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unter Zuhilfenahme ausschließlich der angegebenen Hilfsmittel verfasst wurde.

Graz, im November 2012

i





Contents

Contents iii

1. Introduction 1

2. Strongly-Interacting Matter 3

2.1. Non-Perturbative Quantum Chromodynamics . . . . . . . . . . . . . . . . . . 3

2.1.1. Quantum Field Theory with Non-Perturbative Methods . . . . . . . . 3

2.1.2. Aspects of Quantum Chromodynamics . . . . . . . . . . . . . . . . . . 13

2.1.3. Effective Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2. Thermodynamics and Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Consequences of an Infrared Singular Four Quark Interaction 37

3.1. Quark 4-Point Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2. General n-Point Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1. Infrared Singularities in General 4-Point Functions . . . . . . . . . . . 47

3.2.2. Highter n-Point Functions . . . . . . . . . . . . . . . . . . . . . . . . . 48

4. Center Transition from Matter Propagators 53

4.1. The Scalar Propagator Dyson-Schwinger Equation . . . . . . . . . . . . . . . 54

4.1.1. Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2. Non-Vanishing Temperatures . . . . . . . . . . . . . . . . . . . . . . . 61

4.2. Probing the Center Symmetry Transition . . . . . . . . . . . . . . . . . . . . 65

4.2.1. Order Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5. Chiral Transition with Quarks and Mesons 73

5.1. Mesonic Effective Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1. The Bosonic Mean-Field . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.2. Including Bosonic Fluctuations with the Wetterich Equation . . . . . 75

5.2. Flow of U(1)A Violating Couplings . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1. Masses, Ground State and Goldstone Modes . . . . . . . . . . . . . . 77

5.2.2. Numerical Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3. Nf = 2 + 1 and Light Chiral Limit . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1. The 2+1 Flavor Approximation . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2. Numerical Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6. Conclusions and Outlook 95

iii



CONTENTS

A. Conventions 97
A.1. Dirac Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2. Representations of SU(N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3. n-Point Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.3.1. Color Tensor Bases for n-Point Functions . . . . . . . . . . . . . . . . 100

B. Calculations 103
B.1. Sources of Infrared Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.2. Scalar QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.3. Chiral Symmetry and Axial Anomaly . . . . . . . . . . . . . . . . . . . . . . 107
B.4. Chiral Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.4.1. Two Flavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.4.2. 2 + 1 Flavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.5. 2 + 1 Flavor Meson Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C. Numerical Implementation 115
C.1. Scalar Propagator DSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.2. Mesonic Effective Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.2.1. Mean-Field Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.2.2. Wetterich RG in Leading Order Derivative Expansion . . . . . . . . . 116

Bibliography 119

iv



1. Introduction

It is a truth universally acknowledged, that Quantum Chromodynamics (QCD) is the theory
of the strong interaction [1]. Its fundamental degrees of freedom are quark and gluon fields
and it describes phenomena ranging from the formation of nucleons (protons and neutrons)
in subatomic physics to neutron stars in astrophysics. QCD is a non-Abelian gauge theory,
i.e., it is a relativistic quantum field theory (QFT) [2] with a local gauge symmetry as in
electrodynamics. In contrast to the latter, its gauge group, SU(3), is not commutative. This
leads to self-interactions of the gauge fields which also carry the corresponding charge called
color. Therefore, already the pure gauge theory without quarks is non-trivial, which is true
for any non-Abelian gauge theory with general gauge group SU(N) - called Yang-Mills theory.

The interaction strength of such a Yang-Mills theory is described by a single gauge coupling
g or, equivalently, α ≡ g2/4π [3]. The strength of this interaction depends on the scale µ the
theory is probed at, which leads to a scale-dependent or running gauge coupling g(µ). It is
possible to describe the running coupling g by its beta function which only depends on g 1

µ
d

dµ
g(µ) = β(g) . (1.1)

At small coupling g, the interaction can be treated as a perturbation. This allows the cal-
culation of the beta function, which is found to be negative for QCD. Hence, when starting
from a small value g and going to higher µ, the value of g will become even smaller. Therefore
the interaction becomes very weak at small distances [4,5]. This asymptotic freedom of QCD
is not spoiled as long as the number of quark flavors, Nf , does not exceed 33/2. On the
other hand, perturbation theory predicts its own failure when going to large distances, as
this implies a growing coupling constant. As soon as the coupling takes values of order unity,
perturbation theory is not applicable anymore. The scale where the perturbative running
coupling diverges is usually termed ΛQCD. Its exact value depends e.g. on the renormaliza-
tion scheme and the matter content and is given by ΛQCD ≈ 200 MeV in the modified MS
scheme [6].

From this discussion it is clear that investigations of long range phenomena2 require usually
other methods than perturbation theory. Two very prominent properties of non-perturbative
QCD - which also play a central role in this thesis - shall briefly be sketched.

Although QCD is formulated in terms of quark and gluon fields, no experiment has ever
measured the corresponding particle excitations. The only thing observed in Nature are
hadrons. These are colorless bound states of either a quark-antiquark pair (mesons) or three
quarks (baryons). Other conceivable colorless excitations would be given by glueballs, but no
unambiguous signs have been found in any experiments up to now. The absence of quarks

1In general, in presence of massive particles with mass m that interact with the gauge field, this is only true
for µ ≫ m [3].

2Here long range is meant in comparison to QCD scales, where momenta around ΛQCD = 200 MeV correspond
to 10−15 m.
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1. Introduction

and gluons from the particle spectrum, i.e. their confinement to hadrons is one of the main
features of QCD, which is yet to be fully understood [7].
Quarks are described by Dirac spinors which would obey the Dirac equation in a quantum
mechanical treatment. As in the Dirac equation, helicity becomes a good quantum number
for massless quarks. In this case the theory becomes chirally symmetric before quantum
fluctuations are taken into account. If chiral symmetry were also respected by the ground
state of QCD, one would obtain parity partners for any hadron in the spectrum of QCD.
Experimentally these parity partners are not found [8], which leads to the conclusion that the
ground state does not respect the full symmetry. Therefore chiral symmetry is spontaneously
broken, which implies the existence of massless bosons via Goldstone’s theorem [9–11]. In
nature, this symmetry is only approximate with the pions, kaons and η-meson as pseudo
Goldstone bosons [3].
Confinement and spontaneous chiral symmetry breaking are not necessarily realized at very
high-temperatures as e.g. prevalent at times shortly after the big bang. Temperature corre-
sponds to energy and at sufficiently high temperatures one could expect a phase of quarks
and gluons without spontaneous chiral symmetry breaking. By now it is clear from numerical
simulations of QCD on discrete space-time lattices that a similar state is actually reached at
temperatures T & 150 MeV, which is termed quark-gluon plasma [12].
This thesis is mainly concerned with confinement and chiral symmetry breaking, especially
at non-vanishing temperatures. These and related features are discussed in more detail in
Ch. 2, which provides the context and relevant basics for the self-contained investigations in
the subsequent chapters.
In Ch. 3 a special type of infrared singularity is assumed in the quark-antiquark interaction
kernel. Such a singularity can be related to confinement in terms of a linearly rising potential.
Consequences as well as consistency of this singularity are investigated.
A scalar version of QCD is used in Ch. 4 to investigate the center symmetry transition.
Confinement of fundamentally charged matter can be related to this symmetry and a phase
of spontaneously broken center symmetry corresponds to deconfinement. Order parameters
for the transition are constructed from the scalar as well as the quark propagator and applied
in numerical calculations.
The chiral transition to the phase of restored chiral symmetry is examined in an effective
description in terms of quark and meson degrees of freedom with the functional renormal-
ization group in Ch. 5. Special focus is put on the chiral anomaly in terms of a ’t Hooft
determinant, which plays a crucial role in the limit of vanishing quark masses. Additionally,
the anomalous mass of the η′-meson is calculated at finite temperature.
The results are summarized at the and of each chapter. Additionally, a general conclusion
together with an outlook for future investigations is given in Ch. 6. Conventions, lengthy
calculations and numerical details have been put in the appendices A, B and C.
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2. Strongly-Interacting Matter

Aspects of strongly-interacting matter as relevant for this thesis are discussed in this chap-
ter. The main purpose of this discussion is to put the more special topics of the upcoming
chapters into context. The first section is focused on non-perturbative properties of strongly-
interacting matter at vanishing temperatures, which includes a brief discussion of some ap-
propriate methods. In the second section, some aspects of Quantum Chromodynamics (QCD)
at non-vanishing temperature and chemical potential are briefly touched upon. None of the
material covered in this chapter is the work of the author and references are given either to
reviews and textbooks for well-established topics or original literature where appropriate.

2.1. Non-Perturbative Quantum Chromodynamics

In order to accurately describe the physics of strongly-interacting matter it is necessary to
use appropriate tools. Some of these will be briefly discussed in Sec. 2.1.1, before going on
to QCD in Sec. 2.1.2 and effective descriptions of strongly-interacting matter in Sec. 2.1.3.

2.1.1. Quantum Field Theory with Non-Perturbative Methods

It has been argued in the introduction that an investigation of Quantum Chromodynamics
close to, as well as below, its characteristic scale ΛQCD requires non-perturbative methods
due to the large (perturbative) running coupling. Here only a selection of non-perturbative
approaches as relevant for the topics treated in this thesis shall be discussed.

In principle a quantum field theory is defined, as well as solved, if all its n-point functions 1 are
known. The n-point functions are the vacuum expectations values of time-ordered products
of n fields 2 present in the theory. Here, the vacuum is given by the ground state of the theory
transforming trivially under the Poincaré group. Examples for important n-point functions
of QCD are given by the gluon, ghost and quark propagators - which are 2-point functions
- and the three-gluon, ghost-gluon and quark-gluon vertices - which are 3-point functions.
There exist several hierarchies of n-point functions - including the full (time-ordered), the
connected and the 1-particle irreducible (1PI) n-point functions. In this thesis the latter will
be used almost exclusively. It has been shown in an axiomatic approach that from any of the
equivalent hierarchies of n-point functions one can reconstruct the full quantum field theory,
if some additional assumptions are fulfilled [13,14].

1Although the term function is used frequently, the n-point functions are actually tempered distributions
which are linear functionals defined on Schwartz space over R

dn, where d is the number of space-time
dimensions [13].

2The fields are operator valued distributions defined on d-dimensional space-time Rd. This implies that their
product is not necessarily well-defined on a single point, which reappears later as the need for regularization
and renormalization of divergences at large momenta in the case of d = 4.

3



2. Strongly-Interacting Matter

It is useful to introduce generating functionals for these n-point functions, where the full
n-point functions G(n) are obtained from 3

Z[j] =
∑

n

1

n!

∫

x1,...,xn∈Rd

G(n)(x1, . . . , xn)j(x1) · · · j(xn) . (2.1)

If this generating functional were known, one could get the n-point functions as the kernels
of the corresponding nth (Fréchet) derivative evaluated at j = 0

G(n)(x1, . . . , xn) =
δn

δj(x1) · · · δj(xn)
Z[j]

∣

∣

∣

∣

j=0

. (2.2)

Therefore, a quantum field theory can be defined non-perturbatively by giving its generating
functional. One way of doing so is via the path integral [2]

Z[j] =

∫

Dφ exp






iS[φ] +

∫

x∈Rd

φ(x)j(x)






, (2.3)

where φ denotes the complete, c-numbered field content of the theory and S is the classical
action. The path integral requires integration over all fields φ, which is denoted by the “mea-
sure” Dφ, where a proper normalization has been assumed to be included in its definition. As
the exponent iS[φ] leads to a highly oscillatory integrand, any attempts of solving the path
integral use a Euclidean formulation [15]. This can be obtained by replacing the time coor-
dinate x0 with imaginary time −ixd. Starting from a metric with signature (1,−1, . . . ,−1)
in Minkowski space one arrives at a completely negative Euclidean metric and the Euclidean
generating functional is given by

ZE [j] =

∫

Dφ exp






−SE[φ] +

∫

x∈Rd

φ(x)j(x)






. (2.4)

The Euclidean action SE is positive definite and one stands a chance of defining a proper
measure (at least) in this formulation. Of course, this generating functional also yields Eu-
clidean n-point functions and it is necessary to define a procedure for regaining the theory
in Minkowski space. It was found by Osterwalder and Schrader that there exists a set of
assumptions for the Euclidean n-point functions which, if fulfilled, allow the reconstruction
of the quantum field theory in Minkowski space-time [16, 17]. Such an imaginary time for-
mulation is well-suited for investigations of ground state properties, whereas investigations
of time-dependent phenomena are hard. As will become clear in Sec. 2.2, it is also straight-
forwardly generalized to finite temperature and equilibrium thermodynamics, which will be
the main concern in this thesis. With this motivation, the Euclidean formulation will be used
exclusively in the remainder of this thesis and the subscripts E will be dropped from now on.

Unfortunately all rigorous attempts have found that for d = 4 only free theories can be
defined in terms of the path integral without regularization and renormalization [15]. The

3Whenever the measure dx is not shown explicitly, the ordinary Lebesgue measure is assumed.
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2.1. Non-Perturbative Quantum Chromodynamics

corresponding divergences that need regularization usually appear at very small distances.
One straightforward way of regularization is to replace continuous space-time by a discrete
lattice. In case of the strong interaction the corresponding field is called lattice QCD [18–23]
which is one important non-perturbative approach. In lattice QFT Dφ is replaced by a prod-
uct of ordinary integrals on each of the lattice sites with the goal of taking a well-defined
continuum limit of vanishing lattice spacing a. In practice this amounts to showing inde-
pendence of the obtained results from a for small enough lattice spacings. One obstacle in a
direct evaluation of these multi-dimensional integrals is the fast growth of the computational
effort with the number of lattice sites. Therefore, so-called Monte-Carlo methods are em-
ployed with the basic idea of approximating the expectation value of some random variable
f with probability measure ρ(x) on [a, b] by a sum

〈f〉 =
∫

x∈[a,b]

ρ(x)f(x) = lim
N→∞

N
∑

i=1

f(xi) . (2.5)

Here, it is necessary that the xi are chosen randomly on [a, b] with a probability corresponding
to the measure ρ(x). Choosing such randomly distributed xi is a subject of its own, where
often Metropolis algorithms [23] are applied. A signed or even complex measure ρ(x) will
lead to fluctuations which severely limit the applicability of the Monte-Carlo methods. In
case of lattice QFT it is therefore preferable to have a positive definite measure exp[−S[φ]]
with §[φ] ∈ R. Another relevant issue is the discretization of the action S, which defines the
probability measure. The action usually involves derivatives, which have to be approximated.
Furthermore, modern physical theories are constructed with the help of symmetries, which
sometimes cannot be implemented uniquely such that the original symmetry is obtained in
the continuum limit a → 0. Nevertheless, lattice methods provide a powerful tool for the
calculation of the expectation value of any observable O[φ] via

〈O[φ]〉 = Z[0]−1

∫

DφO[φ] exp [−SE [φ]] . (2.6)

In particular this yields the n-point functions. In gauge theories, the evaluation of propagators
and the like additionally requires gauge fixing, since all gauge-dependent quantities vanish
without choosing a gauge.
Another approach is to use a continuum formulation and derive the defining equations for
the n-point functions from the path integral. After a short detour via the effective action,
two examples of the latter possibility will be introduced in the following.

Effective Action

Instead of the generating functional Z[j] for the full n-point functions G(n) it is also possible
to use its connected or 1PI counterpart. By the linked cluster theorem [14], the generating
functional for the connected n-point functions is given by

W [j] = logZ[j] , (2.7a)

5



2. Strongly-Interacting Matter

W (n)(x1, . . . , xn) =
δn

δj(x1) · · · δj(xn)
W [j]

∣

∣

∣

∣

j=0

. (2.7b)

Via a Legendre transform, the effective action - the generating function of the 1PI n-point
functions - can be obtained

Γ[φcl] = sup
j






−W [j] +

∫

x∈Rd

φcl(x)j(x)






, (2.8a)

Γ(n)(x1, . . . , xn) =
δn

δφcl(x1) · · · δφcl(xn)
Γ[φcl]

∣

∣

∣

∣

φcl[j=0]

. (2.8b)

In the second line it has been assumed that for any φcl there is a unique j which maximizes
the right hand side of Eq. (2.8a). By additionally assuming convexity and differentiability,
this relation is explicitly given by

φcl[j] =
δ

δj
W [j] . (2.9)

Using Eq. (2.7a), one obtains immediately φcl[0] = 〈φ〉. Inverting Eq. (2.9) allows to express
the effective action as

Γ[φcl] = −W [j[φcl]] +

∫

x∈Rd

φcl(x)j[φcl](x) , (2.10)

with derivative

δ

δφcl
Γ[φcl] = j[φcl] . (2.11)

Therefore the effective action is stationary in the absence of currents, i.e. at φcl[j = 0], which
justifies its name. Important relations between connected and 1PI n-point functions can be
derived by differentiation of Eq. (2.9), yielding e.g.

D(x1, x2) ≡W (2)(x1, x2) =
(

Γ(2)
)−1

(x1, x2) , (2.12a)

W (3)(x1, x2, x3) =

∫

y1,y2,y3∈Rd

D(x1, y1)D(x2, y2)D(x3, y3)Γ
(3)(y1, y2, y3) , (2.12b)

Diagrammatically, the second relation can be represented as

=

Figure 2.1.: Relation between connected and 1PI 3-point function.
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2.1. Non-Perturbative Quantum Chromodynamics

where gray blobs represent connected vertices, black dots represent 1PI vertices and thick
lines represent the dressed propagator D. When connected to a vertex, thin lines represent
the corresponding argument of the leg, whereas thin lines that stand alone or connect vertices
represent the bare propagator defined by

D0(x1, x2) ≡
δ2

δφ(x1)δφ(x2)
S[φ]

∣

∣

∣

∣

φ=0

. (2.13)

One important quantity that can be derived from the effective action is the effective potential.
For constant φ̄ ≡ φcl, the effective potential is defined as the function

U(φ̄) =
Γ[φ̄]

Vd
, (2.14)

where Vd is the volume of d-dimensional space-time. Via variational methods one can show
that this effective potential is the minimum of the expectation value of the energy density
over all states Ω with field expectation value φ̄ = 〈Ω, φΩ〉 [3]. This implies that the vacuum
state minimizes the effective potential in the absence of currents.

Dyson-Schwinger Equations

The Dyson-Schwinger equations (DSEs) [24–29] are the equations of motion for the n-point
functions. They provide an infinite set of coupled non-linear integral equations. The set of
DSEs can be formulated for any hierarchy of n-point functions and the corresponding equa-
tions are usually obtained from some generating relation. The fastest way of obtaining this
generating equation for the full n-point functions is via the generalized divergence theorem

0 =

∫

Dφ
δ

δφ
exp






−S[φ] +

∫

x∈Rd

φ(x)j(x)






, (2.15)

which works, if the integrand vanishes at the boundary of integration. In a compact nota-
tion this relation and the corresponding generating equations for connected and 1PI n-point
functions can be written as [28]

0 =

(

−δS
δφ

[

δ

δj

]

+ j

)

Z[j] , (2.16a)

0 = −δS
δφ

[

δW

δj
+

δ

δj

]

+ j , (2.16b)

0 =
δΓ

δφcl
− δS

δφ

[

φcl +W (2)[j[φcl]]
δ

δφcl

]

+ j[φcl] . (2.16c)

From either of these relations the equation for a specific n-point function can be obtained by
n− 1 functional differentiations and setting j = 0 or φcl = φcl[j = 0] at the end.
The prototype of all DSEs is the one for the propagator. It is obtained from the functional

7



2. Strongly-Interacting Matter

derivative of Eq. (2.16a) with respect to j at j = 0

0 =

∫

Dφ

(

− δS

δφ(x)
φ(y) + δ(d)(x− y)

)

exp [−S[φ]] , (2.17)

where x and y are generalized indices. Writing the action in terms of the bare propagator
D0 and an interaction term SI as

S[φ] =
1

2

∫

x,y∈Rd

φ(x)D−1
0 (x, y)φ(y) + SI [φ] , (2.18)

allows to rewrite the DSE as

δ(d)(x− y) =

∫

z∈Rd

D−1
0 (x, z)〈φ(z)φ(y)〉 +

〈

δSI [φ]

φ(x)
φ(y)

〉

. (2.19)

Assuming that the 1-point function vanishes, i.e. 〈φ〉 = 0, the propagator is given by

D(x, y) = 〈φ(x)φ(y)〉 . (2.20)

Multiplying Eq. (2.19) with the inverse propagator results in the corresponding DSE

D−1(x, y) = D−1
0 (x, y) +

∫

z∈Rd

〈

δSI [φ]

φ(x)
φ(z)

〉

D−1(z, y) . (2.21)

The second term in this equation is the self-energy that provides all quantum corrections
to the bare inverse propagator D−1

0 (x, y). Obviously, the exact form of the self-energy term
depends on the interactions present. If SI 6= 0, it is at least cubic in the fields and therefore
the self-energy term involves at least 3-point functions. This is an explicit example of the
general dependence of DSEs on higher n-point functions.

Before going on, some general aspects of the DSEs shall be mentioned. As demonstrated
by the propagator equation Eq. (2.21), the DSE for some n-point function will depend in
general also on m-point functions with m > n. Furthermore, already the self-energy in
the propagator DSE can include two-loop contributions. When deriving the equation for
higher n-point functions, the order of differentiation of Eq. (2.16) is not unique, which can
lead to different versions of the Dyson-Schwinger equations. The solution can, however, not
depend on the formulation of the DSE and has to fulfill all equations. The different versions
of the DSE for some n-point function will in general depend on different higher m-point
functionsm > n, which can be used to minimize truncation errors in numerical investigations.
The Dyson-Schwinger equations contain bare vertices (see App. A.3 for their definition) and
therefore the introduction of renormalization constants is necessary in general. Although the
equations as such are fully non-perturbative, the renormalization procedure of the DSEs is
close to perturbative renormalization in spirit. Additionally, from the appearance of the bare
action in the defining Eq. (2.16), the treatment of quantum field theories which are only non-
perturbatively renormalizable is at least hard, as the prior knowledge of the non-perturbative
action would be required. On the other hand, the DSEs wash out truncation errors via the
integration, which makes them eventually robust against approximations.

8



2.1. Non-Perturbative Quantum Chromodynamics

Functional Renormalization Group (FRG)

The renormalization group approach in the Wilsonian sense [30] integrates the path inte-
gral not in one big step, but in infinitesimal momentum shell contributions. In its original
formulation this leads to an effective measure exp[−Seff ] for the integration of fields with
non-vanishing Fourier modes only below some scale k. Therefore, Seff can in principle be
obtained from the bare theory by the integration of all Fourier modes larger than this scale
k. The momentum shell approach to the renormalization group has been realized in a variety
of ways [31–52].

In this thesis, Wetterich’s formulation for the effective average action is used, which turns
out to be especially well suited in numerical applications. It is formulated for the effective
average action Γk[φcl], which additionally depends on the scale k. This scale indicates, which
quantum fluctuations have been integrated already. The Wetterich equation describes the
evolution of this effective average action when integrating an infinitesimal momentum shell
by the flow ∂kΓk[φcl]. In the limit k → 0 all quantum fluctuations are integrated and the
effective action is approached

Γ[φcl] = lim
k→0

Γk[φcl] . (2.22)

In principle a theory is therefore defined by its initial action ΓΛ→∞, which together with
the flow equation defines a trajectory in the space of all possible theories. This trajectory
connects the initial action at k = Λ → ∞ with the full quantum effective action at k → 0.

Predictivity of the theory demands that the definition of the initial action can be given with
the help of a finite number of parameters. This can be achieved, if the flow is characterized
by some fixed point Γ∗

∂kΓ
∗[φcl] = 0 . (2.23)

In general the space of all theories is highly non-trivial. Nevertheless, it will be assumed for
the following argument that a basis can be chosen, which allows an expansion of Γk with a set
of coefficients {gi} at least close to this fixed point. From the corresponding beta functions

βj({gi}) ≡ k∂kgj , (2.24)

one can define a new basis, given by the eigenvectors of the stability matrix ∂glβj({g∗i })
at the fixed point {g∗i }. The corresponding eigenvalues can furthermore be used to classify
these eigenvectors into relevant (negative eigenvalue) and irrelevant (positive eigenvalue)
operators 4. In many cases, one can define the critical surface as the set of all actions that
flow into the fixed point. The tangent space to this critical surface at the fixed point is
then spanned by the irrelevant operators. Suppose that the above fixed point is actually the
Gaussian fixed point corresponding to the free theory. In a perturbatively renormalizable
theory, the relevant operators are then given exactly by the renormalizable interactions.
Assume that one starts with some arbitrary initial action ΓΛ, which might also include non-
renormalizable/irrelevant couplings at large Λ. If the corresponding flow is still governed
by the Gaussian fixed point, the non-renormalizable/irrelevant couplings will gradually die

4There exist also the possibility of a marginal operator (vanishing eigenvalue), which will be ignored in the
following discussion.
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2. Strongly-Interacting Matter

out and only the renormalizable couplings survive. Therefore, the theory at scales k ≪
Λ is characterized only by a finite number of renormalizable couplings, as demanded by
predictivity. In general it is necessary to start with an action ΓΛ that lies in the basin of
attraction of some fixed point with a finite number of relevant directions. When choosing an
inital action ΓΛ that is very close to such a critical surface, the flow will almost reach the fixed
point before it is pushed into the subspace spanned by the relevant directions. Therefore any
information about the irrelevant directions is lost and the theory is predictive. Obviously,
this implies that the flow cannot be inverted, and therefore the renormalization group can at
most be a semi-group.

In Wetterich’s equation, a suppression of the integration of modes below some scale k is
introduced by adding an additional term ∆Sk[φ] in the measure

Wk[j] = ln

∫

Dφ exp






−SE[φ]−∆Sk[φ] +

∫

x∈Rd

φ(x)j(x)






. (2.25)

Taking the additional term to be bilinear in φ it can be written as

∆Sk[φ] =
1

2

∫

x,y∈Rd

φ(x)Rk(x, y)φ(y) . (2.26)

By choosing the regulator function Rk in momentum space to be large at momenta p ≪ k
and zero at p ≫ k, an effective mass is introduced which leads to a decoupling of the low
momentum modes [53]. A typical example for the regulator is shown in Fig. 2.2.

Figure 2.2.: Typical form of the regulator function Rk and its derivative (picture from [54]).

Therefore when performing the path integral, only modes with large momenta above ∼ k are
integrated.

The (not necessarily convex) effective average action is defined as the modified Legendre
transform

Γk[φcl] = −Wk[jk[φcl] +

∫

x∈Rd

φcl(x)jk[φcl](x)−∆Sk[φcl] , (2.27)

where the now k-dependent relation between φcl and j is again provided by the stationarity

10



2.1. Non-Perturbative Quantum Chromodynamics

condition

φcl,k[j] =
δWk[j]

δj
= 〈φ〉k,j . (2.28)

Here, the trivial generalization of the expectation value Eq. (2.6) with non-vanishing source
j and Eq. (2.25) is indicated by the subscript k, j. Therefore the flow of the effective action
is given by

∂kΓk[φcl] = −∂kWk[jk[φcl]]− ∂k∆Sk[φcl] (2.29)

=
1

2

∫

x,y∈Rd

(

〈φ(x)φ(y)〉k,jk [φcl] − φcl(x)φcl(y)
)

∂kRk(x, y)

=
1

2

∫

x,y∈Rd

W
(2)
k [jk[φcl]](y, x)∂kRk(x, y) .

In the first line the cancellation of the derivatives ∂kjk, and in the second line φcl = 〈φ〉k,jk[φcl]

together with

W
(2)
k [j] = 〈φφ〉k,j − 〈φ〉k,j〈φ〉k,j , (2.30)

and symmetry of Rk have been used. From Eq. (2.27) one obtains the generalization of
Eq. (2.12a)

W
(2)
k [jk[φcl]] =

(

δ2

δφclδφcl
(Γk[φcl] + ∆Sk[φcl])

)−1

(2.31)

=
(

Γ
(2)
k [φcl] +Rk

)−1
,

and the resulting Wetterich equation [37] is given by

∂kΓk[φcl] =
1

2
Tr

[

(

Γ
(2)
k [φcl] +Rk

)−1
∂kRk

]

. (2.32)

Diagrammatically this is often written as

∂kΓk[φcl] =
1

2
,

where the crossed circle represents ∂kRk and the thick line stands for the partially dressed
propagator. The trace has to be taken over continuous as well as possible discrete argu-
ments. If more than one field type is present, the trace additionally includes a sum over
the corresponding field types. If a given particle is not its antiparticle, the corresponding
generalizations of the mass term Eq. (2.26) and relation Eq. (2.30) have to be used.

It is hard to solve the Wetterich equation Eq. (2.32) exactly due to the presence of func-
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2. Strongly-Interacting Matter

tional derivatives and usually truncations have to be employed. By functional differentiation
and inserting φcl,k[j = 0] one obtains furthermore the flow equations for the higher n-point
functions. It is clear that the equation for some n-point function will in general depend on
m-point functions up to m ≤ n + 2. Therefore the system never closes, as in case of the
Dyson-Schwinger equations. In contrast to the DSEs, the equation has one-loop structure
- also for higher n-point functions - but is not of one-loop order in the perturbative sense,
since it is an exact equation. Additionally, only (partially) dressed n-point functions appear
in the flow equation.

The details of the momentum shell integration are controlled by the choice of the regulator
Rk. In order to guarantee, that the flow gives the correct limits in the ultraviolet and infrared,
the regulator has to fulfill some technical conditions (see e.g. [45]). Apart from these limiting
conditions any regulator would in principle do the job, where regulators that respect the
symmetries of the theory are preferred. The flow in theory space depends on this choice as
is illustrated in Fig. 2.3.

Figure 2.3.: Regulator dependent flow in theory space (picture from [54]).

Therefore, the regulator introduces a renormalization scheme dependence analogous to the
scheme dependence in perturbative renormalization theory. It is very important that the
physical predictions have to be independent of the renormalization scheme, i.e. the choice of
the regulator. This is only true for the full flow and one cannot expect to find a regulator
independence as soon as truncations are made. Additionally, in practice one starts at some
finite initial scale Λ, and therefore the initial action ΓΛ corresponding to a specific Γk=0 can
also depend on the regulator. On the other hand, it is possible to use this scheme dependence
to check the quality of a given truncation. Furthermore, for a given truncation one can find
optimized regulators via the principle of minimal sensitivity [49,55,56].

Finally, some common truncations for the effective average action shall be sketched briefly.
Very close to its nature as the generating functional of 1PI n-point functions is the expansion

Γk[φcl] =
∑

n

1

n!

∫

x1,...,xn∈Rd

Γ
(n)
k [φ̂](x1, . . . , xn)

(

φcl(x1)− φ̂(x1)
)

· · ·
(

φcl(xn)− φ̂(xn)
)

, (2.33)

where one reasonable choice for the expansion point is φ̂ = φcl,k[j = 0], as the Taylor

coefficients Γ
(n)
k [φ̂](x1, . . . , xn) approach the 1PI n-point functions Γ(n) for k → 0.

Another possibility, which puts emphasis on the effective potential, is an expansion in deriva-
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2.1. Non-Perturbative Quantum Chromodynamics

tives

Γk[φcl] =

∫

x∈Rd

{

Uk(φcl) +
1

2
Zk(φcl)(∂φcl)

2 + . . .

}

, (2.34)

where the exact form of the contributions depend on the symmetries of the theory. This is an
expansion in momenta and therefore well-suited for investigations of long-ranged phenomena
as well as ground state properties from the effective potential.

The BMW approximation scheme [57, 58] to a given order s implements the full n-point
functions up to n ≤ s. Higher n-point functions are approximated by taking deriatives of the
known n-point functions n ≤ s and neglecting the corresponding additional loop momentum
dependence. At lowest order s = 0 this corresponds to the local potential approximation, i.e.
the lowest order in the derivative expansion

Γk[φcl] =

∫

x∈Rd

{

Uk(φcl) +
1

2
(∂φcl)

2

}

. (2.35)

Here any momentum dependence in the vertices 5 is ignored and for constant φ one obtains

Γ
(n)
k [φ](p1 = 0, . . . , pn = 0) = ∇n

φUk(φ) . (2.36)

For any truncation there are at least two sources of errors. The first error comes from the
choice of the initial action ΓΛ, such that the physics are reproduced correctly at k = 0 in
the given truncation. The second contribution is due to the projection of the full flow on the
subspace of theory space defined by the truncation.

Before going back to QCD, it should be mentioned that there exist also other non-perturbative
approaches, where one is for example given by the nPI formalism which has been applied e.g.
to the investigation of non-equilibrium phenomena [59].

2.1.2. Aspects of Quantum Chromodynamics

Quantum Chromodynamics can be characterized by its gauge invariant action

S =

∫

R4

q̄

{

(iDµγµ + ZMM) q − 1

4
F a
µνF

a
µν

}

. (2.37)

Here, the field strength tensor is given by F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . The gluon field

is an element of the Lie algebra Aµ = Aa
µT

a with Hermitian generators T a and structure

constants fabc for the gauge group SU(3) as defined in App. A.2. The purely gluonic part of
the action is invariant under local gauge transformations G(x) ∈ SU(3)

Aµ(x) → GAµ(x) = G(x)AµG
†(x)− i

g
(∂µG(x))G

†(x) , (2.38)

5The conventions for the Fourier transform are defined in App. A.3
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2. Strongly-Interacting Matter

which means that the gluon field is in the adjoint representation of SU(3) [60]. If the Dirac
spinor 6 (anti-)quark field (q̄ = −iq†γ4) q transforms under the fundamental representation

q(x) → Gq(x) = G(x)q(x) , (2.39)

with corresponding covariant derivative Dµ = ∂µ − igAµ, the full action is invariant under
local gauge transformations. Apart from color and spinor components, the quark field comes
in six flavors, dubbed up, down, strange, charm, bottom and top with growing bare mass.
These bare quark masses cannot be explained within QCD and the mass matrix M is a
consequence of the interaction with the Higgs-field.

In functional approaches, which rely heavily on the gauge-dependent n-point functions, it is
additionally necessary to fix the gauge in the Yang-Mills part of the theory. In this thesis,
solely Landau gauge is employed, which corresponds to the condition ∂µAµ = 0. The gauge
condition can be implemented with the Faddeev-Popov method, see e.g. [61]. This procedure
introduces a scalar anticommuting field in the adjoint representation of the gauge group (c̄)
c called (anti-)ghost field. The renormalized, gauge-fixed Euclidean action of QCD in four
dimensions reads then

S =

∫

R4

{

Z3A
a
µ

(

1

2
(−∂σ∂σδµν + ∂µ∂ν)

)

Aa
ν (2.40)

+Z1gf
abc (∂µA

a
ν)A

b
µA

c
ν + Z4

g2

4
fabcfadeAb

µA
c
νA

d
µA

e
ν

}

−
∫

R4

{

Z̃3c̄
a∂µ∂µc

a − Z̃1gf
abcc̄a∂µ(c

bAc
µ) + q̄ (Z2 (∂µγµ − iZMM)− Z1F ig∂µAµ) q

}

.

Unfortunately, the Faddeev-Popov method is only capable of fixing the gauge perturbatively
[28,62]. In general the local condition ∂µAµ = 0 is not unique and it is possible to construct
global gauge transformations GG, such that GGAµ also fulfills the gauge condition. The
existence of such Gribov copies was first realized in [63]. There it was attempted to fix
the gauge completely by restricting the functional integral to the Gribov region ΩG. This
is a subset of the linear space fulfilling the Landau condition with positive Faddeev-Popov
operator M [A] = −∂µDµ

ΩG =
{

A
∣

∣

∣M [A] > 0 ∧ ∂µAµ = 0
}

. (2.41)

This operator is obviously positive for vanishing A and therefore by continuity a small neigh-
borhood of A = 0 is contained in the Gribov region. Additionally this regions is convex,
bounded in every direction and every gauge orbit passes at least once through the Gribov
region [64, 65]. The boundary of the Gribov region ∂G - often called the first Gribov hori-
zon - is characterized by the existence of (at least) one zero mode in the Gribov operator.
This implies that its determinant vanishes on ∂G and the divergence theorem used in the
derivation of the DSEs Eq. (2.15) is also valid for the restricted integration. Unfortunately,

6Throughout this thesis, the chiral representation of the Dirac algebra will be used [6]. The corresponding
Euclidean Dirac matrices are defined in App. A.1.
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2.1. Non-Perturbative Quantum Chromodynamics

even this is not sufficient to fix the gauge completely [66]. Fixing the gauge completely inside
the first Gribov region leads to the definition of the fundamental modular region [67], which
minimizes the L2 norm on the gauge orbits {GA} with respect to G globally. It is an open
issue how to implement this restriction in functional approaches and only the restriction to
ΩG is assumed here.

Using Slavnov-Taylor identities [68,69] - they constitute the Ward-Takahashi identities [70,71]
of the non-Abelian gauge symmetry - it is possible to derive relations between the renormal-
ization constants in Eq. (2.40) like (see e.g. [1, 28])

Z1 = ZgZ
3/2
3 , Z1F = ZgZ2Z

1/2
3 , Z̃1 = ZgZ̃3Z

1/2
3 , Z4 = Z2

gZ
2
3 . (2.42)

In Landau gauge, one additionally has non-renormalization of the ghost-vertex Z̃1 = 1 [69]
which implies Z1F = Z2/Z̃3. Furthermore, the Slavnov-Taylor identities can be used to show
that even the dressed gluon propagator is transversal to its momentum (see e.g. [28]).

After this discussion of gauge symmetry, further important symmetries of the QCD action
shall be investigated next.

Symmetries and their Breaking

Symmetries are one of the fundamental building blocks of physical theories, as demonstrated
by the gauge principle. Apart from local symmetries, the action of QCD Eq. (2.37) respects
also a number of global symmetries. Before discussing the various symmetries of QCD, it is
worthwhile to check how they can be broken.

It might happen that a symmetry is only approximate. As an example one could think of a
ferromagnet described by the Heisenberg model with only nearest neighbor spin interactions.
If the ferromagnet were isolated in space and time, it would possess a perfect symmetry
under rotations. In contrast to this, any real ferromagnet will experience electromagnetic
forces from its surroundings, which break the rotational symmetry explicitly.

In quantum field theories one has two additional possibilities of breaking symmetries which
are respected by the classical action S. The first of these possibilities is connected to the
ground state of the theory. If this ground state would respect a given symmetry, it would
transform trivially under the corresponding conserved charges Q which are the generators
of the symmetry transformation on the state space. These symmetry transformations would
then give rise to a characteristic multiplet structure in the spectrum and the theory is said
to be in its Wigner-Weyl realization. Another possibility is that the ground state does
not respect a subset of symmetry transformations of the full classical symmetry. Whenever
this happens, the symmetry is called spontaneously broken or, equivalently, the theory is
said to be in its Nambu-Goldstone realization. One observable consequence of spontaneous
symmetry breaking is the absence of the corresponding multiplet structure in the spectrum.
Any spontaneously broken symmetry can also be characterized by a non-vanishing order
parameter which is defined with the help of some operator Φ as

〈[Q,Φ]〉 6= 0 , (2.43)

where Q is the charge corresponding to some spontaneously broken current jµ
7. In the follow-

7To be more precise, the defining integration of the charge needs to be restricted to some finite volume Ω.
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ing, 〈Φ〉 will be called order parameter, when actually the more precise statement Eq. (2.43)
is meant. When a continuous symmetry is spontaneously broken, there exist infinitely many
degenerate ground states, which are connected by the broken symmetry transformations. Any
of these ground states can be used to construct the state space, which leads to equivalent
representations of the theory without overlap [72]. This can be illustrated with the quartic
effective potential of a single complex scalar field given by V (φ) = −µ2|φ|2+λ|φ|4 and shown
in Fig. 2.4.

Figure 2.4.: Mexican hat potential (picture from [73]).

This effective potential is invariant under U(1) phase rotations of the complex field φ and
shows a set of degenerate ground states connected by a phase rotation. Around any minimum
one has two possible excitations: one massive radial excitation and one massless excitation in
direction of the phase rotation. In general, any spontaneously broken, continuous symmetry
implies the existence of such massless modes, which are called Goldstone bosons [9–11]. In
case of relativistic quantum field theories, the number of Goldstone bosons is given by the
number of broken symmetry generators and they have the quantum numbers of the broken
currents. For example, the Heisenberg ferromagnet shows spontaneous magnetization in its
ground state, which breaks rotational symmetry. The corresponding Goldstone modes are
given by collective spin excitations, which are called magnons [72].
Another possibility of breaking a symmetry in a QFT is by quantum anomalies. Any interact-
ing quantum field theory in four space-time dimensions has to be regularized and renormal-
ized. It can happen that the regularization procedure cannot be performed without breaking
some of the classical symmetries. Even after the corresponding cutoff is removed, effects
of this symmetry breaking may survive which are due to quantum fluctuations. When this
happens, the corresponding symmetry is called anomalously broken [3].

Symmetries of QCD

At vanishing quark masses, the QCD action Eq. (2.37) is invariant under rescaling of space-
time, if additionally the fields are rescaled according to their mass dimension

x→ x′ = e−σx , (2.44a)

A(x) → A′(x′) = eσA(eσx′) , (2.44b)

q(x) → q′(x′) = e3σ/2q(eσx) . (2.44c)

If this symmetry were realized, QCD would look the same on all length scales, which is
obviously not the case in Nature. This symmetry is explicitly broken by the non-vanishing
quark masses. But even at vanishing quark masses one would intuitively expect the symmetry
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2.1. Non-Perturbative Quantum Chromodynamics

to be broken by regularization. More precisely, it is broken by the so-called trace anomaly [74]
and an order parameter can be given by β(g)/g3〈F a

µνF
a
µν〉. The trace anomaly is present

even in the limit of vanishing quark masses, and implies the ermergence of a characteristic
scale, i.e. ΛQCD. This phenomenon of the creation of a scale from a dimensionless coupling
is often called dimensional transmutation. Due to asymptotic freedom and perturbative
renormalizability of QCD, this scale can be used to specify the theory as it corresponds to
its only renormalizable coupling constant g.

One important approximate symmetry of the quark sector of QCD is chiral symmetry. If the
quark spinors were massless, the left and right handed components of the spinor qT = (qL qR)
would decouple. This can be seen from the interchange of left and right handed component
in q̄ = −iq†γ4 = (q†R q†L) and

Dµγµ =

(

02×2 −iD412×2 −Diτ
i

−iD412×2 +Diτ
i 02×2

)

, (2.45)

where τ i are the Pauli matrices defined in App. A.1 and (02×2) 12×2 is the two by two (zero)
unit matrix. Therefore the QCD Lagrangian with Nf massless flavors is invariant under
separate unitary rotations of left and right handed spinors in flavor space

qL,R → UL,R qL,R , UL,R ∈ U(Nf )L,R , (2.46)

and the corresponding symmetry group is written as U(Nf )L × U(Nf )R. In Nature this
symmetry is broken explicitly by the finite quark masses. It can however be treated as an
approximate symmetry for all flavors which are light compared ΛQCD ≈ 200 MeV. The heavier
flavors, on the other hand, effectively decouple above this scale and are therefore ignored in
the remaining discussion [53]. Chiral symmetry is approximately realized for Nf = 2, as the
bare up and down quark mass is of O(1) MeV and to a lesser degree also for Nf = 3 with
the bare strange quark mass ms ≈ 100 MeV in the modified MS scheme at µ ≈ 2 GeV [8].
If this symmetry were realized in its Wigner-Weyl form one would expect a corresponding
multiplet structure in the spectrum. Especially for the nucleons, which are made of up and
down quarks, one would expect corresponding almost degenerate (parity) partners which are
not found in the spectrum. Additionally, three very light non-strange mesons, the pions are
found. From this one concludes that - in the chiral limit and for small enough Nf - one has
the spontaneous symmetry breaking pattern

U(Nf )L × U(Nf )R → U(Nf )V ≡ U(Nf )L+R , (2.47)

where U(Nf )L+R denotes the transformations UL = UR. The corresponding order parameter
is given by the chiral condensate

〈q̄q〉 = 〈q†RqL + q†LqR〉 , (2.48)

which is invariant under transformations UL = UR, but breaks the symmetry under other
transformations. The remaining multiplet structure, e.g. the octets, shown in Fig. 2.5 for
Nf = 3 can then be attributed to this vector symmetry, whereas the light pseudoscalar
mesons are the pseudo Goldstone bosons of the broken symmetry.

If one does a careful counting of the number of broken symmetry generators, one finds that
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Figure 2.5.: Pseudoscalar meson octet (singlet) with pions (π) kaons (K), η, η′- mesons (left
panel) and baryon octet (singlet) with neutron (n), proton (p) and hyperons
(right panel) (pictures from [73]).

actually there should be four light modes for two flavors. On the other hand, only the three
pions are found to be light. Similarly, for Nf = 3 one would expect nine light mesons, whereas
only three pions, four kaons and the η-meson are light enough to count as pseudo Goldstone
modes [75]. In order to understand this, it is useful to rewrite the phase transformations of
chiral symmetry in a vector-axialvector representation as

U(Nf )L × U(Nf )R ∼= U(1)V /ZNf
× SU(Nf )L × SU(Nf )R × U(1)A/Z2Nf

. (2.49)

The vector transformations correspond to combined left and right phase rotations with ÛL =
ÛR ∈ U(1)/ZNf

and the axial transformations to Û∗
L = ÛR ∈ U(1)/Z2Nf

. The cyclic groups
ZNf

have been divided out to get rid of double covering, as is discussed in more detail in
App. B.3. The crucial point is that the current corresponding to the U(1)A/Z2Nf

factor group
is broken by the axial anomaly [76–78]. It can be shown that the fermionic measure of the
path integral cannot be regularized in a way that keeps gauge invariance and the U(1)A/Z2Nf

symmetry at the same time [79]. With this symmetry being anomalously broken, the large
mass of the η′-meson - which would otherwise constitute the additional pseudo Goldstone
mode - can be explained. It is furthermore possible to relate this anomalous mass to a
quantity stemming from pure gauge theory. The Witten-Veneziano relation [80, 81] is given
by

m2
η′ +m2

η − 2m2
K

6
=
χYM

f2π
, (2.50)

whereK denotes the kaon, fπ the pion decay constant and χYM is the topological susceptibil-
ity of pure Yang-Mills theory. To understand the relevance of this relation one can investigate
QCD with Nf = 3 in the chiral limit. The right hand side of the above relation will not be
modified by this limit, as it is obtained in the pure gauge theory. On the left hand side, one
has due to spontaneous chiral symmetry breaking m2

η = m2
K = 0 and furthermore f2π > 0.

The above relation therefore provides a direct link between the anomalous η′-mass and the
topological susceptibility χYM , which can be seen as the corresponding order parameter.
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Numerical results for mη′ in QCD have e.g. been obtained on the lattice [82] and in a DSE
based Bethe-Salpeter equation [83].

Additionally, ’t Hooft was able to show that integrating topologically non-trivial configu-
rations in the path integral gives a determinant contribution to the fermionic Lagrangian
density [84,85]

eiθQCD det
(

qLq
†
R

)

+ e−iθQCD det
(

qRq
†
L

)

, (2.51)

where θQCD is the coefficient of a term proportional F a
µνǫµνρσF

a
ρσ . Such a theta term θQCD

would be allowed in the QCD action, as it only violates CP . Experimentally θQCD has been
found to be very small, without any apparent theoretical reason. This unexplained smallness
of the theta term is often called the strong CP problem [86, 87]. The ’t Hooft determinant
Eq. (2.51) breaks the U(1)A/Z2Nf

part of chiral symmetry already in the Lagrangian, as is
discussed in more detail in App. B.3.

The gauge symmetry of the QCD action Eq. (2.37) has already been discussed in detail. By
Elitzur’s theorem it is not possible to spontaneously break local symmetries [88]. On the other
hand, it might still happen that after gauge fixing there is some remnant global symmetry,
which can be spontaneously broken. In Landau gauge QCD, apart from the global gauge
symmetry, there is another remnant of gauge symmetry corresponding to anticommuting
gauge transformation, called BRST symmetry [89,90]. It allows the definition of the nilpotent
BRST operator s which generates these transformations on the c-numbered fields. The
corresponding nilpotent BRST charge QBRST can be used to specify the physical space as
the cohomology [91]

Hphys = kerQBRST /imQBRST , (2.52)

where bar denotes the closure. This construction is necessary, because of the presence of
states with negative norm as e.g. the time components of the gauge field. Furthermore,
states which are not annihilated by the BRST charge are not gauge-independent. Neither of
these states can be physical, the former, because their presence would not allow a probabilistic
interpretation and the latter, because predictions cannot depend on the chosen gauge. The
above definition of the physical subspace takes care of both issues [92].

As will be discussed in Sec. 2.2, at finite temperature T the infinite time-direction is replaced
by the compact interval [0, 1/T ]. In this case, (fermions) bosons acquire (anti-)periodic
boundary conditions

ψ(~x, x4 + 1/T ) = ±ψ(~x, x4) . (2.53)

These boundary conditions have to be invariant under gauge transformations, which also
restricts the boundary conditions of the allowed transformations. Consider a general twisted
gauge transformation G with

Gh(~x, x4 + 1/T ) = hGh(~x, x4) , (2.54)

for some h ∈ SU(3) [93, 94]. Applying this transformation to the gluon field, its boundary
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conditions are modified as

GhAµ (~x, x4 + 1/T ) = h

(

Gh(x)Aµ(~x, x4 +
1

T
)G†

h(x)−
i

g
(∂µGh(x))G

†
h(x)

)

h† (2.55)

= h GhAµ(~x, x4)h
† .

If h would commute with Aµ, the boundary conditions of the gluon field are not affected by
such a twisted gauge transformation. The set of all elements of a group that commute with
all other group elements is called the center of a group. The center of SU(3) is isomorphic
to the cyclic group Z3, which can be represented with the phases

Z3
∼= {1, ei2π/3, ei4π/3} · 13×3 . (2.56)

Hence, the pure gauge theory is invariant under the center transformations Gz with z ∈ Z3.
Next it is interesting to investigate, what happens to the boundary conditions of matter in
the fundamental representation under Gz

GzψF (~x, x4 + 1/T ) = ±z GzψF (~x, x4) , (2.57)

where the (anti-)periodic boundary conditions of (fermions) bosons have been taken into
account. In other words, a center transformation changes the boundary condition of a fun-
damental field and the transformed field can be written as [95]

GzψF (~x, x4) =
GψF (~x, x4)e

i arg(z)Tx4 . (2.58)

Therefore, matter in the fundamental representation of the gauge group breaks center sym-
metry explicitly. On the other hand, matter in the adjoint representation transforms as the
gluon field without the derivative term

GψA(x) = G(x)ψA(x)G
†(x) , (2.59)

and its boundary conditions are unaffected by center transformations. An order parameter
for this center symmetry is given by the Polyakov loop [96,97]

L = tr
[

Peig
∫ 1/T
0

dx4A4(~x,x4)
]

, (2.60)

where P denotes path ordering. Under a twisted gauge transformation Gz, the expectation
value of the Polyakov loop picks up a phase z due to path ordering and running once around
the torus in x4 direction

〈L〉 → z〈L〉 . (2.61)

Therefore a non-vanishing Polyakov loop indicates spontaneous breaking of center symmetry.

Infrared Behavior and Confinement

From experiments it is clear that neither quark nor gluon fields represent physical particle
excitations. The only things ever found in experiments are mesons and baryons. A sound
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2.1. Non-Perturbative Quantum Chromodynamics

theoretical description of confinement is one of the toughest problems in QCD.

One intuitive picture describes confinement as the emergence of a constant force between an
infinitely heavy quark-antiquark pair at large distances. This linearly rising potential can be
related to the Wilson loop observable [98]

W ∝ trP exp

[

ig

∮

C
dxµAµ(x)

]

. (2.62)

If the expectation value of the Wilson loop obeys an area law

〈W 〉 ∝ exp (−σArea(C)) , (2.63)

one can deduce a linearly rising potential [94]. Absence of confinement is then characterized by
the dependence of 〈W 〉 on the perimeter of the loop C. In real QCD with finite quark masses,
it will be energetically favored at some finite distance to create another quark-antiquark pair,
i.e. a second meson. Therefore the string of gluons connecting the quark anti-quark pair
breaks at a finite distance. This picture has been nicely confirmed in lattice QCD [99].

In this thesis the question is posed, if and how such a linearly rising potential can be obtained
from n-point functions. Due to the exponentiation of the gluon field, the Wilson loop depends
on infinitely many n-point functions. A priori there is no compelling reason, why a finite set
of n-point functions should already lead to confinement in the sense of a linearly rising
potential. On the other hand, one can show that an infrared singular quark interaction can
provide such a linearly rising potential. The starting point for this is a quark 4-point function
which behaves as

p3

p2p4

p1

p1→p3
∝

1

(p1 − p3)4
,

in the limit of vanishing momentum exchange. If it is properly regularized - to make it a
well-defined distribution on R

4 - one can take its Fourier transform. In the non-relativistic
limit this leads to a heavy quark potential with a term linear in the distance r, i.e. the wanted
linearly rising potential [100]. Therefore, confinement can in principle be contained already
in a single n-point function.

Actually, a similar 1/k4 singularity had been proposed earlier to exist already in the gluon
propagator, which would also suffice to yield a linearly rising potential. Careful investigations
of the infrared properties of propagators in Landau gauge Yang-Mills theory with DSEs
and the FRG have found two possible self-consistent infrared solutions [101–106]. Both
solutions can be characterized by a power law behavior at small momenta in the (ghost)
gluon propagators proportional ((p2)κgh−1) (p2)κg−1. In case of the scaling solution, these
two exponents are related by κg = −2κgh ≡ 2κ > 0. The other consistent solution, often
referred to as decoupling or massive solution, corresponds to κg = 1 and κgh = 0. Neither
solution provides a 1/k4 singularity in the gluon propagator.

Apart from this, there are arguments for both infrared solution types. The most important
argument for the decoupling solution is that it is the solution usually found in lattice calcu-
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lations [107, 108]. It has been pointed out, however, that the quantitative infrared behavior
of the propagators depends on the precise gauge fixing procedure [109, 110]. Therefore, this
family of solutions might correspond to different ways of lifting the Gribov ambiguity. In this
case all solutions would be valid and one could choose solutions, which are especially well
suited for the investigation of specific physical phenomena, as e.g. confinement.

There are also compelling arguments for the scaling solution, which are rooted in another
confinement criterion: The idea of the Kugo-Ojima confinement scenario is that the physical
subspace Eq. (2.52), which is supposed to describe the physical, asymptotic states, does not
contain any colored states [91]. In this case, no quarks, gluons and especially no ghosts
would appear as asymptotic states. With the BRST charge QBRST it is then possible to
show the existence of quartets of states that do not contribute to the physical S-matrix
defined on Hphys. One example of such a confined quartet would be given by a ghost, an
anti-ghost, a longitudinally polarized gluon and the corresponding gauge-fixing multiplier
field (see also [111]). To show confinement by this quartet mechanism, it is necessary to show
that the remaining global gauge symmetry is not spontaneously broken and that the cluster
decomposition property is violated.

One argument for the scaling solution is now that an unbroken global color symmetry already
results in the scaling solution in the Kugo-Ojima confinement scenario [106]. In this scenario a
condition for confinement can be given in terms of the ghost propagator Dgh(p

2) ∝ G(p2)/p2

as

1

G(0)
= 0 , (2.64)

which is not fulfilled by the decoupling solutions.

Also the cluster decomposition property can be used to argue in favor of the scaling solution,
but this requires a little detour. It states that for any set of n fields {Φi} and some space-like
λ ∈ R

4 one has

lim
λ→∞

〈Φ1(x1) · · ·Φi(xi)Φi+1(xi+1 + λ) · · ·Φn(xn + λ)〉 (2.65)

= lim
λ→∞

〈Φ1(x1) · · ·Φi(xi)〉 〈Φi+1(xi+1 + λ) · · ·Φn(xn + λ)〉 .

In other words, this is causality in the sense that measurements at large space-like distances
cannot affect each other. It is possible to prove cluster decomposition from the Wightman
axioms, which however requires a state space of positive norm [13]. If QCD had this property,
it would be possible to separate a colorless product of operators of non-vanishing vacuum
expectation values into clusters of colored operators at large space-like distances. These
colored operators would then necessarily have non-vanishing vacuum expectation values by
Eq. (2.65), which one wants to avoid in a confining theory with only colorless physical states.
In QCD, violation of cluster decomposition is not inconsistent as it does not have a state
space of positive norm. Furthermore, cluster decomposition implies that in momentum space
connected n-point functions do not have δ-like singularities, except for the overall momentum
conserving δ-function [2]. A connected four point function can be rewritten as
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2.1. Non-Perturbative Quantum Chromodynamics

= + + permutations,

where different field types have not been discriminated. Assuming no non-trivial cancellation
on the right hand side 8 and well behaved quark propagators, a 1/k4 singularity in the 1PI
4-point function can be related to such a singularity in the connected 4-point function. It has
been stated before that such a singularity has to be regularized also in the infrared, to make it
a well-defined distribution on R

4. This can be done in the Epstein-Glaser spirit of identifying
its singular support and scaling degree [112]. From this one sees that regularization demands
the introduction of one δ-like counter term. On the other hand, the appearance of such a δ-like
singularity in the connected 4-point function implies the absence of cluster decomposition.

One important aspect of the scaling solution in the Yang-Mills sector is its possible influence
on the infrared behavior of quark n-point functions. It has been found that, given such a
scaling solution in the pure gauge theory, there exist again two possibilities for self consistent
solutions in the quark sector - one infrared finite and one infrared scaling solution [113]. The
scaling solution comes with an infrared singularity in the quark-gluon vertex

p− q

qp

p→q

∝
(

(p − q)2
)−1/2−κ

.

Plugging this into a skeleton expansion of the quark 4-point function one would get at lowest
order

o

np

m

=

m o

n

a

p

+ . . .

For a soft gluon exchange this results - by adding the exponents of the gluon propagator and
the two vertices: 2κ − 1 + 2(−κ − 1/2) = −2 - exactly in a 1/k4 singularity. A similar set
of self-consistent infrared singular solutions has been found in scalar QCD, where the quarks
are replaced by fundamentally charged scalars [114]. This is especially interesting, since the
number of tensor structures is considerably smaller in the scalar case, which makes numerical
investigations easier [115].

Before going on, other approaches to confinement shall be briefly mentioned. In the Gribov-
Zwanziger scenario of confinement [63, 116–118], it is possible to derive conditions for the
ghost and gluon dressing functions, which are again only consistent with the scaling solution.
From positivity of the physical subspace one immediately obtains that n-point functions which
correspond to physical states have to fulfill a certain positivity criterion [13] in their Minkowski

8This type of cancellation will be argued away in Ch. 3 with the help of the color structure of 1/k4 divergences
in the 4-point function.
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formulation. Positivity also relates to the existence of a Källen-Lehmann representation
[119, 120], which restricts the allowed values for the wave function renormalization of fields
corresponding to physical excitations to values Z ≤ 1, whereas composite particles correspond
to Z = 0. In the Euclidean formulation positivity translates into a property termed reflection
positivity [16,17]. Unfortunately, such a violation of positivity is at best a necessary condition
for confinement, as also unstable excitations are not part of the physical subspace and the
corresponding correlators can violate positivity as well. Other possible mechanisms and
models for confinement include center vortices [121–126], monopoles and Abelian dominance
[127] and the gluon chain model [128, 129]. Additionally it can be shown, that there is no
linearly rising potential without linearly rising Coulomb potential [94, 130].

At finite temperature a characterization of (de-)confinement can be given in terms of the free
energy of infinitely heavy test quarks. If the free energy of such a static quark were infinite,
it would not be possible to create one, i.e. it is confined. On the other hand, a finite free
energy could be used to identify deconfinement. The free energy of a single quark Fq is given
by

e−Fq/T =
Zq

Z
, (2.66)

where Zq is the partition sum (see Sec. 2.2) in the presence of a static quark. Actually, such
a static quark is described by the Polyakov loop Eq. (2.60) [97,131]. Therefore, one gets the
relation

e−Fq/T ∝ 〈L〉 . (2.67)

A vanishing Polyakov loop corresponds to infinite Fq and confinement in this sense. From
the previous identification of the Polyakov as an order parameter for center symmetry, the
deconfinement phase can be related to spontaneously broken center symmetry. In presence
of dynamical quarks - which explicitly break center symmetry - this is only an approximate
order parameter. But dynamical quarks also spoil the characterization of confinement in
terms of a linearly rising potential due to string breaking. Actually, this discussion is not
restricted to quarks and applies to every form of fundamentally charged matter.

To summarize: a simple picture of confinement in terms of n-point functions is still missing.
Although there exist very convincing results from lattice calculations, it would be preferable
to have a qualitative mechanism for confinement. The associated problems are most certainly
linked to the change of degrees of freedom at close to ΛQCD. Above this scale, perturbation
theory works, i.e. quarks and gluons at high energies can be treated as approximate asymp-
totic states, which cannot be the correct picture below the confinement scale. One main
questions is, whether a qualitatively correct picture of confined QCD at low energies is possi-
ble with a finite number of n-point functions in terms of quarks and gluons. Although QCD is
defined solely by the value of the strong coupling at large momenta, it might still be the case
that even a qualitatively correct picture of confinement requires information from infinitely
many n-point functions. In such a case, describing confinement in terms of n-point functions
would probably be even worse than using a Fourier series for representing the Heaviside func-
tion (point wise). In Ch. 3 at least the consistency of confinement, as obtained from a finite
number of n-point functions in terms of 1/k4 singularities, will be investigated.
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2.1.3. Effective Descriptions

Taking the change in degrees of freedom around ΛQCD seriously, it is possible to develop
effective descriptions in terms of new fields. Such descriptions are usually built on symmetry
principles, where chiral symmetry is an important guide line in many cases.

One effective field theory is given by chiral perturbation theory which uses the Goldstone
bosons to obtain an effective description [3, 132, 133]. It works very well for two quark
flavors and to a lesser degree also for three flavors. Chiral perturbation theory is a very
good low energy expansion for QCD. One problem, however, is that at higher energies, this
expansion becomes less reliable. This is, because it misses important additional degrees of
freedom, especially, when going to energies above 0.5 GeV. Therefore, chiral perturbation
theory provides in general no reliable quantitative description of phenomena at temperatures
T & 0.1 GeV.

A simple description of spontaneous chiral symmetry breaking is provided by the Nambu-
Jona-Lasinio (NJL) model [134]

LNJL = iq̄∂µγµq +
λ

2

[

(q̄q)2 − (q̄γ5q)2
]

. (2.68)

Due to the presence of a pertubatively non-renormalizable four-quark interaction, this model
depends also on the cutoff. Explicit symmetry breaking can be added with a quark mass
matrix as in Eq. (2.37). Mesons, which are important for long range phenomena, as well as
baryons appear in this model only as bound states. Nevertheless, it finds a large range of
applications, especially concerning the QCD phase structure at large densities [135].

Quark-Meson Model

Another effective description of chiral symmetry and its breaking can be given in terms of
the quark-meson model. It introduces a complex mesonic field matrix in flavor space, which
resembles quark bilinears

qLq
†
R ∝ Σ = (σa + iπa)T a , (2.69)

where T a, a = 1, . . . , Nf − 1 are the generators of SU(Nf ) (see App. A.2) and T 0 = 1Nf×Nf
.

The above resemblance immediately implies the transformation law

Σ → ULΣU
†
R , (2.70)

under chiral symmetry. Via a chirally symmetric Yukawa interaction h, quarks are coupled
to this mesonic field to obtain the Lagrangian density of the quark-meson model [136]

Lqm = iq̄∂µγµq + h
(

q†LΣqR + q†RΣ
†qL
)

+ tr
[

∂µΣ∂µΣ
†
]

+ U(Σ) . (2.71)

Here the potential U(Σ), describing self-interactions in the mesonic sector, and a kinetic
mesonic term have been introduced. To preserve chiral symmetry, the potential U has to be
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a function of the chiral invariants ρi defined by

ρi = tr

[

(

ΣΣ†
)i
]

. (2.72)

These are obviously invariant under Eq. (2.70) and only ρ1, . . . , ρNf
are actually independent

[136]. If the above Lagrangian is to define a renormalizable theory, only ρ1 and ρ2 can be
taken into account as ρi = O(Σ2i). On the other hand, there is no such restriction with the
non-perturbative FRG.

The axial anomaly can be implemented by translating the ’t Hooft determinant Eq. (2.51)
into a mesonic language. Setting θQCD = 0, the mesonic potential can also depend on

ξ = detΣ + detΣ† , (2.73)

which transforms as the original quark determinant under chiral symmetry.

From the transformation law Eq. (2.70), the order parameter of spontaneous chiral symmetry
breaking in this model is given by the mesonic field Σ. If its expectation value is proportional
the unit matrix

〈Σ〉 = σ 1Nf×Nf
, (2.74)

invariance under Eq. (2.70) leads to the condition UL = UR, which yields the same symmetry
breaking pattern as Eq. (2.47). This condensate induces degenerate constituent quark masses
mq = hσ via the Yukawa interaction.

The explicit breaking of chiral symmetry is implemented via a term

− tr
[

C
(

Σ+ Σ†
)]

. (2.75)

This leads to a non-vanishing expectation value 〈Σ〉 and as a consequence also to non-
vanishing bare quark masses. In the vacuum, the quantum numbers of the ground state
dictate the form of C, restricting it to be a diagonal matrix. The diagonal entries in C allow
then an adjustment of the different bare quark masses.

Both effective descriptions, the NJL model as well as the quark-meson model, miss explicit
gluonic degrees of freedom. In the presented form, they are therefore only applicable to
investigations of the chiral transition. This can be improved e.g. by the inclusion of a
Polyakov potential [137–148].

Transcending the Model Status via Dynamical Rebosonization

Effective descriptions introduce a model parameter dependence. Recent progresses with the
FRG, however, have shown that a dynamical change from QCD degrees of freedom to mesons
is possible [49, 149–151]. Investigations within the FRG show that four-quark interactions
as in the NJL model are created when the strong coupling exceeds a critical value [152].
In the chiral limit, the onset of spontaneous chiral symmetry breaking is then indicated by
a divergence of the corresponding coupling, i.e. a pole in the quark 4-point function at
zero momentum. On the other hand, it is possible to replace four-quark interactions via a
Hubbard-Stratonovich transformation, which introduces a mesonic auxiliary field [153, 154].
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This rebosonization leads to the quark-meson model without kinetic term, i.e. the mesons
correspond still to bound states due to their vanishing wave function renormalization Z = 0.
Another possibility is to employ a dynamical rebosonization by rewriting the four-quark
interactions created during the RG flow continuously into renormalizable mesonic interac-
tions [149]. Independent of the details in the mesonic sector at large scales, this provides a
continuous transition from QCD degrees of freedom via an intermediate description includ-
ing bound states of quarks to an effective description in terms of the constituent quarks,
condensates and mesons of the quark-meson model [152]. A similar independence of the
infrared effective description from the ultraviolet details in the mesonic sector has been re-
ported in [136, 155]. In renormalization group language, this can also be understood in a
simple fixed point picture. For a large range of initial values and scales, the flow is governed
by a bound-state fixed point of QCD with gluons and quarks. Approaching the critical gauge
coupling strength in the infrared lifts this fixed point and pushes the theory into a phase of
spontaneous chiral symmetry breaking with mesons which behave as fundamental degrees of
freedom, i.e. Z 6= 0 [152].

2.2. Thermodynamics and Phases

Before discussing the conjectured phase structure of Quantum Chromodynamics, the most
important basics of thermal field theory are briefly summarized to fix the notation [156]. All
thermodynamic quantities of a statistical system are characterized by its grand canonical
partition function Z ≡ Z(V, T, {µi}), which is given by the trace over the density matrix

ρ̂ = exp

[

1

T
(H− µiNi)

]

. (2.76)

Here H is the Hamiltonian and {Ni} are the number operators for the different conserved
quantum numbers with corresponding chemical potentials {µi}. The expectation value of
any observable can be obtained as

〈O〉 = TrOρ̂
Tr ρ̂

. (2.77)

In the infinite volume limit V → ∞, one can obtain the pressure, particle number and entropy
from the grand canonical partition function

P =
∂(T lnZ)

∂V
, Ni =

∂(T lnZ)

∂µi
, S =

∂(T lnZ)

∂T
. (2.78)

Additionally, the energy is obtained via the Legendre transform

E = −PV + TS + µiNi . (2.79)

In a non-interacting gas, the pressure is actually given by P = T lnZ/V .

Similar to the derivation of the path integral from the canonical formulation of quantum
field theory, it is possible to express the trace over Eq. (2.76) as a path integral. The grand
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canonical partition function is then given by

Z[T, {µi}; j] =
∫

φ(~x,0)=±φ(~x,1/T )

Dφ exp






−S[T, {µi};φ] +

∫

x∈Rd−1×[0,1/T ]

φ(x)j(x)






. (2.80)

Here, path integration has to be restricted to configurations of (anti-)periodic boundary
conditions for (fermions) bosons. The exponent S[T, {µi};φ] is the Euclidean action, where
integration in time-direction is restricted to [0, 1/T ]. Additionally, the negative number
operators of any conserved quantum number are contained in S. For quarks q, the number
operator is given by

Nq = q†q , (2.81)

which corresponds to the conservation of one third of the baryon number. The finite interval
in time direction implies that the corresponding momentum space variable is discrete, as the
Fourier transform in xd is replaced by a Fourier series

∫

dd−1p

(2π)d−1

∫

dpd
2π

−→ T
∑

ωn(θ)
n∈Z

∫

dd−1p

(2π)d−1
. (2.82)

The Fourier modes

ωn(θ) = T (2πn + θ) , n ∈ Z , (2.83)

are called generalized Matsubara frequencies, where (θ = π) θ = 0 ensures (anti-)periodic
boundary conditions for (fermions) bosons.

The thermodynamic ground state corresponds to φcl[j = 0] and by straightforward general-
ization of Eq. (2.27) one obtains

Γ[T, {µi};φcl = φcl[0]] = − lnZ[T, {µi}; 0] . (2.84)

Recalling the definition of the effective potential Eq. (2.14) and replacing Vd → V/T one
obtains in a dilute gas approximation

P = −Ω(T, {µj};φmin) ,
Ni

V
= −Ω(T, {µj};φmin)

∂µi
,
S

V
= −Ω(T, {µj};φmin)

∂T
, (2.85)

where Ω(T, {µi}; φ̄) is the effective potential (grand canonical potential) at finite temperature
and chemical potential and φmin its minimum. These relations lead furthermore to the energy
density via Eq. (2.79).

Phase Transitions and Critical Phenomena 9

In a system with a finite number of degrees of freedom, the grand canonical partition function
is a finite sum of analytic contributions, and therefore analytic. An infinite number of degrees

9See e.g. [157,158] for a more thorough discussion of the topics sketched in this section.
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of freedom can be obtained in two ways. Already in a classical system it is possible to take
the thermodynamic limit N,V → ∞, while keeping the density constant. Furthermore, a
quantum field in the continuum describes already infinitely many degrees of freedom, but
here only the thermodynamic limit case will be discussed.

Macroscopic objects are usually described by a huge number of microscopic degrees of free-
dom, and therefore the thermodynamic limit is a good approximation. This can lead to the
emergence of quasi non-analyticities in the grand canonical partition function, which in turn
lead to discontinuities and divergences in the derivatives of Z, starting at a given order. It is
often possible to find a quantity, called order parameter, which reflects such a discontinuity
and in many cases such a discontinuous change is related to a change in the symmetry of the
ground state.

The Heisenberg ferromagnet is a good example to illustrate such phase transitions. As noted
previously, the ferromagnet is in a state of spontaneous magnetization at vanishing or low
temperatures. As the temperature is increased, more and more energy is pumped into the
system and the thermal fluctuations reduce the magnetization successively. At some point
the fluctuations are strong enough to make the net magnetization M vanish completely and
the ground state of the ferromagnet is symmetric again. Exactly at the critical temperature,
where the magnetization vanishes for the first time, there is a discontinuity in the derivative
of the corresponding order parameter M .

A qualitatively different example is given by the liquid-gas transition of water. Given a
constant pressure close to the atmospheric pressure, water is liquid up to some temperature
around 100◦ Celsius. At this temperature, two phases of different density coincide. As more
energy is added to the system, the system goes into its gaseous phase. In this case the order
parameter is the density, which itself already shows a discontinuity at the phase transition.

Therefore, phase transitions can be classified by the behavior of the order parameter at the
phase transition, which is either continuous or discontinuous. A transition of the latter type
is called of first order, whereas second-order phase transitions fall in the class with continuous
order parameter.

In case of the effective potential Ω(T, {µi}; φ̄), a first-order transition is often indicated by a
discontinuous jump of the minimum, which implies discontinuities in the thermodynamical
quantities derived from Ω(T, {µi};φmin). Hence, the minimum can often serve as an order
parameter - especially in cases where the phase transition is related to a change in the
symmetries of the ground state. For a first-order transition it is often possible to successively
decrease the discontinuous jump in the minimum by adjusting T, {µi}, while staying exactly
on the line where the phase transition occurs. Assuming a very simple model for the effective
potential in case of a scalar field 10

Ω(T, µ; φ̄) = m2(T, µ)φ̄2 + λ3(T, µ)φ̄
3 + λ4(T, µ)φ̄

4 , (2.86)

a discontinuous jump in the minimum can occur if λ3 < 0 and m2, λ4 > 0, as this implies the
existence of two local minima. Fixing the temperature as function of the chemical potential
T (µ) such that both minima yield the same value of the effective potential, one can write the

10Alternatively, the potential m2φ̄2+λφ̄4+λ2φ̄
6, which respects the symmetry transformation φ̄ → −φ̄ could

have been chosen.
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potential as

Ω(T (µ), µ; φ̄) = a(T (µ), µ)φ̄2(φ̄− φmin(T (µ), µ))
2 , (2.87)

where the first minimum is at the origin, φmin is the second minimum and a(T, µ) > 0.
Varying the chemical potential to decrease φmin leads to a smaller jump in the minimum. In
the limit where both minima coincide, there is no first-order transition anymore. Additionally,
the second derivative of the potential at the origin vanishes at this point due to degeneracy
of the minimum. Therefore, the second-order transition at this critical endpoint of a line of
first-order transitions is characterized by the emergence of a massless excitation. This is also
seen in a divergent correlation length, which is a measure of the characteristic length scale for
fluctuations in the system. More precisely, it defines the length scale, where the exponential
suppression in the connected 2-point function of the critical mode sets in. Going even further,
the second-order phase transition turns into a crossover, where no clear phase separation is
possible. Such a behavior can for example be observed in the liquid-gas transition of water. At
its critical endpoint one can observe scale invariance in the sense of liquid and gas regions that
fluctuate on all length scales. Density fluctuations with sizes comparable to the wavelengths
of visible light lead to scattering and the liquid-gas mixture becomes milky, which is termed
critical opalescence.

If a phase transition is related to some spontaneously broken symmetry, it is usually not
necessary to perform such a fine-tuning as the minima are connected by symmetry transfor-
mations. In such a case it is sufficient to adjust only one parameter to reach the critical point.
In a renormalization group language, second-order phase transitions are governed by fixed
points with just one relevant direction, i.e. only the value of one relevant coupling has to be
specified. The stability matrix at this fixed point possesses therefore one negative eigenvalue
ω0. The negative inverse ν ≡ −1/ω0 of this eigenvalue controls the scaling of the diverging
correlation length close to the critical temperature Tc

ξ ∝

(

T − Tc
Tc

)−ν

. (2.88)

Also the susceptibility, specific heat and order parameter show a similar scaling with the
temperature corresponding to the exponents −γ, −α and β respectively.

Additionally, the order parameter Φ scales with an external field h at T = Tc as

Φ ∝ h1/δ . (2.89)

In case of the Heisenberg ferromagnet, this external field would be given by an external
magnetic field, which explicitly breaks the rotational symmetry of the theory.

Actually only two of the critical exponents are independent, as they fulfill so-called (hy-
per)scaling relations. Furthermore, the 2-point function of a theory can show a scaling be-
havior that differs from the expected canonical scaling due to its dimension. In field theories
this deviation from the canonical scaling is controlled by the wave function renormalization
and usually quantified by the anomalous dimension η.

From the fact that second-order transitions are controlled by a fixed point with just one
relevant direction it seems intuitively clear that the critical behavior cannot depend on the
microscopic details of a given system. As in the case of renormalizable theories, any infor-
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Figure 2.6.: Conjectured phase diagram for Quantum Chromodynamics (picture from [159]).

mation about the short range specifics of the interaction are lost and collective fluctuations
take over at the critical point. This dependence on just a number of macroscopic quanti-
ties as dimensionality, number of degrees of freedom and symmetries of the system is called
universality.

Universality provides a justification for employing simplified models, when one is interested
just in universal quantities. It has to be stressed, however, that such a description does
not allow quantitatively correct predictions of non-universal quantities such as, e.g. the
critical temperature Tc. Finally it should be added that a mean-field treatment of degrees
of freedom corresponding to critical fluctuations is in general not capable of reproducing the
correct numerical values for the critical exponents. Very good numerical results for critical
exponents, on the other hand, are also provided by Monte-Carlo methods (see [158] for a
comparison of RG and MC results).

Phases of QCD

A sketch of the expected phase diagram of QCD is shown in Fig. 2.6 in terms of temperature
T and chemical potential µ [12,160,161]. Most important for this work is the temperature axis
µ = 0, which is also best understood in theoretical terms. First principle lattice calculations
show that QCD experiences a rapid crossover from a center symmetric phase of spontaneously
broken chiral symmetry at low temperatures to a chirally symmetric phase of spontaneously
broken center symmetry - termed quark-gluon plasma. The approximate order parameters
are given by the quark condensate for the chiral transition and the Polyakov loop for the
center transition.

This means that there are actually two crossovers, which would become phase transitions in
different limits for the quark masses. The center-symmetry phase transition is turned into a
crossover due to the presence of dynamical quark with small masses. In pure gauge theory,
this turns into a first-order transition with transition temperature 277 MeV for gauge group
SU(3) [162]. On the other hand, the chiral transition is turned into a crossover by the non-
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vanishing quark masses, which explicitly break chiral symmetry. Small quark masses require a
lot of computational effort in lattice calculations as they necessitate a realistic implementation
of chiral symmetry. This is related to the presence of so-called fermion doublers. One solution
to this are Wilson fermions, but they violated chiral symmetry. Other possibilities include
staggered, chirally improved, domain-wall and overlap fermions [23,163], where the latter two
options are preferred, but also computationally expensive. Only quite recently has it been
possible to implement these better representations of the fermionic part of the QCD action
at quark masses close to their physical value [164,165].

One crucial property of both crossovers is that they occur at approximately the same tem-
perature [166,167]. Recent estimates of two of the biggest lattice collaborations give a tran-
sition temperature around 150 MeV [168, 169]. Within the picture drawn by the dynam-
ical rebosonization approach, chiral symmetry breaking occurs only, if the gauge coupling
exceeds a critical strength [170–172]. On the other hand, an explanation why the criti-
cal coupling strength is reached exactly at the center-symmetry crossover is still missing
(see e.g. [173, 174]). If confinement were controlled by the emergence of a scaling solution
in the quark-gluon vertex, this connection could also be explained: As this scaling solution
exists only in the chirally broken phase, restoration of chiral symmetry would also imply
absence of confinement in terms of a 1/k4 singularity as created by the singular quark-gluon
vertex [113].

Things become less certain if one leaves the temperature axis. The problem is that the
fermionic action is not real anymore as soon as the quark chemical potential deviates from
zero. Therefore the Monte-Carlo method Eq. (2.5) used for evaluating the path integral be-
comes less and less reliable with growing chemical potential, which is called the sign problem.
Consequently, most of the knowledge in this region stems from model calculations, where the
few things that are certain include the existence of a liquid-gas transition from a nuclear gas
at low densities to nuclear matter [175]. Across this transition, the baryon density nB jumps
from zero to the nuclear density. Similar to the liquid-gas transition of water, this transition
ends in a critical endpoint.

Many models, including the NJL or the quark-meson model agree on the existence of a chiral
first-order transition at low temperatures and quark chemical potentials around µ = 300
MeV [147, 176–179]. This first-order transition would lead to the conclusion that a critical
endpoint must lie somewhere in between due to the crossover observed on the temperature
axis. Such statements have to be taken with care, as many of these model calculations miss
important degrees of freedom such as baryons and diquark contributions, which are expected
to become relevant at high chemical potential. Also, the different model approaches do not
agree on the location of the critical endpoint. First calculations with diquarks have been
performed for a quark-meson model with SU(2) gauge group, where their importance was
demonstrated [180,181]. In SU(2) gauge theory a comparison between model approaches and
lattice calculations is furthermore easier, since the fermion determinant is real even at µ 6= 0
and Monte-Carlo methods can be applied easier (see e.g. [182]). The importance of diquarks
is related to the expected emergence of a diquark condensate 〈qq〉 which signals breaking of
color symmetry. This is related to the existence color superconducting phases [135,183], where
several mechanisms like 2-flavor color superconductivity (2SC) and color-flavor locking (CFL)
have been proposed. These mechanisms compete against each other, where at large chemical
potential the CFL phase is favored. The intermediate region is still subject to ongoing
research and for example DSE investigations find the CFL phase to be favored [184–186].
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Further proposed phases include a confined, but chirally symmetric quarkyonic phase at low
temperatures and intermediate chemical potential which has been proposed on the basis of
1/Nc arguments [187]. Recent FRG calculations in a Polyakov extended quark-meson model,
on the other hand, show that the proper inclusion of matter back reactions can bring the two
transitions closer to each other even at larger chemical potentials in Nc = 3 [148]. A similar
conclusion has been reached in a DSE based approach from the quark propagator [188,189].
Finally, the cold but very dense region in the phase diagram is expected to be realized in the
interior of neutron stars [190].

A number of methods such as imaginary chemical potential [166,191–193], Taylor expansions
or reweighting techniques [194–198] have been proposed to overcome the sign problem in lat-
tice calculations, but none of them work reliably outside µ/T . 1. Some of these calculations
have reported a weakening of the transition with growing chemical potential, which does not
support the critical endpoint scenario.

Before going on it should be noted that the second-order transition at the critical endpoint
falls in the Z2 universality class of the Ising model. A correct calculation of critical exponents
can for example be provided by the FRG method [199], whereas DSE calculations usually
yield mean-field exponents (see [200] for attempts to improve on this via including meson
effects). The mean-field exponents in the latter case are connected to the rainbow-ladder
approximation together with quark-gluon vertex models. A better knowledge of this quantity
would therefore be desired, as additionally a strong vertex model dependence of the chiral as
well as the center transition can be observed [201].

Some experiments concerned with dense and hot QCD matter are shown in Fig. 2.6 as blobs
at roughly the temperatures and densities they explore. The high temperature region of the
phase diagram is covered by Au-Au collisions at the Relativist Heavy Ion Collider (RHIC)
of the Brookhaven national lab and Pb-Pb collisions at the Large Hadron Collider (LHC) at
the European Organization for Nuclear Research (CERN) in Geneva. Higher densities will
be explored at the RHIC as well as the future experiments at the Facility for Antiproton and
Ion Research (FAIR) at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt,
the Nuclotron-based Ion Collider Facility (NICA) at the Joint Institute for Nuclear Research
(JINR) in Dubna and the Japan Proton Accelerator Research Complex (J-PARC) at the
Tokai site of the Japan Atomic Energy Agency (JAEA). Finally, it should be stressed that
the shown phase diagram assumes a system in the thermodynamic limit and in equilibrium.

Axial Anomaly, Quark Mass Dependence and Critical Surface

A recent analysis of experimental data from the PHENIX and STAR collaborations at RHIC
has found a weakening of the mass splitting between η′-meson and pions at the temperature
of the chiral transition [202]. This has lead to the speculation that the axial anomaly might be
lifted at least partially at temperatures slightly above the chiral transition. On the other hand,
a full restoration of UA(1) is expected at very large temperatures [203]. Furthermore, the
fate of the Witten-Veneziano relation Eq. (2.50) at non-vanishing temperature is interesting
(see e.g. [204]).

Very recently, the lattice QCD community has become more interested in the axial anomaly
at finite temperatures. First results have been obtained with computationally less expensive
staggered fermions [205,206] and also results using the more expensive domain wall [164] and
overlap fermions [165] are available. These new results indicate that U(1)A is still broken
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slightly above the transition temperature. It should be noted, however that the results
obtained with chiral fermions are from calculations withmπ ≥ 200 MeV and at small volumes,
due to the large numerical effort involved.

Additionally, for large quark chemical potential - where lattice investigations are hampered
by the sign problem - it has been argued that U(1)A violation should also decrease [207–211].
From mean-field studies of effective descriptions it is furthermore expected that anomaly
effects can play an important role at intermediate chemical potential [212,213].

Some crucial results concerning the influence of the axial anomaly on the order of the chi-
ral transition have been obtained in the purely mesonic part of Eq. (2.71). In [214], the
infrared stability of the fixed point governing the phase transition has been investigated in
an ǫ-expansion. An infrared unstable fixed point has been argued to correspond to a first-
order transition induced by fluctuations [215]. Without ’t Hooft determinant Eq. (2.73), the
transition has been found to be of first order in the chiral limit at µ = 0 for

Nf ≥
√
3 , (2.90)

where the chiral invariant ρ2 of Eq. (2.72) is responsible for the instability in the fixed
point [216]. It has furthermore been argued in [214] that for Nf = 2 the mass-like ’t Hooft
determinant can transform the transition to second order, if the corresponding coupling
is approximately temperature independent. In case of Nf = 3 no influence of the ’t Hooft
determinant on the fist order phase transition is expected as the determinant is of O(Σ3) [214].

The Columbia plot in the left panel of Fig. 2.7 shows the expected quark-mass dependence of
the phase transitions of QCD at µ = 0 without restoration of U(1)A at the chiral transition.
At large quark masses (upper right corner) the limit of a pure gauge theory is approached,
which shows a first-order transition. This first-order region is separated from the crossover
region, which includes the physical mass point, by a line of second-order transitions in the
Z2 universality class [217,218]. A similar scenario applies to the first-order transition in the
three flavor chiral limit (lower left corner), which is also separated by a line of second order
transitions from the crossover region. This chiral critical line has been found to be in the Z2

universality class of the Ising model as well [219]. The situation in the light chiral limit with
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mu,d = 0 (left edge) is less clear, but from universality arguments it is expected that the Z2

second-order line merges with the light chiral limit axis at some finite value of the strange
quark mass ms. A line of second-order transitions connecting to the light chiral limit (upper
left corner), corresponding to the O(4) universality class, might be the consequence.
Finally, if the Columbia plot is extended by a third axis of chemical potential, the line of
second-order transitions separating crossover region from chiral limit turns into a surface of
second-order transitions. In lattice calculations, this chiral critical surface has been found to
bend away from the physical mass point of QCD at small chemical potential [193]. This is a
hint for the absence of the critical endpoint in the phase diagram. On the other hand, there
remains the option that the surface bends back towards the physical mass point at higher
chemical potentials, which are not accessible with lattice methods. This section is closed
with the observation that mean-field calculations in quark-meson models are not capable of
reproducing all these features as they miss the crucial mesonic fluctuations and often also
vacuum fluctuations of the quark sector (see e.g. [213]).
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3. Consequences of an Infrared Singular Four
Quark Interaction

In Sec. 2.1.2 a 1/k4 singularity in the quark 4-point function has been discussed as a possible
source of confinement in terms of a linearly rising potential [100]. This singularity would
also violate cluster decomposition, as required by the Kugo-Ojima confinement criterion [91].
Furthermore, it has been argued that such an infrared behavior could be induced by a self-
consistent infrared singular solution for the quark-gluon vertex [113].

With this motivation such a 1/k4 singularity is assumed as a working hypothesis in the
following [220]. Using the Dyson-Schwinger equations Eq. (2.16), the consistency of such a
singularity is investigated and possible consequences for other n-point functions are explored
with a focus on color structures. The spinorial structures are neglected in this first study with
the argument that fundamentally charged scalar matter also has a confined phase [221,222].
The derivation of the DSEs for higher n-point functions ranges from tedious to impossible by
hand. Therefore, the programs DoDSE [223] and DoFun [224] will be used extensively in this
chapter. The gauge group is taken as SU(N) with generators and basis elements as defined
in App. A.2 and App. A.3.1.

The Dyson-Schwinger equation for the quark 4-point function is given by
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Figure 3.1.: DSE for the quark 4-point function.

where generalized indices - including continuous as well as discrete variables - are used. In
addition to the graphical rules introduced below Fig. 2.1, bare vertices are indicated by small
black dots.

To understand possible problems associated with the proposed singularity, assume that the
quark 4-point function Γ(pm, pn, po, pp) behaves as
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o

np

m

pm→po
∝

1

(pm − po)4
, (3.1)

in the limit of vanishing momentum exchange between quark and antiquark. In the DSE for
the 4-point function alone, this causes no immediate contradictions. However, this singularity
can also influence other n-point functions via the corresponding equations. The induced
singularities might in turn lead to trouble, if put back in DSE of the quark 4-point function
again. For example, the quark-gluon vertex, which also appears in the above DSE, would
inherit the singularity from one of the diagrams in its DSE

m o

a

np
pm→po
∝

1

(pm − po)4
, (3.2)

as the singular behavior is independent of the loop integration. This divergence in the soft-
gluon limit is stronger then the self-consistent singularity of the scaling solution for the verteix
with exponent ∝ (k2)−1/2−κ. Putting this singular quark-gluon vertex in the box diagram,
infrared power counting [225] leads to a singular contribution

po

pnpp

pm

s

pm + s

s− (p3 − p1)

pp + s

pm→po
∝

[

(pm − po)
2
]2+2(κg−1)+3(−2)

=
[

(pm − po)
2
]2κg−6

. (3.3)

in the limit of soft gluon exchange, where only the momenta are shown for brevity. In the
exponent the first term, 2, comes from the loop integration over s, the second term, 2(κg−1),
from the infrared scaling of the two gluon propagators and the third term, 3(−2), from the
quark-gluon vertices at soft gluon momenta. The inequality κg < 2 holds independent of the
type of infrared solution and the above diagram leads to a stronger singularity than assumed
in the beginning in the quark 4-point function.

Therefore the only possibility for having 1/k4 consistently is without a contribution to the
quark-gluon vertex via Eq. (3.2). Algebraic cancellations in the color structure are then a nat-
ural suspect, which is the subject in the remainder of this section. Consequently, the following
investigation is equally valid for any kind of fundamentally charged matter, independent of
its spin. Nevertheless, the term quark will be used instead of matter.
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3.1. Quark 4-Point Function

According to [226] and the discussion in App. A.3.1, the momentum space quark 4-point
function of fundamentally charged quarks can be expanded in two color structures

Γmnop(pm, pn, po, pp)

δ̃(4)(po + pp − pm − pn)
= F1(pm, pn, po)δmoδnp + F2(pm, pn, po)δmpδno , (3.4)

if only those structures compatible with (color) charge conservation are considered. From the
previous discussion it is necessary to identify tensor structures that do not contribute to the
quark-gluon vertex Eq. (3.2). To simplify the investigation, Feynman graphs represent only
the color structure of n-point functions in the remainder of this chapter. The contribution
to the quark-gluon vertex is

m o

a

np : T a
pn (F1δmoδnp + F2δmpδno) = F2T

a
mo . (3.5)

Therefore, a 1/(pm−po)4 singularity in Γmnop(pm, pn, po, pp) is only admissible in F1 without
contradiction.

From symmetry arguments one expects a similar singularity in F2 in the limit pn → po, but
this can also be obtained from the DSEs directly. The derivation requires a detour via the
equation for the quark-gluon 4-point function, where in one formulation there is a singular
contribution from the diagram

m o

b

np

a

r

: δmoδnpT
a
prT

b
rn =

1

2
δmoδ

ab , (3.6)

behaving as 1/(pm − po)
4 in the limit of degenerate quark momenta pm → po. Therefore, the

singularity in the quark 4-point function implies a similar infrared behavior in its quark-gluon
counterpart

Γab
mo(pm, po, pa) = G1(pm, po, pa)T

a
miT

b
io +G2(pm, po, pa)T

b
miT

a
io +G3(pm, po, pa)δ

ab
mo , (3.7a)

G3(pm, po, pa) →
1

(pm − po)4
for pm → po . (3.7b)

It is interesting to investigate the consistency of this new singularity in the DSE for the quark
4-point function. There are two relevant diagrams
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m o

n

ab

p

j

: T a
njT

b
jpδ

abδmo =
N2 − 1

2N
δmoδnp , (3.8)

m o

n

a

b

p

j : T a
mjT

b
jpδ

abδno =
N2 − 1

2N
δmpδno . (3.9)

This shows that - as expected from symmetry arguments - there are actually two infrared
singularities

F1(pm, pn, po) →
1

(pm − po)4
for pm → po , (3.10a)

F2(pm, pn, po) →
1

(pn − po)4
for pn → po , (3.10b)

in the quark 4-point function Eq. (3.4). It is important to note that the second singularity
does not pose a threat to consistency in Eq. (3.2). This is, because the singularity depends
on the integrated loop momentum and is therefore mitigated by the integration.

It remains to show that the two singularities Eq. (3.10) do not lead to inconsistencies in the
DSE for the quark 4-point function. The relevant diagrams are

m o

n

ji

p
a

:

T a
nj (F2δjoδmi + F1δmoδji)T

a
ip (3.11)

=

(

1

2
δnpδij −

1

2N
δnjδip

)

(F2δjoδmi + F1δmoδji)

=

(

F2

2
+ F1

N2 − 1

2N

)

δmoδnp −
F2

2N
δmpδno ,

m o

n

i

j

p

a :

T a
mi (F1δioδnj + F2δijδno)T

a
jp (3.12)

=

(

1

2
δmpδji −

1

2N
δmiδjp

)

(F1δioδnj + F2δijδno)

=

(

F1

2
+ F2

N2 − 1

2N

)

δmpδno −
F1

2N
δmoδnp ,

where the singularity is in F1 in the upper diagram and in F2 in the lower diagram for pm → po
and pn → po respectively. In either case the singular parts just contribute to consistent color
structures δmoδnp and δmpδno in the first and second diagram respectively.
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Consistency in Quark-Gluon Vertex

Before going on it should be checked that also the new singularity in the quark-gluon 4-point
function is not forwarded to the quark-gluon vertex. Two graphs might lead to problems,
where the first cancels similarly as before via the trace over the (adjoint) generator

m o

a

cb : fabcδbcδmo = 0 . (3.13)

It is interesting to note that also a quark-gluon 4-point function proportional to {T a, T b}mn

cancels algebraically

m o

a

cb :

fabc{T b, T c}mo = −i{T b, [T a, T b]}mo (3.14)

= (−i)
(

T bT aT b − T bT bT a + T aT bT b − T bT aT b
)

mo

= (−i)
(

T aT bT b − T bT bT a
)

mo
= 0 .

In the last line it has been used that T aT a is proportional the unit matrix. It is possible to
rule out this additional 1/k4 singularity by using the diagram Eq. (3.8). To see this, note
that

m o

n

ab

p

j

:

T a
njT

b
jp{T a, T b}mo = T a

njT
b
jp

(

T a
mlT

b
lo + T b

mlT
a
lo

)

(3.15)

=

(

1

2
δnlδmj −

1

2N
δnjδml

)(

1

2
δjoδlp −

1

2N
δjpδlo

)

+

(

1

2
δnoδjl −

1

2N
δnjδlo

)(

1

2
δjlδmp −

1

2N
δjpδml

)

= δmoδnp

(

1

4

)

+ δmpδno

(

N2 − 4

4N

)

.

which would lead to singular contribution also in forbidden tensor structures of the quark
4-point function. In the case of N = 2, on the other hand, the commutator is just

{T a, T b}mn ∝ δabδmn , (3.16)

as the structure constants dabc all vanish for N = 2.

The second diagram that might cause trouble in the quark-gluon vertex DSE also annihilates
the tensor structure δabδmo
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m o

a

f
e

b

c

:

(c1f
bce + c2d

bce)
(

f iabf icf + f iacf ibf + f iaff ibc
)

δef (3.17)

= (c1f
bce + c2d

bce)
(

f iabf ice + f iacf ibe + f iaef ibc
)

= c1

(

f iabNδbi + f iac(−N)δic + f iaeNδie
)

+ c2 · 0 = 0 .

This shows consistency of the combined singularities Eq. (3.10) and Eq. (3.7) in the quark
and quark-gluon 4-point functions at least in the subset of DSEs investigated so far.

Contributions to the 1/k4 singularity in the quark 4-point function can have two qualitatively
different sources. First, they can be of the loop independent form encountered in the previous
cases, as e.g. the 1/k4 singularity of the quark 4-point function immediately induces a similar
singularity in the quark-gluon 4-point function. Another source of singular contributions are
the loop integrations. In either case it is possible to make restrictions on the tensor structures
which are allowed to contribute by investigating the diagrams in Fig. 3.1 one by one. The
corresponding results and calculations are lengthy and can be found in App. B.1.

To summarize, it has been shown in this section that the only way of having a 1/k4 infrared
singularity in the quark 4-point function Eq. (3.4) without inconsistencies is in a non-trivial
tensor-structure Eq. (3.10). Furthermore this singularity is necessarily accompanied by a
similar singularity in the quark-gluon 4-point function Eq. (3.7). Graphically this can be
represented as shown in Figs. 3.2 and 3.3
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Figure 3.2.: Diagrammatic representation of the 1/k4 singularity in the quark 4-point
function.
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Figure 3.3.: Diagrammatic representation of the 1/k4 singularity in the quark-gluon 4-point
function.

where the ellipses represent contributions less singular than 1/k4.

If, however, the quark-gluon 4-point function were the source of the singularity, Casimir scal-
ing [227] would be a consequence of the Eqs. (3.8) and (3.9). It will be seen in the next
chapter, that this diagram also give the correct Casimir invariant in case of the adjoint repre-
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sentation. Furthermore, it is shown in App. B.1 that all allowed loop momentum independent
sources of the singularity in Fig. 3.1 are proportional to the quadratic Casimir operator.

3.2. General n-Point Functions

Before jumping blindly into tedious calculations of tensor structure in general n-point func-
tions it is useful to perform some general calculations. Furthermore, a simple rule for identi-
fying the color structure of singular contributions will be derived.

4-Point Functions

The diagrams that led to a forwarding of the 1/k4 divergence from the quark to the quark-
gluon 4-point function are contained in the general class of diagrams shown in Fig. 3.4.
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Figure 3.4.: General diagrams of 4-point functions contributing to 4-point functions.

Here, solid, dashed and dotted lines represent different fields. Although, restrictions could
also be derived from the conservation of other quantum numbers, color charge conservation is
sufficient to restrict the types of field lines. There are two types of lines corresponding to the
representation of the color group, i.e. fundamental lines and adjoint lines. Color conservation
implies that 3-point functions must involve at least one adjoint line. This implies that the
solid lines in any of the above diagrams can only correspond to the adjoint representation.
One general statement is that in any of the diagrams shown in Fig. 3.4 a color structure

Γ
(4)
i1i3j1j2

: δi1i3δj1j2 , (3.18)

in the four point function contributes solely to the color structure

Γ
(4)
i1i3i2i4

: δi1i3δi2i4 . (3.19)

This statement is true for any combination of fundamental and adjoint lines. This can be
checked explicitly for all cases allowed by (color) charge conservation.
In the first diagram of Fig. 3.4 the dashed line is either fundamental or adjoint giving
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i1 i3

i2

j2j1

i4

j3

:
δi1i3δj1j2T

j2
i2j3

T j1
j3i4

=
N2 − 1

2N
δi1i3δi2i4 , (3.20)

δi1i3δj1j2
(

−c1f j2i2j3 − c2d
j2i2j3

)

f j1j3i4 = c1Nδi1i3δi2i4 ,

respectively, where total (anti-)symmetry of the structure constants (f ijk) dijk has been
used. The quark-gluon 4-point function would contribute to the quark 4-point function via
a diagram of this type. Therefore, depending on the type of representation for the quarks,
this diagram would induce exactly the correct factors for Casimir scaling.

In the second diagram of Fig. 3.4 the case of fundamental dashed line has not been treated
already with the above diagram

i1 i3

i2

j2j1

i4

j3

: δi1i3δj1j2T
j3
i2j2

T j3
j1i4

=
N2 − 1

2N
δi1i3δi2i4 . (3.21)

Finally, the third diagram of Fig. 3.4 with fundamental dashed line gives

i1 i3

i2

j2j1

i4

j3

: δi1i3δj1j2T
i2
j2j3

T i4
j3j1

=
1

2
δi1i3δi2i4 , (3.22)

confirming that color structures like Eq. (3.18) contribute only to Eq. (3.19) via diagrams of
the form Fig. 3.4.

Contributions to 3-Point Functions

From the discussion at the beginning of this chapter it is interesting to calculate the con-
tribution of the tensor structure Eq. (3.18) to 3-point functions. In general one encounters
diagrams of the form shown in Fig. 3.5.

i1 i2

i3

jj
j2

i1 i2

i3

j1
j2

j3

j4

i1 i2

i3

j1
j2

j3

j4

Figure 3.5.: General diagrams of 4-point functions contributing 3-point functions.
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Again, charge conservation can be invoked to see that solid lines have to be adjoint and only
the dashed lines are allowed to be fundamental.

The tensor structure of Eq. (3.18) gives a vanishing contribution in the first diagram of
Fig. 3.5 as the fundamental as well as the adjoint generators are traceless

i1 i2

i3

jj
j2

:
δi1i2δj1j2T

i3
j2j1

= 0 , (3.23)

δi1i2δj1j2f
i3j2j1 = 0 .

For the second diagram of Fig. 3.5 the case with fundamental dashed line gives the contribu-
tion

i1 i2

i3

j1
j2

j3

j4
:

δi1i2δj1j2T
j4
j2j3

(

T j4
j3l
T i3
lj1

+ T i3
j3l
T j4
lj1

)

(3.24)

= δi1i2

(

T i3
lj1

N2 − 1

2N
δj1l + T i3

j3l

N2 − 1

2N
δlj3

)

= 0 .

With adjoint dashed lines one obtains

i1 i2

i3

j1
j2

j3

j4
:

(c1f
j3j4j2 + c2d

j3j4j2)×
(

f ii3j3f ij4j1 + f ii3j4f ij3j1 + f ii3j1f ij3j4
)

δj2j1

= (c1f
j3j4j2 + c2d

j3j4j2)×
(

f ii3j3f ij4j2 + f ii3j4f ij3j2 + f ii3j2f ij3j4
)

= c1
(

f ii3j3Nδj3i + f ii3j4(−N)δij4 + f ii3j2Nδij2
)

= 0 . (3.25)

Finally the third figure of Fig. 3.5 with fundamental dashed line gives

i1 i2

i3

j1
j2

j3

j4
:

δi1i2δj1j2T
j2
j4j3

(

T j1
j3l
T i3
lj4

+ T i3
j3l
T j1
lj4

)

(3.26)

= δi1i2

(

T i3
lj4

N2 − 1

2N
δj4l + T i3

j3l

N2 − 1

2N
δlj3

)

= 0 .

Therefore the tensor structure Eq. (3.18) does not contribute to any 3-point function via
diagrams of type Fig. 3.5.
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3. Consequences of an Infrared Singular Four Quark Interaction

Factorization of Tensor Structures

In addition to the explicit calculation of loop momentum independent 1/k4 singular contri-
butions in 4-point functions it is useful to develop a strategy of identifying singular terms in
general n-point function.

Given some graph with external legs i1, . . . , in, suppose that a n1-point function Γi1···in1
j1j2

is attached to the remaining part of the graph with its two legs j1j2 only. Let furthermore be
Rj1j2in1+1···in the color structure of the remainder of the graph. Then any tensor structures
of the form Gi1···in1

δj1j2 in Γi1···in1
j1j2 contributes only to the tensor product

Gi1···in1
Rjjin1+1···in . (3.27)

This graph can also be represented pictorially as

j2j1

i1

in1+1

. . .

. . .

in1

in

where the circular blob represents Γi1···in1
j1j2 and the square the remainder. Any tensor

structure in Γi1···in1
j1j2 proportional to δj1j2 leads to the factorization

j2j1

i1

in1+1

. . .

. . .

in1

in

−→

i1
. . .

in1

⊗

j

in1+1

. . .

in

Figure 3.6.: Factorization of color structures.

where the circle represents Gi1···in1
and the square Rj1j2in1+1...in .

As an application of this observation one can prove again, but with less effort, that the
tensor structure Eq. (3.18) in the 4-point function of any of the diagrams shown in Fig. 3.4
contributes only to Eq. (3.19). Note first that δi1i3δj1j2 is of the form Gi1i3δj1j2 leading to
the factorization

i1 i3

i2

j2j1

i4

j3

−→ i3i1 ⊗
i2i4

j

j

Figure 3.7.: Factorization of contribution to 4-point function.
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3.2. General n-Point Functions

The second factor is a self-energy term of some propagator, i.e. it contributes only to the
color structure δi2i4 . Therefore, the the tensor structure δi1i3δj1j2 in the 4-point function
contributes just to δi1i3δi2i4 via the above factorization, which is the previously derived rule.
Obviously this method 1 yields also the correct algebraic factors if one performs the remaining
calculations. However, the main reason for introducing this diagrammatic method is that
one wants to avoid such tedious calculations. From this example it should be clear that the
product tensor structures in Eq. (3.27) or Fig. 3.6 can only be tensor structures that appear
in the corresponding n1- and (n− n1)-point functions.

3.2.1. Infrared Singularities in General 4-Point Functions

Equipped with these tools, it is easy to investigate the consequences of the 1/k4 singularity
for other 4-point functions of the theory. In Sec. 3.1 it has already been found that such a
singularity can only be of the type shown in Fig. 3.2 which implies a divergence as in Fig. 3.3
in the quark-gluon 4-point function. The divergence in the quark-gluon 4-point function
stems from the diagram Eq. (3.1). To get similar singular contributions to other 4-point
functions it is necessary to identify the corresponding diagrams in their DSE. Actually, all
the necessary calculations have already been performed. In general there will be a plethora
of diagrams contributing to any of the 4-point functions. For example, the DSE for the gluon
4-point function as calculated with DoFun contains 79 diagrams. Therefore only diagrams of
the type shown in Fig. 3.4 are collected and used for the following analysis.
For the quark-gluon 4-point function there exist different DSEs corresponding to the order
of differentiating with respect to the fields. Here the version obtained by differentiating the
DSE for the gluon propagator with respect to the quark field is used. There are three relevant
diagrams

m o

b

np

a

r

m o

b

np

a
r

m o

b

np

a
r

Figure 3.8.: Contribution of 4-point functions to the quark-gluon 4-point function.

In any of these diagrams a tensor structure δmoδpn will only contribute to δmoδ
ab.

Additionally, there are the diagrams

m o

ba

m o

ba

Figure 3.9.: Contribution of 4-point functions to the quark-gluon 4-point function.

Using the factorization induced by a tensor structure δmoδ
pn in the quark-gluon 4-point

function one sees that any of the above diagram factorizes to δmo times the tadpole or sunset

1A similar diagrammatic method has been introduced e.g. in [228].
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3. Consequences of an Infrared Singular Four Quark Interaction

graph to the gluon propagator DSE.
In the DSE for the gluon 4-point function the diagrams

c d

b

np

a
r

c d

b

np

a
r

c d

b

np

a
r

Figure 3.10.: Contribution of 4-point functions to the gluon 4-point function.

as well as graphs that can be treated as the previous graphs in Fig. 3.9 appear.
In the DSE for the ghost-gluon 4-point function obtained from the ghost propagator DSE
one gets

c d

b

np

a
r

c d

b

np

a
r

Figure 3.11.: Contribution of 4-point functions to the ghost-gluon 4-point function.

Finally, the DSE for the quark-ghost 4-point function obtained from the quark propagator
yields

a b

o

np

m
r

a b

o

np

m
r

Figure 3.12.: Contribution of 4-point functions to the quark-ghost 4-point function.

From all these graphs and the general calculations performed previously it is clear that as
soon as one 4-point function Γi1i2i3i4 has a 1/k4 infrared singularity in the tensor structure
δi1i3δi2i4 , it is immediately forwarded to the corresponding tensor structures in all other 4-
point functions. As has been shown previously, none of the three point functions are affected
by these singularities due to algebraic cancellations and in turn also the propagators are
protected.
One consequence is that if only one species of fundamentally charged matter has an infrared
singularity of the 1/k4 type in its 4-point function, than all other matter gets it as well.

3.2.2. Highter n-Point Functions

In fact, the singularities thus found are not restricted to 4-point functions. Exemplary for
higher correlation functions, the DSE for the 5-point function with one gluon and four quark
legs is investigated. Among others, the diagrams shown in Fig. 3.13 contribute.
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a

m o

np

a

m o

np

a

m o

np

Figure 3.13.: Contribution of 4-point functions to the quark-1-gluon 5-point function.

Using the factorization of tensor structures

a

m o

np

−→ pm ⊗

a

on

Figure 3.14.: Factorization in quark-1-gluon 5-point function.

one gets a singular contribution to the tensor structure δmpT
a
no in the limit pm → pp. Similarly

a 1/k4 singularity is induced in δnoT
a
mp for pn → po. It has been checked already in Eq. (B.9)

that this kind of singularity is consistent with the quark 4-point function. Note furthermore
that a cataclysmic 1/k8 singularity in the simultaneous limit pm → pp and pn → po is
prevented due to an algebraic cancellation in the second factor of Fig. 3.14.

Similarly the DSE for the 5-point function with three gluon and two quark legs gets 1/k4

singular contributions via the diagrams shown in Fig. 3.15.

a

m b

cp

a

m b

cp

a

m b

cp

Figure 3.15.: How 4-point functions can contribute to the quark-3-gluon 5-point function.

Using factorization once more one gets singular contributions to the tensor structures propor-
tional δmpf

abc for pm → pp and T a
mpδ

bc for pb → pc. Additionally, there are similar diagrams
leading to corresponding singularities demanded by symmetry in the gluon legs.
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General Structure of Singularities

From these examples a general picture of the singular tensor structures emerges, which is
summarized as follows. Given some n-point function, it is possible to separate the n-legs into
r > 1 clusters with 2 ≤ n1, . . . , nr members. If the exchanged momentum kj between any of
these clusters j and the remaining clusters goes to zero, one gets a singular contributions 1/k4j .
Furthermore this singularity appears only in specific color structures. Let the most general
color structure of the corresponding nj-point function be G1,...,nj . Similarly let R1,...,n−nj

be the most general color structure representing the remaining clusters. Then the 1/k4j
singularity of the full n-point function is restricted to the tensor structure

G1,...,nj ⊗R1,...,n−nj . (3.28)

To substantiate this claim, is is instructive to investigate e.g. some graphs contributing to
the quark 6-point function

q

m

np

r o

i
a1

a2 q

m

np

r o

ab1

b2

j

q
m

np

b2 or

b1

j

i

Figure 3.16.: How 4-point functions can contribute to the quark 6-point function.

Assuming in all three cases the limit pq → pr, the singular color structures factorize as

q

m

np

r o

i
a1

a2
−→ rq ⊗

m o

n
a

i

p

Figure 3.17.: Factorization in quark 6-point function.

q

m

np

r o

ab1

b2

j

−→ rq ⊗

m o

n

ab

p

j

Figure 3.18.: Similar as Fig. 3.17.

50



3.2. General n-Point Functions

q
m

np

b2 or

b1

j

i

−→ rq ⊗

m o

n

i

a

p

b

j

Figure 3.19.: Similar as Fig. 3.17.

As any of the second factors on the right hand side are present in the DSE for the quark
4-point function factorization is confirmed for these cases.

Summary

The consequences of a 1/k4 singularity in the quark 4-point function have been investigated,
where only the color structures have been taken into account. The singularity has been found
consistent if it appears in a special color structure that cannot be reproduced by the exchange
of one gluon. This singularity is immediately forwarded to the corresponding connected 4-
point function. Proper regularization of the 1/k4 singularity in the latter results in a δ-
like contribution which implies the violation of cluster decomposition. Additionally, similar
singularities are induced in all n-point functions with n ≥ 4, whereas the 3-point functions
and propagators are protected. Singularities appear, whenever the exchanged momentum
between colored subsets of legs of a n-point function becomes small.
It is interesting that already one 4-point function, corresponding to a, potentially very heavy,
fundamental field, could forward such a singularity to other matter. Although this is no
contradiction to the decoupling theorem, which holds only in the absence of singularities, it
is still intriguing. If, however, a confining 1/k4 singularity is induced in the quark 4-point
function, a simple explanation of Casimir scaling can be given.
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4. Center Transition from Matter Propagators

In this chapter, the center phase transition is investigated from fundamentally charged matter
propagators [229,230]. A definition of confinement in Yang-Mills theory in terms of the free
energy Fq of static fundamental color charges has been introduced Sec. 2.1.2. The free energy
for static fundamental charges is related to the expectation value of the Polyakov loop via

e−Fq/T = 〈Tr
[

Peig
∫

1/T
0

dx4A4(~x,x4)
]

〉 . (4.1)

Additionally, the Polyakov loop serves as an order parameter for spontaneous breaking of
center symmetry. Therefore, the confinement of static fundamental charges can be char-
acterized by a vanishing Polyakov loop which is translated into a ground state respecting
center symmetry. The phase of spontaneously broken center symmetry, on the other hand,
corresponds to a deconfined phase in this picture.

The actual calculation of the Polyakov loop requires the evaluation of path ordered expec-
tation values, which - in contrast to lattice calculations - are hard to access with functional
methods. Within the latter approach it is therefore useful to define order parameters that
can be accessed easier. One such order parameter is given by the dressed Polyakov loop Σ1,
which consists of the set of closed loops with winding number one around the temporal direc-
tion [231,232]. Due to the explicit breaking of center symmetry by the presence quarks, this
is just an approximate order parameter in QCD. The advantage of this quantity is that it can
also be obtained from the quark condensate with general exp(iθ)-valued boundary conditions
via

Σ1 =

2π
∫

0

dθ

2π
e−iθ〈q̄q〉θ . (4.2)

This dual quark condensate has been successfully used to extract the center transition at finite
temperature from the solution to the quark propagator DSE [162, 188, 233, 234]. Although
one might be tempted to interpret Eq. (4.2) as a link between confinement and spontaneous
chiral symmetry breaking, this is not the case [95].

In general, any quantity that transforms under center symmetry with z ∈ Z3 as

Σ1 → zΣ1 , (4.3)

can serve as an order parameter for the deconfinement transition [95,235,236]. Furthermore,
not only quarks, but any fundamentally charged matter, as fundamentally charged scalars,
is expected to be confined. It is clear that in case of scalars, there is no quark condensate
and as a consequence Eq. (4.2) cannot serve as an order parameter. When investigating
fundamentally charged scalars it is therefore necessary to find other order parameters.

Another motivation for the investigation of scalar QCD is the simpler tensor structure in the
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4. Center Transition from Matter Propagators

higher n-point functions. In spinor QCD the quark-gluon vertex plays an essential role in
spontaneous chiral symmetry breaking and possibly also in the confinement mechanism, as has
been discussed already in Sec. 2.1.2. Equally important is the expected non-trivial behavior
of the vertex at non-vanishing temperatures. In contrast to this, it is very hard to solve the
DSE for the quark-gluon vertex due to the large number of tensor structures [113, 237, 238],
which increases even further at non-vanishing temperatures. In contrast to this, there are
only two tensor structures necessary for the scalar-gluon vertex (in the vacuum), which has
been the subject of a master thesis [115]. Therefore, scalar QCD can provide a testing ground
for investigations of the vertex DSE at finite temperature. Unfortunately, this simple tensor
structure comes at the price of additional vertices in the renormalized Euclidean action of
Scalar QCD in Landau gauge [114]

S =

∫

d4x

{

Z3A
a
µ

(

1

2

(

−∂2δµν + ∂µ∂ν
)

)

Aa
ν + Z1gf

abc (∂µA
a
ν)A

b
µA

c
ν (4.4)

+Z4
g2

4
fabcfadeAb

µA
c
νA

d
µA

e
ν − Z̃3c̄

a∂2ca − Z̃1gf
abcc̄a∂µ(c

bAc
µ) + φ∗Ẑ3

(

−∂2 + Zmm
2
0

)

φ

+igẐ1φ
∗ (2Aµ(∂µφ) + (∂µAµ)φ) + Ẑ4

λ

4
(φ∗φ)2 +

Ẑ4,2

2
g2φ∗{Aµ, Aµ}φ

}

.

When compared to the QCD action Eq. (2.40), only the charged scalar (anti)field (φ∗) φ is
new and the corresponding mass and quartic coupling is given by m0 and λ respectively.
Renormalization constants have been introduced for all primitively divergent vertices in
Eq. (4.4) [114], where Ẑ4 and Ẑ4,2 have no analogues in spinor QCD. Similar as in QCD, not
all of the renormalization constants are independent, which can be shown by using Slavnov-
Taylor identities [1] and one gets for example the relation, Z3/Z1 = Z̃3/Z̃1. In Landau
gauge the non-renormalization of the ghost-gluon vertex Z̃1 = 1 can be used again, which
implies Ẑ1 = Ẑ3/Z̃3 [69]. Additionally, if the theory were in the Higgs phase a non-vanishing
scalar condensate would occur [221, 222]. This possibility will be neglected in the following
investigation as the focus is put on confinement aspects.

4.1. The Scalar Propagator Dyson-Schwinger Equation

The Dyson-Schwinger equation for the scalar propagator as obtained with DoDSE/DoFun
[223,224] is shown in Fig. 4.1.

−1 = −1 − − 1
2 −

− 1
2 − 1

2 − − 1
2

−

Figure 4.1.: DSE for the fundamentally charged scalar propagator.

In addition to the graphical rules introduced below Fig. 2.1, bare vertices are indicated by
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4.1. The Scalar Propagator Dyson-Schwinger Equation

small black dots. All, but the first two diagrams would be absent without the bare scalar-
gluon and scalar 4-point functions. Furthermore, the tadpole diagrams - given by the third
and fourth contribution - are actually independent of the external momentum. Therefore,
these two diagrams contribute just a constant, which can be compensated by adjusting Ẑmm

2
0

via some renormalization condition. The one loop approximation of the DSE for the scalar
propagator is then of the same form as the full quark propagator DSE and given by

−1 = −1 −

Figure 4.2.: DSE for the fundamentally charged scalar propagator in one loop approximation.

This truncated equation is used in the following analysis, where inserting explicit expressions
yields

D−1
S,ab(p) = Ẑ3

(

p2 + Ẑmm
2
0

)

δab −
∫

d4q

(2π)4
Γe
0,µ,ac(p, q)D

ef
µν(p− q)DS,cd(q)Γ

f
ν,db(q, p) . (4.5)

Here momentum conservation

DS,ab(p, q) = DS,ab(p)(2π)
4δ(4)(p − q) , (4.6a)

Dab
µν(p, q) = Dab

µν(p)(2π)
4δ(4)(p− q) , (4.6b)

Γa
µ,bc(p, q, k) = Γa

µ,bc(p, q)(2π)
4δ(4)(p+ k − q) , (4.6c)

has been used. The scalar-gluon vertex can be simplified further by separating its color tensor
structure

Γa
µ,bc(p, q) = gT a

bcΓµ(p, q) , (4.7)

where for the bare vertex one has Γ0,µ(p, q) = Ẑ1(p + q)µ. Using color conservation in the
propagators and tr[T aT a] = (N2

c − 1)/2 results in

D−1
S (p) = Ẑ3

(

p2 + Ẑmm
2
0

)

− Ẑ1g
2CF

∫

d4q

(2π)4
(p+ q)µDµν(p − q)DS(q)Γν(q, p) , (4.8)

with the quadratic Casimir operator CF = (N2 − 1)/(2N).

4.1.1. Vacuum

The propagators can be simplified further by employing Euclidean invariance, which requires
any scalar function of one momentum p to be a function of the invariant p2. In Landau gauge
it can be shown that the gluon propagator is transversal to its momentum [28]. Introducing
the dressing functions ZS and Z and the transversal projector

Pµν(p) =
(

δµν − pµpν/p
2
)

, (4.9)

55



4. Center Transition from Matter Propagators

it is possible to express the propagators as

DS(p
2) =

ZS(p
2)

p2
, (4.10a)

Dµν(p) = Pµν(p)
Z(p2)

p2
. (4.10b)

Similarly, any scalar function of two momenta p, q can actually depend only on the invariants
p2, q2, z ≡ p̂ · q̂ with p̂ = p/‖p‖. Furthermore, Slavnov-Taylor identities restrict the allowed
tensor structures for the scalar-gluon vertex, yielding the expansion [237]

Γµ(p, q) = A(p2, q2, z)(p + q)µ +B(p2, q2, z) (pµ [qν(q − p)ν ]− qµ [pν(q − p)ν ]) . (4.11)

To express Eq. (4.8) in terms of dressing functions it is useful to note that (see App. B.2)

(p+ q)µ Pµν(p − q)Γν(q, p) = 2

(

2
A(q2, p2, z)

(p − q)2
+B(q2, p2, z)

)

p2q2
(

1− z2
)

, (4.12)

showing that the integral in Eq. (4.8) depends only on ‖q‖ and the relative angle cosφ =
z, between the internal and external momentum q and p respectively. This motivates the
introduction of hyperspherical coordinates

d4q = q3 sin2 φ sinφ1 dq dφ dφ1 dφ2 , (4.13)

(q, φ, φ1, φ2) ∈ [0,∞) × [0, π]× [0, π] × [0, 2π] ,

which allow to perform the trivial integration

π
∫

0

dφ1 sinφ1

2π
∫

0

dφ2 = 4π , (4.14)

The integral of some f(q2, cosφ) in four dimension can be rewritten as

∞
∫

0

dq q3
π
∫

0

dφ sin2 φf(q2, cosφ) =

∞
∫

0

dy
y

2

1
∫

−1

dz
√

1− z2f(y, z) . (4.15)

Using the previous steps in the DSE for the scalar propagator Eq. (4.8) and dividing by p2

gives the equation for the dressing function

Z−1
S (x) = Ẑ3

(

1 + Ẑm
m2

0

x

)

+ Ẑ1Σ (x) , (4.16)

Σ (x) = −8

3

α(µ)

π2

∞
∫

0

dy yZS(y)K(x, y) ,
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K(x, y) =

1
∫

−1

dz
(

1− z2
)3/2 Z(k2)

k2

{

A(y, x, z)

k2
+
B(y, x, z)

2

}

,

where x = p2 is the external scalar momentum, y = q2 the loop momentum and k2 =
x+ y− 2

√
xyz the gluon momentum. Additionally, the coupling strength α(µ) = g2(µ)/(4π)

evaluated at the renormalization scale µ has been introduced.

Before this equation can be solved, it is necessary to provide expressions for the gluon prop-
agator as well as the scalar-gluon vertex. Note that in case of the vertex, just one effective
dressing function is necessary, as only the sum A/k2 + B/2 is relevant. Furthermore, the
above equation has to be regularized in the ultraviolet and a renormalization scheme for
fixing the renormalization constants Ẑ3, Ẑm and Ẑ1 has to be specified.

Before going on, it is interesting to determine the behavior of the self-energy Σ (x) at small
external momenta x. Singularities can be caused by the integration of momenta y ≈ x
due to the 1/k2 terms. If x becomes small, danger comes from small y which implies that
k2 = x + y − 2

√
xyz is necessarily small. In this case Z(k2)/k2 becomes either constant or

vanishes, depending on the type of solution in the Yang-Mills sector. Therefore one has to
check the behavior of

ǫ
∫

0

dyyZS(y)

1
∫

−1

dz

(

1− z2
)3/2

x+ y − 2
√
xyz

, (4.17)

for some ǫ > x. Using that ZS(y) either vanishes or becomes constants at y = 0, one can
easily check that this is finite in the limit x→ 0.

Physically this means that the self-energy does not contribute directly to the value of the
propagator at vanishing momentum or, in other words, to the screening mass.

This will be useful when specifying the renormalization scheme.

Gluon Propagator and Vertex Function

In previous works, gluon propagators from lattice calculations have been successfully applied
in DSE calculations of the dual chiral condensate [162,234]. The same lattice results for the
gluon propagator are used in this investigation, but in principle also other results, e.g. from
functional methods, could have been used (see e.g. [239–241]). It is important to notice that
they are obtained from calculations in the pure gauge theory, i.e. back reactions of matter
loops on the gluon are not taken into account. In spinor QCD parts of these effects have been
included, e.g. in [188], leading to more realistic transition temperatures. For the calculations
performed here, matter back reactions are expected to be small, due to the large mass terms
that will be taken for the scalar field. The fit for the gluon dressing function provided in [162]
is given by

Z(x) =
xΛ2

(x+ Λ2)2

{

(

c

x+ aΛ2

)b

+
x

Λ2

(

β0α(µ) ln
[

x/Λ2 + 1
]

4π

)γ }

, (4.18)

with the parameters a = 0.595, b = 1.355, c = 11.5 GeV2 and anomalous dimension γ =
−13/22. The renormalization scale of the Yang-Mills part is fixed by α(µ) = 0.3, with
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β0 = 11Nc/3 and Λ = 1.4 GeV.
Similar to [242], the vertex dressing is assumed to factorize into an Abelian and a non-Abelian
part. As discussed previously, only one dressing function has to be specified, where here A is
taken. In case of the Abelian gauge theory, Slavnov-Taylor identities have been used in [237]
to obtain the corresponding dressing function

AA(x, y, z) =
D−1

S (x)−D−1
S (y)

x− y
. (4.19)

In accordance with previous investigations of spinor QCD [162, 234, 242], the fact that the
non-Abelian running coupling - given by the product of g2 with gluon dressing function and
the square of the ghost dressing function - is independent of the renormalization scale µ is
used here. In general this is true on all scales [242]. For the construction of an effective vertex
model, it can at least be used in the perturbative regime, where the ghost dressing function
runs as

G(x) ∝

(

β0α(µ) ln
[

x/Λ2 + 1
]

4π

)δ

, (4.20)

for large momenta p2 = x with anomalous dimension δ = −9/44. Similar as in [162,234] this
leads to the vertex model [162,234]

A(x, y, z) = Z̃3
D−1

S (x)−D−1
S (y)

x− y
d1 × (4.21)

{

(

Λ2

Λ2 + k2

)

+
k2

Λ2 + k2





β0α(µ) ln
[

k2

Λ2 + 1
]

4π





2δ
}

,

where the gluon momentum k2 = x+ y − 2
√
xyz has been used again. The factor Z̃3 allows

to use the Slavnov-Taylor identity Ẑ1Z̃3 = Ẑ3 to get rid of Ẑ1 in the self-energy in Eq. (4.16).
Additionally a model parameter d1 = 0.53 has been added, which will be varied later to
investigate the vertex model dependence of the center-symmetry phase transition.

Regularization and Renormalization

With the Ansätze Eq. (4.18) and Eq. (4.21), the equation for the dressing function of the
scalar propagator takes the form

(ZS(x)Ẑ3)
−1 = 1 + Ẑm

m2
0

x
+Σ(x) . (4.22)

To make this expression well-defined, a sharp cutoff Λc is introduced in the self-energy,
restricting the loop integration to y ≤ Λ2

c . This introduces an unphysical cutoff dependence
in the equation, which requires the introduction of renormalization conditions for Ẑ3 and Ẑm

at some scale µ2. Therefore the renormalization constants depend in general on the scale µ2

as well as the cutoff Λ2
c
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Ẑ3 = Ẑ3(µ
2,Λ2

c) , (4.23a)

Ẑm = Ẑm(µ2,Λ2
c) , (4.23b)

whereas the solution ZS depends just on µ2

ZS(x) = ZS(x, µ
2) . (4.24)

It has been noted previously that Σ(x) does not contribute to 1/x and one can use the
µ2-independent renormalization condition of setting the value of Ẑmm

2
0 ≡ m2. Apart from

the wave function renormalization factor, this resembles the squared screening mass of the
propagator

lim
x→0

x

ZS(x, µ2)
= Ẑ3(µ

2,Λ2
c)m

2(Λ2
c) . (4.25)

Herem2 has to depend on the cutoff Λ2
c to make the propagator cutoff independent. As second

renormalization condition, the value of the propagator at µ2 in the perturbative regime is
specified, where the value of the propagator is set to 1/µ2. After a short calculation this
yields

Ẑ3(µ
2,Λ2

c) =
µ2

µ2(1 + Σ (µ2)) +m2(Λ2
c)
. (4.26)

With this prescription the DSE is multiplicatively renormalizable in the perturbative regime,
i.e. Ẑ3(µ

2,Λ2
c)ZS(x, µ

2) is independent of µ2 as long as µ2 is considerable larger than Λ2 in
Eq. (4.18) and Eq. (4.21). To see this, note first that Ẑmm

2
0 is µ2 independent by definition.

Then the only µ2-dependence in the right hand side of Eq. (4.22) can be in Σ(x). In the
self-energy, α(µ) times the gluon dressing function Eq. (4.18) times the part in braces in
Eq. (4.21) describes the perturbative running coupling, which is independent of µ2 in the
given scheme [243]. At large µ2, the only µ2 dependence in the integrand of Eq. (4.16) can
then be in the product

ZS(y, µ
2)
[

DS(x, µ
2)−1 −DS(y, µ

2)−1
]

(4.27)

= Ẑ3(µ
2,Λ2

c)ZS(y, µ
2)

[

x

Ẑ3(µ2,Λ2
c)ZS(x, µ2)

− y

Ẑ3(µ2,Λ2
c)ZS(y, µ2)

]

.

This shows that in the perturbative regime, the only µ2 dependence in Σ(x) is via Ẑ3ZS,
which in turn implies that Ẑ3ZS is actually the solution of a µ2 independent equation (4.22).
Therefore the product Ẑ3ZS cannot depend on µ2.

With the given prescription one is now in a position to investigate the dependence of the
solution ZS(x, µ

2) on the cutoff Λ2
c . Cutoff independence is hidden in the used renormalization

prescription, as the trivial running of a m2 with Λ2
c has to be taken into account. To see,

how m2(Λ2
c) depends on on the cutoff one can use that the value of the propagator at x = 0

given by

D−1
S (0, µ2) = Ẑ3(µ

2,Λc)m
2(Λ2

c) , (4.28)
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Figure 4.3.: Solution of the one-loop DSE Fig. 4.2 for the scalar propagator Eq. (4.16) for
different masses m2 and renormalization points µ2. The solid line corresponds to
µ = 4 GeV and the dashed line to µ = 10 GeV. The sharp cutoff has been taken
to be Λ2

c = 5 · 104 GeV2.

must not depend on Λ2
c . With this relation one can replace the previous prescription by

an equivalent one that is inherently cutoff independent at the cost of loosing inherent multi-
plicative renormalizability. In this second prescription, the Λ2

c -independent, but µ
2-dependent

quantities D−1
S (0, µ2) and D−1

S (µ2, µ2) are fixed, resulting in

Ẑ3(µ
2,Λ2

c) =
D−1

S

(

µ2, µ2
)

−D−1
S

(

0, µ2
)

µ2(1 + Σ(µ2))
. (4.29)

But even here cutoff independence is not obvious and will therefore be checked numerically
in the results section.

Numerical Results

Results for the propagator and its dressing function for different masses m2 and renormaliza-
tion points with the prescription Eq. (4.26) are shown in Fig. 4.3. Details of the numerical
implementation can be found in App. C.1. The theoretically predicted multiplicative renor-
malizability - in the sense of µ2 independence of Ẑ3Zs - is confirmed by these results. In
contrast to this, DS(0, µ

2)−1 depends on the renormalization scale, as anticipated.

Checking cutoff independence requires a little work. First, the value of the propagator at
vanishing momentum is calculated in the scheme defined by Eq. (4.26). Knowing this cutoff
independent value, allows to use Eq. (4.29), which takes the correct Λ2

c -dependence of m
2(Λ2

c)
into account. Changing the cutoff to Λ̄2

c yields then the new Ẑ3(µ
2, Λ̄2

c), which can be used
to calculate m2(Λ̄2

c) from Eq. (4.28). Using this in Eq. (4.26) again, independence of the
propagator from the cutoff can finally be confirmed. Results for these steps are shown in
Fig. 4.4. First Eq. (4.16) has been solved, using µ = 10 GeV with m(Λ2

c) = 1.5 GeV and
Λ2
c = 5 · 104 GeV2 with Eq. (4.26) to obtain D(0, µ2) (cyan solid line). To check that the

second prescription is really equivalent, this value has been used in Eq. (4.29) (magenta
dashed line). Then the cutoff has been changed to Λ̄2

c = 5 · 106 GeV2 with Eq. (4.29) (blue
long dashed line). Finally, to confirm independence of the cutoff, the value for m(Λ̄2

c) as
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Figure 4.4.: Solutions of the truncated DSE for the scalar propagator Eq. (4.16) at µ = 10
GeV with m = 1.5 GeV for different cutoffs Λ2

c . The cyan solid and the magenta
dashed lines correspond to Λ2

c = 5 · 104 GeV2 with Eq. (4.26) and Eq. (4.29)
respectively. The red dotted and the blue long dashed line correspond to Λ̄2

c =
5 · 106 GeV2 with Eq. (4.26) and Eq. (4.29) respectively.

obtained from this calculation has been used in Eq. (4.26) (red dotted line). As expected,
only the propagator is independent of the cutoff.
Negativity of the self-energy term together with the renormalization prescription Eq. (4.26)
implies in some cases a renormalization constant Ẑ3 > 1. Therefore one is lead to the
conclusion that the state created by the scalar field cannot be one of positive norm, i.e. in
the asymptotic state space, as it has no Kaellen-Lehmann representation. This is not changed
by the inclusion of tadpoles, as they only lead to a shift in the bare mass. Whether this is
modified by the inclusion of two-loop terms, containing the two-scalar-two-gluon interaction,
would be very interesting. Furthermore, with the employed methods, solutions can only
be found for large values for the mass of the scalar field. This could be an artifact of the
truncation, where several sources are possible. One could use a self-consistent solution for
the vertex as in [115,244] or include two-loop diagrams. Another important contribution at
smaller masses can come from matter loops which can also change the temperature of the
deconfinement transition as in spinor QCD [188].

4.1.2. Non-Vanishing Temperatures

As a next step towards getting information about the center-symmetry transition from the
scalar propagator, the DSE Eq. (4.8) is formulated and solved at non-vanishing temperatures
in equilibrium. For this, the Matsubara formalism, as introduced in Sec. 2.2, is employed.
Already here, general U(1) valued boundary conditions

ψ(~x, x4 + 1/T ) = eiθψ(~x, x4) , θ ∈ [0, 2π) , (4.30)

as will be necessary for the calculation of order parameters for the center symmetry transition
are implemented via the Matsubara frequencies
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ωn(θ) = T (2πn+ θ) , (4.31a)

eiωn(θ)(x4+1/T ) = eiθeiωn(θ)x4

. (4.31b)

In the following, the dependence on θ will not be shown explicitly for better readability.

Thus, the finite temperature DSE is obtained from Eq. (4.8) by replacing

∫

dq4
2π

−→ T
∑

ωn
n∈Z

, (~q, q4) −→ (~q, ωn) , (~p, p4) −→ (~p, ωm) . (4.32)

In particular this implies that the propagators become functions of (~p, ωm). For the scalar
propagator one dressing function is again sufficient and one can use the remaining O(3)
invariance to write

DS(~p
2, ωm) =

ZS(~p
2, ωm)

ω2
m + ~p 2

. (4.33)

In case of the gauge field propagator, the fact that the heat bath breaks Lorentz symmetry
has to be taken into account. Due to the vector nature of the particle, two dressing functions
- corresponding to components longitudinal and transversal to the heat bath - are necessary.
With these, the gluon propagator can then be written as

Dµν(~p, ωm) =
ZL(~p

2, ωm)

ω2
m + ~p 2

PL,µν(~p, ωm) +
ZT (~p

2, ωm)

ω2
m + ~p 2

PT,µν(~p, ωm) , (4.34)

with transversal and longitudinal dressing functions ZT , ZL and projectors

PT,µν(~p, ωm) = δiµδjν
(

δij − pipj/~p
2
)

, (4.35a)

PL,µν(~p, ωm) = Pµν(~p, ωm)− PT,µν(~p, ωm) , (4.35b)

and the transversal projector Pµν of Eq. (4.9).

Also at finite temperature, the pure Yang-Mills lattice data of [162] is taken for the gluon
propagator dressing functions. The form of the fit function is the same as in the vacuum
Eq. (4.18) for the longitudinal as well as the transversal dressing function. Temperature
dependence is then included in the fit parameters a, b, which are different for ZT and ZL.

The scalar-gluon vertex Eq. (4.11) would in general acquire additional tensor structures due
to breaking of Lorentz invariance, see e.g. [115]. Here only the dressing function of the bare
vacuum tensor structure (p + q)µ is taken into account, which depends on ~p 2, ωm, ~q

2, ωn, z,
where z ≡ p̂ · q̂ with p̂ = ~p/‖p‖. The non-Abelian factor of the dressing function is taken
to be the same as in the vacuum Eq. (4.21) with replaced argument k2 = (p − q)2 =
~p 2 + ω2

m − ~q 2 − ω2
n − 2‖~p‖‖~q‖z. It should be noted that temperature effects are usually

restricted to k2 ≤ (2πT )2 [156]. Therefore the behaviour at large momenta, which served as
a partial motivation in the construction of the non-Abelian part of the vertex is not spoiled.
A straightforward generalization of the Abelian part of the vertex to non-vanishing tempera-
ture leads to problems. To see this, note that it is possible to have a vanishing denominator
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in

D−1
S (~p 2, ωm)−D−1

S (~q 2, ωn)

~p 2 + ω2
m − ~q 2 − ω2

n

, (4.36)

even for (~p, ωm) 6= (~q, ωn), whereas the numerator does not necessarily vanish in this case.
To avoid such singularities, the simpler choice

AA(~p
2 + ω2

m, ~q
2 + ω2

n) =
D−1

S (~p 2 + ω2
m)−D−1

S (~q 2 + ω2
n)

~p 2 + ω2
m − ~q 2 − ω2

n

, (4.37)

with the solution of the vacuum DSE DS(x) is used.

To obtain the DSE for the dressing function ZS it is useful to perform the contractions of
Lorentz indices in Eq. (4.8) separately for the occurring projectors Eq. (4.35)

(p+ q)µ PT,µν(~p− ~q, ωm−n) (q + p)ν = 4
~p2~q 2 − (~p · ~q)2

(~p− ~q)2
, (4.38a)

(p+ q)µ Pµν(p − q) (q + p)ν = 4

(

ω2
m + ~p 2

) (

ω2
n + ~q 2

)

− (ωmωn + ~p · ~q)2

(ωm − ωn)
2 + (~p− ~q)2

, (4.38b)

where the corresponding calculations are performed in App. B.2.

Only one of the angular integrations in Eq. (4.8) can be performed trivially and by a change
of variables y = q2, z = cosφ one gets with spherical coordinates in three dimensions

∞
∫

0

dq q2
π
∫

0

dφ sinφ

2π
∫

0

dφ1 f(q
2, cos φ) = π

∞
∫

0

dy
√
y

1
∫

−1

dz f(y, z) . (4.39)

Replacing x = ~p 2 and dividing Eq. (4.8) by x+ω2
m one obtains, by collecting all contributions

1

ZS(x, ωm)
= Ẑ3

(

1 + Ẑm
m2

ω2
m + x

+Σ(x, ωm)

)

, (4.40)

Σ(x, ωm) = − 2

6π
α(µ)T

∑

n∈Z

∞
∫

0

dy
√
y
ZS(y, ωn)

ω2
n + y

A(x, ωm, y, ωn) .

Here, the integration kernel is given by

A(x, ωm, y, ωn) =
4

ω2
m + x

1
∫

−1

dzA(x+ ω2
m, y + ω2

n, z)× (4.41)

{

ZL

(

k2
)

k2

(

ω2
m + x

) (

ω2
n + y

)

−
(

ωmωn + z
√
xy
)2

k2
+
ZT

(

k2
)

− ZL

(

k2
)

k2
xy
(

1− z2
)

~k 2

}

,

where ~k 2 = x+ y − 2
√
xyz and k2 = (ωm − ωn)

2 + ~k 2 is the gluon momentum.

Again regularization is necessary where a O(4) symmetric sharp cutoff with ω2
n + x ≤ Λ2

c

with the vacuum cutoff Λc is used. When going to finite temperature T 6= 0 no additional
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Figure 4.5.: Solution of the truncated DSE for the scalar propagator Eq. (4.40) as function
of ~p 2 = x at fixed Matsubara frequency ω0(0). The propagator (left panel)
and dressing function (right) panel are plotted for different temperatures with
periodic boundary conditions for renormalization scale µ = 4 GeV and mass
m = 1.5 GeV.
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Figure 4.6.: As Fig. 4.40 Solution of the truncated DSE for the scalar propagator Eq. (4.40)
with anti-periodic boundary conditions and ω0(π).

renormalization constants are necessary [156]. As has been stated already, the behavior of a
given theory is probed only up to momenta of order 2πT . For sufficiently large renormalization
scale µ2, the renormalization constants can therefore be taken from the vacuum calculation.

Numerical results

In Fig. 4.5 solutions of Eq. (4.40) are shown for periodic boundary conditions, i.e. θ = 0.
Again, details concerning the numerical implementation can be found in App. C.1. The
results for different temperatures close to the center transition show no visible change across
the transition temperature. This is not unexpected, as the mass of the scalar field is very large
and the thermal fluctuations are not strong enough to cause a large change in the propagator.

Motivated by the stronger temperature dependence observed in the quark propagator close to
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the transition in [234], results obtained with anti-periodic boundary conditions are shown in
Fig. 4.6. There is a trivial temperature dependence due to the lowest Matsubara frequency,
i.e. the propagator at vanishing temperature becomes trivially smaller. Apart from this, it
seems rather hopeless to see any obvious effect of the phase transition from the propagator
directly, motivating a search for proper order parameters.

4.2. Probing the Center Symmetry Transition

In the last section it has become clear that due to the large mass of the scalar field it is
not possible to see any sign of the center phase transition directly from the corresponding
propagator. Therefore it is necessary to construct order parameters for center symmetry
which will be done along the lines of [95,162,231–236].

4.2.1. Order Parameters

The dual chiral condensate as implemented in [234] can serve as a guiding principle in the
construction of order parameters. It is given by the first Fourier coefficient of the chiral
condensate 〈q̄q〉θ as a function of the phase angle θ

Σ1 =

2π
∫

0

dθ

2π
e−iθ〈q̄q〉θ .

It is important to distinguish different cases of defining the θ-dependence in the chiral conden-
sate. In lattice QCD, as in [231,232,235,236] one usually evaluates the expectation value of
the θ-dependent chiral condensate in QCD with antiperiodic boundary. In contrast to this,
continuum calculations often change the boundary conditions of the quarks in the theory,
which is then termed QCDθ. Generalized boundary conditions in QCDθ correspond actually
to imaginary chemical potential and dual order parameters for center symmetry vanish only
if QCDθ is symmetric for all θ in presence of a fixed background [95].
A center transformation changes the boundary condition of the quark field which yields the
properties

〈q̄q〉θ = 〈q̄q〉θ+2π, θ ∈ [0, 2π) , (4.42a)

z〈q̄q〉θ = 〈q̄q〉θ+arg(z), z ∈
{

0, ei2π/3, ei4π/3
}

. (4.42b)

Actually, any quantity Σθ that fulfills Eq. (4.42) can be used to construct order parameters.
It is easy to show that the first Fourier coefficient of Σθ

ΣS =

2π
∫

0

dθ

2π
e−iθΣθ , (4.43)
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transforms as the Polyakov loop under center symmetry

ΣS →
2π
∫

0

dθ

2π
e−iθΣθ+arg(z) (4.44)

=

2π+arg(z)
∫

arg(z)

dθ

2π
e−i(θ−arg(z))Σθ ,

= z

2π
∫

0

dθ

2π
e−iθΣθ

= zΣS .

Here Eq. (4.42b) has been used in the first line, a trivial change of variables has been per-
formed in the second line and the periodicity Eq. (4.42a) has been used in the last line.

From the above considerations one can see that one way of defining an order parameter
is to find some quantity Σθ with the properties Eq. (4.42). Here such a quantity shall be
constructed from the matter propagator of scalar QCDθ

DS,θ(x) ≡ DS,θ(x, y = 0) = 〈φθ(x)φ∗θ(y = 0)〉 , (4.45)

where translational invariance has been used. As has been discussed in Sec. 2.1.2, any field
in the fundamental representation changes its boundary conditions under center transforma-
tions. The boundary conditions in the x4 variable of the scalar propagator DS,θ(~x, x

4) are
therefore changed in a similar way under center symmetry

zDS,θ(~x, x
4) = DS,θ+arg(z)(~x, x

4) . (4.46)

To find a Σθ that can easily be calculated in momentum space it is useful to use invari-
ance of the L2 inner product under unitary transformations. Recalling that Fourier trans-
form/expansion defines a unitary transformation, it is natural to define Σθ in terms of such
a L2 inner product. Here, the momentum ~p is set to zero in the definition of

〈DS,θ(~p
2 = 0, ·),DS,θ(~p

2 = 0, ·)〉L2(0,1/T ) ≡
1/T
∫

0

dx4D2
S,θ(~p

2 = 0, x4) (4.47)

= T
∑

ωn(θ)
n∈Z

D2
S,θ(~p

2 = 0, ωn(θ)) .

This quantity has the advantage that it can easily be evaluated from the propagator in
momentum space as only the Matsubara frequencies are summed. Additionally, it is well-
defined and no further regularization is necessary. Eq. (4.47) has already the properties
Eq. (4.42). Periodicity Eq. (4.42a) can be seen trivial, as the boundary conditions are periodic
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4.2. Probing the Center Symmetry Transition

in 2π

DS,θ+2π = DS,θ . (4.48)

A center-symmetry transformation changes only the boundary condition in the propagator
and therefore

z〈DS,θ(0, ·),DS,θ(0, ·)〉L2(0,1/T ) = 〈DS,θ+arg(z)(0, ·),DS,θ+arg(z)(0, ·)〉L2(0,1/T ) , (4.49)

as in Eq. (4.42b). Using Eq. (4.43) with

Σθ = T
∑

ωn(θ)
n∈Z

D2
S,θ(0, ωn(θ)) , (4.50)

yields then an order parameter for center symmetry in case of fundamentally charged scalar
QCD.

The above reasoning can also be used in QCD with quarks to find new order parameters.
One possibility is given by

Σq,θ = T
∑

ωn(θ)

1

4i

(

tr Sθ(~0, ωn(θ))
)2

, (4.51)

where the trace is over Dirac indices only. Here, the quark propagator

Sθ(p) = −i γ
4ωn(θ)C(p) + γipiA(p)−B(p)

(ωn(θ)C(p))2 + (~pA(p))2 +B2(p)
, (4.52)

1

4i
tr
[

Sθ(~0, ωn(θ))
]

=
B(~0, ωn(θ))

(

ωn(θ)C(~0, ωn(θ))
)2

+B2(~0, ωn(θ))
,

with dressing functions A, B, C has been introduced. Using Σq,θ in Eq. (4.43) serves than
as an alternative to the dual chiral condensate. In contrast to the latter, it is well-defined
even away from the chiral limit.

Note that the derivation of the order parameter for the center symmetry transition was pos-
sible without any reference to the (dressed) Polyakov loop as is used, e.g. when showing that
the dual chiral condensate transforms like the Polyakov loop in [231]. Only the transforma-
tion properties of fundamental matter under center symmetry are used when showing the
properties Eq. (4.42). Nevertheless, it would be interesting whether the new order parameter
can be related to some set of Polyakov loops with winding number one. Furthermore the
continuum limit of the new order parameter is well-defined as the integral is taken over x4

with volume 1/T and only the finite part of the propagator is taken into account, which
avoids an unwanted infinite volume contribution ∝ δ(3)(~0). Another possibility of taking a
well-defined continuum limit in the order parameter was introduced in [236], which relies on
the evaluation of the full trace of the squared Dirac operator.
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Figure 4.7.: Σθ as defined in Eq. (4.50) as function of the boundary conditions for different
temperatures with µ = 4 GeV and m = 1.5 GeV.

4.2.2. Numerical Results

Before investigating the center transition from the scalar propagator via evaluating ΣS it
is interesting to look at Σθ as a function of θ for different temperatures. Recalling the
definition of ΣS in Eq. (4.43) it is clear that whenever Σθ is constant, the defining integral
of ΣS will vanish. Additionally, a mirror-symmetric Σθ around θ = π, i.e. Σπ−θ = Σπ+θ for
θ ∈ [0, π], implies a real ΣS. This is due to the antisymmetric imaginary part of the remaining
factor in the integral. Results for Σθ are shown in Fig. 4.7. Apparently, Σθ is constant for
temperatures below the critical temperature of Tc = 0.277 GeV in the pure gauge theory,
indicating a vanishing order parameter. Above the transition temperature Σθ is not constant
anymore but it is still mirror-symmetric around θ = π and therefore the order parameter
is expected to be a real number. The suppressed values of Σθ around θ = π, where the
cosine is negative furthermore indicate that ΣS will take positives values above the transition
temperature. At periodic boundary conditions θ ∈ {0, 2π}, Σ0 rises quickly with temperature
above Tc as compared to anti-periodic boundary conditions θ = π. In general the behavior of
Σθ is qualitatively comparable to the behavior of the chiral condensate at general boundary
conditions in spinor QCD [162,232,235].

From this discussion of Σθ it is no surprise that the order parameter shown in Fig. 4.8
behaves as expected. Below the transition temperature is is (almost) zero, whereas it takes
non-vanishing values above Tc = 0.277 GeV. Although the transition is known to be of
first order, this is hard to see from the results shown here, as lattice results for the gluon
propagator are only available for a finite number of temperatures. Furthermore, the small
deviations from a vanishing value of the order parameter below the transition temperature
can partially be attributed to numerical uncertainties in the lattice results for the gluon
propagator. However, this is not the only possible source of such deviations. As discussed
previously, the scalar-gluon vertex is expected to play an important role at the transition.
To check its influence, the model parameter d1 of Eq. (4.21) is varied and the corresponding
results for the order parameter are shown in the left panel of Fig. 4.9. The quality of the
transition depends strongly on the vertex. Therefore, the scalar theory can be used as a
testing ground for calculations of the quark-gluon vertex at finite temperature.
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Figure 4.8.: Order parameter ΣS as defined in Eq. (4.43) as function of the temperature with
µ = 4 GeV and m = 1.5 GeV.
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Figure 4.9.: Order parameter ΣS as defined in Eq. (4.43) as function of the temperature for
different masses and vertices with µ = 4 GeV.

Additionally, results for different masses are shown in the right panel of Fig. 4.9. For smaller
masses the numerical values of the order parameter above the transition become larger.
This can be explained by the fact that the scalar field becomes more susceptible to thermal
fluctuations with smaller masses. Furthermore, the quality of the transition seems to worsen,
which can be seen as another indication for the importance of the vertex, but is possibly also
due to truncation effects and missing matter back reactions.

Finally, it is confirmed that Σq,θ from Eq. (4.51) leads via

Σq =

2π
∫

0

dθ

2π
e−iθΣq,θ , (4.53)

to an order parameter in spinor QCD. A comparison of this new order parameter with the
dual chiral condensate [233] and the dual scalar dressing function [234] is shown in Fig. 4.10.
Here, the same model interaction and numerical setup as in [162] have been used. The
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propagator using Σq,φ as defined in Eq. (4.51) as well as Σ1 and ΣB as functions
of the temperature in the chiral limit (The author is grateful to Markus Hopfer
for providing the numerical data for this graph [229,230]).

quark condensate 〈q̄q〉θ, the quark dressing function Bθ(~0, ω0(θ)), as well as Σq,θ as defined
in Eq. (4.51) are plotted as a function of the boundary angle θ for different temperatures. In
contrast to the chiral condensate and Σq,θ, the quark dressing function Bθ(~0, ω0(θ)) does not
fulfill the properties Eq. (4.42). The former two behave qualitatively similar - also to Σθ as
obtained from the scalar propagator. One difference to Σθ is that 〈q̄q〉θ as well as Σq,θ vanish
at temperatures above the transition on a sharp plateau around the anti-periodic boundary
conditions θ = π. This is, because the shown results have been obtained in the chiral limit
and the chiral transition happens at the same temperature as the center transition. Above
the chiral transition the condensate 〈q̄q〉π vanishes due to the restoration of chiral symmetry.
Also, Σq,θ is directly proportional to the scalar dressing function B of the quark propagator
Eq. (4.52), which vanishes as soon as chiral symmetry is restored. Away from the chiral limit
the behavior of 〈q̄q〉π and Σq,θ is expected to be closer to the behavior of Σθ of scalar QCD,
which is seen at least for 〈q̄q〉θ in lattice calculations [232].
Furthermore, the dual order parameters Σ1, ΣB and Σq are plotted as a functions of temper-
ature in Fig. 4.10. Note that ΣB deviates from zero considerably already below the transition
temperature, whereas Σ1 and Σq stay close to zero. Similar to the case of scalar QCD, the
behavior of the order parameters close to the transition temperature depends strongly on
the model chosen for the quark-gluon vertex [201]. The behavior above the transition tem-
perature depends on the chosen order parameter which can be understood by their different
dimensionality.
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Summary

Confinement of fundamentally charged matter has been investigated in terms of center sym-
metry. Truncated versions of the Dyson-Schwinger equation for matter propagators have
been solved at zero and finite temperature.
Along the lines of previous investigations it was possible to construct an order parameter for
the center transition from the matter propagator of fundamentally charged scalar Quantum
Chromodynamics. The crucial point in the construction of this order parameter is the inclu-
sion of information from all Matsubara modes. For very heavy masses of O(1) GeV of the
scalar field, where it is not possible to see any effects of the phase transition in the propagator
itself, this order parameter still shows a clear sign of the phase transition.
Additionally a new order parameter for center symmetry in QCD was found, which compares
well with the previously introduced dual chiral condensate. In contrast to the latter the new
order parameter needs no regularization in case of non-vanishing bare quark masses.
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5. Chiral Transition with Quarks and Mesons

In this chapter, an effective description in terms of quarks and mesons Eq. (2.71) will be used
in the Wetterich equation. The goal is to investigate the relevance and fate of U(1)A violating
interactions close to the chiral transition. In principle this would require calculations with
QCD degrees of freedom. However, the discussion of Sec. 2.1.3 shows that close to the chiral
transition, a description in terms of effective degrees of freedom can also be justified. Also,
from universality arguments an implementation of the correct symmetries and the relevant
degrees of freedom can yield a qualitatively correct description of phenomena associated with
phase transitions. With this motivation, in Sec. 5.2 the full temperature and scale dependence
of a ’t Hooft determinant term will be included in the flow of the mesonic potential of the
two flavor quark-meson model [245]. The 2+1 flavor formulation is treated in Sec. 5.3, where
the effect of a temperature independent ’t Hooft term is investigated in the light chiral limit
of mu,d = 0 [246].
It has been stated already in Sec. 2.1.2 that a careful investigation of the global structure
of the symmetry group is necessary, when going from the left-right (L,R) representation to
the (axial-)vector (V,A) representation. The global structure is of no importance in the L,R
representation, but the V,A representation is usually preferred, when investigating the axial
anomaly. Here, only the relevant results are presented briefly, whereas the corresponding
calculations are performed in App. B.3. The representation of chiral symmetry without
double covering is given by

U(Nf )L × U(Nf )R = U(1)L/ZNf
× SU(Nf )L × SU(Nf )R × U(1)R/ZNf

(5.1a)

= U(1)V /ZNf
× SU(Nf )L × SU(Nf )R × U(1)A/Z2Nf

. (5.1b)

The left and right handed quark spinors transform under the latter two representations as

qL,R → ÛL,R ŨL,R qL,R , ÛL,R ∈ U(1)L,R/ZNf
, ŨL,R ∈ SU(Nf )L,R , (5.2)

and

qL → ÛV Û
†
A ŨL qL , ÛV ∈ U(1)V /ZNf

, ÛA ∈ U(1)A/Z2Nf
, ŨL ∈ SU(Nf )L , (5.3a)

qR → ÛV ÛA ŨR qR , ÛV ∈ U(1)V /ZNf
, ÛA ∈ U(1)A/Z2Nf

, ŨR ∈ SU(Nf )L . (5.3b)

The transformation laws for the mesonic field of the quark-meson model can be obtained
from this via the identification relation Σ ∝ qLq

†
R.

From Eq. (5.1b) one can deduce that the ’t Hooft determinant Eq. (2.51) breaks the full
symmetry to U(1)V /ZNf

×SU(Nf )L×SU(Nf )R. As is discussed in more detail in App. B.3,
this is actually true for any odd power of the determinant. Even powers of the determinant,
on the other hand, respect an additional Z2 ⊂ U(1)A/Z2Nf

. In the two flavor quark-meson
model, this Z2 symmetry plays an important role related to the temperature dependence of
the axial anomaly close to the chiral transition.
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5.1. Mesonic Effective Potential

Symmetries of the ground state and phase transitions can be investigated with the mesonic
effective potential. In the next two sections, two methods of calculating the effective potential
in the quark-meson model will be discussed. The simplest possibility is to treat the mesonic
field as a constant mean-field. Qualitatively this neglects important contributions by mesonic
fluctuations, which are especially important in the vicinity of phase transitions. Therefore,
when investigating the phase transitions of a theory an improvement can be achieved by
including mesonic fluctuations. These will be included with the Wetterich equation in a
leading order derivative expansion.

5.1.1. The Bosonic Mean-Field

The purpose of this section is the calculation of the grand canonical potential of the quark-
meson model in the approximation of a constant mesonic mean-field Σ(x) → Σ̄. In this case,
the fermionic integration is Gaussian and can be performed analytically. The mean-field
action of the quark-meson model is given by

S[T, {µi}; q̄, q, Σ̄] =
∫

R3×[0,1/T ]

{

iq̄γµ∂µq − q†µqq + h
(

q†LΣ̄qR + q†RΣ̄
†qL
)

+ U(Σ̄)
}

, (5.4)

where µq = diag(µ1, . . . , µNf
) is the quark chemical potential matrix in flavor space. The

grand canonical partition function Eq. (2.80) can be evaluated by performing the Gaussian
integration in

Z(T, {µi}; Σ̄) =
∫

Dq̄Dqe−S[T,{µi};q̄,q,Σ̄] . (5.5)

After a straightforward calculation (see e.g. [247,248]), this leads to the effective potential

Ω̃(T, {µi}; Σ̄) = Ω̃q̄q(T, {µi}; Σ̄) + Ω̃q̄q(T,−{µi}; Σ̄) + U(Σ̄) , (5.6)

Ω̃q̄q(T, {µi}; Σ̄) = − 2NT

(2π)2

Nf
∑

i=1

∫

y∈[0,∞]

√
y log

[

1 + e
−
(√

y+m2
q,i(Σ̄)+µi

)

/T
]

,

where m2
q,i(Σ̄) are the eigenvalues of h2Σ̄Σ̄† and N is the number of colors. In the above

expression a divergent contribution related to the fermionic vacuum self-energy has been
dropped. It has been shown that neglecting this contribution can change the phase transition
qualitatively and leads, e.g., to the false prediction of a first-order transition in the chiral limit
of the O(4) quark-meson model [249–251]. Nevertheless the vacuum term will be ignored here
in the mean-field calculation, which is often referred to as the no-sea approximation. It is
easier to include this term in the FRG by dropping the mesonic loop.

Details on the numerical calculation of the mean-field potential are discussed in App. C.2.1.
The mesonic potential U(Σ̄) is independent of the temperature and fixed such that the
mesonic spectrum, obtained by diagonalizing its Hessian ∇2

Σ̄
U , matches experiment. The

number of parameters obviously depends on Nf and the number of chiral invariants taken
into account. The fermionic spectrum is then obtained from the value of Σ̄ at the minimum
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5.1. Mesonic Effective Potential

of the potential and the constituent quark masses are used to fix the strength of the Yukawa
interaction h. The explicit set of parameters will be given in the corresponding cases. The
results at T, µ 6= 0 are predictions within this simple approximation.

5.1.2. Including Bosonic Fluctuations with the Wetterich Equation

The flow equation Eq. (2.32) is used in the leading order derviative expansion. This means
that the full flow is truncated to

Γk =

∫

x∈R3×[0,1/T ]

{

iq̄∂µγµq − q†µqq + h
(

q†LΣqR + q†RΣ
†qL
)

+ tr
[

∂µΣ∂µΣ
†
]

+ Uk(Σ)
}

, (5.7)

where µq = diag(µ1, . . . , µNf
) is again the quark chemical potential matrix in flavor space.

Since only the mesonic field may take non-vanishing expectation values, the trace in the
Wetterich equation splits into a bosonic and fermionic loop

∂kΓk =
1

2
Tr

{

(

Γ
(0,0,2)
k +RB,k

)−1
∂kRB,k

}

− Tr

{

(

Γ
(1,1,0)
k +RF,k

)−1
∂kRF,k

}

. (5.8)

with corresponding regulators RB and RF . For the fermionic field, the ordering of derivatives
is important, where the conventions are defined in App. A.3. It is possible to find unitary

transformations UB and UF that diagonalize Γ
(0,0,2)
k and Γ

(1,1,0)
k in flavor space. Assuming

a flavor blind regulator, these transformations allow to evaluate the flavor space part of the
trace in the Wetterich equation trivially. Therefore, the flow equation for the mesonic effective
potential splits further into

∂kUk(T, {µi}; Σ) =
k3

2





2N2
f

∑

i=1

lB

(

m2
b,i

k2
;T

)

− 4N

Nf
∑

i=1

lF

(

m2
f,i

k2
;T, µi

)



 . (5.9)

Here, the squared (pseudo-)masses are given by the field- and k-dependent eigenvalues,m2
b,i, of

the Hessian of Uk in case of bosons and by the eigenvalues, m2
f,i, of the fermionic mass matrix

h2ΣΣ† in case of the fermions. Note that the physical masses are obtained by evaluating
these eigenvalues at the minimum of the effective potential. The exact form of the threshold
functions lB,F depends on choice for the regulators RB,F and are the same as in case of just
one flavor. Here the three dimensional optimized regulator [55,56]

RB,k(ωn, ~p) = (k2 − ~p2)θ

(

1− ~p2

k2

)

1Nf×Nf
, (5.10a)

RF,k(νn, ~p) = −iγipi
(
√

k2

~p2
− 1

)

θ

(

1− ~p2

k2

)

, (5.10b)

is used, where θ denotes the Heaviside step function. The corresponding dimensionless thresh-
old functions are given by [252]
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lB(x;T ) =
1

6π2

coth

(√
k2(1+x)

2T

)

√
1 + x

, (5.11a)

lF (x;T, µ) =
1

6π2

tanh

(√
k2(1+x)+µ

2T

)

+ tanh

(√
k2(1+x)−µ

2T

)

2
√
1 + x

. (5.11b)

The two terms in the fermionic threshold function with different sign in the chemical potential
correspond to particle and antiparticle.

In this approximation, the task is reduced to solving a highly non-linear partial differential
equation for the mesonic effective potential Uk. Symmetries restrict the effective potential
to be a function of the chiral invariants Eq. (2.72) and the ’t Hooft determinant Eq. (2.73).
A linear explicit breaking term Eq. (2.75) cannot affect the flow as only second derivatives
appear. An explanation of the general numerical implementation is given in App. C.2.2.
The flow at T = µ = 0 is used to fix the parameters. Apart from the Yukawa coupling h
and the explicit breaking terms, the initial effective potential UΛ has to be specified. Only
renormalizable interactions are taken into account at Λ to fit the physical mesonic spectrum
at k = 0. The results at T 6= 0 and µi 6= 0 are then predictions within this approximation.

5.2. Flow of U(1)A Violating Couplings

The goal of this section is an investigation of the temperature dependence of ’t Hooft determi-
nant couplings in the mesonic effective potential of the two flavor quark-meson model [245].
The most general mesonic potential, respecting all symmetries except for U(1)A is given by

U(Σ) = Ũ(ρ1, ρ2, ξ) . (5.12)

The invariants ρ1, ρ2 and the determinant ξ are defined in Eqs. (2.72) and (2.73) with the
mesonic field

Σ = (σa + iπa)τa/2 . (5.13)

Here, τ0 = 12×2 and τa are the Pauli matrices with a ∈ {1, 2, 3} defined in App. A.1. The
mesonic field consists of four scalars JP = 0+ and pseudoscalars JP = 0−. The scalar fields σa

correspond for the index a = 0 to the σ-meson (f0(500)) and the remaining indices a = 1, 2, 3
denote the isotriplet ~a-bosons. The pseudoscalars πa represent the η′-meson (a = 0) and
the three pions ~π (a = 1, 2, 3). Note that the η′-meson with two flavors lacks the strange
contributions that are important in the physical η′. If isospin symmetry is unbroken, i.e.,
mu = md the masses of all isotriplet particles are degenerate. The most general explicit
symmetry breaking term consistent with the quantum numbers of the vacuum

U(Σ) → U(Σ)− tr
[

C(Σ + Σ†)
]

, (5.14)

C = diag

(

c0 + c3
2

,
c0 − c3

2

)

,

76



5.2. Flow of U(1)A Violating Couplings

is added to the potential. This gives a different bare mass to up and down quarks, where
isospin splitting is controlled by c3
The O(4) version of the quark-meson model is obtained by keeping only ρ1 in the potential,
setting c3 = 0 and sending the coupling of ξ to −∞, while keeping the σ- and ~π-masses
constant [136]. In this case, the η′ and ~a-particles decouple from the dynamics due to their
diverging masses [253]. Previous works have included a ρ2-dependence in the potential and
found that the order of the finite-temperature phase transition in the chiral limit is changed
from second to first order [214,216,254].

In order to explore the influence of the axial anomaly on the chiral phase transition, the
mesonic potential U is truncated such that it depends only on ρ ≡ ρ1 and ξ. Replacing all
fields by their vacuum expectation values yields only two non-vanishing condensates, σ0 and
σ3. In this truncation the meson potential Eq. (5.12) and (5.14) is replaced by

U(σ0, σ3) = Ũ(ρ, ξ) − c0σ
0 − c3σ

3 . (5.15)

In the initial potential UΛ as well as the mean-field treatment only renormalizable couplings
are relevant, i.e. the potential can be parametrized as

Ũ(ρ, ξ) = a10(ρ− ρ0) + a01(ξ − ξ0) (5.16)

+
a20
2

(ρ− ρ0)
2 +

a02
2

(ξ − ξ0)
2 + a11 (ρ− ρ0) (ξ − ξ0) ,

with some expansion point (ρ0, ξ0). The chiral invariants in terms of the two condensates are

ρ =
(σ0)2 + (σ3)2

2
, ξ =

(σ0)2 − (σ3)2

2
, (5.17)

where more details can be found in App. B.4.1.

5.2.1. Masses, Ground State and Goldstone Modes

With the restriction to σ0, σ3 6= 0, the field matrix Σ = Σ† is diagonal and the quark masses
are given by

md = h
〈σ0 + σ3〉

2
, (5.18a)

mu = h
〈σ0 − σ3〉

2
. (5.18b)

Therefore the expectation value of σ3 is a measure of isospin symmetry violation, which is
expected to come predominantly from the electromagnetic interaction.

The squares of the scalar, JP = 0+, and the pseudoscalar, JP = 0−, meson masses are given
by the eigenvalues of the Hessian of the mesonic potential with respect to the scalar and
pseudoscalar fields, ϕs,a = σa and ϕp,a = πa, (a = 0, . . . , 3)

m2
i,ab ≡ ∇2Ui,ab =

∂2U(Σ)

∂ϕi,a∂ϕi,b

∣

∣

∣

∣

min

; i = s, p , (5.19)

evaluated at the minimum of the potential. Expressions for the Hessian are given in the fol-
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5. Chiral Transition with Quarks and Mesons

lowing, where only the contribution from the mesonic part of the effective potential is shown.
In the mean-field treatment there is an additional contribution to the effective potential from
the quarks which also modifies the Hessian. As this can be obtained via simple differentiation
and the resulting expressions are lengthy they will not be shown here. The mesonic Hessian
is of the form

∇2U =

(

m2
s 0
0 m2

p

)

, (5.20)

and its only non-vanishing entries are given by

m2
σ/m

2
a0 : m2

s,00 = Ũρ + Ũξ + (σ0)2
(

Ũρρ + 2Ũρξ + Ũξξ

)

, (5.21a)

m2
s,03 = σ0σ3(Ũρρ − Ũξξ) , (5.21b)

m2
s,33 = Ũρ − Ũξ + (σ3)2

(

Ũρρ − 2Ũρξ + Ũξξ

)

, (5.21c)

m2
a1,2 : m2

s,11 = m2
s,22 = Ũρ − Ũξ , (5.21d)

m2
η′ : m

2
p,00 = Ũρ − Ũξ , (5.22a)

m2
~π : m2

p,11 = m2
p,22 = m2

p,33 = Ũρ + Ũξ . (5.22b)

These have already been ordered in contributions to the physical particles where only the σ0

and σ3 entries mix to yield the σ and a0 mesons. If the expansion point (ρ0, ξ0) in Eq. (5.16) is
the minimum of the potential, one has the simple relationships Uρ = a10, Uξ = a01, Uρρ = a20,
etc. The mass splitting between η′ and ~π is given by

m2
η′ −m2

π = −2Ũξ . (5.23)

or −2a01 if (ρ0, ξ0) is the minimum of the effective potential.

For vanishing isospin splitting σ3 = 0, all pions are degenerate and also η′ is degenerate
with ~a. The degeneracy in the pions survives isospin splitting, which is due to the fact that
couplings proportional to ρ2 have been neglected. To see the difference, one can additionally
take the only renormalizable coupling proportional ρ2 into account

Ũ(ρ, ξ) → Ũ(ρ, ξ) + aρ2(ρ2 − ρ2,0) , (5.24)

where (ρ0, ρ2,0, ξ0) is the minimum of the potential. The meson masses are then modified to

m2
σ/m

2
a0 : m2

s,00 → Ũρ + Ũξ + (σ0)2
(

Ũρρ + 2Ũρξ + Ũξξ

)

+ (σ3)2aρ2 , (5.25a)

m2
s,03 → σ0σ3(Ũρρ − Ũξξ) + 2σ0σ3aρ2 , (5.25b)

m2
s,33 → Ũρ − Ũξ + (σ3)2

(

Ũρρ − 2Ũρξ + Ũξξ

)

+ (σ0)2aρ2 , (5.25c)

m2
a1,2 : m2

s,11 = m2
s,22 → Ũρ − Ũξ + (σ0)2aρ2 , (5.25d)
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m2
η′/m

2
π0 : m2

p,00 → Ũρ − Ũξ , (5.26a)

m2
p,03 → σ0σ3aρ2 , (5.26b)

m2
p,33 → Ũρ + Ũξ , (5.26c)

m2
π± : m2

p,11 = m2
p,22 → Ũρ + Ũξ + (σ3)2aρ2 , (5.26d)

which gives the expected splitting in case of σ3 6= 0.

Ground State

The most general ground state is given by

〈Σ〉 = 1

2

(

〈σ0〉+ 〈σ3〉 0
0 〈σ0〉 − 〈σ3〉

)

. (5.27)

Depending on the values of 〈σ0,3〉 this is invariant under different subsymmetries of Eq. (5.1).
Assuming full chiral symmetry in the Lagrangian, the non-trival cases are

(a) chiral symmetry breaking case (σ0 6= 0, σ3 = 0): U(1)V /Z2 × SU(2)L+R,

(b) isospin breaking case (0 6= |σ0| 6= |σ3| 6= 0): U(1)V,d × U(1)V,u,

(c) degenerate isospin breaking case (|σ0| = |σ3| 6= 0): U(1)V,d × U(1)V,u × U(1)A,u/Z2.

From the transformation law

Σ → (Û †
A)

2ŨLΣŨ
†
R , (5.28)

invariance of Eq. (5.27) under UV (1)/Z2 is always guaranteed.

In case (a), 〈Σ〉 is proportional to the unit matrix, resulting in the condition ULU
†
R = 1 for

UL,R ∈ SU(2)L,R which is denoted by SU(2)L+R. Additionally, for UA ∈ U(1)V /Z4 one gets

the condition (U †
A)

2 = 1, which has only the trivial solution.
In case (b), 〈Σ〉 has two nonvanishing and different diagonal entries, which break SU(2)L+R

further down to U(1) consisting of opposite phase rotations of the two matrix entries. There-
fore, the remaining symmetry in case (b) is U(1)V /Z2 ×U(1) ∼= U(1)V,u ×U(1)V,d where u, d
denote independent vector phase rotations of the two flavors.
The last case (c) corresponds to the situation where one of the two condensates in 〈Σ〉
vanishes. As a consequence, one quark, e.g. the up quark if 〈σ0〉 = 〈σ3〉, is massless.
Therefore, axial rotations affecting only this massless flavor yield an additional symmetry
U(1)A,u/Z2 as compared to case (b).
Depending on the original symmetry of the Lagrangian, only a subgroup of the above sym-
metries is actually realized. A summary of the symmetries of the ground state depending on
powers of the determinant ξ present in the Lagrangian is given in Tab. 5.1, where the results
of App. B.3 have been used. Only case (c) is affected by the determinant, where the factor
U(1)A,u/Z2 is broken completely by odd powers of the determinant. A Z2 symmetry remains,
however, in the presence of even powers of ξ.
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5. Chiral Transition with Quarks and Mesons

ξ0 ξ2n ξ2n+1

(a) U(2)L+R U(2)L+R U(2)L+R

(b) U(1)V,d × U(1)V,u U(1)V,d × U(1)V,u U(1)V,d × U(1)V,u
(c) U(1)V,d × U(1)V,u × U(1)A,u/Z2 U(1)V,d × U(1)V,u U(1)V,d × U(1)V,u × Z2

Table 5.1.: Symmetries of the ground-state depending on powers of the ’t Hooft determinant
couplings ξ and 〈Σ〉 (or Lagrangian depending on c0 and c3) for the cases (a)-(c)
discussed in the main text, with n ∈ Z.

Actually, the cases (a)-(c) can also be applied to the explicit breaking terms c0, c3 6= 0.
Replacing σ0,3 → c0,3 in the cases (a)-(c) one can read off the symmetries of the Lagrangian
with explicit symmetry breaking from Tab. 5.1.

Goldstone Modes

As discussed in Sec. 5.2.1, there exist three different Nambu-Goldstone realizations with
symmetry breaking pattern corresponding to the cases (a)-(c). These ground states can also
be analyzed in terms of quark masses and Goldstone mesons. The quark masses are given
by Eq. (5.18) and the meson masses by Eqs. (5.21) and (5.22). Using the effective potential
Eq. (5.16) with (ρ0, ξ0) as its minimum, the conditions ∂σ0,3U(Σ) = 0 yield

m2
~π = a10 + a01 =

c0
〈σ0〉 , (5.29a)

m2
η′,a1,2 = a10 − a01 =

c3
〈σ3〉 , (5.29b)

at the minimum. Obviously, these relations are well-defined only if 〈σ0〉 6= 0 and 〈σ3〉 6= 0.
Before going on it should be noted that, if a coupling aρ2 is present, these relations are
changed to

a10 + a01 + aρ2〈σ3〉2 =
c0
〈σ0〉 , (5.30a)

a10 − a01 + aρ2〈σ0〉2 =
c3
〈σ3〉 . (5.30b)

The Wigner-Weyl realization can only occur in the chiral limit c0 ∼ c3 → 0 and from
〈σ0,3〉 = 0 one can deduce that the quarks are massless, whereas nothing can be said about
the mesonic spectrum without further calculations.

The case (a) of spontaneous breaking of chiral symmetry to U(1)V /Z2 × SU(2)R+L as it is
believed to (approximately) happen in Nature with fπ = 〈σ0〉 = 93.75 MeV and 〈σ3〉 = 0
can only be realized in the isospin symmetric case c3 = 0. In the chiral limit c0 → 0 with
〈σ0〉 6= 0, two degenerate massive quarks and three massless pions are the consequence. If
additionally U(1)A/Z4 is a symmetry of the Lagrangian one has a01 = 0 and therefore the η′-
particle is the fourth Goldstone mode corresponding to spontaneous breakdown of U(1)A/Z4.
Additionally, the ~a-particles are massless. To see that this is only a remnant of ignoring ρ2,
Eq. (5.30) together with the masses Eqs. (5.25) and (5.26) can be employed. As 〈σ3〉 = 0 all
pions are massless and m2

η′ = a10−a01 differs from the degenerate m2
~a by 〈σ0〉2aρ2 . Therefore
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5.2. Flow of U(1)A Violating Couplings

only η′, ~π become massless if a01 = 0, whereas the ~a and σ remain massive.

Case (b) with 0 6= |〈σ0〉| 6= |〈σ3〉| 6= 0 can happen for any explicit symmetry breaking c0, c3. In
the chiral limit c0, c3 → 0 this corresponds to spontaneous breaking of chiral as well as isospin
symmetry with two quarks of different mass. Eq. (5.29) implies six massless modes in such
a case. Additionally, if U(1)A/Z4 were a symmetry of the Lagrangian, a seventh massless
mode would be obtained as a mixed state of σ0, σ3. This can be seen by calculating the
determinant of the corresponding matrix, which vanishes as a11 = a02 = 0. Either way, too
many massless modes are obtained, which are lifted again by including aρ2 . Via Eqs. (5.25)
and (5.26), the condition Eq. (5.30) results immediately in m2

π± = m2
a1,2 = 0. Additionally,

the matrix defining π0 and π3 can be seen to have vanishing determinant by using Eq. (5.30)
to express the diagonal entries in terms of aρ2 giving the fifth necessary massless mode. If
U(1)A/Z4 were a symmetry, Eq. (5.30) can only be true for 〈σ0〉 6= 〈σ3〉 if aρ2 = 0, i.e. also
the second mixed state of η′, π0 would be massless. Additionally, one mixed state of σ0, σ3

is accidentally massless, which is only lifted by including higher non-renormalizable terms in
ρ2.

The special case (c) with |〈σ0〉| = |〈σ3〉| 6= 0 corresponds to one massive and one massless
quark. In the chiral limit Eq. (5.29) implies six massless modes, which become seven if addi-
tionally U(1)A/Z4 were a symmetry as the determinant of the mass matrix corresponding to
σ0, σ3 would also vanish. If aρ2 is added Eq. (5.30) makes π± and a1,2 massless. Additionally,
one of the π0, π3 mixing states is massless by the same reasoning as in the previous case. If
additionally U(1)A/Z4 were respected, no additional massless modes arise, as this symmetry
is not spontaneously broken.

Interplay of Explicit, Spontaneous and U(1)A Breaking

Before going on, it is interesting to investigate the interplay of the axial anomaly and spon-
taneous chiral symmetry breaking, with Eq. (5.29) and Eq. (5.30).

In case of aρ2 = 0, one has from Eq. (5.29)

¬
(

〈σ0〉 6= 0 ∧ 〈σ3〉 6= 0 ∧ a01 6= 0 ∧ c0
〈σ0〉 =

c3
〈σ3〉

)

, (5.31)

where ¬ denotes the negation, i.e. not all statements in the parentheses can be true at the
same time. At first sight, this does not seem to be of much help, but it is worthwhile to
investigate the consequences.

In a realistic description, 〈σ0〉 differs considerably from zero due to spontaneous chiral sym-
metry breaking. In the chiral limit, the last condition is automatically fulfilled and one arrives
at the condition that either a01 = 0 or 〈σ3〉 = 0.

Away from the chiral limit one has from Eq. (5.29)

0 < −2a01 =
c3
〈σ3〉 −

c0
〈σ0〉 . (5.32)

To simplify the discussion, the case aρ2 6= 0 is only investigated in the chiral limit c0 = c3 = 0.
Using Eq. (5.30) with 〈σ0〉 6= 0, one immediately concludes that a01 = 0 implies 〈σ0〉 = 〈σ3〉.
In Nature, the latter is no option and therefore a01 6= 0 can be concluded.

To conclude: Independent of the value of aρ2 , one cannot have both, vanishing a01 and
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5. Chiral Transition with Quarks and Mesons

suppressed isospin breaking 〈σ3〉 within the quark-meson model. As spontaneous chiral sym-
metry breaking demands a small 〈σ3〉, one can conclude already at this stage that a01 6= 0,
without any input from the mesonic masses. In other words, this provides a connection be-
tween spontaneous chiral symmetry breaking and the strength of the ’t Hoot determinant
coupling.

5.2.2. Numerical Investigation

In this section numerical results for the quark-meson model in its two-flavor version with
an effective potential of the form Eq. (5.15) are presented. Both, a mean-field treatment as
described in Sec. 5.1.1 as well as the renormalization group method discussed in Sec. 5.1.2
will be used. The functional renormalization group equation is solved numerically on a
two-dimensional grid and in a two-dimensional Taylor expansion through O(Σ6) in chiral
invariants, i.e. only Ũk is scale dependent. Further details concerning the numerical imple-
mentation can be found in App. C.2.1 and C.2.2. The model parameters are fixed as discussed
in Sec. 5.1.1 and 5.1.2. Several scenarios are investigated in the following, where the physical
mass point is referred to as the one with mq ≈ 300 MeV, mπ ≈ 138 MeV and m′

η ≈ 980 MeV.
This may not be the correct η′ mass with two flavors, as the real η′ also contains strange con-
tributions - see e.g. [255] for corresponding lattice calculations. In order to obtain a η′ mass of
this magnitude, already the initial anomaly a01(Λ) has to take a non-vanishing value, which
means that the splitting between the η′, a and σ, π-sector is already present at the UV-cutoff
Λ = 1500 MeV. In principle, the initial strength of the U(1)A violating coupling a01(Λ) can
be calculated from QCD, see e.g. [256]. Here the more phenomenological approach of fixing it
to the desired mη′ is taken. It is hard to evaluate the value of the explicit isospin breaking c3
at the physical mass point within the quark-meson model. Therefore its value relative to the
uniquely defined c0 = cphys is specified for each of the calculations separately. Together with
setting the pion decay constants to 〈σ0〉 = fπ = 93.75 MeV, the values of h, c0, a10(λ), a01(Λ)
can therefore be fixed. The coupling a20(Λ), which provides an additional contribution to
mσ, is set to zero, since the mass of the σ-meson is not known precisely enough [8].

Temperature Dependence

The temperature dependence of the mesonic masses and condensates at the physical mass
point is shown in Fig. 5.1. Independent of the technique, the FRG calculations show a reduc-
tion in the η′ mass of approximately 200 MeV at temperatures around the chiral crossover,
which is in accordance with recent experimental data [202]. The σ, ~π-sector does not seem
to be altered by the augmentation of the quark-meson model and behaves qualitatively as
in the limit (a10 − a01) → ∞, i.e. the O(4) quark-meson model (see e.g. [254]). The same
figure also shows mean-field results, where one can observe that the chiral crossover becomes
steeper if the mesonic fluctuations are not implemented. Furthermore the weakening of the
anomalous mass-splitting between the σ, ~π and η′,~a-sector around the crossover temperature
is not reproduced in mean-field calculations. In the remainder of this section, only results
obtained with the Taylor RG technique through O(Σ6) will be shown, as it is computationally
less expensive than the grid method.

The influence of explicit isospin breaking c3 6= 0 is investigated numerically in Fig. 5.2. Even
for a change of c3 by an order of magnitude, its effect on the meson masses is negligible.
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Figure 5.1.: Comparison of meson masses (left) and condensates (right) in mean-field ap-
proximation (dashed lines), with the RG calculation (solid lines: Taylor tech-
nique; crosses: grid) as a function of the temperature at the physical mass point
(c0 = c3 = cphys). With the exception of the mean-field calculation the mass of
η′ and a0 are degenerate.
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Figure 5.2.: Physical initial anomaly a01(Λ): masses (left panel) and condensates (right panel)
for explicit breaking c0 = c3 = cphys (solid line), c0 = 10c3 = cphys (short dashed)
and c0 = c3 = cphys/10 (long dashed).

The only effect is on the trivial splitting between the two quark masses proportional 〈σ3〉.
Also shown are results for symmetric explicit breaking terms c0 = c3 = cphys/10, resulting in
the typical quark-meson model behavior of m~π,mσ and 〈σ0〉 close to the chiral limit [254],
whereas the effect on the η′,~a-sector is marginal.

Fig. 5.3 shows meson masses and condensates for almost vanishing initial anomalous coupling
a01(Λ) = −(1 MeV)2 1 and asymmetric explicit breaking parameters c0 = 10c3 = cphys as
functions of temperature. Even though the anomalous splitting |mη′ −m~π| ∝ |a01| is taken
to be practically vanishing at the initial scale Λ, the infrared mη′ differs considerably from
m~π. Above the chiral transition temperature the degeneracy in the masses of η′-meson and

1This has to be compared to a01(Λ) ≈ −(450 MeV)2 in the previous calculations.
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Figure 5.3.: Vanishing initial anomaly a01(Λ) = −(1 GeV)2 and explicit breaking c0 = 10c3 =
cphys: masses (left panel) and condensates (right panel) vs. temperature.

pions is restored again. This is in accordance with the connection between chiral symmetry
breaking and the anomalous mη′ in Eq. (5.32).

Spontaneous Breaking of Z2

In order to gain a better understanding of the drop in the η′ mass, it is instructive to
examine some special limits away from the physical mass point. Recall from the discussion
in App. B.3 that the Lagrangian can possess an additional Z2 symmetry, if it only contains
terms proportional to even powers of the ’t Hooft determinant. This Z2 symmetry is also
respected by an explicit breaking term with c0 = c3, which is then an obvious choice for the
corresponding investigations. This choice for the explicit breaking corresponds to maximal
violation of isospin symmetry, i.e. one massive and one massless bare quark at the initial
scale Λ.

Fig. 5.4 shows the scale dependence of the condensates and couplings for a UV-potential
with very small a01(Λ) = −(1 MeV)2, for different choices of c3. In case of c0 = c3 (solid
line) Z2 violating couplings remain suppressed above the scale of chiral symmetry breaking
kχ ∈ [500, 600] which is also reflected in the condensates 〈σ0〉 = 〈σ3〉. Only together with
spontaneous chiral symmetry breaking such Z2 violating couplings are generated and 〈σ0〉 6=
〈σ3〉 is realized. Qualitatively this behavior even survives an explicit breaking of the Z2

symmetry by setting c3 6= c0. On the other hand, couplings which violate axial phase rotations
but respect Z2 are generated immediately below Λ.

In this special limit, the anomalous mass of the η′ is therefore connected to spontaneous
breaking of Z2 at the scale of spontaneous chiral symmetry breaking. This can be seen as
an explicit realization of Eq. (5.32). From this relation it is obvious that two massive quarks
of approximately the same size imply a 〈σ0〉 that is considerably larger than 〈σ3〉, which can
only be realized if a01 is large and negative.

Z2 Phase Transition

Whenever a symmetry is spontaneously broken, there is the chance for a phase transition
connected to its restoration. The finite temperature masses and condensates for Z2 symmetric
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Figure 5.4.: Vanishing initial anomaly a01(Λ) = −(1 GeV)2: O(Σ2)- (top left panel), O(Σ4)-
couplings (top right panel), condensates (bottom left panel) and O(Σ6)-couplings
(bottom right panel) vs. scale k. The solid line shows a calculation with explicit
breaking parameters c0 = c3 = cphys, the long dashed line with c0 = 10c3 = cphys
and the short dashed line with c0 = 50c3 = cphys.

explicit breaking parameters c0 = c3 = cphys are shown in Fig. 5.5. The η′, ~π splitting vanishes
at the chiral transition temperature and furthermore a perfect degeneracy in the condensates
is restored. Also, all Z2-violating couplings of odd powers of the ’t Hooft determinant vanish
at the transition temperature, as can be seen in Fig. 5.5. In contrast to this, Z2 respecting
couplings that violate the symmetry under general axial phase rotations remain non-vanishing
above the chiral transition temperature. Therefore, the system experiences a phase transition,
where Z2 critical exponents are expected. The order parameter of the phase transition is given
by

√
ξ0 and the corresponding critical exponent β = 0.366. This can be compared to the three

dimensional Ising universality class exponent of 0.326 [158]. The deviation can be explained
by the fact that a leading order derivative expansion has been used. Furthermore the Taylor
expansion in the effective potential has been performed only through O(Σ6), which is known
to give slightly higher results for the critical exponent ν and therefore also β 2 [257].

2The anomalous dimension vanishes in a leading order derivative expansion.
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Figure 5.5.: Vanishing initial anomaly a01(Λ) = −(1 GeV)2 and explicit breaking c0 = c3 =
cphys: masses (top left panel), condensates (top right panel), O(Σ2)-couplings
(bottom left panel) and O(Σ4)-couplings (bottom right panel) vs. temperature.

86



5.3. Nf = 2 + 1 and Light Chiral Limit

5.3. Nf = 2 + 1 and Light Chiral Limit

In this section the extension of the quark-meson model to three flavors is investigated [246].
The most general effective potential consistent with the symmetries is now given by [136]

U(Σ) = Ũ(ρ1, ρ2, ρ3, ξ)− tr
[

C(Σ + Σ†)
]

. (5.33)

Again, the approximate nature of chiral symmetry has been taken into account by adding a
diagonal explicit breaking matrix C.

The complex mesonic field is

Σ = (σa + iπa)
λa

2
, (5.34)

where λ0 =
√

2/3 13×3 and λa are the Gell-Mann matrices for a = 1, . . . , 8. Although mixing
might occur, the field components can again be roughly related to particles [213]. In the
scalar sector, σ0 corresponds to the sigma meson f0(500) and σ

1,2,3 to the triplet ~a as in the
two-flavor case. Additionally, the strange mesons σ4,5,6,7 correspond to the κ quadruplet and
σ8 to the f0(1370). For the pseudoscalars, a mixing of π0 and π8 gives the η′ and η mesons.
The pions are represented by π1,2,3 and the kaons correspond to π4,5,6,7.

From the scalar and uncharged nature of the vacuum, only the fields σ0, σ3, σ8 are allowed
to obtain a non-vanishing expectation value, which takes the form

〈Σ〉 =









〈σ0〉√
6
+ 〈σ8〉

2
√
3
+ 〈σ3〉

2 0 0

0 〈σ0〉√
6
+ 〈σ8〉

2
√
3
− 〈σ3〉

2 0

0 0 〈σ0〉√
6
− 〈σ8〉√

3









. (5.35)

Via the Yukawa interaction, these condensates can again be directly related to effective quark
masses. Therefore, the order parameters for spontaneous chiral symmetry breaking are the
three condensates 〈σ0〉, 〈σ3〉, 〈σ8〉.

5.3.1. The 2+1 Flavor Approximation

Interpreting the upper two entries of Eq. (5.35) as the light quark sector, the expectation value
〈σ3〉 describes isospin splitting as in the case of two flavors. The 2 + 1 flavor approximation
corresponds to ignoring isospin splitting and setting 〈σ3〉 = 0 which results in two degenerate
light quarks and one strange quark. It is convenient to rotate the remaining fields (σ0, σ8) to
a strange-nonstrange basis [213]

(

σx
σy

)

=
1√
3

( √
2 1

1 −
√
2

)(

σ0

σ8

)

. (5.36)
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The field can then take the expectation values

〈Σ〉 =







〈σx〉
2 0 0

0 〈σx〉
2 0

0 0
〈σy〉√

2






, (5.37)

and the explicit breaking term translates to

tr
[

C(Σ + Σ†)
]

→ cxσx + cyσy . (5.38)

As the transformation in Eq. (5.36) is unitary, the renormalization group equation is not
affected by this basis change. The explicit symmetry breaking terms cx and cy control the
bare light and strange quark masses, respectively.

The order parameters for spontaneous symmetry breaking are the condensates 〈σx〉 and 〈σy〉.
Due to the explicit breaking, the latter is already large above the scale of chiral symmetry
breaking. The explicit breaking term cy breaks SU(3)L ×SU(3)R to SU(2)L ×SU(2)R. The
spontaneous symmetry breaking pattern in the light chiral limit cx → 0 is the same as in the
case of two flavors and the light condensate 〈σx〉 is the order parameter for the spontaneous
breaking pattern SU(2)L × SU(2)R → SU(2)L+R.

The mesonic potential is taken as

U(σx, σy) = Ũ(ρ1, ρ̃2)− cξ − cxσx − cyσy , (5.39)

with

ρ1 =
1

2
(σ2x + σ2y) , (5.40a)

ρ̃2 = ρ2 −
1

3
ρ21 =

1

24
(σ2x − 2σ2y)

2 , (5.40b)

and

ξ = detΣ + detΣ† =
1

2
√
2
σ2xσy , (5.41)

where more details can be found in App. B.4.2. The determinant ξ is included just as an
explicit breaking, which will not depend on the temperature or scale in the renormalization
group treatment. It would be desirable to go beyond this approximation in future investi-
gations, which would require a three dimensional mesonic potential. The third invariant ρ3,
however, is not independent of ρ1, ρ̃2 and ξ in the 2 + 1 flavor approximation.

The masses for the quarks are then given by the diagonal entries of 〈Σ〉 times the Yukawa
coupling h

mq,x = h
〈σx〉
2

, (5.42a)

mq,y = h
〈σy〉√

2
. (5.42b)

To obtain the mesonic masses it is necessary to calculate the Hessian of the potential with
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Figure 5.6.: Physical mass point: RG results for meson masses as functions of temperature
with (left) and without (right) ’t Hooft term.
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Figure 5.7.: As Fig. 5.6 for remaining mesons.

respect to Σ. The resulting matrix is block diagonal in the scalar and pseudoscalar part, i.e.

∇2U =

(

m2
s 0
0 m2

ps

)

. (5.43)

The only off-diagonal entries are in the 0 and 8 components ofm2
s andm

2
ps respectively, where

e.g. the mixing angles of η, η′ can be obtained from the corresponding matrix entries in m2
ps

along the lines of [213]. The entries of the scalar and pseudoscalar mass matrix can then be
expressed as functions of the derivatives Ũρ1 , Ũρ̃2 , Ũρ1ρ1 , Ũρ1 ρ̃2 , Ũρ̃2 ρ̃2 and of σx, σy, where the
exact expressions are very lengthy and given in App. B.5. In a mean field treatment one has
additional contributions to this mass matrix from the fermionic fluctuations at T 6= 0 [213].

5.3.2. Numerical Investigation

Analogously to Sec. 5.2.2, in this section numerical results for the 2 + 1 flavor quark-meson
model are presented. The model parameters are the Yukawa coupling h, the two explicit
breaking terms cx, cy and the ’t Hooft determinant coupling c, with the same values as
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Figure 5.8.: As Fig. 5.6 for condensates.

in [213]. Additionally, the mesonic potential is defined in terms of its renormalizable terms
as

U(ρ1, ρ̃2) = a10ρ1 + a01ρ̃2 +
a20
2
ρ21 . (5.44)

In case of the renormalization group treatment this amounts to fixing the initial potential
UΛ.
Therefore at T = 0, seven parameters have to be fixed in total. The first four correspond
to setting the values of the pion and kaon decay constant via 〈σx〉 and 〈σy〉, the η′-π mass
splitting as well as the light constituent quark mass. The three parameters in the potential
can then be used to adjust the mass of σ-meson, pion and kaon. The mass of the σ-meson is
not very well known from experiments, which yield values in the range 400 − 1200 MeV [8].
Its influence has e.g. been investigated in [213] in a mean-field treatment. In renormalization
group studies there is usually a smaller window of allowed values for mσ in the range of
400− 600 MeV. This restriction is due to the fact, that the initial potential UΛ is used to fix
the spectrum. Therefore, not necessarily all infrared potentials can be reached from the set
of initial potentials.
As mentioned before, the coupling of the ’t Hooft determinant is taken scale and temperature
independent. Its influence will be investigated by comparing the U(1)A symmetric case c = 0
with the physical case mη′ = 958 MeV [8]. Several scenarios are investigated in the following,
where the physical mass point refers to realistic mπ = 138 MeV and mK = 496 MeV [8].

Physical Point

Results for the meson masses at the physical point from the grid FRG method are shown in
Fig. 5.6 and 5.7. The left panel includes a physical ’t Hooft term and the right panel shows
results without U(1)A violation. At vanishing temperature, the ’t Hooft term leads to the
mixing of π0 and π8 and as a consequence to a suppression the mass of the η-meson, whereas
the degeneracy in pion and η′-meson mass is lifted. Additionally, the a0 and f0 masses are
enhanced by the determinant, which prevents a degeneracy of σ, ~π with the a0 even in case
of 〈σx〉 = 0. The condensates, shown in Fig. 5.8, are not very susceptible to the determinant,
although the slope of the light condensate is slightly steeper without it. Apart from this, the
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Figure 5.9.: Physical mass point: Comparison of RG (solid), RG without mesonic loop (long-
dashed) and no-sea mean-field (short dashed) results for meson masses as func-
tions of temperature with (left) and without (right) ’t Hooft term.
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Figure 5.10.: As Fig. 5.9 for remaining mesons.

light sector seems to be largely unimpressed by the presence of strange degrees of freedom and
behaves qualitatively similar to the O(4)-version of the quark-meson model [254]. Therefore
the strange sector decouples to a large degree from the non-strange sector due to the large
masses.

Additionally, the influence of mesonic fluctuations and the fermionic vacuum energy is in-
vestigated.Results for the masses and condensates with the full renormalization group (solid
line), renormalization group without meson loop (long dashed line) and no-sea mean-field
(short dashed line) are shown in Figs. 5.9, 5.10 and 5.11. Similar to the O(4) quark-meson
model (see e.g. [199]), the crossover is washed out by the inclusion of all fluctuations. This
is also true independent of the presence of U(1)A violating terms. However, it is interesting
that mesonic fluctuations do not wash out the transition without determinant. This is an
indication that the physical point without determinant is closer to criticality.
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Figure 5.11.: As Fig. 5.9 for condensates.
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Figure 5.12.: Light chiral limit: Comparison of RG (solid), RG without mesonic loop (long-
dashed) and no-sea mean-field (short dashed) results for condensates as func-
tions of temperature with (left) and without (right) ’t Hooft term.

Light Chiral Limit

The influence of different kinds of fluctuations and the ’t Hooft term become even more
interesting when leaving the physical point. Fig. 5.12 shows the condensates in the light
chiral limit cx = 0, cy 6= 0 as functions of the temperature. Again, the left panel is with
’t Hooft determinant and the right panel without. As before, the solid line corresponds to
full FRG results, the long dashed line to the FRG treatment without mesonic loop and the
short dashed line to a no-sea mean-field treatment.

As reported previously [199], the chiral transition is of first order in the no-sea mean-field
case independent of the ’t Hooft term. Including the fermionic vacuum fluctuations via the
FRG without mesonic loop changes the phase transition to second order, which is again
independent of the presence of a ’t Hooft determinant. Other, more detailed investigations
of the influence of the vacuum term with three flavors include [258–262].

The ’t Hooft term makes a difference, however, in the full FRG treatment with the mesonic
loop. The transition is of second order with determinant and of first order without it. Ad-
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’t Hooft term.
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Figure 5.14.: Light chiral limit: Logarithmic plots and fit of the light condensate as function
of temperature (left) and explicit breaking cx (right) with ’t Hooft determinant.

ditionally, the left panel of Fig. 5.12 shows the phase transition in the light chiral limit with
’t Hooft term at lower mσ than in the left panel of Fig. 5.12, which does not change the
qualitative behavior of the transition.

To understand these findings, recall that in the chiral limit, the chiral transition for two flavors
is expected to be of first order without and of second order with temperature independent
’t Hooft term [214]. In the Columbia plot Fig. 2.7, this might lead to another first order
region that is separated from the crossover region by a line of second-order transitions, as in
case of the three flavor chiral limit. Leaving the two flavor chiral limit in direction of finite
strange quark mass corresponds therefore to the light chiral limit for Nf = 2 + 1. For large
strange quark masses, one would still expect a first-order transition. The presented results
show, that at least at the physical strange quark mass there is still a first order transition.
These findings are, however, also consistent with the possibility that the regions of first-order
transitions of the two and three flavor chiral limit are connected.

93



5. Chiral Transition with Quarks and Mesons

From a Landau theory point of view it might come as a surprise that a term cubic in the
field is responsible for a change from first to second order and not the other way around.
In the 2 + 1 flavor case this is actually a too simple picture, as there is more than one field
component which acquires a non-vanishing expectation value. From the previous results it
is clear that the strange condensate is almost unimpressed by the (order of the) transition.
Therefore, only the potential at fixed σy, as shown in the right panel of Fig. 5.13, is relevant
for the transition. The bump that would lead to a first-order transition comes from a positive
quadratic term. The ’t Hooft determinant is, however, proportional to −σ2xσy, which provides
a negative quadratic term in σx at fixed σy. Therefore, the bump, which is important for the
first-order transition, is actually weakened by the ’t Hooft determinant.
Finally, the two critical exponents β and δ are calculated in the light chiral limit with ’t Hooft
determinant. As critical phenomena are driven by the long-ranged mesonic fluctuations of
the theory it is very important to set the infrared cutoff low enough, which has been taken
as kIR = 2 MeV. Fig. 5.14 shows the corresponding linear fit on a double logarithmic plot
and the obtained exponents are

β = 0.39 , δ = 5.2 . (5.45)

Applying the same solution method to the O(4) quark meson model, the results agree within
a percent. These numbers are also compatible with other three-dimensional O(4)-universality
class results obtained in the derivative expansion [257], where deviations can be attributed
to the choice of the regulator. Deviations from the results obtained with other methods
(see e.g. [158]) due to the derivative expansion.

Summary

The axial anomaly has been investigated close to the chiral transition with the quark-meson
model in the functional renormalization group.
For two flavors, the temperature dependence of effective ’t Hooft determinant interactions
has been investigated. In accordance with recent experimental data, a drop in the anomalous
mass of the η′-meson has been found around the chiral transition. Within the given effective
description, this has been connected to a suppression of isospin breaking. Furthermore, a
new Z2 phase transition has been found in the limit of maximal isospin violation, i.e. one
massive and one massless bare quark, and U(1)A symmetric initial theory. The anomalous η′

mass has been interpreted as a consequence of the corresponding spontaneous breaking of Z2.
The drop in mη′ at the chiral transition, however, corresponds then to a partial restoration
of Z2 instead of full U(1)A.
Extending the quark-meson model to 2+1 flavors, the influence of a temperature independent
’t Hooft determinant has been investigated. For physical values of the mesons, a temperature
independent determinant is already sufficient to reproduce a drop in the η′-mass due to its
dependence on the light condensate. In the limit of vanishing up and down quark mass,
a first-order transition is found in the full renormalization group treatment without axial
anomaly. Including the anomaly via the ’t Hooft term, this transition is changed to second
order in the O(4) universality class. This influence of the determinant on the order of the
transition in the light chiral limit cannot be reproduced without mesonic fluctuations.
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6. Conclusions and Outlook

In this thesis different aspects of strongly-interacting matter have been investigated. The
focus has been put on the phenomena of confinement and spontaneous chiral symmetry
breaking. In particular, at finite temperatures a rapid crossover from a confined phase of
spontaneous chiral symmetry breaking to a deconfined and chirally symmetric phase - called
quark-gluon plasma - occurs. Confinement at vanishing temperature in terms of a linearly
rising potential has been investigated in Ch. 3, whereas Ch. 4 and Ch. 5 focus on the de-
confinement and chiral transition at finite temperatures respectively. Investigations of these
non-perturbative phenomena require appropriate methods. In this work, functional methods,
i.e. the Dyson-Schwinger equations and the functional renormalization group, have been em-
ployed. Another important non-perturbative method would be lattice QCD which, however,
requires a lot of numerical effort to implement chiral symmetry. Furthermore, it is often hard
to extract simple qualitative pictures of physical phenomena from lattice calculations. Some
aspects of strongly-interacting matter have been discussed in Ch. 2 to set the stage for the
subsequent self-contained investigations.

In Ch. 3 the consequences of a hypothetical confining 1/k4 infrared singularity in the quark
4-point function have been investigated. Such a singularity violates cluster decomposition
and results in a linearly rising static quark potential. A consistent set of similar infrared
singularities has been found in all n-point functions with n ≥ 4, whereas 3-point vertices
and propagators are protected. A simple source for Casimir scaling has been identified in
this picture of confinement. Furthermore, the presence of such a singularity in one kind of,
possibly very heavy, fundamentally charged matter is sufficient to induce it in all other matter.
This investigation shows that, if confinement is realized in terms of such singularities, it can
probably be seen already on the level of 4-point functions. The absence of 1/k4 singularities
on the level of 4-point functions, however, could be interpreted as bad news for the n-point
function approach to confinement in terms of a linearly rising Landau gauge potential. In
future investigations it would be desirable to show the absence of such long-ranged interactions
between color singlets. Furthermore, it must be possible to see the absence of Van-der-Waals
forces and derive the correct relative factors also for the asymptotic scaling of the linearly
rising potential. If this picture of confinement is correct, these investigations would provide
a basis for the construction of consistent truncations with confinement.

Confinement of fundamentally charged matter has been investigated in terms of center sym-
metry in Ch. 4. New order parameters that are accessible through matter propagators have
been introduced. The solution of a truncated DSE for the matter propagator has been used
to investigate the center transition. In fundamentally charged scalar QCD as well as real
QCD a clear signal for the transition can be seen. In the latter case, the new order parameter
compares well to the previously introduced dual chiral condensate with the advantage that no
further regularization is necessary even away from the chiral limit. Unfortunately, the quality
of the transition depends strongly on the model interaction between scalars and gluons which
motivates a thorough investigation of the scalar-gluon vertex at non-vanishing temperatures.
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Scalar QCD can then provide a testing ground for investigations of the quark-gluon vertex of
QCD at finite temperatures, which are complicated by a large number of tensor structures.
In Ch. 5 the axial anomaly has been investigated close to the chiral transition in terms
of quarks and mesons as effective degrees of freedom within the functional renormalization
group. For two, as well as 2 + 1 quark flavors, a recently reported drop in the anomalous
mass of the η′-meson close to the chiral transition could be reproduced. In the case of two
flavors, this requires a scale and temperature dependent U(1)A violating interaction in terms
of a ’t Hooft determinant. The drop in mη′ close to the chiral transition could be connected
to a partial restoration of an approximate Z2 symmetry instead of full U(1)A. The order
of the chiral transition in the light chiral limit with 2 + 1 flavors has been investigated in
presence of a temperature independent ’t Hooft determinant. With determinant a second-
order transition in the O(4) universality class has been found, whereas the transition is of first
order without the ’t Hooft term. These results motivate further studies of the temperature
dependence of the determinant, especially with 2 + 1 flavors, to check effects on the order
of the transition in the light chiral limit. Additionally, it would be interesting to investigate
the order of the transition in the two flavor chiral limit in the presence of additional relevant
interactions. Finally, a calculation from first principles via the inclusion of the QCD flow
for the ’t Hooft determinant would be preferable. This could be augmented even further by
employing dynamical rebosonization, which would take care of the change in the relevant
degrees of freedom close to the chiral transition.
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A. Conventions

In this appendix, some general conventions used throughout this thesis are summarized. All
dimensionful quantities are characterized by their energy dimension, which is measured in
electronvolt (eV). This resembles natural units, where Planck’s constant ~, the speed of light
c and the Boltzmann constant kB are set to unity. Energy and momentum and temperature
are measured in eV, whereas time and distance is measured in inverse eV. The most important
conversion factors to SI units are

1eV = 1.78 · 10−36 kg , (A.1a)

1eV = 1.16 · 104 K , (A.1b)

1eV−1 = 1.97 · 10−7 m , (A.1c)

1eV−1 = 6.58 · 10−16 s . (A.1d)

In flat Minkowski space, the metric gMµν is defined via

xµx
µ = xνgMµνx

ν = x20 − xixi . (A.2)

As demonstrated by this example, Einstein’s summation convention is always assumed. A
summation over all (space-like) components is indicated by Greek (Latin) letters.

The Euclidean metric is obtained by replacing x0 = ix4, which implies the completely negative
signature

xµx
µ = −x24 − xixi ≡ −x2 . (A.3)

A.1. Dirac Matrices

Throughout this work, the chiral representation of the Dirac matrices

γ0 =

(

02×2 12×2

12×2 02×2

)

, γi =

(

02×2 τ i

−τ i 02×2

)

, γ5 =

(

−12×2 0
0 12×2

)

, (A.4)

is used [6]. The corresponding Dirac matrices γµ can be obtained from these via γµ = gµνγ
ν

and τ i are the Hermitian Pauli-matrices

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0
0 −1

)

. (A.5)

The Euclidean γ4-matrix is defined by

− γ4 = iγ0 . (A.6)
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The Euclidean Dirac matrices have the properties

{γµ, γν} = 2gµν14×4,
{

γ5, γµ
}

= 04×4 , (A.7)

(γµ)
† = −γµ ,

(

γ5
)†

= γ5 ,

where gµν = −δµν is the completely negative Euclidean metric.

A.2. Representations of SU(N)

Basic theorems concerning the generators of the fundamental and adjoint representations of
SU(N) are collected in this section. An explicit representation for the generators of SU(3)
in terms of the Gell-Mann matrices is given.

The N−dimensional fundamental representation is defined by its N2− 1 traceless generators
T a = (T a)† which have the properties

T aT b =
1

2N
δabIN×N +

1

2

(

ifabc + dabc
)

T c , (A.8a)
[

T a, T b
]

= ifabcT c , (A.8b)
{

T a, T b
}

=
1

N
δabIN×N + dabcT c , (A.8c)

tr
[

T aT b
]

=
1

2
δab , (A.8d)

tr
[

T aT bT c
]

=
1

4

(

ifabc + dabc
)

, (A.8e)

T a
mnT

a
op =

1

2
δmpδon − 1

2N
δmnδop , (A.8f)

T a
mnT

a
np =

N2 − 1

2N
δmp . (A.8g)

Here, (fabc) dabc are the totally (anti-)symmetric structure constants that define the Lie
algebra. The second to last equation is due to the completeness relation obtained by noting
that the N2 − 1 generators together with the unit matrix span the N2 dimensional vector
space of complex matrices. The last equation defines the quadratic Casimir operator CF =
(N2 − 1)/(2N) of the fundamental representation.

The structure constants fulfill additionally the relations

dacedbce =
N2 − 4

N
δab , (A.9a)

facef bce = Nδab , (A.9b)

facedbce = 0 , (A.9c)

fabef cde =
2

N

(

δacδbd − δadδbc
)

+
(

dacedbde − dadedbce
)

, (A.9d)

0 = fabef cde + fadef bce − facef bde , (A.9e)

0 = fabedcde − dadef bce − dacef bde . (A.9f)
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A.3. n-Point Functions

From the structure constants it is possible to construct the (N2 − 1)-dimensional adjoint
representation with N2 − 1 traceless Hermitian generators

(

T̃ a
)†

ij
= −ifaij . (A.10)

These fulfill also the Lie algebra of SU(N), but with different normalization

[

T̃ a, T̃ b
]

= ifabcT̃ c , (A.11a)

tr
[

T̃ aT̃ b
]

= Nδab , (A.11b)

tr
[

T̃ aT̃ bT̃ c
]

= i
N

2
fabc , (A.11c)

T̃ a
mnT̃

a
np = Nδmp , (A.11d)

where the last line shows that the quadratic Casimir operator is also different for the adjoint
representation, CA = N .

In case of N = 2 an explicit representation of the fundamental generators is obtained from
the Pauli-matrices Eq. (A.5) by T a = τa/2. There exists also a standard representation of
the fundamental generators in case of N = 3, obtained from the Gell-Mann matrices

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0



 , (A.12)

λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 ,

λ6 =





0 0 0
0 0 1
0 1 0



 , λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 ,

by T a = λa/2. From this it is also immediately clear, that the first three Gell-Mann matrices
fulfill also the algebra of SU(2).

A.3. n-Point Functions

In general, the effective action or any other generating functional will depend one more than
one field species. In case of anticommuting fields, the order of differentiation is important in
the definition of n-point functions. In case of QCD, the notation

Γ(p,o,n,m,l) =
δl

δAl

δm

δcm
δn

δc̄n
δo

δqo
δp

δq̄p
Γ , (A.13)
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will be used. The conventions for scalar QCD are obtained from this by replacing q̄ → φ∗

and q → φ. For the quark-meson model

Γ(p,o,n) =
δn

δΣn

δo

δqo
δp

δq̄p
Γ , (A.14)

is used. The bare vertices Γ
(p,o,n,m,l)
0 and Γ

(p,o,n)
0 are defined analogously as derivatives of

the action S. In case of only two derivatives, i.e. p + o + n +m + l = 2, the corresponding
quantity is called (bare) propagator and denoted by (D0) D.

The Fourier transform to momentum space is defined as

(

Γ̃(m1,m2,m3,m4,m5)
)

(p1, . . . , pm1
, q1, . . . , qm2

, r1, . . . , rm3
, s1, . . . , sm4

, t1, . . . , tm5
)

=

∫

ui1
,vi2 ,xi3

,yi4 ,zi5∈R4

eipi1 ·ui1e−iqi2 ·vi2eiri3 ·xi3e−isi4 ·yi4eiti5 ·zi5 ×

×
(

Γ(m1,m2,m3,m4,m5)
)

({ui1}, {vi2}, {xi3}, {yi4}, {zi5}) . (A.15)

In case of the quark-meson model, the quarks transform as defined here, whereas Σ transforms
as the gauge field A.

A.3.1. Color Tensor Bases for n-Point Functions

Higher n-point functions have usually more than one color tensor structure consistent with
conservation of color. The basis elements have been constructed along the lines of [263]. The
legs of a n-point function can be classified according to the representation - fundamental or
adjoint - of the corresponding field.

Propagators and 3-Point Functions

The case of propagators is trivial as color is conserved, giving the tensor structures (δab) δmn

for (adjoint) fundamental indices. For the 3-point functions one has either two fundamental
and one adjoint index with tensor structure T a

mn or three adjoint indices with tensor structures
fabc, dabc as charge conservation allows only an even number of fundamental indices.

4-Point Functions

In case of four fundamental indices the allowed basis elements are given by δmoδnp, δmpδno and
δmnδpo where one might be forbidden if the corresponding particles are not their own anti-
particles. The case of two fundamental and two adjoint indices allows more basis elements
given by

(

T aT b
)

mn
,
(

T bT a
)

mn
, δabδmn , (A.16)

where all other possible combinations like fabcT c
mn and dabcT c

mn can be expressed in terms of
the above via the (anti-)commutator relations Eq. (A.8).
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Even more basis elements are possible in case of four adjoint indices

fabif cdi , facif bdi , (A.17)

δabδcd , δacδbd , δadδbc ,

fabedcde , facedbde , f bcedade ,

where the fadif bdi, the different permutations of dabidcdi and the remaining permutation of
fabedcde can be expressed in terms of the above elements via the relations Eq. (A.9).
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B. Calculations

In this appendix, some lengthy calculations, proofs and results are detailed.

B.1. Sources of Infrared Singularity

The simplest are the four “box-diagrams” where only 3-point functions - which have just one
basis element for their color tensor structure - appear. These diagrams always contribute to
a non-trivial combination of both tensor structures of the quark 4-point function as can be
seen e.g. in

m o

n

i

a

p

b

j
:

T a
miT

b
ioT

a
njT

b
jp (B.1)

=

(

1

2
δmjδni −

1

2N
δmiδnj

)(

1

2
δipδjo −

1

2N
δioδjp

)

=

(

N2 + 1

4N2

)

δmoδnp +

(

− 1

2N

)

δmpδno .

Consequently, contributions to 1/k4 cannot stem from these diagrams in either possible way.
In the diagrams including the quark 4-point function, possible loop momentum independent
contributions have already been identified in the previous section. To find possible loop
integration dependent contributions it is useful, to calculate the contribution of a general
tensor structure

m o

n

ji

p
a

:

T a
ipT

a
nj (F1δmoδji + F2δmiδjo) (B.2)

=

(

1

2
δijδnp −

1

2N
δipδnj

)

(F1δmoδji + F2δmiδjo)

= F1
N2 − 1

2N
δmoδnp + F2

(

1

2
δmoδnp −

1

2N
δmpδno

)

,
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m o

n

i

j

p

a
:

T a
miT

a
jp (F1δnoδij + F2δioδnj) (B.3)

=

(

1

2
δmpδij −

1

2N
δmiδjp

)

(F1δnoδij + F2δioδnj)

= F1
N2 − 1

2N
δmpδno + F2

(

1

2
δmpδno −

1

2N
δmoδnp

)

.

In the first diagram, the tensor structure F1 = −N/(N2 − 1)F2 contributes only to δmpδno
and a possible singular contribution could arise from the loop integration. The same tensor
structure contributes only to δmoδnp in the second diagram as required by symmetry. The
third diagram containing the quark 4-point function can only contribute via loop integration.
A general tensor structure yields

m o

n

i

a

p

j
:

T a
ioT

a
jp (F1δmiδnj + F2δmjδni) (B.4)

=

(

1

2
δipδjo −

1

2N
δioδjp

)

(F1δmiδnj + F2δmjδni)

= F1

(

1

2
δmpδno −

1

2N
δmoδnp

)

+ F2

(

1

2
δmoδnp −

1

2N
δmpδno

)

.

Therefore F1 = NF2 contributes to δmpδno, whereas NF1 = F2 contributes to δmoδnp.

For diagrams containing the quark-gluon 4-point function one can do a similar analysis.
The possible loop independent contributions have already been investigated in the previous
section. A general tensor structure gives

m o

n

ab

p

j

:

T a
njT

b
jp

(

G1T
a
miT

b
io +G2T

b
miT

a
io

)

(B.5)

= G1

(

1

2
δniδmj −

1

2N
δnjδmi

)(

1

2
δjoδip −

1

2N
δioδjp

)

+G2

(

1

2
δnoδij −

1

2N
δnjδio

)(

1

2
δjiδmp −

1

2N
δjpδmi

)

= G1

(

N2 + 1

4N2
δmoδnp −

1

2N
δmpδno

)

+G2

(

1

4N2
δmoδnp +

N2 − 2

4N
δmpδno

)

,

and similarly by interchanging m↔ n

104



B.1. Sources of Infrared Singularity

m o

n

a

b

p

j
:

T a
mjT

b
jp

(

G1T
a
niT

b
io +G2T

b
niT

a
io

)

(B.6)

= G1

(

N2 + 1

4N2
δmpδno −

1

2N
δmoδnp

)

+G2

(

1

4N2
δmpδno +

N2 − 2

4N
δmoδnp

)

.

The tensor structure with G1(N
2 + 1) = −G2 contributes to δmpδno in the first diagram and

to δmoδnp in the second diagram. Similarly the tensor structure with 2G1 = (N2 − 2)G2

contributes to δmoδnp and δmpδno respectively.

The last diagram contains a 5-point function, and it is first necessary to identify its possible
tensor structures. Taking e.g. the diagram

m o

n

a
d

p

b

c

: fabcΓbd
moΓ

dc
np , (B.7)

contributing to its DSE gives at least the following tensor structures

Γa
mnop ∝ c1T

a
mpδno + c2T

a
noδmp + c3T

a
moδnp + c4T

a
npδmo (B.8)

+ id1f
abcT b

moT
b
np + id2f

abcT b
mpT

b
no .

After a straightforward calculation one gets

m o

n
a

i

p

:

Γa
mnoiT

a
ip (B.9)

= c1

(

N2 − 1

2N

)

δmpδno

+

(

c2 + d2
N

2

)(

1

2
δmoδnp −

1

2N
δmpδno

)

+

(

c3 − d1
N

2

)(

1

2
δmpδno −

1

2N
δmoδnp

)

+ c4

(

N2 − 1

2N

)

δmoδnp .

The tensor structures with coefficients c1 and c4 can contribute loop momentum independent
1/k4 singularities. Singular contributions arising from a loop integration can originate e.g.
in the tensor structure Nc2 = c3, which contributes just to δmpδno if all other ci, di vanish.

Therefore, any of the possible loop momentum independent contributions to the singularity
are proportional to the quadratic Casimir of the representation.

Additionally, it is interesting to investigate the tensor structures created by contributions
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from a skeleton expansion of the quark 4-point function. The first terms are given by [113]

o

np

m

=

m o

n

a

p

+

m o

n

b a

p
l

j

+ . . . (B.10)

where only one channel is shown. They contribute to the color structures

T a
moT

a
np =

1

2
δmpδno −

1

2N
δmoδnp for N = 2, (B.11)

and

T a
mjT

b
joT

a
nlT

b
lp =

(

1

2
δmlδnj −

1

2N
δmjδnl

)(

1

2
δjpδol −

1

2N
δjoδlp

)

(B.12)

= δmpδno
−1

2N
+ δmoδnp

N2 + 1

4N2
.

This shows that a 1/k4 singularity in the δmoδnp tensor structure stemming from soft gluon
divergences needs contributions from several diagrams in a skeleton expansion with non-
trivial cancellations in δmpδno. In particular, the exchange of a single gluon cannot provide
the correct color structure in the singularity.

B.2. Scalar QCD

Here some short calculations relevant for Ch. 4 are performed. In Eq. (4.12) the following
calculation is useful

(p+ t)µ Pµν(p− t)Γν(t, p) (B.13)

= (p+ t)µ
(

δµν − (p − t)µ(p − t)ν

(p− t)2

)

×
(

A(t2, p2, z) (p+ t)ν +B(t2, p2, z)
{

[p · (p− t)] tµ − [t · (p− t)pµ]
}

)

= A(t2, p2, z)
(p+ t)2 (p− t)2 − [(p − t)µ(p+ t)µ]2

(p− t)2

+ B(t2, p2, z)(p + t)µ
{

[p · (p− t)] tµ − [t · (p− t)pµ]
}

= A(t2, p2, z)

(

p2 + t2 + 2pµtµ
)

(p2 + t2 − 2pµtµ)−
(

p2 − t2
)2

(p− t)2

+ B(t2, p2, z)
{

[

p2 − p · t
] [

p · t+ t2
]

−
[

t · p− t2
] [

p2 + p · t
]

}

= A(t2, p2, z)

(

p2 + t2
)2 − 4 (pµtµ)2 −

(

p2 − t2
)2

(p− t)2

+ B(t2, p2, z)
{

2p2t2 − 2(t · p)2
}
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= 2

(

2
A(t2, p2, z)

(p − t)2
+B(t2, p2, z)

)

(

p2t2 − (pµtµ)2
)

.

In Eq. (4.38)

(p+ q)µ PT,µν(~p− ~q, ωm−n) (q + p)ν (B.14)

= (p+ q)µ

(

δij − (p− q)i (p− q)j

(~p− ~q)2

)

δiµδjν (q + p)ν

=
(~p+ ~q)2 (~p− ~q)2 − [(~p− ~q) · (~p+ ~q)]2

(~p− ~q)2

=

(

~p 2 + 2~p · ~q + ~q 2
) (

~p 2 − 2~p · ~q + ~q 2
)

−
(

~p 2 − ~q 2
)2

(~p− ~q)2

= 4
~p 2~q 2 − (~p · ~q)2

(~p− ~q)2
,

and

(p+ q)µ Pµν(p− q)(p− q) (q + p)ν (B.15)

= (p+ q)µ
(

δµν − (p− q)µ (p− q)ν

(p− q)2

)

(q + p)ν

= 4

(

ω2
m + ~p 2

) (

ω2
n + ~q 2

)

− (ωmωn + ~p · ~q)2

(ωm − ωn)
2 + (~p− ~q)2

,

have been used.

B.3. Chiral Symmetry and Axial Anomaly

This discussion of chiral symmetry and the axial anomaly in terms of the ’t Hooft determinant
Eq. (2.51) is performed for a general number of flavors Nf . The goal is to find the precise
symmetry breaking induced by the ’t Hooft term. For this it is useful to represent U(Nf )L×
U(Nf )R in a (axial-)vector representation without double covering.

Different Chiral Symmetry Representations

Before starting the discussion it is crucial to recall how quarks in the chiral representation
q = (qL qR)

T transform under U(Nf )L × U(Nf )R

qL,R → UL,RqL,R , UL,R ∈ U(Nf )L,R . (B.16)

The antiquark field is given by q̄ = −iq†γ4 = (q†R q
†
L) in this representation, whose components

transform analogously as

q†L,R → q†L,RU
†
L,R , UL,R ∈ U(Nf )L,R . (B.17)
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The (axial-)vector representation, on the other hand, is defined on q via

q → UV,Aq , UV,A ∈ U(Nf )V,A , (B.18a)

q̄ → q̄U †
V , UV ∈ U(Nf )V , (B.18b)

q̄ → q̄UA , UA ∈ U(Nf )A . (B.18c)

A possible double covering has been ignored for the moment. This is also a symmetry of the
kinetic term q̄∂µγµq, if UAγµ = γµU

†
A for all γµ. This commutator rule is usually implemented

with UA = exp(iαaT aγ5), where T a are the generators of SU(Nf ) and γ
5 = diag(−1,−1, 1, 1).

With this definition one obtains the transformation of left and right handed spinors in the
V,A representation

qL,R → UV qL,R , UV ∈ U(Nf )V , (B.19a)

qL → U †
AqL , UA ∈ U(Nf )A , (B.19b)

qR → UAqR , UA ∈ U(Nf )A , (B.19c)

where UA = exp(iαaT a), without γ5 in the exponential.

Up to this point everything is standard, but things get more involved if one wants to find
a unique representation of every transformation UL,R in terms of V,A transformations. To

understand the problem, note that any axial transformation fulfilling the relation UA = U †
A

is doubly covered as it can also be represented by the vector transformation UV = UA.

As the axial anomaly affects only phase transformations, it will be sufficient to rewrite only
the phase changes contained in U(Nf )L × U(Nf )R in a V,A representation. To do so, it is
first necessary, to split these phase transformations off in the L,R language. Note that any
unitary N ×N matrix UU † = 1 fulfills

|det (U) |2 = 1 . (B.20)

The determinant can therefore be written with a unique phase φU ∈ [0, 2π) as det (U) =
exp(iφU ). A unitary N ×N matrix U can therefore be uniquely decomposed into a product
of the matrix

Ũ = Ue−iφU/N ∈ SU(N) , (B.21)

and a phase factor exp(iφU/N) with φU ∈ [0, 2π). The phase factors can be represented by
the factor group U(1)/ZN

1 where the cyclic group ZN is given in terms of the N th complex
roots of unity. Finally, the chiral symmetry group can be rewritten as

U(Nf )L × U(Nf )R = U(1)L/ZNf
× SU(Nf )L × SU(Nf )R × U(1)R/ZNf

. (B.22)

In the new representation, the quarks transform under the trivial modification of Eq. (B.16)
as

qL,R → ÛL,RŨL,RqL,R , ÛL,R ∈ U(1)L,R/ZNf
, ŨL,R ∈ SU(Nf )L,R . (B.23)

1This factor group is obtained by identification of group elements that differ only by z ∈ ZN
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The next goal is to identify those vector and axial vector phases ÛV and ÛA that allow to
represent Eq. (B.23) without double covering via

qL → ÛV Û
†
AŨLqL , ŨL ∈ SU(Nf )L , (B.24a)

qR → ÛV ÛAŨRqR , ŨR ∈ SU(Nf )L . (B.24b)

Comparing Eq. (B.23) and Eq. (B.24) it is clear that only flavor independent phase transfor-
mations might be covered doubly by the latter. Therefore, the search for double covering can
be restricted to (ŨL, ŨR) ∈ ZNf ,L × ZNf ,R. As in the representation Eq. (B.23), any phase

rotation ÛV ∈ ZNf
is already contained in ZNf ,L × ZNf ,R, which leads to the restriction

ÛV ∈ U(1)V /ZNf
. Finally, it is necessary to identify those axial transformations ÛA that can

be represented by combined transformations in U(1)V /ZNf
×ZNf ,L×ZNf ,R. With Eq. (B.24)

this leads to the equations

Û †
A → ÛV zL , ÛV ∈ U(1)V /ZNf

, zL ∈ ZNf ,L , (B.25a)

ÛA → ÛV zR , ÛV ∈ U(1)V /ZNf
, zR ∈ ZNf ,R . (B.25b)

Combining both equations yields

Û2
V z†Lz

†
R ∈ ZNf

, (B.26)

which has the solutions ÛV ∈ Z2Nf
/ZNf

represented by {1, eiπ/Nf }. Putting these solutions in
Eq. (B.25) shows that any transformation ÛA ∈ Z2Nf

can already be represented by combined
transformations in U(1)V /ZNf

× ZNf ,L × ZNf ,R. Therefore, the final relation

U(Nf )L × U(Nf )R = U(1)V /ZNf
× SU(Nf )L × SU(Nf )R × U(1)A/Z2Nf

, (B.27)

is obtained.

Symmetries of ’t Hooft Determinant

In the fermionic as well as bosonic representation the determinant is trivially invariant under
U(1)V /ZNf

× SU(Nf )L × SU(Nf )R but transforms as

detΣ + detΣ† → (Û †
A)

2Nf detΣ + Û
2Nf

A detΣ† , (B.28)

under U(1)A/Z2Nf
. Invariance enforces 1 = (U †

A)
2Nf = U

2Nf

A which is only fulfilled by the
trivial element of U(1)A/Z2Nf

.

Additionally, it is interesting to investigate the symmetries of higher powers of the ’t Hooft
determinant. A general power (2n +m), n ∈ N0, m ∈ {0, 1} of the determinant transforms
as

(det Σ + detΣ†)2n+m (B.29)

→
2n+m
∑

j=0

(

2n+m

j

)

(U †
A)

2Nf jU
2Nf (2n+m−j)
A detΣj det

(

Σ†
)2n+m−j

.
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This results in the invariance conditions

1 = (U †
A)

2Nf jU
2Nf (2n+m−j)
A = U

2Nf (2(n−j)+m)
A , j ∈ {0, . . . , 2n +m} . (B.30)

For m = 1 one gets by setting j = n

1 = U
2Nf

A , (B.31)

which is nothing but the statement that all odd powers of the determinant break U(1)A/Z2Nf

completely. In case of m = 0 the above condition results for any j at most in

1 = U
4Nf

A . (B.32)

Therefore, all even powers of the determinant respect an additional Z2 symmetry contained
in U(1)A/Z2Nf

.

B.4. Chiral Invariants

The effective potential of the quark-meson model can be expanded in chiral invariants shown
in Eq. (2.72) and the ’t Hooft determinant defined in Eq. (2.73). To obtain the mesonic
screening masses, its second derivatives with respect to the full mesonic field Σ have to be
calculated. In general this will require an inversion of the mapping from field components
to chiral invariants. In case of a Taylor expansion of the effective potential around its scale-
dependent minimum App. C.2.2, this inversion has to be differentiable. Furthermore, the set
of values taken by the chiral invariants is usually very complicated. This poses problems,
when approximating the mesonic potential by a discrete set of grid points, which are usually
defined on a hypercubic lattice App. C.2.2. It is therefore desirable to map the domain of
the chiral invariants smoothly to a simpler hypercubic domain.

B.4.1. Two Flavors

The chiral invariant ρ1 and ’t Hooft determinant ξ are obtained from the two fields σ0 and
σ3 as

ρ1 =
(σ0)2 + (σ3)2

2
, (B.33a)

ξ
(σ0)2 − (σ3)2

2
. (B.33b)

Obviously this cannot be inverted uniquely as any quadrant in the (σ0, σ3) plane is mapped
to the same values. Restricted to the first quadrant σ0, σ3 ≥ 0 the equations

ρ1 =
1

2

(

(σ0)2 + (σ3)2
)

∧ ξ =
1

2

(

(σ0)2 − (σ3)2
)

, (B.34)
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have the unique solutions

σ0(ρ1, ξ) =
√

ρ1 + ξ , (B.35a)

σ3(ρ1, ξ) =
√

ρ1 − ξ . (B.35b)

This is differentiable as long as ρ1 > |ξ|, which corresponds to σ0, σ3 > 0. Therefore, non-
vanishing condensates are required, when applying the two dimensional Taylor technique
with scale-dependent minimum App. C.2.2.A similar problem appears already in the one
dimensional Taylor expansion of theO(4) quark-meson model with scale-dependent minimum.
In the latter case, the inversion of 2ρ1 = σ2 is not differentiable at σ = 0 which can cause
numerical problems. If the expansion point approaches σ → 0 a change to the fixed expansion
point σ = 0 is necessary, which avoids singular derivatives.
For the grid technique App. C.2.2, the form of the domain of the chiral invariants is relevant.
From Eq. (B.33) it is clear, that the domain is not rectangular. Therefore, a grid is defined
on the new coordinates

x(ρ1, ξ) = ρ1 + ξ , (B.36a)

y(ρ1, ξ) = ρ1 − ξ . (B.36b)

This linear map is smooth and derivatives of the effective potential with respect to ρ1, ξ can
be obtained from U(x, y) by applying the chain rule.

B.4.2. 2 + 1 Flavors

The chiral invariant ρ1 and ρ̃2 are obtained from the two fields σx and σy as

ρ1 =
σ2x + σ2y

2
, (B.37a)

ρ̃2 =

(

σ2x − 2σ2y
)2

24
. (B.37b)

Again this cannot be inverted uniquely as any quadrant in the (σx, σy) plane is mapped to
the same values. But even when restricting to the first quadrant σx, σy ≥ 0 the equations

ρ1 =
1

2

(

σ2x + σ2y
)

∧ ρ̃2 =
1

24

(

σ2x − 2σ2y
)2

, (B.38)

have the solutions

σx(ρ1, ρ̃2) =

√

2

3

(

2ρ1 ∓
√

6ρ̃2

)

, (B.39a)

σy(ρ1, ρ̃2) =

√

2

3

(

ρ1 ±
√

6ρ̃2

)

. (B.39b)

As ρ1, ρ̃2 > 0 the upper sign implies σx ≤
√
2σy whereas the lower sign corresponds to

σx ≥
√
2σy. Taking into account that the strange quark mass is larger than the light quark

mass the only admissible solution is given by the upper sign. Similar to the previous case, the
Taylor expansion App. C.2.2 with scale dependent minimum runs into numerical problems
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whenever σx or σy vanishes.

Before applying the grid technique App. C.2.2, it is again necessary to map the complicated
domain of ρ1 and ρ̃2 smoothly to a rectangular domain. From the restriction σx ≤

√
2σy one

obtains a rectangular grid with the coordinates

x = σ2x , (B.40a)

y = 2σ2y − σ2x . (B.40b)

In terms of the chiral invariants, the grid coordinates become

x(ρ1, ρ̃2) =
2

3

(

2ρ1 −
√

6ρ̃2

)

, (B.41a)

y(ρ1, ρ̃2) =
√

24ρ̃2 . (B.41b)

One disadvantage of these coordinates is, that they are not smooth at ρ̃2 = 0. This corre-
sponds to the limit of degenerate strange and light quark masses at 2〈σy〉2 = 〈σx〉2. On the
other hand, these coordinates are smooth in the light chiral limit σx = 0 as long as σy > 0.

In order to handle the limit 2σ2y = σ2x it is necessary to expand the potential in a set of
variables x̃, ỹ which are differentiable as functions of ρ1 and ρ̃2 at ρ̃2 = 0. The main problem
in the previous case is the appearance of the square root of the second chiral invariant. This
can be avoided if x̃, ỹ are taken quartic in the mesonic field. In order to map the cone
2σ2y ≥ σ2x, σy, σx ≥ 0 to a rectangle, the following variables are taken

x̃(ρ1, ρ̃2) = ρ21 −
3

2
ρ̃2 , (B.42a)

ỹ(ρ1, ρ̃2) = ρ̃2 . (B.42b)

This is everywhere smooth and the line 2σ2y = σ2x corresponds to ỹ = 0, whereas the light
chiral limit σx = 0 is represented by x̃ = 0.

B.5. 2 + 1 Flavor Meson Masses

This section gives explicit expression for the mesonic screening masses as obtained from a
potential of the form

U(Σ) = Ũ(ρ1, ρ̃2)− cξ − cxσx − cyσy , (B.43)

Ũ(ρ1, ρ̃2) = a10ρ1 + a01ρ̃2 +
a20
2
ρ21 + a11ρ1ρ̃2 +

a02
2
ρ̃22 .

The squared masses are obtained by diagonalizing the Hessian matrix of the effective potential
evaluated at its minimum. In a mean-field treatment there is an additional contribution to
the effective potential from the quarks which also modifies the Hessian [213]. Here, only the
contribution from the mesonic part of the effective potential will be shown.

The Hessian splits into a (pseudo)scalar (9× 9)-mass matrix M2
s and M2

ps

∇2
ΣUk =

(

M2
s 0
0 M2

ps

)

. (B.44)
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Explicitly, the non-vanishing entries defining the nine scalar meson masses read

(Ms)11 =
1

54

(

54a10 + 12a01σ
2
x + 36a20σ

2
x + 12a11σ

4
x + a02σ

6
x − 24

√
2a01σxσy (B.45a)

+36
√
2a20σxσy − 6

√
2a11σ

3
xσy − 2

√
2a02σ

5
xσy + 24a01σ

2
y + 18a20σ

2
y

−36a11σ
2
xσ

2
y − 2a02σ

4
xσ

2
y + 12

√
2a11σxσ

3
y + 8

√
2a02σ

3
xσ

3
y + 24a11σ

4
y

−4a02σ
2
xσ

4
y − 8

√
2a02σxσ

5
y + 8a02σ

6
y − 18c(2σx +

√
2σy)

)

,

(Ms)19 =
1

108

(

36
√
2a20σ

2
x + 12

√
2a11σ

4
x +

√
2a02σ

6
x + 18c(

√
2σx − 2σy) (B.45b)

−36a20σxσy + 6a11σ
3
xσy + 2a02σ

5
xσy − 36

√
2a20σ

2
y − 8

√
2a02σ

4
xσ

2
y

−12a11σxσ
3
y − 8a02σ

3
xσ

3
y − 48

√
2a11σ

4
y + 20

√
2a02σ

2
xσ

4
y + 8a02σxσ

5
y

−16
√
2a02σ

6
y + 6a01(5

√
2σ2x + 4σxσy − 14

√
2σ2y)

)

,

(Ms)99 =
1

108

(

108a10 + 72cσx − 6a01σ
2
x + 36a20σ

2
x + 12a11σ

4
x + a02σ

6
x − 18

√
2cσy (B.45c)

+48
√
2a01σxσy − 72

√
2a20σxσy + 12

√
2a11σ

3
xσy + 4

√
2a02σ

5
xσy

+132a01σ
2
y + 72a20σ

2
y − 72a11σ

2
xσ

2
y + 4a02σ

4
xσ

2
y − 24

√
2a11σxσ

3
y

−16
√
2a02σ

3
xσ

3
y + 96a11σ

4
y − 28a02σ

2
xσ

4
y + 16

√
2a02σxσ

5
y + 32a02σ

6
y

)

,

(Ms)ii = a10 +
1

6
(7a01σ

2
x) +

1√
2
(cσy)−

1

3
(a01σ

2
y) , i = 2, 3, 4 , (B.45d)

(Ms)ii =
1

6

(

6a10 + 3cσx + a01(σ
2
x + 3

√
2σxσy + 4σ2y)

)

, i = 5, . . . , 8 .(B.45e)

Correspondingly the pseudoscalar masses are obtained from

(Mps)11 = a10 +
1

3
c

(

2σx +
√
2σy

)

, (B.46a)

(Mps)19 =
1

6

(

c(−
√
2σx + 2σy) +

√
2a01(σ

2
x − 2σ2y)

)

, (B.46b)

(Mps)99 =
1

6

(

6a10 − 4cσx − a01σ
2
x +

√
2cσy + 2a01σ

2
y

)

, (B.46c)

(Mps)ii =
1

6

(

6a10 − 3
√
2cσy + a01(σ

2
x − 2σ2y)

)

, i = 2, 3, 4 , (B.46d)

(Mps)ii =
1

6

(

6a10 − 3cσx + a01(σ
2
x − 3

√
2σxσy + 4σ2y)

)

, i = 5, . . . , 8 . (B.46e)
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C. Numerical Implementation

In this appendix, the numerical methods employed in the solution of the Dyson-Schwinger
equation for the scalar propagator at vanishing (Eq. (4.16)) and finite temperature (Eq. (4.40))
as well as the mean-field approximation (Eq. (5.6)) and flow equation (Eq. (5.9)) for the ef-
fective potential in two and 2 + 1 flavor are described.

C.1. Scalar Propagator DSE

The same methods introduced and discussed in detail in ref. [264] are used for the numerical
solution of the scalar propagator DSE. The momentum integral in Eq. (4.16) is approximated
by a logarithmically remapped Gauss-Legendre quadrature rule (see e.g. [244]). For the
angular integration, a Gauss-Chebyshev quadrature is employed [265], and the result is stored
since it does not depend on the dressing function ZS . With this approximation, only a finite
number of values of the dressing function ZS at the momentum quadrature nodes are needed.
The integral equation becomes therefore a non-linear equation on R

n, where n is the number
of momentum quadrature nodes. The approximate equation is solved by fixed point iteration,
where in every step the renormalization conditions Eq. (4.26) or Eq. (4.29) are enforced.
In the finite temperature equation Eq. (4.40), the ~p 2 integral is approximated as in the
vacuum case. Additionally, it is necessary to sum over the Matsubara modes. This sum
is performed explicitly only up to a fixed number, and the remaining Matsubara sum up
to the cutoff

√

Λ2
c − ~p 2 is approximated by a Gauss-Legendre integration. This is justified

by the fact, that the Matsubara sum resembles a Riemann sum. The angular integrand is
singular at the boundaries, and a double exponential quadrature (see e.g. [244]) is used. The
renormalization constants, of the corresponding vacuum solution are used and the equation
is solved iteratively, where the result of the angular integration is stored again. Note, that
storing the result of the angular integration requires several GB of memory. Therefore,
a parallelized code has been used, where each node stores only the relevant result of this
angular integration.

C.2. Mesonic Effective Potential

The mesonic effective potential is calculated with three different methods, whose numerical
implementation is specified in this section.

C.2.1. Mean-Field Calculations

For the calculation of the mean-field potential, it is necessary to evaluate the integral in
Eq. (5.6). Furthermore, the evaluation of the mesonic masses, requires its derivative with
respect to the mesonic field which has to be integrated as well. The integral is split into
two integrations over [0,Λ] and [Λ,∞) with varying Λ. The second integration is mapped to
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C. Numerical Implementation

[0, 1/Λ] by replacing y → 1/y. These two integrals are performed with the doubly-adaptive
CQUAD routine of the GNU Scientific Library (GSL). Additionally, it is necessary to min-
imize the obtained potential. After a coarse search for the valley containing the minimum
with a grid, the minimization routines of the GSL are used.

C.2.2. Wetterich RG in Leading Order Derivative Expansion

The Wetterich equation for the effective potential Eq. (5.9) is a non-linear partial differential
equation. By specifying a finite dimensional approximation for the effective potential, this is
turned into a system of ordinary differential equations for the expansion coefficients, which
can be solved with standard Runge-Kutta methods. Two different sets of basis elements have
been used in this work.

Taylor Expansion in Invariants

All the physically relevant information is contained in the effective potential close to its
minimum. Therefore a Taylor expansion in general invariants ρ ≡ (ρ1, . . . , ρn) is performed
around the scale-dependent minimum ρ0(k)

Uk (Σ) = Ũk (ρ(Σ))− ciσ
i , (C.1)

Ũk (ρ) =

|α|≤N
∑

α∈Nn
0

aα(k)

α!
(ρ− ρ0(k))

α .

Here, the ci are explicit breaking terms and α = (α1, . . . , αn) is a multi-index with

|α| =
n
∑

i=1

αi , α! =

n
∏

i=1

(αi!) , ρα = ρα1

1 · · · ραn
n . (C.2a)

By plugging Eq. (C.1) in the flow equation, one can compare coefficients to obtain the flow
of the expansion coefficients and the minimum.

The condition, that ρ0(k) is the minimum is implemented via

0 = ∇ρUk(ρ)
∣

∣

ρ=ρ0(k)
(C.3)

= a1(k)− ci∇ρσ
i(ρ0(k)) .

This relation allows to express the linear expansion coefficients

a1(k) = (a10···0, a010···0, . . . , a0···01) , (C.4)

in terms of the scale-dependent minimum ρ0(k), where it is crucial that the σi(ρ) are differ-
entiable at the minimum. Note, that Eq. (C.3) is only a necessary condition, if the minimum
ρ0(k) is not at the boundary of the domain of ρ. Furthermore, in case of a first order transition
it can happen, that the minimum turns into a saddle point or maximum.

In case of the two flavor calculations, the vector ρ = (ρ1, ξ) as specified in App. B.4.1 has been
taken, whereas ρ = (ρ1, ρ̃2) from App. B.4.2 has been taken for the 2 + 1 flavor calculations.
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In the latter case, also the ’t Hooft term is taken as an explicit breaking term, which modifies
the condition Eq. (C.3).

Effective Potentials on Multidimensional Grids

Another possibility of approximating the effective potential is to put it on a discrete lattice.
Again, the effective potential is taken as a function of the chiral invariants ρ ≡ (ρ1, . . . , ρn)

Uk (Σ) = Ũk (ρ(Σ))− ciσ
i , (C.5)

where Ũk (ρ) represents a discrete approximation of the potential. In general, the domain in
the chiral invariants ρ is very complicated and does not allow a cubic lattice - as e.g. in the
2 + 1 flavor case App. B.4.2.
Therefore, a smooth map from a hypercube K to the domain of the chiral invariants Ωρ has
to be defined

F : K → Ωρ , (C.6)

which allows to approximate the effective potential Ûk by a lattice on the hypercube K.
The derivatives of Ûk are calculated with multi-dimensional clamped cubic splines, where
the value of the derivative at the boundary is obtained from forward and backward finite
differences respectively.
The derivatives of Ũk (ρ) can be obtained from the relation Ũk(ρ) = Û(F−1(ρ)) via the chain
rule

∇ρŨ =
(

∇iÛ
)

(

∇ρF
−1
i

)

(C.7a)

∇2
ρŨ =

(

∇T
ρ F

−1
i

)

(

∇2
ijÛ
)(

∇ρF
−1
j

)

+
(

∇iÛ
)

(

∇2
ρF

−1
i

)

, (C.7b)

where the gradient is by default a column vector. From this is it obvious, that F−1 has to
be at least two times differentiable on all grid points.
In contrast to the Taylor expansion, it is necessary to diagonalize the Hessian of Uk(Σ) also
away from its minimum. This can be done by invoking the chain rule once more

∇ΣU =
(

∇ρiŨ
)

(∇Σρi) (C.8a)

∇2
ΣU =

(

∇T
Σρi
)

(

∇2
ρiρj Ũ

)

(∇Σρj) +
(

∇ρiŨ
)

(

∇2
Σρi
)

. (C.8b)
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