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Abstract

We investigate numerically models of the static spherically sym-
metric boson-fermion stars in the scalar-tensor theory of gravity with
massive dilaton field. The proper mathematical model of such stars is
interpreted as a nonlinear two-parametric eigenvalue problem with an
unknown internal boundary. We formulate the boundary value prob-
lem in two ways and employ the Continuous Analogue of Newton’s
Method (CANM) for each of them. We obtain the behaviour of the
basic geometric quantities and functions describing a dilaton field and
matter fields, which build the star.
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1 Introduction

In the Einstein frame the field equations in presence of fermion and boson
matter are:
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where V, is the Levi-Civita connection with respect to the metric g, (1 =
0,...,3;v = 0,...,3). The constant k. is given by k, = 87G,, where G,
is the bare Newtonian gravitational constant. The physical gravitational
“constant” is G, A?(p) where A(¢p) is a function of the dilaton field ¢ de-
pending on the concrete scalar-tensor theory of gravity.
d
The function a(p) = o [In A(¢)] determines the strength of the cou-
2
B F
pling between the dilaton filed ¢ and the matter. The functions 7" and T are
correspondingly the trace of the energy-momentum tensor of the fermionic
F B

matter T/ and bosonic matter 7). Here W is a complex scalar field de-
scribing the bosonic matter while U" is its complex conjugated function
and W (¥ W) is the potential for the boson field (for detail see [1]).

We will consider a static and spherically symmetric mixed boson-fermion
star in asymptotic flat space-time.

2 First Formulation of the Problem

Taking into account the assumption that have been made the system of
the field equations (1) is reduced to the following system of dimensionless
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ordinary differential equations (ODEs):
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Here A(r),v(r),¢(r),o(r) and pu(r) are unknown functions of r and  is
an unknown parameter. Having in mind the physical assumptions, we have
to solve the equations (2) under the following boundary conditions (BCs):

A(0) = d-“”(o) = fl—‘;(o) =0, o0(0) =0 n(0)=4pe pRs)=0 (3)

~dr
where o, and . are the values of density of, respectively, the bosonic and
fermionic matter at the star’s center. The first three conditions in (3)
guarantee the nonsingularity of the metrics and the functions A(r), ¢(r),
o(r) at the star’s center.
As it is required by the asymptotic flatness of space-time, BCs at the
infinity are:

v(00) =0, ¢(c0) =0, () =0 (4)
where (+)(00) = limy_00(-) (7).
F F B B

Here functions T, T\ and T, T depend on the components of the

energy-momentum tensor of the fermionic and bosonic matter, the func-
B F
tions T and T' represent respectively the trace of the energy-momentum

tensor of fermionic and bosonic matter, functions f(u), g(p) and W(o?)
are given.

Let us note that for arbitrary functions f(u), g(p) and «a(p) the last
equation in (2) has a first integral, which can be presented as:
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where vy, vo, @1, @2, 11, p2 stand for the functions v(r), p(r), u(r) at
points r; and 7o (0 <7y <719 < Ry).

Apart from the unknown functions v(r), o(r), ¢(r) and p(r) the equa-
tions (2) include also two unknown parameters Rs and €. For their com-
putation we require two conditions among BCs (3),(4), for example

o(0) = o, u(Rs) =0, 0< Rs< o0, (6)

e.g., the problem (2)-(4) can be considered as a nonlinear eigenvalue prob-
lem where R; and {2 are eigenvalues.

3 Second Formulation of the Problem

With all definitions we have given, the main system of differential equa-
tions (2) governing the structure of static and spherically symmetric boson-
fermion stars can be divided in two parts: internal fermionic one (r < Ry)
and external domain (r > Ry) where is no fermionic matter, i.e., it can be
formally supposed that the function p(r) = 0 there. The fermionic part of
the energy-momentum tensor also vanishes identically and, thus, the dif-
ferential equations with respect to the rest four unknown functions A(r),
v(r), ¢(r), and o(r) in the external part are the same as in the internal
part and the last equation in (2) can be omitted.

We seek for a solution [A(r),v(r),o(r),o(r), u(r), Rs,§2] subjected to
the nonlinear ODEs (2), satisfying the BCs (3) in fermionic part (0 < r <
R;) and for a solution [A(r),v(r), p(r),o(r), Rs,?] satisfying the BCs (4)
in bosonic part (r > Rs). The so-posed two BVPs are two-parametric
eigenvalue problems with respect to the quantities R, and 2. After resolv-
ing them we match the two solutions at the internal boundary R, - the
fermionic boundary of the star. At that we assume the function u(r) is
continuous in the interval [0, Rs], while the functions A(r), v(r) are contin-
uous and the functions p(r), o(r) are smooth in the whole interval [0, co),
including the unknown internal boundary r = R;.
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4 Method of Solution

4.1 First formulation of the problem

For solving the above posed nonlinear eigenvalue problem CANM is used.
The presence of the a priori unknown quantity R, however, is an obstacle
for direct treatment by CAMN - the problem has an unknown internal
boundary Rs. In order to overcome it we introduce a new scaled coordinate
x = r/Rs [6]. In this way the physical domain r € [0,00] renders to the
domain z € [0,00) and the point r = Rs; maps into point z = 1.

For the sake of convenience we eliminate the function A(r) from the first
equation in (2), transform equivalently the second one into a second order
ODE (see [1]) and introduce the vector y(z) = {v(z), p(z), o(x)}. Then
the three equations (2) (without the first one and the fourth one) can be
written as follows:

f(y,pu, Rs,Q) = —zy" —y' +F =0 (7)

where F = F(z,y,y’, 4, Rs,Q) is 3D vector consisting of the right hand
sides of the equations (2) and by (.)" is denoted the differentiation with
respect to the new independent variable z.

Following CANM [3], [4], [5] we introduce a “time”-like parameter
t € [0,00) and assume the unknown quantities depend on ¢ as well: y =
yv(z,t), Rs = Rs(t), Q = Q(t). If we suppose that the function p = u(x) is
known, then after manipulations obtain the following linearized system of
ODEs:

OF 0
—au” —u + a_yu+ Fu/ _ :Ey" _|_y/ _F
OF OF 2 OF
_ n _ ! il = ! _ _F 8
v —v + 8yv+ Dy’ <Rs + 8Rs> (8)
_l-w”_w’+8_F +8_F I _ a_F
dy oy’ o0

Here % are the respective Frechét derivatives at the point (y, Rs, (),
u(z),v(z) and w(z) are unknown 3D vector-functions of z. On its turn
z=u+pv+tww, y=z, R,=p, Q=w. (9)
The above three equations are coupled with the following six BCs:
u'(0) = —y'(0), v'(0) =w'(0)=0

u(oo) = —y(o0), v(oco) =w(oco) =0,

(10)
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which are obtained from the original BCs (3)-(4) applying CAMN over
them. Let us emphasize that above equations have an equivalent structure
of the left hand sides, which essentially eases their numerical treatment.

In order to calculate the derivatives R, = p and Q = w we use the
additional BCs (6). Applying CAMN both to them and Eq.(5) for 21 = 0
(the center of the star) and zo = 1 (the radius of the star), we obtain simply
following linear system of algebraic equations:

a1p+hw=c

(11)

asp + bow = co

with respect to the unknown derivatives p and w (comprehensive formulae
one can see in [1]).

4.2 Second formulation of the problem

For our further considerations, it is convenient to present the system (2) in
the following equivalent forms as systems of first order ODEs:

_y;' + RsFi(Rs$a Yi, Q) =0 and - yiz + RsFe(Rs$a Ye, Q) =0 (12)

with respect to the unknown vector functions

and right hand sides F; = (Fy, Fy, &, F3,n, Fy, F5)T, Fo = (Fy, Fy, &, F3,n, Fy)7T,
where (.)' stands for differentiation towards the new variable z, (.); and (.)e
denote the inner (inside the star) and outer (outside the star) functions.

For given values of the parameters Rs and €2, the independent solving
of the inner system in (12) requires seven BCs. At the same time we have
at disposal only six conditions of the kind (3). In order to complete the
problem, we set additionally one more parametric condition (the value of
someone from among the functions A\(x),v(z), p(z),£(z), o(x) or n(x)) at
the point z = 1). Let us set for example:

¢i(1) = ¢, s — parameter. (13)

In the external domain z > 1 the vector of solutions y.(z) is 6D. There-
upon, six BCs are indispensable for solving the equation (12). At the same
time only the three BCs (4) are known. Let us consider that the solution
yi(z) in the internal domain = € [0,1] is known. Then, we postulate the
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rest three deficient conditions to be the continuity conditions at the point
2 = 1. The first of them is similar to the condition (13) and the other two
we assign to two arbitrary functions from among A(z), v(z), &(x), o(z),
and n(z), for example A¢(1) = A;j(1), pe(1) = @5, 0e(1) = 0;(1). Let the so-
lutions y; = y;(z,Q, Rs, @s) and y. = ye(z, Q, Rs, @s) be supposed known.
Generally speaking, for given arbitrary values of the parameters Ry, (2, and
s the continuity conditions with respect to the functions v(x),&(x), and
n(z) at the point z = 1 are not satisfied. We choose the parameters R, (2,
and @, in such manner that the continuity conditions for the functions v(z),
&(x), and n(z) are held, i.e.,

Ve(]-aRSaQa(pS) _Vi(]-vRSaQa(pS)
56(17R8797(PS) - fi(laR&Qa(pS)
ne(laR&Qa(pS) - ni(laR&Qa(pS)

b

0
0, (14)
0

These conditions should be interpreted as three nonlinear algebraic
equations in regard to the unknown quantities R, (2, and ¢s;. The usual
way for solving the above-mentioned kind of equations (14) is by means of
various iteration methods, for example Newton’s methods.

In the present work, using CANM we propose a common treatment of
both, differential and algebraic problems.

After similar manipulations to those in Section 4.1 we obtain the fol-
lowing linearized systems of ODEs both in inner (fermionic) and outer
(bosonic) part of the star

F
—s' + Rsa— s =y'(z) — R,F,

oy
—u' + R, u=—|F Rsa—F ,

0 OR;

(15)

—v'—l—Ra—Fv——Ra—F

oy o0’
—W'—l—Rsa—Fw:

dy

OF
where — stands for a square matrix (7 x 7 or 6 x 6), which consists of

0
the Frecﬁ’ét derivatives of operator F at the point {y(z), Rs, 2} and u(z),
v(z), w(z) and s(z) are new unknown vector functions.
Then applying CAMN to BCs (3) and (4) we obtain eight BCs similar
o (10) (4 left + 4 right) for each (inner and outer) BVP (for detail see [2]).
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In the end, to compute the increments {p, w, ¢} of parameters Ry, 2, and
s we use the three nonlinear conditions (14). Applying CANM to them we
attain an algebraic system consisting of three linear scalar equations with
respect to the three unknowns p, w, and ¢.

Taking into account the smoothness of sought solutions, we solve the
linear BVPs (8) and (15) employing spline collocation scheme of fourth
order of approximation (see for example [7]). At that, we utilize essentially
the important feature that each of the above-mentioned two groups vector
BVPs (internal and external) has one and the same left-hand side.

5 General Sequence of the Algorithm

The general sequence of the algorithm in the both cases of implementation
of CANM is described and discussed in detail in our previous works [1] and
[2]. Therefore it will be not presented here again.

6 Some numerical results

For the purpose of illustrating we will present and shortly discuss some
results obtained from numerical experiments. Below we consider concrete
scalar-tensor model with functions:

1

A =exw (£). Vi) =30 - AP Wio) = - (o + 300"

£ =3 [ =3Vt 2+ 31 (Vi + VT R)]
9(p) :% [(6u+3)\/u+u2 —3In <\/A7+ M)] :

The quantity A is given parameter. For completeness, we note that in
the concrete case functions f(u) and g(u) represent the equation of state
of noninteracting neutron gas in parametric form, while function W (o)
describes the boson field with quartic self-interaction.
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Fig. 1. The function v(z).

The calculated eigenfunctions v(x), ¢(z), o(z),and pu(z) are plotted
correspondingly in Figures 1-4 for the values of the parameters v = 0.1,
A=10,b=1, 0. =0.4 and p. = 1.2. Let us emphasize that the behaviour
of the mentioned functions is typical for a wider range of the parameters
not only for those values presented in the figures. The function v(z) has
the largest derivative for z € (0,9). After that it approaches slowly zero at
infinity like 1/, i.e., the asymptotical behaviour of calculated grid function
and its derivative agrees very well with the theoretical prediction (see [1]).
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Fig. 2. The function ¢(z).
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Fig. 3. The function o(x).

Similarly the function ¢(z) increases rapidly for z < 4; besides that
it trends asymptotically to zero. Obviously, the quantitative behaviour of
(z) for central value o, = 0.4 is determined by the dominance of the term

jlz over the term 1}: (see [1]). The function o(x) decreases rapidly from
its central value o, = 0.4 (in the case under consideration) to zero. At
last the function p(z) is nontrivial in the internal domain z € [0,1], i.e.,
inside the star. Here, it varies monotonously and continuously from its
central value (in the case under consideration) pu. = 1.2 until zero at z = 1,
corresponding to the radius of the star.
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Fig. 4. The function u(x).
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