Probing the dipole moments of the tau-neutrino at high-energy γe^- and $\gamma \gamma$ collisions: ILC and CLIC

A. Gutiérrez-Rodríguez* †

Facultad de Física, Universidad Autónoma de Zacatecas Apartado Postal C-580, 98060 Zacatecas, México. E-mail: alexgu@fisica.uaz.edu.mx

M. Koksal

Department of Physics, Cumhuriyet University, 58140, Sivas, Turkey. E-mail: mkoksal@cumhuriyet.edu.tr

A. A. Billur

Department of Physics, Cumhuriyet University, 58140, Sivas, Turkey. E-mail: abillur@cumhuriyet.edu.tr

We obtain limits on the dipole moments of the v_{τ} through the reactions $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{\nu}_{\tau}\bar{\nu}_{\tau}e^-$ at a future high-energy and high-luminosity linear electron positron collider, such as the ILC and CLIC. The limits obtained are of the order of $\mu_{\nu_{\tau}} \leq 1.44 \times 10^{-6}\mu_B$ and $d_{\nu_{\tau}} \leq 2.78 \times 10^{-17} \ e \ cm$ in the γ^*e^- collision mode and of $\mu_{\nu_{\tau}} \leq 3.4 \times 10^{-7}\mu_B$ and $d_{\nu_{\tau}} \leq 6.56 \times 10^{-18} \ e \ cm$ with the $\gamma^*\gamma^*$ collision mode, improving the existing limits.

PoS(EPS-HEP2015)036

The European Physical Society Conference on High Energy Physics 22–29 July 2015 Vienna, Austria

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

[†]A. Gutiérrez-Rodríguez acknowledge support from COZCyT and PIFI (México).

1. Introduction

In this work we study the sensibility of the anomalous magnetic and electric dipole moments of the tau-neutrino through the processes $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{\nu}_\tau\nu_e$ and $e^+e^- \rightarrow e^+\gamma^*\gamma^*e^- \rightarrow$ $e^+\nu_\tau\bar{\nu}_\tau e^-$ at a future high-energy and high-luminosity linear electron positron collider, with a center-of-mass energy in the range of 500 to 1600 *GeV*, such as the International Linear Collider (ILC) [1], and of 3 *TeV* to the Compact Linear Collider (CLIC) [2].

To illustrate our results for both processes we include a contours plot for the upper bounds of the anomalous couplings $\mu_{v_{\tau}}$ and $d_{v_{\tau}}$ with 95% C.L. at the $\sqrt{s} = 0.5, 1.5, 3 \text{ TeV}$ with corresponding maximum luminosities for both processes. The sensitivity limits on the magnetic moment $\mu_{v_{\tau}}$ and the electric dipole moment $d_{v_{\tau}}$ of the tau-neutrino for different values of photon virtuality, center-of-mass energy and luminosity are also calculated.

This paper is organized as follows. In Section 2, we study the dipole moments of the tauneutrino through the processes $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{\nu}_\tau\nu_e$. In Section 3, we study the dipole moments of the tau-neutrino through the processes $e^+e^- \rightarrow e^+\gamma^*\gamma^*e^- \rightarrow e^+\nu_\tau\bar{\nu}_\tau e^-$. Finally, we present our results and conclusions in Section 4.

2. Dipole moments via $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{\nu}_\tau\nu_e$

The corresponding Feynman diagrams for the main reaction $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{\nu}_\tau\nu_e$, as well as for the subprocess $\gamma^*e^- \rightarrow \tau\bar{\nu}_\tau\nu_e$ which give the most important contribution to the total cross-section are shown in Figs. 1-2. From Fig. 2, the Feynman diagrams (1)-(3) correspond to the contribution of the standard model, while diagram (4) corresponds to the anomalous contribution, that is to say, for the γ^*e^- collisions there are SM background at the tree-level so the total crosssection is proportional to $\sigma_{Tot} = \sigma_{SM} + \sigma_{Int}(\mu_{\nu_{\tau}}, d_{\nu_{\tau}}) + \sigma_{Anom}(\mu_{\nu_{\tau}}^2, d_{\nu_{\tau}}^2, \mu_{\nu_{\tau}}d_{\nu_{\tau}})$, respectively.

Figure 1: Schematic diagram for the process $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{\nu}_\tau\nu_e$.

To illustrate our results in Fig. 3 we used three center-of-mass energies $\sqrt{s} = 0.5, 1.5, 3 \ TeV$ planned for the ILC and CLIC accelerators in order to get contours limits in the plane $\mu_{v_{\tau}} - d_{v_{\tau}}$ for $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{v}_{\tau}v_e$ and the planned luminosities of $\mathscr{L} = 230, 320, 590 \ fb^{-1}$ and Weizsacker-Williams photon virtuality $Q^2 = 64 \ GeV^2$.

As an indicator of the order of magnitude, in Table 1 we present the bounds obtained on the $\mu_{v_{\tau}}$ magnetic moment and $d_{v_{\tau}}$ electric dipole moment for $Q^2 = 64 \ GeV^2$, $\sqrt{s} = 0.5, 1.5, 3 \ TeV$ and

Figure 2: The Feynman diagrams contributing to the subprocess $\gamma^* e^- \rightarrow \tau \bar{\nu}_\tau \nu_e$.

Figure 3: Limits contours at the 95% *C.L.* in the $\mu_{\nu_{\tau}} - d_{\nu_{\tau}}$ plane for $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{\nu}_{\tau}\nu_e$.

 $\mathscr{L} = 230,320,590 \ fb^{-1}$ at 2σ and 3σ *C.L.*, respectively. We observed that the results obtained in Table 1 are competitive with those reported in the literature [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 19, 21]. For the electric dipole moment our limits compare favorably with those reported by K. Akama, *et al.* [22] $|d_{v_{\tau}}| < O(2 \times 10^{-17} \ ecm)$ and R. Escribano, *et al.* [23] $|d_{v_{\tau}}| \le 5.2 \times 10^{-17} \ ecm, 95\% \ C.L.$

3. Dipole moments via $e^+e^- \rightarrow e^+\gamma^*\gamma^*e^- \rightarrow e^+\nu_{\tau}\bar{\nu}_{\tau}e^-$

We study the dipole moments of the tau-neutrino via the process $e^+e^- \rightarrow e^+\gamma^*\gamma^*e^- \rightarrow e^+\nu_\tau\bar{\nu}_\tau e^-$

	$\sqrt{s} = 0.5, \ 1.5, \ 3 \ TeV,$	$\mathcal{L} = 230, 320, 590 fb^{-1}$
C. L.	$ oldsymbol{\mu}_{oldsymbol{ u}_{ au}}(oldsymbol{\mu}_B) $	$ d_{v_{\tau}}(ecm) $
2σ	(8.22, 2.88, 1.32)×10 ⁻	$^{-6}$ (15.8, 5.56, 2.54)×10 ⁻¹⁷
3σ	$(8.97, 3.14, 1.44) \times 10^{-10}$	$^{-6}$ (17.3, 6.06, 2.78)×10 ⁻¹⁷

Table 1: Bounds on the $\mu_{v_{\tau}}$ magnetic moment and $d_{v_{\tau}}$ electric dipole moment for the process $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{v}_{\tau}v_e$ for $Q^2 = 64 \ GeV^2$, $\sqrt{s} = 0.5, 1.5, 3 \ TeV$ and $\mathscr{L} = 230, 320, 590 \ fb^{-1}$ at 2σ and 3σ C. L.

for energies expected at the ILC and CLIC [1, 2]. The corresponding Feynman diagrams for the subprocess $\gamma^* \gamma^* \to v_\tau \bar{v}_\tau$ which give the most important contribution to the total cross-section are shown in Figs. 4 and 5. In this case, the total cross-section of the subprocess depends only on the diagrams (1) and (2) with anomalous couplings, and there is no contribution at tree level of the standard model, which is to say $\sigma_{Tot} = \sigma(\mu_{v_\tau}^4, d_{v_\tau}^4, \mu_{v_\tau}^3 d_{v_\tau}, \mu_{v_\tau}^2 d_{v_\tau}^2, \mu_{v_\tau} d_{v_\tau}^3)$.

Figure 4: Schematic diagram for the process $e^+e^- \rightarrow e^+\gamma^*\gamma^*e^- \rightarrow e^+\nu_\tau\bar{\nu}_\tau e^-$.

Figure 5: The Feynman diagrams contributing to the subprocess $\gamma^* \gamma^* \rightarrow v_\tau \bar{v}_\tau$.

In Fig. 6 we summarize the respective limit contours for the dipole moments in the $\mu_{v_{\tau}} - d_{v_{\tau}}$ plane for $e^+e^- \rightarrow e^+\gamma^*\gamma^*e^- \rightarrow e^+v_{\tau}\bar{v}_{\tau}e^-$. Starting from the top, the curves are for $\sqrt{s} = 0.5$ TeV and $\mathscr{L} = 230 \ fb^{-1}$; $\sqrt{s} = 1.5 \ TeV$ and $\mathscr{L} = 320 \ fb^{-1}$; $\sqrt{s} = 3 \ TeV$ and $\mathscr{L} = 590 \ fb^{-1}$, respectively. We have used $Q^2 = 64 \ GeV^2$.

Figure 6: Limits contours at the 95% *C.L.* in the $\mu_{\nu_{\tau}} - d_{\nu_{\tau}}$ plane for $e^+e^- \rightarrow e^+\gamma^*\gamma^*e^- \rightarrow e^+\nu_{\tau}\bar{\nu}_{\tau}e^-$.

In Table 2 we present the bounds obtained on the $\mu_{v_{\tau}}$ magnetic moment and $d_{v_{\tau}}$ electric dipole moment for $\sqrt{s} = 0.5, 1.5, 3 \ TeV$, $Q^2 = 64 \ GeV^2$ and $\mathcal{L} = 230, 320, 590 \ fb^{-1}$ at 2σ and 3σ . We observed that the results obtained in Table 2 improve the bounds reported in the literature [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 19, 21].

	$\sqrt{s} = 0.5, \ 1.5, \ 3 \ TeV,$	$\mathcal{L} = 230, 320, 590 \ fb^{-1}$
C. L.	$ oldsymbol{\mu}_{oldsymbol{ u}_{ au}}(oldsymbol{\mu}_B) $	$ d_{v_{\tau}}(ecm) $
2σ	$(9.90, 5.20, 3.10) \times 10^{-7}$	$(1.91, 1.00) \times 10^{-17}, 5.98 \times 10^{-18}$
3σ	$(10.60, 5.54, 3.40) \times 10^{-7}$	$(2.04, 1.07) \times 10^{-17}, 6.56 \times 10^{-18}$

Table 2: Bounds on the $\mu_{\nu\tau}$ magnetic moment and $d_{\nu\tau}$ electric dipole moment for the process $e^+e^- \rightarrow e^+\gamma^*\gamma^*e^- \rightarrow e^+\nu_\tau\bar{\nu}_\tau e^-$ for $Q^2 = 64~GeV^2$, $\sqrt{s} = 0.5, 1.5, 3~TeV$ and $\mathscr{L} = 230, 320, 590~fb^{-1}$ at 2σ and 3σ C. L.

4. Conclusions

In conclusion, we have found that the processes $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{\nu}_\tau\nu_e$ and $e^+e^- \rightarrow e^+\gamma^*\gamma^*e^- \rightarrow e^+\nu_\tau\bar{\nu}_\tau e^-$ in the γ^*e^- and $\gamma^*\gamma^*$ collision modes at the high energies and luminosities expected at the ILC and CLIC colliders can be used to probe for bounds on the magnetic moment μ_{ν_τ} and electric dipole moment d_{ν_τ} of the tau-neutrino. In particular, we can appreciate that for integrated luminosities of 590 fb^{-1} and center-of-mass energies of 3 *TeV*, we derive 95% *C.L.* limits on the dipole moments: $\mu_{\nu_\tau} \leq 1.44 \times 10^{-6}\mu_B$ and $d_{\nu_\tau} \leq 2.78 \times 10^{-17} e cm$ for the process $e^+e^- \rightarrow e^+\gamma^*e^- \rightarrow e^+\tau\bar{\nu}_\tau\nu_e$ and of $\mu_{\nu_\tau} \leq 3.4 \times 10^{-7}\mu_B$ and $d_{\nu_\tau} \leq 6.56 \times 10^{-18} e cm$ for $e^+e^- \rightarrow e^+\gamma^*\gamma^*e^- \rightarrow e^+\nu_\tau\bar{\nu}_\tau e^-$, better than those reported in the literature.

References

- T. Abe, et al. (Am. LC Group), arXiv:hep-ex/0106057; G. Aarons, et al., (ILC Collaboration), arXiv: 0709.1893 [hep-ph]; J. Brau, et al., (ILC Collaboration), arXiv: 0712.1950; H. Baer, T. Barklow, K. Fujii, et al., arXiv:1306.6352 [hep-ph].
- [2] E. Accomando, *et al.* (CLIC Phys. Working Group Collaboration), arXiv: hep-ph/0412251, Report No. CERN-2004-005; D. Dannheim, P. Lebrun, L. Linssen, *et al.*, arXiv: 1208.1402 [hep-ex]; H. Abramowicz, *et al.*, (CLIC Detector and Physics Study Collaboration), arXiv:1307.5288 [hep-ph].
- [3] T. M. Gould and I. Z. Rothstein, Phys. Lett. B333, 545 (1994).
- [4] H. Grotch and R. Robinet, Z. Phys. C39, 553 (1988).
- [5] A. M. Cooper-Sarkar, et al., [WA66 Collaboration], Phys. Lett. B280, 153 (1992).
- [6] M. Acciarri, et al., [L3 Collaboration], Phys. Lett. B412, 201 (1997).
- [7] A. Gutiérrez-Rodríguez, M. Koksal and A. A. Billur, Phys. Rev. D91, 093008 (2015).
- [8] A. Gutiérrez-Rodríguez, Int. J. Theor. Phys. 54, 236 (2015).
- [9] M. A. Hernández-Ruíz, et al., Nucl. Phys. Proc. Suppl. 253-255, 204 (2014).
- [10] A. Gutiérrez-Rodríguez, Advances in High Energy Physics 2014, 491252 (2014).
- [11] I. Sahin, Phys. Rev. D85, 033002 (2012).
- [12] A. Gutiérrez-Rodríguez, Pramana Journal of Physics 79, 903 (2012).
- [13] I. Sahin and M. Koksal, JHEP 03, 100 (2011).
- [14] A. Gutiérrez-Rodríguez, Eur. Phys. J. C71, 1819 (2011).
- [15] C. Aydin, M. Bayar and N. Kilic, Chin. Phys. C32, 608 (2008).
- [16] A. Gutiérrez-Rodríguez, et al., Phys. Rev. D74, 053002 (2006).
- [17] A. Gutiérrez-Rodríguez, et al., Phys. Rev. D69, 073008 (2004).
- [18] A. Gutiérrez-Rodríguez, et al., Acta Physica Slovaca 53, 293 (2003).
- [19] A. Aydemir and R. Sever, Mod. Phys. Lett. A16 7, 457 (2001).
- [20] A. Gutiérrez-Rodríguez, et al., Rev. Mex. de Fís. 45, 249 (1999).
- [21] A. Gutiérrez-Rodríguez, et al., Phys. Rev. D58, 117302 (1998).
- [22] K. Akama, T. Hattori and K. Katsuura, Phys. Rev. Lett. 88, 201601 (2002).
- [23] R. Escribano and E. Massó, Phys. Lett. B395, 369 (1997).