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1 Introduction

There has been a recent surge of interest in precisely characterizing conformal field theories

with a weakly coupled Einstein gravity dual, with equations now accompanying folkore

from the past. The most quantitative work has focused on conformal field theories in

two dimensions, though there has also been progress on higher-dimensional theories. The

difficulties brought on by higher dimensions are clear: the constraining infinite-dimensional

Virasoro symmetry is absent and modular invariance of the torus partition function does

not immediately provide constraints on the space of local operators.

In this paper we will use the familiar thermodynamics of gravity in asymptotically

anti-de Sitter spacetimes to provide quantitative sparseness bounds on the spectrum of

local operators of holographic conformal field theories. This approach began with [1],

which showed that the thermodynamics of gravity in AdS3 is reproduced if and only if the

spectrum of operators with scaling dimension ∆ < c/6 and limc→∞∆−1 = 0 obeys ρ(∆) .
exp(2π∆). This methodology was subsequently generalized to supersymmetric theories [2],

correlation functions [3], and higher-dimensional theories on tori [4]. The universality of
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the thermodynamics for holographic CFTs on tori can also be derived from the special

center symmetry structure of such theories through the Eguchi-Kawai mechanism [5].

In two dimensions, the low-temperature and high-temperature thermodynamics are

related to one another by modular invariance. This is what allows one to capture the

entire thermodynamic phase structure by constraining only the low-lying (∆ < c/6) op-

erators. Unfortunately, in higher-dimensional theories on Sd−1, there is no obvious high-

temperature/low-temperature duality. But there is still a universal feature of the gravi-

tational phase structure that we can aim to reproduce from the CFT: the Hawking-Page

phase structure [6], where, as a function of some external chemical potentials, the vacuum-

subtracted free energy (or the entropy) jumps from O(1) to O(Np) for p some positive

number. More specifically, we will reproduce the fact that the theory is confined (O(1)

scaling in the entropy) below the Hawking-Page transition temperature THP.

To illustrate the basic idea, consider the finite-temperature canonical ensemble with

normalization Evac = 0 and a deconfining phase transition at βc ∼ O(1). Then,

logZ(β) ∼

{
O(1), β > βc

O(Np), β < βc .
(1.1)

Sometimes in such expressions O(1) is meant as o(Np) (i.e. slower than Np), but here we

assume we have enough control over the free energy to have deduced that it in fact scales

as O(1) for β > βc. Since Z(β) =
∫
e−β∆ρ(∆)d∆, the O(1) behavior of logZ may be

ruined if the density of states ρ(∆) grows too quickly for states with scaling dimension

limN→∞∆−1 = 0. More precisely, we have

logZ(β > βc) ∼ O(1) if and only if ρ(∆) . eβc∆ ∀ {∆| lim
N→∞

∆−1 = 0}. (1.2)

The symbol . means that the function on the right-hand-side can be multipled by an

arbitrary function that is subleading in N as compared to the leading piece. In the worst-

case scenario where the bound is saturated for all states, we have

Z(β > βc) =

∫ ∞
0

d∆e−β∆eβc∆ =
1

β − βc
. (1.3)

Hence, logZ is O(1) for all β > βc + ε for ε � 1 as long as ε is not exponentially small

in N .

While a deconfinement transition is generically expected for large-N adjoint CFTs on

compact spaces [7, 8], it is the precise temperature at which the transition occurs which

gives us mileage. In particular, applying the above argument to the well known Hawking-

Page transition at inverse temperature βHP = 2π
d−1 gives us a bound on the spectrum of

local operators of holographic CFTs:

ρ(∆) . exp

(
2π∆

d− 1

)
∀ {∆| lim

N→∞
∆−1 = 0} ⇐⇒ logZ(β > βHP) ∼ O(1) . (1.4)

This bound applies to all states with energies that diverge with N , but above the transition

temperature, bulk thermodynamics tells us that the large-N density of states is given by
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the degeneracy of the black hole dominating the ensemble, which is generically smaller

than our bound (see figure 1). Interestingly, our bound must be saturated at the transition

point, since at leading order in N we can write

Fc = Ec − Sc/βc = 0 =⇒ Sc = βcEc =⇒ ρ(Ec) = eβcEc , (1.5)

where we are assuming that immediately above the transition we have equivalence of canon-

ical and microcanonical ensembles, i.e. Ec ≡ 〈E〉βc is a well-defined energy level stable to

fluctuations. Applied to AdS/CFT, this argument means that our bound will be satu-

rated by the black hole at the Hawking-Page transition. In appendix A, we invert the

logic behind this fact to provide a field-theoretic density of states interpretation for the

Bekenstein-Hawking entropy.

For the remainder of this paper, we generalize eq. (1.4) using known classical black hole

solutions to bound the density of operators of the dual CFT with given scaling dimension ∆,

spins Ji and U(1) charge Q. For d = 2 the bounds will reduce to those of [1]. Importantly,

these bounds are more constraining in d > 2 than in d = 2, because for d = 2 modular

invariance implies that, if a single deconfining phase transition occurs, it must occur at

β = 2π independent of coupling. Indeed, free symmetric orbifolds (which are not dual to

weakly coupled Einstein gravity theories) have a transition at β = 2π just like AdS3 gravity,

and α′ perturbation theory around AdS3 gravity leaves the Hawking-Page temperature

unchanged [9]. On the other hand, in higher dimensions the deconfining temperature

tends to increase as interactions are turned on. For example, in both ABJM theory and

N = 4 super Yang-Mills, it can be checked that βHP(λ = 0) > βHP(λ = ∞) for ’t Hooft

coupling λ [8, 10, 11], with further calculations suggesting monotonic behavior between

the free and strongly coupled theories [12–14]. This means that logZ ∼ O(1) for a smaller

range of temperatures as the interaction strength is decreased. By the argument above, this

means that weakly coupled CFTs must be less sparse — they must have ρ(∆) & e2π∆/(d−1)

somewhere in their spectrum. The fact that strong interactions are necessary to reproduce

the precise low-temperature phase structure of AdS gravity in higher dimensions has been

translated into a simple bound on the density of local operators. The violation of our bound

is a sharp diagnostic of “how much” interactions have to sparsify a spectrum. There is

another interesting aspect to these bounds that we will discuss in section 4: they imply an

O(1) density of states beyond corresponding BPS/unitarity bounds. For example, taking

∆ < 0 implies log ρ(∆) ∼ O(1), which looks like a coarse unitarity bound. When we discuss

BPS/unitarity bounds, we do so in the large-N limit, neglecting subleading pieces which

do not scale as Nk.

The layout of the rest of the paper is as follows. In section 2, we provide the method-

ology behind obtaining our bounds more carefully. In section 3, we provide calculational

details for deriving our various bounds. Analytic bounds are possible for three parame-

ters, either mass and two spins or mass, one spin and one U(1) charge, but for four or

more parameters, we must resort to numerics. Two-parameter analytic results are sum-

marized in table 1. In section 4, we discuss the connection of our bounds to BPS/cosmic

censorship bounds. In section 5, we speculate on the connection between the high-lying

spectrum or high-temperature thermodynamics and our bounds on the low-lying spectrum.
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We will begin with an analysis of the Cardy-Verlinde formula, which correctly gives the

entropy above the Hawking-Page temperature THP for holographic CFTd on Sd−1 [15].

After discussing the many limitations of this formula, we instead focus on a more robust

feature of the high-temperature thermodynamics: the extended range of validity of a high-

temperature effective field theory. In appendix A, we provide a field-theoretic density of

states interpretation for the Bekenstein-Hawking entropy of black holes at Hawking-Page

phase transitions. In appendix B, we provide details for calculations in 4 ≤ d ≤ 6.

2 Method for obtaining bounds

In this section, we explain more carefully our method for obtaining bounds on the allowed

density of states of operators with U(1) charge and spin for holographic theories with a

confining phase transition. We consider a grand canonical ensemble at finite temperature

β, with m angular velocities Ωi and a single chemical potential for U(1) charge Φ for CFTd:

logZ(β,Ωi,Φ) =

∫
dE dJi dQ exp [−β(E − ΩiJi − ΦQ)] ρ(E, Ji, Q) , (2.1)

where the integral goes over the spectrum of the theory and we sum over repeated indices

in the exponential. Except when otherwise noted, we will always normalize the ground

state energy (even for d = 2) to zero. The extension to additional chemical potentials

is trivial.

A confining phase transition means that logZ[β > βc(Ωi,Φ)] ∼ O(1), i.e. the

free energy does not scale with N for temperatures below some critical temperature

β−1
c (Ωi,Φ). The chemical potentials Ωi, Φ and β span an (m + 2)-dimensional space,

and the confinement-deconfinement phase transition happens on a co-dimension one criti-

cal surface β = βc(Ωi,Φ). The O(1) scaling of the free energy requires that the density of

states be bounded from above,

ρ(E, Ji, Q) . exp [β (E − ΩiJi − ΦQ)] , ∀ β,Ωi,Φ in the confined phase. (2.2)

As in (1.2), the bound only applies to E, Ji and Q that diverge with N , and the squiggle

denotes that the bound does not track subleading in N corrections. It is simple to minimize

the right-hand-side with respect to the potentials β, Ωi, and Φ to provide the tightest

bound. In the case of Ωi = Φ = 0 the minimization gives β = βc for E > 0 and the

bound becomes ρ(E) . eβcE , while for E < 0 gives β →∞ and our bound vanishes. This

behavior is generic: the minimum of eq. (2.2) always lies either on the critical surface or

at β →∞ which gives vanishing degeneracy. The set of values for charges which separates

the two behaviors corresponds to a unitarity/BPS bound. To see the two behaviors in

general, we first impose parity symmetry under Ωi → −Ωi such that the critical surface

is an even function of the chemical potentials Ωi and Φ. Since eq. (2.2) is invariant under

{Ji, Qi,Ωi,Φ} → {−Ji,−Qi,−Ωi,−Φ}, it is then sufficient to consider only operators with

{Ji, Q} > 0 and potentials with {Ωi,Φ} > 0. For the theories we consider, these potentials

Ωi,Φ have finite range, being bounded below by Ωi = 0 and Φ = 0 and above by some

constants which depend on the theory and dimension. Since β is an overall multiplicative
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factor, we can minimize it independently, landing on βc(Ωi,Φ) if E − ΩiJi − ΦQ > 0 for

all {Ωi,Φ} and β → ∞ otherwise. In the former case we then minimize along the critical

surface, while in the latter case the bound simply vanishes. The minimization along the

critical surface is

∇ [βc (E − ΩiJi − ΦQ)] = 0 (2.3)

for a given set of charges {E, Ji, Q}, and ∇ = (∂/∂Ω1, . . . , ∂/∂Ωm, ∂/∂Φ).

Until this point, the discussion applies to states with general U(1) charge Q and mo-

menta Ji in large-N gauge theories with a confining phase transition. Focusing on local

operators in holographic CFTs with a semiclassical Einstein gravitational dual, we restrict

to dimensions 2 ≤ d ≤ 6 and the spatial manifold Sd−1. The Hawking-Page temperature

in the bulk will serve as the deconfinement temperature in the CFT. To find the Hawking-

Page transition, we compare the on-shell action of the relevant black hole solution to that

of thermal AdS. The thermal AdS solution is vacuum AdS with topological identifications

and constant gauge field to match the inverse temperature, angular velocities, and chemical

potential for U(1) charge of the black hole. When the black hole has charge and spin, the

deconfinement temperature will depend on the chemical potential Φ and angular velocities

Ωj . Below this temperature, the dual CFT is in a confined phase (dual to thermal AdS)

and above this temperature the dual CFT is deconfined (dual to a black hole).

We consider the most general black holes in d + 1 dimensions for the cases d = 2

through d = 6 with a single U(1) charge and
⌊
d
2

⌋
spins. These black holes are asymptotic

to a (spinning) Einstein static universe (ESU) which, in the Lorentzian case, has topology

R×Sd−1. Classical solutions for the generically spinning charged black hole in dimensions

d = 5 and d = 6 depend on choice of supergravity truncation and so our results in those

cases should be considered in that context. Nevertheless, bounds obtained from these

solutions are similar to their lower dimensional counterparts. Analytic results are possible

in all dimensions for up to three parameters, while numerics are necessary for four and

five parameters. Two-parameter bounds are shown in table 1. Analytic expressions are

only applicable when they are real and positive; when they become complex or negative it

means the charges admit a set of chemical potentials for which E−ΩiJi−ΦQ < 0 and the

minimization procedure lands at β →∞ instead of the Hawking-Page surface. This leads

to an O(1) density of states.

Notable in this table is the absence of a bound for operators with U(1) charge in 2d

CFTs. Electrically charged static black holes in three dimensions have interesting but

somewhat peculiar thermodynamic properties — see [16, 17]. Among these properties is

the fact that if one wants to include a bulk Maxwell field, the black hole mass is not

bounded from below [18]. If one wants to consider only a Chern-Simons term — which

is necessary to describe a U(1) current on the boundary — there are new difficulties in

finding the dominant saddle. It is unclear how to match asymptotics as any non-zero

holonomy of the gauge field remains constant along the radial direction. A holonomy in

the spatial direction would lead to a singularity at the origin for the vacuum AdS phase,

while a holonomy in the thermal direction would lead to a singularity at the horizon for the

black hole phase. If one includes both Maxwell and Chern-Simons terms for the same U(1)
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d log ρ(∆) log ρ(∆, Q) log ρ(∆, J)

2 2π∆ N/A 2π∆
√

1− J2/∆2

3 π∆ π∆
√

1−Q2/∆2 π∆(1− J2/∆2)

4 2π∆
3

2π∆
3

√
1− 3

4Q
2/∆2 2π∆

3

(
2−

√
1 + 3J2/∆2

)
5 π∆

2
π∆
2

√
1− 2

3Q
2/∆2 π∆

4

(
3−

√
1 + 8J2/∆2

)
6 2π∆

5
2π∆

5

√
1− 5

8Q
2/∆2 2π∆

15

(
4−

√
1 + 15J2/∆2

)
Table 1. Bounds on the density of states for charged spinless operators (second column) and

uncharged spinning operators (third column). When these expressions become complex or negative,

the bound instead is log ρ = 0.

gauge field, the spacetimes include closed timelike curves in the asymptotic region [19].

Thus we cannot consistently analyze this situation in Einstein gravity coupled to U(1)

Chern-Simons and/or Maxwell gauge fields.

3 Bounds on operators

In this section, we derive our bounds for electrically charged operators with spin in CFT

dimension d = 2 through d = 6. We begin with d = 3 in section 3.1, giving all details of

the derivation of the bound. For general d we state our analytic results, without deriva-

tion, for single-charge spinless operators in section 3.2, single-spin uncharged operators in

section 3.3, double-spin uncharged operators in section 3.4, and single-spin single-charged

operators in section 3.5.

In the case with four or more parameters, we do not have an analytic bound but present

numerical results in 3.6. Figures for our numerical results will be presented together at

the end of this section to emphasize the similarities between dimensions. The bound on

the density of states decreases when charge or spin is added, to the point that no states

are allowed beyond a curve that exactly coincides with the BPS bound. As we will see,

when the parameters satisfy the BPS condition and admit a BPS black hole, our bound is

saturated by the entropy of the BPS black hole,

SBH = max [log ρ(∆BPS, QBPS, JBPS,i)] . (3.1)

This is a special case of the fact that generic black holes at the Hawking-Page transition

have an entropy which saturates our bound.

3.1 Example: ρ(∆, Q, J) in d = 3

In d = 3, the AdS-Kerr-Newman black hole is the generic electrically charged, spinning

black hole with AdS4 asymptotics. Its thermodynamics were first studied in [20]. In the

limit of zero spin, the thermodynamics reproduces [21, 22], and in the limit of zero charge

– 6 –
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reproduces [23–25]. The metric may be written

ds2 = −∆r

ρ2

[
dt− a sin2 θ

Ξ
dφ

]2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

∆θ sin2 θ

ρ2

[
adt− r2 + a2

Ξ
dφ

]2

, (3.2)

where the metric functions and Maxwell field, A, are

∆r = (r2 + a2)(1 + r2)− 2mr + q2, ∆θ = 1− a2 cos2 θ

ρ2 = r2 + a2 cos2 θ, Ξ = 1− a2, A = −qr
ρ2

(
dt− a sin2 θ

Ξ
dφ

)
. (3.3)

The mass M , angular momentum J , and electric charge Q — calculated via boundary

integrals — are

M =
m

GΞ2
, J =

am

GΞ2
, Q =

1

8πG

∫
Sd−1
∞

?F =
q

GΞ
. (3.4)

Note that we follow the convention of [26] for the normalization of Killing vectors as the

associated conserved charges generate the SO(d, 2) algebra. To find the on-shell Euclidean

action, we evaluate

IE =
1

16πG

∫
d4x
√
g(6 + F 2)− 1

8πG

∫
r=Λ

d3x
√
γK +

1

8πG

∫
r=Λ

d3x
√
γ

(
2 +

1

2
R[γ]

)
. (3.5)

The second term is the Gibbons-Hawking-York boundary term and the last term is a local

boundary counterterm that regularizes the action [27]. Note that in the euclidean geometry

we also need to analytically continue a→ −ia and q → iq when we Wick rotate t→ −iτ ,

to get real saddle points. The horizon angular velocity and inverse Hawking temperature

of these black holes are

Ωh =
Ξa

r2
+ + a2

, β =
4πr+(r2

+ + a2)

r2
+(1 + a2) + 3r4

+ − (a2 + q2)
. (3.6)

The appropriate thermodynamic potential for spin, however, is the difference between Ωh

and Ω∞, the angular velocity of the boundary ESU. One way to find this Ω∞ is to boost

the boundary metric to a static frame through a coordinate change T = t − Ω∞φ, giving

Ω∞ = −a. We then obtain,

Ω = Ωh − Ω∞ =
a(1 + r2

+)

r2
+ + a2

. (3.7)

The parameter Φ is chosen so that the gauge potential vanishes on the outer horizon,

defined by ∆r(r+) = 0. Notably, this is the potential difference between the horizon and

the conformal boundary, and serves as a chemical potential for U(1) charged operators in

the CFT.

Φ ≡ Aaka
∣∣∣∣
r→∞

−Aaka
∣∣∣∣
r=r+

=
qr+

r2
+ + a2

, (3.8)
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Figure 1. As an example, we plot our bound log ρ(∆, J,Q) (thick) and the entropy of the cor-

responding black hole (dashed) in d = 3 for fixed black hole parameters, a = .3, q = .4. The two

coincide at rHP and our bound is otherwise larger.

where k = ∂t + ΩH∂φ is the null generator of the horizon. Subtracting the vacuum AdS

result from the AdS-Kerr-Newman result gives

∆IE =
β

4GΞr+

[
(a2 + r2

+)(1− r2
+) + q2a

2 − r2
+

r2
+ + a2

]
. (3.9)

We can replace {r+, a, q} with {β,Ω,Φ} using eq. (3.6) and (3.8). At fixed {β,Ω,Φ}, there

are two competing stable phases — a large AdS-Kerr-Newman black hole and vacuum

AdS. The bulk undergoes a Hawking-Page phase transition when the two saddle point

solutions exchange dominance, in other words when ∆IE = 0. In the limit of zero charge,

the Hawking-Page transition occurs at r+ = 1. In the limit of zero angular momentum,

the Hawking-Page transition occurs at r+ =
√

1− Φ2. For non-zero charge and angular

momentum, it is simplest to extremize

βHP(Ω, r+)(∆− ΩJ − ΦHP(Ω, r+)Q) (3.10)

with respect to Ω and r+. Obtaining the critical values for Ω and r+, we find that

logρ(∆,J,Q).
π∆√

2

√(
1+Ĵ2

)(
1+Ĵ2−Q̂2

)
+
(

1−Ĵ2
)√(

1+Ĵ2−Q̂2
)2
−4Ĵ2−4Ĵ2,

(3.11)

where Ĵ = J/∆, Q̂ = Q/∆. Note that if Ĵ + Q̂ > 1, eq. (3.11) breaks down and the correct

minimization gives an O(1) density of states. This limit corresponds to the BPS bound

∆ = |J |+ |Q| for the lightest charged, spinning state. Notably, at ∆ = |J |+ |Q|, the upper

bound on our density of states exactly matches the degeneracy of the corresponding BPS

black hole with those charges,

SBH = max [log ρ(∆,±(∆− |Q|), Q)] = πQ
√

1−Q/∆. (3.12)

Again we see that the upper bound on the density of states is saturated by the degeneracy

of the bulk black hole at the Hawking-Page transition and is greater for all other black

holes (see figure 1). For ∆ = |J |+ |Q|, in d = 3, the black hole at the phase transition is a

BPS black hole.
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3.2 Charged, spinless operators

To bound the density of states of charged, spinless operators, we examine the thermody-

namics of (d+ 1)-dimensional AdS-Reissner-Nordström black holes. Using the conventions

of [22], the mass, global U(1) charge, U(1) potential, and inverse temperature for this black

hole are

M =
(d− 1)ωd−1

16πG
m, Q =

(d− 1)ωd−1

8πG
cq,

Φ =
1

c

q

rd−2
+

, β =
4πr2d−3

+

dr
2(d−1)
+ + (d− 2)

[
r

2(d−2)
+ − q2

] ,
where ωd−1 is the area of the unit (d− 1) sphere, and c =

√
2(d− 2)/(d− 1). The vacuum

subtracted Euclidean action is

∆IE =
ωd−1β

16πG

[
(1− c2Φ2)− r2

+

]
rd−2

+ . (3.13)

As before, there are two competing stable phases at fixed Φ, β. The first is the AdS vacuum

with m = q = 0 and constant gauge potential and the second is a large black hole, both

at inverse temperature β. Solving for ∆IE = 0, it is clear that for r+ >
√

1− c2Φ2, black

holes dominate the grand canonical ensemble while the vacuum dominates below. The

corresponding Hawking-Page temperature is

βHP(Φ)

∣∣∣∣
r+=
√

1−c2Φ2

=
2π

(d− 1)
√

1− c2Φ2
. (3.14)

Interestingly, for Φ = 1/c, the Hawking-Page temperature 1/βHP vanishes and an extremal

black hole dominates the grand canonical ensemble. To find our density of states, we

extremize βHP(Φ)(∆− ΦQ) and find the bound for charged operators is

log ρ(∆, Q) .
2π∆

d− 1

√
1− Q̂2/c2 (3.15)

for ∆ ≥ |Q|/c. The lower limit on the energies is the BPS bound for these black holes.

Supersymmetry appears through considering Einstein-Maxwell as a consistent truncation

of some supergravity theory. The fact that there cannot exist states lighter than the BPS

bound ∆ > Q/c, can be seen from our bound eq. (3.15), which vanishes (more precisely, is

O(1)) in the BPS limit ∆ = Q/c. Unlike the previous subsection, the bound on the density

of states at the BPS limit vanishes. This is consistent with the nakedly singular nature of

these BPS states.

3.3 Single spin, uncharged operators

For uncharged operators with a single spin, the dual bulk black hole is the (d + 1)-

dimensional Kerr black hole, analyzed first in [23] for d > 2. For d = 2, we work with

the spinning BTZ black hole [28]. The relevant thermodynamic parameters for these black

holes are the uncharged single spin limit of sections 3.1, B.1, B.2, B.3 for d = 3, 4, 5, and
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Figure 2. The bound for operators with spins Ja and Jb in d = 4 (left), d = 5 (middle),

d = 6 (right). Curves correspond to Jb/∆ = 0 (rightmost) to Jb/∆ = .9 (leftmost) in incre-

ments of 1.

6, respectively, where the relevant thermodynamical quantities are listed. The difference

of regularized on-shell Euclidean actions becomes

∆IE =
βd+1ωd−3

4G(d− 2)Ξ

[
rd−4

+ (r2
+ + a2)(1− r2

+)
]
, (3.16)

so black holes dominate for r+ > 1. The inverse temperature for the Hawking-Page tran-

sition is

βHP(Ω) =
2π

d− 2 +
√

1− Ω2
. (3.17)

To find the density of states, we extremize βHP(Ω)(∆− ΩJ) with respect to βHP and find

log ρ(∆, J) .
2π∆

(d− 3)(d− 1)

(
d− 2−

√
(d− 3)(d− 1)Ĵ2 + 1

)
, (3.18)

where again Ĵ = J/∆. The d = 3 case is obtained by taking the limit. The unitarity

bound is ∆ ≥ |J |, which can also be understood as a BPS bound by taking the limit of

zero U(1) charge.

The result for d = 2 agrees with the HKS bound [1]. It is notable that in this case, the

bound from cosmic censorship agrees with the BPS bound, ∆ − c/12 ≥ |J | [23], where we

have normalized Evac = −c/12. However, the HKS bound allows states down to ∆ = |J |,
which is the saturation point of the unitarity bound ∆ ≥ |J |. This only occurs in d = 2:

all higher-dimensional bounds obtained by our method will coincide with BPS bounds.

Because of similarities with multiple spin operators derived in the next sections, we also

note that the single spin bound may be written as

log ρ(∆, J) . π∆s (3.19)

where s is the smallest non-negative solution to

(d− 2)s+

√
s2 + 4Ĵ2 = 2. (3.20)
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3.4 Multiple spin and zero charge operators

Analytic expressions are possible for two spins and zero U(1) charge. Here, the bulk black

holes are spinning AdS-Myers-Perry black holes in dimension d > 3, whose metrics can

be obtained from the zero charge limit of the gauged supergravity solutions [29, 30] in

d = 4, 5 respectively and from the zero charge, two spin limit of [31] in d = 6. The relevant

thermodynamics as well as vacuum subtracted Euclidean actions are obtained in these

limits from sections B.1, B.2, B.3. Myers-Perry black holes dominate the grand canonical

ensemble for r+ > 1. The Hawking-Page temperature is

βHP(Ωa,Ωb) =
2π

(d− 3) +
√

1− Ω2
a +

√
1− Ω2

b

. (3.21)

We find that extremizing βHP(Ωa,Ωb)(∆−ΩaJa−ΩbJb) is equivalent to finding the smallest

non-negative solution to

(d− 3)s+

√
s2 + 4Ĵ2

a +

√
s2 + 4Ĵ2

b = 2 (3.22)

where Ĵi = Ji/∆ and our bound is

log ρ(∆, Ja, Jb) . π∆s. (3.23)

The relevant plots can be found in figure 2, but for completeness, we will solve eq. (3.22)

explicitly. First, define

x = 1 +
(d− 3)2

2
(Ĵ2
a + Ĵ2

b ), y =
3

2
(Ĵ2
a − Ĵ2

b ). (3.24)

In d = 4, the bound is

log ρ(∆, Ja, Jb) .
2π∆

3

1−B4 +

√
(B4 + 2)((2−B4)B4 − 6x+ 8)

B4

 (3.25)

where

A4 =
(√

3x3(3x− 4)y2 + 6((x− 6)x+ 6)y4 + y6 + x3 + 3xy2 − 6y2
)1/3

,

B4 =

√
−2A4x+A4(A4 + 4) + x2 − 1

A4
. (3.26)

In d = 5, the bound is,

logρ(∆,Ja,Jb). (3.27)

π∆

6

6−x−
(
x3−4

(√
36y4−3x3y2+6y2

))1/3
− x2(

x3−4
(√

36y4−3x3y2+6y2
))1/3

 .
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In d = 6, the bound is

log ρ(∆, Ja, Jb) .
2π∆

15

7−B6 −

√
(2−B6)

(
B2

6 + 2B6 − 2(5x+ 4)
)

B6

 , (3.28)

where

A6 =
(

9(5x+6)y2−x3+3
√
−3x3(5x+4)y2+6(5x(5x+18)+54)y4−375y6

)1/3
, (3.29)

B6 =

√
5A2+5x2+2A(6+5x)+75y2

3A
.

One must be careful with these expressions to always take the principal root, which is

generally complex, though the bound is always real for |Ja| + |Jb| ≤ ∆. For instance, in

the no spin limit, A6 → exp(iπ/3) and B6 → 3. Like in the previous section, there is a

unitarity bound |Ja| + |Jb| = ∆ which can be understood as a BPS bound by taking the

limit of zero U(1) charge. It can be shown |Ja| + |Jb| → ∆, only when |Ji|,∆ → 0 or

they both diverge. In the first case, our bound vanishes and is consistent with the bulk,

while in the latter case the bound diverges and is saturated by the divergent entropy of

the corresponding black hole. We close this section with a remark on the triply spinning

case. Though it must be solved numerically, the bound on triply spinning operators can

be obtained from the simple expression

(d− 4)s+

√
s2 + 4Ĵ2

a +

√
s2 + 4Ĵ2

b +

√
s2 + 4Ĵc = 2. (3.30)

The smallest non-negative solution to this expression gives our bound,

ρ(∆, Ja, Jb, Jc) . π∆s. (3.31)

3.5 Single spin and single charge operators

Bounds for single spin and single charge operators exist in d > 2. We already derived

the bound for d = 3 in section 3.1. In d = 4, we take the single spin limit of the black

hole in [29]. In d = 5 and d = 6, we choose the single spin and single charge black

hole from [30] and [31], respectively. It is worth noting that the generically spinning,

charged black holes with AdS6 and AdS7 asymptotics are not pure Einstein-Maxwell, whose

generically spinning solutions are not known in these dimensions, but are rather truncations

of minimally gauged supergravity. Their zero-spin limit is not AdS-Reissner-Nordström

and so this limit will not agree with section 3.2. Relevant thermodynamic quantities and

vacuum subtracted Euclidean actions are listed in appendix B, in the single spin and single

charge limit. As in d = 3, it is easiest to find Φ(r+,Ω) at the Hawking-Page transition and

then minimize over β(r+,Ω)(∆−ΩJ −Φ(r+,Ω)Q). In d = 4, we have the odd feature (see

section B.1) that b = 0 does not imply Ωb = 0 or Jb = 0. However, this choice gives a nice

analytic bound which can be written purely in terms of ∆, Ja, Q. Defining

Jb = ∆

(
J̃ − 1

)
Q̂

√
3Ĵa

and J̃ =

√
1 + 3Ĵ2

a , (3.32)
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we have

ρ(∆,Ja,Jb,Q).
π∆

3
(

1+J̃
)2 (3.33)

×

(
J̃
(

1−J̃
)

+

√(
J̃(1−J̃)+2+6Q̂2

)2
−12Q̂2

(
1+J̃

)2
+2+6Q̂2

)

×

√
J̃
(

2J̃+1
)
−6Q̂2−1+

√(
J̃
(

1−J̃
)

+6Q̂2+2
)2
−12Q̂2

(
1+J̃

)2

Notable in this bound is the BPS limit, Ja + Jb +
√

3Q = ∆, which does not vanish but,

as in d = 3, reproduces the entropy of the corresponding BPS black hole,

max
[
ρ
(
Jb + Ja +

√
3Q = ∆

)]
=

2π∆
(

1− Ĵa
)√

Ĵa

(
J̃ − 1

)
J̃ + 3Ĵa − 1

. (3.34)

In d = 5, we get the bound

log ρ(∆, J,Q) .
π∆

4

(
9−

√
72Ĵ2 − 8Q̂2 + 9

)
9− 9Ĵ2 + Q̂2

(3.35)

×

√
9(1− Ĵ2)2 + Q̂2

(
Q̂2 − 10Ĵ2 − 8− 2

√
9 + 72Ĵ2 − 8Q̂2

)
.

Here, the density vanishes in the BPS limit |J |+Q = ∆. Finally, in d = 6, our bound is

log ρ(∆, J,Q) .
2π∆

15

(
16−

√
240Ĵ2 − 15Q̂2 + 16

)
16− 16Ĵ2 + Q̂2

(3.36)

×

√
16
(

1− Ĵ2
)2

+ Q̂2

(
Q̂2 − 17Ĵ2 − 15− 2

√
16 + 240Ĵ2 − 15Q̂2

)
.

Here too, the density vanishes in the BPS limit |J |+Q = ∆. The vanishing at |J |+Q = ∆

in d = 5, 6 is a consequence of the fact that BPS black holes only exist for Ja, Jb, Q non-

vanishing [30, 31]. The relevant plots can be found in figures 3 and 4.

3.6 Numerical results

In the previous sections, we calculated analytic bounds for operators with up to three

parameters. To obtain bounds for operators with four or more parameters, we must resort

to numerics. With bd/2c angular potentials and one chemical potential, the Hawking-

Page temperature is a bd/2c + 1 dimensional hypersurface. For a given set of charges,

{J1, J2, . . . , Jbd/2c, Q}, we then numerically find the minimum value of

βHP(Ω1,Ω2, . . . ,Ωbd/2c,Φ)

1−
bd/2c∑
i=1

ĴiΩi − Q̂Φ

 (3.37)
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Figure 3. The bound for operators with spin Ja and charge Q in d = 3 (left) and d = 4 (right).

From right to left, thick curves range from Q/∆ = 0 to Q/∆ = 1 (in d = 3) or Q/∆ = 1/
√

3 (in

d = 4) in increments of .1. In both plots, the dashed line is the horizon entropy per mass of the

BPS black hole SBH/π∆.
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Figure 4. The bound for operators with spin Ja and charge Q in d = 5 (left) and d = 6 (right).

From right to left, thick curves range from Q/∆ = 0 to Q/∆ = 1. The bound vanishes at the BPS

limit |J |+Q = ∆.

where for simplicity we have scaled out an overall factor of ∆ so that all charges fall in a

finite range. In the full ensemble, the BPS bound is ∆ = 1
c |Q|+

∑bd/2c
i=1 |Ji|.1 For energies

below this bound, the density of states vanishes at leading order in N .

Because the equations we need to solve are algebraic, no sophisticated numerical tech-

niques are necessary. We discretize the thermodynamic potentials and (hatted) parameters

which have finite range. Angular potentials are bounded from above by the speed of light

of the boundary ESU, Ωi = 1 and the electric potential is bounded from above by cosmic

censorship. The spins and electric charges, scaled by the energy, also have finite range,

typically {Ĵi, Q̂} ∈ [0, 1] but this depends on the normalization of Aµ. The exact limits can

be found in the appendix using the BPS bounds. We divide these intervals into equally

spaced grids of N = 100 points. For each grid point labeled by the potentials’ (bd/2c+ 1)

coordinates, we used the built-in “NSolve” function in Mathematica to obtain the black

hole radius at the Hawking-Page transition giving us the critical surface defined in sec-

tion 2. Once obtained, we calculate eq. (3.37) for each grid point in the spins’ and charge’s

(bd/2c+ 1) coordinates. Then, for each point {Ĵi, Q̂} we searched for the minimum value

of eq. (3.37) over the potentials, imposing the lower bound of zero. Because eq. (3.37) is

1For the d = 5, 6 supergravity solutions, the normalization of the charge is such that c = 1 rather than

the c defined for the Reissner-Nordström black holes.
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exponentiated for the density of states, the lower bound determines where a single state is

allowed — this is the BPS/unitarity bound of the CFT. Beyond this point (or curve), our

procedure allows no states.

As checks on the numerics, we verified that our curves did not vary appreciably as a

function of the grid sizes and that they agreed with the analytic results in the previous

subsections. In figures 5a through 5d, we plot the bound on the density of states in each

dimension. Notable in these plots is the entropy of BPS black holes, plotted as a gray

surface. Our bounds end on this surface, giving the entropy of these black holes, and then

vanish, marking the BPS bound of the CFT. Furthermore, as we pointed out in section 3.5,

with only one spin and charge, there are no BPS black holes and hence the gray entropy

surface vanishes.

4 BPS, cosmic censorship, and sparseness bounds

In previous sections, we saw that our bound on the density of states vanishes at leading

order in N for states that violate the BPS bound in d > 2. This is intriguing since we

generically considered non-supersymmetric (Einstein-Maxwell) theories, without using any

embedding into supergravity. The appearance of a coarse BPS condition suggests that bulk

thermodynamics knows about the consistent supergravity extension. Its appearance is due

to the upper bounds on the chemical potentials in the confined phase of strongly coupled

holographic theories. To see this, consider the case of finite temperature and a single

angular potential. The confined phase always satisfies Ω ≤ 1, which means minimizing

exp (β(E − ΩJ)) in the confined phase will give zero for J > E, since then we can pick

Ω = 1 and β → ∞. Had the confined phase admitted Ω > 1, then our bound would rule

out states with J > Jc where Jc < E.

The bulk gravitational theory also has an additional bound — the cosmic censorship

(CC) bound, that arises by demanding that there are no naked singularities. In general

these two bounds are different: for ∆BPS the lower bound implied by the BPS bound

and ∆CC the lower bound implied by cosmic censorship, we have ∆BPS < ∆CC for fixed

U(1) charge or fixed spins, i.e. BPS states violate cosmic censorship. In fact, the cosmic

censorship bound can be parametrically larger than the BPS bound, as for large black holes

in AdS4 where the cosmic censorship bound scales as ∆ ≥ Q3/2 and the BPS bound scales

as ∆ & Q. In the case with both U(1) charge and spin, there is a line J(Q) along which

∆BPS = ∆CC if there is at least one spin in d = 3, 4 and at least two spins in d = 5, 6

(see figure 6). We find that in the cases where ∆BPS is strictly smaller than ∆CC, our

bound vanishes at the BPS bound, while in the case where the BPS bound coincides with

the CC bound, the maximum of our bound reduces to the entropy of the extremal black

hole. Masses between cosmic censorship and BPS must have superextremal bulks, but

are allowed by our bound. In this section, we quickly review the BPS and CC bounds to

compare to the sparseness bounds we obtain from the Hawking-Page transition.

For singly spinning black holes, as mentioned in previous sections, there is a unitarity

bound that can also be understood as a Q→ 0 limit of a BPS bound,

∆ ≥ J . (4.1)
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(a) d = 4: Q/∆ = .4, .3, .2, .1 (blue, red, green, yellow). The BPS condition is ∆ = Ja + Jb +
√

3Q.

(b) d = 5: Q/∆ = .6, .4, .2, .1 (blue, red, green, yellow). The BPS condition is ∆ = Ja + Jb +Q.

(c) d = 6: Q = 0 and Jc/∆ = .7, .5, .3, .1 (blue, red, green, yelow). There are no BPS black

holes with vanishing U(1) charge, so the gray surface is SBH = 0, where our bound implies O(1)

degeneracy of states.

(d) d = 6: Jc = 0 and Qc/∆ = .7, .5, .3, .1 (blue, red, green, yelow). The BPS condition is

∆ = Ja + Jb +Q.

Figure 5. Plots of (π∆)−1 log ρ[∆, Ja, Jb, (Jc), Q]. Gray surfaces are SBH/(π∆) for corresponding

BPS black holes which coincide with our bound at the BPS condition. Beyond this surface, the

bound vanishes and no states are allowed (color online).
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Figure 6. (Left) The difference between the BPS and cosmic censorship bound for four-dimensional

Einstein-Maxwell-AdS. Curves correspond to fixed Q = .3, .9, 1.5, 2.1, 2.7 (left to right, darker to

lighter). Circles indicate locations where extremal black holes satisfy the BPS condition M = |J |+Q
and BPS states are otherwise superextremal. (Right) The Q = 1.5 curve. Shaded region corresponds

to CFT states with superextremal bulk duals that are not excluded by our bound. The feature

JBPS > JCC is true except at isolated points where JBPS = JCC. This is characteristic of charged,

spinning solutions in d = 3, 4 with at least one spin and d = 5, 6 with at least two spins. Without

both charge and spin the inequality is never saturated.

Thus ∆BPS = J becomes the lower bound on the allowed energy levels. This energy is also

found to be strictly less than the cosmic censorship bound. In the limit ∆ → ∆BPS, we

find that our bound gives vanishing degeneracy of states at leading order in N . This is

consistent with the fact that the only uncharged spinning BPS states are superextremal,

and hence have O(1) entropy. There are no extremal black holes with only one spin in d ≥ 5,

which is easily seen from the emblackening factor of the Kerr metric in Boyer-Lindquist

coordinates [23]

∆r = (r2 + a2)(1 + r2)− 2mr4−d. (4.2)

However, there is still a “speed limit,” a → 1, required for stable bulk black holes. For

singly charged black holes, the BPS bound is given by

∆ ≥

√
d− 1

2(d− 2)
Q. (4.3)

At fixed charge, this energy is strictly less than the CC bound. Again we find that as

∆ → ∆BPS our bound gives vanishing degeneracy of states at leading order in N . For

non-spinning black holes in Einstein-Maxwell theory, the BPS bound is only rigorously

known in d = 3, 4 where embeddings into supergravity theories have been found. The

same qualitative results are true for charged spinning black holes — at fixed charges the

BPS energy is less than or equal to the cosmic censorship bound on energy. In the case of

single charge in AdSd+1, single spin single charge or double spin in AdS6 and AdS7, BPS

states are always superextremal, and we find that our bound vanishes in the BPS limit.

Superextremal states that lie between the BPS bound and the cosmic censorship bound,

are nakedly singular and have O(1) entropy, but are allowed by our bound.

In the case of single spin single charge in AdS4, single or double spin single charge

in AdS5, double spin single charge in AdS6, and double spin or triple spin single charge
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AdS7, an extremal black hole that saturates the BPS bound exists for specific values of

{∆, Ji, Q}. In such cases, the maxima of our bound reduces to the entropy of the extremal

black hole. For generic values of {∆, Ji, Q} between the BPS bound and the CC bound,

the black hole is superextremal and has O(1) entropy, but is still allowed by our bound.

These features are shown for the four-dimensional Einstein-Maxwell-AdS theory in figure 6.

For fixed Q and ∆, it is clear that there exist states with JCC < J < JBPS which are

allowed by our bound but must be superextremal. That such states can be allowed is not

surprising considering the stability of AdS black holes. Charged rotating black holes can

often be obtained via dimensional reduction of spinning supergravity black holes in higher

dimensions (see sections B.2 and B.3). Spinning black holes have superradiant instabilities

by which the black hole should decay to the most stable spinning charged states (i.e. BPS).

This instability is reflected in the lower dimension because the extremal black hole is not

supersymmetric and hence unstable. Our bound allows for a finite number of superextremal

states to which the extremal black hole can decay. Recent work relating BPS and cosmic

censorship bounds can be found in [32, 33].

5 Comments on the high-lying spectrum

Our bounds imply a range of vacuum dominance (β > βHP) that matches the phase struc-

ture of Einstein gravity in the bulk. It is interesting to ask if the high-temperature phase

structure (β < βHP) can be reproduced without additional assumptions. This is what

was done in [1, 4] by using modular invariance of the torus partition function. Since we

are considering theories on Sd−1, where ordinary modular invariance is absent, we need

other tools.

We begin with an analysis of the Cardy-Verlinde formula [15], which was proposed as

a higher-dimensional analog to the Cardy formula on Sd−1:

S =
2πR

d− 1

√
Ecas(2E − Ecas) =

4πR

d− 1

√
EsubextEext. (5.1)

R is the radius of Sd−1 of the CFT, E = Eext + Esubext, and Ecas ≡ 2Esubext. Eext

and Esubext are the extensive and subextensive pieces of the thermodynamic energy. This

formula reproduces the entropy of AdS-Schwarzschild black holes above the Hawking-Page

transition but is known to fail for generic theories [34].

A very important aspect of this formula is that, unlike the ordinary Cardy formula,

it is canonical in nature. Ecas is in no sense the ground state energy of the theory — as

stated above, it is calculated by extracting the subextensive piece from E ≡ 〈E〉. That

Ecas cannot be a single energy level is clear by matching to the high-energy scaling S ∼
E(d−1)/d, which shows that Ecas ∼ E(d−2)/d at leading order; in particular it has to scale

with E. Furthermore, to compute Ecas, one has to have knowledge of logZ since 〈E〉 =

−∂β logZ. But this means one already has knowledge of S = (1−β∂β) logZ. So, the Cardy-

Verlinde formula should be understood as a repackaging of thermodynamic quantities into

a suggestive form. If not for the similarity to the ordinary Cardy formula it would be

essentially meaningless. The parameters appearing in the Cardy formula, on the other
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hand, do not require knowledge of the thermodynamics. To have the Cardy-Verlinde

formula reduce to the Cardy formula for d = 2, as is often stated, one has to shift the

definition of Ecas by the vacuum energy −c/12.

Nevertheless, the fact that the thermodynamic quantities can be repackaged in this

way for holographic theories is nontrivial. It is then natural to ask how general it is —

does it depend on the field theory manifold? Can one add potentials for electric charge and

angular momentum? It turns out the formula fails for a holographic theory on flat slices,

like a torus. This is because Ecas = 0 for such theories, making the formula meaningless.

A constant shift only works for d = 2, since for d > 2 it would give incorrect asymptotic

scaling S ∼
√
E. For this case, one has to instead use the higher-dimensional Cardy

formula, which can be derived from modular invariance and is true for generic conformal

theories [35, 36]. On hyperbolic slices, it was shown that the formula fails but can be

fixed by defining Esub = Ecas
2k [37], where spherical slices have k = +1 and hyperbolic have

k = −1. With this definition, Esub is strictly positive. While no explanation was given for

this substitution, we will use a high-temperature effective field theory to explain this result

at the end of this section.

The formula fails generally when chemical potentials are added, although it can be fixed

by making appropriate modifications in some cases. It has been shown that the entropy of

Reissner-Nordström is reproduced by the Cardy-Verlinde formula on substituting Eext for

Eext − ΦQ
2 , where Φ and Q are the U(1) potential and the electric charge respectively [38].

While for Kerr-Newman black holes, thermodynamic quantities defined with respect to an

asymptotically rotating frame can be shown to satisfy the Cardy-Verlinde formula [39].

However in these modified definitions, Eext loses its meaning as being the extensive part

of the energy. For more complicated solutions like multi-charged or multiply-spinning

black holes in gauged supergravity models, one can still fix the Cardy-Verlinde formula

by making changes to Ecas and Eext [37], however these changes are quite complicated in

terms of the CFT thermodynamic quantities [40]. Thus, there does not seem to exist a

universal modification that works for every case. While it is tempting to think the form of

the Cardy-Verlinde formula implies a connection between high-lying and low-lying states,

the difficulties outlined above, coupled with the fact that Ecas is not a fixed low-lying

energy, suggest otherwise.

Two approaches, which we will point out but not pursue, are to investigate the notions

of “emergent circles” [41] and “detachable circles” [42]. In this context, the notion of

emergent circles says:

Z
[
S1

2π/k→ 0 × S
2n+1/Zp→∞

]
= Z

[
S1

2π/p→ 0 × S
2n+1/Zk→∞

]
, p/k fixed (5.2)

The quotient is performed on the Hopf fiber for the odd-dimensional sphere represented as a

circle fibered over CPn. In this highly lensed limit, there is an emergent modular invariance

that appears, since a highly lensed sphere behaves like S1×CPn for the purpose of leading-

order thermodynamics. Coupling this with the special pattern of center symmetry breaking

of strongly coupled holographic CFTs [5] may give an avenue to relating the theory on

S2n−1/Zp→∞ back to the theory on S2n−1. For n = 3 there is even a nontrivial Hawking-

Page phase structure in the bulk with calculable β(p)HP that can be used to provide a
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bound on the density of states ρ(E) . eβ(p)HPE on S3/Zp, connecting the round sphere

p = 1 to the case with an emergent modular invariance p→∞.

The notion of “detachable circles” in this context relates a finite-temperature conformal

theory on Sd−1 to the theory on Hd−1/Z at some inversely related temperature:

ds2 = dχ2 + dθ2 + sin2 θdΩ2
d−3 + cos2 θdφ2 →

dχ2 + dθ2 + sin2 θdΩ2
d−3

cos2 θ
+ dφ2 . (5.3)

By restricting our theory to be gapped at finite temperature (which is the generic situation),

we can use the effective theory approach introduced in [43]. This approach allows us to

write down the following effective action for the theory dimensionally reduced over the

thermal circle:

logZ(β) =

∫
dd−1
√
h

(
c0

1

βd−1
+ c1

R(1)

βd−3
+ c2

R(2)

βd−5
+ . . .

)
(5.4)

This is to be understood as a perturbative expansion around β → 0. Powers R(n) are to be

understood as all possible combinations of contractions of the Riemann tensor, with e.g.

different coefficients between RµνR
µν and R2 which are suppressed for simplicity.

This effective theory makes clear that the high-temperature theory on a hyperboloid

is related to the high-temperature theory on the sphere by sign flips in the terms of the

effective theory with odd powers of curvatures. Certain large-N theories may have a

sufficiently extended range of validity for this effective theory such that we can relate the

theory on Hd−1/Z back to the theory on Sd−1. This effective theory also explains why the

Cardy-Verlinde formula works for hyperbolic slices with the definition Esub = Ecas
2k : this is

a simple way to achieve the sign flips implied by the effective theory.

6 Conclusion

In this paper, we derived quantitative sparseness conditions on holographic CFTs with a

semiclassical Einstein dual. To arrive at these conditions, we used the fact that there gener-

ically exists a Hawking-Page transition between vacuum AdS and a large asymptotically

AdS black hole at a particular temperature and set of thermodynamic potentials. Such

a phase transition implies a discontinuous jump in the free energy from O(1) to O(Np)

and hence the CFT can only support a finite number of states before it deconfines. The

difficulty in satisfying such bounds comes from the fact that interactions tend to spar-

sify a spectrum, so generic weakly interacting theories have dense spectra which violate

our bounds.

An interesting aspect of these bounds is that log ρ = O(1) for masses below the BPS

bound. In situations where a bulk BPS black hole exists at the bound, its entropy satu-

rates our bound, which then discontinuously drops to O(1) consistent with the bulk. It is

interesting to see the appearance of the BPS bound in the cases with U(1) charge without

inputting supersymmetry.

Sparseness assumptions figure prominently into simplifying limits of conformal boot-

strap techniques. The usual style of argument is that a sufficiently sparse spectrum al-

lows you to pick up only the contribution of the vacuum in a particular OPE expansion.

– 20 –



J
H
E
P
0
7
(
2
0
1
8
)
0
5
1

This was most recently utilized in the bootstrap approach [44] to the “large charge” ex-

pansion [45, 46]. It would be interesting to explore the connection of our quantitative

sparseness bounds to these bootstrap techniques.

A sparse low-lying density of local operators is often invoked as a requirement for a

CFT to have a semiclassical Einstein dual, but for d > 2, a precise definition of “sparse-

ness” was lacking. In this work we have provided a quantitative sparseness bound on the

allowed density of local operators in the CFT. This bound enforces vacuum dominance

of the gravitational path integral at low temperatures. It is a sharp diagnostic for how

much interactions have to “sparsify” a spectrum, since it is violated by weakly coupled

holographic theories. It would be interesting to connect this sparseness condition to a dif-

ferent sparseness condition, the gap to the higher-spin operators [47], both of which need

to be satisfied for a weakly coupled Einstein gravity dual, and both of which are violated

for weakly interacting holographic CFTs in d > 2.
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A Black hole entropy from deconfining phase transitions

As we saw throughout this paper, our bounds on the density of states are saturated by

the black hole at the deconfining phase transition. We can invert this logic to produce a

derivation of black hole entropy from field-theoretic considerations. Since we would have

to input a deconfinement temperature (and more assumptions) in the general case, let us

focus on d = 2 where we can get by with minimal assumptions.

Assume a large-c CFT in d = 2 has a single first-order deconfining phase transi-

tion. By modular invariance it must occur at β = 2π. We use a normalization consistent

with modular invariance, Evac = −c/12. We also know from the modular bootstrap that

〈E〉β=2π = 0 [48]. By the generic description of first-order phase transitions as an exchange

of saddles, we can use the vacuum energy and 〈E〉β=2π = 0 to deduce that 〈E〉β=2π−ε = c/12

up to corrections in ε. Since ∆c − Sc/βc = O(1) =⇒ Sc = βc∆c = βc(Ec + c/12) at lead-

ing order in c, this gives us a prediction for the thermal entropy, where we have deduced

Ec = c/12 and βc = 2π purely from field-theoretic considerations. Notice that “c” is doing

double duty here. For β = 2π − ε we are in the deconfined phase of a large-c theory,

so we can coarse grain to translate into a density of states as in [1]. Altogether we have

the formula

log ρ(E = c/12) = πc/3 . (A.1)

This agrees precisely with the bulk, where the ensemble is dominated by a BTZ black

hole below β = 2π, and so by continuity the density of states at β = 2π is given by the
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Bekenstein-Hawking entropy of the BTZ black hole at the Hawking-Page transition. One

could also dispense of the assumption that the transition is first order and so described by

an exchange of saddles to obtain a formula of the sort log ρ(E) = 2πE where E ≡ 〈E〉2π−ε.
Notice that the Cardy formula log ρ(E) = 2π

√
cE/3, which is true for E → ∞,

matches onto the formula given above. This is completely expected, since in the case of

d = 2 the bound ρ(∆) . e2π∆ implied by the phase transition assumed here can be used

to prove the validity of the Cardy formula down to ∆ ∼ c/6 [1]. So this result is weaker,

but the different route taken is illuminating and can potentially be applied in other cases

where arguments like that of [1] are absent.

B AdS5, AdS6, and AdS7 details

In section 3, we exhibited results for bounds on the density of states with d = 4, 5, and 6

dimensional boundaries. The metrics and derivation of thermodynamic quantities, includ-

ing the Euclidean actions are straightforward and follow the same steps as in d = 2, 3 but

the expressions are longer and not directly illuminating. Below, we expound on the steps

that lead to the bounds above. In particular, we collect results for AdS6 and AdS7 whose

derivation is distributed over multiple papers in the literature. We have set GN = 1.

B.1 AdS5

Here we follow [29]. The relevant thermodynamic quantities are

Ωa =
a(r2

++b2)(1+r2
+)+bq

(r2
++a2)(r2

++b2)+abq
, Ωb = Ωa(a↔ b), Φ =

√
3qr2

+

(r2
++a2)(r2

++b2)+abq
,

Ja =
π[2am+qb(1+a2)]

4Ξ2
aΞb

, Jb = Ja(a↔ b), Q=

√
3πq

4ΞaΞb

M =π
m[2(Ξa+Ξb)−ΞaΞb]+2qab(Ξa+Ξb)]

4Ξ2
aΞ

2
b

, β=
2πr+[(r2

++a2)(r2
++b2)+abq]

r4
+[1+2r2

++a2+b2]−(ab+q)2

where Ξa = 1− a2,Ξb = 1− b2 and m = [(r2 + a2)(r2 + b2)(1 + r2) + q2 + 2abq]/2r2. The

vacuum subtracted Euclidean action is

∆IE =
πβ

8ΞaΞbr
2
+

[
(r2

++a2)(r2
++b2)(1−r2

+)+2abq+q2

(
1−

2r4
+

(r2
++a2)(r2

++b2)+abq

)]
.

(B.1)

Analytic results are possible for q = 0 or b = 0; however, numerics are necessary in

the generic case. The BPS limit of these black holes is E = |J1| + |J2| +
√

3|Q| beyond

which there are no states. Note, this bound differs slightly from the Chamblin et al. case

(see (3.15)), because of a factor of 2 in the definition of the Maxwell field.

B.2 AdS6

The bounds on the density of states are meant to serve all holographic CFTs in their respec-

tive dimensions. However, there are no bottom-up solutions for Einstein-Maxwell gravity
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in d = 5 and d = 6. This may not be surprising as higher form fields and Chern-Simons

terms seem natural in higher dimensions, especially in consistent supergravity trunctations.

Instead, one must search for the most generic supergravity solution with AdS asymptotics

and fewest bulk fields. The most generic choice we could find in the literature is the black

hole in [30]. This comes from a dimensional reduction of massive type IIA supergravity on

a hemisphere of S4 [49]. This supergravity theory should arise as the near horizon limit of a

D4-D8 brane configuration and is dual to a d = 5, N = 2 superconformal field theory. The

bosonic field content of six dimensional N = 4, SU(2) gauged supergravity is a graviton, a

two-form potential, a one-form potential, the gauge potentials of SU(2) Yang-Mills and a

scalar. We can truncate to the sector where only one U(1) of the SU(2) is excited. Then,

the bosonic Lagrangian is

L = R ? 1− 1

2
? dφ ∧ dφ−X−2

(
?F(2) ∧ F(2) + g2 ? A(2) ∧A(2)

)
− 1

2
X4 ? F(3) ∧ F(3)

+ g2
(
9X2 + 12X−2 −X−6

)
? 1− F(2) ∧ F(2) ∧A(2) −

g2

3
A(2) ∧A(2) ∧A(2), (B.2)

with F(2) = dA(1). Setting g = 1, the relevant thermodynamic quantities are

Ωa =
a[(1+r2

+)(r2
++b2)+qr+]

(r2
++a2)(r2

++b2)+qr+
, Ωb = Ωa(a↔ b), Φ =

√
q(2m+q)r+

(r2
++a2)(r2

++b2)+qr+
(B.3)

Ja =
πa(2m+Ξbq)

3Ξ2
aΞb

, Jb = Ja(a↔ b), Q=

√
q(2m+q)

ΞaΞb

M =
π

3ΞaΞb

[
2m

(
1

Ξa
+

1

Ξb

)
+q

(
1+

Ξa
Ξb

+
Ξb
Ξa

)]
, S=

2π2
[
(r2

++a2)(r2
++b2)+qr+

]
3ΞaΞb

β=
4πr+[(r2

++a2)(r2
++b2)+qr+]

2(1+r2
+)r2

+(2r2
++a2+b2)−(1−r2

+)(r2
++a2)(r2

++b2)+4qr3
+−q2

, (B.4)

where Ξa = 1− a2,Ξb = 1− b2 and

m =
(r2 + a2)(r2 + b2) + [r(r2 + a2) + q][r(r2 + b2) + q]

2r
. (B.5)

The Gibbs free energy, defined by

G = E − TS − ΦQ− JaΩa − JbΩb (B.6)

is equivalent to the background subtracted on-shell Euclidean action divided by −β, ∆IE =

−βG. Plugging everything in, we get

∆IE =
πβ

6r+ΞaΞb
(
r2

+ (a2+b2)+a2b2+qr++r4
+

)[q2
(
−r2

+

(
a2+b2

)
+a2b2−3r4

+

)
−qr+

(
3r2

+−1
)(
a2+r2

+

)(
b2+r2

+

)
−
(
r2

+−1
)(
a2+r2

+

)
2
(
b2+r2

+

)
2−q3r+

]
. (B.7)

In the limit of zero charge, this agrees with the generically spinning black holes in six

dimensions with no charge [24]. However, it turns out the a = b = 0 solution is not the

AdS-Reissner-Nordström black hole, but rather the black hole in [49]. In table 1, for the

charged static case, we instead presented the result from [22], where the action is the one

calculated in section 3.2.

– 23 –



J
H
E
P
0
7
(
2
0
1
8
)
0
5
1

B.3 AdS7

The d = 6 case follows [31]. These solutions come from reducing eleven-dimensional super-

gravity on S4 leading to seven dimensional N = 4, SO(5) gauged supergravity. Note that

this can be thought of as coming from the near horizon limit of a stack of M5 branes and

is dual to the six-dimensional, N = (2, 0) SCFT. For singly charged black holes, we choose

to truncate to the U(1)3 Cartan subgroup. The bosonic fields are a graviton, a self dual

3-form potential, two U(1) gauge fields and two scalars. Turning off one of the scalars in

the gauged theory sets the two U(1) fields equal and the Lagrangian is

L = R ? 1− 1

2
? dφ1 ∧ dφ1 −X−2 ? F(2) ∧ F(2) −

1

2
X4 ? F(4) ∧ F(4)

+ 2g2(8X2 + 8X−3 −X−8) ? 1 + F(2) ∧ F(2) ∧A(3) − gF(4) ∧A(3), (B.8)

where X = e−φ1/
√

10. The self-duality condition reads

X4 ? F(4) = 2gA(3) − dA(2) + F(2) ∧A(1). (B.9)

For this work, we set g = −1 (this must be negative for BPS states). As in six dimensions,

it is more straightforward to calculate the Gibbs free energy. The relevant thermodynamic

quantities are

Ωi =
ai[(1 + r2

+)
∏
j 6=i(r

2
+ + a2

j ) + qr2
+] + q

∏
j 6=i aj∏

i(r
2
+ + a2

i ) + q(r2
+ + abc)

, Φ =

√
q(2m+ q)r2

+∏
i(r

2
+ + a2

i ) + q(r2
+ + abc)

,

Ji =
π2[ai(2m+ q) + q(Πj 6=iaj − ai

∑
j 6=i a

2
j + abcai)]

8ΞaΞbΞcΞi
, Q =

π2m
√
q(2m+ q)

2ΞaΞbΞc
,

E =
π2

8ΞaΞbΞc

∑
i

2m

Ξi
−m+

5q

2
+
q

2

∑
i

∑
j 6=i

2Ξj
Ξi
− Ξi −

2(1− 2abc)

Ξi


β =

2πr+[
∏
i(r

2
+ + a2

i ) + q(r2
+ + abc)]

(1 + r2
+)r2

+

∑
i

∏
j 6=i(r

2
+ + a2

i )−
∏
i(r

2
+ + a2

i ) + 2q(r4
+ − abc)− q2
.

For brevity, we used ai ∈ {a, b, c}. The parameter m is

2m =
1 + r2

r2
(r2 + a2)(r2 + b2)(r2 + c2) + q(2r2 + a2 + b2 + c2) +

2qabc

r2
+
q2

r2
. (B.10)

Now the regularized Euclidean action is

∆IE =
βπ2

16ΞaΞbΞc

[
(1−r2

+)
∏
i

(r2
++a2

i )−2qr4
++2qabc

−q2

∑
i

a2
i r

4
+−
∑
i<j

a2
i a

2
jr

2
+−
∏
i

a2
i−abc(2r4

+−2r2
++q)+r2

+(r4
++q)

(
∏
i

(r2
++a2

i )

+q(r2
++abc))−1

]
. (B.11)

The limit q → 0 agrees with the Myers-Perry-AdS7 solutions, but like d = 5, the non-

spinning limit does not match the Reissner-Nordström result of Chamblin et al.
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