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The fragmentation functions for a ¢ or b quark to a B, or B: meson are derived up to QCD next-to-
leading order. They are further computed numerically and presented precisely in figures. In order to reach a
higher accuracy, we also try to properly use them to estimate B, and B} production at a Z factory (an e*e™
collider running at the energy of the Z-boson pole).
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I. INTRODUCTION

B, and B are the ground states of the c,b binding system
with spin 0 and 1, respectively. Carrying two different
heavy flavors, they are unique doubly heavy mesons in the
Standard Model. Thus they attract a lot of attentions,
particularly after the B, meson was first observed [I].
Their components, being of heavy flavor quarks, move
nonrelativistically inside the mesons, so the effective theory
—mnonrelativistic quantum chromodynamics (NRQCD) [2]
—is applicable, and the Mandelstam formulation of the
Bethe-Salpeter equation [3] under the instantaneous
approximation also works well.
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The production of B, or B} in ete™ collisions at the
Z-boson resonance [i.e., eTe” — Z/y - B.(B:) + X]
under the framework of NRQCD or the Mandelstam
formulation under the instantaneous approximation can
be factorized as follows [4-6]:

dae*e’—>36+X = Zdée+e’—>(cﬁ)[n]+X <OB( (l’l)>,

n

dGe*e’—»B§+X = Zd&ﬁe’—»(cb)[n’]-&-X <(OBj (I’l/)> ’ (1)

n

where dé denotes the cross section for the perturbative
production of the two-quark state (cb)[n] [or (cb)[n’] ] with
proper quantum numbers 7 (or n’), which can be calculated
using perturbative QCD (pQCD), and the nonperturbative
matrix element (O (n)) [or (O (n'))] representing the
transition probability from the perturbative two-quark state
(ch)[n] [or (ch)[n']] into the hadronic state (a B, or B
meson) can be related to the wave function at origin of the
(ch) binding system squared in the potential model
framework, and can also be calculated using lattice QCD.
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Since the B} meson is similar to the B. meson [the
difference is that the spin of the diquark (cb) inside B, is
S = 0 but the spin of the diquark (cb) inside B% is S = 1],
throughout the paper we often use B, to represent both B,
and B} for simplicity.

However, when the center-of-mass energy of a collision
is larger than the heavy-quark mass and the terms in
O(mZQ /s) can be neglected, according to the factorization

formulation of pQCD the production can also be calculated
in terms of the fragmentation approach:

d0e+e—_,3(+x /1 dy da—e*e‘—n’-&—X

X Di_p (2/y, k) (2)

where z = 2p - g/q? is the energy fraction (e.g. here p is the
momentum of B,, and ¢ is the momentum of et and e~
collision), d6,+.-_;.x 1s the cross section (coefficient
function) for the inclusive production of a parton i
(i=c,b, etc.) and can be calculated using pQCD, uy
denotes the factorization scale for the production, and
D;_p, is the fragmentation function (FF) from a parton i
to a B. meson, which is universal and can be extracted
experimentally. The authors of Refs. [7,8] realized that the
production is calculable in terms of QCD factorization as
shown in Eq. (1) and the leading-order (LO) FFs can be
extracted by comparing Eqgs. (1) and (2), i.e., the FFs are
theoretical calculable, and they were first extracted in
Refs. [7,8]. The authors of Ref. [9] applied the obtained
FFs to the production to the QCD leading logarithm
approach and made comparisons between their results
and those obtained using the complete LO QCD approach,
which gives us a understanding of the two approaches.

In order to obtain a better theoretical estimation on B,
production, etc., at a Z factory[10] (an e e~ collider running
atthe energy of the Z-boson pole), we would like to adopt the
factorization approach (2) but with the FFs from the ¢ or b
quark to a B, meson which are of next-to-leading order
(NLO), because the NLO QCD calculations are generally
more accurate. The NLO FFs cannot be extracted from the
complete NLO calculation of the relevant B, production as
easily as those for the LO ones, although B, productionata Z
factory has been studied using the “complete computation
approach” [11]. Therefore we must start with the definition
given in Ref. [12] to derive them up to the NLO of QCD. In
addition, the QCD NLO FFs have many applications, so we
would like to derive them precisely here, although the
derivation is complicated.

Note that in Refs. [13—-16] the QCD NLO FFs for a gluon
to heavy quarkonium were derived, but here the FFs from a
quark i to a B. meson involve two heavy quarks of different
flavors, so they are quite different from the ones for a gluon
to heavy quarkonium.

According to NRQCD, the FFs D, (i = c, b), which
depict the hadronization and contain nonperturbative
effects, can be factorized as follows:

Di—)BC<Z7MF) = Zdi—»d}[n](zqu)<Ogc>’ (3)

where the first factor d;_, .z,

cb quark pair with matched quantum number 7, and being
perturbative it can be calculated using pQCD; the factor

<(’)f“> denotes the “long-distance matrix elements,” and
being nonperturbative they may be related to the wave
functions at the origin in the potential model framework
or computed using lattice QCD. The nonperturbative
factors are reduced to a few long-distance matrix elements

] denotes a parton i generating a

<(95") under the required accuracy.' With the normalization
JodzD;_p 5 (z)=1, the LO FFs D;_p (where i=c,b)
were first obtained in Ref. [7]. The LO FFs were extracted
from the LO calculations of the processes Z — B, + b + ¢
and Z — B{ + b + ¢ with the approximation mp < my.
Subsequent calculations [8,19] confirmed the results. The
LO FFs for the production of the P-wave and D-wave
excited states of the B, were calculated in Refs. [20-22]. So
far there is no NLO calculation for the FFs D;_,5 (i = c, D).
Thus, in the present paper, we devote ourselves to calculat-
ing the QCD NLO corrections to D;_p_(and D;_p:).
Since the FFs D;_ (z, up) (Where p is the factorization
energy) generally contain terms like In(uz/m), in order to
properly take into account the possible large-logarithm
terms the FFs D, (z. ur) [ur = O(y/s)] will be obtained
by solving the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations [23—-25] with the NLO QCD
FFs D;_p (2. pro) [1po = O(mg)] being the “initial FFs,”

4
dings

:%'ZF)E/ZI%P}'i(y’as(/"F))Dj—’Bc(Z/y’MF)’ )

Di_p (z.uF)

where P ;(y, a,(ur)) are splitting functions for parton i into
parton j,

2

P (y) =Cp [ﬁ+%5(1 —y)],
Y

qu(y) = CFM,

qu(y) = TF[yz + (1 _y)Z]’

Puy(y) =2Cy {7(1 yy +1y;y+)’(1—)’)}

=)+

+é5(1 —y)(11C, — 4n,T). (5)

'"The relevant discussions about the accuracy of applying
NRQCD to the FFs of heavy quarkonia can be found in
Refs. [17,18], and the conclusions also apply to the FFs of the
B. meson.

’In fact, here they are of LO.
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where Cp =4/3, Ty = 1/2, C4 = 3 for QCD and P is
equal to P,,. Note that in order to focus on the conse-
quences of NLO QCD corrections for FFs, we restrict
ourselves to evaluating the evolution of the FFs from p g to
ur only to leading-logarithm (LL) accuracy so that here the
“splitting functions” in Eq. (5) are of leading order.

The paper is organized as follows. Following the
Introduction, in Sec. II we present the definition of the
FFs which was given by Collins and Soper [12], and
with this definition we calculate the LO FFs for
i = B.(B)+---(i=b,c). In Sec. Il we describe the
adopted method for calculating the virtual and real correc-
tions to the FFs, and how to carry out the renormalization,
s0 as to obtain the “initial FF” D,_p (5:)(2, ftpo). Then, we
present the numerical results for the FFs D;_,p and D;_ -
up to QCD NLO. In Sec. IV we apply the obtained QCD
|

NLO FFs to the production of ete™ — B.(B) +---ataZ
factory and compare the results with those obtained from
the complete QCD NLO calculations. Section V is devoted
to discussions and a conclusion.

II. THE FRAGMENTATION FUNCTIONS

A. The definition of fragmentation functions

The FFs may be defined as the hadron matrix elements of
certain quark-field operators, and the light-cone coordinate
is conventionally adopted. In the light-cone coordinate a
vector in d-dimensional space—time3 is represented as V¥ =
(V5 Vo Vy) = (VO + V) /V2, (VO = V) V2, Vy).
The gauge-invariant definition of the FFs for a quark Q
fragmenting into a hadron H in d = 4 — 2e-dimensional
space-time is [12]

d-3 N 1 1 _ 0
DQ—>H(Z) = ZZ—EZ/dx_e_IP * /ZN_TrCOIOT_TrDirac{y+<O\P(O)Ipexp |:lgs[) dy—Aj(OJr?y_’OT)tt]; |H(P+’0T) +X>
X c

4

< (H(P07) + XIPexp | ~ig, [~ a4 073700t ¥ 0) ©)

X

where ¥ is the quark field and A% is the gluon field.
‘P denotes path ordering, 7* is the color matrix, z is
the longitudinal momentum fraction z = P*/K*, and K
is the momentum of the initial quark Q. The FFs
are defined in the reference frame where the hadron H
carries the momentum P* = (P, P~ = m%/2P*,07). Itis
|

Zd—3

D’ =
0-(2) N, x4 x2x

|
convenient to introduce a light-like vector n# = (0, 1,07)
in the reference frame where the FFs are defined. Then, the
plus component of a momentum p can be written as
pt=p-n,and z=P-n/K - n.

The definition [12] of the FFs for an antiquark Qinto a
hadron H is

> / dx=e P10 (0)y T Pexp [—igs / " Ay AL (0%, y. 0p) | [H(PF,07) + X)
X O

x (H(P*,07) + X|Pexp [igs / ¥ dy AT (0, y, OT)t“} ¥(x)[0). (7)

X

Given the Feynman rules and the definition of the FFs (6)—
(7), the relevant Feynman diagrams can be drawn. The part
to the left of the cut line in the Feynman diagram
corresponds to the right part of the definition, and the part
to the right of the cut corresponds to the left part of the
definition (which is just the complex conjugate of the right
part of the definition). Note that for the FFs of an antiquark
into a hadron we have the following:

(1) The vertex for a gluon line attached to an eikonal

line contributes a factor ig;n”1{;, where y and a are

*In this work, we adopt dimensional regularization with d =
4 —2¢ to regularize UV and IR divergences, and adopt the
reading point prescription [26] to handle y5 in d dimensions.

the Lorentz index and color index of the gluon,
respectively.

(2) The eikonal propagator, which carries momentum ¢
flowing from the operator to the cut side, is
i6;;/(q - n + ie).

(3) The cut of final-state eikonal line carrying momen-
tum ¢ contributes 275(q - n).

An overall factor of N¢g = z!7%¢/8zN,. from the definition
should also be taken into account. The Feynman rules of
the FFs of a quark into a hadron are the same as those in the
antiquark cases except that the color matrix for the eikonal
line—gluon vertex should be 7{; instead of —¢7;. Thus, given
the Feynman diagrams the LO and NLO FFs D;_p and
D;_p: can be derived.
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B. LO fragmentation functions

To understand the definition (6)—(7) and to present the
conventions used in this paper, here we derive the LO FFs,
Di_p, and D;_p:, where i = c, b, although they have been
obtained in the past using other approaches [7,8,19].

In this section and the next one we will show the
derivations of the FFs Dj_,; and Dj_ 5. from the definition
(6)~(7). The FFs D._p and D._p: can be derived in the
same way and the results are the same as those for Dj_ 5
and Dj_, g. with the replacement m;, <> m,, so we will not
repeat the derivation for them.

According to the factorization (3), as the first step we

derive the “FFs” Dj_, 5, with the diquark cb states with

quantum numbers ‘S([)] and S [1], where the superscript [1]

denotes the color singlet. Then the second step is to derive
the FFs for a heavy quark (b or ¢) into a B, or B} meson,
where the “free diquark” cb state is replaced by the
NRQCD matrix element (the wave function at the origin),
which depicts QCD nonperturbative effects in the forma-
tion of a B, or B} meson from the relevant diquark state
cb|n]. (In this paper we assume that the QCD NLO matrix
element is the same as the QCD LO one.4)

Based on the definition (6)—(7), there are four cut
diagrams (Fig. 1) for the LO FF Dj_, (. The squared
Feynman amplitudes, corresponding to the four diagrams
with a “cut,” can be written as follows:

i
PR
g — A
A (lgfyﬂ )(p/Z )(_igsyytb)l:l

: A1 (_igs}/utb>

.A]:tl' ﬂ

—i
—-pl—p2 —my, — ie}

—i i
: . . 9 8
(P11 + p2)* +ie(piy + p2)* —iel o ®)
i
A, = tr|f(igsn#t? —1I1
’ ( )(P11+P2)'”+l€
: Al (igsyﬂta)(pZ - mc)(_igsyytb)n
—i
A (=igyy,
1(—igsry )_p1 —ﬁZ—mb—ie}
—i i )
(P11 + p2)* +ie(piy + p2)* — i€l

“The matrix element appears as an overall factor, so its
correction(s) (if any) can be considered easily.

FIG. 1.

The LO cut diagrams for the FFs Dj_, (.

i
g 71911
—pl—p2—m, + ie(lgsy )
Ay (igsy, 1) (2 — m,) (—igy*t®)T1

—i
—ig.n tb
l(Pll"'Pz)'”_ie( It )}

—i i

(P11 4 P2)* +ie(pi + pa)* —ie

A3:tr ﬂ

. (10)
q=0

) i
Au = e sligen?) (P11 +p2)-n+ ien

A (iggy, 1) (2 — m,) (—igyy*t*)II

Ay ~ —ig,n, t° }
(P11 +p2) - n— l€

i
(P11 + p2)* +ie(py + Pz) — ie

. (1)

q=0

where p;; and p;, are the momenta of the ¢ quark and b
quark inside the cb pair, and

m
_bpl_q’ (12)

mC
—P1+4q. M

Pu:M

P12 =

where M ~ m,, + m, is the mass of the cb pair. I is the spin
projector: for the spin singlet it is

-VM

4dmym,

(P12 —mp)ys(pi +me), (13)

and for the spin triplet it is

-VM

4mym,

I = (P2 —mp)d(p1) (P11 +me).  (14)

I1 is defined as IT = y°IT"y°. The color-singlet projector is
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A] — 1, (15)

i

where 1 is the unit matrix of the color SU,.(3) group. Note
that throughout the paper we work in the Feynman gauge.

Having taken traces, the squared amplitudes correspond-
ing to the LO FFs can be written as follows:

4
Ao = ZAi
i=1

C3giK - n 2. q;MA2)
Cr22(1- rbz)zM; (s; —m2)""

(16)

where r, = m./M and r, = m,/M. s, = (p; + p,)?is the
invariant mass of the lowest (LO) final states (cb + ¢). The
coefficients a; can be found in the Appendix A.

The differential phase space for the LO FFs can be
written as

0(p3)dps dpy,
dzpy  (2m)%?

dgro = 228(K* = pf —p3).  (17)

where the § function comes from the cut through the
eikonal line. The integration over p; can be carried out
precisely due to the 6 function. The integrand does not
depend on the angles of p,,, so the integration over the
angles of p, is trivial, and can be carried out too. Thus,
now the differential phase space is reduced to

Z—1+e<1 _ Z)_€
2(4m)'=T(1—e)K - n

M2 2 —€
X<Sl——1mc > dsl.
Z — 2

The range of s, is from (M?/z+m?/(1 —z)) to co. The
LO FFs can be represented as

dro =

(18)

pLo

b_,c;;[n](z) = Ncs/df/’LoALo- (19)

The integration over s; can be carried out with Eq. (16).
Integrating over s, we obtain

DI 0.
_ Craz(1—2)(4n)T(1 +¢)
- 4NCT%Z(1 _ rbz)4+2eM3+Ze
(2 +e€)(1+€)z2(1 - z)z}
6(1 — ryz)*

(14+¢€)z(l —2)

+ ay (20)

Setting d = 4, we obtain

DI g O

~ 8atz(1—z)?
~ 8172(1 = rp2)°M?
+ (21 = 74r, + 68r2)z2 = 2r,(6 — 197, + 18/2)73

AL [1]
(OPIsy)(1s{l)

[6—18(1 —2r.)z

+3r2(1 = 2r, +2r2)%] 2N, , (21)
and
D i, (@

8a2z(1 —z)?
= : 2-2(3-2
TTR(1 = ryr)oa 2 723 7 2re)
+33-2r.+4r2)2% = 2ry(4 = r. +2r2)2°
OCEPS[II]] 38[1]
+72(3 = 2r, + 2r)7*] (O77C81)) (22)

6N, ’

where the LO FFs for the (cb) states have been written in
the factorization form, and at order a?,

(O 1(1s))) = 2N,

(O esh) = 2(d = N, (23)
with the normalization for the NRQCD matrix elements as
that in Ref. [2]. ((’)CZ’[ISE]](ISBI])) and (005[35[11]](35:[11])) denote
the NRQCD matrix elements for the states (cb).

Thus, the LO FFs for the B, and B} mesons are obtained

by replacing <(’)”B[ISE]](1S([)1])) and ((’)”’_’[35[1]]](3S[11])> with
(O(1siyy and (0B:(3s\)), respectively. The NRQCD

matrix elements (OBC(IS([)I]» and (OB (3s1)) can be
estimated as follows:

(OB:('sy1)) = N |Rs(0) 2/ (27),

(0% (1)) m (d = N IRs(O)P/(27).  (24)
where Rg(0) is the radial wave function at the origin for the
B, (B}) meson. Replacing the NRQCD matrix elements in
Egs. (21) and (22) with the NRQCD matrix elements in
Eq. (24), we obtain

pLO (Z):2aEZ(1—Z)2|Rs(O)|2
b—B. 81ar2(1—r,z)°M>3

+(21 _74rc +68r%>22—2rb(6— l9rc—|— 18]‘%)23
+3r2(1-2r.+2r2)z%, (25)

[6-18(1-2r,)z

and
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DLO _ 26’%1(1 - Z)2|RS(0)|2
h—B* (z2) = 2 61,3
¢ 277rz(1 —rpz)°M
+3(3=2r. +4r2)z> = 2r,(4 —r. +2r3)73
+r2(3 = 2r. + 2r3)Z4. (26)

2-2(3-2r.)z

The LO FFs D%SB(_ (z) and D%EB; (z) obtained here are

exactly the same as those obtained in Refs. [7,8], although
the authors of Refs. [7,8] derived them in a different way.

III. QCD NLO CORRECTIONS TO THE FFS
FOR A b QUARK TO A B, OR B MESON

In this section we will derive the NLO FFs as defined by
Egs. (6) and (7), and divide the derivation of the NLO
corrections into virtual corrections, real corrections, and
renormalization for convenience. Finally, we will compute
them numerically and present them in figures.

A. The virtual NLO corrections

The virtual NLO corrections to the FFs Dj_, 31, come
from the “cut diagrams” with one loop on either side of the
cut. Four typical cut diagrams for the virtual corrections are
shown in Fig. 2.

There are Coulomb divergences in the conventional
matching procedure. These Coulomb divergences may
be regularized by a small relative velocity v between the
b quark and c¢ quark inside the produced ch pair. The
Coulomb divergences also appear in the virtual corrections

to the NRQCD matrix elements (OCE[]SE]](ISE])) and
<C’)CZ’PS[1”] (3s1")), while the NRQCD short-distance coeffi-
cients are free from Coulomb divergences. However, in
dimensional regularization, we can avoid the divergence

and extract the NRQCD short-distance coefficients by
using the so-called region method [27]. In this method,

FIG. 2. Four sample cut diagrams for the virtual corrections to
the FFs Di)—»ci)[n]'

one can calculate the contributions from the hard region
directly by expanding the relative momentum ¢ of the ch
pair before performing the loop integration, and under the
lowest nonrelativistic approximation one just needs to take
q = 0 before the loop integration. Thus the Coulomb
divergences, which come from the potential region, do
not appear in the calculations of the FFs for the free ch
states and the NRQCD matrix elements. With this

method, the NRQCD matrix elements ((9"}_’[153]](15%1])>

and <(90b[35[11](3S[11])> at NLO are the same as the LO ones.

The squared amplitudes of the virtual corrections can be
read off from the virtual-correction cut diagrams with the
Feynman rules in Sec. II. The Dirac traces are carried out
using the MATHEMATICA packages FEYNCALC [28,29]
and FEYNCALCFORMLINK [30]. Then, $Apart [31] and
FIRE [32] are adopted to do the partial fraction and
integration-by-parts (IBP) reduction. After the IBP reduc-
tion, all one-loop integrals in the amplitudes are reduced to
master integrals. The master integrals include the common
scalar one-loop integrals (A, By, and C, functions) and the
scalar one-loop integrals with one eikonal propagator. The
Ay, By, and C; functions are calculated numerically using
LooprTooLs [33]. The scalar one-loop integrals with one
eikonal propagator can be calculated using the method
introduced in the Appendix of Ref. [13].

The differential phase space for the virtual corrections is
the same as that for the LO FFs. The virtual corrections to
the FFs can be expressed as

virtual

Db—»cb[n] (Z) = Ncs / dproAsiruals (27)

where A, ;. denotes the squared amplitudes for the virtual
corrections.

B. The real NLO corrections

The real corrections to the FFs Dj_, 51,) come from the
fragmentation processes in which an additional gluon is
emitted in comparison with the corresponding LO ones. We
denote the momenta of the initial and final particles as
b(K) — cb[n](p;) + €(p2) + g(p3)- The cut diagrams can
be obtained from the LO cut diagrams in Fig. 1 by adding a
gluon line crossing the cut and connecting two of the lines
on each side of the cut. Four typical cut diagrams for the
real corrections are shown in Fig. 3.

The differential phase space for the real corrections to the
FFs can be written as

d¢real = 27[5(K+ - pT - p; - p;)

O(p;)dpf d**p;,
| | ! ! . 28
X 4JTP,+ (2ﬂ)d—2 ( )

i=23

The real corrections to the FFs can be written as
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FIG. 3. Four sample cut diagrams for the real corrections to the
FFs DE—»L'E[n]'

D;}e_a)lcl’,[n] (Z) = NCS / dd)real-Areal’ (29)

where A, denotes the squared amplitudes for the real
corrections.

There are UV and IR divergences in the real corrections.
These divergences come from the phase-space integration
|

over the momentum of the final gluon p3, and yield UV and
IR poles in € in dimensional regularization. However, it is
impractical to do the phase-space integration for A,
analytically. We follow the strategy used in Ref. [13] to
calculate the real corrections to the FF D_,, o in order to
extract the UV and IR poles. Namely, we construct the
subtraction terms .4y which have the same singularities as
Aia in the phase space, but the subtraction terms are
simpler than A, and can be analytically integrated out
over the phase space. Then the real corrections can be
expressed as

real

Db—>cl_7[n] (Z) = NCS / d¢real(-Areal - AS)

+]\"CS/dq&reabAS- (30)

Therefore, the first term on the right-hand side of Eq. (30) is
finite and can be calculated directly in four-dimensional
space-time.

The UV divergences in the real corrections arise from the
integrations over the phase-space region p3; — 0. The IR
divergences arise from the regions pj — 0 and p; — 0.
The squared amplitudes for the real corrections can be
expressed as

Ay = by(s1.2) by(s1,2) bi(s1,2)  cails1,2.9) | els1.2.9)p1 - p3
U=y s=mp)  (L=y)(sa=mp)  (1=y)ss  s—mj (s —mj)?
+C3(51,Z’y) c4(81.2,Y)P2 - P3 05(5171,J’)+06(81’Z7)’)P1'P3 d(s1,2)(1 = u)(s, — mj)
5y —m3 (55 —m?)? 53 53 ut, (s —m?)
L dy(s1,2)re(1 = u)(s) — mj) n dy(si, 2)re(1L=u)(sy =mp)*  dy(sy,2)re(si —mp)*  ds(s1,2)(s1 = mp)
ut, s utys3(s —m3) uty(s — mi)s; uty(s —m3)
de(sy,2)r.(s; —m2 s1,2)r.(s; —m2)?  h(sy,z -
+ 6(s1,2)re(s) p) | 91, 2)re( 12 b) + (12 )+Af§§fe, (31)
ut,s3 u(s —my)s; 5

where the Lorentz-invariant parameters are defined as
follows:

_ (p1+p2)-n _ p3-n
(pr+p2+p3)-n’ (p2+p;3)-n’
s=(p1+p2+tp)’  s2=(p+p)
1+ p2+p3)t ty =2p; - p3

s3=(p
ty =2p, - p3. (32)

Since we only consider the production of color-singlet
S-wave cb states, the 1/12 terms cancel in Agy [11].

[
The coefficients b;, c;, d;, g, and h can be obtained from the
squared real-correction amplitudes and the results are
very lengthy, so we do not present them here. The integrals
of the b; (i=1, 2, 3) terms are UV and IR divergent,
and yield double poles - or . The integrals of the ¢
IR

- The

integrals of the d; terms are IR divergent, and yield a
double pole i The integrals of the g and & terms are IR
1

R
. The term
€IR

terms are UV divergent, and yield a UV pole

finite
eal

divergent, and yield an IR pole

represents the remaining terms in A.,; which do not
contribute divergences.
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Now the subtraction terms can be constructed as follows:

by(sy,z) by(s1.2) bs(sy.z)

As:

C[(S],Z,y)

(L=y)(s—mp)  (1=y)(s2—mp) (1-y)s3

N

CZ(SI’Z7y) [ < 2 1_y 2 2 C3(S1,Z,y)
eAGI ERCDON U (R P 1= 2)m2)| 4 BBy
+ 2 _Pl D3 2y ( y)sl 2 (51 +(1=rg)M?)| + 5,
» Koy [ - M2 1_ 1_ s Koy
64(S12z y) pz_p3+(y 2) (Q+ y) _ y(sl—(1+r3)M2)] L osbr2y)
55 | z 2 b4 2z 53
ce(s1,2.9) [ rez(l=rpz) = (1= y)(y — 2) 2 ] dy(5.2)(1 — u)(3 — mj)
I sy —md)| +
53 _pl bs 2(y — rp2)? (51 =m) ut (3 —mj +1,/2)

dy(5.2)(1 — u)(5 — mp)

ds(3.2)(1 — u)(5 — mp)*

uty[5 —mj + (1= rpz)t,/(rez)]
dy(3,2)(5 —mp)?

uty (5 —mj +1,/2)[5 = mj 4+ (1 = r,2)t,/(r.2)]

ds(3,2) (5 — my)

- utr[5 —m3 +t,/(1 = 2)|[5 —mi + (1 = rp2) 12/ (ro(1 = 2))]

do(3.2)(5 — mj)

Mtz(g — mi + tz/(l - Z))
9(5.2)(5 — my)*

= m+ (=0 (=)
h(3,z)
2

3

where § is defined as

§=(p1+ D) (34)
where
- " P2 D3
p* = ph+ph——""—nk. 35
? 3 (pat+p3)n (35)

One can check that the integration of (A, — Ag) over the
phase space is finite in four space-time dimensions.

In order to analytically extract the UV and IR poles in €
in the real corrections, it is better to choose proper phase-
space parametrizations for the terms in 4g. Various phase-
space parametrizations can be found in Appendix B.

To integrate the subtraction terms that contain s, we use
the parametrization in Eq. (B10) for the differential phase
space. The expression of the differential phase space in
Eq. (B10) can be decomposed as

Nesdprea = NLO(Pl’ Pz)d¢Lo(P1 ) Pz)d¢(3>(l’1, P2 P3),

(36)
where the prefactor Ny (p;, p,) is defined as
(z/y)'
N , = 37
Lo(P1s p2) 87N, (37)

and de; o(py, p2) is defined as

ufs —my +6/(1 = 2))[3 = mj + (1 = ry2)t2/ (re(1 = 2))]

[
Z—l+€(y _ Z)—e
2(47)=T(1 - €)K - n

x (SI—XMZ—LM%>_dS1. (38)
z y—2

d¢L0(P1,P2) =

d¢ro(py. po) represents the differential phase space for a b
quark with longitudinal momentum yK - n to fragment into
a B.(B;) meson with longitudinal momentum zK - n at LO.
Niro(p1, p2) and dgo(p1, p2) reduce to Nig and dg o,
respectively, if y = 1. Then d¢®(p,.p,.p;) can be
expressed as

dgp (py., pa, p3)
1

= 2ap O sy s dydQsy - (39)

The range of y is from z to 1, the range of s; is from
[M?/(z/y) + ym2/(y — z)] to oo, and the range of s is from
s1/y to oo.

Thus, with Egs. (36)—(39) we can obtain

c1(81,2,y
NCS/d(ﬁreal%

_1;((‘17—;2/11@(1 _y)_e/NdﬁbLo(Pl,Pz)

x c1(s1.2,¥)87, (40)
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where Ndio(p1. p2) = Nio(p1s p2)déio(pi, p2)- The
remaining integral in this equation does not generate poles
in €.

We can also obtain

by(sy.z2)

Nes / d¢realm

=% / Lay(1-y) e / Ndgio(py. ps)
x by(sy,z)(s; —ym)™. (41)

The integration over y will diverge if € = 0 in the limit
y — 1, and contribute an IR pole. In order to extract this IR
pole, we use the plus prescription, where

(l_y)—l+ae:5(1_y>+i(a€)n <1nn(1_y)> ) (42)

ae g I—-y

Inserting Eq. (42) into Eq. (41), we obtain

bi(s1.2)
NCS/dqﬁreal(l_y)(s_n,Li)
1
:W{_iNcs/dd)Lobl(sl»Z)(sl _m%)_g

1 1 In(1 —
[ ol ) ]
z (1 -y )+ - y +

X /Nd¢LO(plvp2)bl(Sle)(sl _ym%)—e}

+ O(e), (43)
where d¢;o is the LO differential phase space given
by Eq. (18).

The integration of the terms with the coefficient
¢2(s1,2,y) over Q3 is not trivial. We first calculate the

integration of the vector p5 over Q3. According to Lorentz
invariance, this integral can be expressed as

/P’édQu = An* + B(py + p2)*. (44)

We can determine the coefficients A and B by contracting
both sides of Eq. (44) with n, [and contracting with
(p1 + P2),]- Then we obtain

Q, 2-y
A= — 4
2yK - n <S y s1>, (45)

B=—-Q,, (46)

where Q) is the total transverse solid angle and
Q, =27'7¢/T(1 —¢).

Inserting Eqgs. (45)-(46) into Eq. (44) and contracting
both sides of Eq. (44) with p,,, we obtain

Z 2
/dgu [Pl " P3 —5 (1 —;>Sl

11—y zs
2y (514 (1= r%)Mz)} = ZQL- (47)

Carrying out the integration over s, we obtain

Cr(51,3,Y

NCS/d¢real 2( ;2 )
Y 2\ 12
ERCRAUSIOLD

Z 2 1-
X P1'P3—2—y 1—5 Sp—

:% zldy(l—y)‘e/NdﬁﬁLo(Pth)

X ¢(s1,2,¥)(2/2y)s7¢. (48)

The method used to extract the poles from the sub-
traction terms involving s integration can also be used to
extract the poles from the integrations over s, and s3 of the
subtraction terms.

For the s, integration, we adopt the parametrization in
Eq. (B13). The expression in Eq. (B13) can also be
decomposed to the form (36), but the expression for

dg®)(py. pa. p3) becomes

1
dp® (p1.pyps) = W(’bz)_lJreyl_ze(l -y)°

1 — —€
X <s2 —%mi) dyds,dQs | .
b

(49)

The ranges of y and s; are the same as above. The range of
s5 is from (1 —y + rbz)mi/rbz to o0. Then we can readily
obtain

NCS/d¢reaIC3(s;’2Z’y)
e
></Nd¢Lo(P1,P2)C3(S1,Z7y)’ (50)
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Ncs/dqﬁreal%
:W ()] =5 Nes [ ddroba(ora)
o [ (5 )
x / Nd¢Lo<pl,pz)bz<sl,z>}+0<€>’ S
and
Nes / d¢rmlw {Pz s +@ (%1%)
e
:% ==y (%)12
2rb /N bro(p1-pa)ca(si.z.y). (52)

For the subtraction terms involving s3, the parametriza-
tion in Eq. (B16) is adopted and the expression for
d¢® (py. pa. p3) in the form of Eq. (36) is

d¢(3)(P1,P27P3)

1
TS (y=rpz) eyt (1 —y)=
1— 2 —€
i (55— Tel=rR s =m)N™ e das,. (53)
y—=rpl

The ranges of y and s; are the same as above. The range of
53 is from r.(1 = ryz)(s; — m3)/(y — rpz) to co. Then we

obtain
NCS/d¢rea] CS(S;;Z’y)
T +e)[r.(1=rpz)™ [1 f Yy O\
e K e =)
X/Nd¢Lo(P1,Pz)cs(sl,ZJ’)(Sl —mj)~¢, (54)

b3 (Sl s Z)
Ncs / Area (1——)7)5'3
T+ ([Zt()lz_—g n)l {_ iNes [ dio

X by(s1.2)(s1 —mp) (1 — ryz) =42

" /z @ (y —yrb2> - [(1 —1 D (hlgl_—yﬂ) J

[ Naguo(py. bl - m)} L 0.

(55)
and
NCS/d¢real C6(s;’2Z’y)
3
1=rz)—(1—y)(y—

F(1+e)[r.(1=ryz)]¢ [1 Ly I
can /z"y“‘y) <y—rbz)

Xm/NdCbLo(Pl»Pz)Cé(SpZ y)(s; —m2)~C.
(56)

To integrate the subtraction terms that contain #;, we
adopt the parametrization in Eq. (B23) for the differential
phase space. The expression of the differential phase space
in Eq. (B23) can be written as

Nesdgrea = Nio(pi1, P)deio(pr. )dd® (pi. pa. p3),

(57)

where the prefactor Ny o(p;, p) is defined as

Nio(p1,P) = o= (58)

and de; o(p;, p) is defined as

—1+€(1 _Z) €
2(4m)=T(1 - €)K - n

2 2 —€
x(&—%— mC) d3.  (59)

d¢Lo(P171~7) =

z 1-z

Then the expression of d@®)(p;. p,. p3) can be written as

~ 1/z=1)17¢ u=e (1—z)M?u]-¢
43 (o1 . pa) = -
] (Pl P2 Ps) 4(2ﬂ)3_2€ 1—u " p
X dudt; dQs . (60)
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The range of 5 is from [M?/z + m2/(1 — z)] to oo, the range of u is from 0 to 1, and the range of ¢, is from (1/z — 1)M>u
to oo.
After integrating over Q3 |, ;, and u, we obtain

Ncs/d¢reald1(§,z)(l—u)(E—mﬁ):F(He) (1—z> _G/Ndd’LO D1 p)d G.2)

ut)(3—mi+1,/z) e(4n)*=

- 1[M]_ele[z(E—mi)}‘e—eLiz[—Z(zl(;—f)i/;}}+(’)(e), (61)

2e z €

hE D ~wE-m) T 4e) (1-2) s
o (o et (1) Mol 0

a2 ]

—eLi [— (1- %)(1 - ”’?Mz] } + O(e), (62)

N CcS / d¢real

and

dy(5,2)(1 — u)(5 —m3)?
uty (3 —mj +2)(3 m%+('—rb1)t1)

_Tl+e) (“Z)l C/Nd¢Lo p1.P)ds(3.2)

N CcS / d¢real

e(d4r)2<
e - ()
T RTAT ) R

For the subtraction terms that contain t,, the parametrization in Eq. (B24) is adopted and the expression for
dp®) (py. py. p3) in the form of Eq. (57) is

- 1
dg® (py, py. p3) = 4(7)3_26”_6[(1 — u)ty — mzu]~Cdu dt, dQs . (64)

The ranges of § and u are the same as above. The range of t, is from um?/(1 — u) to co. Then we obtain

dy(5,2)(5 — m})’
NG <i:<:'f;;2>

N CcS / d¢real

€(47T e

g <1 - <1—z><——m>> - (1= (1- )| o (63
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Nes / prea ;2(: i(i;%)ft;/}?li)— 2))
F4”26/Nd¢LO 1, P)ds(3,2)
{-gmre s =26 - m
eLi, [1 - ﬁ] } +0(e),  (66)
de(

5,2)(5 = mj)
uty[§ —mj + (1 = rp2)t/(ro(1 - 2))]

- %/N‘lqﬁm(m, P)de(3,2)
w{=gemye PSR

2¢e 1 -rpz

N CS / d¢real

— eLi _ (1_rbz)m% €

e eI SO
9(3,2) (3 — mp)?

Ncs/d¢realu(§—m%+1t—21)(§_m% (1— rbz tz)

I(

_W/quﬁw p1.P)9(3.2)(3 —m3)

i1 e )| e

and
h(s Z)
N d real
cs [ ™5 :
_T(1+e) (m2)'—
(47)%< 2¢(1 -2 /Nd¢Lo p1,D)h(3,2). (69)

Since the remaining integrals in these expressions do not
generate poles in €, we can expand these expressions in
powers of € before performing the integration.

C. The renormalization

There are UV divergences remaining after summing the
contributions from virtual and real corrections, while they
are removed by renormalization. We adopt the counter-
term approach to carry out the renormalization, where
the FFs are calculated with the renormalized coupling

constant g,, the renormalized quark mass m, the field ‘I’,,S
and the renormalized gluon field A%. The renormalized
quantities are related to their corresponding bare quan-
tities as

N =29, m=Z,m,
TO =\ Zzlpr, Ag =\ Z3A¢f, (70)

where Z; = 1 + 6Z; with i = g, m, 2, 3 are renormaliza-
tion constants. The quantities 0Z; are fixed by the precise
definitions of the renormalized quantities. The renormal-
ized quark field, quark mass, and gluon field are defined in
the on-mass-shell scheme (OS), whereas the renormalized
strong coupling constant g, is defined in the modified-
minimal-subtraction scheme (MS). The expressions of the
corresponding renormalization constants in this scheme
are obtained as follows:

. 12 2
5205 — _c, k) [—+——375+3ln el +4},
m

iy, €uv €1R
. 1 Amd 4
5705 = —3C; ay(ur) [_ —yp+1n ﬂ/’;R + _}’
Az €uv m 3
1 1
5ZOS (/"R) ' _2C -
Uudl - 26 (-
4 (1 A
—ETF<€——}/E+IH 2R>
uv c
4 1 4ﬂﬂ%>:|
“ITe(——yp+In :
3 F<€UV . 5
MS ﬁO as(/‘ ) 1
522/[5 = —?4—; a—yE—Fln(él-ﬂf) N (71)

where yig is the renormalization scale, fy =5 Cy —3Tpn;
is the one-loop coefficient of the f function i 1n QCD ngis
the number of active quark flavors, ) = 5 Cy —3Trnyy,
and n;; = 3 is the number of the hght—quark flavors.

Then the contribution from these counterterms can be
expressed as

D?’,O_)ugg[rn] (Z> = Nc¢s / d¢LOAcounter9 (72)

where A.ouner denotes the squared amplitudes for the
counterterms from the renormalization of the quark field,
the gluon field, the quark mass, and the strong coupling.

Obviously the NLO FFs defined as in Ref. [12] by
operator products require renormalization [34]. We carry
out the operator renormalization in the MS scheme.

>Here the mass m and field ¥, may be the mass and field of a b
quark or ¢ quark.
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The expression for the counterterms of the operator
products in this scheme is

2

operator O (/"R ) 1 HR
Dl;—wl_?[n]( ) = —7 [a —YE+ 111(471') + lnﬂ—%

tdy LO
< /. 7PBB(Y)D;;_>CE[”](Z/)’)v (73)

where pup is the factorization scale for the FFs and
D ;. (z) denotes the LO FFs in d-dimensional

—cb(n]
space-time.

D. The numerical results

Canceling the pole terms in e, the NLO FFs can be
obtained by summing the finite parts from virtual and real
corrections and counterterms:

DY (@ i)

= Dligcé[n] (Z’ﬂR) + D%iué%l[n] (Z’MR> + Dlllwei}cl;[n](z’ﬂR)

+ DR (2. pk) + DR (2 e k), (74)
where the terms on the right-hand side of the equation are
defined in Egs. (19), (27), (29), (30), (72), and (73), and the
renormalization and factorization scales are written explic-
itly here. The FFs DY ( B*.)(z, W, ig) can be obtained by

multiplying the matrix element (0882 (n)) /(O (n)) ~

IRs(0)F /47 by DYO, (copp. i), where n = 15, or 35,

accordingly. In the numerical calculations, the integrations
over phase space are performed numerically with the help
of the program VEGAS [35].

The necessary input masses in the numerical calculations
are taken as follows:

m, =49 GeV,  m, = 1.5 GeV,
my = 91.1876 GeV. (75)

The value of |Rg(0)]> may be extracted from the exper-
imental widths of the B, pure leptonic decays, potential
model calculations and lattice QCD calculations etc.,
whereas now there is no very accurate value of |Rg(0)|?.
In fact, due to the fact that for the FFs |Rg(0)|? is an overall
factor,

the numerical results obtained in this paper with a given
value of |Rg(0)|* can be easily updated with a more
accurate value. Thus, as an approximation, in numerical
calculations we just take the value from the potential-model
calculations [36]:

IRg(0)]? = 1.64 GeV>. (76)

For strong coupling constant, we adopt the two-loop
formula

4 fiInln (/42/ AZQCD)
— 1-— , 77
G = G AR | G Adep) 1)

where | =3 C3 —4CpTrn; — 3 C4Tpny is the two-loop

coefficient of the f function in QCD. According to
ag(mz) =0.1185 [37], we obtain Ag’gg = 0.233 GeV

and AQcp =0337GeV. Then we have a,(2m,) =
0259, ay(m, +2m,) = 0.190, a,(2m,)=0.180, and
a,(2my, +m,) = 0.174.
The LO FFs DI° . (z, uro. g), D&%S (2. o pg) and
5

—B,
the NLO FFs DIB\FE,%((Z’/‘F()’”R)’ Db_,Bﬁ(Z’ﬂFOvﬂR) (the

latter is that in Eq. (74)) are presented in Figs. 4 and 5,
respectively. In order to keep the logarithm terms
In(ug/mg) and In(upy/mg) (mg, Q = c, b) in higher-
order corrections from “becoming” large and to have better
accuracy, here we set the renormalization scale pg and
factorization scales i to O(my), i.e., we set pug and pip to
2m, and my, + 2m, (the minimum invariant mass of the
initial off-shell b quark), respectively. For comparison, in
Figs. 4 and 5 the results for up = ppg = my + 2m, are also
presented.

From Figs. 4 and 5, one can see that the QCD NLO
corrections to the FFs of the b quark are quite large, with a
renormalization scale up = 2m, or ugr = my + 2m,.. The
maximum points of the FFs are shifted to smaller values of
z when the NLO corrections are involved. Moreover, the
QCD NLO FFs are scheme and scale dependent, and the
FFs in this paper are defined in the MS scheme.

There are two useful quantities which can be easily
computed from the numerical results for the FFs: the
fragmentation probability P and the average value of z,
(z). They are defined as follows:

-4
1010 , , , , , , , ,

LO(g=2m )
= = =NLO(uz=2m)

~~~~~

FIG. 4. The initial FF Dj_p (2, ptpo, #g) as a function of z with
Upo = My, +2m,., pg = 2m,, or up = my + 2m,. up to LO and
NLO accuracy.
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-4
1810 . . . . . : : :

LO(ug=2m,)

= = =NLO(ug=2m )
LOQ;R:meerc)
NLO(g=m, +2m )

(2)

%
c

DE%B

FIG. 5. The initial FF Dj_, p-(z, #po, p) as a function of z with
Upo = My, + 2m,., pg = 2m,, or up = my + 2m. up to LO and
NLO accuracy.

_ JodzzD(2)

p:% dzD(z). <Z>_W’

(78)

where D(z) denotes an FF at a given energy scale. The
numerical results for the obtained FFs are presented in
Tables I and II. From the two tables, one can see that the
NLO corrections to the fragmentation probabilities are
sizable with the two choices of the renormalization scale.
However, due to the QCD NLO corrections the average
values (z) change by only a small amount.

The FFs of a ¢ quark to the meson B, or B} can be
derived out by applying the method presented in Secs. II
and III precisely. Whereas, the contributions to the FFs
from the cut diagrams without a heavy-quark loop on either
side of the cut can be obtained by the alternation of m; and

TABLE 1. The fragmentation probability and average value of z
for Dj_p (2, upo = my, + 2m, pug) with two typical renormali-
zation scales.

UR P x 10* (LO) P x 10* (NLO) (z) (LO) (z) (NLO)
2m, 3.82 3.14 0.68 0.70
my, +2m, 2.05 2.73 0.68 0.69
TABLE II. The fragmentation probability and average value of

z for DB_,B;(ZJ"FO = my, + 2m,, ug) with two typical renorm-
alization scales.

i P x 10* (LO) P x 10* (NLO) (z) (LO) (z) (NLO)
2m, 5.36 291 0.73 0.77
my + 2m, 2.89 3.25 0.73 0.74

-5
16710 : : : : : . . .
LO(/JR:2mb)
1.4} [= = =NLO(ug=2m,) L= 1
_____ LO(u=2m, +m,) , , :\
RN
1.0 f [remeeen NLO(HR_Zmb+mC) , L a“‘\ 4
’ i
A =y
4L 7 Y ]
© )
~ {.". )
9 45 2y
9 o8} s e < 1
T a - S 3
> % ol RN 3
A s < ™ 3
0.6 & id \ 3 1
& ad N 5
& e \ 3
7’
I3 4 A\ 2
04f 4 \ 2 .
Ly A\ 3
(f /7 K
L R i 3 ]
0% ¢ >,
K Q.
& X,

FIG. 6. The initial FF D._p (z,pipo = 2m, + m, pug) as a
function of 7z with two typical renormalization scales
(ug = 2my, or up = 2my, + m,) up to LO and NLO accuracy.

m,.. The NLO QCD FFs of a ¢ quark into B, and B} mesons
are presented in Figs. 6 and 7 with two possible renorm-
alization scales, up = 2my; and up = 2my + m,, and the
factorization scale is set upy = 2my; + m,, which is the
minimum invariant mass of the initial off-shell ¢ quark.
From Figs. 6 and 7, one can see that the NLO QCD
corrections to the FFs of B, and B; mesons are also
sizable with the renormalization scales ug = 2m,; or
ur = 2my;, + m., and the difference between the FFs at
the two renormalization scales is quite small. This is
because these two scales are quite close to each other.
The fragmentation probabilities and average values of z
for c-quark fragmentation are presented in Tables III

1 -5
16710 : : : : : : : :
LO(ug=2m,)
1.4 |= = =NLO(ug=2m,) ]
_____ LO(ug=2m,+m )
1.0 [rereeeen NLO(;LR:Zmb+mC) 4

FIG. 7. The initial FF DC—»BZ (Z,ﬂFO = Zmb —+ mc,/tR) as a
function of z with two typical renormalization scales
(ug = 2my, or uyp = 2my, + m,) up to LO and NLO accuracy.
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TABLEIII.  The fragmentation probability and average value of
z for D._p (2, ptpo = 2my, + m,, ug) with two typical renormal-
ization scales.

Ur P x 10° (LO) P x 106 (NLO) (z) (LO) (z) (NLO)
2m,, 4.95 8.07 0.51 0.51
2my+m, 463 772 0.51 0.51

TABLE IV. The fragmentation probability and average value of
z for Dc-»B;(Z,liFo = 2my, + m,, pg) with two typical renormal-
ization scales.

Ur P x 10° (LO) P x 106 (NLO) (z) (LO) (z) (NLO)
2m,, 428 5.75 0.55 0.54
2my+m, 400 557 0.55 0.54

and IV. One can see that the fragmentation probability of
¢ — B.(c = B%) is smaller than that of b — B.(b — B,)
by about 2 orders of magnitude.

The FFs at a large factorization scale such as up > mg
can be obtained by solving the DGLAP evolution equations
from the FFs at a smaller pp, (~mg). Note that for
convenience in this paper we call the FFs at a smaller
factorization scale the “initial FFs.”

Here to solve DGLAP evolution equations the approxi-
mation method introduced in Ref. [38] is adopted, and as
stated in the Introduction, the evolution of FFs from a low
energy scale to a high energy scale is restricted to the LL
QCD level, namely, only the LO splitting function P;;
(i, j = g, q, where g is a gluon and the quarks ¢ = b, ¢) in
Eq. (5) is considered.

Although for solving the DGLAP equations, the QCD
NLO FFs at comparatively low energy scale of b and ¢
quarks to the mesons B, or B} provide main parts of the
necessary ‘initial FFs’, due to the mixing of the gluon’s and
flavor-singlet quarks’ FFs, the FF of a gluon at the low
energy scale also is a necessary part of the initial condition,
so we need to calculate out the FF of a gluon at the
comparatively low energy scale pp = 2m,, + 2m,, where
is the threshold of the B, or B} production by a gluon. Now
the “initial FFs” of b and ¢ quarks as well as a gluon to the
meson B, or B all at the low energy scale
Hro = 2my, + 2m,, which as ‘initial condition’ are needed
for solving the DGLAP equations, are shown in Figs. 8 and
9, where the FFs of b and ¢ quarks to the meson B, or B} at
this energy scale are obtained by solving the DGLAP
equations from pipg = ug = my, + 2m, (for b - B.(B}))
or ppy = pg = 2my, + m, (for ¢ - B.(B)). In order to
show the FF curves in one figure, in Figs. 8 and 9, the gluon
and c-quark FFs are artificially multiplied by a factor of 30.
From Figs. 8 and 9, one can see that the FFs for g — B.(B;)
and ¢ — B.(B}) are about 2 orders of magnitude smaller
than the FF for b — B,(B%).

8

D(z)

S,

FIG.8. The FFs DZJ—>BC (27 /"F)’ Dc—»B,. (Z’ /’lF)’ and Dg—»B(. (Zv .uF)
as functions of z with up = 2my, 4 2m,. In order to show these
results in one figure, D, (z.pp) and D,_p (z,pup) are artifi-
cially multiplied by a factor of 30.

For the following application in the next section, with the
initial FFs at pp = 2m;, 4+ 2m, which are obtained by
means of this work on the QCD NLO FFs, we calculate
out the FFs at the energy scale pp = mj; by solving
DGLAP evolution equations Eq. (4); and the results are
shown in Figs. 10 and 11. For the same reason as in Figs. 8
and 9, we artificially multiply the gluon and ¢ quark FFs by
a factor of 30. From Figs. 10 and 11, one can see that the
FFs are changed due to the evolution. The average values of
z for the h-quark and c-quark fragmentation are shifted to
smaller values. For the b-quark fragmentation,

-3
1 2108 : : : : : : :

—b— B}
09 |= = =c— B 1
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0.7 i
0.6 B

N
a 0.5
041 1
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...... ~
- i
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG.9. The FFs Dj_ 5. (z, pr), Deep: (2, #p), and Dy_p: (2, pp)
as functions of z with up = 2my, + 2m,. In order to show these
results in one figure, D _p: (2, pp) and D,_p.(z, up) are artifi-
cially multiplied by a factor of 30.
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FIG. 10. The FFs Dj_p (z,4p), Dcop(z,4F), and
D, (z,ur) as functions of z with up = my. In order to show
these results in one figure, D._p (z.pp) and D, (z.piF) are
artificially multiplied by a factor of 30.

(2) (B, pp = myz) = 0.58,

(2)(B&,up = myz) = 0.62. (79)
For the c-quark fragmentation,

(2)(Be,pr = mz) = 0.46,

(2)(Be,pup = my) = 0.49. (80)

The fragmentation probabilities for the gluon fragmen-
tation are increased compared to the gluon fragmentation at

-3
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FIG. 11. The FFs DE*B? (Z,,UF), DC—>BZ (Z,II/[F), and

D, p:(z,ur) as functions of z with up = my. In order to show
these results in one figure, D _ g (z.up) and D, p(z, up) are
artificially multiplied by a factor of 30.

up =2my;, + 2m,. However, the fragmentation probabil-
ities for g — B.(B}) are small compared to the fragmenta-
tion probabilities for b — B.(B}).

IV. APPLICATION TO B.(B;) PRODUCTION
AT A Z FACTORY

The production of B, and B} mesons at a Z factory is the
simplest case where only the fragmentation from b and ¢
quarks should be considered, and the fragmentation from
light quarks and gluons (being high-order processes) can be
ignored. Moreover, this production is a typical process for
doubly heavy flavored hadron production at a Z factory,
which can be a good reference for doubly heavy hadron
production at a Z factory. Thus, to try to have a higher
accuracy for the fragmentation approach in computing the
production of the B, and B} at a Z factory, we would like to
apply the FFs, which are accurate up to the QCD NLO at a
low factorization energy scale upy and evolved with the
DGLAP equations to the proper and higher energy scale
(here it is up = my), to computing the production of the B..
and B at a Z factory, and to compare the results with those
obtained by the approaches of complete LO and NLO
QCD.

With the pQCD factorization (2), the differential cross
sections of B, and B} production at a Z factory can be
calculated straightforwardly. The expressions for the coef-
ficient functions dé,+,-_;x/dy (i =h,c) in the limit
mg — 0 can be found in Refs. [39,40].

For the numerical calculations, the additional and rel-
evant input parameters are taken as follows:
a=1/128, sin’@y =0.231, T,=2.4952GeV, (81)
where a = a(my) is the electromagnetic coupling constant
renormalized at m.
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FIG. 12. The differential cross section do/dz for the production
of the B. meson as a function of z.
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FIG. 13. The differential cross section do/dz for the production
of the B meson as a function of z.

The differential cross sections do/dz for the production
of B, and B} mesons at the Z pole are presented in Figs. 12
and 13, where the contributions from y exchange and y — Z
interference are neglected due to the fact that they are much
smaller in comparison to the contributions from Z
exchange at the Z pole [11]. In Figs. 12 and 13, “LO”
and “NLO” denote the results of the complete LO and NLO
calculations, respectively, “Frag” denotes the results of the
fragmentation approach and the leading logarithms (LLs)
being resummed through DGLAP evolution equations. Later
on we call the approach as “Frag”. For the results of the
complete LO and NLO approaches, the renormalization is
set at up = my, + ch.6

It is interesting to compare the total cross sections for
the production of B, and B} mesons obtained using the
fragmentation approach with those from the complete LO
and NLO calculations. The obtained total cross sections are
presented in Table V. We believe that the fragmentation
approach provides better results for the values of the total
cross sections of B, and B} production at the Z pole.

V. DISCUSSIONS AND CONCLUSION

In this paper, by means of the general operator definition
of the FFs, we have derived the FFs for a b or ¢ quark
fragmenting to B, and B} mesons in LO and NLO QCD,
and the numerical results with reasonable input parameters
are presented in figures.

In the derivation of the NLO “real corrections” to the
FFs, the difficulty in extracting the singularities is

°In order to maintain compatibility with the results of the
fragmentation calculations, for the complete NLO calculations
we adopt the renormalization scale up = my, + 2m,., although the
complete NLO results in our previous paper [11] are those with
the renormalization at pp = 2my,,.

TABLE V. The total cross sections (in pb) for the production of
B, and B} mesons at the Z pole. Here, “LO” and “NLO” denote
the results from the complete LO and NLO calculations, while
“Frag” denotes the results from the fragmentation approach.

States LO NLO Frag
B, 1.76 2.53 2.51
B} 2.46 3.07 2.98

overcome by the fact that certain proper subtraction terms
are constructed, which contain the exact same singularities
(1/€) as those in the real corrections under dimensional
regularization, but they can be computed almost analyti-
cally [see Egs. (30), (31), and (33)]. Then, with the
constructed auxiliary terms for subtractions, the singular
and finite contributions from the real corrections can be
computed separately and the finite contributions can be
calculated numerically. Note that here the integrations of
the subtraction terms over the phase space are carried out
under suitable parametrizations, which are very similar to
those introduced in Ref. [13], and the expressions for the
subtraction terms and the phase-space parametrizations
may be useful in calculating the real QCD NLO corrections
for other FFs.

It is known that the choices for the factorization scale
urp and the renormalization scale pp are very important
in QCD calculations. For NLO corrections of FFs, one
may set them equal to each other or different from each
other according to convenience. As a typical case, here
we set the “(initial) factorization scale” to ppg = my +
2m, for the QCD NLO “initial FFs,” and the results
show that the NLO corrections are significant with two
possible choices of the renormalization scale. Moreover,
for an important application specifically discussed in
this paper, to gain a higher accuracy FFs with the
factorization pur = m; were used. We obtained FFs by
solving the DGLAP evolution equation, starting with the
“initial QCD NLO FFs” at a low energy scale
up = 2my, + 2m,. Since the solution of the DGLAP
evolution equation shows certain shifts of the average
value of the energy fraction z in a small region, we hope
that future experiments can test this effect(s).

Finally, the production of B, and B} mesons at a Z
factory is the simplest case where only the fragmentation
from a b or ¢ quark should be considered, and this
production is a typical process for doubly heavy hadron
production at a Z factory, which can be used as a reference
to estimate doubly heavy hadron production at a Z factory.
Thus we applied the FFs at the energy scale up = my,
which were obtained by evolving the QCD NLO ones at a
low energy scale upy, and shown in Figs. 10 and 11, to
computing the production of B. and B} mesons at a Z
factory, and we suspect that the results presented in Figs. 12
are 13 are comparatively accurate. For comparison, the
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results from the fully complete LO and NLO calculations
were also presented in these figures.

In summary, we derived the QCD NLO FFs of b and ¢
quarks to B, and B} mesons, and the physical picture for
the production of B. and B} mesons to QCD leading
logarithm (LL) order at a Z factory was described as
follows: the b and ¢ quarks are produced at high energy
(\/s = my), then the produced b and ¢ quarks are evolved
to the lower invariant mass (O(m)) by emitting real and
virtual collinear gluons and quarks (that are summed by the
LO DGLP equations), at last they fragment into the meson
B, or B, that is described by the QCD NLO FFs. Therefore
one may reasonably understand why the physics picture
summarized here has more solid QCD foundation and
works better in estimating the B, and B} production at a Z
factory.
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APPENDIX A: THE EXPRESSIONS
FOR THE COEFFICIENTS q; IN THE
LO SQUARED AMPLITUDES

For the production of the CB[IS[O”] state, the expressions

for the coefficients a; in Eq. (16) are

ay = 22 (1 =z)[~(dry +2r. = 4)z+d -2P,
az = —412(1 - rbZ){<drb +2r, —3)}";,22
—[2dr2 + 42+ ry)re =Sz = 2dr, +d +2(r. — 1)},

a, = —16r,r.22(1 —ryz)*. (A1)

For the production of the cb[*s!"] state,

ay =22 (1 =2){(1 = rpz)*d® = (1 = r2)[(9r, — 13)z2 4 9]d*
+4[z(Tr.((re=3)z+2)+3(52—7)) +7]d
—4z[7r.((r, —4)z+2) + 227 — 28] — 28},

ay = —422(1 = r,2){z[-2(d = 5)(d = 2)r2
+4((d-8)d+13)r, + (15 —2d)d|
—rp22ld(=dry —Tr. +8) + 14r, —15]
—d(d—T7)(2r;—1) = 20r, - 29z + 14},

ay=—16r,r.(d—1)z22(1 —ryz)%. (A2)

APPENDIX B: PHASE SPACE FOR THE
REAL CORRECTIONS

The differential phase space for the real corrections to the
FFs is

dd_lpz dd_1p3
(27)12pY (27)4=12p
x278(K - n—(py + p2 + p3) - n).

d¢real =

(B1)

The different parametrizations are required in order to
extract the poles in € in the real corrections. We adopt
similar parametrizations as those used in Ref. [13]. In
Ref. [13], the authors derived the phase space for two
massless partons the in final state. In our case, there is one
massive parton and one massless parton in the final state, so
we derive the formulas for this case.

The differential phase space for a single parton with
momentum p and mass m can be expressed as

|2—2€ | 1-2¢

| sin@
2p0 (271.)3—26

a~'p __Ip
(27T)d_12p0

dlp|dfdQ,,  (B2)

where 6 denotes the polar angle and d€2, denotes the
differential transverse solid angle. The total transverse solid
angle Q) = [dQ, =2x'"¢/T'(1 —¢).

It is useful to introduce a light-like momentum &, and
define the variable

A=2k-p/k-n. (B3)

Then, the differential phase space for a single parton can be
expressed as

d'p (Ap-n—m*)~¢
= dld(p-n)dQ, . B4
(Zn)d—12po 4(27:)3‘26 (P ”) 1 ( )

Here, dQ, is Lorentz invariant due to the fact that the
differential phase space, 4, and p - n are Lorentz invariant.
This expression can be easily derived from Eq. (B2) in a
Lorentz frame where the spatial parts of the light-like
vectors n and k are back to back. The differential phase
space for a massless parton can be easily obtained from
Eq. (B4) by setting m = 0.

We can apply the parametrization (B4) to the differential
phase spaces for p, and p; in Eq. (B1). Two light-like
vectors k, and k5 corresponding to the parametrizations of
p» and pj are introduced. The integral over p, - n can be
carried out through the & function, and the integral over Q, |
is trivial. Then we obtain the expression
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27*[(1 = z)K - n]' =

d = 1 —u)|=€A5A5¢
¢real (4”)4_351—~(1 _ 6) [I/l( u)] 2 "3
m2 —€
1- < du di, dAs dS
T RO —w(1 =K ) IR ESL
(B5)
where

Ay =2k pa/ky-n A3 =2k3 - p3/ks-n (B6)
We have converted the integral variable p; - n to u by using
the definition of « in Eq. (32). If we set m, = 0 in Eq. (BY),
we obtain an expression that is the same as Eq. (A.6)
in Ref. [13].

We need to choose proper light-like vectors k, and k3 in
order to extract the poles in e. For the subtraction terms that
contain s, we choose

M2
K= ph - ",
2 pl 2p]'nn
s
ks =(p,+p ”—71#‘, B7
3 ( 1 2) 2(p1+p2)i’l ( )
then
1 1—u+uz
Ay = — m? M? B8
2 K n<51 ¢ p ) ( )
and

1 S1
A= - . (B9
} (1—u+uz)K-n<s 1—u+uz> (B)

Changing variables in Eq. (B5) from u, 4,, and 45 to y, 51,
and s, we obtain

2—2€Z—1+6 .
d¢1’edl (4 )4 3€F(1—€>K'ny_ +€(1_y)_€(y_Z)_€
X (s—=s1/y)[sy —mz —M?/(z/y)]™*
2 —€
zm
x |1— < dydsds,; dQs .
(y—2) (s —m2—yM?[z)) FEEIERL

(B10)
For the subtraction terms that contain s,, we choose

2 2
M = ply -
2py-n 2pip-n

K= ph - nh. (BI1)

Then,

1 1-
2y = (sl—m%— u—l—uZMz)’
zK - n z

1 1-
P <S2 _rpztu(l -z mi)

rpzK - n 19%4

(B12)

After changing variables in Eq. (BS) from u, 4,, and 45 to y,
sy, and s,, we obtain

2= 2€(rbz2)—l+s
(47)*3*T(1—€)K -n

xczl‘y+“zi)%m—mawﬂmdww

X {1 m%
—m?—yM?*/z)

—€

dpreq = (1 _y)—e(y_z)

]_ dyds, ds, dQs, .
(B13)

For the subtraction terms that contain s;, we choose

_ (pu+p)? i

2(pi1+pa)-n (B14)

1 1-
J = <Sl_mg_”+”ZM2)
zK - n Z

1 rc(l_rbz)(sl_

Ay = 53 —
’ (y—th)K'n[3 =72

mi)]. (B15)

After changing variables in Eq. (B5) from u, 1,, and 15 to y,
sy, and s3, we obtain
2—2€Z—1+€
4-3¢ ( 1= y)
(4r)* T (1-¢)K-n
re(1—rpz)(sy
y=rpz

d¢real = - (y - Z)_e

—mi)} —e

X (y—rpz)” "¢ [53 -

X[sy—mi=M?/(z/y)]™*
2 —€
zm;
x 1= ¢ dyds, ds;dQs .
[ (y—Z)(sl—mt?—yMz/Z)} YA

(B16)

To derive the differential phase space for the subtraction
terms that contain #; or #,, we multiply Eq. (B1) by

© t
dt /ddﬁéd(f?—p -p +2)
A ? 2 2 (pytpy)

x &(ty =2ps - p3), (B17)
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which is equal to 1 and does not change the phase space.
After integrating over p,, the differential phase space can
be expressed as

dd_lf) dal—lp3 ]3 -n
(2m)12p° (2m)*"2p3 (P = p3) - n
x278(K -n—(py+ p) - n).

dprea =
(B18)

Using the parametrization (B4) on the differential phase
spaces for p and p; in Eq. (B18), we obtain the expression

2—26[(1 _ Z)K . n]l—Ze u=€

Aoy = A7€A5€
Prea (4n)* (1 —¢) 1—-u" 3
m2 —€ _
X |1==—5—| dudidi; dQ;,, (B19
{ A(l—z)K-n] u 3 31 ( )
where
A=2k-p/k-n, Ay =2ks - p3/ky-n.  (B20)

For the subtraction terms that contain #;, we choose the
light-like vectors k and k5 as follows:

- M? -
T S T e
then
p L J S VY0
zK-n
J = ZKl' o~ (1/e- DM (B22)

After changing variables in Eq. (B19) from 4 and A5 to §
and ¢, we obtain

272672426 (1 — 7)1=2e e
(4m)* 3T (1—e)K-nl—u
x [ty = (1/z = 1)M?u] ™[5 = mg — M? /2]~
zm?

(1=2)(5—m2—-M?/z)

d¢rcal =

X |1— dudidt] dg:;l.

(B23)

For the subtraction terms that contain #,, we choose the
light-like vectors k and k5 as follows:

7 M? m?2
= pt — K = pH — € .
P1 2p1-nn 3P 2]”)-nn
Then
A= ! (53—m2—-M?/z)
K-n ¢ ’
1
A= 1—u)t, —
3 (1 _ Z)K n [( M) 2 mcu]

After changing variables from A and 15 to 5 and ¢, we obtain

2—2€Z—1+6(1 _Z)—e
@) T(1-)K-n'"
X [(1—u)ty —m2u] =[5 —m2 — M? /7]~
zm?
(1= 2)G—m2 - M/2)

—€

d¢real =

X [1—= dudgdt2d93l.

(B24)
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