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Quantum field theories containing scalar fields with equal quantum numbers allow for a mixed kinetic 
term in the Lagrangian. It has been argued that this mixing must be taken into consideration when 
performing renormalization group (RG) analyses of such a theory. However, from the fact that scalar 
kinetic mixing does not correspond to a physical observable, we show that no extra parameters need to 
be introduced. Using a toy model, we explicitly derive the 1-loop RG equations (RGEs) in three different 
renormalization schemes to demonstrate how this issue can be dealt with. In schemes without kinetic 
mixing, either the fields mix during renormalization to produce non-diagonal anomalous dimensions or 
the RGEs explicitly depend on the scalar masses. Finally, we show how the different schemes are related 
to each other by scale dependent field redefinitions.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One common feature of beyond the standard models is the 
inclusion of extra scalar fields. A very well studied example is 
the so called two Higgs Doublet Model (2HDM) which was intro-
duced in 1974 by T.D. Lee [1]. As its name implies, it has two 
Higgs doublets instead of one as in the standard model. Most phe-
nomenological studies of the 2HDM assumes that the two Higgs 
doublets are charged differently under a discrete Z2 symmetry and 
that this symmetry is at most softly broken, i.e. by mass-terms, in 
the scalar potential. By assigning appropriate charges to the right-
handed fermion fields, this ensures that there are no tree-level Fla-
vor Changing Neutral Currents (FCNC). However, in general there is 
no justification to make this assumption, since the 2HDM in itself 
is also not a complete theory. For example having the same fine-
tuning or hierarchy problem as the standard model. In fact, in a 
supersymmetric version of the theory, the Z2 symmetry is broken 
when going beyond tree-level [2] and even though this breaking is 
only soft it gives rise to so called non-holomorphic corrections.

In this paper we want to clarify in a pedagogical way what 
happens when the Z2 symmetry is broken. One immediate con-
sequence is that the two Higgs doublets will mix, giving rise to 
both kinetic and mass mixing. At tree level, as is well known,1
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1 See for example sec. 12.5 in ref. [3].
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the kinetic term as well as the mass matrix can be diagonalized. 
The question we investigate in this paper is whether this can be 
done consistently also at loop-level, i.e. after renormalization, and 
whether the kinetic term can be kept diagonal also under renor-
malization group evolution, even though the fields mix. In refs. [4,
5] it was claimed that whereas one can always make the kinetic 
term diagonal at a given renormalization scale, the mixing will 
reappear if the renormalization scale is changed, thus meaning 
that one gets an additional parameter. This claim has also led to 
some confusion in the literature [6]. As we will show in this pa-
per, this claim is not correct and one does not need an additional 
parameter in order to renormalize the theory. Instead, one can 
choose to work with different renormalization schemes where this 
parameter is either present or not, all giving the same results. The 
underlying reason behind this result is that the two-point func-
tions are in fact not observables and as such do not need to be 
finite; the observables are masses and scattering amplitudes. We 
also show that in those schemes where there is no kinetic mixing, 
one instead has mixing of the fields under renormalization corre-
sponding to a change of basis which has to be taken into account.

A similar problem occurs in the renormalization of the CKM 
matrix. For a recent discussion of how that is resolved in different 
renormalization schemes for the case of an extended scalar sector, 
see ref. [7].

We present three different renormalization schemes with or 
without kinetic mixing and show how they are related at one-
loop level under renormalization through orthogonal and non-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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orthogonal transformations. A difference compared to tree-level is 
that these transformations are scale-dependent. As a by-product 
of our considerations we also show that in one of these schemes, 
the renormalization group equations in the Minimal Subtraction 
(MS) scheme for the quartic couplings depend on the masses of 
the scalar particles - in contradiction with statements often made 
in textbooks.

As a pedagogical example and to simplify the discussions, we 
will not consider the full 2HDM but instead only consider a toy 
model with N ≥ 2 real pseudo scalar fields coupled to one Dirac 
fermion. This model has the same generic features as the 2HDM 
when it comes to renormalization properties of the scalar fields.

This paper is organized as follows: We start in section 2 by 
defining the theory and introduce the three different renormal-
ization schemes that we are considering. In the following section 
we go through each scheme in more detail, perform the renormal-
ization at one-loop level and calculate the RGEs for each case. In 
section 4 we then show how the schemes are related to each other 
and that they in fact are equivalent. Finally section 5 contains our 
conclusions.

2. Kinetic mixing and renormalizability

To discuss the renormalizability of theories with mixed scalar 
kinetic terms, we have chosen the simplest case with N real 
pseudo scalar fields coupled to a Dirac fermion. The reason to in-
clude a fermion is because then the 2-point Green functions,

Gij(p2) = = 1

ε

(
αi j p2 + βi j

)
, (1)

exhibit divergences proportional to p2 at 1-loop level; instead of 
at 2-loop level, which would be the case in a theory with only 
scalars.

The only requirement for a theory to be renormalizable is that 
all physical quantities are free from divergences. So even if some 
component of Gij(p2) contains divergences, it in itself does not 
spoil renormalizability since Gij(p2) is not a physical observable. 
In our theory, the physical observables are scattering amplitudes 
and masses of the particles. Thus, the minimal set of parameters 
and counterterms consists only of interaction and diagonal mass 
terms. We will show in section 3.2 how this set is sufficient to 
absorb all divergences. This merely corresponds to one particular 
renormalization scheme.

Another renormalization scheme is considered in section 3.1, 
where we work with the most general Lagrangian consistent with 
the symmetries of the theory, including kinetic mixing operators, 
and renormalize every parameter. Since the parameters in the La-
grangian are not directly related to any physical observables, one 
instead requires all Green functions to be free of divergences.

A third renormalization scheme, and the one most often used, 
is to work with diagonal kinetic terms and renormalized fields. To 
be able to absorb the divergences in all Green functions into coun-
terterms, the scalar fields must mix during renormalization. This 
will induce the necessary non-diagonal kinetic counterterms to en-
sure renormalizability. The anomalous dimensions of the fields will 
then enter the RGEs for the couplings. We show how this is done 
in section 3.3.

Throughout all of our calculations, we use dimensional regu-
larization in d = 4 − 2ε dimensions and MS for the counterterms. 
We will also introduce the renormalization scale μ to make all the 
couplings in the Lagrangian have their natural dimension. All bare 
quantities that are μ independent will be denoted by a b super-
script. For notational convenience, we define � ≡ 1/(16π2ε) and 
D ≡ 16π2μ d as well as
dμ
i�(/p) = , i�i j(p2) =

	
amp
i =

⎛
⎜⎜⎝

⎞
⎟⎟⎠

amp

, 	
amp
i jkl =

⎛
⎜⎜⎝

⎞
⎟⎟⎠

amp

.

(2)

3. Three renormalization schemes

3.1. Most general case

The most general Lagrangian with the imposed symmetries in 
terms of bare fields and parameters is given by

L =1

2
∂μϕb

i ab
i j∂

μϕb
j − 1

2
ϕb

i bb
i jϕ

b
j + cbψ

b
i/∂ψb − dbψ

b
ψb

− eb
i ϕ

b
i ψ

b
iγ5ψ

b − 1

4! f b
i jklϕ

b
i ϕ

b
j ϕ

b
k ϕb

l . (3)

The bare parameters are divided into renormalized parameters and 
counter terms as

ab
i j = aij + δaij, bb

i j = bij + δbij,

cb = c + δc, db = d + δd,

eb
i = με (ei + δei) , f b

i jkl = μ2ε
(

f i jkl + δ f i jkl
)
, (4)

where aij, bij, f i jkl are fully symmetric in all their indices and ap-
propriate powers of μ have been inserted to give all terms correct 
dimensions. We will also use matrix and vector notation for the 
coefficients aij, bij, ei .

This Lagrangian contains a number of redundant parameters. In 
the case of two scalar fields, we have 15 free parameters with their 
associated counterterms. These do not directly correspond to phys-
ical observables. If one transforms the Lagrangian to the minimal 
form, as we do in section 3.2, the total number of free parame-
ters is reduced to 10; which then directly correspond to physical 
observables.

One complication of working with this general Lagrangian is 
the non-diagonal kinetic terms; which gives rise to a matrix scalar 
propagator. In the calculations we treat the mass parameters as 
small perturbations bij � p2 and work with an expanded propaga-
tor,

– – – – – =
(

i

p2a − b

)
i j

� i

p2

(
a−1 + a−1ba−1

p2

)
i j

. (5)

Ignoring the finite pieces, the 1-loop calculation of correlation 
functions give

�(/p) =
(

eie ja
−1
i j

2c
/p − eie ja

−1
i j

c2
d

)
� + (/pδc − δd), (6)

�i j(p2) =
[

1

2
f i jkl(a

−1ba−1)kl + (4d2 − 2c2 p2)
eie j

c4

]
�

+ (p2δaij − δbij), (7)

	
amp
i = − eie jeka−1

jk

c2
� + δei, (8)

	
amp
i jkl =

[
1

2

(
a−1)

mn

(
a−1)

op

(
f i jmo fklnp + f ikmo f jlnp + f ilmo f jknp

)
−24eie jekel

c4

]
i� − iδ f i jkl. (9)
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As renormalization conditions we will require all Green functions 
to be finite; which is accomplished by absorbing all the infinites 
in the 1PI and amputated diagrams into the counterterms. Requir-
ing the bare fields and parameters in eq. (4) to be μ-independent 
leads straightforwardly to the RGEs for the renormalized ones. In 
four dimensions they are

Daij =4eie j

c2
,

Dbij =8d2eie j

c4
+ f i jkl

(
a−1ba−1)

kl ,

Dc = −
(
eT a−1e

)
c

,

Dd = − 2
(
eT a−1e

)
d

c2 ,

Dei =2ei

c2

(
eT a−1e

)
,

D f i jkl = (
a−1)

mn

(
a−1)

op

(
f i jmo fklnp + f ikmo f jlnp + f ilmo f jknp

)
− 48eie jekel

c4
. (10)

From the first equation above we see that in this renormaliza-
tion scheme there is indeed kinetic mixing if the fermion couples 
to more than one of the scalar fields; much like the scheme used 
in ref. [5]. However, not all of the parameters above are physical 
and as we will see later the parameter describing kinetic mixing is 
redundant.

3.2. Minimal case

Here we only add the minimal number of free parameters and 
counterterms. This is similar to what is used in effective field the-
ory methods where one removes the so-called equations of motion 
terms or alternatively brings the Lagrangian into the minimal form 
using field redefinitions.2 The physical observables in our theory 
are the masses and scattering amplitudes; therefore we only re-
quire counterterms for the masses and couplings. The Lagrangian 
in terms of the bare quantities is

L =1

2
∂μ�b

i ∂
μ�b

i − 1

2
m2b

i �b
i �

b
i + �

b
i/∂�b − mb�

b
�b

− Y b
i �b

i �
b

iγ5�
b − 1

4!�
b
i jkl�

b
i �

b
j�

b
k�

b
l , (11)

where �b
i jkl is fully symmetric in i, j, k, l. The bare parameters are 

related to the renormalized ones and counterterms via

m2b
i =m2

i + δm2
i , mb =m + δm,

Y b
i =με (Yi + δYi) , �b

i jkl =μ2ε
(
�i jkl + δ�i jkl

)
. (12)

Here we only have the physically relevant number of parame-
ters and the same number of counterterms. For the case of two 
scalars this would be 10, although we will work with any number 
of scalars. We will also assume the masses to be non-degenerate 
in order to keep the presentation simple. In the case of degener-
ate masses, the conclusions below do not change but the analy-
sis needs to use methods from degenerate perturbation theory to 
avoid singularities in e.g. eq. (25).

In the minimal scheme, the UV divergent pieces and countert-
erms of the 1PI and amputated Green functions in eq. (2) are

2 See, for example, sec. 6 in ref. [8] for a pedagogical introduction.
�(p2) =
∑

i

Y 2
i

(
/p

2
− m

)
� − δm, (13)

�i j(p2) =
[

1

2
�i jkkm2

k + 1

2
Yi Y j(8m2 − 4p2)

]
� − δi jδm2

i , (14)

	
amp
i = − Yi

∑
j

Y 2
j � + δYi, (15)

	
amp
i jkl =

[
1

2

(
�i jmm�klmm + �ikmm� jlmm + �ilmm� jkmm

)
−24Yi Y j YkYl

]
i� − iδ�i jkl. (16)

Summing all 1PI diagrams gives the full 2-point Green function of 
bare fields,

Gij(p2) ≡
(

i

p2 − M + �(p2)

)
i j

, (17)

where Mij = m2
i δi j . To 1-loop order it reduces to

Gij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i

p2 − m2
i

(
1 − �ii

p2 − m2
i

)
, for i = j,

−i�i j

(p2 − m2
i )(p2 − m2

j )
, for i �= j.

(18)

A crucial observation is that one cannot make all components 
of Gij to be finite since we cannot absorb the off-diagonal p2 di-
vergent piece in �i j in any of the counterterms. However, this is 
not a problem since 2-point Green functions are not observables 
in quantum field theory and can thus contain divergences. The rel-
evant physical observables are the poles of the 2-point functions, 
i.e. the masses of the particles, as well as the S-matrix elements, 
related to correlation functions through the LSZ theorem [9]. The 
masses are fixed by det G−1 = 0 on-shell and to make them finite, 
the δm2

i will absorb all the infinities in the corresponding eigen-
value; which to 1-loop order are the ones in �ii(p2 = m2

i ).
In a theory where external particles have the same quantum 

numbers, the conventional LSZ theorem needs to be modified to 
include mixing on the legs [10]. The S-matrix element describing 
scattering of scalar mass eigenstates i j going into kl is then given 
by3

Ai jkl = lim
p2

1→m2
i

(p2
1 − m2

i )Gia(p2
1) × lim

p2
2→m2

j

(p2
2 − m2

j )G jb(p2
2)

× lim
p2

3→m2
k

(p2
3 − m2

k)Gkc(p2
3) × lim

p2
4→m2

l

(p2
4 − m2

l )Gld(p2
4)

× 1√
Z (i)

ii Z ( j)
j j Z (k)

kk Z (l)
ll

	
amp
abcd(p1, p2, p3, p4), (19)

where the Z (k)
i j factors are defined as the residues of the corre-

sponding 2-point correlation functions,

Gij(p2) → i Z (k)
i j

p2 − m2
k + iε

+O (1) , (20)

3 The masses in the LSZ theorem are the physical pole masses, which are equiv-
alent to the MS masses up to finite pieces. Since we are only discussing UV diver-
gences, we will not make any distinction between pole masses and MS masses. The 
difference would need to be taken into consideration at higher orders in perturba-
tion theory.
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as p2 → m2
k , i.e.

Z (k)
i j = −i lim

p2→m2
k

(p2 − m2
k)Gij(p2). (21)

Taking the external momenta on-shell, the amplitude becomes

Ai jkl =
⎛
⎝1 − 1

2

∑
a=i, j,k,l

d

dp2
�aa

∣∣∣
p2=m2

a

⎞
⎠	

amp
i jkl

+
∑
a �=i

�ia(p2 = m2
i )

m2
a − m2

i

	
amp
ajkl +

∑
a �= j

� ja(p2 = m2
j )

m2
a − m2

j

	
amp
iakl

+
∑
a �=k

�ka(p2 = m2
k)

m2
a − m2

k

	
amp
i jal +

∑
a �=l

�la(p2 = m2
l )

m2
a − m2

l

	
amp
i jka .

(22)

A similar discussion applies when considering �i − �̄� scattering 
and here we only write the final expression in terms of 1PI and 
amputated diagrams,

Ai =
(

1 − d

d/p
�(/p)

∣∣∣
/p=m

− 1

2

d

dp2
�ii

∣∣∣
p2=m2

i

)
	

amp
i

+
∑
a �=i

�ia(p2 = m2
i )

m2
a − m2

i

	
amp
a . (23)

As renormalization conditions we now require all observables 
to be finite, i.e. Ai , Ai jkl and the masses m2

i , m. The infinities in 
Gij that can not be absorbed into counterterms from �i j will then 
be canceled in the observables by the counterterms δYi and δ�i jkl .

Note that other observables like �i� → � j� and �� → ��

will also be finite. Even though they contain off-shell subdiagrams 
that contain divergent pieces; these will cancel in the sum of all 
the amplitudes contributing to a certain process.

Since all the fields are bare and do not depend on the renor-
malization scale, the RGEs for the couplings and masses follow 
straightforwardly from the counterterms4:

Dm2
i =

∑
j

�ii j jm
2
j + 8Y 2

i m2 − 4Y 2
i m2

i ,

Dm = − m
∑

i

Y 2
i ,

DYi = − 2Y 3
i + 3Yi

∑
k

Y 2
k + 2

∑
l �=i

YlCil,

D�i jkl = − 2
(

Y 2
i + Y 2

j + Y 2
k + Y 2

l

)
�i jkl − 48Yi Y j YkYl

+
∑
m,n

(�i jmn�klmn + �ikmn� jlmn + �ilmn� jkmn)

+ 2
∑
m �=i

�mjklCim + 2
∑
m �= j

�imklC jm

+ 2
∑
m �=k

�i jmlCkm + 2
∑
m �=l

�i jkmClm, (24)

where we have defined

Cil ≡ 1

m2
i − m2

l

(∑
k

�ilkk

2
m2

k + 4Yi Ylm
2 − 2Yi Ylm

2
i

)
. (25)

4 There is no implicit sum over repeated indices in eq. (24).
It should be noted again that we assume the scalar masses to be 
non-degenerate. It is interesting and unusual that the RGEs in this 
MS renormalization scheme depend on the masses through the Cij
terms. However, one could expect this; since this scheme is related 
to an on-shell renormalization one. It should also be noted that 
the definition of the fields in this case is unchanged during the RG 
evolution; they are always given by the mass eigenstates. In other 
words, the basis is the same throughout the evolution. Another 
point is that the contributions from the off-diagonal Cij -terms van-
ish for two scalars if a Z2 symmetry is imposed. In other words 
these terms contain the same information as the kinetic mixing 
terms in section 3.1.

3.3. Standard way with Zij

The standard renormalization scheme most often used is very 
similar to the case of working with a completely general La-
grangian as in section 3.1. But one obvious simplification is to 
transform the fields to arrive at canonical kinetic terms through 
a non-orthogonal5 transformation. For this scheme we will also 
renormalize the fields, which gives rise to anomalous dimensions 
that will enter the RGEs for all the parameters.

We denote bare fields by φb
i , �b , �b and renormalized fields 

by φi, �, �. The relations between the two are given by φb
i = Zijφ j

and �b = Z��. With the renormalization factors Zij = δi j + δZij

and Z� = 1 + δ�. The Lagrangian in terms of renormalized quan-
tities and counterterms is then given by

L =1

2
Zik∂μφk Zil∂

μφl − 1

2
Zikφk

(
m2

i j + δm2
i j

)
Z jlφl

+ Z 2
��i/∂� − Z 2

� (m + δm)�� − με (yi + δyi)φi�iγ5�

− μ2ε

4!
(
λi jkl + δλi jkl

)
φiφkφkφl, (26)

where m2
i j and λi jkl are fully symmetric in their indices. Note that 

we have a different number of parameters compared to coun-
terterms here. For two scalars we have 15 counterterms and 11 
parameters, but of course only 10 physical parameters as in the 
other schemes. The relations of bare and renormalized parameters 
are somewhat more complicated than in the previous renormaliza-
tion schemes,

mb
ij

2 = m2
i j + δm2

i j, yb
i = Z−1

ji Z−2
� με(y j + δy j), (27)

λb
i jkl = Z−1

ai Z−1
bj Z−1

ck Z−1
dl μ2ε(λabcd + δλabcd). (28)

Since the renormalization factors are μ dependent we now obtain 
RGEs for the fields,

Dφi = − (
Z−1DZ

)
i j φ j ≡ γi jφ j,

D� = − Z−1
� DZ�� ≡ γ��. (29)

In case of γi j not being diagonal this means that the fields will 
mix during renormalization and thereby the basis will also change. 
These anomalous dimensions, γi j and γ� , also enter the RGEs for 
the parameters

Dyi = − (4π)2ε(yi + δyi) − γi j y j − 2γ�gi −Dδyi, (30)

Dλi jkl = − 2(4π)2ε(λi jkl + δλi jkl) −Dδλi jkl

−
∑

m

(γimλmjkl + γ jmλimkl + γkmλi jml + γlmλi jkm). (31)

5 In more general cases with complex fields it would require a non-unitary trans-
formation.
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Just as in section 3.1, the counterterms are determined by re-
quiring that all Green functions of the fields φi , �, � are finite. 
This is accomplished by making the 1PI and amputated diagrams 
in eq. (2) finite, which we compute to be

�(p2) =
∑

i

y2
i

(
/p

2
− m

)
� + (2/pδ� − 2mδ� − δm), (32)

�i j(p2) =
[

1

2
λi jklm

2
kl + yi y j(4m2 − 2p2)

]
�

+ (2p2δZij − m2
jaδZia − m2

iaδZ ja − δm2
i j), (33)

	
amp
i = − yi

∑
j

y2
j � + δyi, (34)

	
amp
i jkl =

[
1

2

(
λi jmnλklmn + λikmnλ jlmn + λilmnλ jkmn

)
−24yi y j yk yl

]
i� − iδλi jkl. (35)

In the end, we arrive at the following anomalous dimensions and 
RGEs for the parameters

γi j =2yi y j,

γ� = − 1

2

∑
i

y2
i ,

Dm2
i j =λi jklm

2
kl + 8m2 yi y j − 2yi ykm2

kj − 2m2
ik yk y j,

Dm = − m
∑

i

y2
i ,

Dyi =yi

∑
k

y2
k ,

Dλi jkl =λi jmnλklmn + λikmnλ jlmn + λilmnλ jkmn − 48yi y j yk yl

− 2yi ymλmjkl − 2y j ymλimkl − 2yk ymλi jml

− 2yl ymλi jkm. (36)

Here, we again see that if one fermion couples to more than 
one of the scalars, then the scalars will mix under RG evolution 
from yi y j �= 0 for i �= j. The effect appears both in the anoma-
lous dimensions of the scalar fields as well as in the masses and 
quartic couplings. This then corresponds to the kinetic mixing in 
section 3.1. An example of how to actually perform the RG evo-
lution with these effects taken into consideration can be found in 
ref. [11].

As a side note we briefly compare these results to the renor-
malization scheme used in refs. [12–15], where they derive the 1-
and 2-loop RGEs for a general quantum field theory. There is a 
subtlety in their notation in that they present the RGEs for a the-
ory with an irreducible representation of the scalar fields and the 
anomalous dimensions are therefore taken to be diagonal.6

Their formulas can however be modified to include theories 
containing multiple scalar fields by generalizing the anomalous di-
mensions in a relatively straightforward way. This is discussed in 
great detail in ref. [17] and we will not discuss it further here.

4. Relation between the various schemes

All the renormalization schemes are built on bare Lagrangians, 
which of course do not depend on the renormalization scale μ. 
The different bare Lagrangians are then related to each other by 

6 This has independently been pointed out by ref. [16].
field redefinitions and therefore the renormalized fields are as 
well. In this section we will show that the renormalized param-
eters in each of the three renormalization schemes are related 
to each other by orthogonal and non-orthogonal transformations. 
Though the transformations are somewhat trivial at bare level, the 
transformation matrices of renormalized quantities do obey a non-
trivial μ-dependence.

4.1. Most general versus minimal

To relate the general Lagrangian in section 3.1 to the minimal 
Lagrangian in section 3.2 we need to first diagonalize and nor-
malize the kinetic terms, i.e. ai j . Following that, we need another 
rotation to diagonalize the new mass matrix. We write the full 
non-orthogonal transformation matrix as

Rb =O bT
1 Ab−1

O bT
2 , (37)

where the diagonal matrix Ab and orthogonal matrices O b
i are de-

fined by

O b
1ab O bT

1 =diag(αb
i ), Ab = diag

(√
αb

i

)
,

O b
2 Ab−1

O b
1bb O bT

1 Ab−1
O bT

2 =diag
(

m2b
i

)
, (38)

such that

RbT aRb =1, RbT bb Rb = diag
(

m2b
i

)
≡ Mb. (39)

The relations of the bare fields are then

ϕb
i = Rb

ij�
b
j and ψb = 1√

cb
�b. (40)

Note that since the transformation matrix Rb contains divergences, 
it is clear that Green functions of �b

i , �
b
, �b can be divergent 

while those of φb
i , ψb

, ψb are finite.
While the relation between m2b

i and ab, bb is implicit in eqs. 
(37)–(39), the other bare parameters are related via

mb =db

cb
, Y b

i = 1

cb
eb

j Rb
ji, �b

i jkl = f b
abcd Rb

ai Rb
bj Rb

ck Rb
dl.

(41)

All quantities involved in eqs. (37)–(41) are bare quantities and 
are μ-independent; as a consequence, the counterterms and RGEs 
must also be compatible. We can then relate the renormalized 
quantities with a μ-dependent transformation matrix Rij(μ). The 
relations between the parameters in the two schemes are the same 
as in the bare case, but without the superscript b everywhere. Us-
ing the notation M = diag(m2

i ) these are

RT aR =1, RT bR =M,
d

c
=m,

1

c
eT R =Y T , fabcd Rai Rbj Rbk Rdl =�i jkl. (42)

To figure out how Rij depends on the renormalization scale, 
one can determine its explicit form in terms of the renor-
malized Lagrangian parameters; which of course fully fixes the 
μ-dependence. Another way is using the relations in eq. (42)
to transform the RGEs in the general scheme in eq. (10) to the 
RGEs in the minimal scheme in eq. (24) from which the required 
μ-dependence for Rij follows. These two methods are equivalent 
and one finds the following non-trivial relation
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(R−1DR)i j = δi j2Y 2
i − 2C ji, (43)

where Cij is defined in eq. (25).

4.2. Standard versus minimal

To go from the standard scheme in section 3.3 to the minimal 
scheme in section 3.2, all one has to do is to diagonalize the mass 
matrix with an orthogonal transformation. At the bare level we 
have

O bT
i j mb2

jk O b
kl =δilm

b2
i (44)

and the bare fields are then related by φb
i = O b

ij�
b
j . The fermion 

field and mass are actually the same in both the schemes. How-
ever, note that the field is renormalized, �b = Z��, in the stan-
dard scheme.

Just as discussed in section 4.1, the schemes are related by field 
redefinitions and hence must be equivalent. We can then relate the 
renormalized quantities like the bare ones, but with a “renormal-
ized” rotation matrix O ij(μ),

δi jm
2
i = O T

ikm2
kl O lj, �i jkl =λabcd O ai O bj O ck O dl,

Yi = ya O ai . (45)

The rotation matrix O obeys a similar non-trivial μ-dependence 
as the transformation in section 4.1. Using eq. (45) to get from 
the RGEs in the standard scheme in eq. (36) to the RGEs in the 
minimal scheme in eq. (24) leads to the relation

(O T DO )i j =
{

0, for i = j,
2C ji + 2Yi Y j, for i �= j.

(46)

5. Conclusions

We have shown that even in the general case, having several 
scalar fields with the same quantum numbers, it is possible to 
choose a renormalization scheme such that there is no kinetic mix-
ing of these fields. We have shown explicitly how this can be done 
at 1-loop order by defining three different schemes: the most gen-
eral one allowing for all kinetic mixings; the minimal one where 
the only parameters and counterterms are the physically relevant 
ones; and the standard method where the fields and masses mix 
during renormalization which produces general counterterms. We 
showed that the three cases are related by scale dependent field 
redefinitions and also explicitly that the renormalization group 
equations are equivalent.

While the general scheme exhibits kinetic mixing terms in the 
Lagrangian, these are not present in the other two schemes. The 
equivalent effect is instead encoded in other ways. In the minimal 
scheme the effect enters in the off-diagonal Cij terms that depend 
on the scalar masses. In the standard scheme the fields mix un-
der renormalization; which gives rise to non-diagonal anomalous 
dimensions. Also the masses mix under renormalization and diag-
onalizing the mass-matrix after the RG evolution, to get the masses 
of the physical fields, redefines the fields in a way corresponding 
to the off-diagonal Cij terms in the minimal scheme.
Another effect from the mixing of the fields under RG evolution 
in the standard scheme is that the basis changes during RG run-
ning. This is, for example, important for the case of 2HDMs with 
a broken Z2 symmetry. To circumvent this, one either has to keep 
track of how the basis changes by also taking into account the 
anomalous dimensions of the fields and the evolution of the mass 
terms or alternatively only use basis-invariant quantities.
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