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Abstract

Astrophysical tau neutrinos are the last unidentified standard model messenger in
astroparticle physics. Their identification can open new windows to neutrino physics,
improve knowledge about cosmic neutrino sources and even test physics beyond the
standard model. This work aims to constrain the tau neutrino component in the
astrophysical neutrino flux observed by the IceCube Neutrino Observatory. Due to
neutrino oscillations over cosmic baselines, a significant fraction of tau neutrinos
is expected regardless of the exact neutrino production scenario at cosmic sources.
The IceCube detector instruments a volume of 1 km3 to detect neutrinos interacting
with the glacial ice at the South Pole at a depth between 1450 m and 2450 m.
This is achieved by 5160 digital optical modules (DOMs), each equipped with a
photomultiplier tube detecting Cherenkov light produced by secondary particles
from neutrino interactions.

In this dissertation, a new tau neutrino identification method is developed using
state-of-the-art machine learning techniques to increase the expected tau neutrino
event rate by a factor of 2.5 over previous work. Tau neutrinos are identified by the
so-called double pulse signature, where two charge depositions can be observed in
the waveform recorded in a single IceCube DOM: the first from the hadronic cascade
induced by the neutrino interaction; the second one from a non-muonic decay of the
produced tau lepton. This signature can be resolved by IceCube at energies above
roughly 100 TeV. IceCube data recorded from 2011 to 2018 is analyzed and two tau
neutrino candidates are observed. The astrophysical tau neutrino flux normalization
is measured with a binned Poisson likelihood fit and the flux is observed to be
0.44+0.78

−0.31 10−18 GeV−1 cm−2 s−1 sr−1 at 100 TeV for an astrophysical spectral index
of 𝛾 = 2.19. The observation is found to be incompatible with the non-observation
of a tau neutrino flux at a significance of 1.9𝜎.
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Kurzfassung

Astrophysikalische Tau-Neutrinos sind das letzte nicht identifizierte Botenteilchen
des Standardmodells in der Astroteilchenphysik. Ihre Identifikation kann neue Türen
zur Neutrinophysik öffnen, das Wissen über kosmische Neutrinoquellen maßgeblich
verbessern und sogar Physik jenseits des Standardmodells testen. Ziel dieser Arbeit
ist die Untersuchung der Tau-Neutrino-Komponente des vom IceCube-Neutrino-
Observatoriums nachgewiesenen astrophysikalischen Neutrinoflusses. Unabhängig
von den genauen Prozessen der Neutrinoproduktion in kosmischen Quellen wird auf
der Erde aufgrund von Neutrino-Oszillationen über kosmische Distanzen ein signifi-
kanter Anteil an Tau-Neutrinos erwartet. Der IceCube-Detektor instrumentiert ein
Volumen von 1 km3 um Neutrinos zu detektieren, die im Eis am Südpol in einer Tiefe
von 1450 m bis 2450 m wechselwirken. Die 5160 digitalen optischen Module (DOMs)
sind jeweils mit einem Photomultiplier ausgestattet, die Cherenkov-Strahlung, die
durch Sekundärteilchen der Neutrinowechselwirkung enstehen, detektieren.

In dieser Dissertation wurde eine neue Methode zur Identifizierung von Tau-Neutrino-
Ereignissen entwickelt, die sich auf moderne Methoden des maschinellen Lernens
stützt und die erwartete Tau-Neutrino-Ereignisrate im Vergleich zu vorherigen
Arbeiten um einen Faktor 2.5 erhöht. Tau-Neutrinos werden über die sogenann-
te Doppel-Puls-Signatur identifiziert. Dabei werden zwei Ladungsdepositionen
innerhalb eines IceCube-DOMs beobachtet: Die erste stammt von der hadroni-
schen Kaskade der Neutrino-Wechselwirkung und die zweite wird durch den nicht-
myonischen Zerfall des entstandenen Tau-Leptons erzeugt. Eine Signatur dieser
Art kann von IceCube bei Energien oberhalb von 100 TeV aufgelöst werden. Die in
dieser Arbeit analysierten Daten wurden zwischen 2011 und 2018 mit dem IceCube-
Detektor aufgezeichnet und es wurden zwei Tau-Neutrino-Kandidaten gefunden.
Die Normierung des astrophysikalischen Tau-Neutrino-Flusses wurde über einen
gebinnten Poisson-Likelihood-Ansatz für einen spektralen Index von 𝛾 = 2.19 zu
0.44+0.78

−0.31 10−18 GeV−1 cm−2 s−1 sr−1 bei 100 TeV bestimmt. Diese Beobachtung ist
mit einer Signifikanz von 1.9𝜎 inkompatibel mit einem nicht vorhandenen Fluss von
Tau-Neutrinos.
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1 Introduction
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Figure 1.1: Measured and expected fluxes of natural sources of neutrinos. Shown
are the energy spectra for cosmological neutrinos, solar neutrinos, terrestrial
anti-neutrinos, the supernova 1987a, diffuse supernovae, atmospheric neutrinos,
astrophysical neutrinos, and cosmogenic neutrinos. Figure adapted from [1].

High-energy neutrino astronomy is a very young field of astroparticle physics. The
existence of high-energy neutrinos from extraterrestrial sources (cf. Fig. 1.1) was
first observed by the IceCube collaboration in 2013 [2, 3]. After that discovery,
many follow-up observations were conducted to precisely analyze the diffuse flux of
astrophysical neutrinos via different detection channels [4, 5, 6, 7, 8]. The main goal
of neutrino astronomy is to use astrophysical neutrinos to identify and examine the
sources of high-energy cosmic rays. An important step in that direction was taken
by the first discovery of a cosmic neutrino source TXS0506+056 in 2018 [9].
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1 Introduction

Neutrinos are uncharged particles only weakly interacting with matter, which makes
them a unique messenger to examine high-energy cosmic ray sources. They are
produced presumably by the decay of charged pions resulting in a flavor ratio of
𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 ≃ 1 ∶ 2 ∶ 0 at the sources. Neutrino oscillations over cosmic baselines
predict a flavor ratio at Earth of 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 ≃ 1 ∶ 1 ∶ 1. This astrophysical
tau neutrino component is unique because tau neutrino production by cosmic
ray air showers in the Earth’s atmosphere is strongly suppressed by the high
production threshold of heavy mesons that can decay into tau leptons and tau
neutrinos. Astrophysical tau neutrinos are the last undetected standard model
messenger particle and their detection would be the last missing confirmation for
the astrophysical origin of the detected high-energy diffuse flux. Astrophysical tau
neutrinos also allow us, in conjunction with a flavor ratio measurement, to explore
neutrino oscillations at new scales, reaching higher energies and larger baselines
than ever before.

Previously published IceCube analyses have found no tau neutrino candidates and
only tau neutrino flux upper limits have been measured [10, 11]. This analysis aims
to identify tau neutrino events with the so-called double pulse signature [12]. Above
energies of roughly 100 TeV, the hadronic cascade from the neutrino interaction
and the subsequent (non-muonic) decay of the tau lepton can produce two energy
depositions observed as two distinct peaks in one of IceCube’s optical light sensors.
A new method to identify tau neutrino double pulse events is developed that relies
on state-of-the-art machine learning techniques.

In this thesis, 7.5 years of IceCube data from May 2011 until December 2018 are
analyzed. A binned Poisson likelihood fit is used to constrain the astrophysical
tau neutrino flux based on different assumptions on the shape of the astrophysical
flux obtained by recent IceCube measurements. Also, a differential upper limit is
calculated to constrain the tau neutrino flux in a less model-dependent way. Finally,
a new method to assign a p-value to tau neutrino candidate events is presented.

This dissertation is structured in the following way: chapter 2 gives a summary
of some concepts of astroparticle physics, focusing on messenger particles relevant
for this tau neutrino search. The next chapter, chapter 3, introduces the IceCube
experiment and describes how the aforementioned messenger particles manifest
themselves in the detector. The tau neutrino event selection developed in this
thesis is explained in chapter 4. The applied analysis methods are presented
and the resulting sensitivity to the astrophysical tau neutrino flux is evaluated in
chapter 5. In chapter 6, the observed data sample and the resulting constraints on
the astrophysical tau neutrino flux are presented and discussed in the context of
recent IceCube measurements and current work-in-progress on astrophysical tau
neutrinos. Chapter 7 summarizes the results and gives a brief outlook.
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2 Astroparticle Physics

This chapter gives a short overview of some astroparticle physics topics, focusing on
the relevant aspects for the analysis conducted in this dissertation.

Astrophysical events can be observed via the detection of cosmic messengers: cosmic
rays, photons, neutrinos, and, only recently, gravitational waves. These messengers
can convey information about the regions and objects that produce particles and
accelerate them to the highest energies, like active galactic nuclei, gamma-ray bursts,
and supernovae. Or, in the case of gravitational wave events, information about
merger events of binary star systems can be obtained.

2.1 Cosmic Rays

The earth’s atmosphere is steadily penetrated by a flux of charged particles from
extra-terrestrial sources. The cosmic rays are composed of 90 % protons, 9 % 𝛼-
particles and heavier ionized nuclei [13]. For extremely high energy cosmic rays above
1 EeV (1018 eV), the composition differs, which is subject of ongoing research [14,
15, 16].

The all-particle cosmic ray energy spectrum was measured from energies of a few
GeV to energies beyond 100 EeV. An overview of the cosmic ray spectrum is given
in Fig. 2.1. The whole energy spectrum can be approximately described by a series
of power laws of the form 𝑑𝑁/𝑑𝐸 ∝ 𝐸−𝛾 covering different energy regions. The
spectral index 𝛾 in this approximative model is given by

𝛾 ≃
⎧{
⎨{⎩

2.7 for 10 GeV ≤ 𝐸 ≤ 1 PeV
3.1 for 10 PeV ≤ 𝐸 ≤ 1 EeV
2.6 for 10 EeV ≤ 𝐸,

for each energy region where the transition regions are called the “knee” (around
3 PeV) and the “ankle” (around 3 EeV) [13]. Charged cosmic rays are only suited in a
limited way to study their sources because they get deflected by interstellar magnetic
fields. The deflection is energy-dependent, such that only protons with energies
above 10 EeV could be used to detect close cosmic ray sources. Unfortunately, the
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2 Astroparticle Physics

flux in this energy regime is very small, due to the steep spectrum, and, additionally,
protons with energies above 6 × 1019 eV (60 EeV) are expected to be suppressed
by the Greisen-Zatsepin-Kuzmin (GZK) cutoff [17, 18]. The GZK-cutoff predicts
a limited range for ultra high energy protons due to interactions with the cosmic
microwave background (CMB). Above the GZK-cutoff energy, the center-of-mass
energy of the cosmic ray proton and a CMB photon is large enough to produce
a 𝛥-resonance. In this process, the protons lose some of their energy and the
𝛥+ decays into a nucleon and a pion, which can also further decay into so-called
cosmogenic neutrinos [19]. Cosmogenic neutrinos have yet to be observed, but their
flux has been constrained by IceCube [20].

Figure 2.1: All-particle cosmic ray spectrum (black line) broken down into
contributions from protons (red line), helium (dashed yellow line), the oxygen
group (green dash-dotted line) and the iron group (dotted blue line). For the
oxygen and iron group, the elementary flux is also shown without error bars. The
shaded regions represent the combination of statistical and systematic uncertainties.
This plot combines measurements from the HEAO satellite [21], PAMELA [22, 23],
AMS-02 [24, 25], CREAM-I [26], CREAM-II [27], ARGO-YBJ [28], TUNKA [29,
30], IceCube [31], KASKADE-Grande [32, 33], Telescope Array [34] and the Pierre
Auger Observatory [35, 14]. Figure is taken from [36].

The details about the origins of cosmic rays and about the processes by which
particles are accelerated to the highest energies are an active area of research (a
recent review is given in [37]). The currently most popular model for particle
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2.2 Atmospheric Neutrinos and Muons

acceleration in astrophysical environments is called diffusive shock acceleration,
which was first introduced by Fermi [38]. This is also commonly referred to as
first-order Fermi acceleration. Ultimately, the diffusive shock acceleration predicts
particle spectra of the form d𝑁/d𝐸 ∝ 𝐸−2. The softer spectrum observed for
high energy cosmic rays can be attributed to magnetic suppression [39] as well as
interactions with CMB photons and extragalactic background light (EBL) during
cosmic-ray propagation [40].

2.2 Atmospheric Neutrinos and Muons

When high-energy cosmic rays penetrate the Earth’s atmosphere, they collide with
air nuclei. As a result of the primary interaction, a multitude of particles is produced
in subsequent collisions and interactions. This process creates a cosmic-ray induced
extensive air shower. The air shower consists of a hadronic and an electromagnetic
component. The hadronic component also generates a muonic subcomponent and
gives rise to the production of neutrinos from decays of e.g. charged pions and
kaons.

2.2.1 Atmospheric Muons

Conventional atmospheric muons are produced by decays of charged pions and
kaons. These hadrons inherit the primary cosmic ray spectrum d𝑁/d𝐸 ∝ 𝐸−2.7.
Due to their rather large lifetimes of ∼ 10−8 s, they interact with the atmosphere
before decaying and losing energy in the process, which results in a much softer
spectral index of 𝛾 ≃ 3.7. Conventional atmospheric muons are often produced in
large amounts in a single shower resulting in muon bundles of up to thousands of
muons. The number of muons in an air shower is also often referred to as the muon
multiplicity.

Heavier, charmed mesons (𝐷, 𝐷𝑠, 𝛬𝑐) and unflavored mesons (e.g. 𝜂, 𝜌0) are also
produced in cosmic-ray air showers. The lifetime of charmed and unflavored mesons
is approximately four orders of magnitude smaller than the lifetime of charged pions
and kaons. This reduces the probability of energy losses drastically before decaying
into muons. As a result, the so-called prompt atmospheric muons are produced
with a spectral index of 𝛾 ≃ 2.7. The decay of unflavored mesons into muon pairs is
rather rare but counteracted by the absolute frequency with which these particles
are produced. Above PeV energies, unflavored mesons start to be the dominant
parent particle for atmospheric muons. The energy integrated flux of prompt muons
is much lower compared to conventional muons, due to the higher energy threshold
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2 Astroparticle Physics

required to produce charmed and heavy unflavored mesons. But, because of the
harder energy spectrum, the prompt flux becomes dominant around 600 TeV.

Atmospheric muons are an important background to neutrino events for underground
neutrino detectors. Muons trigger the IceCube detector at a rate of about 2700
events per second. The muon flux can accordingly be measured with high precision
(cf. [41]). The results are consistent with an 𝐸−3.7 spectrum and show an indication
for a prompt component at the highest energies, albeit with large uncertainties.

2.2.2 Atmospheric Neutrinos

Similarly to atmospheric muons, atmospheric neutrinos can be divided into a
conventional and a prompt component. Conventional atmospheric neutrinos originate
from the decays of kaons, pions, and subsequent muon decays.

𝐾+, 𝜋+ → 𝜇+ + 𝜈𝜇

𝜇+ → 𝜈𝜇 + 𝑒+ + 𝜈𝑒

This list of decays is not comprehensive, and charge conjugated processes are to
be considered as well. These neutrinos follow a similar spectrum as conventional
atmospheric muons of 𝐸−3.7 due to energy losses undergone by the pions and kaons
before their decay. The muon decay becomes less relevant at high energies, as
the fraction of muons decaying before reaching the surface gets smaller. Thus the
majority of electron neutrinos are produced in kaon decays.

In contrast to prompt atmospheric muons, prompt atmospheric neutrinos are only
produced in the decay of charmed mesons (𝐷0, 𝐷±). Due to similar branching ratios
of charmed mesons decaying into electron and muon neutrinos the expected flavor
ratio is roughly 𝜈𝑒 ∶ 𝜈𝜇 ≃ 1 ∶ 1 [42].

𝐷𝑠 mesons can also decay into a tau lepton and a tau neutrino but these are only
rarely produced, resulting in a prompt tau neutrino flux of smaller than 10 % of
the prompt muon or electron neutrino flux at energies above 1 PeV (cf. Figure 2.2).
The prompt atmospheric muon and electron neutrino fluxes are already extremely
hard to detect because they are dominated by astrophysical neutrinos, which will
be introduced in section 2.3. The flux of prompt electron and muon neutrinos has
not yet been observed [6, 4], so the prompt tau neutrino flux is usually deemed
negligible.

Measurements of the neutrino flux over seven orders of magnitude are presented
in Figure 2.3. It shows mostly measurements of the atmospheric muon neutrino
flux. At energies above 100 TeV, the fluxes show a change in the spectrum, which
is described by an additional component: astrophysical neutrinos.
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2.2 Atmospheric Neutrinos and Muons

Figure 2.2: Atmospheric lepton flavor ratios at Earth’s surface relative to the muon
neutrino flux for vertically down-going (solid) and horizontal particles (dashed).
Figure is taken from [43].
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2 Astroparticle Physics
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Figure 2.3: Measurements of neutrino fluxes over seven orders of magnitude in
neutrino energy. Data points with error bars show unfolding flux measurements
from Fréjus [44], ANTARES [45] and IceCube for muon neutrinos [46, 47, 48] and
electron neutrinos [49]. Solid and dashed lines with error bands depict different
forward folding measurements. The forward folding measurements are either
combining a measurement of the atmospheric neutrino flux with the astrophysical
neutrino flux (cf. section 2.3) [50] or measure the astrophysical flux only [51, 52].
Figure is taken from [53].
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2.3 Astrophysical Neutrinos

2.3 Astrophysical Neutrinos

Neutrinos from astrophysical sources of cosmic rays can be produced by the same
mechanisms that produce neutrinos in the Earth’s atmosphere. Typically, neutrinos
are either produced by mesons created in inelastic hadronuclear collisions (𝑝𝑝-
interactions) or by interactions of cosmic rays with radiation fields (𝑝𝛾-interactions).
Possible candidates for neutrino sources are numerous and will not be discussed
here. An overview of possible neutrino sources is given in [54].

In the case of 𝑝𝑝-interactions, a high energy proton accelerated in the source or
its vicinity scatters inelastically with ambient hadronic matter to produce mesons,
similarly to the processes described for the meson production in cosmic ray air
showers.

𝑝 + 𝑝 → [𝜋0, 𝜋+, 𝜋−] + 𝑋 (2.1)

In contrast, for photohadronic interactions (with CMB photons, EBL photons or
photons created by the source itself) the most dominant process of pion production,
via the 𝛥+-resonance, does not produce negatively charged pions:

𝑝 + 𝛾 → 𝛥+ → {
𝜋+ + 𝑛
𝜋0 + 𝑝

(2.2)

Both neutrino production scenarios also produce high energy photons through
𝜋0 → 𝛾 + 𝛾. Neutrinos produced by pion decays like this carry an average energy of
approx. 5 % of the primary proton (𝐸𝜈 ≃ 0.05𝐸𝑝). In general, the source density
is expected to be small compared to the density of the Earth’s atmosphere and
thus pions are not expected to lose a significant amount of their energy before
decaying. As a result, the neutrino flux is expected to follow a power law similar
to the expected cosmic ray flux at the source (albeit shifted to lower energies).
For sources that predominantly produce neutrinos via photohadronic processes
(e.g. radio-loud AGN), the resulting neutrino spectrum might be steeper than the
proton spectrum [55].

Usually, neutrinos and anti-neutrinos are expected to be created equally by assuming
a similar production rate of positive and negative charged pions. This only holds
for 𝑝𝑝-interactions, while for 𝑝𝛾-interactions a larger fraction of electron neutrinos
compared to electron anti-neutrinos is produced. In general, IceCube can not
discriminate between neutrinos and anti-neutrinos. The exception is the Glashow
resonance [56], which only occurs for electron anti-neutrinos at energies around
6.3 PeV. This process theoretically allows to probe neutrino production scenarios,
but significant conclusions are expected to require large exposures [57].

9



2 Astroparticle Physics

2.3.1 Flavor Ratio and Neutrino Oscillations

The neutrino flavor ratio predicted by neutrino production through pion decays at
the source 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 2 ∶ 0. This implicitly assumes that the muons produced
in pion decays quickly decay before losing a significant amount of their initial energy.
If the muon interacts with matter or strong magnetic fields before decaying, the
muon decay will only produce a low energetic pair electron and muon neutrino
resulting in a flavor ratio of 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 0 ∶ 1 ∶ 0. This is often referred to as
the muon-damping scenario [58]. The next possible scenario is assuming a beam
of high-energy neutrons from the source that will also produce a flux of electron
anti-neutrinos through 𝛽-decays and thus a flavor ratio of 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 0 ∶ 0 [59].
In the charm production scenario, equal amounts of electron and muon neutrinos
are produced by the decay of charmed mesons: 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 1 ∶ 0. This is
comparable to the production of prompt neutrinos in Earth’s atmosphere. This
scenario might be relevant at the highest energies if the flux of conventional neutrinos
is suppressed by hadronic and radiative cooling [60]. An important implication of all
these production scenarios is that neither case predicts any tau neutrino production
at astrophysical sources.

However, the neutrinos produced at astrophysical sources oscillate between flavor
eigenstates on their way to Earth due to non-vanishing mass eigenstates. This
paragraph follows the explanations and definitions from [61]. Flavor and mass
eigenstates of neutrinos are connected via the Pontecorvo-Maki-Nakagawa-Sakata
mixing matrix (PMNS matrix) 𝑈

|𝜈𝛼⟩ = ∑
𝑗

𝑈∗
𝛼,𝑗 ∣𝜈𝑗⟩ (2.3)

with the three flavor eigenstates 𝛼 = 𝑒, 𝜇, 𝜏, the mass eigenstates 𝑗 = 1, 2, 3, and
elements of the PMNS matrix 𝑈𝛼,𝑗 = ⟨𝜈𝛼|𝜈𝑗⟩. For a fixed propagation length 𝐿 the
flavor eigenstate takes the form |𝜈𝛼(𝐿)⟩ = ∑𝑘 𝑒−𝑖𝐸𝑘𝐿𝑈∗

𝛼,𝑘 |𝜈𝑘⟩. The probability of a
neutrino being produced in flavor state 𝛼 and being observed in flavor state 𝛽 after
propagating the distance 𝐿 is given as 𝑃𝛼,𝛽 = ∣⟨𝜈𝛽|𝜈𝛼(𝐿)⟩∣2.

Over distances larger than the size of the solar system the oscillating interference
terms average out to give the propagation matrix

P𝛼,𝛽 = ∑
𝑗

∣𝑈𝛼,𝑗∣
2 ∣𝑈𝛽,𝑗∣

2 . (2.4)

This matrix can be used to propagate flavor ratios injected at the source to the
corresponding flavor ratio that can be observed on Earth ⃗𝛷𝑓 = P ⃗𝛷𝑖, where the
flavor ratio at the source ⃗𝛷𝑖 and the flavor ratio at Earth ⃗𝛷𝑓 are normalized such
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that || ⃗𝛷||1 = 1. In the tri-bimaximal mixing (TBM) model1 [63] the propagation
matrix is given by

PTBM = 1
18

⎛⎜
⎝

10 4 4
4 7 7
4 7 7

⎞⎟
⎠

. (2.5)

The expected flavor composition at Earth, given the previously discussed neutrino
production scenarios at astrophysical sources and the propagation matrix PTBM,
are presented in Table 2.1. Although no scenario predicts tau neutrino production
at the source, due to neutrino oscillations, regardless of the scenario, a significant
tau neutrino fraction is expected at Earth. The pion production scenario is usually
considered as the benchmark model, predicting an almost equal flavor ratio of
𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 1 ∶ 1. Measurements of the astrophysical neutrino flux with IceCube
usually assume an equal flavor ratio and quote a per-flavor flux normalization.

Table 2.1: Flavor ratio of astrophysical neutrinos injected at the source ⃗𝛷𝑖 and
the resulting observable flavor ratio at Earth ⃗𝛷𝑓 based on the TBM model for
different neutrino production scenarios.

Scenario ⃗𝛷𝑖 = (𝛷𝑖
𝑒, 𝛷𝑖

𝜇, 𝛷𝑖
𝜏) ⃗𝛷𝑓 = (𝛷𝑓

𝑒, 𝛷𝑓
𝜇, 𝛷𝑓

𝜏)

Pion decay 0.33 ∶ 0.67 ∶ 0.00 0.33 ∶ 0.33 ∶ 0.33
Muon damping 0.00 ∶ 1.00 ∶ 0.00 0.22 ∶ 0.39 ∶ 0.39
Neutron decay 1.00 ∶ 0.00 ∶ 0.00 0.56 ∶ 0.22 ∶ 0.22
Charm production 0.50 ∶ 0.50 ∶ 0.00 0.39 ∶ 0.31 ∶ 0.31

2.3.2 Astrophysical Neutrino Flux Measurements

The first evidence for the proposed astrophysical neutrino flux was observed with
the IceCube detector in 2013 [2], in the form of a diffuse flux measurement. This
observation has been followed up by many analyses utilizing different detection
channels (muon neutrinos, cascades, and starting events) to analyze the spectrum
of astrophysical neutrinos with increasing precision. So far, all measurements are
consistently described with an unbroken power law (𝛷𝜈(𝐸) = 𝛷0(𝐸/100 TeV)−𝛾).
However, recent measurements still have found a range of different spectral indexes,
with 𝛾 = 2.19 for upgoing muon neutrinos [4], 𝛾 = 2.53 for contained cascade
events [6] and 𝛾 = 2.92 for high energy starting events [52] (all of these measurements

1The TBM model is an approximation to flavor mixing, which does not do current precision
measurements of oscillation parameters justice, but it is sufficient to illustrate the effects of
neutrino oscillations over astronomical distances in the context of this dissertation. More precise
calculations regarding flavor ratios of astrophysical neutrinos can be found in [62].
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can be compared in Fig. 2.3). The origin of this discrepancy between the different
detection channels remains to be understood fully, along with a complete picture of
the production of astrophysical neutrinos.

The astrophysical flux is largely observed as a diffuse flux in the sense that the
arrival directions of astrophysical neutrinos are found to be isotropic. The sources
of astrophysical neutrinos have not yet been identified with one exception. In
2018, the IceCube collaboration presented 3.5𝜎 evidence for neutrino emission from
the direction of the blazar TXS0506+056, which was prompted by observing a
high-energy neutrino event coincident in time and direction with a gamma-ray flare
from the same position in the sky [9].

12



3 The IceCube Neutrino Observatory

Figure 3.1: Schematic view of the IceCube Neutrino Observatory.

This chapter will briefly describe the components of the IceCube Neutrino Observa-
tory: the South Pole ice used as the detection medium (section 3.1), the process
of data acquisition (section 3.2), and the event topologies relevant for this work
(section 3.4).

The IceCube Neutrino Observatory is located at the geographic South Pole and can
be divided into three parts: the IceCube detector [64], DeepCore [65] and IceTop [66]
(see Figure 3.1). The main part, the IceCube detector, is deployed at a depth between
1.5 km and 2.5 km and consists of 4860 digital optical modules (DOMs). The full
detector configuration encompasses 86 strings (including 8 DeepCore strings) with 60
DOMs on each string. The strings are arranged in a triangular grid with a hexagonal
footprint, a string-to-string distance of about 125 m and a vertical spacing of 17 m
between DOMs, instrumenting a total volume of 1 km3 of glacial ice. DeepCore is
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a small infill array of 8 strings with a denser string, and a denser DOM spacing
to mainly target neutrinos with energies down to a couple GeV to increase the
sensitivity to e.g. atmospheric neutrino oscillations [67]. Each DOM contains a
10 inch Photomultiplier (PMT) and digitizing electronics protected from the pressure
of the surrounding ice by a glass sphere.

3.1 Optical Properties of the South Pole Ice

IceCube’s detection medium is the South Pole ice. The South Pole ice (SPICE)
model [68, 69, 70] is the most frequently used ice model within the IceCube collabora-
tion. The optical properties of the ice are modeled with depth-dependent absorption
coefficients and effective scattering coefficients. These parameters are measured
with in-situ calibration light sources. Three versions of this ice model are commonly
used: SPICE Mie [68], SPICE Lea [70] and the latest version SPICE 3.2. The first
iterations of the SPICE model described the individual ice layers as completely
symmetric and isotropic. SPICE Mie extended the ice model to include calculations
based on Mie scattering [71]. Additionally, it was found that the ice layers are not
perfectly horizontal but rather slightly tilted [69], which is also included in this
model. The model SPICE Lea incorporates evidence that the ice is not isotropic
with respect to the direction in which the photons propagate. The latest version of
the ice model, SPICE 3.2, mostly improves the model by using additional data of
the in-situ calibration light sources and an updated description of the ice tilt. The
latest model also allows for variations in the relative DOM-to-DOM efficiencies.

At a depth near 2000 m the absorption and scattering coefficients are increased due
to an increased dust concentration. This region is referred to as the dust layer. This
can be seen in Fig. 3.2 alongside the general depth dependence of the absorption
and scattering coefficients.
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Figure 3.2: Fitted values of the depth-dependent absorption coefficients (top)
and effective scattering coefficients (bottom) of the ice models SPICE Mie and
SPICE Lea for photons with a 400 nm wavelength. The y-axis on the right side of
the plots shows the absorption length and the effective scattering length in meters
respectively. Figure is taken from [70].
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3.2 Detection Principle and Data Acquisition

The detection of particles within the IceCube detector happens indirectly via the
Cherenkov effect [72]. A high-energy charged particle produces so-called Cherenkov
radiation when propagating through a transparent dielectric medium with a velocity
that is larger than the speed of light in this medium. The produced radiation falls
within the visible spectrum and can be detected by IceCube DOMs.

The basic detection unit in IceCube is called a hit, which is defined as the photomul-
tiplier signal exceeding a trigger threshold of 0.25 PE (photoelectrons). The pulse
shape caused by a hit is called a waveform. The digitization of signals (triggered
hits) is done with the waveform digitizers on the DOM mainboard. Each DOM
has two types of digitizers: the Analog Transient Waveform Digitizer (ATWD) and
the fast Analog to Digital Converter (fADC). To minimize the DOMs dead time
each DOM contains two ATWDs so that the first one can be busy digitizing signals
while the other one records new signals. The ATWD produces waveforms with
a duration of 422 ns and a time resolution of 3.3 ns resulting in a waveform with
128 time bins. The fADC has a smaller time resolution of 25 ns but is capable of
recording waveforms with a duration of 6.4 µs. The ATWD also has a dynamic
range which is controlled by three different gain channels (multipliers of 16, 2 and
0.25).

If a pair of nearest DOMs or next-to-nearest DOMs on a string is hit within a time
frame of 1 µs, the hits are considered local coincidence hits (HLC). For these HLC
hits, the full waveform information is sent to the IceCube Lab on the surface. An
IceCube event is defined via the simple multiplicity trigger (SMT). The SMT requires
at least 8 HLC hits within a time period of 5 µs anywhere in the detector. The
event rate at trigger level is determined by the atmospheric muon flux, resulting in
a median rate of ∼ 2700 events per second. This data is processed further with filter
algorithms selecting events based on fast reconstruction for, e.g., arrival direction
and energy, which reduce the data volume from about 1 TB/day at trigger level to a
volume of about 100 GB/day, which can be transmitted with the satellite bandwidth
available to the IceCube collaboration to the corresponding data centers. [73, 74]

3.3 Neutrino Interactions

Neutrinos cannot be detected directly, but only via secondary particles produced in
neutrino interactions with matter via the weak force. For neutrino energies relevant
in this work, 𝐸𝜈 > 1 TeV, the interaction is described as deep inelastic neutrino-
nucleon scattering. The neutrino interacts with a nucleon either by exchanging
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a charged 𝑊 ±-boson (charged-current (CC) interaction) or a neutral 𝑍0-boson
(neutral-current (NC) interaction):

𝜈𝑙 + 𝑁 → 𝑙 + 𝑋 (3.1)
𝜈𝑙 + 𝑁 → 𝜈𝑙 + 𝑋. (3.2)

In a NC interaction (eq. 3.2) the neutrino transfers a fraction of its energy to the
nucleon producing a hadronic cascade 𝑋. CC interactions (eq. 3.1) produce the
same hadronic cascade at the interaction vertex. Additionally, the neutrino 𝜈𝑙 is
transformed into a charged lepton 𝑙 of the same flavor. Interactions of different
neutrino flavors thus produce leptons of the corresponding flavor in CC interactions,
which results in distinguishable signatures in the IceCube detector (cf. section 3.4).

This work relies on the deep inelastic scattering cross section calculated in [75]. The
cross section is presented in Figure 3.3 separately for CC and NC interactions and
for neutrinos and antineutrinos. The cross section rises with energy, which results
in an increased shielding effect by the Earth for up-going neutrinos at very high
energies. This effect is also zenith-angle dependent, as an increased zenith angle also
increases the overburden. The survival probability for a zenith angle of 𝜃 = 180°
and a neutrino energy of 𝐸𝜈 = 1 PeV is reduced to about 1 % [76]. This effect is
slightly mitigated for tau neutrinos due to the fact that the dominating energy loss
for a tau is the decay, so each tau neutrino interaction just produces a less energetic
tau neutrino (and in leptonic decays also an electron neutrino or a muon neutrino)
instead of being fully absorbed by the Earth.

As shown in Figure 3.3, between ∼ 5 PeV and ∼ 7 PeV, the deep inelastic scattering
cross section for antineutrinos is dominated by the interaction via the Glashow
resonance (GR) [56]. This process describes the resonant scattering of electron
antineutrinos with stationary electrons. This happens when the center of mass
energy of electron and neutrino coincide with the rest mass of the 𝑊 −-boson, which
happens at a neutrino energy of 𝐸𝜈 ≃ 6.3 PeV.
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Figure 3.3: High energy (anti-)neutrino cross section as a function of energy.
Values for CC and NC interactions are taken from [75]. The cross section for
resonant ̄𝜈𝑒 + 𝑒 scattering (Glashow resonance) is described in [56].
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3.4 Event Topologies

IceCube events can be grouped into different event topologies based on the hit
patterns they produce in the detector. Events can be visualized as shown in
Figure 3.4. Each hit is depicted as a sphere around the DOM that was hit with a
size corresponding to the amount of detected light. The color indicates the arrival
time of photons ranging from early (red) to late (green/blue).

(a) Single cascade. (b) Track.

Figure 3.4: Examples of events for a single cascade and a starting muon track
topology in IceCube data. Event views are taken from [2].

(a) Simulated double cascade event with
a tau neutrino energy around 500 TeV
and a tau length of 63 m. The gray
spheres indicate the neutrino interaction
vertex and the tau decay vertex.

(b) Simulated double bang event with
a tau neutrino energy of approximately
14 PeV and a tau length of 346 m.

Figure 3.5: Examples of events for simulated charged current tau neutrino inter-
actions.

Single cascade events are produced by NC neutrino interactions from all flavors and
by electron neutrino CC interactions. In any of those cases, a hadronic cascade
is produced in the interaction. In the case of an electron neutrino CC interaction
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an additional electron (or positron if an antineutrino is interacting) is produced.
Electrons and positrons have very short radiation lengths and thus deposit their
energy over a distance of a few meters. Therefore, hadronic and electromagnetic
cascades are effectively point-like light sources in the detector when compared to
the inter string spacing of 125 m. Ultimately, these single cascade events result in
an almost spherical light pattern in the detector (cf. Fig. 3.4a).

High energy muons can travel up to several kilometers through media such as air or
ice [77]. Thus, they can traverse the IceCube detector while emitting Cherenkov
light and producing stochastic energy losses along the way. This results in a light
pattern resembling the muon track (cf. Fig. 3.4b). Tracks can originate from two
types of events: atmospheric muons penetrating the detector or muon neutrinos
undergoing a CC interaction and producing a muon in the process. In the latter
case, if the interaction happens inside the detector, an additional hadronic cascade
is produced at the interaction vertex producing a hybrid topology called a “starting
track”.

Finally, tau neutrinos can also produce a number of signatures that can theoretically
be distinguished from the usual single cascades and tracks. After the initial hadronic
cascade in a tau neutrino CC interaction, a tau is produced. The tau propagates
through the detector until it decays after an average tau length of around ℓ𝜏 ≃
50 m⋅𝐸𝜏/PeV. Due to the large mass of the tau of 1.777 GeV ([42]), the most dominant
energy loss is its decay and thus the actual tau track is not as bright compared to a
muon with similar energy [77]. When decaying the tau produces either a track or an
additional cascade based on the decay products. The relevant decay channels are

𝜏− → 𝜇− + ̄𝜈𝜇 + 𝜈𝜏 𝐵 = 17.39 %
𝜏− → 𝑒− + ̄𝜈𝑒 + 𝜈𝜏 𝐵 = 17.82 %
𝜏− → ℎ− + 𝜈𝜏 𝐵 = 64.79 %

where 𝐵𝑖 = 𝛤𝑖/𝛤 is the respective branching ratio and ℎ− denotes the decay into
any combination of hadrons. In the case where the tau decays into a muon, the
overall signature will just be a starting track changing its brightness after the decay.
The more interesting case for this work is the decay into either hadrons or into
an electron, which produces a second cascade. The signature produced by these
double cascades strongly depends on the tau length. At energies below ∼ 100 TeV,
the double cascades are not resolvable as such and just manifest themselves as a
single cascade in the detector, such that it is impossible to distinguish them from
NC neutrino interactions and CC electron neutrino interactions. When looking
at higher energies, the probability either observing a double pulse in a waveform
(due to light from both cascades hitting one DOM with sufficient time separation)
or being able to reconstruct the event as a double cascade (cf. section 4.3.1) rises.
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When both cascades are separated spatially in a way such that two cascades are
visible, the signature is referred to as a double bang. Figure 3.5 shows two sample
events created by a charged current tau neutrino interaction followed by either a
hadronic or an electronic decay. Technically, both events are double cascade events,
but in the case of the 14 PeV event (Fig. 3.5b), a double bang is clearly visible. A
simulated, double pulse waveform is presented in Figure 3.6 and compared to a
waveform from a single cascade event.

A larger variety of possible tau neutrino signatures in IceCube is described in detail
in [12].

0 100 200 300 400

Time / ns

0

500

1000

1500

2000

2500

3000

3500

4000

A
T

W
D

V
ol

ta
ge

/
m

V

Single cascade waveform

Double pulse waveform

Figure 3.6: Comparison of a double pulse waveform created by a simulated
charged current tau neutrino event (with a tau length of approx. 30 m) and a single
cascade waveform from a simulated neutral current neutrino interaction.

21



22
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Previous chapters were used to motivate the event selection and analysis conducted
in this thesis, while also providing the necessary physics concepts to understand
the reasoning applied here. The goal of this event selection is to obtain a tau
neutrino-enriched sample, containing a high fraction of charged current tau neutrino
events in which the tau decay produces a second cascade.

In this dissertation, data recorded by the IceCube detector in a time period between
May 2011 and December 2018 is analyzed. During the whole period, the detector was
operating in the 86-string configuration. The event selection criteria are developed
and optimized with simulations only. Data is only used during the development
of the event selection to check for disagreements between data and simulations.
Only a 10 % subset of the data (burnsample) is used to avoid the introduction of
a selection bias from the analyzer. This blind analysis policy is common in the
IceCube collaboration and part of the internal review process. Most Figures in this
chapter show the full amount of data used in this analysis, although, during the
development of the event selection only the burnsample was available.

This event selection is divided into two parts. The first part describes the selection
of double pulse waveforms, which is done first on low-level data (section 4.2). Events,
that can produce double pulse signatures, are selected, while single cascade events
originating from charged current electron neutrino interactions or neutral current
neutrino interactions, in general, are removed from the data sample. After this
step, the sample consists of mostly atmospheric muons, or muon and tau neutrinos
interacting via a charged current interaction. Step two, described in section 4.3,
aims to select the remaining charged current tau neutrino events based on their
topological signature in the detector. The subset of remaining, dominant background
events at this stage produces track-like events, while the sought after signal events
are cascade-like. After this step, the resulting tau neutrino-enriched data sample is
inspected and key characteristics are highlighted (section 4.4).
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4.1 IceCube Simulations

All event selection steps require, besides the data recorded with the IceCube detector,
labeled events from simulations. A simulated event factors in all processes from
particle generation over propagation to the detector and particle interactions inside
the detector to the signal recorded by detector electronics. A detailed explanation
of IceCube’s simulation chain is given in section A.1. This analysis uses dedicated
simulations for each neutrino flavor, as well as CORSIKA simulation [78] for atmo-
spheric muons from cosmic ray air showers, and MuonGun [79], which allows to
replace full air-shower simulations by faster and therefore more efficient single-muon
simulations.

The simulations are usually generated following a simple unbroken power law, but
they can later be reweighted to any desired energy spectrum. The spectral index
can also be chosen in a way to maximize statistics at, for example, higher energies.
Throughout the event selection, the components are weighted in the following
way, if not stated differently. Atmospheric muons (from CORSIKA simulations) are
weighted to the spectrum described in [80]. The muons simulated with MuonGun use a
parametrized spectrum based on CORSIKA simulations using the sum of single muons
from the decays of light hadrons predicted by SIBYLL [81] and from charmed hadron
decays predicted by DPMJET [82]. The expected flux for conventional atmospheric
electron and muon neutrinos is based on the same spectrum for cosmic rays [80]
and uses a modified version of the hadronic interaction model DPMJET to calculate a
neutrino flux [83]. The prompt atmospheric component is modeled after [84]. Tau
neutrino production in the atmosphere is very rare and will thus be neglected [43, 76].
For the astrophysical neutrino flux the measurement [50] is used, which measured an
unbroken power law with a normalization of 𝛷𝜈 = 0.9+0.3

−0.27 ⋅10−18 GeV−1 cm−2 s−1 sr−1

at 100 TeV and a hard spectral index of 𝛾 = 2.13 ± 0.13. An astrophysical flavor
ratio of 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 1 ∶ 1 is assumed.

4.2 Double Pulse Selection

This section describes the selection of double pulse waveforms recorded at a respective
IceCube DOM. The starting point for this part of the event selection is called
“Level 2”. IceCube data at this level contains all triggered events and information
about which of the several online filters the respective event passed. These filters
sort events into different categories used by different types of analyses based on fast
online reconstruction algorithms. This analysis does not rely on selecting events from
a specific filter since there are no filters specifically designed to search for high energy
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tau neutrinos. As explained earlier though (see sec. 3.4), the energy required to
resolve double cascades as two separate pulses with IceCubes time resolution is above
10 TeV. This led to the introduction of a total charge cut of 𝑄tot ≥ 1 × 103.3 PE,
which roughly corresponds to events with that deposited energy. Each event at
energies above 10 TeV contains a variety of waveforms observed by different DOMs.
Double pulses can only be measured in DOMs close to both the charged current
interaction vertex and the decay vertex of the tau, therefore waveforms with few
deposited photoelectrons (𝑄tot,WF ≥ 432 PE) are discarded [10].

4.2.1 Definition and Characterization of Signal and Background

Observables

The majority of observables used to describe the waveforms to possibly identify
double pulse waveforms are based on the successive characterization of the derivative.
At first, the beginning of the waveform is determined by searching for a monotonic
increase of the waveform amplitude for a time period of 19.8 ns (6 ATWD bins).
After defining the beginning of the waveform, it is divided into segments of 13.2 ns
(4 ATWD bins) and the derivative is calculated for each segment. The derivative
is scanned for a first pulse rising edge, a first pulse trailing edge and a second
pulse rising edge by looking for 𝑛1 ≥ 2, 𝑛2 ≥ 2 and 𝑛3 ≥ 3 consecutive segments
with a positive, negative and again positive derivative. Then the duration of these
edges (number of segments) and their integrals are recorded and used as observables.
These observables were originally developed in [10] and used for the first search for
astrophysical tau neutrinos via the double pulse channel.

In addition to these derivative-based variables, new observables are generated to
increase the separation power between single and double pulse waveforms.

• Summary statistics: Describes the waveform with summary statistics, in
particular, the mean, variance, skewness, and kurtosis.

• Number of local maxima: Number of relative maxima compared with 15
ATWD bins to each side.

• Smoothed distance: Euclidean distance between a smoothed and an un-
smoothed waveform (normed in a way that all bins sum to 1). The waveforms
are smoothed with a sliding average width of 𝑛 = 7.

• Fit quality: To estimate the compatibility with a typical single cascade the
waveform is fitted with an exponential decay function. The 𝜒2/ndof and the
Euclidean distance between the fit result and the waveform are recorded.
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The most important of these new observables turned out to be the fit quality and the
mean of the waveform. The fit quality variables are helpful to distinguish between
an actual second pulse from an energy loss and a bumpy trailing edge due to e.g. late
pulses from multiple scattering. The mean of the waveform is proportional to the
total charge deposited and can thus enable energy-dependent cuts.

Signal

There is no obvious label for double pulse waveforms in IceCube simulations, so a
set of waveforms has to be defined as signal waveforms manually. A double pulse
waveform produced by a tau neutrino crucially depends on the deposited energies
and vertex positions of the tau neutrino interaction vertex and the subsequent tau
decay. As a first cut, all ATWD waveforms are selected that fulfill the following
conditions (adapted from [85]):

𝛥𝑡 = |(𝑡1 + 𝑡𝜏) − 𝑡2| ≥ 100 ns
𝑡1 ≤ 200 ns
𝑡2 ≤ 200 ns,

where 𝑡1 represents the light travel time from the neutrino interaction vertex to the
respective DOM, 𝑡2 the light travel time from the tau decay vertex to the DOM
and 𝑡𝜏 the decay time of the tau lepton.

These geometrical cuts select 13 000 waveforms, of which roughly 50 % show rec-
ognizable double pulses. To obtain a signal sample with a higher purity of double
pulse waveforms a set of cuts is applied to the derivative features. An earlier
iteration of the Double Pulse Algorithm described in [10], was optimized to pick up
as many double pulse waveforms as possible with very little focus on the rejection
of background waveforms [86]. Here the cuts are chosen to pick up the waveforms
with a substantial double pulse feature (6874 waveforms), which are used as the
sample of signal waveforms in the following classification.

Background

For the double pulse selection, two different types of backgrounds exist. The first
type originates from single cascade events (𝜈𝑒 CC and 𝜈X NC interactions), which
mostly produce single pulse waveforms, except if heavy mesons (containing charm
or bottom quarks) are produced in the hadronic shower. The production of heavy
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mesons is not considered in IceCube simulations yet, but this effect is expected to
be negligible because the single cascade component is subdominant at the final level
of the event selection. The overall goal of this part of the analysis is the suppression
of these single cascade backgrounds.

The second type of background is irreducible because double pulses can be easily
mimicked by muons produced in high energy cosmic ray interactions and from
charged current muon neutrino interactions. Usually, the first pulse is produced
by direct light from the muon or from the initial hadronic cascade of the neutrino
interaction and the second pulse is the result of a high energy stochastic loss from
the muon (mostly Bremsstrahlung). This component will be ignored in the training
to provide a clear goal for the classification to distinguish between double pulses
waveforms and waveforms from single cascade events. The track-like component will
therefore only be used for validation purposes and comparisons with data at this
stage.

Background waveforms from single cascade events are abundant, so only a subset of
those is used in the classification. For the 𝜈𝑒 CC interaction 1.2 × 106 waveforms and
for the NC interactions 2 × 105 waveforms are randomly sampled for each neutrino
flavor, which roughly resemble the relative occurrences of these event types. This
also shows that the ratio between signal and background waveforms is heavily in
favor of the background.

4.2.2 Classification

The classification of double pulse waveforms against the background of single cascade
waveforms is carried out with a Random Forest (see section A.2, the parameters used
for the Random Forest are presented in Table A.1). The training was carried out in
a 10-fold cross validation so that every training example gets assigned a classification
score. After this, a new model is built with all available training examples, which is
used to assign a classification score to the remaining simulation events and to all
data events.

The distribution of the classification score referred to from here on as “Double
Pulse score”, is depicted in Fig. 4.1. Events are weighted to the fluxes described
at the beginning of chapter 4, individual waveforms inherit the weight of the event
they belong to. The double pulse waveforms start dominating the distribution
above 0.6.

After this classification, only events that contain at least one waveform that survives
a cut on the double pulse classification score are kept for further analysis. To choose
such a cut, the remaining number of events per year for 𝜈𝜏 CC events and single
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Figure 4.1: Distribution of the double pulse classification scores of the waveforms
used in the Random Forest training. The standard deviation in each bin is
determined from the fluctuation in each bin during the cross validation.
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cascade events has to be considered, since, on the one hand, an event can have
multiple double pulse waveforms. On the other hand, only a very limited amount of
the total 𝜈𝜏 CC waveforms were actually used as the signal to train the Random
Forest and it is possible to retrieve a fraction of these waveforms by applying the
final model to all 𝜈𝜏 CC waveforms. Figure 4.2 shows these event expectations as
well as the purity as a function of the Double Pulse score cut.
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Figure 4.2: Influence of the Double Pulse score cut value on expected events per
year for charged current tau neutrino and single cascade events (right y-axis) and
the purity with respect to the two shown components (left y-axis).

At this point, a rather soft threshold of 0.2 is chosen. This way, the majority of
single cascade backgrounds are already suppressed quite well, while increasing the
retained signal by 90 % compared to [85], ending up with 0.63 events per year. The
purity at this step is also increased from 90 % to 97 %.

While single cascade events get removed quite well with this cut, the signal is still
dominated by background from atmospheric muons and 𝜈𝜇 CC (see Figure 4.3).
This figure also shows a comparison between the burnsample of 2012 data and the
sum of simulations. The error bars shown use a modified Poisson likelihood, which
also takes Monte Carlo uncertainties from limited statistics into account [87]1.

1This style of presenting binned comparisons between data and simulation is suggested in [88].
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Figure 4.3: Comparison of the double pulse classification score distribution for
simulations and the burnsample from the year 2012. In addition to the sum of
simulations, the 𝜈𝜏 CC component is depicted, which shows that the data at this
point is still dominated by atmospheric muons roughly five orders of magnitude
more abundant than the 𝜈𝜏 CC component.

30



4.3 Cascade Selection

4.3 Cascade Selection

It was shown in the previous section that track-like events from atmospheric muons
and charged current muon neutrinos make up an irreducible background when
selecting events that contain double pulse waveforms. Fortunately, these events can
be distinguished due to their distinctive event topologies. The previous analysis
step was applied on very low-level data (“Level 2”) containing only a minimum of
low-level reconstructions. As a first measure to improve the quality of available
reconstructions the IceCube “Level 3” cascade filter stream2 reconstructions are
applied to the data. Additional observables, that focus on the rejection of muon
background and on characteristics from the double pulse selection, are generated as
well. All observables used in the classification, or relevant to this analysis in any
other manner, are described below.

4.3.1 Data Processing and Feature Generation

Reconstructions and observables realized in Cascade “Level 3”

Tensor of Inertia3

The pattern of hits (charges collected by each DOM) can be interpreted as a body
with masses and thus used to determine a first guess for cascade directions and as
an analytic seed for further reconstructions. The center of gravity marks the pivot
point for this reconstruction

⃗𝑥CoG =
∑𝑖(𝑞𝑖 ⃗𝑥𝑖)

∑𝑖 𝑞𝑖
, (4.1)

where 𝑞𝑖 is the total charged collected by the 𝑖-th DOM and ⃗𝑥𝑖 the DOM position.
The tensor of inertia elements can then be calculated via

𝐼𝑗𝑘 =
∑𝑖 𝑞𝑖 (𝛿𝑗𝑘( ⃗𝑟𝑖)2 − ⃗𝑟𝑗

𝑖 ⋅ ⃗𝑟𝑘
𝑖 )

∑𝑖 𝑞𝑖
(4.2)

with the distance ⃗𝑟𝑖 of DOM 𝑖 to the center of gravity ⃗𝑥CoG. This tensor (in this
case a 3 × 3 matrix) has an eigenvalue 𝑒 for each of its main axes. The eigenvalue
ratio can be used to measure the sphericity of the observed charge pattern.

𝑞ToI =
min𝑘∈[0,2] 𝑒𝑘

∑𝑘 𝑒𝑘
(4.3)

2The source code for this project can be found at code.icecube.wisc.edu/projects/ice-
cube/browser/IceCube/projects/level3-filter-cascade.

3This reconstruction is referred to as CLast in the IceCube code base.
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The value of 𝑞ToI approaches 1⁄3 for a perfect sphere and reaches 0 if all hits lie on a
straight line.

CascadeLlhVertexFit
The CascadeLlhVertexFit performs a likelihood reconstruction of a neutrino induced
cascade to reconstruct the cascade vertex and vertex time. For each event, the
likelihood

− ln L (𝑡0, ⃗𝑥0|𝑡obs, ⃗𝑥obs) = − ∑
𝑖

ln 𝑝𝑖(𝑡obs,𝑖, ⃗𝑥obs,𝑖|𝑡0, ⃗𝑥0), (4.4)

is minimized, where the PDF 𝑝(𝑡obs,𝑖, ⃗𝑥obs,𝑖|𝑡0, ⃗𝑥0) describes the probability that
a DOM’s first hit at time 𝑡obs and position ⃗𝑥obs would be the result of a cascade
characterized by the set of parameters 𝑡0, ⃗𝑥0. The index 𝑖 then runs over all DOM
hits in a particular event. The PDF (called the Pandel-PDF [89]) models the photon
arrival time distribution as an analytic function, which approximates the south pole
ice as a homogeneous medium, so that time delays in the arrival time from photon
propagation through the ice are considered.

All likelihood-based reconstructions also provide estimates for the fit quality with
respect to the used hypotheses: the reduced log-likelihood (rlogl). This value is
calculated by normalizing the best fit log-likelihood with the number of DOMs hit
in an event. Smaller values generally indicate better agreement with the hypothesis
used in the fit.

CascadeFillRatio
CascadeFillRatio uses a reconstructed vertex and a given set of hits to calculate
different radii and a so-called fill ratio. The radii are based on the RMS and the
mean of the charge distribution.

𝑟RMS = √(∑ ⃗𝑟 ⋅ ⃗𝑥) − (∑ ⃗𝑟)
2

(4.5)

𝑟mean = 1
𝑁

∑ | ⃗𝑟| (4.6)

𝑟mean+rms = 𝑟mean + 𝑟RMS, (4.7)

where the vertex position ⃗𝑥 and the distances between vertex and hit ⃗𝑟. The fill
ratio then is just the ratio of the number of DOMs hit inside the sphere defined by
the reconstructed vertex and the calculated radius to the total number of DOMs
inside the sphere.

LineFit, SPEFit, and MPEFit
Because track-like events are a major background in this analysis, dedicated track
reconstructions can help successfully identifying these as background events.
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The LineFit [90] is a first guess track reconstruction with an analytic solution. The
reconstruction assumes photons traveling on a wavefront perpendicular to the track.
This approximation can be described by

⃗𝑥𝑖 = ⃗𝑥 + 𝑡𝑖 ⋅ ⃗𝑣, (4.8)

where ⃗𝑥 and ⃗𝑣 are a position and a velocity vector, used as the free parameters of
this reconstruction. ⃗𝑥𝑖 and 𝑡𝑖 are the position of DOM 𝑖 and the arrival time of the
first pulse at that DOM. This is a linear problem, with the analytic solution

⃗𝑥 = ⟨ ⃗𝑥𝑖⟩ − ⃗𝑣 ⟨𝑡𝑖⟩ (4.9)

⃗𝑣 = ⟨𝑡𝑖 ⋅ ⃗𝑥𝑖⟩ − ⟨ ⃗𝑥𝑖⟩ ⟨𝑡𝑖⟩
⟨𝑡2

𝑖 ⟩ − ⟨𝑡𝑖⟩
2 , (4.10)

where ⟨ ⟩ denotes the mean with respect to all hits. The absolute value of the velocity
vector 𝑣 = |𝑣| can be used to e.g. distinguish cascades (𝑣 ≃ 0) from minimally
ionizing muons (𝑣 ≃ 𝑐). LineFit is commonly used as a seed for the likelihood-based
track reconstructions SPEFit and MPEFit.

SPEFit (single-photoelectron) and MPEFit (multi-photoelectron) are, in general,
very similar to CascadeLlhVertexFit, in the sense that the likelihood uses the Pandel-
PDF as the photon arrival time distribution. The difference between the cascade fit
and the track reconstructions is the hypothesis used to model the light propagation.
For a cascade, a stationary light source is assumed, while track reconstruction uses
a moving light source on an infinite track and also considers the angle of emitted
Cherenkov light. SPEFit only relies on the first hit measured in each DOM, while
MPEFit uses a more thorough description by calculating the arrival time distribution
for the first 𝑁 photons [91].

DipoleFit
DipoleFit [90] is a first guess algorithm, that calculates the dipole moment by
averaging over individual dipole moments of hits (at position ⃗𝑥𝑖) adjacent in time.
The performance of this reconstruction can be improved by not using the two closest
hits in time but hits with a distance of 𝑁 hits between them.

�⃗� = 1
𝑁hits − 𝑁

𝑁hits

∑
𝑖=𝑁+1

⃗𝑥𝑖 − ⃗𝑥𝑖−𝑁
| ⃗𝑥𝑖 − ⃗𝑥𝑖−𝑁|

, (4.11)

The IceCube “Level 3” cascade filter uses 𝑁 = 4.

BayesianFit
This fit [92] is a slight modification that can be applied to any of the available
likelihood-based reconstructions. It makes use of Bayes’ theorem

𝑃(𝐻|𝐸) = 𝑃(𝐸|𝐻)𝑃(𝐻)
𝑃(𝐸)

(4.12)
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to add a prior 𝑃(𝐻) in form of a zenith PDF to track reconstructions. 𝑃(𝐸|𝐻) is
the likelihood of observing an event 𝐸 given the track hypothesis 𝐻. 𝑃(𝐸) is just
a normalization constant and thus it can be omitted from this calculation. These
biased reconstructions usually do not improve the directional reconstructions but
it can greatly improve the ability to distinguish between down-going and up-going
events.

NChannel
NChannel describes the number of DOMs hit in an event.

Monopod
Monopod is the most accurate method used by IceCube to reconstruct cascades. To
achieve this, Monopod employs a maximum likelihood approach to match a simulated
template cascade with the observed data. The templates are generated by running
Monte Carlo simulations for mono-energetic cascades at different positions and with
different incident directions in the detector and make use of the fact that the light
yield at the DOMs scales linearly with energy. Due to the complete Monte Carlo
simulation of the detector and the glacial ice in Antarctica, all effects introduced by
detector electronics and photon propagation in the ice are automatically included
with this approach. The simulations are realized with the software Photonics [93] on
a discrete grid and then parametrized by a multi-dimensional B-spline surface [94].
After binning the observed number of photons at each DOM, the observed event
can be described by a Poisson Likelihood

ln L = 𝑘 ln(𝐸𝛬 + 𝜌) − (𝐸𝛬 + 𝜌) − ln(𝑘!), (4.13)

where the expected number of photons in a time bin is given by the expected number
of noise photons 𝜌 in addition to the template 𝛬 scaled by the energy 𝐸. This
equation does not have an analytical solution for the parameters describing the
cascade, however, solutions can be found by using numerical minimization. [95]

The IceCube cascade “Level 3” uses two techniques to split up the recorded hits,
which will be explained in the following paragraphs.

CoreRemoval Fits
Observed hits are split into two halves: the case, which includes the hits close to
a given vertex (core); and the corona, which is made up of hits further out. Hits
are associated with the core if their distance to the reconstructed vertex position is
smaller than a certain radius, and associated with the corona otherwise (for a more
detailed description see [96]).
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TimeSplit Fits
Recorded hits are split based on their recorded hit times. The point in time of the
split is calculated as the charge weighted mean time

𝑡split = ∑ 𝑡𝑖 ⋅ 𝑞𝑖
∑ 𝑞𝑖

. (4.14)

These two splitting strategies are used to rerun some of the described reconstructions
(CscdLlhVertexFit, SPEFit, and DipoleFit) on both halves of the recorded hits.

Additional observables

I3VetoModule
This algorithm performs first guess calculations to estimate how contained a certain
event is in the detector volume. Of interest for this analysis specifically are the
depth of the first hit, which can give a hint if a cascade might be associated with
a penetrating muon. Since this calculation can get easily messed up by noise hits,
a cleaning algorithm to remove noise pulses is applied beforehand. The vertical
layer of strings containing the DOM that registered the highest charge of the event
and an observable called “earliestContainment”, an integer value that combines
information from the aforementioned vertical layer containing the first hit and the
number of the DOM with the earliest hit, are calculated as well. Thus this variable
combines information about the position of the earliest hit in the 𝑥-𝑦-plane with a
rough estimate of the 𝑧-position.

VHESelfVeto
The Very High Energy Self Veto is a technique used in the event selection, that
first reported evidence for high energy astrophysical neutrinos [2, 3]. This analysis
implements a detector edge veto to identify high energy starting events (HESE)
with more than 6000 PE over a background of penetrating atmospheric muons. The
veto decision is made by calculating the time at which the deposited charge in the
detector exceeds a configured detection threshold (250 PE) and a charge weighted
average position of the light that contributed to exceeding this threshold. If the
charge deposited within the outer layer of the detector by that time crosses 3 PE
the event is vetoed.

Veto Track
Penetrating muons produced by cosmic rays in the Earth’s atmosphere are the most
challenging background for this analysis (which will be illustrated in section 4.3.3).
They are especially difficult to identify if they produce only a dim track and then
lose most of their remaining energy in a catastrophic stochastic loss mimicking a
cascade-like event. The VHESelfVeto was primarily designed for very high energetic
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events (the passing fraction of atmospheric muons rises quickly with decreasing
energy). To extend the veto approach to lower energies, some modifications are
necessary. The approach taken here uses the reconstructed Monopod vertex as a
starting point. All hits are considered for the veto that are not consistent with
the reconstructed cascade, but consistent in time and space with a hypothetical
downgoing track. The direction of this possible dim downgoing track is unknown
and it is very unlikely to be reconstructed correctly by the available algorithms
for track reconstruction. To make sure possible veto hits are picked up, the veto
calculation is repeated for of 104 track hypotheses, covering all of the northern
hemisphere. The finally selected “Veto Track” is the track with the highest veto
charge among those tested tracks. The recorded charge and the number of hits on
that track can be a useful quantity to reject atmospheric muons. The method is
described in full detail in [79].

Starting Track
Another possible background, especially for cascade analyses, are starting tracks
originating from charged current muon neutrino interactions. To reject those events
a strategy similar to the one described for the “Veto Track” can be used, except
in this case the incoming track has to be replaced by an outgoing one. Again
this method is searching for hits inconsistent with the reconstructed cascade, but
consistent with an outgoing track. It is necessary here to scan the whole sky instead
of the northern hemisphere only, since muon neutrinos, in contrast to muons, are
not absorbed by earth entirely (at energies relevant for this analysis). A subclass of
the “Starting Track” is the “Upgoing Track”, which is restricted to the southern
hemisphere. Again, method and implementation are described in full detail in [79].

Dustyness and Borderness
The Dustyness and Borderness characterize events based on the relative charge de-
posited and the relative number of DOMs hit in the dust layer (𝑧 ∈ [−137 m, −217 m])
and the detector border (outer layer of DOMs) [53].

ProjectedQ
This reconstruction was developed in [53] and is inspired by the Hillas parameters [97],
which is an established method for feature generation for ground-based IACTs (e.g.
FACT [98], MAGIC [99], and HESS [100]) and widely used in imaging gamma-
ray astronomy. The Hillas parameters are describing the two-dimensional light
distribution observed in their camera induced by the Cherenkov radiation emitted
from extended air showers in the atmosphere. Comparable events can be constructed
for IceCube by projecting the three-dimensional charge distribution of the event
onto a plane, which is defined perpendicular to the reconstructed track.
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The charge distribution can be described by a two-dimensional Gaussian, which is
quantified via the empirical covariance matrix. The Hillas parameters characterize
the 1-𝜎 ellipse of the Gaussian with e.g. its width, length or size.

Additional interesting observables used here were found to be the radius of a sphere
containing 100 % of the hits normalized by the median distances to the center of
gravity in the x-y-plane, the radius containing a percentage of the total charge, and
the total charge contained in a sphere with that radius.

Double Pulse Selection
The previous step selects events with at least one double pulse waveform. Additional
information about this selection can be useful for the final identification of tau
neutrinos because for example the probability for a background event from single
cascade background greatly depends on the highest recorded double pulse score in an
event. Also the number of waveforms over the charge threshold of 𝑄tot,WF ≥ 432 PE,
the number of survived waveforms, and mean, median and standard deviation of all
classified waveforms and of all waveforms that survived the double pulse score cut
are computed.

DelayTimeDPTrack
This parameter calculates the time difference between the geometrically expected
arrival time from unscattered photons of the reconstructed track (SPEFit) and the
actual start time of the waveforms classified as double pulse waveforms. If an event
has more than one of those waveforms, the mean delay time is calculated.

Double Cascade Reconstruction

Tau neutrino events produce light at two distinct positions in the detector, the tau
neutrino interaction vertex and the tau decay vertex (in case the tau decays into an
electron/positron or hadrons). Events can be reconstructed with this double cascade
hypothesis by extending the approach described for the Monopod reconstruction
for single cascade events. This hypothesis only adds two new parameters to the
fit resulting in nine fit parameters, the vertex of the neutrino interaction ⃗𝑥1, the
interaction time 𝑡1, the direction (𝜃, 𝜙) the energy deposited in the first cascade 𝐸1
and finally the two additional parameters: the tau length 𝐿 and the energy deposited
as a result of the tau decay 𝐸2. Both cascades are assumed to be connected by a tau
lepton traveling at the speed of light, which inherits its direction from the incoming
neutrino. This modification to Monopod was developed in [101]. The performance of
the so-called Taupede reconstruction strongly depends on initial values for especially
the tau length. A robust procedure for a more reliable reconstruction with Taupede
is laid out in [102].
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This reconstruction is not used in the event selection of this analysis but only for
the description of final tau neutrino candidates due to several reasons: this analysis
can be used as a cross-check for [102, 103] as long as analysis and event selection are
mostly independent. This is important because although the direct double cascade
reconstruction is based on a very compelling hypothesis, it relies heavily on precise
knowledge of the ice model and numerical minimization in a multi-dimensional
parameter space. Another reason is the computational cost of the double cascade
reconstruction that was made mostly feasible for the analysis in [102, 103] by using
the established event selection of high energy starting events as a starting point.

4.3.2 Feature Selection

After running all these reconstructions, each event is described by 700 observables
in total. As a first step features that contain only one constant value or exclusively
“Not a Number” (NaN) values are removed as they do not provide any information
for separating signal from background events.

Additional information carried by features with a very high correlation to each other
is marginal. To spot these features the Pearson correlation is calculated for each
feature pair. In case multiple feature combinations have high correlations only one
of the involved features is kept. The threshold to remove features is chosen to be
𝜌 ≥ 0.98. These two steps reduce the number of interesting features to 276.

An important action before using multivariate machine learning algorithms is also
to make sure that experimental data is described sufficiently well by the simulations
at hand. Usually, this is evaluated by comparing one-dimensional histograms of
simulation to data either by eye or through a statistical test (e.g. Kolmogorov-
Smirnov-Test). When using multivariate methods, this might not be sufficient
as also correlations between different features can in principle be used to tell
apart simulations from data. A different approach is taken in this work, where
the multivariate model itself is used to measure the agreement between data and
simulations and to identify features that are responsible for potential disagreements.
This method was developed in collaboration with [53] (cf. [104]) and will be described
in detail in the following paragraphs.

Multivariate Classification for Identification of Disagreements between Data
and Simulations

The basic idea in this approach is to use the same algorithm for the identification
of disagreements between data and simulations, and for the classification between

38



4.3 Cascade Selection

signal and background (which will be described in section 4.3.3). This procedure
will ensure that if the algorithm is not able to identify significant mismatches even
when it is specifically trained to do so. It will be safe to use it for the separation of
signal from background without expecting artifacts from imperfect simulations.

In this work, a Random Forest is trained in a 10-fold cross validation. Simulations
are treated as the signal (label: 1) and data is treated as the background (label: 0).
The Random Forest will assign a classification score to each event: events that are
identified as more “simulation-like” receive scores closer to 1, whereas “data-like”
events will be assigned scores closer to 0. In the ideal case of a perfect simulation,
the classifier will be guessing randomly and it will be impossible to distinguish
these types of events so that both distributions will look similar being centered
around values of 0.5. The Random Forest is trained with all remaining 276 features
and with a ratio between data and simulations of 1 ∶ 1. To obtain this ratio a
subset of simulation events is sampled according to their physical weights4. The
top panel of figure 4.4 shows the resulting classification score distribution, which
shows that a clear separation between data and simulations is possible at this stage.
In general, the performance of a classifier can be measured and compared via the
area under the curve (AUC) of the Receiver Operating Characteristic curve (ROC
curve, both values are explained in detail in [105]). For this classifier, the AUC is
0.953 ± 0.0015.

The feature importance can be used to identify features that have a significant
contribution to this separation. These values measure how frequent and how much
(based on an impurity measure) a feature contributes to the decision process (a more
detailed explanation can be found in section A.2.2). All feature importances sum
to 1. For a set of uninformative features, the distribution of feature importances is
roughly expected to be Gaussian with a mean value of 1⁄𝑁features. This can be exploited
for the identification of outliers which will be features that allow the classifier to
abuse disagreements between data and simulation, which can then be removed
from the feature set so that it will not be considered in the signal background
separation.

A feature is considered as an outlier if

𝑓𝑖 > 𝑘Gaussian(𝛼) ⋅ MAD, (4.15)
4These events might be simulated with a different spectral index than expected from state of the

art flux models. The events are weighted to the fluxes described in the beginning of this chapter.
5Although details can be found in [105], a bit of knowledge about the AUC is important to

understand this section without further reading. The AUC is a performance measure for a
classifier, that is independent of balance between classes in training and a specific score threshold.
It ranges between values of 0 and 1, while 1 would describe a perfect classifier and 0.5 a classifier
that is guessing randomly.
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Figure 4.4: Classification score distribution for data and simulation. Top: dis-
tributions before the main part of the feature selection (276 features). Only
information-less features and features with high correlations are removed before
this classification. Both distributions can be clearly separated (AUC = 0.95).
Bottom: distributions after removing features with the method explained in this
section and then selecting a subset of the remaining features with the mRMR algo-
rithm [106] (98 features). Both distributions get closer to the expected optimum
for a purely guessing classifier (AUC = 0.6).

where 𝑓𝑖 denotes the feature importance of feature 𝑖, 𝑘Gaussian a scaling factor and
the MAD = median(|𝑓𝑖 − median(𝑓)|) the Median Absolute Deviation [107]. The
MAD is a measure of the variability of a sample that is robust to outliers. The
scaling factor

𝑘Gaussian(𝛼) = 1.4826 ⋅ 𝛷−1(1 − 𝛼/2) (4.16)

uses the inverse cumulative distribution function of a Gaussian 𝛷−1 to scale the
MAD to cover a 1 − 𝛼 central interval (this outlier definition is adopted from [53]).
In this work, a threshold of 𝛼 = 0.1 is chosen. Since the training is done with
a 10-fold cross validation the information from the different folds can be used to
mitigate some of the statistical fluctuations in the feature importances that result
from choosing a specific realization of both data and simulations for each fold. A
feature is only considered a significant source of mismatches if the condition 4.15
is satisfied in at least eight of the ten folds. The process of removing features is
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done iteratively here with 𝑛it = 3 because this yields better results in terms of a
smaller AUC of the final feature set compared to e.g. choosing a different 𝛼. 80
features are removed within these iterations. The largest group of features (17) are
reconstructed event times, that are not properly simulated by construction (IceCube
simulation only aims to get relative timing right).

The final result of this method will be evaluated after reducing the dimensionality
in another step of selecting features with the mRMR algorithm with the remaining
196 features, which will be described in the next paragraph.

Feature Selection with the mRMR Algorithm

After removing features that can contribute significantly to a separation between data
and simulations due to disagreements either in that feature alone or by also exploiting
correlations with other features, the remaining set of features can be considered for
the classification task at hand. Now a subset of these features is selected to optimize
the result of the classification between track-like and cascade-like events. This is
done with the minimum redundancy maximum relevance (mRMR) algorithm [106].
The algorithm iteratively selects features by maximizing the relevance of feature
𝑥𝑗 to the target class 𝑦 while minimizing the redundancy between 𝑥𝑗 and all other
selected features 𝑥𝑘 ∈ 𝑆, where 𝑆 is the set of so far selected features. So at step 𝑗,
each feature is scored by

𝑞𝑗 = 𝐼(𝑥𝑗, 𝑦) − 1
|𝑆|

∑
𝑥𝑘∈𝑆

𝐼(𝑥𝑗, 𝑥𝑘) (4.17)

𝐼(𝑥, 𝑦) = −1
2

ln(1 − 𝜌(𝑥, 𝑦)2) (4.18)

The function 𝐼(𝑥, 𝑦) is the mutual information between two features 𝑥 and 𝑦 based
on a correlation coefficient 𝜌(𝑥, 𝑦). The implementation used in this work [108]
uses the Pearson correlation for continuous features and Cramer’s V for discrete
features. The scoring value 𝑞𝑗 is maximized at each step and the feature with index
argmax(𝑞𝑗) is added to the set 𝑆. This can, in general, be repeated until the desired
number of features is reached.

The choice of the number of features, that will be used for the classification can be
quite arbitrary. Here, for each set of 𝑘 features, a Random Forest is trained on a
subset of the simulation (to reduce computational costs) to evaluate the performance
at each step. This is done in a 5-fold cross validation and, finally, the feature set that
maximizes the mean AUC is picked. Figure 4.5 shows the AUC and the Kuncheva
index as a function of the number of selected features. The AUC is rising mostly
monotonically with additional features, but at around 50 features it is running into
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a plateau. The set maximizing the AUC consists of 96 features. There are two
reasons for not selecting fewer features (e.g. 50 where the plateau is reached): On
the one hand, having a fraction of features not containing much information for the
classification does not have a meaningful impact on the performance of a Random
Forest. The reason for that is at each node, where a cut is chosen, the Random
Forest internally selects the best feature for the cut. The result of this thus might
just be the inclusion of features, that will rarely or never be used. On the other
hand, a small improvement in the AUC can yield a big improvement in background
rejection for the finally chosen classification score cut.

As the result of the feature selection also depends on the specific realization of
simulated events, different sequences of features could be selected for multiple
simulation runs. The influence of this effect is characterized by the Kuncheva
index here [109]. A mathematical description of the Kuncheva index is given in
section A.4.1. The Kuncheva index calculates a stability value between 0 and 1
based on different runs of the feature selection on subsets of the simulations (in
this case five sub runs each bootstrapping 20 % of all available simulation). It is
based on a consistency index between two sets chosen such that it is increasing
monotonically with the intersection between the two sets. It is constructed to be
independent of the size of the sets and the total number of features and such that
the index is constant for randomly drawn sets of the same size.

At this point, it is time to evaluate the effect of the method described in section 4.3.2
and the mRMR selection on the AUC for the classification between data and
simulations. The result for this is shown in the bottom panel of Figure 4.4. The
resulting AUC is 0.598 ± 0.005 and can now be compared to the previous result in
the top panel. There is a significant improvement from the initial feature set, which
can be seen especially by comparing the change in the distributions between the top
and bottom panel. A question that might arise is, why the AUC still significantly
differs from the optimal value of 0.5. One reason is, that the feature set at this
point still contains features that show worrying disagreements when compared to
data as one-dimensional histograms (c.f. Figure A.1). This shows a limitation of
the method, that is designed to remove features with such levels of disagreement.
The limitation most likely arises as a consequence of limited data statistics at this
level (even when already using the burnsample of six years of data).

To solve this problem all 98 features are inspected individually and 20 features
that still have visible regions of disagreement are removed manually. As a final
modification to the feature set the two features were added describing the depth of
the first hit and the horizontal layer of DOMs containing the DOM that recorded
the highest charge of the event. These were identified as potentially important
for the most problematic atmospheric muon background events by investigating
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Figure 4.5: Performance of each set of 𝑘 features selected with the mRMR
algorithm. The performance is quantified by the AUC for a Random Forest trying
to distinguish the signal from the background (in this case an AUC of 1 would be
desirable). At the same time, the Kuncheva stability index is used to characterize
the stability of each feature selection step.

high scoring background events in earlier iterations of the classification described in
section 4.3.3.

The AUC for the classification between data and simulations is depicted in Figure 4.6
as a function of the number of features selected with the mRMR algorithm. The
points where this function is shown are chosen as multiples of 20 except for two
special cases: the set of 96 features selected with the mRMR algorithm and the
final set of 78. The uncertainty is estimated from a 10-fold cross validation. This
suggests that the manual removal of features has a stronger influence on the AUC
than the removal of the same amount of random features.

Although the final AUC of 0.577 ± 0.010 is still not a perfect result, it is much
smaller than the AUC at the beginning of the feature selection and also the AUC of
0.96, which can be achieved for a separation between signal and background. The
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Figure 4.6: AUC for the classification between data and simulations as a function
of the number of features. Two special cases are shown: the best set of features
selected with the mRMR algorithm and the final feature set that is used in the
following classification.

remaining disagreement might arise from the fact that the data at this point of
the analysis is on a rather low level as no “quality cuts” are applied that focus on
e.g. quality of reconstructions. Additionally, the comparison always inherently has
to assume energy spectra for all relevant components, which are only known with
limited precision. Other possible sources of disagreement are imperfect knowledge
of systematic uncertainties and detector parameters.

Distributions for the highest-ranked features from the Random Forest described in
section 4.3.3 are shown in Figure A.2. A way to inspect all removed and selected
distributions is described in section A.4.2.

4.3.3 Classification

To obtain a final sample, that is dominated by events originating from charged
current tau neutrino interactions another event classification has to be employed to
distinguish cascade-like signal from track-like background events. Usually, in similar
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analyses ([10], [102]) at this stage, a veto algorithm is applied, which can help to
drastically reduce the amount of atmospheric muon background, thus limiting the
analysis to starting events only and reducing the fiducial volume quite significantly
as well. This work refrains from the explicit use of a veto region as a major step of
the event selection to increase the fiducial volume and to also retain the possibility
of selecting partially contained events. To lower the difficulty of the classification
task with respect to atmospheric muons without an explicit veto, two measures are
taken. First, only events where both the neutrino interaction vertex and the tau
decay vertex are contained within the detector boundaries given by the outer layer
of strings are considered to be signal events in the classification. For evaluation
purposes, all partially contained events are considered as part of the signal again.
Second, a cut is applied, removing all events where the reconstructed Monopod
vertex is at least 60 m outside the outer boundary of the detector, which removes
mis-reconstructed events and events far outside the detector.

The background that is supposed to be removed in this classification comes from
track-like charged current muon neutrino and atmospheric muon events. In general
atmospheric muons are simulated using extensive air shower simulations of cosmic
ray primaries (with CORSIKA). This process is computationally expensive, so it is
impossible with current implementations and resources to produce enough CORSIKA
simulations to perform a reasonable background estimation for the atmospheric
muon component. A solution to this problem can be MuonGun simulations, which
provide a fast way of simulating single muons by using parameterizations of single
muon fluxes estimated from previous CORSIKA simulations to reweight these events.
The next paragraphs show how CORSIKA and MuonGun simulations can be combined
in this analysis to describe the background of atmospheric muons.

The importance of different components of muon bundles with different multiplicities
is depicted in Figure 4.7. It shows the two-dimensional distribution for the used
CORSIKA simulations. The x-axis shows the classification score for the used model,
referred to as “Cascade score” in this thesis, which will be introduced in a bit more
detail later and the y-axis the relative energy of the most energetic muon in a bundle
to the sum of all muon energies in that bundle. The bottom part of the plot shows
the contribution of large multiplicity muon bundles from ultra high energy cosmic
rays (UHECRs), which are distributed only at very low Cascade scores even though
the effective livetime of the simulation in that regime is very high. The top part
illustrates the most challenging type of background from cosmic ray air shower
muons. These are muon bundles with one relatively high energy leading muon that
reach the highest Cascade scores even though they are simulated scarcely due to just
occurring rarely in those air showers. Fortunately, these can effectively be described
by MuonGun simulations.

45



4 Event Selection

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Cascade score

0.0

0.2

0.4

0.6

0.8

1.0
E
µ
,
m

a
x
/
P
E
µ

105

106

107

108

109

1010

E
p
ri

m
,
m

e
d
/

G
eV

Figure 4.7: Two-dimensional distribution of the relative energy of the most
energetic muon in a muon bundle to the total bundle energy and the Cascade score
for the used full air shower CORSIKA simulation. The bins are colored based on the
median energy of the primary nucleus from low energies (blue) to high energies
(yellow).

This small amount of leading muons/single muons can be substituted by MuonGun
simulations to effectively increase the number of simulated events of this type
by a factor of 100. A comparison between the Cascade score distribution of the
components that are exchanged here for a better description of the atmospheric
muon background is shown in Figure 4.8. For lower Cascade scores both distributions
agree reasonably well, which leads to the assumption that this combination is also
suited well to describe data at higher Cascade scores. This comparison can be
seen in Figure 4.9b and will be discussed in a later paragraph. The value of 90 %
for the relative energy of the leading muon was chosen so that on the one hand
both components agree well with each other in Cascade score and some additional
observables and on the other hand the new combination describes experimental data
as well as possible.
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Figure 4.8: Comparison of the Cascade score distribution of MuonGun simulations
(∼464 000 events) with events from CORSIKA simulations (∼4000 events), where
the highest energy muon in a bundle holds at least 90 % of the total bundle energy.

Having the description of atmospheric muons with reasonable simulation statistics
established, the Random Forest6 can be trained. The training is conducted with a
10-fold cross validation. Considered as the signal are, as mentioned earlier, charged
current tau neutrino events that have both a contained tau neutrino interaction
vertex and a contained tau decay vertex. The background components included
in the training are charged current muon neutrino events and atmospheric muon
events (both from CORSIKA and MuonGun simulations).

The resulting Cascade score distribution is shown in Figure 4.9. The top panel
shows the simulation broken down into individual components. The signal, depicted
in green, is dominating the other components above Cascade scores of 0.65. The
component of uncontained signal events has a similar magnitude as both background
components in that region. The bottom panel can be used to compare data and
simulations. The distribution of data events shows no artifacts or disagreements from
the simulated distribution. The same comparison which was used during optimization

6The exact settings used can be found in Tab. A.1.
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with only 10 % of the data can be seen in Figure A.6. The feature importances for
the features used in the Random Forest are depicted in the Figures A.4 and A.5.

After training a classifier a threshold can be chosen above which events are kept
for the final sample. This cut value is optimized here using the model rejection
factor [110]

MRF = ̄𝜇90
𝑛𝑠

(4.19)

̄𝜇90 =
∞

∑
𝑛obs=0

𝜇90(𝑛obs, 𝑛𝑏)𝑃𝑛𝑏
(𝑛obs), (4.20)

where ̄𝜇90 is the average upper limit over all possible observable event counts 𝑛obs
weighted with their respective Poisson probabilities of occurring 𝑃𝑛𝑏

(𝑛obs) under
the assumption that there is no signal. This average upper limit is often considered
as a sensitivity for analyses in the regime of small signals. The upper limits for this
calculation are constructed with the unified approach suggested by Feldman and
Cousins [111]. This method makes sure that physical restrictions on parameters
(e.g. 𝜇 ≥ 0) are taken into account. The unified treatment also solves a problem, in
which the choice between a one-sided interval (upper limit) or a two-sided interval
based on the observed data can invalidate the confidence interval.

The model rejection factor (MRF) can be used to avoid a potential bias that can
arise by choosing a final cut based on the observed data events. Instead, the MRF
uses the expectation from simulations to find a threshold that results in the optimal
upper limit (for a counting experiment) only based on the expectations and without
considering the result of the final observation.

The MRF for this classification is shown in Figure 4.10 as a function of the Cascade
score threshold. This curve suggests keeping all events with a Cascade score above
0.62, resulting in a MRF of 1.39 ± 0.20. This value can be interpreted by

̄𝛷90 = 𝛷Model ⋅ MRF, (4.21)

in a sense that the MRF can be easily transformed to the average upper limit on
the tau neutrino flux normalization ̄𝛷90 for this kind of counting experiment.
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(b) Comparison between the Cascade score for simulations and data from more
than seven years of data from May 2011 until December 2018.

Figure 4.9: Distributions of the Cascade score for different simulated components
(top panel) and a comparison between data and simulations (bottom panel). The
charged current tau neutrinos start to become the dominant component for Cascade
scores above ∼ 0.65. In that Cascade score region two events are found in 7.3 years
of data, which will be described in detail in chapter 6.
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Figure 4.10: Model rejection factor as a function of the Cascade score cut (for
the Cascade score distribution depicted in Fig. 4.9). The uncertainty is determined
by a combination of fluctuations due to limited simulation statistics and variations
from the different cross validation folds.
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4.4 Final Sample

With the chosen Cascade score cut the remaining event expectations for the different
simulated components are listed in Table 4.1 where all numbers are scaled to the
analyzed amount of data of 7.3 years. Two data events survive all selection criteria
in the analyzed time period (cf. Fig. 4.9b). These events are described in detail in
section 6.1.

The background of the final sample is still dominated by track-like events with
a majority of atmospheric muons. But, of all available simulations describing
atmospheric muons only a total of 4 simulated events survive all selection criteria.
This leads to large uncertainties in the background rate estimation. To solve this
problem and to achieve a better description of the most important background
component of this analysis additional simulations were produced. The available
simulation was investigated to develop a scheme for a more efficient biased simulation
specifically targeting this event selection.

For an incoming muon to produce both a double pulse and a signature that can not
be easily identified as a track the muon has to undergo a large stochastic loss (most
likely due to bremsstrahlung) near the edge of the detector, in which the muon
loses most of its energy. This can result in a double pulse from the general losses
of the muon followed by a large stochastic loss near a DOM. The large stochastic
loss is important to produce a cascade-like signature. In case the muon is facing
inwards the detector the energy of the incoming muon also has to be reduced heavily
so that the track after the loss can not or can only barely be seen. This behavior
is depicted in Figure 4.11a which characterizes the largest energy loss for single
muon events with high Cascade scores (above 0.4). It shows both the distance of
the largest energy loss to the detector boundary and the energy lost relative to the
muon energy when it was generated outside of the detector.

This observation led to a strategy of focusing on events that satisfy the conditions:

𝑑edge ≥ −150 m (4.22)
𝐸loss
𝐸𝜇

≥ 0.3, (4.23)

which are chosen conservatively so that no interesting events are expected to be
missed. This was verified by comparing the Cascade score distributions for old and
new simulations between values of 0.4 and 0.62. To evaluate these conditions only
knowledge about the energy losses and their positions is required. This helps to
reduce the computation time of the simulation because events can be removed after
muon propagation, but before photon propagation which is the computationally
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most expensive step of the simulation. Due to these constraints over 80 % of the
generated events do not have to be simulated fully.

A comparison between old and new simulation is depicted in Figure 4.11b. For
the following analysis, both datasets are used as a weighted combination, which
is shown as the green histogram. The increase in expected events from the new
simulation is already included in Table 4.1.

Table 4.1: Event expectations and relative fractions at the final level for data and
all simulated components in 7.3 years.

Component Events in 7.3 years Fraction

Data 2 -

𝜈𝜏 CC 2.14 66.5 %
𝜈𝜇 CC 0.23 7.1 %

𝜈𝑒 CC + GR 0.13 4.0 %
∑𝑋 𝜈𝑋 NC 0.05 1.6 %
Atmos. 𝜇 0.67 20.8 %

4.4.1 Effective Area

The effective area is a common quantity to measure the quality of an event selection
for both signal acceptance and background rejection. The effective area interprets
the efficiency of the detector and the event selection as the surface area of a detector
that would collect the same number of neutrinos with a theoretical efficiency of
100 %. The definition of the effective area in an energy bin 𝛥𝐸 is given by

𝐴eff(𝛥𝐸) = 𝐴gen
𝑁sel(𝛥𝐸)
𝑁gen(𝛥𝐸)

(4.24)

where 𝑁gen(𝐸) is the number of generated events as a function of the energy 𝐸,
𝐴gen is the surface area these events were generated on (assumed to be energy
independent here), and 𝑁sel(𝐸) is the number of selected events. Figure 4.12
shows the average effective area for neutrinos and anti-neutrinos for the signal
component compared to the neutrino background components from 𝜈𝜇 CC and
𝜈𝑒 CC + GR events. Additionally, the event selection published in [10] is shown as a
comparison. The signal effective area is increased over almost all energies, resulting
in an improvement by a factor of 2.5 between 200 TeV and 1 PeV with more similar
results outside of this energy region. For the 𝜈𝜇 CC component a strong decrease in
effective area, especially at the highest energies, can be observed.
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4.4.2 Tau Neutrino Identification Efficiency

In the following paragraphs, the signal component of the final sample is investigated
with respect to simulated tau neutrino/tau quantities like the neutrino energy as
well as tau energy and tau decay length.

From both the neutrino energy distribution and the tau length distribution at
different stages of the event selection (Figure 4.13), it can be seen that only a small
fraction of tau neutrino events can be selected with the double pulse criterion. This
results from the fact that only a small subset of events is eligible to produce a
resolvable double pulse feature in one DOM due to the geometric requirements
for such an event. First, both vertexes producing the respective pulses need to
be close enough to a DOM and/or to deposit a sufficient amount of energy to
produce two visible peaks in a single waveform. Second, the tau length (which
is correlated linearly to the tau energy) needs to be large enough to allow for a
significant separation of both pulses at the same time. This results in a very low
efficiency especially at neutrino energies below 100 TeV or events with tau lengths
below 10 m respectively.

The shaded regions in Figure 4.13 indicate the central interval which includes 90 % of
all events. The 90 % interval for the neutrino energy spans values between 126 TeV
and 6310 TeV with a median energy of 890 TeV. The length interval is defined by
a lower limit of 8.8 m and an upper limit of 93.6 m. The median length is 34.2 m
(all of these values are based on the underlying assumption for the astrophysical
spectrum with a spectral index of 𝛾 = −2.13).

Figure 4.14 shows the correlation between tau lengths and tau energies in the final
sample. Without the effects of an event selection, the average tau length is given
by

ℓ𝜏 ≃ 50 m ( 𝐸𝜏
1 PeV

) (4.25)

and thus a linear function of the tau energy. This is depicted as a solid black line.
The dashed line shows the average tau length present in the sample calculated for
small energy bins. The behavior of the average length in the sample shows a clear
selection bias. For tau energies below 1 PeV, the average tau length for selected
events is systematically higher than the average expected tau length from eq. 4.25.
This is a result of the increasing difficulty to resolve two energy depositions as a
double pulse when the energy depositions are closer and closer together. Given
the timing resolution of IceCube, these events will appear as single cascade events
and thus removed during the event selection. Higher energy taus show the same
behavior but in the opposite direction. In this energy region, the selected taus from
the tau neutrino events are biased towards lower tau lengths because at some point
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it gets more and more difficult to observe two cascades that are up to hundreds
of meters apart within one DOM while still being able to reject waveforms with
bumpy trailing edges from single cascade events. Another factor enhancing this
is the fact, that signal events with large tau lengths are harder to select from a
track-like background compared to the more single cascade-like events with shorter
tau lengths.
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(a) Scatter plot of simulated atmospheric single muon events for Cascade scores
above 0.4. The y-axis shows the distance of the largest energy loss to the
detector edge (positive values are outside of the detector boundary). The x-axis
denotes the energy lost in the largest energy loss relative to the muon energy
at its generation outside of the detector. Both quantities are true values from
simulation. The color scale displays the Cascade score of each event and it is
normalized in a way that all events surviving the event selection are colored in
yellow.
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(b) Comparison of the Cascade score distribution for the MuonGun simulation
used for the event selection and the biased simulation as well as their weighted
combination (binned in the same way as in section 5.4).

Figure 4.11: Characteristics of the most signal-like atmospheric muon background
events (top) and a comparison between different MuonGun datasets (bottom).
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includes events from Glashow resonance interactions resulting in the peak near
6.3 PeV. The dashed lines show a comparison with the event selection from [10]
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(a) Neutrino energy distribution at different stages of the event selection.
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(b) Tau decay length distribution at different stages of the event selection.

Figure 4.13: Comparison of the charged current tau neutrino component at
different stages of the analysis. Level 2 is the starting point of the analysis and
contains all triggered events. Level 4 contains all events that pass the criteria of
the double pulse selection (section 4.2) and Level 5 is the final sample. The shaded
regions indicate the central 90 % interval.
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Figure 4.14: Two-dimensional distribution of tau length and tau energy. The
average tau length as a function of tau energy is shown as a solid black line which
shows a linear increase with the tau energy (ℓ𝜏 ≃ 50 m

PeV 𝐸𝜏). The dashed black line
depicts the average tau length among the selected events in an energy bin.
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The astrophysical tau neutrino flux has been constrained by various IceCube analyses.
The first group aims to measure the tau neutrino flux itself with the double pulse
topology or via the double cascade channel using the direct reconstruction described
in section 4.3.1 [10, 112, 113]. The second group aims to measure the astrophysical
flavor ratio looking to combine different neutrino signatures from all flavors [5].
The approach used in [102] uses results from the double cascade reconstruction as
additional observables in the analysis to increase the flavor ratio sensitivity to the
tau neutrino component.

The goal in this thesis is to measure the astrophysical tau neutrino flux directly with
the event selection based on the double pulse signature. In this chapter, the analysis
methods utilized to constrain the astrophysical tau neutrino flux are described and
their sensitivity based on the event sample, developed in chapter 4, is discussed.
These methods have been developed on simulations only and they are applied to 7.5
years of IceCube data in chapter 6.

This chapter provides an introduction to the relevant statistical methods and concepts
in sections 5.1 and 5.2. Next, the modeling of fluxes for neutrinos and atmospheric
muons is described in section 5.3 and the observables used in the likelihood analysis
get introduced in section 5.4. Section 5.5 quantifies the sensitivity of the analysis
based on the analysis method and the utilized simulations. The considered systematic
uncertainties and their incorporation into the analysis are described in section 5.6.
Finally, section 5.7 outlines a method to assign each observed event a p-value,
a probability of how likely it originates from the background probability density
function (PDF).

5.1 Likelihood Description

The likelihood function provides information about how likely given, observed values
are, based on a set of parameters 𝜃. The likelihood function is defined as

L (𝜃| ⃗𝑥) = 𝑓( ⃗𝑥|𝜃) (5.1)
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where 𝑓( ⃗𝑥|𝜃) is a known joint PDF of a realization of observed values ⃗𝑥 from the
sample �⃗� = (𝑋1, … , 𝑋𝑛). Another thing to keep in mind is that L is not normalized
over the parameter space, and thus is not a PDF. [114]

To formulate the likelihood for this analysis an ideal choice would be to use the
set of observed events with all their observables (e.g. all observables described in
chapter 4) to construct the joint PDF 𝑓( ⃗𝑥|𝜃). This would make use of all available
information, but this construction would not be feasible. One reason for that is the
limited amount of simulated events, that makes it difficult to describe unbinned
high-dimensional PDFs. To simplify this, the observable space can be reduced to a
small number of observables that are well suited for the analysis at hand (e.g. an
energy estimator for the measurement of an energy spectrum). Another form of
simplification is to discretize the observable space by binning the observables. The
binning choice and the observables used in this analysis are discussed in section 5.4.

After discretizing the observable space the analysis transforms into a counting
experiment for each bin that can be described by a Poisson distribution.

L (𝜃|�⃗�) = 𝑓(�⃗�| ⃗𝜇(𝜃)) =
𝑚

∏
𝑖=1

𝑝(𝑛𝑖|𝜇𝑖(𝜃)) (5.2)

𝑝(𝑛𝑖|𝜇𝑖(𝜃)) = (𝜇𝑖(𝜃))𝑛𝑖

𝑛𝑖!
exp(−𝜇𝑖(𝜃)) (5.3)

where the product runs over all 𝑚 bins and each bin 𝑖 is described by a Poisson
expectation 𝜇𝑖(𝜃) which depends on the parameters of interest. The observed event
properties ⃗𝑥 are substituted by an event count in each bin �⃗�. [6]

The so-called log-likelihood is commonly used instead of the likelihood since it is
often easier to handle, especially concerning numerical stability:

ln L (𝜃|�⃗�) =
𝑚

∑
𝑖=1

𝑛𝑖 ln(𝜇𝑖(𝜃)) − 𝜇𝑖(𝜃). (5.4)

Terms that do not depend on 𝜃 can be omitted from the likelihood since they do
not carry helpful information to favor a parameter set over another.

5.2 Point and Interval Estimation

The likelihood explained in the previous section can be used for inference on a
parameter 𝜃 via point and interval estimation [114]. One method that can be used
for point estimation is a maximum likelihood estimator. The maximum likelihood
estimate ̂𝜃 for a sample point ⃗𝑥 is the value for 𝜃 that maximizes the likelihood
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L (𝜃| ⃗𝑥) (defined in eq. 5.1). This best fit result is an estimate of a point in the
parameter space for the free parameters so that the model used in the likelihood
describes the measured data ⃗𝑥 best.

However, the probability that the estimated value ̂𝜃 is the true one 𝑃( ̂𝜃 = 𝜃𝑡) is 0
(where 𝜃𝑡 is the true value of 𝜃). This problem can be bypassed by using an interval
estimator. This method is used to construct an interval in the parameter space,
which has a non-zero probability of containing the true parameter 𝜃𝑡.

Interval estimation is closely related to hypothesis tests. The overall goal of a
hypothesis test is to infer something about an underlying parameter via two comple-
mentary hypotheses, where a hypothesis is a general statement about a parameter.
A test features two hypotheses, a null hypothesis 𝐻0 and an alternative hypothesis
𝐻1. The null hypothesis states that the parameter 𝜃 ∈ 𝛩0 is part of a subset of the
full parameter space 𝛩, while the alternative hypothesis describes the complement
𝜃 ∈ 𝛩𝐶

0 . [114]

To specify a test, a test statistic needs to be defined. A test statistic provides a
measure to objectively quantify the outcome of a test. One possible test statistic
is the likelihood ratio test statistic related to the maximum likelihood estimation.
The test statistic for the null hypothesis 𝐻0 ∶ 𝜃 ∈ 𝛩0 and the alternative hypothesis
𝐻1 ∶ 𝜃 ∈ 𝛩𝐶

0 is given by

𝜆( ⃗𝑥) =
sup𝛩0

L (𝜃| ⃗𝑥)
sup𝛩 L (𝜃| ⃗𝑥)

. (5.5)

The numerator maximizes the likelihood within the sub-parameter space allowed
for the null hypothesis 𝜃 ∈ 𝛩0 while the denominator maximizes the likelihood over
the whole parameter space 𝜃 ∈ 𝛩. The test statistic value is a function of the data

⃗𝑥 that can be used to decide whether to reject or to not reject the null hypothesis.
The bigger the value of this test statistic the larger the probability that the null
hypothesis is true. [114]

The null hypothesis can be rejected with confidence level 1 − 𝛼 if

𝜆( ⃗𝑥) < 𝑘𝛼 (5.6)

holds (this corresponds to a hypothesis test of size 𝛼). The critical value 𝑘𝛼 has
to be chosen in a way that sup𝛩0

𝑃(𝜆( ⃗𝑥) < 𝑘𝛼) = 𝛼 applies. The critical value
can either be computed if the test statistic 𝜆( ⃗𝑥) follows a known distribution or by
sampling the test statistic distribution from pseudo experiments. In the latter case,
pseudo experiments are generated by injecting a parameter set 𝜃𝑡 into the statistical
description and to calculate the likelihood ratio test statistic (eq. 5.5) from the
drawn realization. This can be repeated for a number of pseudo experiments 𝑁 to
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obtain a good description of the test statistic distribution, which can, in turn, be
used to empirically calculate 𝑘𝛼.

In addition to the statement for a hypothesis test at a certain confidence level
if the 𝐻0 is rejected or not, a p-value 𝑝 can be constructed that quantifies the
incompatibility of an observed test statistic value with the test statistic distribution
of the null hypothesis:

𝑝 ∶= ∫
𝑥

0
d𝑥′𝑓𝐻0

(𝜆(𝑥′)). (5.7)

This computes the probability to find a test statistic value as or even more extreme
than the observed one (𝑃(𝜆(𝑥′) ≤ 𝜆(𝑥))) under the assumption that the null
hypothesis is true. Small p-values, therefore, indicate a low probability that the
observed data originates from 𝐻0.

An interval estimate for a parameter 𝜃 is a pair of functions, which satisfies the
condition 𝜃𝐿( ⃗𝑥) ≤ 𝜃𝑈( ⃗𝑥) ∀ ⃗𝑥. After observing ⃗𝑥 the inference 𝜃𝐿( ⃗𝑥) ≤ 𝜃 ≤ 𝜃𝑈( ⃗𝑥)
with a certain confidence level 𝛼 is made. The statistical interpretation of such an
interval estimate is that the interval covers the true parameter 𝜃𝑡 in a fraction 𝛼 of
independent measurements. An interval estimator in combination with a confidence
level 𝛼 is often referred to as a confidence interval.

Confidence intervals can be constructed from the inversion of a hypothesis test
(in this case a likelihood ratio test). For each null hypothesis 𝐻0 ∶ 𝜃 = 𝜃0 with
the acceptance region A (𝜃0) for a test with confidence level 1 − 𝛼 the confidence
interval1 𝐶( ⃗𝑥) can be defined as

𝐶( ⃗𝑥) = {𝜃0 ∶ ⃗𝑥 ∈ A (𝜃0)}. (5.8)

To ensure coverage of the confidence interval, the acceptance region has to fulfill
the following condition for each tested null hypothesis 𝐻0 ∶ 𝜃 = 𝜃0:

𝑃𝜃0
(�⃗� ∈ A (𝜃0)) ≥ 𝛼 (5.9)

where �⃗� is the random sample that yields realizations ⃗𝑥. [114]

In practice, this construction is performed via a likelihood ratio test for all physically
relevant null hypotheses for a parameter of interest and returns the set of tests that
did not reject its null hypothesis as the confidence interval. Physical bounds can be
incorporated in this construction by restricting the parameter space in unphysical

1Note that this construction does not force the obtained set 𝐶(�⃗�) to be an interval, so technically
this would be a confidence set. The terminology confidence interval is more common in physics,
so this technicality will be overlooked.
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regions. For example, a Poisson expectation value 𝜇 could be restricted to positive
values only.

𝐻0 ∶ 0 ≤ 𝜇 = 𝜇0 (5.10)
𝐻1 ∶ 0 ≤ 𝜇 ≠ 𝜇0 (5.11)

These restrictions in the parameter space can lead to one-sided intervals even if
performing a two-sided test (as suggested in eq. 5.10 - 5.11). This behavior, also used
by Feldman and Cousins, was called a “unified approach” to unify the treatment of
upper limits (one-sided intervals) and two-sided confidence intervals [111].

5.3 Modeling of Neutrino Fluxes and Atmospheric Muons

The description of both conventional and prompt atmospheric neutrino fluxes, as
well as atmospheric muon fluxes, is handled in the same way as illustrated at
the beginning of chapter 4. For the astrophysical component, an 𝐸−2.13 energy
spectrum was assumed from [50] (see Table 5.1 for the updated parameters). Since
the development of the event selection, an updated result of the same analysis with
an additional two years of IceCube data was released which is used in the following
analysis as a baseline [4]. Overall, this is only a small change, because the event
selection is robust against small changes in the spectral index (compare Tab. 4.1
and Tab. A.2). Additionally, in chapter 4 the astrophysical flavor ratio was assumed
to be fixed at 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 1 ∶ 1. In this section, the tau neutrino component
of the astrophysical flux will be measured, so it will be a free parameter in the
likelihood.

Due to the low number of expected signal events in this analysis (∼ 2), the astro-
physical spectral index (which is assumed to be the same for all neutrino flavors)
will be fixed throughout the analysis so that the tau neutrino flux normalization
will be the only free parameter. Since the spectral index might have a big influence
on the tau neutrino flux measurement, several different spectral indexes are com-
pared in this analysis. The different assumptions for the astrophysical neutrino flux
originate from IceCube measurements making use of different detection channels
or combinations of them. The chosen analyses are presented in Table 5.1 and are
selected to cover a large range of spectral indexes. The chosen measurements are
the most recent results from the diffuse 𝜈𝜇 analysis [4] with a very hard spectrum,
the high energy starting event analysis (HESE) [7]2 with a softer spectrum and

2The current and most recent version of this analysis is used here, which is not yet published.
Consider the presented values as preliminary as they still might change in the future. More
information about the analysis in general can be found in [52], which describes the most recent
publish iteration of the analysis.
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the global fit analysis which combines different event samples for a global IceCube
measurement of the astrophysical flux [5]. An equivalent to Table 4.1 for the flux
measurements presented here can be found in section A.6.1.

Table 5.1: Measurements of the per flavor astrophysical neutrino flux from different
IceCube analyses. The astrophysical flux is described as an unbroken power law
with the form 𝛷𝜈(𝐸) = 𝛷0 ⋅ ( 𝐸

100 TeV )−𝛾.

Analysis 𝛷0 at 100 TeV / 𝛾

(10−18 GeV−1 cm−2 s−1 sr−1)

Diffuse 𝜈𝜇 [4] 1.01±0.26
0.23 2.19±0.10

0.10

Global Fit [5] 2.23±0.37
0.40 2.50±0.09

0.09

HESE [7] 2.15±0.77
0.75 2.89±0.31

0.28

5.4 Observables and Binning

Previous IceCube measurements targeting the astrophysical energy spectrum rely
either on an unfolding approach [53] reconstructing the energy spectrum in several
energy bins in a model-independent way or they use a binned Poisson likelihood
modeling all components and then fitting their parameters to match data and
simulation in a chosen discretized observable space [4, 5, 52, 6]. These analyses
rely on large data samples of through-going tracks, cascades or starting events in
general. They are making use of the unfolded neutrino energy or some form of
reconstructed energy and/or the reconstructed direction (mostly the zenith angle)
as these quantities hold the most information for a measurement of the energy
spectrum and thus give the best sensitivity.

For this analysis, the number of expected events does not justify a measurement of
the tau neutrino energy spectrum (especially while trying to constrain background
components or detector systematics as nuisance parameters). Instead, this analysis
focuses on a measurement of the astrophysical tau neutrino flux normalization, so the
reconstructed energy and reconstructed zenith angle are less important observables.
Since the data sample also only has a purity between 55 % and 69 %, depending
on the astrophysical flux assumption observables that show a strong separation
between signal and background increase the sensitivity of the flux normalization
measurement. For the same reason, these observables are also later used to construct
a p-value for an individual event to originate from the background distribution.
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For this analysis, the observables are chosen to be the Double Pulse score and the
Cascade score introduced in chapter 4. In the case of the Double Pulse score, only
the highest score per event is used. These two observables are specifically constructed
to distinguish signal and background. Both score values itself describe an important
topological characteristic of the tau double pulse event signature. The binning is
mostly chosen based on the limitations given the expected size of the data sample and
the number of simulated events left after the event selection. Another consideration,
especially for the binning in Cascade score, is that the score is not continuous,
because it is limited by the number of trees used to train the Random Forest for the
event selection. So the binning is also chosen in a way that each bin contains as close
to the same amount of Random Forest decisions as possible. Thus, for the Cascade
score seven equidistant between 0.6225 and 1.0, and for the Double Pulse score, only
the two non-equidistant bins [0.2, 0.8, 1.0] are used. The resulting two-dimensional
observable distribution is presented in Fig. 5.1 for the signal component (top) and
the sum of all background components (bottom) assuming an astrophysical 𝐸−2.19

spectrum and a flavor ratio of 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 1 ∶ 1. For a better comparison, the
one dimensional Cascade score distributions are shown for the two Double Pulse
score slices in Figure 5.2.
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Figure 5.1: Binned 2D-distribution of the Double Pulse score and the Cascade
score. The top panel shows the signal component and the bottom panel the
sum of all considered background components. For the depicted distributions an
astrophysical 𝐸−2.19 spectrum is assumed. Color encodes the expected number of
events in 7.3 years of data. The two observed events are indicated by black dots
and are described in more detail in chapter 6.
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Figure 5.2: Slices of the 2D observable distribution in Double Pulse score. The
top panel shows the Cascade score distribution for Double Pulse scores between 0.8
and 1.0 and the bottom panel for Double Pulse scores between 0.2 and 0.8. The
error bars are shifted away from the bin centers slightly for better visibility only.
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5.5 Likelihood Fit and Sensitivity

The goal of this work is to constrain or measure the astrophysical tau neutrino flux
normalization. This is realized using the binned Poisson log-likelihood introduced
in eq. 5.4. Since the tau neutrino flux normalization is the only free parameter in
the fit, the log-likelihood takes the following form

ln L (𝜆|�⃗�) =
𝑚

∑
𝑖=1

𝑛𝑖 ln(𝜇𝑏,𝑖 + 𝜆𝜇𝑠,𝑖) − (𝜇𝑏,𝑖 + 𝜆𝜇𝑠,𝑖) (5.12)

𝜆 =
𝛷𝜈𝜏

𝛷𝜈𝜏,ref
= 𝜇𝑠

𝜇𝑠,ref
. (5.13)

The parameter 𝜆 is a scaling factor from reference value 𝛷𝜈𝜏,ref to the tau neutrino
flux 𝛷𝜈𝜏

or respectively from the reference signal expectation 𝜇𝑠,ref to the number
of signal events 𝜇𝑠, where the reference is chosen to be the baseline expectation for
the analysis assuming the flavor ratio of 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 1 ∶ 1.

To construct confidence intervals with the method described in section 5.2 different
values for the signal expectation 𝜇𝑠 are injected with a step size of 0.05. For each
value of 𝜇𝑠, 𝑁 = 100 000 pseudo experiments are generated. A pseudo experiment
is done by drawing background events from the background distribution with the
Poisson expectation 𝜇𝑏, and signal events from the signal distribution with the
Poisson expectation 𝜇𝑠. The obtained sample is then used to perform the likelihood
fit. Each pseudo experiment is used to calculate the log-likelihood ratio

TS = − ln (
L (𝜇𝑠,inj)
L ( ̂𝜇𝑠)

) = ln(L ( ̂𝜇𝑠)) − ln(L (𝜇𝑠,inj)), (5.14)

which can be used as a test statistic (TS) for the two-sided test with the hypotheses

𝐻0 ∶ 0 ≤ 𝜇𝑠 = 𝜇𝑠,inj (5.15)
𝐻1 ∶ 0 ≤ 𝜇𝑠 ≠ 𝜇𝑠,inj. (5.16)

Here, ̂𝜇𝑠 is the value of parameter 𝜇𝑠 that maximizes the likelihood described in
eq. 5.12 while being restricted to the physical region of positive values 𝜇𝑠 ∈ [0, ∞).
The obtained test statistic distribution can be used to obtain the acceptance region
for each 𝜇𝑠,inj and thus also a critical value 𝑘𝛼.

This procedure is illustrated in Fig. 5.3. For each scanned value of 𝜇𝑠 the binned
test statistic distribution is encoded by color. The red line shows the critical values
for each test statistic distribution at a 90 % confidence level. Additionally, two
likelihood scans for exemplarily selected background-only pseudo experiments (where
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for the dashed line zero events and for the solid line three events were sampled) are
presented. These likelihood scans are used in combination with the critical values to
construct confidence intervals on the parameter 𝜇𝑠 as introduced in section 5.2.

Another property of the likelihood ratio can be observed in Figure 5.3, which shows
the asymptotic behavior described by Wilks’ theorem [115]. The theorem states
that as the sample size 𝑛 becomes large, the test statistic −2 ln(𝜆( ⃗𝑥)) (with 𝜆 as it
is defined in eq. 5.5) for a nested model follows a 𝜒2 distribution with 𝑘 degrees of
freedom, where 𝑘 = dim(𝛩) − dim(𝛩0). The critical value for larger values of 𝜇𝑠
(𝜇𝑠 ≳ 10) in Figure 5.3 is asymptotically approaching the critical value corresponding
to the 90 % confidence level of a 𝜒2 distribution with one degree of freedom of 2.71
after multiplying it with the missing factor of 2 to match the test statistic definition
in Wilks’ theorem. Overall this shows two things, expected asymptotic behavior and
the invalidity of Wilks’ theorem in the most important region of the parameter space
for this analysis, which further motivates the determination of the test statistic
distributions via pseudo experiments. The thin lines visible in the test statistic
distributions are a consequence of the discreteness of the Poisson distribution and
the injection of small event counts.

The sensitivity to the astrophysical tau neutrino flux is here defined as the average
upper limit that is obtained by background only pseudo experiments (by injecting
no true signal, 𝛷𝜈𝜏

= 0 GeV−1 cm−2 s−1 sr−1 or 𝜇𝑠 = 0). To estimate the sensitivity
to different astrophysical spectra for each spectrum, the observable histograms are
constructed by reweighting all events to the corresponding astrophysical flux. The
average upper limit, as well as the distribution of upper limits from 1000 pseudo
experiments, is shown in Figure 5.4. To test the robustness of the sensitivity to
different spectra for each fit pseudo experiments are injected for different astrophys-
ical spectra, which show stable results in all cases. The resulting sensitivities are
presented in Table 5.2 along with their ratio to the corresponding flux normalization
𝛷0. The uncertainty is the standard deviation of the distribution of the upper limits.
The relative average limit to the 𝐸−2.89 spectrum is weaker compared to the harder
spectra because the soft spectrum reduces the number of expected signal events
significantly (cf. Tab. A.2 - A.4). The results based on the analyzed data sample
are presented in section 6.2.

5.5.1 Differential Upper Limit

The model-dependent constraints described in the previous paragraphs are not able
to indicate which energy region contributes most to the achieved constraint. A
differential limit can be used to characterize the energy dependence of the analysis.
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Table 5.2: Sensitivities to the tau neutrino flux normalization for different astro-
physical spectra. The third column shows the ratio between the sensitivity and
the corresponding astrophysical flux normalization.

Astrophysical spectrum ̄𝛷UL,90
𝜈𝜏

at 100 TeV / ̄𝛷UL,90
𝜈𝜏

/𝛷0
(10−18 GeV−1 cm−2 s−1 sr−1)

𝐸−2.19 1.24 ± 0.62 1.23
𝐸−2.50 2.32 ± 1.13 1.04
𝐸−2.89 4.38 ± 2.05 2.04

For a simple counting experiment and a null observation the differential limit can
be calculated via

𝛷UL,90
𝜈𝜏

(𝐸𝜈) = 𝑁90
4𝜋 𝐸𝜈 𝑇 log(10) 𝐴eff(𝐸𝜈)

(5.17)

with the 90 % confidence level upper limit for zero observed events in the case of
negligible background 𝑁90, the total observation time 𝑇 and the energy-dependent
effective area 𝐴eff [116]. This equation can be derived from

d𝑁
d𝑡d𝛺

= ∫
𝐸0𝜔

𝐸0/𝜔
𝐴eff(𝐸) d𝛷

d𝐸d𝐴
d𝐸 (5.18)

which describes how a differential flux can be translated to an event rate. Equa-
tion 5.17 can be recovered by inserting the hypothesis of an 𝐸−1 signal box flux
defined over one decade in energy (𝜔 =

√
10) and by assuming a constant effective

area within this decade of energy. This method is used in several other IceCube
analyses (e.g. [10]), partly with generalizations to not be limited to either null
observations or counting experiments [20].

This approach can be combined with the likelihood fit described in this section by
replacing 𝜇𝑠 with 𝜇diff in eq. 5.12 based on the underlying flux

𝛷diff(𝐸, 𝐸𝑐) = {
𝛷0𝐸−𝛾 ∀𝐸 ∈ [𝐸𝑐/𝜔, 𝐸𝑐𝜔]
0 otherwise

(5.19)

where 𝐸𝑐 is the central energy of the box flux and 𝜔 defines the width of the interval
the flux as [𝐸𝑐/𝜔, 𝐸𝑐𝜔]. For this method, in general, the choice of both 𝛾 and 𝜔 is
arbitrary, but to achieve comparable results especially with [10] in this work 𝛾 = 1
and 𝜔 =

√
10 are chosen.

The most stringent limit on the tau neutrino flux will be placed in the case of a null
observation. This case can be used to illustrate the differential upper limit for this
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analysis and to compare it to astrophysical flux predictions. The differential limit
assuming a null observation is depicted in Fig. 5.5. It is calculated for four energies 𝐸𝑐
per decade between 100 TeV and 10 PeV. The figure shows a comparison to different
models (exemplary selected) predicting the astrophysical neutrino flux from chocked
jets and low luminosity gamma-ray bursts [117], low luminosity AGNs [118] and
a multicomponent model [119]. The multicomponent model includes atmospheric
backgrounds, a galactic contribution from cosmic ray interaction and two different
types of extra-galactic components from 𝑝𝑝 interactions (in e.g. starburst galaxies)
and 𝑝𝛾 interactions from AGN or tidal disruption events. The differential limit
highlights the most sensitive energy region for this analysis from 300 TeV to 1 PeV,
while also showing that in case of a null observation some of the chosen models can
be excluded in certain energy regions even by means of this less model-dependent
method. The differential limit presented in this section is the limit that would be
obtained for a null observation. This case is used here to illustrate the sensitivity
of the differential limit, whereas the observed differential limit is presented in
section 6.2.2.
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(a) Test statistic distributions for 𝜇𝑠,inj ∈ [0, 20].

(b) Test statistic distributions for 𝜇𝑠,inj ∈ [0, 5].

Figure 5.3: Test statistic distributions for various values of 𝜇𝑠,inj. The black lines
show scans for exemplary pseudo experiments and the red line shows the critical
value obtained for each test at a 90 % confidence level. If the observed test statistic
value is higher than the critical value the null hypothesis will be rejected and the
corresponding value of 𝜇𝑠,inj will not be part of the constructed confidence interval.
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Figure 5.4: 90 % upper limit distributions for 1000 pseudo experiments. Each
plot shows a different astrophysical flux assumption used in the likelihood fit. The
different colors indicate the injection of pseudo experiments based on different
astrophysical assumptions. For this estimation of the sensitivity the injected signal
is set to 𝛷𝜈𝜏

= 0 GeV−1 cm−2 s−1 sr−1. The error bars have been slightly shifted
from the bin centers for better visibility only.
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Figure 5.5: Sensitivity to the differential upper limit on the tau neutrino flux
between 100 TeV and 10 PeV (Differential upper limit assuming a null observation).
Models for astrophysical neutrino fluxes from choked jets and low luminosity
gamma-ray bursts [117] (orange), low luminosity AGNs [118] (red) and from a
multicomponent model [119] (green) are compared.
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5.6 Systematic Uncertainties

Systematic uncertainties in this analysis can be divided into two relevant subgroups:
uncertainties arising from imperfectly known detector properties (detector system-
atics), and uncertainties associated with limited knowledge about modeled flux and
particle interactions (flux systematics). The category of detector systematics may
change the detection threshold or the shape of observable distributions obtained
after the analysis. On the other hand, flux systematics only change the expectation
of certain types of events based on the change in e.g. incident particle flux. An
overview of the considered sources of systematic uncertainties is given in Tab. 5.3.
Each source of systematic uncertainties is described in more detail in the following
subsections.

Due to the small number of expected events in the data sample, it is not beneficial
to incorporate the number of sources of systematic uncertainties presented here into
the likelihood fit as nuisance parameters (as this is usually done in analyses with
larger data samples (e.g. [4, 5, 7])). This treatment would allow the consideration
of correlations between systematic parameters, which are a priori unknown (for the
most parameter combinations, for example, the correlation between uncertainties
of the astrophysical spectral index and the astrophysical normalization are known
from their simultaneous measurements). In this analysis, the influence of systematic
variations is investigated by individually reporting their impact on measured quanti-
ties (e.g. the upper and lower bound of the confidence intervals). A conservative,
worst-case estimate for the total influence can be obtained by adding the relative
changes due to the systematic uncertainties in quadrature, which effectively approx-
imates all sources of systematic uncertainties to be uncorrelated. This section gives
an overview of the sources of systematic uncertainties. Their influence on the tau
neutrino flux measurement is presented in section 6.2.1.

DOM Efficiency

The first considered parameter is the so-called DOM efficiency, which combines
several systematic effects. The DOM efficiency defines how many photons are
detected as a function of the deposited energy in the detector. Thus it combines
both effects that influence the production and the actual detection of photons.

The detection uncertainty is mainly described by the quantum efficiency of the
photomultiplier (PMT), the transmittance of the DOMs glass and gel and the area
that is shadowed by various cables outside the DOM [120, 73]. The systematic uncer-
tainty for the PMT efficiency calibration is 7.7 % [121]. The dominant contributions
arise from the laser beam energy calibration uncertainty and other systematic effects
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Table 5.3: Overview of the considered sources of systematic uncertainties. They
are grouped into detector systematics and flux systematics. Astrophysical flux
normalizations are given in units of 10−18 GeV−1 cm−2 s−1 sr−1. The atmospheric
(single) muon flux is described by a parametrization of CORSIKA simulations, which
is described in more detail at the beginning of chapter 4.

Type Description Nominal value / Syst. variation

Fiducial model

Detector DOM efficiency 0.99 ±10 %

Detector bulk ice scattering Spice 3.2 +10 %
−7 %

Detector bulk ice absorption Spice 3.2 +10 %
−7 %

Detector hole ice 𝑝2 = 0 𝑝2 ∈ [−3, −1, 1]

Flux 𝛷𝜈,conv HKKMS06 [83] ±30 %

Flux 𝛷𝜈,prompt BERSS [84] cf. [84]

Flux 𝛷𝜈,astro 1.01, 2.23, 2.15 +0.26
−0.23, +0.37

−0.40, +0.77
−0.75

Flux 𝛾astro 2.19, 2.50, 2.89 ±0.1, ±0.09, +0.31
−0.28

Flux 𝛷𝜇 CORSIKA param. ±15 %
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originating from the measurement setup. The overall uncertainty of the mentioned
effects is estimated to be ±10 % [95, 73].

Besides the baseline simulation with a DOM efficiency of 0.99, simulated datasets
with DOM efficiencies 0.9 and 1.08 are available for neutrino simulation.

Overall the DOM efficiency shifts the energy threshold of an analysis and also has
an impact on the energy reconstruction. For this analysis though the most relevant
effect is the energy threshold shift, since energy information is not directly included
in the likelihood fit.

Optical Properties of the South Pole Ice

Another source of systematic uncertainty are the optical properties of the South Pole
ice that IceCube is embedded in. The uncertainty arises from the model uncertainties
on scattering and absorption coefficients. The current way of simulating systematic
uncertainties (by reproducing a whole dataset with different simulation parameters)
does not provide a feasible solution to treat all of the depth-dependent scattering and
absorption coefficients (c.f. [69]) as individual parameters. Instead, the estimated
global uncertainty on the coefficients of 10 % is used to model the imperfect knowledge
of the optical parameter of the ice.

Three different systematic variations are simulated to describe the effects of this
global uncertainty: increased scattering by 10 %, increased absorption by 10 %, and
simultaneously decreased absorption and scattering by 7 % each. These choices were
made to roughly model the 1𝜎 contour of the fit performed in [69]. This also takes
into account that the uncertainties of the scattering coefficients and the absorption
coefficients are strongly correlated.

Hole Ice

The term hole ice is used to describe the refrozen column of ice that is created
during the deployment of a string. The drill holes have an approximate diameter of
60 cm. The refrozen ice contains air bubbles which increase the amount of scattering
within the bubble column compared to the remaining bulk ice [122]. The change in
scattering effectively changes the angular acceptance of the deployed IceCube DOM,
which is illustrated in Figure 5.6. The angular sensitivity of the DOM within the
hole ice column is parametrized with

0.34(1+1.5 cos 𝜂 −0.5 cos3 𝜂)+𝑝1 cos 𝜂(cos2 𝜂 −1)3 +𝑝2 exp(10(cos 𝜂 −1.2)) (5.20)
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where 𝜂 is the incident photon zenith angle. Thus cos 𝜂 = −1 describes vertically
down-going photons, and cos 𝜂 = 1 up-going photons. The angular acceptance is
modeled to describe flasher data [69] and the shown variations of the parameters 𝑝1
and 𝑝2 roughly cover the 1𝜎 region of the obtained best-fit model. Overall, compared
to a bare DOM, hole ice reduces the sensitivity to frontal photons (up-going), but
also allows more photons to hit the PMT due to the additional scattering that
would otherwise be missed, therefore, making the angular acceptance a bit more
isotropic.
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Figure 5.6: Relative sensitivity of the IceCube DOM as a function of the incident
photon angle to the PMT. Shown are different values for the hole ice parameters
𝑝1 and 𝑝2 and the parametrization in eq. 5.20. The dashed gray line describes the
angular sensitivity of a bare IceCube DOM.

Atmospheric Neutrinos

The uncertainties on the conventional atmospheric neutrino flux models are domi-
nated by the uncertainty on cosmic ray parameterizations and imperfect knowledge
about hadronic interaction models (which is estimated here to be roughly ±30 %
for both electron and muon neutrinos) [123].
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For the calculation of prompt atmospheric neutrino fluxes, the uncertainties related to
the primary cosmic ray flux are the same as for conventional atmospheric neutrinos.
The used prompt flux model supplies their estimation of uncertainties due to
variations of QCD parameters responsible for the production of heavy quarks, which
are used in this analysis [84].

Astrophysical Neutrinos

The models for astrophysical neutrino fluxes are taken from IceCube measurements
(as presented in Table 5.1). The measurement uncertainties on the astrophysical
normalization and the spectral index for the astrophysical background of electron
and muon neutrinos are also treated as a systematic uncertainty.

Atmospheric Muons

The uncertainty on the flux of atmospheric muons has the same origin as the
uncertainty for atmospheric neutrinos. Their overall uncertainty is estimated to be
±15 % [123].

5.7 Event-wise Classification

In case any events are observed in the final sample, although they passed all selection
criteria of the event selection they are still not guaranteed to be signal events. An
interesting question is, to ask for each event, how likely it is for an event to be
a background event. This can be answered with the observed p-value given the
likelihood and the test statistic

L (𝜆|𝑖) =
𝑃𝑏,𝑖 + 𝜆𝑃𝑠,𝑖

1 + 𝜆
(5.21)

TS = − ln (L (𝜆 = 0)
L (�̂�)

) (5.22)

where 𝑃𝑏 and 𝑃𝑠 are probability distribution functions describing the simulated
events in some observable space, 𝜆 is bound in the interval [0, 1] and is used to fit
the “signalness” in the corresponding observable bin 𝑖. The null hypothesis here is
given by the background-only hypothesis 𝜆 = 0, and for the alternative hypothesis 𝜆
is free to float within its boundaries. Since this procedure only inspects one event at
a time, the fit result will be either �̂� = 0 or �̂� = 1 depending on whether the signal
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or background PDF is larger in the respective observable bin. A background only
test statistic can be produced by sampling pseudo experiments from the background
distribution, which will then be used to calculate the p-value that the observed
event originates from the background PDF.

Here, the same observables, as used for the measurement of the tau neutrino
flux normalization (they are described in detail in section 5.4), are utilized. The
observables are specifically chosen here because they are designed to achieve a good
separation between signal and background (cf. chapter 4). The binning is also
kept the same as described in section 5.4. For this type of statistical question, the
expected event rates are not relevant, but the distributions have to be PDFs. To
achieve this, they are normalized such that

𝑃𝑠,𝑖 =
𝜇𝑠,𝑖

∑𝑚
𝑖 𝜇𝑠,𝑖 ⋅ vol𝑖

, (5.23)

where vol𝑖 is the volume of bin 𝑖.

The test statistic distribution for an 𝐸−2.19 spectrum is shown exemplarily in
Figure 5.7 (distributions for the other spectra are presented in Figures A.10 and A.11).
The plot shows the background only TS distribution, which is used for the analysis
as well as a signal TS distribution used to estimate the sensitivity of the p-value
calculation to events originating from the signal PDF. The sensitivity is measured
in terms of the median p-value of events sampled from the signal PDF that is 0.099,
0.094 and 0.114 for the three analyzed astrophysical spectra 𝐸−2.19, 𝐸−2.50 and
𝐸−2.89 respectively. The distributions are discrete as each bin can only produce one
TS value and all bins with a background PDF higher than the signal PDF give a
TS value of 0 due to fitting �̂� = 0.

The observed event candidates and their p-values are discussed in section 6.1. The
method, developed in this work, was also applied to calculate p-values for tau
neutrino candidates in [112].
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Figure 5.7: Test statistic distribution for the p-value calculation for events sampled
from the background PDF (orange) and events sampled from the signal PDF (blue)
assuming an astrophysical 𝐸−2.19 spectrum.
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6 Results

This chapter will describe the results obtained with the methods described in
chapter 5 on IceCube data recorded between May 2011 and December 2018. All
analysis methods were either developed on simulations only or on simulations with
10 % of the available data to check for agreement between data and simulations.
In section 6.1 the events found in the final sample are presented and characterized
in detail. Section 6.2 describes the result of the likelihood fit and the resulting
constraints on the astrophysical tau neutrino flux. Lastly, in sections 6.3 and 6.4
the obtained results are compared to other IceCube analyses and its astrophysical
implications are discussed.

6.1 Data Sample

After applying the event selection to the full sample of 7.5 years of IceCube data,
two tau neutrino candidate events were found, as already indicated in Figures 4.9b
and 5.1 which already show the full data sample. The events were found in the 2014
and 2015 season respectively1.

6.1.1 2014 Event

An event view of the tau neutrino candidate observed in the 2014 season is shown
in Figure 6.1. Three waveforms, depicted in Figure 6.2, passed the double pulse
selection criterion. The waveforms are found on three neighboring DOMs, where the
one observed in the central DOM has the highest possible Double Pulse score of 1.0
(orange). For the other two waveforms, Double Pulse scores of 0.45 (blue) and 0.81
(green) are found respectively. The Cascade score to determine if this event has
a cascade-like topology is 0.92, which makes it the most interesting event in the
sample.

This event is a starting event, which is supported by the fact that it passes the
VHESelfVeto (which is described in sec. 4.3). The observed charge for this event

1A pole season starts in spring and ends in spring in the following year.
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Figure 6.1: Event recorded on April 22nd 2015 (RunID: 126283,
EventID: 47286594). Deposited charge 𝑄tot = 9001 PE, reconstructed
(EM-equivalent deposited) energy 𝐸Monopod = 91 TeV.

84



6.1 Data Sample

9900 10000 10100 10200 10300

Time / ns

0

250

500

750

1000

1250

1500

1750

A
T

W
D

V
ol

ta
ge

/
m

V

String 20, DOM 25

String 20, DOM 26

String 20, DOM 27

Figure 6.2: Double Pulse waveforms of the event recorded on April 22nd 2015
(RunID: 126283, EventID: 47286594). The corresponding Double Pulse scores are
0.45 (blue), 1.0 (orange) and 0.81 (green).

85



6 Results

is 𝑄tot = 9001 PE making it a suitable candidate for the VHESelfVeto as it is
optimized for events above 6000 PE. This makes it a very likely neutrino candidate
as opposed to the possibility of being an atmospheric muon. The position in which
this event occurred is just above the dust layer which could, combined with the
reconstructed zenith of 49°, result in obscured light from a low energetic outgoing
muon track originating from a charged current muon neutrino interaction. But,
the background rejection for this event selection results only in a fraction of 7 % to
9 % for charged current muon neutrino events. The p-value based on the observed
Double Pulse score and Cascade score for this event of being a background event
is

𝑝𝛾=2.19 = 0.035
𝑝𝛾=2.50 = 0.035
𝑝𝛾=2.89 = 0.031

for the respective astrophysical spectra.

The same event was found in [103] but with a completely different approach used in
the event selection and for the identification of tau neutrinos as double cascades.
The approach used there applies a direct double cascade reconstruction (described
in section 4.3.1) aiming to reconstruct the sought after event topology of a tau
neutrino interaction and a subsequent tau decay (excluding the tau decaying into a
muon). Their approach yields a reconstructed energy of 𝐸1 = 9 TeV for the first
cascade, 𝐸2 = 80 TeV for the second cascade, and a tau length of ℓ𝜏 = 17 m.

Although the reconstructed energy of the second cascade is only a lower bound
for the tau energy, the expected average tau length for an 80 TeV tau is roughly
4 m. This translates to a probability of an 80 TeV tau to propagate more than 17 m
of 1.3 %. The effect of observing smoking gun signatures first for which observed
quantities might be far away from the mean, and thus the probability of such an
event happening might be small, is expected. This mostly results from a selection
bias, which is introduced due to small experimental sensitivities in certain regions
of the observable space. The smaller the tau length, the smaller the probability gets
to either be able to correctly reconstruct the tau length or to be able to identify
a double pulse. This results in a much larger sensitivity for outliers to higher tau
lengths in the length distribution, and finally in larger average tau lengths selected
by the analysis compared to the expected average tau length from the exponential
decay distribution. This behavior is illustrated for this analysis in Figure 4.14.

Another interesting consideration is that both this double pulse analysis and the
double cascade analysis [103] have different types of dominant backgrounds. For this
analysis, the dominant backgrounds are still track-like events, namely atmospheric
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muons and charged current muon neutrino events, as they can easily produce double
pulses and can be hard to distinguish from cascades when producing high energetic
losses close to the detector border. For the double cascade analysis, the dominant
background stems from mis-reconstructed single cascade events.

Here, a study about the overlap of both analyses was conducted and is presented in
Table A.5. Both the rather small overlap in the number of signal events and the
even smaller overlap in the background components suggests, that the combination
of both tau search strategies would be beneficial for the overall sensitivity to the
tau neutrino flux and the identification of individual tau neutrino candidates.

6.1.2 2015 Event

An event view of the event observed in the 2015 season is presented in Figure 6.3.
For this event, one waveform, shown in Figure 6.4, passed the double pulse selection
criterion with a Double Pulse score of 0.565. The Cascade score is found to be
0.675, being much closer to the selection threshold than the other event and thus in
a background dominated region of the observable space. Therefore, the resulting
p-value for this event is

𝑝𝛾=2.19 = 1.0
𝑝𝛾=2.50 = 1.0
𝑝𝛾=2.89 = 1.0

which is independent of the underlying astrophysical spectrum.

The event has a lower total charge of 𝑄tot = 7165 PE, but a higher reconstructed
energy 𝐸Monopod = 119 TeV. This lightly up-going event (with a reconstructed
zenith angle of roughly 96°) is a starting event as well, also passing the VHESelfVeto.
Despite starting with a cascade contained inside the detector volume, the event
also shows horizontal development afterward indicating a muon leaving the detector
volume.

These observations make the double pulse much more likely to be originating from
Cherenkov light from the muon and its secondaries hitting the double pulse DOM
before the light from the hadronic cascade due to the speed of the muon being larger
than the speed of light in the medium.

Recently an analysis with a similar goal was conducted [112] using straight cuts
for the event selection utilizing almost the same period of IceCube data. This
comparable event selection found three events, containing the events found in this
analysis as well. The third event found there turned out to originate from two
coincident muons.
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Figure 6.3: Event recorded on April 2nd 2016 (RunID: 127762, EventID: 66008498).
Deposited charge 𝑄tot = 7165 PE, reconstructed (EM-equivalent deposited) energy
𝐸Monopod = 119 TeV.
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Figure 6.4: Double Pulse waveforms of the event recorded on April 2nd 2016
(RunID: 127762, EventID: 66008498). The corresponding Double Pulse score is
0.565.
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6.2 Astrophysical Tau Neutrino Flux Normalization

In addition to the detailed description of each found event, the data sample intro-
duced in chapter 4 was used to perform the likelihood fit introduced in chapter 5.
The fit measures the astrophysical tau neutrino flux normalization for three different
assumptions on the astrophysical spectral index.

𝛷𝜈𝜏
(𝐸𝜈) = 0.44+0.78

−0.31 ⋅ 10−18 GeV−1 cm−2 s−1 sr−1 ( 𝐸𝜈
100 TeV

)
−2.19

(6.1)

𝛷𝜈𝜏
(𝐸𝜈) = 0.83+1.46

−0.59 ⋅ 10−18 GeV−1 cm−2 s−1 sr−1 ( 𝐸𝜈
100 TeV

)
−2.50

(6.2)

𝛷𝜈𝜏
(𝐸𝜈) = 1.62+2.78

−1.11 ⋅ 10−18 GeV−1 cm−2 s−1 sr−1 ( 𝐸𝜈
100 TeV

)
−2.89

(6.3)

The quoted statistical uncertainties are at a 68 % confidence level. The statistical
uncertainties at a 90 % confidence level are shown in Table A.7. The likelihood
scans and the critical values for the observed data sample are presented in Figures
6.5, A.12a and A.12b.

To examine the significance that the observed data sample does not contain a tau
neutrino component a likelihood ratio test (cf. eq. (5.5)) with the hypotheses

𝐻0 ∶ 𝛷𝜈𝜏
= 0

𝐻1 ∶ 𝛷𝜈𝜏
> 0

is conducted. This is accessed by sampling the likelihood ratio test statistic distribu-
tion through pseudo experiments. The test statistic distribution and the observed
test statistic value for an 𝐸−2.19 spectrum are illustrated in Fig. 6.6. The observed
test statistic value corresponds to a p-value of 0.056 (1.91𝜎). The p-value only
slightly depends on the assumed astrophysical spectrum as the p-value for the
𝐸−2.50 spectrum is 0.055 (1.92𝜎) and for the 𝐸−2.89 spectrum is 0.052 (1.95𝜎).

6.2.1 Impact of Systematic Uncertainties

To study the impact of systematic parameters on the fit result the fit is redone with
systematically altered observable distributions. To investigate flux systematics the
weights of the simulated events can be recalculated according to the desired flux
models. Detector systematics are studied using dedicated simulations where the
corresponding detector parameters are different from the baseline simulation.
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Figure 6.5: Likelihood scan for the observed data sample for an astrophysical
spectrum of 𝐸−2.19. The red line shows critical values at 68 % confidence level
obtained from the underlying test statistic distributions for each value of 𝜇𝑠.
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Figure 6.6: Test statistic distribution of likelihood ratio test (cf. eq. 5.5) to
calculate the significance with respect to a zero tau neutrino flux normalization.
This test statistic distribution is the same as the one shown in the first column of
Fig. 6.5 (for 𝜇𝑠 = 0).
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The calculations here have two important caveats. First, the systematic datasets only
cover an energy range up to 107 GeV, while the baseline simulations go up to 108 GeV.
This is circumvented by comparing the obtained upper and lower limits for the flux
to the limits obtained when the baseline simulation is truncated at 107 GeV and
scaling the systematic boundaries accordingly. Second, due to limited computing
resources, systematic datasets for the atmospheric muon simulation do not exist.
This is handled by always using the baseline simulation for the atmospheric muon
simulation while going through the systematic datasets for the neutrino simulation.

The resulting changes2 due to systematic variations are presented in Table 6.1 for an
astrophysical 𝐸−2.19 spectrum (values for the other spectra can be found in Tab. A.8
and A.9). A conservative estimate on the influence on the lower and upper bound
of the confidence interval can be obtained by adding up changes in quadrature, that
push the boundaries of the interval outwards. To perform this calculation, for each
source of systematic uncertainties only the worst-case variation is considered. This
results in a relative reduction of the lower limit by 5.2 %, and a relative increase of
the upper limit by 18.1 % in total. The p-value is estimated to increase by 32.3 %
due to the systematic uncertainties based on the assumptions explained above.

Overall, these systematic variations show a negligible impact on the analysis com-
pared to the uncertainties arising from the Poisson fluctuation due to the small
expected number of events, which was presented in Tab. 5.2. For the lower limit of
the confidence intervals most systematic variations improve the lower limit. Excep-
tions are increased DOM efficiency, certain hole ice parameters, and an increased
atmospheric muon background flux. These also show the strongest decline in the
significance to reject the hypothesis of no present tau neutrino flux.

6.2.2 Differential Upper Limit

The differential upper limit described in section 5.5.1 is presented in Figure 6.7 for
the observed data sample. In addition to the theoretical models already presented
in Figure 5.5, the differential upper limit observed in [10] is shown. The analysis is
also searching for tau double pulse events with IceCube and uses the same method
presented here, which calculates the differential limit based on the hypothesis of
an 𝐸−1 signal flux3 defined over one decade in energy. The differential upper limit
from this work improves the limit presented in [10] by roughly a factor of 3 over the
whole energy range. This is achieved by the combination of an increased detector

2Note that the possible values for the relative changes are limited by the step size used for the
injected signal mean for 𝜇𝑠, which restricts the possible confidence intervals in 𝜇𝑠 to the used
step size of 0.05.

3The paper actually states that an 𝐸−2 signal flux is used, which turned out to be a typing error.
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Table 6.1: Relative influence of the tested sources of systematic uncertainties
on the lower and upper bound (𝛷𝑙,68

𝜈𝜏
and 𝛷𝑢,68

𝜈𝜏
) of the tau flux normalization.

The last column quantifies the impact on the p-value to reject a tau neutrino flux
normalization of 𝛷𝜈𝜏

= 0. The values shown here are calculated for an astrophysical
𝐸−2.19 spectrum. Nominal values are shown in Tab. 5.3.

Description Variation 𝛥𝛷𝑙,68
𝜈𝜏

/𝛷𝑙,68
𝜈𝜏

𝛥𝛷𝑢,68
𝜈𝜏

/𝛷𝑢,68
𝜈𝜏

𝛥𝑝𝛷𝜈𝜏>0/𝑝𝛷𝜈𝜏>0

scattering (bulk ice) +10 % +27.2 % +17.7 % +0.8 %
absorption (bulk ice) +10 % +22.9 % +10.6 % −2.3 %

scat. and abs. −7 % +19.6 % +7.6 % +9.4 %

hole ice 𝑝2 = −3 −1.9 % −5.6 % +10.8 %
𝑝2 = −1 +10.4 % +0.3 % +0.4 %
𝑝2 = +1 +0.1 % −2.7 % +26.9 %

DOM efficiency +10 % −4.8 % −6.6 % +11.6 %
−10 % +3.6 % +3.6 % +4.4 %

𝛷𝜈,conv +30 % 0.0 % 0.0 % −4.4 %
−30 % 0.0 % 0.0 % +3.7 %

𝛷𝜈,prompt BERSS𝑢 [84] 0.0 % −1.0 % −1.6 %
BERSS𝑙 [84] 0.0 % 0.0 % 0.0 %

𝛷𝜈,astro +0.26 0.0 % 0.0 % 0.0 %
−0.23 +9.1 % +1.0 % +6.0 %

𝛾astro +0.1 +9.1 % +1.0 % +6.7 %
−0.1 0.0 % 0.0 % −2.4 %

𝛷𝜇 +15 % 0.0 % −2.0 % −2.1 %
−15 % +9.1 % +1.0 % +1.6 %
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livetime, an improved event selection and by using the binned Poisson likelihood
fit as a more sensitive analysis method compared to a simple counting experiment.
The observed differential limit is also compatible with the theoretical models shown
in Fig. 6.7 and with current IceCube measurement of the astrophysical neutrino
flux.
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(a) Comparison of the differential upper limit with models for astrophysical neutrino
fluxes from choked jets and low luminosity gamma-ray bursts [117] (orange), low
luminosity AGNs [118] (green) and from a multicomponent model [119] (red).
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Figure 6.7: Differential upper limit on the tau neutrino flux for the observed
data sample between 100 TeV and 10 PeV. The red solid line shows the differential
upper limit observed by [10].
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6.3 Comparison with other IceCube Measurements

Up to the date of this work, two different strategies are used within the IceCube
collaboration to measure the flux of astrophysical tau neutrinos. Event selections
focusing on extracting events showing a double pulse topology, which is accessed
by simultaneously searching for double pulses in waveforms and cascade-like event
topologies. This type of event selection is mostly sensitive to tau neutrinos while
the most dominant backgrounds are track-like events (this work, [10], [112]). Event
selections based on the double bang topology use extensive likelihood-based recon-
structions to reconstruct the tau length amongst other physical parameters and
use these observables to identify tau neutrinos. So far, since these reconstructions
are computationally expensive, this type of event selection is based on high energy
starting events (HESE) [2, 3, 52, 7] containing mostly high energy neutrinos of
all flavors, thus with a high probability of being astrophysical. These high energy
neutrinos are classified into three classes, cascades, tracks, and double cascades and
then used to measure the astrophysical flavor ratio, while the sensitivity to the
tau neutrino component is coming from the double cascade events [102, 103]. The
dominant backgrounds are mis-reconstructed single cascade events.

Due to the limitations of the HESE selection, these analyses have a slightly larger
energy threshold compared to the double pulse analyses and they have to rely on the
precise knowledge of systematic effects, for example, knowledge of the south pole ice
model as it is an important part of the double cascade reconstruction. In contrast,
the presence of astrophysical electron and muon neutrinos in the HESE data sample
allows the simultaneous measurement of the astrophysical neutrino flux of all flavors,
hence, the astrophysical flavor ratio. It also allows a more sophisticated integration
of nuisance parameters into the measurement and thus can provide better estimates
on the influence of systematic effects.

The results obtained in this work are compatible with the other double pulse
analyses conducted with IceCube data. The differential upper limit (as shown in
the previous section), as well as the model-dependent 90 % upper limit of 𝛷𝜈𝜏

(𝐸𝜈) <
5.1⋅10−18 GeV−1 cm−2 s−1 sr−1 (𝐸𝜈 / 100 TeV)−2, based on the null observation made
in [10] is larger than the measured tau neutrino flux here. The successor of this
analysis [112] also follows the goal of measuring the tau neutrino flux normalization
with a binned Poisson likelihood fit as it is done in this work. It improves the event
selection presented in [10] significantly and finds three tau neutrino candidates.
Two of those events are also found in this analysis (cf. sec. 6.1). There a best fit
tau normalization of 0 is found and the 90 % upper limits (set on for the same
astrophysical flux assumptions of 𝐸−2.19, 𝐸−2.50 and 𝐸−2.89 as analyzed in this
thesis) are comparable with the upper boundaries of the 68 % confidence intervals.
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Overall, even though different methods are used in most parts of both analyses, the
good agreement is not surprising because both event selections have a large overlap
and the data samples are not statistically independent.

Comparing the results in this work to those obtained by the double cascade analyses
is slightly more tricky since their results are presented in the form of a flavor triangle.
Two flavor composition measurements for the double cascade analysis using the
HESE sample based on six years of data [102] and the successor of this analysis
based on 7.5 years of data [103] (which is still referred to as work in progress) exist.
The result based on 7.5 years of data is shown in Figure 6.8. The flavor composition
is presented as a flavor triangle, where the likelihood ratio at each point is evaluated
by fitting the flux normalizations for each flavor but constraining their sum to the
total observed flux. Both show the best-fit point and the 68 % and 90 % confidence
interval contours.

The analysis presented in [102] found no double cascade events in six years of
IceCube data in the HESE sample [52] and set a 90 % upper limit 𝛷𝜈𝜏

(𝐸𝜈) <
2.68 ⋅ 10−18 GeV−1 cm−2 s−1 sr−1 (𝐸𝜈 / 100 TeV)−2.97 on the tau neutrino flux. This
sets an upper limit on a spectrum even softer than the 𝐸−2.89 spectrum tested in this
analysis. The second double cascade analysis [103] uses the same strategy to fit the
flavor ratio, but increases the amount of data to 7.5 years of the HESE selection [7]
and partly improves the used analysis methods. Two double cascade events were
found resulting in an observed flavor ratio of 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 0.29 ∶ 0.50 ∶ 0.21. The
limited amount of statistics in both analyses still entails large contours in the flavor
triangle.

When combining the assumption of equal flavor contributions for 𝜈𝑒 and 𝜈𝜇 in this
work with the observed tau neutrino flux normalization the resulting flavor ratio
is contained within the 1𝜎-contours of both double cascade analyses4. Figure 6.8
presents the measurement of the tau neutrino flux normalization obtained in this work
for the 𝐸−2.89 spectrum measured with the HESE analysis using 7.5 years of IceCube
data [7] in the context of the astrophysical flavor composition measurement [103].
The observed consistencies are hardly surprising here because, although the event
selections follow a different strategy to identify tau neutrino events, there is a
significant overlap in both the event selection and the observed data sample (as
already discussed in sec. 6.1).

4It should be kept in mind that the soft spectrum of 𝐸−2.97 in [102] does not allow a fair
comparison in a statistical meaningful way without further analysis.
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This work

Figure 6.8: Astrophysical flavor composition measurement obtained by IceCube’s
double cascade analysis [103] based on 7.5 years of IceCube data using the HESE
event selection [52, 7]. The green lines show the 68 % and 90 % contour of the
analysis’ sensitivity and the black lines show the contours of the measurement. The
best fit and the error bar in magenta depict the result obtained in this work. The
contributions from 𝜈𝑒 and 𝜈𝜇 are fixed in this analysis, and only the 𝜈𝜏 fraction is
varied. The strong assumptions on the 𝜈𝑒 and 𝜈𝜇 contributions lead to, in general,
smaller uncertainties compared to a simultaneous measurement of three flavors.
Figure adapted from [103].
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6.4 Discussion

The event selection developed in this thesis and presented in chapter 4 significantly
improves the properties of the final data sample compared to the previous double
pulse analysis conducted with IceCube [10]. The properties can be compared most
easily for an 𝐸−2.50 spectrum because event expectations for that spectrum are
presented in the publication. The number of expected events per detector livetime
is increased by a factor of 2.5. The tau neutrino purity of the final sample is also
increased from 59 % to 69 %. Additionally, the analyzed data taking period has
been extended from 914 days to 2667 days.

The identification of double pulse waveforms and the rejection of single cascade
waveforms has been improved by favoring a machine learning based approach over
previously used straight cuts. New observables for the double pulse identification have
been added to further increase the separating power achieved by the Random Forest.
The double pulse identification can potentially be improved by the development of
a more elaborate method to define signal waveforms for the classification. Another
possibility, investigated as a part of this thesis, is the application of a machine
learning model capable of classifying waveforms without the explicit construction
of observables. This was tested on simulations with a variety of neural network
architectures, where a convolutional neural network showed the most promising
results [124].

The cascade selection (cf. section 4.3) developed in this thesis does not rely on
a containment cut. As a consequence, the atmospheric muon background is the
dominant background contribution and it has been investigated carefully. The
classification of atmospheric muons as background events can be improved by
more efficient reconstructions to identify small amounts of outgoing charge after a
catastrophic energy loss of a muon. Another point of improvement could be the
development of observables to distinguish between events entering and leaving the
detector for partially contained events.

Overall, the incorporation of a machine learning approach into the event selection
increases its reliability by using validation techniques such as cross validation. This
also improves the ability to verify the event selection compared to event selections
based on straight cuts, especially in regions close to the signal region, with observed
data via the classification score distributions.

In this dissertation, a binned Poisson likelihood fit is used to measure the tau
neutrino flux normalization for different astrophysical spectral indexes. This is
an improvement over the previously used method of a counting experiment [85].
For the likelihood fit, observables developed in this thesis are used, increasing the
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sensitivity of the analysis compared to conventional observables like the reconstructed
energy [112]. Using the same observables, a method has been developed to assign
p-values to potential tau neutrino candidates.

This analysis has found two tau neutrino candidate events, that were identified via the
double pulse event topology. One is found to be a background event, while the other
event has a higher probability of being a tau neutrino with a p-value of approximately
𝑝 ≃ 0.035 with only a slight dependence on the astrophysical flux assumption. A
major fraction of the sensitivity comes from events with energies between 100 TeV
and 6 PeV. For the soft spectrum, the signal expectation is therefore lowered by
40 %. With a total event expectation between 2.19 and 3.47 in the analyzed amount
of 7.5 years of IceCube data finding two events is not unexpected, but a sign for
either a small under-fluctuation or a very soft spectrum.

As a result, this is, in combination with [112], the first observation of tau neutrino
candidates with the double pulse topology. Additionally, this is the first non-zero
measurement of the tau neutrino flux using the double pulse method as a tau
neutrino identifier, giving a hint at the existence of an astrophysical tau neutrino
flux with a significance of roughly 1.9𝜎 (independent of the assumed astrophysical
spectrum). The measured tau neutrino fluxes are also consistent with the expected
benchmark flavor ratio of 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 1 ∶ 1.
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7 Summary and Outlook

The main goal of this dissertation is the identification of high-energy astrophysical tau
neutrino candidate events within data from the IceCube detector, and a subsequent
measurement of the astrophysical tau neutrino flux. To achieve this, a new tau
neutrino identification method has been developed to increase the expected tau
neutrino event rate by a factor of 2.5 compared to a previous IceCube analysis
which used the same event signature for tau neutrino identification [10]. This event
selection is the first (amongst double pulse analyses) to renounce the explicit use
of a veto technique to reject atmospheric muons and thus extend the available
fiducial volume of the detector. As a result, the modeling of the atmospheric muon
background has been given particular attention. The applied methods to constrain
the tau neutrino flux have also been improved by employing a binned Poisson
likelihood fit and a new strategy to characterize the compatibility of observed event
candidates has been defined before the measurement.

Data recorded with the IceCube detector between May 2011 and December 2018
(resulting in 2667 days of detector uptime) has been analyzed and two tau neutrino
candidate events have been found. One event appears to be background-like with a p-
value of 𝑝 = 1.0 and the other one showed very signal-like characteristics resulting in
a p-value of 𝑝 ≃ 0.035 (almost independent of the assumed astrophysical spectrum).
For the first time, current iterations of IceCube’s astrophysical tau neutrino searches
have overcome the null-observation regime (cf. [112, 103]).

The observed data sample results in the following measurement of the astrophysical
tau neutrino flux based on the assumed astrophysical shape:

𝛷𝜈𝜏
(𝐸𝜈) = 0.44+0.78

−0.31 ⋅ 10−18 GeV−1 cm−2 s−1 sr−1 ( 𝐸𝜈
100 TeV

)
−2.19

𝛷𝜈𝜏
(𝐸𝜈) = 0.83+1.46

−0.59 ⋅ 10−18 GeV−1 cm−2 s−1 sr−1 ( 𝐸𝜈
100 TeV

)
−2.50

𝛷𝜈𝜏
(𝐸𝜈) = 1.62+2.78

−1.11 ⋅ 10−18 GeV−1 cm−2 s−1 sr−1 ( 𝐸𝜈
100 TeV

)
−2.89

These results are not in conflict with the expected flavor ratio of 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 ≃
1 ∶ 1 ∶ 1, but exclude the non-observation of an astrophysical tau neutrino flux
with a significance of 1.9𝜎 (also almost independent on the assumed astrophysical

103



7 Summary and Outlook

spectrum). In addition, a differential limit has been derived to also constrain the
astrophysical tau neutrino flux in a more model-independent way.

The signal-like tau neutrino candidate is also observed by [103] and an a posteriori
analysis to access the probability of this candidate is currently in progress [125].
Both analyses have found this event with complementary identification methods,
which both have different dominant sources of background. Thus, a combination
of both strategies might be able to attribute this event to a charged current tau
neutrino interaction with a much larger significance.

In the future, improvements to the statistics of tau neutrino analyses are necessary
to conduct precise measurements of the astrophysical flavor ratio, or, for example,
to search for neutrino sources based on a tau neutrino enriched sample. To achieve
this, additional observation time and improvements to both the analysis methods
for tau neutrino analyses and the available detectors would be desirable.

An improved version of IceCube’s global fit [5] combining different event selections
is currently in development [126]. It could potentially be improved further by the
inclusion of the event selection developed in this dissertation with respect to the tau
neutrino flavor sensitivity. This would also have great benefits over this analysis
as the additional events from other event selections could enable a simultaneous
measurement of the flavor ratio and the inclusion of systematic uncertainties as
nuisance parameters.

In the future, two major experimental improvements are considered for very high
energy neutrino detection. The next-generation neutrino observatory IceCube-
Gen2 [127] is planned to increase the detector volume of IceCube to ∼ 10 km3

with less dense instrumentation. This is expected to increase the sensitivity to
tau neutrinos above PeV energies by an energy-dependent factor of 5 - 10, when
considering identification via the double bang signature [127]. The improvement for
double pulse events will be smaller, as both energy depositions are required to be
close to a DOM, thus less dense instrumentation does not scale in the same way as for
double bang searches. Another prospect for observing neutrinos at higher energies is
the detection of radio signals produced in electromagnetic showers. This detection
technique is used by e.g. the Askaryan Radio Array (ARA) [128] built around
the IceCube detector, which can detect neutrinos with energies beyond 10 PeV.
This detection principle will significantly improve the sensitivity to cosmogenic
neutrinos.
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A.1 IceCube Simulations

The IceCube event simulation considers all relevant physical processes from particle
generation to the actual recorded signal by detector electronics. Simulated IceCube
events can be divided into three subgroups by the used event generator: neutrino
events, muons and muon bundles from cosmic ray air showers, and single muons.

The software NuGen (neutrino generator) generates neutrino events at the Earth’s
surface following a PDF based on the assumed neutrino flux (usually a power-law).
NuGen is a modified version of the neutrino generator ANIS [129]. It also propagates
neutrinos from the surface to the IceCube detector describing the Earth with the
Preliminary Reference Earth Model (PREM) [130] and handles the initial neutrino
interaction.

Cosmic ray primaries and the resulting extended air showers are generated with
CORSIKA [78]. The resulting output of an air shower that is interesting for IceCube
are the muons that reach the surface.

Simulating the full development of air showers is computationally expensive. A
solution to that is the so-called MuonGun simulation [79] (the same techniques are
used in the software MUPAGE [131]), which parametrizes the muon yield close to the
IceCube detector derived from the output of CORSIKA simulations, propagated to
the detector with PROPOSAL [77].

After the event generation, all events are treated in the same way. Charged leptons
are propagated with PROPOSAL [77, 132]. PROPOSAL simulates the energy losses and
decays of these leptons. Hadronic cascades are simulated by the software cmc, which
creates photons with a direction and their time of production at the position of the
hadronic cascade. At energies above 1 TeV, the cascade elongation is taken into
account.

Computationally the most challenging step is the propagation of photons from their
origin through the south pole ice. The software clsim generated photons from the
leptonic energy losses, which is handled in a similar way as in cmc. The cascades get
parametrized and summarized in Photonics tables [93] that can be used to sample
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produced photon counts. After that, the photons are propagated individually via
ray-tracing through the inhomogeneous south pole ice until they either hit a DOM
or get absorbed.

Finally, the whole detector response to the photon hits is simulated. This includes
detector noise, physical processes in the PMT and effects of the digitizing electronics.
After this step simulations can be treated the same way as data.

A.2 Tree-based Learning Algorithms

Tree-based algorithms are supervised learning algorithms that can be applied to
classification and regression problems. The most basic unit of a tree-based algorithm
is a decision tree. First, a decision tree is trained with labeled training data, where
for a classification task the true class and for a regression task the value to be
estimated has to be known. The decision tree splits the training set by a consecutive
set of straight cuts in available observables. Each cut is optimized by a criterion
depending on the task. In this thesis, the Gini impurity is used exclusively. The
Gini impurity is defined by

𝐼𝐺 =
𝑁

∑
𝑖=1

𝑝𝑖 ⋅ (1 − 𝑝𝑖) (A.1)

for a set of examples with 𝑁 classes, and the probability for an example associated
with class 𝑖 𝑝𝑖 of being selected at random. To choose the best cut during the
training process all possible cuts are evaluated on each observable and the cut that
maximizes the Information gain/Gini gain 𝐼𝐺𝐺 is chosen.

𝐼𝐺𝐺 = 𝐼𝐺,parent − ∑
𝑖∈{<,≥}

𝐼𝐺,𝑖. (A.2)

𝐼𝐺,parent is the Gini impurity at the parent node before a split is chosen. The sum
goes over both subsamples at the nodes obtained by the split.

After selecting a split the procedure is repeated for each new node until a stopping
condition is met. The usual stopping condition is that no information gain 𝐼𝐺𝐺 > 0
can be achieved. Other conditions as the number of examples at a node or a maximal
depth of the tree can be used as well. This algorithm is also often referred to as the
CART-algorithm (Classification and regression trees) [133].

After this the training process is complete and the decision tree can be used for
classification. This is done by applying cuts to an example until it falls into a
terminal node, where the example is classified as the dominant class at that node.
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A.3 Cross-validation

A.2.1 Random Forest

A Random Forest [134] is an ensemble method combining several decision trees. To
obtain an ensemble of statistically independent decision trees the training process
for the decision trees needs to be modified. For each tree, the training set is
bootstrapped from the original training set (by drawing the same number of samples
with replacement). At each node that is built only a subset of observables is
considered. A common choice for the available number of observables is √𝑛Observables.
After training a decision is made by majority vote. Each tree assigns a class to an
example. These votes can be combined to a classification score, where the score for
class 𝑖 is the number of trees that voted for class 𝑖 over the total number of trees.

A.2.2 Feature Importance

After the training the importance of an observable 𝑋𝑗 for predicting the label 𝑌 can
be evaluated by adding up weighted impurity decreases 𝑝(𝑡)𝛥𝐼𝐺(𝑠𝑡, 𝑡) for all nodes
𝑡 that use the observable 𝑋𝑗:

𝑓(𝑋𝑗) = 𝑓𝑗 = 1
𝑁𝑇

∑
𝑇

∑
𝑡∈𝑇 ∶𝑣(𝑠𝑡)=𝑋𝑗

𝑝(𝑡)𝛥𝐼𝐺(𝑠𝑡, 𝑡) (A.3)

where 𝑁𝑇 is the number of trees in the forest, 𝑝(𝑡) is the fraction of examples
reaching node 𝑡 and 𝑣(𝑠𝑡) is the variable used in the split 𝑠𝑡 [135]. The values of 𝑓𝑗
are normed in a way that ∑𝑗 𝑓𝑗 = 1.

A.3 Cross-validation

Cross-validation is a technique to validate model performance in a statistical analysis
used multiple times throughout this thesis. It is used to obtain a generalized
performance of a statistical model (in this thesis often a Random Forest) by exposing
it to statistical fluctuations in the training and test set. This creates a reliable
estimate of the performance for the application on experimental data.

A 𝑛-fold cross-validation splits a data sample into 𝑛 disjoint subsets. The analysis is
repeated 𝑛 times using 𝑛 − 1 subsets as the training set and the remaining subset as
the test set. This way, each example in the data sample will be used once for testing
and thus get an unbiased estimate of e.g. the class prediction or a reconstructed
value as it is not part of the training set.
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A.4 Feature Selection

A.4.1 Kuncheva Index

The Kuncheva stability index is given by

I𝑆(A ) = 2
𝐾(𝐾 − 1)

𝐾−1
∑
𝑖=1

𝐾
∑

𝑗=𝑖+1
𝐼𝐶(𝑆𝑖, 𝑆𝑗), (A.4)

with a set of 𝐾 feature sets A = {𝑆1, … , 𝑆𝐾}. The consistency index 𝐼𝐶 is

𝐼𝐶(𝐴, 𝐵) = 𝑟𝑛 − 𝑘2

𝑘(𝑛 − 𝑘)
, (A.5)

where 𝑘 denotes the size of the sets 𝐴 and 𝐵, 𝑛 denotes the total number of features
considered in the feature selection and 𝑟 is the size of the intersection between 𝐴
and 𝐵. This consistency index satisfies the three conditions explained in the main
matter – monotonicity, limits, and correction for chance. [109]

A.4.2 Observable distributions

This section shows a subset of the observable distributions discussed in 4.3.2. The
remaining distributions can be downloaded: features removed by feature importance1,
manually removed features2 and the final feature set3. For the observables “Tensor
of Inertia Eigenvalue ratio 𝑞ToI” and the “CascadeFillRatio (based on 𝑟mean+RMS)”
presented in Figure A.2 (top right and bottom right), worrying disagreements can
still be observed for small values. Fortunately, these disagreements are in a region of
these observables where the signal-to-background ratio is extremely small. It can be
expected that regions like this are classified as very background-like by the Random
Forest classifier. This behavior was checked after the classification by applying a
classification score threshold of 0.01, which already removed the disagreements in
these observables.

1https://icecube.wisc.edu/~mmeier/analysis_docu/html/_downloads/removed_features.
zip

2https://icecube.wisc.edu/~mmeier/analysis_docu/html/_downloads/manually_removed_
features.zip

3https://icecube.wisc.edu/~mmeier/analysis_docu/html/_downloads/features_final.zip
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Figure A.1: Comparison of data and simulations after the double pulse selection.
Distribution of the energy reconstructed with Monopod. The energy reconstructed
with this algorithm still shows clearly visible disagreements especially in an energy
region interesting for this analysis (between 200 TeV and 1 PeV).
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Figure A.2: Comparison of data and simulations after the double pulse selection.
Distributions of the six observables with the highest feature importance in the
Random Forest (from top left to bottom right).110
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Figure A.3: Comparison of data and simulations after the double pulse selection.
Distributions of the six observables ranked seventh to twelfth based on their feature
importance in the Random Forest (from top left to bottom right).
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A.5 Classification

Table A.1: Settings used for the Random Forest classification in sections 4.2 and
4.3.3.

Parameter Value Comment

n_estimators 200 Number of trees.
criterion 'gini' Criterion to measure the quality of a split.

'gini' selects the Gini impurity as a mea-
sure.

max_depth None Maximum depth of the trees. None results
in an unlimited depth.

min_samples_split 2 Minimum number of samples required to
perform a split at a node.

min_samples_leaf 1 Minimum number of samples to arrive at
a leaf node.

min_weight_fraction_leaf 0 Minimum fraction of total weights re-
quired to be at a leaf node.

max_features 'sqrt' Number of features considered at each
node. Here: max_features= √𝑛features.

max_leaf_nodes None Maximum number of leaf nodes. None
results in an unlimited number of lead
nodes.

min_impurity_decrease 0 Minimum decrease in impurity required to
induce a split.

bootstrap True Bootstrap samples when building trees.
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Figure A.4: Feature importances for the classification between cascade-like and
track-like events for the first half of the features (cf. Figure A.5).
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Figure A.5: Feature importances for the classification between cascade-like and
track-like events for the second half of the features (cf. Figure A.4).
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(a) Comparison between the classification score for simulations and the burn-
sample from six years of data from 2011 until 2017.
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(b) Comparison between the classification score for simulations and data from
six years of operation between 2011 and 2017 in the background region.

Figure A.6: Comparisons between data and simulations that were used during the
optimization of the event selection. Originally the event selection was developed
with 10 % of the data from six years to check for good agreement between data and
simulation (top). As an additional check, the background region (Classification
score ≤ 0.62) was used to make sure the region close to the signal region also
behaves as expected (bottom).
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A.5.1 Comparison of Individual Seasons of Data Taking

The Cascade score distributions for individual seasons of data taking are presented
in Figures A.7 and A.8. They have been analyzed to identify potential cross-year
inconsistencies. The most remarkable feature in these distributions is a large
apparent under-fluctuation in the first bin of the last season, IC86-VIII. This can
be explained by seasonal variations in the atmospheric muon flux. The production
of muons in the atmosphere depends on the atmospheric density, and thus on its
temperature.

Figure A.9 shows the observed event rates before the cascade selection for the
individual seasons, IC86-I to IC86-VIII. The event rates are split up into two time
periods, January to May and June to December. For the last season, IC86-VIII,
where the apparent under-fluctuation is observed, only data from June to December
is used in this analysis. This time period consistently shows a lower event rate over
all seasons compared to the other time period. In this thesis, all atmospheric fluxes
are weighted to their yearly average, resulting in an apparent under-fluctuation for
the season IC86-VIII.
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Figure A.7: Cascade score distributions for individual seasons of data taking
(IC86-I - IC86-IV).
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Figure A.8: Cascade score distributions for individual seasons of data taking
(IC86-V - IC86-VIII).
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Figure A.9: Observed event rates before the cascade selection (at Level 4) for the
individual seasons of data taking (IC86-I - IC86-VIII) broken down into the two
time periods, January to May and June to December. For the last year, IC86-VIII,
only data from June to December is used. The dashed gray lines show the mean
event rate for the respective time period.
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A.6 Final Sample

A.6.1 Expected Event Rates

Table A.2: Event expectations and relative fractions at the final level for data
and all simulated components in 7.3 years for the Diffuse 𝜈𝜇 analysis as stated in
Table 5.1.

Component Events in 7.3 years Fraction

Data 2 -

𝜈𝜏 CC 2.10 65.8 %
𝜈𝜇 CC 0.24 7.5 %

𝜈𝑒 CC + GR 0.13 4.1 %
∑𝑋 𝜈𝑋 NC 0.05 1.6 %
Atmos. 𝜇 0.67 21.0 %

Table A.3: Event expectations and relative fractions at the final level for data
and all simulated components in 7.3 years for the Global Fit analysis as stated in
Table 5.1.

Component Events in 7.3 years Fraction

Data 2 -

𝜈𝜏 CC 2.48 69.3 %
𝜈𝜇 CC 0.25 7.0 %

𝜈𝑒 CC + GR 0.13 3.6 %
∑𝑋 𝜈𝑋 NC 0.05 1.4 %
Atmos. 𝜇 0.67 18.7 %
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Table A.4: Event expectations and relative fractions at the final level for data
and all simulated components in 7.3 years for the HESE analysis as stated in Table
5.1.

Component Events in 7.3 years Fraction

Data 2 -

𝜈𝜏 CC 1.26 54.8 %
𝜈𝜇 CC 0.20 8.7 %

𝜈𝑒 CC + GR 0.12 5.2 %
∑𝑋 𝜈𝑋 NC 0.05 2.2 %
Atmos. 𝜇 0.67 29.1 %

A.7 Analysis Method

A.7.1 Event-wise classification
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Figure A.10: Test statistic distributions for the p-value calculation for events
sampled from the background PDF (orange) and events sampled from the signal
PDF (blue) assuming an astrophysical 𝐸−2.50 spectrum.
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Figure A.11: Test statistic distributions for the p-value calculation for events
sampled from the background PDF (orange) and events sampled from the signal
PDF (blue) assuming an astrophysical 𝐸−2.89 spectrum.

A.8 Results

A.8.1 Astrophysical Tau Neutrino Flux Normalization

Influence of Classification Score Cut Variations on the Tau Neutrino Flux
Normalization

The event selection for this analysis was optimized with only a fraction of the atmo-
spheric muon simulation available at the end. The test presented here accesses the
possible influence of the additional simulation on the significance of the result. And,
in general, the robustness of the result with regards to changes in the classification
score cut.

To conduct this test, the observable binning, described in section 5.4, is modified
and the Poisson likelihood fit, described in section 5.5, is repeated with three
different configurations for the observable binning. The equidistant bin width
for the classification score described in the main matter is kept, and one bin is
added and removed respectively. The result of the three fits, all assuming an
astrophysical 𝐸−2.19 spectrum, are compared in Table A.6. The observed result is
almost independent of the chosen classification score cut, and thus, of the number
of chosen classification score bins.
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Table A.5: Study of the overlap between the double pulse analysis (this work)
and the double cascade analysis [103]. These numbers are obtained by comparing
the effect of both event selections on the same set of simulated events assuming
astrophysical neutrinos with a spectrum of 𝐸−2.50 only (neglecting the contribu-
tions from atmospheric neutrinos). The relative overlap is calculated by dividing
the overlapping event expectation with the respective event expectation for the
analysis in the 2nd and 3rd column. Atmospheric muons are not included in this
study, because both analyses can not be compared fairly since this analysis uses
atmospheric muon simulations specifically biased for the event selection presented
here. Overall atmospheric muons are a major background component in this
analysis, while they are rather negligible in the double cascade analysis.

Component Overlap w.r.t. this analysis Overlap w.r.t [103]

𝜈𝜏 CC 36.2 % 27.1 %

𝜈𝜇 CC 4.0 % 0.4 %
𝜈𝑒 CC 9.5 % 5.5 %
𝜈𝑒 GR 1.6 % 0.2 %

∑𝑋 𝜈𝑋 NC 0.1 % 0.0 %

Table A.6: Measurement of the astrophysical tau neutrino flux normalization
for different classification score cuts, and thus different binning choices. The
astrophysical flux is assumed to be 𝐸−2.19. The uncertainties are given at the 68 %
CL.

Number of bins 𝛷0,𝜈𝜏
at 100 TeV Significance / 𝜎

(10−18 GeV−1 cm−2 s−1 sr−1)

8 bins 0.42+0.74
−0.28 1.90

7 bins 0.44+0.78
−0.31 1.91

6 bins 0.42+0.79
−0.29 1.83
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Table A.7: Measurement of the astrophysical tau neutrino flux normalization pre-
sented in chapter 6 for the different astrophysical spectra. Statistical uncertainties
are given at the 68 % and 90 % confidence level.

𝛾 𝛷0,𝜈𝜏
at 100 TeV / Uncertainties at Uncertainties at

(10−18 GeV−1 cm−2 s−1 sr−1) 68 % CL 90 % CL

2.19 0.44 +0.78
−0.31

+1.48
−0.40

2.50 0.83 +1.46
−0.59

+2.76
−0.74

2.89 1.62 +2.78
−1.11

+5.26
−1.45
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(a) Likelihood scan for an astrophysical spectrum of 𝐸−2.5.

(b) Likelihood scan for an astrophysical spectrum of 𝐸−2.89.

Figure A.12: Likelihood scans for the observed data sample. The red line shows
critical values at the 68 % confidence level obtained from the underlying test
statistic distributions for each value of 𝜇𝑠.
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A.8.2 Impact of Systematic Uncertainties

Table A.8: Relative influence of the tested sources of systematic uncertainties
on the lower and upper bound (𝛷𝑙,68

𝜈𝜏
and 𝛷𝑢,68

𝜈𝜏
) of the 68 % confidence interval.

The last column quantifies the impact on the p-value to reject a tau neutrino flux
normalization of 𝛷𝜈𝜏

= 0. The values shown here are calculated for an astrophysical
𝐸−2.50 spectrum. Nominal values are shown in Tab. 5.3.

Description Variation 𝛥𝛷𝑙,68
𝜈𝜏

/𝛷𝑙,68
𝜈𝜏

𝛥𝛷𝑢,68
𝜈𝜏

/𝛷𝑢,68
𝜈𝜏

𝛥𝑝𝛷𝜈𝜏>0/𝑝𝛷𝜈𝜏>0

scattering (bulk ice) +10 % +27.2 % +18.9 % −10.2 %
absorption (bulk ice) +10 % +22.9 % +11.7 % +0.1 %

scat. and abs. −7 % +19.6 % +9.7 % −9.4 %

hole ice 𝑝2 = −3 −1.9 % −3.8 % +2.5 %
𝑝2 = −1 +10.4 % +1.2 % −2.1 %
𝑝2 = +1 +0.1 % −0.8 % +17.5 %

DOM efficiency +10 % −4.8 % −5.7 % +14.0 %
−10 % +3.6 % +3.6 % +15.1 %

𝛷𝜈,conv +30 % 0.0 % −1.0 % −4.3 %
−30 % 0.0 % 0.0 % +3.9 %

𝛷𝜈,prompt BERSS𝑢 [84] 0.0 % 0.0 % −2.0 %
BERSS𝑙 [84] 0.0 % 0.0 % +0.2 %

𝛷𝜈,astro +0.37 0.0 % 0.0 % 0.0 %
−0.40 +9.1 % 0.0 % +6.7 %

𝛾astro +0.09 +9.1 % 0.0 % +4.3 %
−0.09 0.0 % 0.0 % +1.1 %

𝛷𝜇 +15 % 0.0 % −1.0 % −1.8 %
−15 % +9.1 % +1.0 % +3.1 %
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Table A.9: Relative influence of the tested sources of systematic uncertainties
on the lower and upper bound (𝛷𝑙,68

𝜈𝜏
and 𝛷𝑢,68

𝜈𝜏
) of the 68 % confidence interval.

The last column quantifies the impact on the p-value to reject a tau neutrino flux
normalization of 𝛷𝜈𝜏

= 0. The values shown here are calculated for an astrophysical
𝐸−2.89 spectrum. Nominal values are shown in Tab. 5.3.

Description Variation 𝛥𝛷𝑙,68
𝜈𝜏

/𝛷𝑙,68
𝜈𝜏

𝛥𝛷𝑢,68
𝜈𝜏

/𝛷𝑢,68
𝜈𝜏

𝛥𝑝𝛷𝜈𝜏>0/𝑝𝛷𝜈𝜏>0

scattering (bulk ice) +10 % +27.2 % +18.9 % +9.4 %
absorption (bulk ice) +10 % +22.9 % +12.8 % +1.3 %

scat. and abs. −7 % +19.6 % +8.7 % +15.3 %

hole ice 𝑝2 = −3 −1.9 % −2.9 % +23.9 %
𝑝2 = −1 +10.4 % +1.3 % +17.9 %
𝑝2 = +1 +0.1 % −0.8 % +19.6 %

DOM efficiency +10 % −4.8 % −5.7 % +23.3 %
−10 % +3.6 % +3.6 % +10.2 %

𝛷𝜈,conv +30 % −8.3 % −1.0 % −2.6 %
−30 % 0.0 % 0.0 % +4.9 %

𝛷𝜈,prompt BERSS𝑢 [84] −8.3 % 0.0 % −1.7 %
BERSS𝑙 [84] 0.0 % 0.0 % +0.3 %

𝛷𝜈,astro +0.26 0.0 % 0.0 % 0.0 %
−0.23 0.0 % +1.9 % +12.6 %

𝛾astro +0.31 0.0 % +1.0 % +0.4 %
−0.28 −8.3 % 0.0 % +5.5 %

𝛷𝜇 +15 % −8.3 % −1.9 % −1.7 %
−15 % 0.0 % +2.9 % +0.9 %
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