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Abstract:

We calculated the quasinormal modes of massive scalar field of a black hole in the deformed Hofava-Lifshitz

gravity with coupling constant A = 1, using the third-order WKB approximation. Our results show that when
the scalar field mass increases, the oscillation frequency increases while the damping decreases. And
we find that the imaginary parts are almost linearly related to the real parts, the behaviors are very similar
to that in the Reissner-Nordstrém black hole spacetime. These information will help us understand more

about the Hofava-Lifshitz gravity.
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1. Introduction

Recently, motivated by the Lifshitz model in condensed
matter physics, Hofava [1] proposed a renormalization of
the gravity theory in the (3+1)-dimensional quantum grav-
ity. This theory is believed to be the potential ultravio-
let (UV) completion of Einstein gravity, and it reduces to
general relativity in the infrared (IR) limit (setting the dy-
namical coupling constant A = 1 in the action). Since
then, various aspects on this gravity theory [2-13] have
been investigated, and some static spherically symmetric
black hole solutions [14-17] have been given.

In order to reduce the number of independent coupling
constants, the detailed balance condition was imposed in
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the Hotava-Lifshitz (HL) gravity. One result from the im-
position is that the generic IR vacuum of the HL gravity is
not a Minkowski vacuum but the one in an anti-de Sitter
background. Besides, in the IR limit, both the Newton
constant and the speed of light are dependent on the cos-
mological constant. For the aim to make the HL gravity
recover the Minkowsi vacuum in the IR limit, the theory
was modified by adding a relevant operator proportional
to the Ricci scalar of the three-geometry "' R” to the orig-
inal action in [14]. Such a modification softly breaks the
detailed balance condition and changes the IR properties,
but the ones at the UV level are not affected. In terms of
the IR modified HL gravity, a static, spherically symmetric
black hole solution was presented.

On the other hand, black hole quasinormal modes (QNMs)
govern the decay of perturbations at intermediate times

and are important when studying the dynamics of black
holes. The QNMs of a black hole are defined as proper

[
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solutions of the perturbation equations belonging to cer-
tain complex characteristic frequencies which satisfy the
boundary conditions appropriate for purely ingoing waves
at the event horizon and purely outgoing waves at infinity
[24, 25]. The quasinormal modes of a black hole present
complex frequencies, the real parts of QNMs represent
the ring down frequency and the imaginary parts repre-
sent the decay time. The QNMs are independent of the
initial perturbation, so, one can extract information about
the physical parameters of the black hole, viz., mass, elec-
tric charge and angular momentum [18-26] through it. As a
result, it is generally believed that QNMs carry a unique
footprint to directly identify the existence of a black hole.
In this paper, we use the third-order Wentzel-Kramers-
Brillouin (WKB) approximation method to calculate the
QNMs of massive scalar field perturbation around a black
hole in the deformed HL gravity, and give the effect of the
scalar field mass on the QNMS.

2. Metric and massive scalar field
perturbation
Using the Arnowitt-Deser-Misner (ADM) decomposition

and introducing the lapse function N, the shift vector N;
and the spatial metric g;;, we have [14]

ds’ = —=N?c?dt’ + gy(dx' + N'dt)(dx + N/dt), (1)

and the IR modification HL action which reads

2 i
| = [dtd&\/g/\/{ﬁ(m,/« — AK?)

P AWR —30)) KA1 —4)

8(1—34) 32(1 = 34)
—ZK—V; (Ci,— “TWZRF) (C"i— “TWZR"/') +u4R]», )
where Kj; is extrinsic curvature
Kij = % (atgi, - ViN; = VjNi) , 3)
and G is the Cotton tensor
Cij = € V(R — %R‘ﬂ)' 4
where A, y, kK, w = 8"2(371) are constant parameters, and R

and R;; are three-dimensional scalar curvature and Ricci
tensor, respectively. The last term "u*R" in (2) is the

added term, which softly violates the detailed balance
condition in [1], modifies the IR properties of the HL grav-
ity but not amend the UV behaviors.

From the metric in the (3+1) ADM formalism, the
Einstein-Hilbert action can be expressed as

_ ] 4 ij 2
Iey = 16”C/dx\/§N(K,,K K2+ R—=2Ay), (5)

where we have introduced the coordinate x° = ct.

In the IR limit, Ay — 0, one compares the IR modified
action (2) with the Einstein-Hilbert action and reads the
parameter A, the speed of light ¢, the Newton's constant
G as

2

A=1, &=

Kt K
Aw =0, ol
W 2

=g O

In the background of deformed HL gravity, a spherically
symmetric black hole solution that satisfies the full set of
motion equations is presented as [14]

2(r* = 2Mr + a)

ds? = — dt’
r’+2a+ Vrt 4+ 8aMr
P 4 20+ VT By

dr* + r*(d6” + sin* 8d¢?) (7)

2(r2 = 2Mr + a)

where M is an integration constant related to the black
hole mass, a = ﬁ = %‘2’2
eter. This black hole is formally different from the usual
Schwarzschild black hole in the Einstein’s general rela-
tivity. If o = 0, the metric (7) exactly coincides with the
Schwarzschild black hole.

There are two event horizons

is the Hofava-Lifshitz param-

re =MEVM?> —a (8)

are very similar with those of the Reissner-Nordstrom
(RN) black hole. M > «a to avoid the naked sinqularity,
and M = a is the extremity condition. Some associated
properties of the black hole (7) have been investigated in
[27-33]. In this paper, our main purpose is to discuss the
effect of the scalar field mass on the quasinormal modes
of the deformed Hofava-Lifshitz black hole.

The massive scalar field in a curved background is gov-
erned by the Klein-Gordon equation

1 d 9]
Vg ae VI g = e ©)

where W is the scalar field, v is the mass of scalar field.
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After separate variables W(t,r,0,¢) =
10(r)Yin (6, p)e~™', the radial equation for the mas-
sive scalar field perturbation can be obtained, in the

deformed Horava-Lifshitz gravity spacetime

d?d(r)

ar. +[w? = V(n)]®(r) =0 (10)

where r, is the tortoise coordinate

P + 20 + VI ¥ BaMr
dr, = dr (11)
2(r? = 2Mr + «a)
and the effective potential V/(r) is given by
V() = 2(r> —2Mr + a)
24 20+ Vi + 8aMr
(+1 1 r+2aM 2]
x - tu 12
[+ 2 s (2

It is obvious that the effective potential can be reduced
to the Schwarzschild black hole when a = 0. In this pa-
per, we only investigate the influence of the scalar field
mass u to the quasinormal frequencies. In Fig. 1, we
show how the variation of V(r) depends on u in the de-
formed Hotava-Lifshitz gravity, and compare with that of
Reissner-Nordstrém black hole. We find that the effec-
tive potential depends on the scalar field mass, which is
in the form of a barrier. With other parameters fixed, the
peak value of the barrier and the location of peak gets
higher and higher as u increases, respectively. The be-
havior is very similar to that in Reissner-Nordstrom black
hole background spacetime.

3. Massive scalar quasinormal fre-
quencies

In this section, we evaluate the quasinormal frequencies
for the massive scalar field in the background spacetime
(1) by using the third-order WKB approximation [34, 35].
The WKB approach is based on the analogy with the prob-
lem of waves scattering near the peak of the potential
barrier V(r) in quantum mechanics, where w? plays a role
of energy. This semianalytic method originally developed
by Schutz and Will [36] and has been extended to the
sixth order [37]. This method has been found to be accu-
rate for low-lying modes with [ > n, while is not so good
if { = n and not at all applicable for [ < n. It is very
useful on calculating the quasinormal modes of various
black hole cases, such as Schwarzschild [35], Reissner-
Nordstrém [38], Kerr [39], Kerr-Newman [40] and so on.

In this method, the formula for the complex quasinormal
frequencies w is

w? = [Vo + (—2V,) PNl — i(n + %)(—2%’)”2(1 +0Q) (13)

where

i) ()
N=—asig 7 Jta
A ARV AL

1 (v’ X
—ﬁ( v(;’) (7 + 60a )} (14)

M 4
Ve
0= ﬁ{%z(%) (77 + 188a?)

m2. (4 ) 2
Vv, V, v
— 5 (—“V,,3° )(51 +1000%) + 535 ( VO—O) (67 + 68a?)

0

" (5) ©)
+ﬁ(vov,,vg )(19+28a2)—;ﬁ(%)(5+4a2)}.
0
(19)

and

md"V
Vé = dr?

*

]
a=n+, (16)

rs=r«(rp)

where n is the overtone number and r, is the value of po-
lar coordinate r corresponding to the peak of the effective
potential V(r). Firstly, we need to find the value of r,
and then substituting (12) into the formula above, we can
obtain the quasinormal modes frequencies of the massive
scalar field perturbation in the deformed Horava-Lifshitz
black hole. Next, the values of quasinormal modes for
[l =1,2,3,4 are listed in Tables and Figures, and com-
pared the variation in the behaviour of the real parts and
imaginary parts on the scalar field mass with Reissner-
Nordstrom black hole. The case for [ = 0 are not con-
sidered here, since the WKB approach accuracy is not
sufficient in this case.

4. Summary and discussion

In the deformed Hofava-Lifshitz gravity, We have evalu-
ated the massive scalar field quasinormal frequencies in a
black hole spacetime by using the third-order WKB ap-
proximation. These results show that scalar field mass u
plays an important role for the quasinormal frequencies.
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Figure 1.
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The variation of the effective potentials V/(r) versus radial coordinate r with the scalar field mass v = 0.0,0.1,0.2,0.3,0.4. The left is for

the deformed Horava-Lifshitz black hole with the parameter a = 0.4, [ = 2, and the right for the Reissner-Nordstrém black hole with the

parameter Q = 0.4, = 2.
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Figure 2. The relation of real parts and magnitudes of imaginary parts of the massive scalar quasinormal frequencies for the potential V : [ =
1,2,3,4, n =0. The lines are drawn for v = 0.0,0.1,0.2,0.3,0.4.

The data of Table 1 is obtained by using the WKB method
to a black hole in deformed Hotava-Lifshitz gravity, with
the variation of scalar field mass v and the parameter
a (for fixed [ = 2 and n = 0), and Table 2 is under
the Reissner-Nordstrom black hole background with dif-

ferent v and Q. Explicitly, in Fig. 2 and Fig. 3 we plot
the relationship between the real and imaginary parts of
quasinormal frequencies in deformed HL gravity. From
the Tables and Figures, we find that the magnitudes of

the imaginary parts of the quasinormal frequencies de-
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Figure 3. The relation of real parts and magnitudes of imaginary parts of the massive scalar quasinormal frequencies for the potential V : [ =
4, n =0,1,2,3. The lines are drawn for v = 0.0,0.1,0.2,0.3,0.4.
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Figure 4. The relation of real parts and magnitudes of imaginary parts of the massive scalar quasinormal frequencies for the potential V : [ =
2, n = 0. The left line is for the deformed HL black hole with « = 0.5, and the right line for RN black hole with Q = 0.5.
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Table 1. The quasinormal modes frequencies of massive scalar field for [ = 2 and n = 0, in the deformed Hotava-Lifshitz gravity background.

a w(u =0.0) w(u =0.1) w(u =0.2) w(u =0.3) w(u = 0.4)
0.0 0.48321 —0.09681i 0.48637 — 0.09572i 0.49589 — 0.09243i 0.51191 — 0.08683i 0.53466 — 0.07870i
0.1 0.48693 — 0.09521i 0.49002 — 0.09418i 0.49936 — 0.09105i 0.51507 — 0.08570i 0.53740 — 0.07791i
0.2 0.49085 — 0.09351i 0.49388 — 0.09253i 0.50302 — 0.08957i 0.51841 — 0.08449i 0.54030 — 0.07705i
0.3 0.49501 — 0.09186i 0.49797 — 0.09076i 0.50690 — 0.08796i 0.52195 — 0.08316i 0.54338 — 0.07609i
0.4 0.49942 — 0.08970i 0.50231 — 0.08884i 0.51102 — 0.08622i 0.52571 — 0.08169i 0.54665 — 0.07501i
0.5 0.50412 — 0.08752i 0.50693 — 0.08673i 0.51541 — 0.08429i 0.52972 — 0.08007i 0.55013 — 0.07379i
0.6 0.50915 —0.08511i 0.51188 — 0.08438i 0.52011 — 0.08214i 0.53401 — 0.07824i 0.55387 — 0.07239i
0.7 0.51456 — 0.08239; 0.51719 — 0.08173i 0.52516 — 0.07970i 0.53862 — 0.07614i 0.55789 — 0.07077i
0.8 0.52039 — 0.07926i 0.52293 — 0.07868i 0.53060 — 0.07688i 0.54359 — 0.07371i 0.56222 — 0.06885i
0.9 0.52671 —0.07557i 0.52915 — 0.07508i 0.53650 — 0.07354i 0.54898 — 0.07080i 0.56691 — 0.06654i
0.99 0.53285 — 0.07157i 0.53518 — 0.07117i 0.54223 — 0.06991 0.55421 —0.06763i 0.57147 — 0.06398i

Table 2. The quasinormal modes frequencies of massive scalar field for { = 2 and n = 0, in the Reissner-Nordstrém black hole background.

Q w(u =0.0) w(u =0.1) w(u =0.2) w(u =0.3) w(u = 0.4)
0.0 0.48321 —0.09681i 0.48637 — 0.09572i 0.49589 — 0.09243i 0.51191 — 0.08683i 0.53466 — 0.07870i
0.1 0.48403 — 0.09686i 0.48718 — 0.09577i 0.49667 — 0.09250i 0.51264 — 0.08691i 0.53533 — 0.07881{
0.2 0.48650 — 0.09701i 0.48963 — 0.09594i 0.49906 — 0.09270i 0.51489 — 0.08718i 0.53739 — 0.07916
0.3 0.49076 — 0.09726i 0.49384 — 0.09621i 0.50313 — 0.09303i 0.51875 — 0.08761i 0.54094 — 0.07975i
0.4 0.49700 — 0.09759i 0.50002 — 0.09657i 0.50912 — 0.09348i 0.52442 — 0.08821i 0.54615 — 0.08056.
0.5 0.50556 — 0.09798i 0.50850 — 0.09700i 0.51735 — 0.09402i 0.53223 — 0.08895i 0.55335 — 0.08160i
0.6 0.51699 — 0.09835i 0.51982 — 0.09742i 0.52834 — 0.09461i 0.54267 — 0.08980i 0.56301 — 0.08282i
0.7 0.53217 —0.09859; 0.53487 — 0.09772i 0.54297 — 0.09511i 0.55660 — 0.09065i 0.57593 — 0.08416
0.8 0.55267 —0.09834i 0.55518 — 0.09757i 0.56275 — 0.09522i 0.57547 — 0.09121i 0.59351 — 0.08537i
0.9 0.58154 —0.09662i 0.58381 — 0.09597i 0.59066 — 0.09400i 0.60217 — 0.09064i 0.61851 — 0.08571(
0.99 0.62054 — 0.09023i 0.62251 — 0.08979i 0.62844 — 0.08841i 0.63841 — 0.08603i 0.65259 — 0.08250i

crease as the scalar field mass v increases for fixed the [2] P. Hofava, J. High Energy Phys. 0903, 020 (2009)

[3] P. Hofava, Phys. Rev. Lett. 102, 161301 (2009)

[4] A. Volovich, C. Wen, J. High Energy Phys. 0905,
087 (2009)

5] J. Kluson, J. High Energy Phys. 0907, 079 (2009)

6] H. Nikolic, Mod. Phys. Lett. A 25,1595 (2010)

other parameters, while the real parts increase. And, the
more interesting feature is discovered in Fig. 4. The imag-
inary parts are almost linearly related to the real parts,
and the behaviors are very similar to the usual RN black
hole. The phenomenon for these two black holes come

from the similar variation of the effective potentials with
the scalar field mass displayed in Fig. 1. In addition, Chen
and Jing in [32] have shown that the dependence of quasi-
normal modes of the black hole in deformed HL gravity
on the parameter a is different from that on the charge
Q of the RN black hole in Einstein gravity theory. Con-
sidering these similar and different informations between
black holes will be helpful for the future work to detect
the Hotava-Lifshitz gravity deeply.
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