass. Many exact solutions of Einstein’s equations for sources having multipolar
structure as described by the Geroch-Hansen formulation are known, mostly be-
longing to the Weyl class of stationary axisymmetric spacetimes [8] and obtained
with a suitable use of Ernst potentials and generating techniques [9], and hence
formally very complicated.

On the other hand, the motion of extended bodies (considered as test bodies,
i.e. with backreaction neglected) in any given background was well established
after the works of Mathisson, Papapetrou (up to the dipolar structure) [10; 11] and
Dixon (including any multipolar structure) [12; 13; 14; 15; 16].

In this paper we analyze circular orbits (including geodesics) in the gravita-
tional field of a body endowed with both mass and mass quadrupole moment,
which reduces to the familiar Schwarzschild solution when the quadrupole mo-
ment vanishes. Then we compare geodesic motion of a test particle on the equa-
torial plane with that of an extended body also endowed with both mass and mass
quadrupole moment as described by Dixon’s model in the gravitational field of a
Schwarzschild black hole. We investigate the correspondence between the source
and the particle parameters. We obtain certain “reciprocity relations” leading to
the identification of Dixon’s model quadrupole parameters with those underlying
Geroch-Hansen approach. This is a novel result which should be regarded as a fur-
ther argument in favour of the acceptability of Dixon’s model for extended bodies
in general relativity.

2 Test particles in the field of a quasi-spherical source

The metric of a nonrotating mass with a quadrupole moment has been obtained
long ago by Erez and Rosen [17], later corrected for several numerical coefficients
independently by Doroshkevich et al. [18] and Young and Coulter [19]. It is a so-
lution of the static Weyl class of solution with the metric element of the following
form

ds2 =−e2ψ dt2 + e2(γ−ψ)(dρ
2 +dz2)+ρ

2e−2ψ dz2, (1)

with ψ and γ functions of ρ and z only. The associated vacuum Einstein’s equa-
tions are

ψρρ +
1
ρ

ψρ +ψzz = 0,

γρ = ρ
(
ψ

2
ρ −ψ

2
z
)
, γz = 2ρψρ ψz. (2)

Within this class, the solution representing a source with mass (monopole)
and quadrupole structure can be written in the following form by using prolate
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spheroidal coordinates x and y

ψ = ψ0 +q
1
2

(
3y2−1

)[
1
2

(
3x2−1

)
ψ0 +

3
2

x
]
,

γ = γ0 +q
[
2γ0−3

(
1− y2)(xψ0 +1)

]
(3)

+q2
{

γ0 +
3

16
(
1− y2)[

3
(
x2−1

)2
ψ

2
0 +2x

(
3x2−5

)
ψ0 +

(
3x2−4

)]
− 9

16
y2 (

1− y2)[(
1− x2)2 (

1−9x2)2
ψ

2
0 +2x

(
9x2−7

)
ψ0+

(
3x2−4

)]}
,

where

ψ0 =
1
2

ln
(

x−1
x+1

)
, γ0 =

1
2

ln
(

x2−1
x2− y2

)
(4)

are the monopole quantities corresponding to the Schwarzschild solution (which
is obtained for q = 0). The relation with Weyl coordinates ρ and z is given by

x =
1

2M
(r+ + r−) , y =

1
2M

(r+− r−) , (5)

with

r± =
[
ρ

2 +(z±M)2]1/2
. (6)

Note that on the symmetry hyperplane z = 0 we have r+ = r− = [ρ2 +M2]1/2 ≡
r∗ and hence x = r∗/M,y = 0.

It is worth to mention that there exist in the literature several different solutions
corresponding to a quasi-spherical source, all with the correct gravitational poten-
tial of a massive static source with a quadrupole moment in the Newtonian limit
[20; 21].
For these metrics some properties of geodesic motion have been analyzed [22; 23].
Geodesics in the Erez-Rosen spacetime have been also extensively investigated
[24; 25]. A generalization to the stationary case including rotation of the source
has been considered by Quevedo and Mashhoon [26].

For our study we refer to the solution given by Young and Coulter [19]. In
the limit of weak fields and small quadrupole moments the nonvanishing Geroch-
Hansen moments associated with this solution are the monopole M0 = M and the
quadrupole moment M2 = Q, the latter being related to the parameter q by the
equation

Q
M3 =

2
15

q (7)

according to our conventions G = 1 = c.
Due to the stationarity of this spacetime a suitable family of fiducial observers

is that of the so called static observers, with unit timelike four velocity et̂ = e−ψ ∂t
aligned with the timelike Killing vector ∂t . An orthonormal frame adapted to the
static observers is given by

et̂ = e−ψ
∂t , eρ̂ = eψ−γ

∂ρ , e
φ̂

=
1
ρ

eψ
∂φ , eẑ = eψ−γ

∂z. (8)
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2.1 Circular orbits

Circular orbits (ρ =const.) on a z =const. hypersurface have a four velocity of the
form

U = γU (et̂ +νe
φ̂
), γU =

(
1−ν

2)−1/2
, (9)

with ν Lie-constant along U , i.e. £U ν = 0. They form a one-parameter family of
orbits parametrized by ν . In general these orbits are accelerated with a transverse
acceleration a(U) = DU/dτU = aρ̂ eρ̂ +aẑeẑ such that

aρ̂ = γ
2
U eψ−γ

[(
1+ν

2)
ψρ −

ν2

ρ

]
, aẑ = γ

2
U eψ−γ

(
1+ν

2)
ψz. (10)

It is convenient to introduce a polar representation for the acceleration compo-
nents, i.e.

aρ̂ = κ cos χ, aẑ = κ sin χ , (11)

with

κ =
√

a2
ρ̂
+a2

ẑ , tan χ = aẑ/aρ̂ . (12)

Therefore we have

a(U) = κ(cos χeρ̂ + sin χeẑ)≡ κE1. (13)

Starting a Frenet-Serret procedure with U = E0 one obtains a Frenet-Serret frame
governed by the transport equations:

DE0

dτU
= κE1 ,

DE1

dτU
= κE0 + τ1E2 ,

(14)
DE2

dτU
=−τ1E1 + τ2E3 ,

DE3

dτU
=−τ2E2.

The curvature κ is the magnitude ||a(U)|| of the acceleration a(U), while the first
and second torsions τ1 and τ2 are the components of the Frenet-Serret angular
velocity vector

ω(FS) = τ1E3 + τ2E1 , ||ω(FS)||=
[
τ

2
1 + τ

2
2
]1/2

, (15)

putting the spatial transport Eq. (14) in the form

DEa

dτU
= ω(FS)×Ea +κE0δ

1
a , (16)

where × denotes ordinary vector product in the Euclidean three space orthogonal
to U . It is easy to show that in this case the Frenet-Serret frame vectors are

E1 = cos χeρ̂ + sin χeẑ,

E2 = γU (νet̂ + e
φ̂
) =

1
γ2

U

dU
dν

, (17)

E3 = −sin χeρ̂ + cos χeẑ =
dE1

dχ
,
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while the Frenet-Serret torsions [27; 28] are given by

τ1 =− 1
2γ2

U

dκ

dν
, τ2 =− κ

2γ2
U

dχ

dν
. (18)

Moreover, apart from those circular orbits located on the symmetry hyperplane
z = 0 (where ψz = 0), no geodesics exist for whatever special choices of ν . Vice
versa, circular orbits on the symmetry plane z = 0 correspond to

κ = γ
2
U eψ−γ 1

ρ

[
ρψρ −ν

2 (
1−ρψρ

)]
, χ = 0 (19)
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Fig. 1 The geodesic linear velocities ν
±
(geo) are plotted in (a) as functions of the quadrupole

parameter q for fixed radial distance ρ/M = 4 from the source. Timelike circular geodesics
exist for q2 < q < q0 (see Eq. (31)), with q0 ≈ 82.84 and q2 ≈ −87.94 for this choice of pa-
rameters. The behaviour of ν

+
(geo) as a function of ρ/M is shown in (b) for different values

of q = [−80,−30,−5,0,2.5,5,10,20,50]. The case q = 0 (Schwarzschild) corresponds to the
dashed curve without a relative maximum. The shape of the curves with negative q is very sim-
ilar to the Schwarzschild one, the lightlike condition ν

+
(geo) = 1 being reached at greater values

of the radial distance for decreasing values of q. The curves with positive q instead all present a
relative maximum and are ordered from left to right for increasing values of q. Shaded regions
are forbidden

implying also

τ1 = γ
2
U eψ−γ ν

ρ

(
1−2ρψρ

)
(20)

and τ2 = 0. Note that in this case (symmetry hyperplane) we have fixed E1 = eρ̂

and allowed κ to vary its sign, as it is customary [28].
A direct evaluation shows that circular geodesics on z = 0 correspond to

ν
±
(geo) =±

[
ρψρ

1−ρψρ

]1/2 ∣∣∣∣
z=0

. (21)

Using the solution (1)–(4) we find that

ν
±
(geo) =±

[
q−q0

q1−q

]1/2

, (22)

where the quantities q0 and q1 (which are functions of r∗/M) are the quadrupole
critical values corresponding to ρψρ = 0 and ρψρ = 1 respectively:

q0 =
[

3
4

r∗
M

(
r2
∗

M2 −1
)

ln
(

r∗−M
r∗+M

)
+

3
2

r2
∗

M2 −1
]−1

,

(23)
q1 = q0

(
1− r∗

M

)
.

Note that at a fixed value of ρ the quantity ρψρ is a linear function of q.
The geodesic velocities (22) are plotted in Fig. 1 both as functions of the

quadrupole parameter q for fixed radial distance (see Fig. 1a) and as functions
of ρ/M for different values of q (see Fig. 1b). In the first case (Fig. 1a) we have
shown how the quadrupole moment affects the causality condition: there exist a
finite range of values of q wherein timelike circular geodesics are allowed (see
the discussion below). The difference from the Schwarzschild case is clear instead
from Fig. 1b: the behaviour of the velocities differs significantly at small distances
from the source, whereas it is quite similar for large distances.

For a later use it is useful to consider the following two limits of ν
±
(geo): M/ρ →

0 for fixed q and q→ 0 for fixed M and ρ . In the first case (M/ρ → 0) we have

ν
±
(geo) =±

(
M
ρ

)1/2
[

1+
1
2

(
M
ρ

)
− 1

4

(
M
ρ

)2 4q−5
10

]
+O

(
M
ρ

)7/2

. (24)
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In the second case (q→ 0) we have instead

ν
±
(geo) =±νK ±qW (νK)+O

(
q2) , (25)
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where

W (νK) =
1+ν2

K

8ν5
K

[
3
(
1+ν

2
K
)(

1+2ν
2
K
)

ln
(
1+2ν

2
K
)
−2ν

2
K
(
ν

4
K +6ν

2
K +3

)]
(26)

is a function of the linear velocity νK of circular geodesics in the Schwarzschild
spacetime given by

νK =
√

M
r∗−M

. (27)

It is easy to show that in the limit M/ρ → 0 one has

νK →
(

M
ρ

)1/2
[

1+
1
2

(
M
ρ

)
+

1
8

(
M
ρ

)2
]

+O
(

M
ρ

)7/2

,

(28)

W (νK) → − 1
10

(
M
ρ

)5/2

+O
(

M
ρ

)7/2

.



Extended bodies with quadrupole moment interacting 9

Fig. 2 The behaviours of the critical quadrupole parameters q0,q1 and q2 are shown as functions
of ρ/M

Fig. 3 The magnitude of the acceleration κ for circular orbits at z = 0 is plotted as a function of ν

for ρ/M = 4 and different values of the quadrupole parameter: (a) q = [0,20,40,60,80,100] and
(b) q = [100,200,300,400,500,600]. The (symmetric) values of ν associated with κ =
0 correspond to geodesics, i.e. ν

±
(geo) (see a). The various curves are ordered so

that for increasing values of q the value of |ν±(geo)| decreases until it approaches
the critical value q0 ≈ 82.84 beyond which circular geodesics do not exist anymore
(see b). It is worth noting that the situation is very similar for selected negative
values of q

Fig. 4 The first torsion τ1 for circular orbits at z = 0 is plotted as a function of ν for ρ/M = 4 and
different values of the quadrupole parameter: (a) q = [−600,−500,−400,−300,−200,−100]
and (b) q = [−80,−40,0,100,200,300,400,500,600]. The behaviour changes depending on
whether q is less or greater than the critical value q2 ≈ −87.94. The curves in both (a) and (b)
are ordered in such way that for increasing |q| they shrink on the vertical axis

Let us discuss now the causal properties of geodesics. The requirement that
the argument of the square root of Eq. (21) be positive gives

ρψρ

1−ρψρ

> 0 → 0 < ρψρ < 1 → q1 < q < q0 , (29)

where the quantities q0 and q1 are given by Eq. (23). The further requirement that
|ν±(geo)|< 1 ensures that they remain timelike. This condition implies

q >
1
2
(q0 +q1)≡ q2, (30)

so that the condition for the existence of timelike circular geodesics turns out to
be

q2 < q < q0. (31)

Figure 2 shows the behaviours of the critical quadrupole parameters q0,q1 and
q2 as functions of the radial distance ρ/M.

In terms of the quantities q0 and q1 the expression (19) for the acceleration κ

becomes

κ = γ
2
U eψ−γ 1

ρ

(
q−q1

q1−q0

)[
ν

2− (ν±(geo))
2
]
. (32)

Its behaviour as a function of ν is shown in Fig. 3 for different values of
the quadrupole parameter. For increasing values of q the corresponding values of
ν
±
(geo) decrease up to a critical value (corresponding to ν

±
(geo) = 0) beyond which

they do not exist anymore.
A similar discussion can be done for the first torsion, i.e. there exists a critical

value of the quadrupole moment q such that τ1 = 0 for any ν . This happens when
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ρψρ = 1/2. It is quite surprising that the corresponding critical value of q coin-
cides with the limiting value q2 for timelike geodesics as defined in Eq. (30). In
fact, by introducing the quantities q0,q1 and q2 Eq. (20) can be cast in the form

τ1 = γ
2
U eψ−γ ν

ρ

(
q2−q
q1−q0

)
. (33)

We thus recognize how the presence of the quadrupole moment q changes
completely and enriches the situation with respect to the Schwarzschild case, ex-
amined long ago by many authors [27; 28]. This is well elucidated in Fig. 4,
where the behaviour of τ1 as a function of ν is discussed for different values
of the quadrupole
parameter.

3 Motion of quadrupolar particles in the Schwarzschild background

We consider now the complementary case of an extended body with structure
up to the quadrupole in the field of a Schwarzschild background, following the
description due to Dixon [12; 13; 14; 15; 16]. In the quadrupole approximation
Dixon’s equations are1

DPµ

dτU
= −1

2
Rµ

ναβUν Sαβ − 1
6

Jαβγδ Rαβγδ
;µ ≡ F(spin)µ +F(quad)µ , (34)

DSµν

dτU
= 2P[µUν ] +

4
3

Jαβγ[µ Rν ]
γαβ ≡ 2P[µUν ] +D(quad)µν , (35)

where Pµ = mU µ
p (with Up ·Up =−1) is the total four-momentum of the particle,

and Sµν is a (antisymmetric) spin tensor; U is the timelike unit tangent vector of
the “center of mass line” CU used to make the multipole reduction, parametrized
by the proper time τU . The tensor Jαβγδ is the quadrupole moment of the stress-
energy tensor of the body, and has the same algebraic symmetries as the Riemann
tensor, i.e. 20 independent components. Note that there are several equivalent ex-
pressions used in the literature for the torque D(quad)µν , which can be summarized
by

D(quad)
dixon

µν =−4
3

R[µ
αβγ Jν ]αβγ , D(quad)

h−r
µν =

4
3

Jαβγ[µ Rν ]
γαβ , (36)

due to Dixon ([16], p. 65) and Ehlers and Rudolph ([33], p. 209).
There are no evolution equations for the quadrupole as well as higher multi-

poles as a consequence of the Dixon’s construction, so the structure only depends
on the considered body. Therefore the system of equations is not self-consistent,
and one must assume that all unspecified quantities are known as intrinsic proper-
ties of the matter under consideration.

Moreover, in order the model to be mathematically correct certain additional
conditions should be imposed [12]. As it is standard one may limit considera-
tions to Dixon’s model under the further simplifying assumption [34; 33] that the

1 Note that the torque term D(quad)µν in the second set of equations was misprinted in previous
works [29; 30; 31; 32]. The results of all those papers are but correct.
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only contribution to the complete quadrupole moment Jαβγδ stems from the mass
quadrupole moment Qαβ so that

Jαβγδ =−3U [α
p Qβ ][γUδ ]

p , QαβUpβ = 0. (37)

We are interested here in bodies with vanishing spinning structure, so that the
model equations undergo big simplifications and reduce to

m
DU µ

p

dτU
=

1
2

Uα
p QβγUδ

p Rαβγδ
;µ , (38)

mU [µ
p Uν ] = Uα

p QβγU [µ
p Rν ]

γαβ −Uα
p U γ

pQβ [µ Rν ]
γαβ , (39)

where we have also assumed for simplicity the mass of the body as a constant.
Let us consider the case of the Schwarzschild spacetime, with the metric given

by Eq. (1) with γ = γ0 and ψ = ψ0, given by Eq. (4).
Let us assume that U is tangent to a (timelike) spatially circular orbit

U = γU
[
et̂ +νe

φ̂

]
, γU =

(
1−ν

2)−1/2
, (40)

with ν constant along U . We limit our analysis to the equatorial plane (z = 0) of the
Schwarzschild solution. The linear velocity corresponding to circular geodesics is
given by Eq. (27), whereas the angular velocity is given by

ζK =

√
M

(r∗+M)3 =
ν3

K

M(1+2ν2
K)3/2 . (41)

Let also P = mUp be such that

Up = γp
[
et̂ +νpe

φ̂

]
, γp =

(
1−ν

2
p
)−1/2

, (42)

i.e. let us assume that Up also is tangent to a circular orbit and set up an orthonor-
mal frame adapted to Up given by

e0 = Up, e1 = eρ̂ , e2 = eẑ, e3 = γp

[
νpet̂ + e

φ̂

]
; (43)

hereafter all frame components of the various fields are meant to be referred to
such a frame. Note that the assumption of having both U and Up leads to great
simplifications to Dixon’s equations.

From Eq. (37)2 we have

Q00 = Q01 = Q02 = Q03 = 0. (44)

We also assume that all the surviving components of the mass quadrupole mo-
ment are all constant along the path. The latter assumption corresponds to the def-
inition of “quasirigid motion” (or “quasirigid bodies”) due to Ehlers and Rudolph
[33]. Clearly in a more realistic situation the latter hypothesis should be released.

Consider first the constraint equations (39). They imply that

Q12 = Q13 = Q23 = 0, (45)
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and after introducing the following “structure functions” of the extended body

Q11 = Q22− f , Q33 = Q22− f ′, (46)

they also give

0 = γU (ν−νp)−3γpνp
ζ 2

K
m

f . (47)

Note that the quantities f and f ′ are necessarily small, in order to avoid back-
reaction effects.

Consider then the equations of motion (38). They imply that

0 = γU γp
(
ννp−ν

2
K
)
− 3

2
ζ 2

K
m

[
f ′+

(
1−3γ

2
p
)

f
]
. (48)

Solving Eqs. (47) and (48) for ν and νp in terms of f , f ′ completely determines
the motion.

The quadrupolar structure of the body turns out to be represented by three
quantities: f , f ′ and Q22. However, classically, the quadrupole moment tensor of a
mass distribution is tracefree. Assuming for simplicity the same property to hold
also for the relativistic quadrupole moment tensor implies

0 = Q11 +Q22 +Q33 = 3Q22− f − f ′, (49)

so that the components Qab in this case are completely determined by f and f ′
only

Q11 =−2
3

f +
1
3

f ′, Q22 =
1
3

(
f + f ′

)
, Q33 =

1
3

f − 2
3

f ′. (50)

If the body is axially symmetric about the z-axis, then f ′ = f and the frame
components of Q reduce to

Qab = diag [− f /3,2 f /3,− f /3] . (51)

It is worth noting that the above assumptions for the extended body’s structure
(i.e. constant frame components for the quadrupole tensor represented by a single
structure function f ) here used in order to make our analysis as simple as possible
can be easily relaxed in favour of a more realistic description.

Equations (47) and (48) then become

0 = γU (ν−νp)−3γpνpζ
2
K

f
m

, (52)

0 = γU γp
(
ννp−ν

2
K
)
− 3

2
(
2−3γ

2
p
)
ζ

2
K

f
m

. (53)

The above relations define the kinematical conditions allowing circular motion of
the extended body taking into account its quadrupolar structures.
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Due to the smallness of quadrupolar quantity f the motion of the extended
body will be nearly geodesic with correction which we will retain up to first order
in f . Eqs. (52) and (53) thus imply

ν± '±
[

νK −
3ζ 2

K
4νK

f
m

]
, ν

(±)
p ' ν±∓3νKζ

2
K

f
m

, (54)

where the signs ± correspond to co/counter rotating orbits. The corresponding
angular velocity ζ± = (ζK/νK)ν± and its reciprocal are

ζ± '±ζK

[
1− 3ζ 2

K

4ν2
K

f
m

]
,

1
ζ±

'± 1
ζK

[
1+

3ζ 2
K

4ν2
K

f
m

]
. (55)

4 Quadrupolar particles interacting with gravitational monopoles

The linear velocity (54)1 of the center of mass of the extended body described
using Dixon’s model, namely

ν± '±
[

νK −
3ζ 2

K
4νK

f
m

]
(56)

should now be compared with the geodesic linear velocities ν
±
(geo) given by Eq. (25),

in the limits in which comparison is really allowed (i.e. in the limit of validity of
Dixon’s model): small mass and quadrupole moment of the body if compared with
the mass of the central object. Note that a similar treatment was done in the case of
a spinning particle orbiting a Schwarzschild black hole compared with a geodesic
in the Kerr spacetime [35].

The result (to first order in both q and f ) is

− 3ζ 2
K

4νK

f
m

= qW (νK). (57)

In the limit of large distances from the central source (ρ �M) Eq. (57) gives
the nice result

f
m

=
2

15
M2q =

Q
M

. (58)

This correspondence validates once more Dixon’s model.

5 Concluding remarks

We have considered the static gravitational field of a quasi-spherical source be-
longing to the Weyl class of solutions of Einstein’s equations. In this field we have
discussed the geometric properties of (accelerated in general) timelike circular
orbits, by analyzing the associated Frenet-Serret curvature and torsions. Among
these orbits we have studied in detail the geodesics on the equatorial plane and
found a number of interesting properties. For instance we have found that there
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exists a critical value for the quadrupole moment beyond which the are no more
timelike circular geodesics. This fact was unexpected, on the basis of previous
works concerning static Schwarzschild black hole spacetime.

However, the most important contribution of this paper concerns comparison
between geodesic motion in the field of a quasi-spherical source with the motion of
an extended body (quadrupolar particle, described by using Dixon’s model) in the
background of a Schwarzschild black hole. We have shown how the quadrupole
moment of a gravitational source as described by the Geroch-Hansen approach
coincides with the quadrupole moment of a Dixon’s extended body.
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