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1. I n t r o d u c t i o n  

Local relativistic quantum field theory was invented more than sixty years ago to 
provide a synthesis of quantum mechanics and the (special) theory of relativity. In recent 
years models of local interacting relativistic quantum fields of scalar, vector or gauge type 
have been constructed in space-times of dimension less than 4, see e.g. [AHK1], [AFHKL], 
[DST], [G J], [JLM]. 

In the case of 4-dimensional space times only partial results are known, see e.g. [DST], 
[AFHKL]. 
In the present paper we exhamine the possibility of constructing a four space-time dimen- 
sional theory describing quantum fields of the electromagnetic type, with a formal action 
which is not necessarily of the canonical type "kinetic energy minus potential term", but 
rather kinetic energy minus a term involving a nonlinear function of suitable linear com- 
binations of derivatives of the field. 
There is some relation of such models with those of non linear electromagnetic field the- 
ories, like BormInfeld theory [BI]. Such nonlinear electromagnetic field theories had been 
introduced as approximations to Maxwell fields and our models can also be looked upon in 
the same spirit (and we prove indeed a result in this sense). Let us also remark that very 
recently the interest of Born-Infeld's action has been reactivated by the discovery that it 
describes heuristically the full effective self-interaction of vector fields in the Abelian limit 
in open bosonic strings (and superstrings), see e.g. [FT], [CLNY], [CF]. 
Our models exploit in an essential way the 4-dimensionality of the physical space-time, 
which permits to identify it, as a vector space, with the space g-/of quaternions 1). 
The fields are given as solutions of a system of coupled stochastic first order partial dif- 
ferential equations, having a natural formulation in terms of quaternions. The possibility 
of writing such equation relies on the isomorphism SO(4) -~ (SU(2) × SU(2))/2~2. The 
Euclidean vector generalized random fields {At(x),  x E ~4 ~ g_/, r = 0, 1,2,3), identi- 
fied with quaternion fields A(x), satisfy stochastic partial differential equations of the form 
OA(x) = F(x), with F(x) a quaternionic-valued infinitely divisible field (see e.g. [K1], [Ku], 
[Su]) with suitable transformation properties under the proper Euclidean group SO(4)A~ 4, 
0 being the basic 1-order quaternionic differential operator with unit coefflcients 2). 
We discuss the transformation properties of A under reflections as well as Markovian prop- 
erties of the fields. In the case of F being Ganssian white noise A is the free electromagnetic 
Euclidean potential field. We exhibit a way to approximate the latter field by fields Ap 
defined by taking F to be a Poisson type white noise. 
We also point out that the fields A can be obtained as continuum limits of corresponding 
lattice fields, which makes appear their action as being heuristically given by 

Jf (Idiv AI, IE- BO dx, with A(x) = (Ao(x), A(x)), x = (xo,~) E ~ × ~3, 
j~ _ 0 _~_ grad~A0 /~ - rot~ A, for suitable real valued functions f on ~/. 

Oz0 
Let us also remark that the present work is connected with previous work (see e.g. 
[AHKH1-3], [AHK 6], [AHKHK], [Ka] and references therein) in which Markov and quan- 
tum fields associated to 1-codimensional hypersurfaces, instead of points, in ~ a  were 
constructed. For d = 2 such "cosurface fields" can be identified, on closed contours, with 



7] 

quantum gauge fields; for d = 4 they include free electromagnetic fields and more gener- 
Mly 3-forms with values in the Lie algebra of compact semisimple Lie groups, providing 
(by duality) a natural extension of electromagnetic fields to "coloured fields" (this relies 
on the realization of ~4  and the Lie algebra u(2) of U(2) as the space of quaternions 
[AHK3]). The constructed cosurface can also be connected to vector fields, using again the 
4-dimensionality of space-time, and these fields satisfy the stochastic partial differential 
equation discussed ([AHK2]). 

We finally remark that the present paper extends the work of [AHK4] and makes precise 
the point first overlooked in [AHK4a] (but shortly remarked in [AHK4b]) that A is not 
time reflection invaxiant in the non Gaussian case. 
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2. A covariant quaternionic partial differential equation 

We shall consider a covariant partial differential equation over ~ 4 .  This type of equations 
can only be considered over ~1 ,  ~ 2  and ~4  and their existence is tied to that  of the asso- 
ciative fields of real, complex resp. quaternionic numbers. In this paper we shall consider 
the physical situation with underlying space J~rt4, and the equation is best formulated using 
quaternions, as in [AHK2-4]. Let g ' / b e  the field of quaternionic numbers and {1, i , j ,  k}  
be its canonical basis. 
As a real vector space Ht is isomorphic to ~4  by 

H-I g x o l  + x l i  + x2 j  + xak ,  ) ( X o , X l , x 2 , x a )  • ~ 4 . 

We regard ~ as being inbedded in g- /by  identifying t • ~ with t l  • g-/, then g ' / forms a 
real associative algebra with the identity 1 under the multiplication rules : i s = j2 = k 2 = 
- 1  and i j  = - j i  = k. 
There is a distinct automorphism of g-/called the conjugation : 

x = xo + x l i  + x2 j  + x 3 k - - - - , ~  = Xo - x l i -  x2 j  - x a k .  

As in the case of C we write 

1 
R e x  : = ~ ( x  + ~ )  = x 0  

1 ~) x l i  + x2 j  + xak  I r n x  : =  ~ ( x -  = 

Later we also use the notation ~ for I m  x. We see that  the square root of the nonneg- 
ative quanti ty x~ = i x  is equal to [x[, the ~4-norm of x, under the above mentioned 
isomorphism g - / ~  Kt 4, and moreover 

1 
x . y  : =  7 (Ix  + yl  - Ix - y l  2) = R e  = R e  

9c 

Sp(1) := {a • g-/; [a[ = 1) is a subgroup of the multiplicative group g-/× := g ' / \{0} and 
it is isomorphic to SU(2). By g I  9 x ,  , axb -a • g-I for a, b • Sp(1) we have a surjective 
homomorphism Sp(1) x Sp(1) , SO(4), whose kernel is {(1, 1 ) ,  ( - 1 , - 1 ) )  - 2~2, and 
hence [Sp(1) x Sp(1)]/2~2 ~- SO(4). 
We consider the following two distinct Sp(1) x Sp(1) actions on ~4-valued functions on 
~4:  identifying ~ 4  with g-/, the first one is given by 

A ( x )  , a A ( a - l ( x  - y ) b )  b -a x,  y • ~ 4 ,  (a, b) • Sp(1) × Sp(1) (i) 

and A obeying this rules is called a covariant 4-vector field. 
The second one is given by 

A ( x )  , b A ( a - l ( x  - y ) b )  b - !  x, y e Kt 4 , (a, b) • Sp(1) x Sp(1) (ii)  
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and A obeying this rule is called a covariant scalar 3-vector field. 
We define a bilinear form by 

: =  . A ( x )  = n e  . A ( x )  e x  

and extend this as the distributional pairing in the natural  way. Note that  (., .) is invariant 
under Sp(1) × @(1)  actions (i) and (ii). 
Let 

0 : =  0 i 0 0 _ k  0_.0_ 0 i 0 . 0 0 
Ox---~- -~x~-J -~x2  Oxa and 0 :=~0x0  + 0-~Xl+)O~-x2 + k  s ' 

then 0(9 = (90 = A, the Laplacian in fit 4. Consider two variables x, x ~ E ~ 4  related by 
x' = a - l x b  for some (a, b) E Sp(1) x Sp(1) and define 0' and ~7 in the same way as 0 and 
(9. Then it is easily seen that  0 -7 = a-lOb and 0 ~ = b-lOa. Therefore, if A is a covaxiant 
4-vector field, then F = OA is a covariant scalar 3-vector field. This is well understood, 

3 

if we introduce a 1-form a := E Ai dxi, the orientation adapted to {1, i , j ,  k} and the 
i----0 

associated Hodge duals. In fact , ident ifying anti-self dual 2-forms with 3-vector fields, we 
have ( * d ' a ,  da - *  d~r) = (Fo , F). 
We note that  the equation OA = F is not covariant under reflections, since F corresponds 
to an anti-self dual 2-form. 

1 
We denote by g Green" s function to - A ,  i.e., g(x) - -  27r21x[2 and set 

:= s ( x )  S (x )  := - 0  g(x)  -  2l 14 , 

then we see that  

aS(x )  = -OO g(x) = - A  g(x) = 5(x) , OS(x)  = 5(x) , 

where 5 is the Dirac distribution. In order to give a precise meaning to the inverse of 0 
(resp (9) we introduce the following space 

~ : = {  ~ E C ° ° ( ~ 4 ' f f - / ) ;  '~l~+~lim ~o(x )=O,  O ~ p E S }  

(S -- S ( ~ 4 ,  if/) is the Schwartz test space of rapidly decreasing test functions). 

It is easily seen that  2" ~ ~0 ) c5~o E S is bijective and the inverse map is given by 
S 9 ~ ' 5' * ~ E 2., where 

• = [ 3(x - v) dv $ 

Jt~ 4 

Using this isomorphism we introduce a locally convex topology on 2.. Note that  the injec- 
tion t : S ¢--* 2. is not dense and hence t* : 2.~ ) S ~ is not injective, since {vh~ ; ~o e S} is 
not dense in S. 
We have the 
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T h e o r e m  1 : Let A be a covariant 4-vector field and F be a covariant scalar 3-vector 
field. Then  the elliptic 1-order partial  differential equation 

OA(x)  = F ( x )  

is covariant. If F belongs to 2 "~, OA = F has a unique solution in S ~ given by A = S * F.  

We interpret  A as a classical electromagnetic Euclidean potential  (in the Feynman gauge) 
and Ei := O o A i -  OiAo , i = 1,2,3,  resp. Bi  = OjAk -- OkAj  ( i , j , k )  cyclic permuta t ion  

of (1, 2, 3) as electro resp. magnetic fields. F corresponds to E~ - Bi. 

3. R a n d o m  fields as solut ions of  a quaternionic  part ial  differential  
equat ion  w i t h  random source 

We shall now consider the equation OA = F in sect. 2, in the case where F is a generalized 
random field over ~ 4  with values in H-/. We assume that  {F(x)} and { bF(a -1 (x - y)b)b -1 } 

have the same finite dimensional distributions for all ((a, b), y) E Sp(1) x Sp(1) x ~ 4  and 
we call such F an invariant scalar 3-vector (generalized) random field. From the result in 
sect. 2 we see that  the H-/-valued (generalized) random field A related to F by the equation 
OA = F is invariant, in the sense of law, under proper  Euclidean transformations.  We shall 
call such A an invariant 4-vector (generalized) random field (or also, for short, as in the 
title, a covariant random field). We have: 

T h e o r e m  2 : If F is an invariant scMar 3-vector generalized random field realized as a 
2"~-valued random variable, then OA = F has a unique solution A = S * F realized as an 
S~-valued random variable. A is an invariant 4-vector random field. • 

In what follows we further  assume that  F is independent at every point,  i.e., if we restrict 
its characteristic functional to 8 ,  then taking translation invariance into account we have 

with ¢ a continuous negative definite function on ~/. Because of its Sp(1) adjoint invari- 
ance, ¢(bAb -1)  = ¢(A), ¢ has the following L4vy-Khinchine representa t ion:  

o0~2 21~,12 ¢(~) = - 4 - : - Y ~ 0 ~  + 2 0 + 

+ i (1-t-v/Z-1A" o~ X(o,,)(1~1)-j:s~,.<,),,(d<:<), ),e 

with Sp(1) adjoint invariant Ldvy measure ~ (~(b d a b - ' )  = v(da))  and • E ~ ,  ao ,a  > O. 
We call ¢ resp. (~, a0, a, v) the Ldvv characteristics of F.  If it is possible to extend 
the domain of CF( ' )  to Z, then F is realizable as a 27'-valued random variable. To 



75 

this end we assume that  ¢(~)  = 0 {]$l~ +e) as ,k --~ 0 for some ¢ > O. Indeed under 
/ k 

this assumption the characteristic function CF(') defined on 2" is uniquely determined by 

exp ¢ ( ~ ( x ) ) d x )  ,~  E S, and consequently the I ' -va lued  random variable F is 

uniquely characterized by the $ '-valued random variable e* o F.  For we see from Sobolev§ 
inequality that  

{// I~(y)l dy p ~ ~ ]]S*~(x)]]L~ < r 2 ] x _ y ] 3  dx)  < C [l lln,, 
4 1 1 1 

- + 
P> 3 ' q .  p -4" 

T h e o r e m  3 : Let F be a translation invariant 2~/-valued generalized random field over 
2~ 4 independent at every point with L~vy characteristic ¢. Then  F has the properties as 
in Theorem 2 and A solving OA = F has a distribution given by : 

In part icular  A is an invariant 4-vector generalized random field. If the Ldvy measure ~ has 
P 

the p-th moment ,  i.e. J la]Pu(dp) < c~ for p = 2, 3 , . . . ,  then A also has the p-th moment  

Z [(~1, A ) . . .  (~p, A)] , e $ ,  

as a continuous linear functional on $®P . 

We call such F with the properties in Theorem 3 an invariant scalar 3-vector generalized 
random field of the infinitely divisible type. 
Concerning reflection invariance of A, the situation is ut ter ly  changed according to whether 
F is Gaussian distr ibuted or not. By a reflection we mean the following 2~2-action on 
covariant 4-vector fields : 

p : A(x) , - A ( - ~ . )  , x e ~ : l  4. 

If A is p-invariant as well, then A is invariant under full Euclidean transformations.  Before 
going into general cases, we first note that  A is invariant under  the reflection p when ¢(,k) 
depends only on ~0 = Re ~, i.e., a = 0 and v is supported by ~ \ { 0 }  = {a E H-/× ; I m  a = 
0}. Indeed since the operators g *.  and div • commute with p, we have 

- R e  $ * p~(x) = Re 0g * p~(z) = g * Re 0 (p~(x)) 

= g • div p~(x) = - R e  S * ~(-~)  

for x E 2F/4 , ~ E S, and therefore 
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We shall now discuss the case of a pure Poisson source, i.e., a0 = a = 0 and v # 0. We 
assume that  v has a compact support in g_/x and fl = 0 for simplicity. Let {(hi, xi)}i°°=~ be 
the Poisson point process on ~/-x x ~ '  with Ldvy measure v(da)® dx, then F is realizable 
as an g-/-valued random measure over ~t~4 by using {(Oti,Xi)}i=l:°~ 

o o  

F(x)  = Z a i 6 { ~ , } ( x )  
i = 1  

and therefore A solving OA = F one has the following representation : 

oo X - -  X i 

A(~) = S ,  F(~) = ~ : ~ - _  7,1" "' 
i----1 

We now see what happens if we perform the reflection p. Because of the invariance of the 
~, o o  o o  

L:vy  measure u(da)®dx  the law of { ( ~ / , -  i)}/=1 is equal to that  of {(hi, xi)}i=l, so that 
we have 

o o  

Z Z (-,~ - x~) 00 '~ : 1 ~  - ( - ~ i ) l '  : F ; -  ;,1 ~ ' pA(x) = - A ( - ~ )  = - ~i = = ai 
i=1 r 2 1  - ~ - xi[" i = a  i = 1  

where d stands for the law equivalence. Suppose that  pAd=A, then OpAdOA = F. However 
this does not hold unless I m  al = 0 Vi a.s., since it follows from the definition of S that  

OpA( x ) d=O 
i = 1  
o o  X - -  X i  ~ oo 

i----1 

and hence there are subsets of S '  which have zero measure for O(pA) and measure 1 for 
F.  Hence A in the pure Poisson case is not p-invariant, unless I m  ai = 0 Vi a . s . .  

Let us look as a contrast to the case F Gaussian, i.e. v = 0, and see how one recovers the 
reflection invariance. We have 

m, Is* ¢(x)l 2 dx = (Og • ~, Og • ~) = - ( g ,  ~, OOg • ~) 

= (9 .~ ,~)  

= [ 9(~ - v) ~(~) dxdy 
J 

and thus we have 

/ Is p¢(x)l 2 d x = /  IS*¢(x)f2dx ¢ ~ S -  
t 

4 J . ~ 4  

Combining this with the fact R~ ~ * p~(x) = Re ~ * ~(-~) we get 

This implies CA(pC) = CA(f),  ¢ E S, as far as v vanishes. This fact is a striking contrast 
to the case of a pure Poisson source. We summarize these results in the following 
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T h e o r e m  4 : Let F be an invariant scalar 3-vector generalized random field of the 
infinitely divisible type. Then A solving OA = F is p-invariant iff the LSvy measure v 
associated with F is supported by ~t\{0}. 

From the point of view of the Eucl idean field theory, A for fl = 0 , a0 = a = 1 , v = 0 
corresponds to the free electromagnetic potential  field in the Feynman gauge and A for 
fl = 0 ,  a0 = 0 ,  a = 1 , v = 0 corresponds to that  in the Coulomb gauge. 

4. Some further  propert ies  of  the  cons truc ted  random fields 

It is well known that  the passage from Euclidean fields to relativistic fields is possible in 
general situations where the Osterwalder-Schrader (reflection) positivity (see e.g. [G3]) 
holds under  t ime reversal p. In the following we shall first see how we can construct 
from A an Osterwalder-Schrader ( -  O.S.) positive field by taking into account the gauge 
invariance of the underlying equation OA = F (if A is a solution, then A + v~X with X 
harmonic, i.e. A X = 0, also solves OA = F )  in the Gaussian case, v = 0 in the notat ion 
of section 3. Let 8dr be the subspace of 8 consisting of all ~ with R e  O~ = div ~ = 0. 
We note that  Sdf is a Euclidean invariant test function space and {(~,A) ; ~ E Sdf)  is a 
family of gauge invariant random variables, which we shall call the Euclidean transversal 
field with the gauge potential  A. Since Re  S * ~  = Re  g , O ~  = 0 for ~ E 8df, the cova~-iance 
functional of the transversal field is equal to 

whatever the parameter  a0 is. Suppose that  ~ E Sdl has its support  in J~t+ x ~t  3. By using 
the partial  Fourier transformation, we have 

oo 0 dk= . 

Next we apply the integration by parts formula to the dr-integral, then, since div ~ = 0, it 
follows that  

/0 O0 /0 00 e-lr, lt~o'~,.)(~)dt = _ v r z i  e-lkl I k l - l k .  ((t, .)(g)dt 

and similary 

S~ L 0° ~ i~ --~ A 0 elr, i,(p()'~s, .)(-~)ds = - v C i  e-lkl ' lk l-~k • ~'(s, . ) ( - ~ ) d s .  
O0 

Hence we obtain the positivity 

(¢'P¢) = i . .  .-i,i,¢(,,.)(k)a, _ L e-I'l'iki-'k'¢("')(k)d' 2--i  
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This implies the O.S.-positivity of the transversal field : Vzi EaT, i = 1 , . . . ,  n 

z i 2 j E  [eVrZ-f(~"A) e -vrZY(~j'pA)] ~ 0 , ~j E ,.qdf , supp  [~j] C ~ +  × .g~ 3 . 
i,j=l 

As usual as we obtain the physical Hilbert space 7"l spanned by 

"{evrZY(~'A) ; ~ E Sd$, supp [~] C ~ +  X ~ a }  with the inner product naturally introduced 

by the O.S.-positive condition and the symmetric contraction semigroup acting on 7~, 
which is determined by 

E [eX/-Z-f(5,r-,A) e-v~-f(LpA)] , 

where {r,} is the shift along the x0-axis : v tA(x )  = A(xo - t, ~). 
The negative H of the generator of the aboVe semigroup is the physical energy operator. 
Using this operator we can construct relativistic potential fields as operator-valued distri- 
butions (with test functions in Saf). These fields can be identified with the electromagnetic 
free potential fields. 

R e m a r k  1 : It is possible to show that above Euclidean transversal electromagnetic 
potential fields {(~, A>} have the Markov property with respect to arbitrary open subsets 
of ~4,  in the sense that, extending (~, A) to all ~ E S' with (~, ~) < co and denoting by 
~ h  -- a ((~, A>; ~ E 8',  (~, ~) < co, div ~ = 0, supp [~] C A) V A/" the a-algebra generated by 
the fields in the Borel region A, and the zero measure sets .hf (with respect to the measure 
associated with A), then for any open D C ~ 4 ,  ~ D  is conditionally independent of ~D* 
given ~-,OD, where / )  is the closure of D, D c - ~:~4 _ D,  OD is the boundary of D. 
This is proven using the Fock space or Wiener-chaos decomposition of 7"/. For some related 
discussions see e.g. [LS] and references therein. 
It is also known that the Markov property holds even for { (~, A) }, with ~ not restricted to 
be in Sdf ("non transversal fields "), provided one takes the Feynman gauge/~ = 0, a0 = 
a = 1, u = 0. In fact this holds also for any Gaussian field defined by 

\ ] 

with 

(with ~ the Fourier transform of ( and c the ratio ~o/a in the notation of section 3). ¢ = 1 
corresponds to Coulomb gauge, where one only has the Markov property when restricting 
( to be in Sdf. 
That even in the non purely Ganssian case u ¢ 0 one should still have Markovian properties 
is suggested by the fact that 0 is a first order partial differential operator. However this is 
not yet fully mathematically settled. One difficulty is due to the bad spectral properties 
of 0 -1 (OA = F being a "zero mass" equation). 
In related positive mass equations it is possible to prove the 0-Markov property in the sense 
of Kusuoka [K], see [I]. Let us also remark that Surgailis has discussed related problems 
in the case where ~4  is replaced by _~2, see [Su2]. 
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Remark 2 : As remarked in [AHK3], it is possible to associate to the quaternionic valued 
field A in the general case, a component wise 3-form w = (w#, # = 0, 1, 2, 3). 

In fact let ao =- A ,  al -- - i A ,  a2 = - j A ,  a3 = - k A .  Then a =_ ~ a~,dx~ is also a 
# 

3 

quaternionic valued 1-form. We have ~ 0 r a~ = OA = F. 
/~----0 

Let w be the Hodge dual of a, then dw = F, in the sense that dwt, = F#,  # = O, 1, 2, 3, 
where w~ is looked upon as a 3-form over/R 4 and F ,  is looked upon as a 4-form over htt 4. 
dw = F can be written as w(OB) = F(B) ,  for any measurable B C ~4,  where by definition 
w(OB) = fB dw (in analogy with the corresponding formulae which hold when w and B 
are smooth), w is then a Markov Euclidean invariant cosurface in the sense of [AHKH1], a 
stochastic integral in the sense of [AHKH2]. In [AHK3] the relation dw = F is extended to 
the case where the w~ are 3-forms with values in a Lie algebra g containing that of U(2). 
w is then a g-valued Markov cosurface. 

Remark 3 : All considerations of this section, with invariance properties suitable reinter- 
preted, can also be made for the case where the region ~4 on which the fields are defined is 
replaced by an open domain B with boundary OB. Let in fact (F ,  PB) be the generalized 
random field defined by 

Ep~(e'/-~(~'F))=exp(-f~ ~p(~(x))dx) ,  with ¢ as in Theor. 2. Let Ou be defined by 

closure in L2(dx) from 0 on C°°0(B ; ~tt4). Let SB be the fundamental solution to OB. SB 
has the same local behavior as S. The analogue of Theor. 2 holds then with S replaced by 
SB, yielding a solution of the equation 0B A = F. A is rotation invariant if B is rotation 
invariant. 
Let #e  be the probability measure giving the distribution of the field A. (A,#B) is a 
locally Markov field in the sense of [AHK7], [Ne]. (A, #B) converges weakly as B T ~/4 to 
(A, #), with (A, #) given by Theor. 2. 

Remark 4 : It is possible to discuss a "lattice approximation" of the field A constructed 
in Sect. 3. 
L e t / i > 0 ,  2g~= { ~ n , n e 2 g ~ . } ,  A~-=Afq2g~ for any bounded subset Aof~tt4. 
Let PA6 (') be the probability measure on/Tar h~ given by 

dPA,(F) = (Z~) -Ih'l exp(-W6(F)) 1-[ d F ( x ) ,  

xEA~ 

with 

xEAs 

with f8 a positive function on /R  4 s.t. f6(7)=f~(l~01, I~1) V ~  2R 4, 
Z6 = f~4 e-~4/~('Y)d7 < cx) and 
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exists for all A C ff~4 and is a L6vy-Khinchine function having the same properties as the 
function ¢ entering Theor. 2. 

Remark 5 : An example is given by the convolution semigroup {Pt ) , t > 0 of probabili ty 
densities associated with ¢. Namely we choose f6(7) = - 6 - 4 1 o g  {P,4(~47)616}, then 

Let us define 
d#~(A) =_- K~e -W~(°~A) 1-I dA(x) 

xEA6 

with A(x) : A~ ~ g-I, K6 a constant making d#~ into a probabil i ty measure and 06 a 
discrete version of 0. It is possible to show that  (A,#~) converges weakly as 6 $ 0 to the 
continuum limit (A, #) described in Sect. 3. 

Finally we remark that  the field (A, #) constructed from a L~vy characteristic ¢ = Cp of 
Poisson type can approximate the free electromagnetic Euclidean field arbi t rary well. 
In fact let us choose the L~vy characteristic ~r of A to be in s.t., e.g. for r0,  r > 0 : 

~,,. (l~ol, I,~l)--3 [,%o(~O)+ ,~_,-o (~o)] p(I,~l)/(8~-,,4), 
with p the restriction of Lebesgue measure to I~l = r. 
Then 

-¢( ,k)  = 3 cos,k0r0 eV/n-~lY'l~c°~°r2(sinO)dOdqa - 47rr2 / (47rr4)ro,'~° 2 
I=r 

Calling/Zr the probabili ty measure given by ¢,  we have that  (#r ,  A) converges in this case 
for r --* 0 weakly to the free Euclidean electromagnetic potential  field. This can be used 
to s tudy interactions with matter ,  see [AIW]. 
Exploiting the support  properties of A one can study local perturbat ions of the field (#p, A). 
Let v be a ~tbvalued Borel measurable function on ~ a  s.t., for I,kl ~ oo, 

4 
v(A)  = v ( l : ' l )=  O(l~,l'~), ,~ < 5 '  

v bounded on compacts. 
Let #B be as in Remark 3, with ¢ = Cp. Then 

B v ( I A ( z ) I )  dx e LI(#B),  

for any B C ~ a  bounded measurable. Thus if in addition v is bounded from below, then 

d#BV(A) =_ Z ;  1 e-  fB -(IA(*)l)d* d#B(A) , 

with ZB the normalizing constant,  is a well defined probabili ty measure. (A, #B v) is locally 
Markov. 
For v suitable, e.g. v > 0 one gets weak limits points as B ,7 ~ 4 .  
In this way we can create new locally Markov random fields, covariant under the proper  
Euclidean group. 
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F o o t n o t e s  

1) This is similar to the association of ~2  with complex numbers. Our use of quaternions 
is different from one done in a large literature involving quaternionic (and octonionic) 
Hilbert spaces for the study of elementary particle models (see e.g. [A] and references 
therein). In fact our use is more similar to the one done in relation with classical elec- 
tromagnetic fields, starting with Maxwell. Our approach has been partly announced 
in [AHK2-4]. On the basis of this announcement Osipov [O] has given an extension, 
renouncing of course associativity, to 8-space-time dimensions by using octonions. 

2) Euclidean (generalized) random fields as solutions of stochastic differential equations 
have been discussed before in [AHK2,3,4]. For lower space-time dimension or Gaus- 
sian fields (free fields) see [AHK1,5], [Ca], [GuL], [Gua], [Ha], [JLM], [RS], [Su2] and 
references therein. 
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