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1

Introduction

Ever since the start of recorded history, mankind has been curious about the
ultimate constituents of nature. A great number of scientific theories and dis-
coveries, stretched out over thousands of years, eventually led to the conclusion
that matter is composed of tiny particles, called atoms. Atoms were thought
to be the most fundamental particles in nature for quite some time. However,
experiments conducted around the beginning of the 20th century [5,6] showed
that atoms actually consist of a positively charged nucleus surrounded by a
cloud of negatively charged particles, now known as electrons. The atomic
nucleus was later found to contain positively charged protons and electrically
neutral particles called neutrons [7]. Although electrons are presently still con-
sidered to be indivisible elementary particles, protons and neutrons have both
been found to be composed of three so-called quarks [8-10]. Quarks appear
in two types, called up and down. Protons consist of two up quarks and one
down quark, while neutrons carry two down quarks and a single up quark. In
both cases the quarks are bound together through the exchange of gluons, the
force-carriers of the strong interaction [11].

As of today, all known elementary particles and interactions between them are
contained in a single theory known as the Standard Model (SM) [12H14]. Apart
from the up quark, down quark and electron, the matter sector of the SM also
includes the (nearly) massless neutrino |15}/16]. These four elementary parti-
cles make up what is known as the first generation of matter. There are two
additional generations, containing the same types of particles but with higher
masses. The various interactions between the matter particles arise through
the exchange of force-carrying bosons. The electromagnetic force is carried by
the photon, which couples to all particles with electric charge. The quarks in
the SM also carry a so-called color charge, to which the aforementioned gluon
couples. The crucial difference between the gluon and the photon is the fact
that the gluon itself carries a color charge as well, so that gluons also couple
to one another. The third interaction in the SM, the weak interaction, gov-
erns the radioactive decay of atoms and is transferred by W+ and Z bosons.
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The final particle in the theory is the Higgs boson [17,/18|, the discovery of
which [19}/20] was announced in 2012. Through interactions with the Higgs
field, the various particles of the SM obtain their respective masses.

Despite its many successes, the SM is not the ultimate theory of nature. For
example, the theory does not provide a dark matter candidate, neutrino oscil-
lations are absent in the SM and gravity is not included at all. Various ex-
periments being conducted at the Large Hadron Collider (LHC) are aimed at
searching for traces of physics from beyond the Standard Model. These experi-
ments compare the results of measured observables against the SM predictions
with increasing precision, looking for slight deviations that might indicate the
presence of new physics. From the theoretical side, this requires increasingly
accurate predictions of the SM processes.

At the LHC, beams of protons are accelerated in opposite directions in a cir-
cular tunnel to almost the speed of light. When these protons collide, their
constituents (the quarks and gluons) can interact with one another. These
interactions are characterized by a dimensionless number, known as a coupling
constant, which encodes the strength of the corresponding force. Each of the
three forces in the SM is represented by a different coupling constant. Despite
their names, the numerical values of these coupling constants actually depend
on the energy at which the corresponding interactions occur. Since the LHC
collides protons against one another, interactions between quarks and gluons
are numerous. Because of this, and because it has the largest coupling con-
stant, processes involving the interactions governed by the strong force are of
key importance.

If the strong coupling constant ay is small enough, which seems to be the pre-
dominant case in nature, the cross section o (proportional to the probability)
of a general strong process may be written as a perturbative series

0':0'()+OZSO'1+0430'2+O[§O'3+.... (1.1)

Terms involving a higher number of interactions, i.e. terms with a higher power
of ag, are increasingly more difficult to calculate. On the other hand, each term
in this series is also numerically smaller than the previous term by a factor of
as. The series thus converges for oy < 1, and may be truncated at any desired
order in the coupling constant to obtain predictions at the corresponding level
of accuracy. The first (non-vanishing) term in the series is called the lead-
ing order (LO) and higher-order terms are known as the next-to-leading order
(NLO), next-to-next-to-leading order (NNLO) and so on. This method, known
as perturbation theory, provides a way to calculate cross sections, provided that
every o, in eq. (|1.1)) is roughly of the same size as the previous o,,—1, or smaller.



Processes of interest at the LHC, such as the production of a Higgs boson,
are typically accompanied by an enormous amount of additional radiation,
mostly composed of gluons. Since these gluons are massless, their energy
may be arbitrarily small, theoretically even zero, which is known as the soft
limit. Furthermore, the angle between two radiated particles may be so small
that they are essentially indistinguishable from one another, in which case the
particles are called collinear. The radiation at colliders, such as the LHC,
tends to be dominated by these soft and collinear particles, to which most
measurements that can be performed on the final state are highly sensitive.

Inclusive processes, for which no additional measurements are imposed on the
final-state particles, usually involve only a single energy scale. At the LHC,
this is typically the invariant mass () of the quarks or gluons that are extracted
from the protons and interact with each other. Performing a measurement of
an observable quantity on the final state will in general introduce a dependence
on an additional energy scale m to the cross section. If the measurement is
sensitive to both collinear and soft emissions, series of logarithms of the ratio
of the two scales will appear in every term, leading to the schematic expression

On = #m?"(g) + #1112”*1(%) oot #m(g) w4, (1.2)

where all the, in principle different, constants are denoted by #. Measurements
that are only sensitive to collinear radiation give rise to a similar series, except
that the highest power of the logarithm that occurs at any oy, is equal to n
instead of 2n.

When the scale m becomes very small with respect to @, the logarithms can
grow large enough to cancel the suppression by ag that each term in eq.
has compared to the previous term, spoiling the convergence of the series. In
order to still be able to obtain reliable predictions for the cross section, the
series has to be reorganized in a procedure known as resummation.

As the problem arises due to the simultaneous consideration of both m and @,
a logical first step is to disentangle the physics at these different energy scales.
One method of achieving this separation is through the use of effective field
theories (EFTs), which will be discussed in more detail in chap. [} An EFT
can be obtained from a theory (known in this context as the ‘full theory’) by
expanding its Lagrangian Lgy in the small ratio m/Q as

Loan = L+ Lopp + Loty +.o . with £ =" cMoM. (1.3)

The operators Ol(n) in the EFT Lagrangians are in principle different from

the operators in the full theory and each is multiplied by an unknown coeffi-
cient C’i(n), known as a Wilson coefficient. By dedicated calculations of certain
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processes in both the EFT and the full theory, and demanding the results to
be equal in the limit m/Q — 0, these Wilson coefficients may be determined
order-by-order in .

Due to the expansion in m/Q, the operators in the EFT no longer depend on
Q. All dependence on this scale is instead contained in the Wilson coefficients,
which in turn are independent of the scale m. Considering for simplicity the
case in which a full theory operator Ogy is described by a single operator in
the EF'T, this leads to the expression

Orn(Q,m) = Cerr(Q, 1) Ogrr(m, p) + O(g) ~ (1.4)
Both the Wilson coefficient and the EFT operator obtain an additional de-
pendence on the scale p, which is a consequence of the renormalization of the
EFT, described in more detail in secs. [2.2] and [3.7.2] By defining the functions
H(Q,p) and F(m, ) as the squares of the Wilson coefficient and the operator
respectively, the cross section can be seen to factorize as

o ~ O (Q,m) > = |Crrr(Q, p)|* |Oppr(m, w)|* = H(Q, 1) F(m, 1), (1.5)

up to corrections of O(m/Q). The functions H(Q, 1) and F(m, p) are both
perturbative expansions in ag in their own respect, each containing a series
of logarithms analogous to eq. at every order. However, the arguments
of the logarithms occurring in H(Q, 1) and F'(m, u) are instead given by 1/Q
and m/u respectively. Although p may be chosen freely, it appears in both
functions, so that there is no choice that can be made such that both types of
logarithms are minimized. The dependence of the functions on the scale p can
be made explicit through their derivatives

ngvW — 32(Q, 1) H(Q, 1)
ngZ’M) = yr(m, ) F(m, p), (1.6)

which are known as renormalization group equations (RGEs). Here vy (Q, 1)
and yp(m, ), called anomalous dimensionsEl, are perturbative expansions in
a, as well. The solutions to these first-order differential equations are obtained

! Actually, for factorization formulas involving only two functions, the anomalous dimensions
can only depend on u. However, the specific logarithmic structure shown in eq. only
arises when considering anomalous dimensions that additionally depend on variables such
as @ and m.



by separating the variables and integrating over p and are given by

H(Q. 1) = oxp [ I ij‘ Q. u’ﬂ HQu juar) = Ust(Q p 1) H(Qu )
HH
Flm, 1) = exp [ | w(m,m} F(m ) = Up(m, i, ) F(m, i) . (17)

where Up (Q, pgr, ) and Up(m, pp, p) are known as evolution functions. These
solutions then connect the functions at some scale pg or pp to the same func-
tions at a different scale p. As the scales pg and pp are arbitrary integration
boundaries, they may be chosen freely. In particular, this means that the
functions may be evaluated at the scales ugy = @ and urp = m, where all
the logarithms are minimized, and then evolved to a common scale p. In the
factorized cross section, the evolution functions then combine into an overall
evolution function, given by

(]Uga”w ::Ch?«?vuf{::(27M>l670n7ﬂP1::7n7M)

:exp[i#a’;l}"ﬂ+i#agL"+§:#agL"l—i-...] , (1.8)
n=1 n=1

n=1

where L = In(m/Q). When a Taylor series of this exponential is performed,
the first sum will reproduce the term containing the highest power of the log-
arithm in eq. at every order in ay, i.e. a?L?". Likewise, every next sum
will reproduce all terms with logarithms of one power less than the previous
sum. These sets of terms are collectively known as the leading logarithms (LL),
next-to-leading logarithms (NLL), next-to-next-to-leading logarithms (NNLL)
and so on. As the series in the exponential exhibits convergent behavior for
m < @, it may be truncated at any desired order to obtain reliable predictions
for the cross section.

The main topic of this thesis is the resummation of the various logarithms that
arise in cross sections of scattering processes subjected to multiple, simultane-
ous measurements. The origin of the soft and collinear radiation, due to which
these logarithms emerge, is describe by the theory of the strong interaction.
In chap. 2| an overview of this theory, known as Quantum Chromodynamics
(QCD), is provided. After a brief discussion of renormalization and the result-
ing energy-dependence of the coupling constant, the effect of soft and collinear
particles at colliders such as the LHC is addressed.

Since the resummation techniques in this thesis are based in the usage of EFTs,
chap. [3| starts by describing the general philosophy and ideas behind these the-
ories, as well as their main features. The rest of the chapter is dedicated to the
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Soft-Collinear Effective Theory (SCET) and serves as an introduction to the
subject. SCET is an EFT that describes the soft and collinear limits of QCD
and the results in all subsequent chapters are obtained by making use of it.
In chap. [4] the simultaneous resummation of logarithms involving two distinct
observables is performed. The process under consideration is called Drell-Yan
(pp — £747) and the two measurements are the transverse momentum gy of
the outgoing lepton pair and 0O-jettiness (or beam thrust) 7, which quantifies
to what degree a certain event looks like an event with no jets in the final state.
The process and measurements are described in more detail in sec. [£.1.3] The
methods developed in order to achieve the resulting resummed predictions in
this chapter may be applicable to many other analyses as well.

Chap. [9] focusses on measuring the transverse momentum of heavy color-
singlets (like the Higgs boson) that are produced near their kinematic thresh-
old. Cross sections of such processes involve threshold logarithms in addition to
logarithms of the transverse momentum. A novel framework that resums both
types of logarithms is developed in this chapter. In contrast with earlier work,
this method is not limited to any specific logarithmic accuracy. Currently all
ingredients required for resummation at N3LL accuracy are available.

The subject of chap. [6]is the derivation of a generalized factorization formula
for processes at hadron colliders in the limit where almost all the available
energy is used for the production of a color-singlet. This factorization contains
a much larger set of contributions than the traditional soft threshold factoriza-
tion formulas and may consequently be used to improve theoretical predictions
for many processes.

Although chaps. [f] and [5] deal with the simultaneous resummation of two in-
dependent variables, one can of course consider even more measurements. As
these measurements all depend on the momenta of the particles in the final
state, many of them are correlated in some way. The work in chap. [7] aims to
investigate to what degree a process subjected to a certain measurement might
benefit from the resummation of a set of other measurements.

The conclusions drawn from the results obtained in each of these chapters are
summarized in chap. 8] At the very end of this thesis, a summary intended for
a broad audience is provided in both English and Dutch.



2

Quantum Chromodynamics

The quantum field theory that describes the strong interactions between quarks
and gluons is known as Quantum Chromodynamics (QCD). This chapter starts
in sec. with a brief overview of the steps involved in the derivation of the
QCD Lagrangian. Beyond the leading order in perturbation theory, diver-
gences appear at both high and low energies. The former are treated through
a renormalization process, discussed in sec. [2:2] which introduces the notions of
the running coupling, asymptotic freedom and confinement. The divergences
appearing at low energies are addressed in sec. Here, the concepts of
infrared-safety, factorization and evolution, which are of importance for the
rest of this thesis, are explored.

2.1 The QCD Lagrangian

The Lagrangian of a quantum field theory describing the behavior of a certain
type of fermions can be obtained by demanding its invariance under a local
gauge transformation of the fermion fields

P(x) — Ulz) (). (2.1)

The space in which this transformation is performed is the space corresponding
to some internal degree of freedom of the fermion. The gauge transformation
that is used depends on the representation of this space, which corresponds
to the number of independent components of the internal degree of freedom.
An example of an internal degree of freedom with only a single component is
electric charge. The space corresponding to electric charge is one-dimensional,
meaning that the fermion field ¥ (x) in this space transforms by acquiring a
complex phase. Since observable quantities will involve the absolute value of
the field (and never the field itself), the Lagrangian should be invariant un-
der transformations that change the complex phase of the field. These types
of transformations form an Abelian Lie group called U(1), and writing down
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all possible Lorentz-invariant terms of mass-dimension four that are invariant
under these transformations (and under parity and time-reversal) leads to the
Lagrangian of Quantum Electrodynamics (QED).

The internal degree of freedom that gives rise to the theory of strong interac-
tions is called color and has three independent components. The fermion field
in this color space (called the quark field) is then described by a triplet and its
transformations can be represented by 3 x 3 matrices. The transformations of
the quark fields (under which the Lagrangian is demanded to be invariant) are
rotations in the complex three-dimensional color space and form a non-Abelian
Lie group called SU(3). These transformations can be written as

b(z) — explig”(2)T"] y(a), (2.2)

where ¢%(x) is an arbitrary function, the 7% are the generators of the group
and a summation over a = 1,...,8 is implied. The generators obey the com-
mutation relation

[T, T" = if*T°, (2.3)

where f%¢ are called the structure constants of the group. The normalization
of the generators is defined through

T[T = Tr 6%, (2.4)

where Tr = 1/2 is chosen. The Casimir operators Cr and C4 in the funda-
mental and adjoint representation respectively are defined through

(T°T%)ij = Crpéi;  and  fol ol = Cy 6%, (2.5)

where a summation over repeated indices is implied. For an SU(N) group, the
Casimir operators are given by
N%Z -1
Cr =
FTaN

and Ca=N, (2.6)
which for QCD (N = 3) evaluate to Cr = 4/3 and C4 = 3.

In order to be able to write down terms that are invariant under eq. (2.2) and
involve the derivative of the quark field, the covariant derivative is defined as

Dy = 8, — igs A% ()T, (2.7)
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where g, is known as the coupling constant and AZ(I’) is identified as the gluon
gauge field. Kinetic terms for the gauge field can be obtained by considering
the field strength

F, = 0,A% — 9,A% + g f“bCAZAf, , (2.8)

where the dependence on x has been left implicit. The final term in eq.
is special to non-Abelian gauge theories and leads to interactions between
the gauge fields. Writing down all possible renormalizable, Lorentz-invariant
terms that are gauge-invariant under SU(3) and that conserve parity and time-
reversal then leads to the Yang-Mills Lagrangian [11]

Lym = (i) —m)y — %
where m denotes the mass of the quark field and all fields should be under-
stood to depend on x. Analogous to QED, the expression for the two-point
function (the propagator) of the gluon that one obtains from the gauge-fixed
Lagrangian for a Yang-Mills theory is not unique. This ambiguity expresses
itself in the form of a gauge parameter ¢ that can be chosen freely. In non-
Abelian gauge theories, two additional terms are present in the Lagrangian,
namely a gauge-fixing term and a term involving ghost fields |21], denoted by
c. The ghosts serve as negative-signature degrees of freedom, i.e. they can-
cel the contributions of the unphysical (time-like and longitudinally polarized)
states of the gluons. Including these terms and accommodating for multiple
quark flavors f with different masses m, the Lagrangian that describes QCD
is given by [22]

(Fi)? (2.9)

o 1 1 _
Laen = 3 Uil —my)iby = 3(FR)? = 5o (AL = (@ D (210
f
where the covariant derivative in the adjoint representation is given by
D = 50, + g f*P AL, (2.11)

The QCD Lagrangian depends on only a few free parameters: the masses of the
quarks my and the coupling constant gs, which is more commonly expressed
as as = g2/(4n). Throughout this thesis all quarks will be taken as massless
unless noted otherwise and the top quark will not be considered.

2.2 Ultraviolet divergences

Integrals over the momenta of virtual particles in loops often diverge in the
region where the momenta grow large. These ultraviolet (UV) divergences indi-
cate that the theory under consideration should not be considered valid in this
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region of large momenta (small distances). In order to obtain finite predictions
from the theory, the UV divergences have to be regulated in some way, after
which they can be absorbed in redefinitions of the parameters of the theory
in a process known as renormalization. The renormalized parameters depend
on the scale that is introduced through the renormalization procedure. The
requirement that the bare parameters (before renormalization) are indepen-
dent of this scale leads to so-called renormalization group equations (RGEs),
describing the behavior of the renormalized parameters as a function of the
scale.

2.2.1 Regularization

Loop diagrams in quantum field theories involve at least one internal momen-
tum p* that is not constrained by the external momenta. Since the compu-
tation of cross sections involves summing over all possibilities for unobserved
quantities, the internal momenta have to be integrated over an in-principle
infinite range. These types of integrals are often divergent and require a
regularization procedure. The perhaps physically most intuitive method of
regularization is to simply cut off these integrals at some large value Ayy.
The regulated integrals will then lead to results involving divergences such as
In(Ayy). Since these divergences are due to high-momentum modes they are
called UV divergences. Their presence indicates that the theory should not be
assumed valid for very large momenta (corresponding to very small distances).
Although imposing a momentum cutoff has the advantage of being very clear
and intuitive, it also has a serious downside in that it does not preserve Ward
identities.

A different method of regulating four-dimensional integrals, called dimensional
regularization [23}24], is to instead evaluate them in d = 4 — 2¢ dimensions by

d* dd
/(277})’4 — /(QWI)’d. (2.12)

The d-dimensional integration measure can be written as

replacing

d%p = dQqdpp?t, (2.13)

where [d€), is the surface area of a d-dimensional unit sphere given by

/ dQy = 2892 (2.14)
I'(d/2)
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By splitting the d-dimensional integral this way, the UV divergences reside
solely in the one-dimensional integral over dp and will manifest themselves as
simple 1/e€ poles.

The main reason for the frequent use of dimensional regularization in the liter-
ature is the fact that it preserves gauge and Lorentz symmetries and therefore
also Ward identities. Another often-appreciated property is the fact that scale-
less integrals vanish in dimensional regularization, i.e.

d
/(gﬂf'gd )" =0, (2.15)

for any n [25]. Dimensional regularization regulates not only the UV diver-
gences, but also divergences related to small momenta, known as infrared (IR)
divergences. Both will manifest themselves as 1/e poles and some scaleless
integrals only vanish because of cancellations between infrared and ultraviolet
divergences. For the renormalization procedure described in the next section,
it is important to distinguish between these types of divergences.

Unless noted otherwise, the method of dimensional regularization will be used
throughout this thesis.

2.2.2 Renormalization

Although UV divergences must always cancel in observable quantities [26],
it pays to remove them already at the level of the Lagrangian in a procedure
known as renormalization. The Lagrangian given in eq. is called the bare
Lagrangian and involves bare parameters (masses and coupling constants) that
differ from the parameters actually measured in experiments. The Lagrangian
can be written in terms of the latter instead of the former by explicitly splitting
off the infinite (but unobservable) shifts between the two and grouping them
in what are known as counterterms. Besides the divergent parts from the bare
parameters, one has the freedom to absorb additional (finite) terms into these
counterterms. Any such choice is called a renormalization scheme and gives a
precise definition of the renormalized parameters. The scheme in which only
the divergences are absorbed into the counterterms is known as the minimal
subtraction (MS) scheme [27,28|.

When using dimensional regularization, the mass-dimension of the Lagrangian
changes from 4 to d, but the dimension of the gluon field is still equal to 1.
Dimensional analysis of the interaction term in eq. then reveals that the
coupling constant g obtains a mass dimension of 2 — d/2 = e. To enforce the
coupling to be dimensionless, the MS scheme includes the replacement

gs —> gs 1. (2.16)
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Here p is an arbitrary parameter of mass dimension 1 known as the renormal-
ization scale.

The scheme that is most often used is a variation of the MS scheme called the
modified minimal subtraction (MS) scheme, which amounts to absorbing some
extra terms that arise in each loop integral into the counterterms by making
the change

2 e’YE
Ar

where vg =~ 0.577 is the Euler-Mascheroni constant. Unless noted otherwise,
the MS scheme will be used throughout this thesis as the method of choice
for renormalization. In this scheme, the relation between the bare coupling
bare and the renormalized coupling constant as can be expressed as

o (6) = §2 Zo(e, ) (1) (2.18)

where the scaling factor Z, represents a combination of field-strength renor-
malizations that is related to the counterterm by 6, = Z, — 1.

JTR—— (2.17)

constant oy

2.2.3 Running coupling

Since the renormalization procedure gives definite meaning to the renormalized
parameters by introducing an arbitrary energy scale, the renormalized coupling
constant will depend on this renormalization scale. As indicated explicitly in
eq. for the case of MS, the bare coupling depends on the regulator,
but does not depend on the renormalization scale. This independence can be
exploited by writing

bare
doy

1 dZa(e p) 1 dos(p)
= +
dlnp

Zo(e,p) dlnp ag(p) dlnp
(2.19)

— 1 Zafe) )2+

so that the rate at which the renormalized coupling constant changes with the
energy scale p is encoded by

1 dZ,
Blas(p), €) = dln = as(u) {_26_ Z(eu)dln,u]

= —2¢ (1) — 20 Zﬁn<as ) NCE

which is called the beta-function of QCD. It can be calculated perturbatively
by applying the Callan-Symanzik equation [29,30] to appropriately chosen




2.2. Ultraviolet divergences 13

Green’s functions. Since the beta-function is related to the counterterms that
cancel the UV divergences, its exact form (beyond two loops) depends on the
employed renormalization scheme. The 1-loop coefficient of the beta-function
in MS is found to be

11 4
Bo = §C'A —3TFrny, (2.21)

where ny represents the number of active quark flavors, given by the number
of quarks whose mass is smaller than the energy scale under consideration,
ie. my S Q. The results at 2 and 3 loops can be found in app. The
leading-order RGE of the coupling constant is then given by

das () Y O‘S(N)Q
dlnp "4

(2.22)

which can be solved by separation of variables and integration from some
reference scale pg up to the scale p to obtain

o _ s (o)
(1) 1+%(M0)%ln(ﬁ) '

If the coupling constant is measured at some scale pg, its value at any other
scale can be determined by using eq. or its higher-order equivalents,
which can be found in app. [C:2l up to three loops. One commonly used refer-
ence scale is the mass of the Z boson my, at which as(mz) = 0.1181 [31]. A
coupling that depends on the energy scale at which it is measured, like as(p), is
called a ‘running coupling’. Throughout the rest of this thesis the dependence
of the running coupling on the scale o will often be suppressed for the sake of
readability.

(2.23)

The beta-function of QCD is negativeﬂ indicating that the strong coupling con-
stant is large at small energy scales p and decreases towards zero as the energy
scale increases, as shown in fig. [2:I] At high energy scales, the interactions in
QCD can be described by a perturbation series in the coupling constant, lead-
ing to the quarks and gluons behaving like free, weakly-interacting particles.
This behavior is called asymptotic freedom [32}/33] and it can be shown that
all non-Abelian gauge theories are asymptotically free if only renormalizable
quantum field theories in four space-time dimensions are considered [34,35|.

At low energy scales, the strong coupling constant becomes large and can
no longer be used as an expansion parameter. The theory becomes non-
perturbative and quarks and gluons can no longer be described as free, in-
dividual particles. The asymptotic states of the theory consist of singlets in

'For a number of flavors ny < 17.
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Figure 2.1 The running of the coupling constant () in the MS renormal-
ization scheme, at 3-loop accuracy with five active flavors.

color, called mesons and baryons (collectively known as hadrons). The former
are composed of a quark and an antiquark with the same (but opposite) color
charge, whereas the latter are made up of three quarks with different color
charges. This process of quarks and gluons combining into colorless hadrons
is known as confinement and explains why free quarks and gluons are not en-
countered in nature. The scale at which QCD becomes nonperturbative is the
scale at which the denominator in eq. vanishes, which at 1-loop accuracy
is given by

2
Aocp = o exp [—] . 2.24
Q p Boora (i) (2.24)
This scale is actually independent of the scale ug that appears on the right-
hand side, but does depend on the renormalization scheme and the number of
active flavors. It has a numerical value around Aqcp ~ 200 MeV.

2.3 Infrared divergences

Apart from the UV divergences arising at very high energies, there are also IR
divergences, originating from the low-energy regime. These divergences may
arise in loop integrals of Feynman diagrams and in the phase space integral
required to obtain cross sections from amplitudes. When all virtual corrections
and all real radiation matrix elements are considered, these IR divergences will
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q
Figure 2.2 The leading-order diagram for the process ee~ — ¢q. The process

is considered at E.y < myz so that the same diagram with a virtual Z boson
is highly suppressed.

cancel, rendering the total cross section finite. At lepton colliders, the sum
over all energy-degenerate initial and final states can be performed. At hadron
colliders, however, the incoming particles cannot be described in perturba-
tion theory, preventing the summation over all initial states. This leads to
uncanceled IR divergences that have to be absorbed by the non-perturbative
description of the hadrons in a procedure similar to the renormalization pro-
cedure used to treat UV divergences. The non-perturbative parton distribu-
tion functions, describing the extraction of a parton from the proton, become
scale-dependent through this procedure. The resulting RGE then connects the
parton distribution functions at various energy scales to one another.

2.3.1 Lepton colliders

Since quarks and antiquarks are electrically charged, they can be created at
electron-positron colliders through the QED process

et

e — )2 — qq. (2.25)
As only the final state will receive higher-order QCD corrections, this process
provides an ideal environment to study the properties of QCD. Assuming that
this process happens far away from the Z-resonance, i.e. for center-of-mass
energies F¢yn < myz, the contribution from the Z-boson is highly suppressed
and the leading-order (LO) Feynman diagram in fig. leads to the cross
section

O'(O) — Nc(e2Qq)2M26 <47TM2>6 (1 — 6)2 F(l — 6) (226)

AT E2 E2, ) (3—26)T(2—2¢)’
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e 1 q

Figure 2.3 A radiative QCD correction to the leading-order process shown in
fig. The diagram in which the gluon is emitted from the antiquark instead
is not shown explicitly.

where IV, is the number of colors, e is the electric unit charge, @), is the electric
charge of the outgoing quark in units of e and all particles have been taken as
massless.

A lowest-order QCD correction to the Born process can be obtained by consid-
ering the situation in which the outgoing quark radiates an additional gluon
into the final state, as shown in fig. The scattering amplitude of this
diagram is given by

—igST“Qqu

iM = T’D(qb)’mu(qa) u(p1)¢* (k) (6

+
L " ) 2.2
T v(p2) (2.27)

In the limit where the momentum £* is small (i.e. the Eikonal approximation),
the factor describing the outgoing state can be seen to scale as

(p, +F) 1

u(p1)g* (k) ———"v(p2) ~ Br(l—cosh)’

2.28
2k - P1 ( )

where E}, is the energy of the outgoing gluon and 6 the angle between the quark
and the gluon. This expression diverges in the limit where the gluon becomes
soft, i.e. By — 0, as well as the limit & — 0, in which the gluon becomes
collinear to the quark. These soft and collinear divergences are universal in the
sense that they are independent of the interactions that precede the emission
of the gluon by the outgoing quark. Collectively, they are known as infrared
(IR) divergences.

By also including the diagram in which the gluon is emitted from the antiquark
instead, the cross section corresponding to the O(as) corrections due to real
radiation is given by

2\ € 2
R _ 50 0CF (4mpZ\ T =2 3 19 29
a0 =% Ton (Egm TS PRI B (2.29)
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Figure 2.4 The one-loop virtual QCD correction to the leading-order process
shown in fig. @

The IR divergences manifest themselves in this expression as 1/e poles. The
1/€2 pole reflects the region in which the gluon becomes both soft and collinear.
For a consistent evaluation of the cross section at O(as), the interference be-
tween the Born amplitude and its 1-loop QCD correction shown in fig. [2:4]
has to be taken into account as well]l The cross section due to this virtual
correction is given by

2\ € 2
vV _ (0 asCr (4 I'(l—e 2 3
e o <Ec2m > T =30 | & + . +8+4+0(e)| , (2.30)

which contains no UV divergences so that all 1/e poles correspond to IR diver-
gences. As can be seen from egs. and the IR divergences cancel
between the real and virtual contributions and the resulting cross section at
O(a) is finite.

The reason behind this cancellation is that, in the IR limit, final states with
any amount of real radiation are indistinguishable from the same final states
without that radiation. This leads to the conclusion that final states with a
fixed number of massless particles are actually ill-defined and that one always
has to include both virtual corrections and real radiation diagrams in order to
obtain finite results for the cross section of any process.

For the case of QED, the cancellation can experimentally be explained by the
fact that each detector has a finite resolution, below which individual parti-
cles cannot be detected. This suggests that the phase-space integration for
a measured process should actually only include the sensitivity range of the
detector. If one of the particles in a process with an n-particle final state then
has a momentum below this sensitivity range, it will remain undetected and
instead contribute to the same process with a final state consisting of n — 1

2The self-energy diagrams are not discussed explicitly, but have the effect of transforming
the UV divergence that the diagram in fig. @ gives rise to into an IR divergence.
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particles. From this point of view, the singularities present in eq. (which
would arise from particles below the sensitivity range of the detector) are ex-
plicitly paired with the equal but opposite singularities in eq. . In QCD,
the outgoing radiation will hadronize before reaching the detector, so that the
asymptotic final states are massive. If the resolution of the detector is larger
than the energy scale of the hadrons, these particles can still escape detection.
For experiments that are sensitive enough to detect these massive particles,
the phase space is instead cut off by the scale of nonperturbative physics.

The cancellation of soft and collinear divergences in measurable quantities is
ensured by the Kinoshita-Lee-Nauenberg (KLN) theorem [36-38|, which im-
plies that physical quantities that are obtained by summing over sufficiently
inclusive initial and final states are free of IR divergences to all orders in per-
turbation theory. The total hadronic cross section ete™ — X is an example
of a sufficiently inclusive physical quantity that is guaranteed to be IR-finite
(for QCD corrections) by the KLN theorem.

More exclusive cross sections subject to final-state measurements can be con-
sidered, as long as those measurements are IR-safe, meaning that they have to
be insensitive to the addition of an arbitrary amount of infinitesimally soft or
collinear particles.

2.3.2 Hadron colliders

The perturbative expansion in quantum field theory that allows for the calcu-
lation of cross sections depends on the assumption that external particles can
be considered as free particles for timescales much longer than the timescale at
which the interaction takes place. At lepton colliders, the accelerated beams
are composed of the same particles that initiate the scattering processes, so
they can be regarded as free particles prepared at t = —oo. At colliders where
instead beams of hadrons are used, the quarks and gluons (collectively called
partons) that initiate the scattering processes are confined inside the hadrons.
Focussing on proton-proton colliders such as the Large Hadron Collider (LHC),
the general picture of a collision is schematically depicted in fig. Here, two
partons ¢ and j are extracted from the incoming protons before initiating the
hard interaction that leads to a generic final state labeled X. The extracted
partons can be considered collinear to the incoming protons to good approxi-
mation and their momenta can thus be written as longitudinal fractions of the
full momenta of the protons as

g =z, Pt and ¢ =z P, (2.31)
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Figure 2.5 A schematic representation of a proton-proton collision. The par-
tons 7 and j, which can be (anti)quarks or gluons, are extracted from the
protons with momenta ¢4 and ¢}’ respectively and initiate the hard interaction
labeled by M. The final state X may consist of any number of particles.

where 0 < z,5 < 1. The hadronic cross section o,,,x can be obtained at
tree-level by multiplying the partonic cross sectionlﬂ 0;j—x of the underlying
partonic process occurring at some x, and xp by the probability of extracting
parton ¢ with momentum fraction x, and parton j with momentum fraction
xp from the protons and integrating over both momentum fractions.

The probability of extracting a parton ¢ with momentum fraction z from the
proton is encoded in a so-called Parton Distribution Function (PDF) f;(x).
Since the intrinsic energy scale of the proton is of the order of Aqcp, these
PDFs cannot be calculated in perturbation theory, but have to be determined
from experiment (see for example refs. [39-41]) or by using lattice QCD [42/-44].
Consequently, the hadronic cross section can be written as [45]

1 1
Oppsx (Pa, Py) = /0 dz, /0 day Y fira) fi(20) 6ijosx (T Pay 2pPy) . (2.32)
0.

where the sum runs over all partons and the dependence on E., has been
left implicit. This formula represents the so-called parton model [46,47| and
is only the leading-order term in an expansion in Aqcp/Q, where @) denotes
the energy scale of the hard scattering process. For values of ( much larger
than Aqcp, the extraction of the partons from the protons can be considered
to take place at a time long before the partons initiate the hard interaction.
This allows one to regard the partons as free particles and subsequently val-
idates the use of perturbation theory to calculate the partonic cross section.

3Partonic cross sections will be denoted by a hat to distinguish them from their hadronic
counterparts.



20 Chapter 2. Quantum Chromodynamics

Figure 2.6 A schematic picture of the Drell-Yan process. A quark and an
antiquark are extracted from the incoming protons and form a virtual photon
(or Z boson) that subsequently decays into a lepton pair.

Eq. then effectively separates the nonperturbative physics at the scale
Aqcp encoded by the PDFs from the perturbative physics at the scale @ in
the partonic cross section and is sometimes called the collinear factorization
formula.

Although the perturbative calculation of the partonic cross section will in gen-
eral depend on partonic variables, physical quantities will always be measured
in terms of hadronic variables and it is often necessary to translate partonic
results to their hadronic counterparts. The relations between partonic and
hadronic quantities of import to this thesis can be obtained by considering the
Drell-Yan process [48], given by

pp — Z[y — LT (2.33)

In this process, shown in fig. a quark and an antiquark extracted from the
incoming protons form a virtual photon or Z boson that subsequently decays
into a pair of leptons. In a sense, it is the (reversed) hadronic version of the
process considered in sec. [2.3.1] The energy scale of the process is set by the
invariant mass of the lepton pair, i.e.

Q> =¢>. (2.34)
Since the transverse momentum of the partons is negligibly small, the trans-
verse momentum of the intermediate vector boson (at tree-level) is also small.
Its longitudinal momentum, however, might in general be substantial. It can
be conveniently parametrized by the rapidity, defined as

1 E,+q.
Y = 71n(q7). 2.35
2 E;—q. ( )
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In the center-of-mass (CM) frame of the incoming protons, the four-momentum
of the intermediate vector boson is given by

Eem
2

g’ = (CEa + 2p,0,0, 24 — acb) . (2.36)

The (partonic) invariant mass can be related to the CM energy by
Q% =2¢a - @ = Tamy B2y (2.37)

where the high-energy limit has been adopted so that the protons can be
considered massless. The rapidity can be expressed in terms of the momentum
fractions as

1

Y= 1n<@> . (2.38)
2 Tp

The (partonic) momentum fractions can then be written in terms of the ha-

dronic quantities as

Q iy

Ty = —e€ and Tp =
Eem

E?m e Y, (2.39)

allowing for a translation between the momentum fractions x, and x; and the
experimentally accessible observables ) and Y.

2.3.3 Parton Evolution

The cancellation of soft and collinear divergences is guaranteed by the KLN
theorem as long as all initial and final states with the same total energy are
summed over. In proton-proton collisions, the sum over energy-degenerate
initial states cannot be performed because the protons cannot be described by
perturbation theory. As a result, the KLN theorem cannot be readily relied
upon to cancel all IR divergences.

Since the sum over final states can still be performed for processes at hadron
colliders, the divergences corresponding to soft and collinear splittings from
final-state particles will cancel between the real and virtual diagrams as was
the case for ete™ — X in sec. The initial state, however, will in general
give rise to IR divergences, which can originate from partons that undergo
collinear splittings between their extraction from the protons and their initi-
ation of the hard interaction procesﬁ. Although these collinear divergences
may seem troublesome at first, they can be dealt with in a consistent way as

4Tt turns out that the divergences from soft radiation emitted by the initial state cancel
exactly against the corresponding virtual contributions.
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—
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Figure 2.7 A schematic representation of a proton-proton collision including
initial-state radiation. Two partons k and ¢ are extracted form the protons
with momenta py and p) respectively. In general, these partons will transition
into particles ¢ and j by emitting collinear radiation into the final state.

will be described in detail in this section. First, the part of the partonic cross
section describing the collinear splittings is shown to be independent of the
hard scattering process. This so-called transition function Tj;(z) describes the
transition of some parton k extracted from the proton into some other parti-
cle i. A next-to-leading order (NLO) calculation of this transition function is
performed, leading to an uncanceled collinear divergence in the partonic cross
section. Next, it is shown that this divergence may be absorbed into the PDF,
which contains an equal but opposite IR divergence that is canceled by this
procedure. Since the PDF is scaleless, this IR divergence exactly canceled a UV
divergence in dimensional regularization. After absorbing the IR divergence
from the transition function, the PDF thus contains an explicit UV divergence
that has to be treated through a renormalization procedure.

The process of extracted partons emitting initial-state radiation before initi-
ating the hard process is schematically depicted in fig. Here, partons k
and ¢ are extracted from the protons with momenta given by ph = &, P4 and
pf = &,Pf respectively. These partons undergo collinear interactions, encoded
by M, and M, through which they transition into partons i and j respec-
tively. The momenta of these particles, which will initiate the hard interaction
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MH

ij» are then given by

" =z, Pl = —pg =zph  and @ =xP) = ﬁpf = zp, , (2.40)
ga fb
where 2,5 = %4,5/&q,p has been defined. Since the momenta qé‘ , enter the hard
scattering process, they have been defined as to agree with the definition in
eq. (2.31). The partonic cross section of the process shown in fig. containing
the hard interaction as well as the transitions of the incoming partons, is given
by

1
O'kZHX(pa;pb) m /dHRa-i-Rb—i-X <’_/\/l|2>
a
x (2m)*6(pa + Po — PR, — PR, — PX) » (2.41)

where ¥, are the velocities of the incoming beams, E,}; the energies of the
partons extracted from the protons and (|M|?) the squared amplitude of the
complete partonic process k¢ — X + R (including both parton transitions and
the hard interaction), averaged over all possible quantum numbers (spin and
color) of the initial-state particles and summed over all possible quantum num-
bers of the final-state particles. The integral over dllg,r,+x is understood to
cover the phase space of the entire final state, including R,, R; and X, whose
momenta are given by p’éa, p’éb and ply respectively.

The transition that a parton undergoes between its extraction from the proton
and the initiation of the hard interaction can be described by a perturbative
series in its own respect. At leading order, there are no splittings and partons
i and j are simply equal to partons k and ¢. In this case, X makes up the
complete final state. The partonic cross section can then schematically be
written as

A _ AH(0
where &gio))( (qa, g») indicates the leading order of the perturbative expansion
B H,(1
1 x (4as @) = _(>))((Qa> Q) + (4 )%L;{(qa, @)+, (2.43)

representing the cross section resulting solely from ./\/lg (without any transi-
tions of the partons).

At NLO, either the hard interaction might be evaluated at the next order, or
one of the partons extracted from the protons might undergo a single collinear
splitting. Although the transitions of both partons have to be taken into ac-
count, only M, will be considered here for simplicity. The treatment of the
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matrix element M, follows the exact same logic. In the partonic CM frame,
the four-momentum of parton k after its extraction from the proton is given
by

pg = (Ea; 0,0, Ea) . (244)

Parton ¢, which emerges after the collinear radiation and initiates the hard
interaction, obtains a fraction z, of the longitudinal momentum of parton k,
so that its four-momentum reads

Qéf = (Eqay Ga,x>9a,y> ZaEa) = (Eqa’ (._jaJJ ZaEa) , (2~45)

where ¢, = (¢ax:qa,y) defines the two-dimensional transverse momentum
vector. The four-momentum of the single on-shell particle that makes up
R, when the transition matrix element is considered at NLO follows from
momentum conservation and is given by

kg = (Eku.7 _aaLv (1 - Za)Ea) ) (2.46)

where its energy Ej, = \/ g2, + (1 — z4)2E2 is fixed by the fact that the par-
ticle is created on shell. Using factorization of the squared amplitude in the
collinear limit, the partonic cross section in eq. (2.41)) can then explicitly be
written as

) 1 dkg » 42k, | 1 )
. = ’ dlly —— E ;
O—kj—)X (pa') Qb) 4‘1—}»(1 — 6b|EaEqb / (27T)d_1 / X 2Ek;a <’M'Lk‘ >

7

112

x (qu) (M) (2)*8(pa + @5 — ka — px) (2.47)
a

where dimensional regularization is used to regulate the phase space inte-

gral over the region R, (containing only a single particle). Expanding to

leading power in ¢, and changing variables according to dk, . dd—2]§a 1=

E,dz,d%2G,, , the partonic cross section becomes

A dd_2§aL ! za(1 = 2a) 2\ ~H
Okj—sx (Par @) = W o dzq T Z<|Mzk’ ) aij;}X(zapa7 ®)
a i

(2.48)

where the cross section corresponding solely to the hard interaction is defined
by
1

~H H)2 4
JZ]—)X (qa7 qb) 4’1—)-‘1 1—)'2 ’Eqa Eqb / X <’MZ] > ( ﬂ-) (qa qb pX)
(2.49)
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The (d — 2)-dimensional integral over the transverse momentum can be trans-
lated into a one-dimensional integral by using eq. (2.13)), after which the par-
tonic cross section takes the form

1 1 ©dg?, [t za(1—z,)
5 ) = ————— —— (47" a dz, 2a- —%a)
Ukj—>X(p Qb) 1—\( — )(47‘1’)2( 7T) /0 2 E/O z 4

(qaj_) Qa1
X Z |Mzk‘ z]—>X(Zapaa @) - (2.50)

The matrix elements M, describing the transition of particle & into particle
1, are independent of the hard scattering process and are found to be

2 ,,2¢,2
s K451 1(0)
<|Mzk‘ > Za(l — Za) P ( )7 (251)

where Pl.(g)(z) depends on the identity of the incoming and outgoing particles.
For the various possibilities, they are given by

P{O(2) = 2Cr () Pag(2), P (2) = 2Ck 0(2) Pyg(2), (2.52)
PO(2) = 2Tk 0(2)Pyg(2), P (2) = 2Ca0(2)Pyy(2) + Bo (1 — 2).

The P;j(z) appearing in these coefficients are called the Altarelli-Parisi split-
ting functions. As the splitting functions only depend on the longitudinal
momentum fraction z, the transverse momentum dependence of a transition
from particle k to particle ¢ is universal, i.e. it does not depend on the na-
ture of the particles involved. Since collinear splittings with a large transverse
momentum should actually be considered part of the hard scattering process
instead of the transition amplitude, the integral over dqg | can naturally be
cut off at the invariant mass Q? of the processﬂ Performing this integral then
finally leads to the NLO expression

R o 1 QQeVE
O—kj—)X(pa’ Qb) =-— |:_ +In :| / Z P(O) z_]—>X(zapa> qb)

a4 | € 47ru
(2.53)
The partonic cross section can then in general be expressed as
! H
a'kj—>X (paa Qb) = / dz, Z Tix (Za) a-ij—>X (Zapaa Qb) ) (2'54)
0

i

5Other cutoffs of a similar size are possible as well.
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where the transition function Tjx(2) has a perturbative expansion in «ag, given
by

0 a 1

Tin(z) = T (2) + (ﬁ)zﬁk’(z) +o, (2.55)
where higher-order terms represent a higher number of collinear splittings. The
LO and NLO results for the transition function can be read off from eqgs. (2.42))

and ([2.53) and are given by

T (2) = [—1 + 1n<Q27::2E)]P§,S)(z). (2.56)

At NLO and beyond, the integral over dz, in eq. can only be performed
when a particular pair of particles k and i is considered. For the case k =i = g,
in which a quark gets extracted from the proton, radiates a gluon into the final
state R, and then enters the hard process, a naive calculation would lead to
the splitting function

1+ 22

PRave(z) = o (2.57)

which has a soft divergence as z — 1. The correct way of treating this diver-
gence can be seen from the sum rule

1
Z/O dzTiy(z) =1, (2.58)

which simply states that the probability of particle &k to transition into anything
has to be equal to 1. Since the lowest-order transition function Tq(g)(z) already
integrates to unity, all higher-order contributions must vanish upon integra-
tion over dz. In particular this means that the quark-quark splitting function
must integrate to zero, which is accomplished by including the so-called plus
prescription in its definition as

(2.59)

Paq(2) = [l—z

1+ 22}

n
A formal definition of the plus distribution, as well as a number of its proper-
ties, can be found in app. Here, the plus distribution of a function f(z) is
defined such that it agrees with its argument for all values z < 1, and that its
integral against any smooth function g(z) is given by

1 1 T
[ a0, 0 = [ a1) (o) = a(0) —91) [z ). (260
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In particular, picking g(z) = 1 as a constant, this means that the plus distri-
bution integrates to zero over the interval 0 < z < 1. The remaining splitting
functions, encoding the transitions of quarks into gluons, gluons into quarks
and gluons into gluons, can be found in app.

The 1/€ pole still left in eq. is clearly not canceled by the splitting
functions, nor will it be canceled by any virtual diagram. This divergence
has its origin in the collinear limit qg |, — 0 and appears universally for any
particles k and . Although this left-over divergence might seem troublesome
at first, it appears at the level of the partonic cross section, which is not a
physical observable. Explicitly writing the observable, hadronic cross section

defined in eq. (2.32)) at NLO yields

ap) =Y [t [ an i) o
Opp—X a’b_k,() aOJ;bka]xb

H ja ’
x [Uk]fx(é-apa, l‘be) + 473 kg—)X(é-aPaa beb)

Qg QQQ'YE

+Zl <47TM Z/ dee P Zk Za) z]ﬁX(ZagaPavbeb)
1 ag R

Lo /O Q2 PO (22) 67O (aba Py Py | . (261)

Since the 1/e divergence appears completely independent of the underlying
process, it can be absorbed into the PDF. This can be achieved by renaming
the integration variable £, — z, and swapping the dummy indices k <+ ¢ only
on the first three lines and changing variables to x, = z,&, only on the last
line. Doing so leads to the expression

1 1
UppﬁX(Pa’ Pb) = Z/O dZL‘a/O dl‘b fj (acb) [fz(xa) 5‘55?% (.Z‘QPCL, wbpb) (2.62)
(2¥]

H,(1) o (Q%eTE
+ i filwa) 63 X waPa ) + 2 () filza)

<2 / dza P (z0) 515 O (zaaPa 2y Fy)

1 ay d¢&, .
)Y / S e P (52) o u P

e€dr

up to corrections of O(a?). The PDFs can be defined as hadron matrix ele-
ments of the operators that count the number of quarks or gluons with a certain
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momentum fraction. By an explicit calculation of their partonic counterparts
(the distributions of certain partons within a parton), they are found to con-
tain both UV and IR divergences, which cancel in dimensional regularization
since the PDF is scaleless [45,49]. The absorption of the IR divergence from
eq. into the PDF cancels its IR divergence exactly. The UV divergence
that is left is thus equal in structure to the absorbed IR divergence and can
be treated through a renormalization procedure. This entails considering the
PDFs in eq. to be bare quantities and defining the renormalized PDFs
as an infinite shift from their bare counterparts. Using the MS scheme, only
the pole is absorbed into the PDF, but the renormalization scale p is redefined
as given in eq. (2.17). The renormalized PDF at 1-loop accuracy, using MS, is
then given by

ot 25 [Eaon0(D) e

The terms remaining after the renormalization procedure are collectively de-
fined as the total partonic cross section

H,(0)

~ ~ Qs . H(1
Uij—>X(Qa>anU) = Uij%X(qaaqb) = )

4 J@J_)X(qad Qb)

Q? L0, AH0)
+El ( 2)%: i d2a Py’ (20) 03 x (2a4a: @) s (2.64)

which now no longer contains any divergences. The hadronic cross section then
simply reads

O'pp%X(Paan /d:ﬂa/dSCb Zfz Lay W )f](xb) )O'z]%X(ZUaPaa:Ebea )
7]

(2.65)

where now both the PDFs and the partonic cross section depend on the renor-
malization scale u. A possible issue due to this scale dependence manifests
itself when the PDFs used to calculate hadronic cross sections are measured
at some scale pg < @. For such scales, the logarithm in eq. , that will
appear at every order at the same power as ag, grows large and spoils the
convergence of the perturbative series. Instead of measuring the PDFs at a
different scale whenever a process at a different invariant mass () is consid-
ered, there is a more sophisticated solution. The scale dependence of the PDF
at O(ay) is explicitly given by

dgli: - Z / (0) fk(f 1), (2.66)
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which is known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation [50-52]. Although no exact analytic solution to this integro-differen-
tial equation is known, it can be solved at a given order in perturbation theory
either numerically or in Mellin space, after which an inverse Mellin transforma-
tion has to be performed. The solution to the DGLAP equation then relates
PDFs at some scale i to PDFs at some reference scale pg. Using this solution,
a PDF measured at some scale pg can be evolved to the scale p, which can
freely be chosen as u ~ @) to minimize the logarithm in eq. and to guar-
antee the convergence of the perturbative series of the partonic cross section.

In this chapter some general aspects of QCD have been reviewed. Many of
these concepts, such as renormalization group equations and the appearance
of infrared divergences play a key part throughout the rest of this thesis. The
next chapter aims to give an insight in an effective theory that is particularly
well-suited for the description of QCD in the IR limit.






3

Soft-Collinear Effective Theory

Energetic collisions at particle colliders are always accompanied by both soft
and collinear radiation. A correct and adequate description of this infrared
radiation is vital in order to study the details of the underlying hard interac-
tion. Soft-Collinear Effective Theory (SCET) is an effective field theory that
employs distinct soft and collinear fields to describe the infrared regime of
QCD. The main advantage of this approach is that the separation of the var-
ious physical processes occurring at different energy scales allows each to be
calculated individually, without being complicated by the others.

After a general introduction to effective field theories in sec. this chapter
will be dedicated to SCET, starting in sec. with a summary of the various
aspects of the theory, providing the reader with an overview of the topics that
are discussed in the rest of the chapter. The various degrees of freedom in the
theory are discussed in sec. [3.3]and the SCET Lagrangian is derived in sec. [3.4]
while the topic of gauge symmetry is covered in sec. [3.5] The separation of
the various sectors in the Lagrangian is shown in secs. [3.6] and [3.7] and the
resulting factorization of cross sections is described in sec. [3.8] Finally, two
slightly more involved versions of SCET that play a role in the rest of thesis

are briefly discussed in secs. and [3.10]

3.1 Effective field theories

Most phenomena in nature can be described using a theory that is valid only for
specific energy ranges and do not require any detailed knowledge about some
underlying, more general theory. Houses may be built without any knowledge
of the interactions between the elementary particles that bricks are made of
and the orbit of the moon around the earth can be calculated without re-
sorting to quantum gravity. Effective theories implement this intuitive idea
in a mathematically consistent way and provide a method of approximating
complicated, or even unknown, theories by focussing only on the degrees of



32 Chapter 3. Soft-Collinear Effective Theory

freedom relevant to a given situation.

3.1.1 The philosophy of effective field theories

For virtually every physical quantity there exists a vast range of scales at which
interesting phenomena occur in nature. In cosmology, dynamical processes are
studied that take place over times of the order of the Hubble timeﬂ around
10'7 seconds, while the lifetime of the top quark studied in particle physics is
about 1072° seconds. In terms of length scales, the study of large-scale struc-
tures involves the size of the observable universe, around 10%% meters, while
the search for grand unified theories such as string theory is conducted at sizes
of the order of the Planck length, around 1073% meters.

Despite the large variety of scales at which interesting physics exists, the im-
portance of any individual phenomenon is very often limited to a much smaller
range of orders of magnitude. From a theoretical point of view, this amounts
to the statement that the details that are required to describe the universe at
some high energy scale are often not necessary to describe events occurring
at a much lower energy scale. Theories at high scales are often more general
than theories at low scales and may in principle be used to describe processes
at both scales. In practice though, high-energy theories are often much more
complicated than their low-energy counterparts (which are valid exclusively at
low scales) and actual calculations are usually much easier to perform when
using the latter. For example, although special relativity and classical (Newto-
nian) mechanics are in principle both suited to describe the motion of a thrown
ball, the latter is much easier to use in practice. Classical mechanics can be
considered as an expansion of special relativity in the limit where velocities
are much smaller than the speed of light and serves as an example of a much
wider class of theories known as Effective Field Theories (EFTs).

The philosophy behind an EFT is to focus on the physics at a particular energy
scale by expanding a more general but more complicated theory, known as the
‘full theory’, in some small parameter so that all the details that are less
relevant will appear in higher-order corrections [53}-55]. For field theories this
means that the Lagrangian of the full theory can be written as

Lean = Z EE?T : (3.1)

where the superscript n denotes the n'! order in an expansion in some small
parameter A. In general there are two ways in which EFTs are used, top-down

!The age that the universe would have had if its expansion had been linear.
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and bottom-up.

In top-down types of EFTs, the high-energy theory is known, but overly compli-
cated for calculations at lower energies. The operators in the EFT Lagrangian
will in general contain coefficients that can be fixed by performing calculations
of certain processes in both the full theory and the EFT and comparing the
results. Classical mechanics is an example of a top-down EFT, where special
relativity is considered as the full theory.

In bottom-up types of EFTs, the high-energy theory is not known. In this case,
the Lagrangian of the EFT is constructed by writing down the most general
set of operators consistent with the symmetries that the EFT is supposed to
exhibit. The unknown coefficients in the Lagrangian of these types of theories
have to be determined by experiments. An example of a bottom-up EFT is the
Standard Model Effective Field Theory (SMEFT) [56H60|, of which the lowest
order is the Standard Model and higher orders contain higher-dimensional op-
erators.

Effective field theories exist in many different varieties. Some EFTs arise when
certain degrees of freedom are integrated out from theories. For example, in-
tegrating out the electron field from QED gives rise to the Euler-Heisenberg
Lagrangian [61], which contains an effective coupling between photons. An-
other example is the Fermi theory of weak interactions |62], which is obtained
from the electroweak sector of the Standard Model by integrating out the heavy
W¥ bosons, leading to a direct coupling between four fermions.

Other EFTs are expansions in different types of parameters. In Heavy Quark
Effective Theory (HQET) [63-66|, for example, a heavy particle is approxi-
mated as a static source and an expansion around its small velocity is per-
formed. Non-Relativistic QED [67] is set up in a similar fashion and describes
the interactions of electrons with velocities much smaller than the speed of
light with the (quantized) electromagnetic field.

Although all previous examples focus on particle physics, EFTs are used in
many other branches of physics as well. Among countless others, these include
effective field theories for inflation |68|, gravitational inspirals [69] and EFTs
describing excitations of the Fermi surface [70-73].

3.1.2 Setting up an EFT

Most EFTs are set up according to very similar methods, regardless of the
actual physical system or phenomenon they are designed to describe. After
deciding on a specific energy regime to focus on and figuring out the small
parameter in which to expand the full theory, the degrees of freedom and sym-
metries of the EFT have to be determined. It is important to make sure that
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all of the relevant propagating degrees of freedom are included, since their
propagators in the perturbative expansion give rise to the poles that have to
reproduce the complete analytic structure of the full theory in the low-energy
limit. In general, the symmetries of the EFT do not have to be the same as
those in the full theory as new symmetries might appear upon expanding.
The Lagrangian of the EFT is then obtained by considering all the operators
containing the relevant degrees of freedom that are in accordance with the
symmetries, up to some desired order in the expansion parameter. Each of
these operators will in general carry an unknown coefficient, known as a Wil-
son coefficient, that can be determined by comparing processes in the EFT
with the corresponding processes in the full theory to some desired order of
precision. This procedure is known as matching.

The way in which this general approach to setting up an EFT works in practice
can be shown best by means of an example. Consider a toy theory containing
a heavy scalar ¢ and a light Dirac fermion 1 interacting through a Yukawa
coupling as the full theory. Indicating the four-scalar coupling and the Yukawa
coupling by g4 and gy respectively, the Lagrangian of this full theory is given
by

Lot = 500000 — SMP6 — a6+ 560 —m)y — gy lov, (3.2

where M is the mass of the scalar and m the mass of the fermion. The
expansion parameter used to describe the low-energy regime of this full theory
is given by 1/M? and the only degree of freedom that the EFT contains is the
fermion field 1, leading to the Lagrangian

Cerr = B —m)w — (W) +0 (1) (33)

The Wilson coefficient Cy multiplying the four-fermion interaction can then be
determined by for example calculating the s-channel amplitude of the process
Y1) — 1P in both the full theory and the EFT. The leading-order representa-
tion of this process in the EFT is shown in the left-hand diagram in fig.
The corresponding amplitude that is obtained by connecting the fermion lines
in an s-channel configuration is given by

My = i 52 )u(pr) aps)e(ps). (3.4)

The lowest-order s-channel diagram of this process in the full theory, as de-
picted on the right-hand side in fig. leads to the amplitude

2
My = i (p)ulpr) ﬂi’); (s (o). (3.5)
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Figure 3.1 Feynman diagrams representing the process ¢y — ¥ at leading
order in the effective theory (left) and the full theory (right).

Assuming that the external momenta are small, so that (p% + p%)2 < M?,
expanding the full theory result in 1/M?, and demanding the result to be equal
to the amplitude from the EFT yields the leading-order matching equation

Ci=—g% +Olgy). (3.6)

Now the complete EFT Lagrangian (at leading power) is known and can be
used to calculate any other process without having to resort to the full theory
again.

The matching procedure that was carried out at tree-level in the considered
example gave rise to a particularly simple result. Carrying out the matching
at higher orders in principle follows the same logic, but is often considerably
more difficult and can only be performed after both the full theory and the
EFT have been renormalized. Loop diagrams in the EFT may be carried out
using the same techniques that are employed to calculate loop diagrams in the
full theory, even though there are some caveats. For example, it is important
to pick a mass-independent regulator (such as dimensional regularization), so
that terms from different orders in the expansion are not mixed and the power
counting is preservedﬂ

3.1.3 Running operators in EFTs

Matching an EFT that is supposed to describe the behavior of some physi-
cal system at an energy scale p; to a full theory induces a dependence of the

2Mass-dependent regulators are in principle also possible, but they complicate the procedure
considerably.
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Figure 3.2 A pictorial representation of matching and running between dif-
ferent theories. The energy scale decreases according to the long vertical arrow
and the horizontal lines represent the masses of various quarks. The short ar-
rows stand for the running of the coupling constant with the indicated number
of active flavors.

parameters of the EFT, such as coupling constants, on the scale p1;. The renor-
malization group equations of these operators can then be used to determine
their behavior at some other scale [74], in complete analogy to the running of
the strong coupling constant as(u) described in sec. m

Many EFTs can themselves be expanded in a small parameter, leading to a
new EFT valid at some lower scale pio < p1. The parameters of the former
EFT then have to be run down to the scale ps before they can be matched to
the new EFT at that scale.

A familiar example of this general procedure of matching and running can be
found by considering the dependence of the strong coupling constant on the
number of active flavors. By starting with a full theory containing six flavors
of quarks and subsequently integrating out the heaviest quark, a chain of EFTs
valid at progressively lower energy scales is obtained.

The full theory is matched to the EFT with five active flavors by demanding the
continuity of physical quantities (such as S-matrices) at a scale u ~ m;. The
leading-order relation between the coupling constants from the two theories
simply amounts to

o (1) = 0 (1) [1 + O (0 ()] (3.7)

The higher-order corrections come from diagrams that are exclusive to the full
theory, such as diagrams containing loops involving the top quark. These will
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lead to a discontinuity in a, that ensures the continuity of physical quantities
across the threshold at pu ~ m¢. The coupling constant in the EFT with five
active flavors is then run down to the scale p ~ my, where it is matched
to the EFT with four active flavors by again demanding continuity of physical
quantities. This iterative procedure, schematically shown in fig. [3.2] represents
the general method of matching and running according to which most EFTs
are set up.

3.2 Overview of SCET

Soft-Collinear Effective Theory was developed as a top-down EFT of QCD
through a series of papers including refs. |[75-85|, among many others. Apart
from the field of heavy-flavor physics in which context it was originally con-
sidered, SCET has been applied to many other (sub)fields such as jet physics,
electroweak corrections, heavy-ion collisions, top quark physics, physics be-
yond the Standard Model, dark matter and gravitational waves.

Some pedagogical introductions to SCET are available, the most notable of
which are refs. |86}/ 87]. The structure of the current chapter mostly follows
that of [86], supplemented by the original literature. The aim of this section
is to provide the reader with a summary of the most prevalent features and
aspects of SCET that are discussed in this chapter.

Unlike many other EFTs, such as the example considered in sec. SCET
is not obtained by integrating out heavy particles. The expansion parameter A
of SCET instead arises from the specific scaling of the momentum components
of the relevant degrees of freedom, which are most conveniently expressed in
terms of lightcone coordinates (see sec. . The degrees of freedom include
collinear and (ultra)soft modes, the hierarchy between which depends on the
process and measurement under consideration, giving rise to two distinct theo-
ries: SCET} and SCETy;, whose modes are discussed in sec. and sec.|3.3.3
respectively. The next few sections solely involve SCETT and a detailed dis-
cussion of SCETYy is left until sec. (3.9

The scaling of the collinear and ultrasoft quark and gluon fields in SCET] in
terms of \ is determined in sec. [3.:4.2] leading to the conclusion that, to lead-
ing power in A, the QCD quark field is equal to the collinear quark field in
SCET (see eq. (3-40)). The analogous expansion for the gluon field is given
in eq. and still involves a single momentum component of the ultrasoft
gluon field at leading power.
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In order to assign a definite scaling to both the gauge field and the derivatives
of the quark field, a multipole expansion is performed in momentum space in
sec. by using a method known as the label formalism. This effectively
splits each momentum into a large, discrete component (the label momentum)
with collinear scaling and a small, continuous component (the residual momen-
tum) with ultrasoft scaling. The former is included as a label on the collinear
quark field, after which the field is Fourier transformed to position space only
in the residual momentum. The operator that extracts the label momentum
from a field, known as the label operator, can then be employed to obtain the
quark and gluon fields given in eqs. (3.55) and (3.58|) respectively.

Through its action on the collinear quark field, the partial derivative is split
into a large (label) part and a residual piece in eq. , paving the way
for the expansion of the covariant derivative to leading power in A, given in
eq. (3.72). The SCET] collinear quark and gluon Lagrangians in egs.
and (3.79) then follow from expanding all fields and derivatives in the corre-
sponding QCD Lagrangian. The ultrasoft Lagrangian is simply equal to the
Lagrangian of QCD with ultrasoft fields.

The simplest hard scattering processes involve a current, e.g. eTe™ — dijets.
Currents in SCET are in general not invariant under the collinear gauge trans-
formations discussed in sec. [3.5.1] To restore collinear gauge invariance, each
collinear quark field has to be accompanied by a collinear Wilson line, as given
in eq. (3.108). This object represents the unsuppressed interactions between
an n-collinear quark and any possible number of n-collinear gluons (or be-
tween an n-collinear quark and n-collinear gluons). Since collinear quark fields
and Wilson lines always appear together, this motivates the definition of their
combination as the quark jet field in eq. . The gluon jet field is defined
analogously in eq. .

Ultrasoft Wilson lines, representing interactions between a collinear quark and
any possible number of ultrasoft gluons, can be defined in a way similar to the
collinear Wilson line (see eq. (3.131])). By making the Bauer-Pirjol-Stewart
field redefinitions in eq. , all the ultrasoft gluons can be moved from the
SCET] collinear quark Lagrangian into the currents, obtaining the complete
factorization of ultrasoft and collinear degrees of freedom. This allows one to
write the cross section as a product (or convolution) of hard, collinear and soft
matrix elements.

One of the subtleties of SCET is that the Wilson coefficients that are required
for the matching onto QCD are included in the currents through a convolution
instead of a multiplication. To perform the matching, the Feynman diagrams



3.2. Overview of SCET 39

representing a relevant process have to be determined in both the effective the-
ory and the full theory, both having been renormalized. As SCET describes
the infrared behavior of QCD, both results should agree in the IR limit. The
difference between the two results determines the Wilson coefficients. Details
on the matching procedure in SCET, as well as an explicit example for the
case of eTe™ — dijets, are described in sec. . Due to the renormalization
procedure, the Wilson coefficients obtain a scale-dependence that leads to an
RGE. The solution of this RGE serves to relate Wilson coefficients at differ-
ent scales to one another and allows for the resummation of logarithms of the
ratios of these scales, as described in sec. for the case of the previously
mentioned example of eTe™ — dijets.

Since the various degrees of freedom in SCET are already factorized at the level
of the Lagrangian, factorization theorems for differential cross sections can be
readily obtained by also factorizing the contribution of each degree of freedom
to the measurement under consideration. An example of this procedure for
the measurement of thrust in ete™ — dijets is shown in sec. resulting
in the factorization formula in eq. . As is described in sec. m each
resulting sector in a factorization formula can be calculated independently and
will in general contain logarithms involving ratios of its inherent, natural scale
and the common scale p. Each of these functions adheres to an RGE, whose
solution allows the evaluation of the function at its natural scale, after which
it can be evolved to the common scale u, resumming the logarithms in the
process. This method of obtaining factorization formulas for cross sections
differential in one or more variables and resumming the occurring logarithms
is the main application of SCET used in this thesis.

An outline of the derivation of SCET; and its main features are given in
sec.[3.9] This EFT contains soft instead of ultrasoft degrees of freedom, whose
perpendiculalﬂ momentum component is parametrically equal to the perpen-
dicular component of the collinear modes. This makes SCETy; the correct
theory to describe (among other things) measurements of observables sensitive
to transverse momenta.

Finally, sec. introduces yet another version of SCET, known as SCET,,
which involves collinear-soft modes in addition to the familiar (ultra)soft and
collinear modes. SCET, is required when cross sections subject to multiple
measurements are considered and plays an important role throughout this the-
sis.

3Perpendicular to the collinear directions n and 7, which are often chosen along the beam
axis.
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3.3 Degrees of freedom in SCET

The exact hierarchy between the soft and collinear degrees of freedom that
SCET describes depends on the details of the process under consideration.
The contribution of soft and collinear particles to a particular measurement
is dictated by the properties of the measured observable and determines the
relative scaling of the degrees of freedom. There are two main classes of observ-
ables leading to two distinct versions of the EFT, called SCET; and SCETY;.
The former describes the infrared regime of QCD for processes subjected to
measurements involving momentum components along preferred collinear di-
rections, while a large class of examples described by SCETy; includes observ-
ables sensitive to momentum components perpendicular to such directions.
These collinear directions might for example be the directions of the incoming
beams, or those of outgoing jets.

3.3.1 Lightcone coordinates

The soft and collinear nature of the degrees of freedom in SCET can be de-
scribed in a particularly convenient way through the usage of lightcone coor-
dinates. In this set of coordinates, vectors are projected onto two light-like
vectors n and 7 that satisfy

n?=n?=0 and n-n=2. (3.8)
Two explicit vectors that adhere to these conditions are given by
n* = (1,0,0,1) and 7" =(1,0,0,-1), (3.9)

and will be used for definiteness from here on. This choice is far from unique
and the reinstatement of the freedom lost due to using this particular choice
will be addressed in sec. [3.5.4L Any vector p” can be projected onto these
light-like vectors as

pr=n-p=p"—p* and p =n-p=p"+p°, (3.10)

so that an on-shell particle moving in the positive 2-direction has a small p*
and large p~ component. By defining the two-dimensional vector

P = (0,p",p%,0) = (0,5,,0), (3.11)

as was already done in eq. (2.45)), any vector can be decomposed as

pr=Sp+ 5o+ (3.12)
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nH
Figure 3.3 A schematic representation of the process ete™ — dijets in the

center-of-mass frame. The directions n* and n* of the jets are indicated ex-
plicitly.

When using lightcone coordinates, it is customary to denote vectors by p* =
(pT,p~,P,), where the last entry contains the Euclidean (two-dimensional)
perpendicular momentum, which differs from its Minkowski counterpart by
ﬁi = —pi. The product of two vectors p* and ¢* in lightcone coordinates is
found to be

pqg= é(fq_ +p ") +piql= %(zﬁq_ +pq")=Pqd.  (313)

Other objects can be decomposed into plus, minus and perpendicular compo-
nents as well. The metric, for example, can be written as

1
gt = i(n“ﬁ” +ntn”) + g|". (3.14)

3.3.2 Modes in SCET;

The quarks in the final state of the process e™e™ — qg, described in sec. m
will in general undergo multiple splittings and eventually form two jets. The
momentum of the intermediate vector boson in the center-of-mass frame of the
collision is given by

qﬂ = (Q7 07 Oa 0) ) (315)

and momentum conservation forces the two jets to be (approximately) back-to-
back, as shown in fig. [3.3] One of the jets will be taken along the n-direction]

4In this sloppy notation, ‘direction’ always refers to the three spatial directions of the
four-vector.
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Figure 3.4 The plus and minus lightcone components of the various modes
in SCET] (left-hand plot) and SCET; (right-hand plot). The hard, collinear
and (ultra)soft modes are colored gray, green and red respectively.

with momentum pl, and the other along the fi-direction with momentum ph .
The large component of the momentum of each jet has to be of order @) to
guarantee energy-momentum conservation, so p, ~ pi ~ Q.

The jets may still carry a transverse momentum due to possible recoil against

radiation outside of the jets. The size of this transverse momentum must be

parametrically smaller than @) to adhere to the definition of a jet, so p; < @,

where p, denotes the absolute value of p’i. The small components of the jet
momenta can be obtained by using the on-shell conditiorﬂ pTp~ ~ pi, leading
to

Pl ~

(%,Q,m) ~ Q1)

2
p
v~ (@ p) ~ QLN (3.16)
where A = p; /@ < 1 in this case. Although the exact definition of A will differ
depending on the process and observables under consideration, this parametric
hierarchy of the various components in terms of A\ is what defines collinear
modes in general.

5Although the jet itself in general carries a mass, the scaling of this condition still applies
because every individual particle contained in the jet is on-shell.
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To determine the parametric scaling of the soft radiation, an explicit observ-
able has to be specified. As an example, consider the hemisphere mass: The
invariant mass of all the particles in one of the two (symmetric) hemispheres
combined. Picking the hemisphere into which the n-collinear jet propagates
for definiteness, this observable is formally defined by

ma = (Zpﬁ‘)Z, (3.17)

where the sum runs over all particles in the aforementioned hemisphere. Since
almost all the momentum is carried by the jet, the hemisphere mass must be
of the order of the invariant mass of the jet (i.e. of the order of the n-collinear
degree of freedom), so m?2 ~ pi, which gives the constraint

ph ~mi ~ (plh 4 Ph)® = P + D + 2P Dus (3.18)

where pls represents the total soft momentum in the hemisphere containing
the n-collinear jet. Since soft radiation does not have a preferred direction, the
scaling of the soft degrees of freedom must be homogeneous, i.e. all lightcone
components must be of the same parametric size. Writing the dot product in
lightcone coordinates through eq. , the final term reduces to 2 py, - Pus ~
P, Pt + O(pyr). Since the collinear component scales as p, ~ @Q, the soft
component is restricted to scale as pfy ~ p? /Q in order to ensure the correct
scaling of m2. The homogeneous nature of the soft degrees of freedom then
leads to the parametric scaling

oo (PL 7L ﬁ) Q2N 22
P (Q,Q,Q Q(A2, A2, )2) . (3.19)
As long as m, ~ mgz, the same reasoning holds for soft radiation entering the
opposite hemisphere, so that the scaling in eq. is the universal scaling
of the soft degrees of freedom. Because their scaling is equal to the scaling of
the small component of either collinear mode, the soft modes are able to inter-
act with both jets but can never change the scaling of the collinear degrees of
freedom. Soft modes scaling in this fashion are usually named ultrasoft modes
and the version of the EFT in which they occur is known as SCET}. The rel-
ative scaling of the plus and minus components of the ultrasoft and collinear
modes is shown in the left-hand plot in fig. while their perpendicular com-
ponents are fixed by the on-shell condition as mentioned before. The dashed
hyperbolas in this plot are lines of fixed virtuality, depicting the hierarchy be-
tween the ultrasoft and collinear degrees of freedom by placing the former on
a lower hyperbola [83]. The hard modes are described by the hyperbola in the
upper-right corner, parametrized by p? ~ Q2.
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3.3.3 Modes in SCETy;

Consider the decay of a B meson into a D meson and a pionﬁ The B and
D meson both contain one very heavy quark (the bottom and charm quark
respectively) that carries nearly all of their momentum. All the other com-
ponents (the valence up or down quark and the sea quarks and gluons) are
necessarily soft and their momenta must scale as the internal energy scale of
the mesons, so

Pt ~ (Aqep, Aqep, Aqep) - (3.20)

In the rest frame of the B meson, the light pion in the final state of the decay
process is highly boosted and will be described by a collinear mode. Picking
this boost along the Z-axis for concreteness and taking the parametric size of
the pion momentum in the rest frame of the B meson to be of the size Q)
then sets the momentum component p, ~ (). As the virtuality must scale as
P2~ A%QCD, the scaling of the other components of the collinear mode can be
determined through the on-shell condition, yielding

A2 CD
P~ (S5 @ Aqcn) ~ QU 1,A), (3.21)
where in this case A = Aqep/Q < 1. In terms of this small parameter, the
soft degrees of freedom then scale as

P~ QAN (3.22)

In contrast with the soft modes found in eq. , these soft degrees of free-
dom have the same virtuality as the collinear degrees of freedom, leading to
a different version of the EFT, known as SCET;. The relative hierarchy be-
tween the soft and collinear modes in this theory is shown in the right-hand
plot in fig. where both degrees of freedom are now described by the same
hyperbola in contrast to the modes of SCETY.

3.4 The SCET; Lagrangian

SCET describes the infrared behavior of the quark and gluon fields from QCD
by splitting both into separate collinear and soft fields. The relative scaling of
these fields may be used to expand the Lagrangian of QCD in the small param-
eter A that characterizes the hierarchy between the momentum components of

5B and D mesons are bound states of an up or a down quark with a bottom quark and a
charm quark respectively. Pions are bound states of up and down quarks.
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the various degrees of freedom. The first term in this expansion is known as
the leading-order Lagrangian of SCETT and gives rise to a set of Feynman rules
that may be used to calculate scattering processes in SCET.

Power corrections that were dropped in obtaining the leading-order result can
be regained through a multipole expansion. Although multipole expansions are
often carried out in position space, the label formalism that will be discussed
in sec. [3.4.3] allows the inclusion of these power corrections to be implemented
in momentum space instead.

3.4.1 Collinear spinors

The spinors representing collinear degrees of freedom in SCET can be derived
from the (massless) QCD spinors by an expansion in the small expansion pa-
rameter. The QCD spinors in Dirac representation are given by

—

-
o-

u(f,s) = Vo ( “u> and  v(F,s) = V5 () L (3.23)

Q
3

0
o v

pO

where s denotes the spin and the basis spinors are taken to be

ul =0? = ((1)) and u? =o'l = (2) . (3.24)

For spinors corresponding to n-collinear momenta p ~ Q(A?,1,\) and n-
collinear momenta ph ~ Q(1, A2, \), an expansion in A amounts to

0_ DPn 2 0o _ Py 2
Pn =" + O(X9) and  pp = 5 + O\, (3.25)

for their respective zeroth components and

QL

" +
B, = o® %ﬂ +0O(0)  and &P, =—0° %” +OM),  (3.26)

for the dot product with the Pauli spin matrices. These expansions then lead
to the n-collinear spinors

un<p,s>=\/§(gé‘;) and vn<p,s>=\/§("zfs)7 (3:27)

and the n-collinear spinors

+ s + 3,,8
P u n —0~v
un(p; s) =\ o5 (_03u3> and  vp(p,s) = o5 ( S > . (3.28)
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up to corrections of order A\. Acting on these collinear spinors with the lightlike
vectors n* and n* contracted with the gamma matrices can be seen to yield

Vbun(pa 8) = 7“}”(1% 8) = %uﬁ(p7 S) = %’Uﬁ(pa S) =0, (329)

in analogy to the massless Dirac equation for the QCD spinors. These identities
inspire the definition of two projection operators

PnEVT:;<;3 "13) and Pnz%f:;(_la?, _173)’ (3.30)

that project onto either of the two lightlike vectors as
Pn¢27/% Pﬁ%:% and Pn%:PﬁVLZO, (331)

and obey the relations P,% = P, and P,% = P5. Their effect on the various
collinear spinors is found to be

Pnun(pvs) :un(p75)7 ann(P, S) :Un(P, S),
Pﬁuﬁ(pv S) = Uﬁ(p, S)> Pﬁvﬁ(pa S) :Uﬁ(pv S)v (332)

and all other combinations vanish. Since the momentum components of the
soft degrees of freedom scale homogenously, no expansion in A will provide a
simplification of the QCD spinors.

3.4.2 Collinear and ultrasoft quark and gluon fields

As a first step towards the field content of SCETy, the quark field in QCD
is split into a collinear piece and an ultrasoft piece. The relative scaling of
these two components can be found by considering their 2-point correlation
functions. For ultrasoft quarks with a momentum scaling as p2, ~ A\*Q? this
gives

<0‘ T{wus(fﬂ)'&us(())} ’0> = /d4pus e Pus® p;?isle ~ )\6Q3 , (3.33)

so that the ultrasoft quark field scales as ¥y,s ~ A3Q3/2.
The collinear quark field is first split further into an n- and an 7-collinear
component[’| by [75]

Ye(@) = (Pu+ Pa) vel(@) = &ul@) + dn(a), (3.34)

"Note that both fields carry momenta in the same collinear direction. The subscripts n and
7 refer to the directions of the spin components of the fields.
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where the collinear quark fields are defined as
én = P, and n = Pr .. (335)

Here the dependence of the fields on x has been suppressed, a practice that will
be maintained throughout most of this thesis for the sake of readability. The
projection operators for the collinear spinors also serve as projection operators
for the collinear quark fields through the identities

Pnénzén) Pﬁ¢ﬁ:¢ﬁ and ansﬁ:Pﬁgn:O' (336)

Analogous identities for the conjugate spinors can be obtained by realizing that
P, = P;. Using these projection relations, the 2-point correlation function of
the ¢ field can be expressed as

(0] T{n(2)9n(0)}|0) = (0] T{Pﬁ¢c(w)¢c(0){3n} 10)

_ 4 —iTPe P ch
= [d*p.e Py =Py (3.37)
Dz + 1€

By anticommuting p_ towards the left and using the properties of the lightlike
vectors n* and n# from eq. (3.8)), this propagator can be simplified to
i pi

O T(6a(@)3a(0)} [0) = [alpecior T

: (3.38)

which for an nt-collinear momentum pf = pl ~ Q(A2,1,\) with a small plus
component leads to the parametric scaling ¢n ~ A2Q%2. Doing the same type
of manipulations for the &, field yields the 2-point correlator

(0] T{€n(2)En(0)} [0) = / dtp, e e p+p2 3 (3.39)

which now involves the large minus component of the collinear momentum so
that the field scales as &, ~ AQ%?2. The relative scaling of these three fields
then allows an expansion of the QCD quark field as

baep = & + O(N?), (3.40)

so that for each collinear direction only one collinear quark field and no ultra-
soft quark fields need to be considered at leading power.

Since the gluon field and the partial derivative both appear in the covariant
derivative in eq. , the two must have the same scaling. In particular,
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this means that the gluon field scales as its momentum does. The parametric
scaling of the collinear and ultrasoft gluon modes is thus simply given by

A~ QN L) and AR~ QA% AR N, (3.41)
and the total gluon field is defined as their sum
A’éCD = Al + Af.. (3.42)

The relative scaling of the individual components of the ultrasoft and collinear
fields then leads to the expansion

so that only the plus component of the ultrasoft gluon field remains at leading
power.

3.4.3 The label formalism

To be able to regain all the power corrections that were dropped in the expan-
sion in A, a multipole expansion, similar to the multipole expansion of an elec-
trostatic potential for a charge distribution in electromagnetism, may be per-
formed. This multipole expansion can be carried out in position space |84,88|,
but suffers from the drawback that the familiar Feynman rules are given in
momentum space. Alternatively, the multipole expansion may be carried out
in momentum space through a method known as the label formalism [75H78],
which will be the method of choice in this thesis. The collinear quark field
in momentum space is obtained by Fourier transforming its position space
counterpart

- 4,
&) = [ G éula). (3.44)

where the x- and p-dependence of the fields has been made explicit for clarity.
The momentum of this field can be split into two pieces

P =)+l (3.45)
where
P ~Q(0,1,)) and  pf~ QAL AN, (3.46)

are called the label momentum and the residual momentum respectively. The
parametrically small residual momentum will be treated as a continuous quan-
tity, but the large label momentum is regarded in a discrete fashion. A pictorial
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Figure 3.5 A representation of the decomposition of a general momentum
(the black arrow) into a label momentum component (the green arrow) and a
residual momentum component (the red arrow). The red box in the lower left
corner is the 0-bin, containing all ultrasoft momenta.

representation of the decomposition into label and residual momenta is shown
in fig. Each box in this (p_jpl)—planeﬂ corresponds to a different label
momentum and the steps between boxes are discrete. As the scaling of the
label momentum shows, the size of the boxes in the horizontal p~ direction is
@, while their size in the vertical p| direction is A(). The exact position within
any box with respect to the center of the box is determined by the continuous
residual momentum so that any total momentum p* is uniquely described by
one label momentum and one residual momentum.

Collinear momenta contain both label and residual components, whereas the
parametric scaling of ultrasoft momenta ensures that they solely consist of
a residual momentum. This means that all ultrasoft momenta reside in the
(0,0)-box (shaded red in fig. [3.5), often called the zero-bin, and that inte-
grals over ultrasoft momenta can simply be changed to integrals over residual
components

/ d*pus — / dp, . (3.47)

8As before, the remaining p™ component is redundant since it follows from the on-shell
relation pTp~ ~ p2.
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Integrals over collinear momenta turn into a combination of a discrete sum
over label momenta and a continuous integral over residual momenta as

/ d'pn — > / d*p, , (3.48)

pe#0

where the sum runs over all boxes except the zero-bin [83|. As this zero-bin
is populated by ultrasoft modes, it has to be excluded here to avoid double-
counting.

Because of the discrete nature of the label momentum, it is common practice
to include it as a label on the collinear quark field, which then only explicitly
depends on the residual momentum, i.e.

En(p) — Enpu(pr). (3.49)

Fourier transforming back to position space solely in the residual momentum
then leads to a hybrid field

En.pe (x) = /d4p7« e P gn,pe (pr) > (3-50)

which is described in momentum space for the label momentum and in position
space for the residual momentum. Using this procedure, the collinear quark
field &, () can be written in terms of the hybrid field as

/d4pe e (p /d4p T e L (py)

pe#0

= e T (@), (3.51)

pe#0

where the argument z on the left-hand side is the complete position variable,
conjugate to the complete momentum of the field. The argument z on the
right-hand side, however, represents the position variable conjugate to the
residual momentum component of the field.

Although this derivation is explicitly performed for the case of quarks, a similar
treatment for the antiquark modes will differ only by a sign in the exponential
on the right-hand side of eq. . The complete collinear quark field (in-
cluding the antiquark modes) can then be obtained by extending the sum over
label momenta to negative labels, i.e.

Eu@) =& (@) + &, (@) = D e P (& (@) + &,y (@)
Pe#0

= Z e T e, (), (3.52)

pe#0
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where the superscripts + and — correspond to the quark and antiquark modes
of the field respectively.

For positive values of the label momentum, the field &, p,(x) annihilates parti-
cles and for negative values it creates particles. It then seems useful to define
an operator that extracts the label momentum from a collinear quark field as

P! bnpy (@) = 9 €npe (@) and PR () = —pi el (@), (3.53)

where P*# is called the label operator and scales as the label momentum

PH~Q(0,1,)). (3.54)
The label operator can be used to rewrite eq. (3.51)) to
(@) =P " Gy () = e P (a), (3.55)
pe7#0

where the field &, (z) is defined to implicitly contain the sum over all label
momenta as

(@) =D Lnpy() . (3.56)
pe#0

A similar analysis, involving a Fourier transform to position space, decompos-
ing the momentum in a label and a residual piece and Fourier transforming
back only in the residual momentum, can be done for the collinear gluon field.
The analog of eq. for the collinear gluon field then reads

Ab(z) = e PT N Al (2) = e P AL(D) (3.57)
Pe#0
where the definition

Ab(z) =) Al (), (3.58)
pe#0

has been used. The sum again includes both positive and negative values of
the label momentum.
3.4.4 The collinear quark Lagrangian

The kinetic term for the massless, collinear quark field in the QCD Lagrangian,
given by

Ec = Tﬁc UD wc ) (359)



52 Chapter 3. Soft-Collinear Effective Theory

can be rewritten by splitting the field according to eq. (3.34) and writing the
covariant derivative in lightcone coordinates following eq. (3.12)), to yield

,Z ZD+én + gn ZlDLén + gn iEL¢ﬁ + &ﬁ 'LwLén

+§Eﬁ%

»Cc = én
iD”¢n + PnilD) pr (3.60)
where a number of terms have vanished due to the relations

hén =0, hon =0, ém:o and bnih=0. (3.61)

This expression can be simplified further by making use of the projection op-
erator and the fact that n# is perpendicular to D¥', so that the second term
reads

EuilD by = &0ilD Pady = (eniD iy = G iD LG =0, (3.62)

The final term vanishes by an analogous identity and the Lagrangian reduces
to

L= éné iDVEy + EnilD  n + GrilD €+ a)ﬁ% iD” ¢ - (3.63)
Since the field ¢5 is subleading in the collinear limit, it will not appear in
operators that represent hard interactions at leading power. The field ¢; can
thus be integrated out completely by using the equation of motion (the Euler-

Lagrange equation) of its conjugate field

SLe o
0= 53 ip &+ 5 D™ o5, (3.64)
to obtain the relation
1 . s
on = iD*ZwL§€n' (3.65)

Plugging this into eq. (3.63)), the kinetic term for the massless quark field in
the Lagrangian can be seen to equal

z /. ) 1 . A
Ec = gn <’LD+ + ZZDJ_Z.Di_ZlDJ_) Zifn . (366)
It is important to note that at this point no expansion has been done and this

kinetic term is still exactly equal to the kinetic term for a massless collinear

quark field in full QCD.
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In order to be able to do an expansion and obtain the collinear quark La-
grangian in SCETY, it is necessary to determine the parametric scaling of the
covariant derivative, defined in eq. (2.7) by

A~

iD,, = i0, + gs Ay, (3.67)

where the abbreviation Au = AZT‘I has been employed. The action of the
partial derivative on the collinear quark field in eq. (3.51)) is found to be

1016y =) e T (P& p, + 10" Enp)
pe7#0
= PN (P 0 gy = €T (PR O 0 (368)
pe7#0
where 0} denotes the partial derivative with respect to the position space vari-
able conjugate to the residual momentum only. As the same identity holds for
collinear gluon fields, it is possible to make the general symbolic identification

IOt — e P (PR 49k (3.69)

where the left-hand side is understood to act on the ‘hatted’ fields in egs.
and , whereas the right-hand side acts on the ‘un-hatted’ fields defined
in egs. and .

Employing the splitting of the gluon field from eq. then leads to the
covariant derivative

iDF =P 4+ il 4 g AL + g AV (3.70)

where now the ‘unhatted’ gluon fields are used. The overall exponential has
been omitted since it is already present in the Lagrangian due to the definition
in eq. . Using the previously established power counting of the vari-
ous ingredients, the leading power expansions of the minus and perpendicular
components of the covariant derivative can be defined as

iD, =P~ +gs4, and Dl =Pl +gA" | (3.71)
and differ only by terms of O(A\?) from iD~ and D). No expansion can
be done for the plus component since all (non-vanishing) terms are of equal

parametric size. The covariant derivative expanded to leading power is then
given by

0 7
iD} = (0] + gAY + 9. AL) + 5 (P™ + g, A7) + P+ g, Al L (372)

Using the expanded covariant derivative in eq. (3.66)), the n-collinear quark
Lagrangian in SCET], at leading power, is found to be [76]
—ipar [ . I
ﬁflog) =e P, [iDY +ilp,,, ﬁzlﬁnq ﬁgn ) (3.73)
1Dy, 2
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3.4.5 The collinear gluon Lagrangian

The kinetic term for an n-collinear gauge field can be derived from the kinetic
term in the QCD Lagrangian given by

1
4

where the abbreviation F),, = Fj;, T for the field strength tensor defined in
eq. (2.8) has been introduced. Using the relation between the field strength
tensor and the covariant derivative, given by

1
Lyxin=—~(F,)" = -5 Tr[F,, F™], (3.74)

(D, D] = —igsF2,T?, (3.75)

and expanding the covariant derivatives to leading power as given in eq. (3.72]),
the kinetic term for a collinear gluon field arises as

1 _ .
Lgkin = 252 Te[[iD%,iDy)?] . (3.76)
To complete the Lagrangian for the collinear gauge field, the gauge-fixing term
and the ghost term, given by

1
Legangefix = —i(amz)2 and  Lgnost = —¢* (0" DY)’ (3.77)

have to be considered as well |78]. Both of these pieces involve partial deriva-
tives, which are partial derivatives with respect to the position variable conju-
gate to the full momentum. In order to exclusively derive the collinear gluon
Lagrangian without fixing the gauge of ultrasoft gluons, these partial deriva-
tives must by replaced by

. . nt nt
ot — iDh = 7(28;F + g AT + 773 + P!, (3.78)
which is equal to the full covariant derivative in eq. (3.72)) after removing the
collinear gluon fields. This definition slightly adjusts the partial derivatives so
that they become covariant with respect to the ultrasoft gluon field, but are
still partial derivatives with respect to the collinear gluon field. The collinear
gluon Lagrangian at leading power in SCETT then reads
1 . . 1 , _ o .
LY = 27 Tr([[iDk,iDy)*] + ¢ Tr[[iDY, Anp)?] + 2 Tr [, iDL, [i Dy, cnll] -
S
(3.79)
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3.4.6 Feynman rules

The combined SCET; Lagrangian contains a copy of the collinear quark and
gluon Lagrangians from egs. (3.73) and (3.79) for each distinct collinear direc-
tion and is further supplemented with an ultrasoft Lagrangian

L, = S [L +£9] +£0. (3.80)

The ultrasoft Lagrangian is a copy of the massless QCD Lagrangian involving
ultrasoft fields

(0"A%, )2 — & (9D )b, (3.81)

US, L US, Cus >

Fe 2
wus Zwuswus - *( us H]/) 2Cus

where (s # (, the field strength tensor F%, , is understood to contain ultrasoft

US, UV
gauge fields and the ultrasoft full covariant derivative is defined as

Dl = 0" —igs Al (3.82)

us

and is not to be confused with the expanded DLs. Since the ultrasoft La-
grangian mimics the full QCD Lagrangian, the Feynman rules for soft degrees
of freedom are identical to the Feynman rules in full QCD.

The Feynman rules for collinear quarks can be read off from the Lagrangian
after plugging in the definitions of the covariant derivatives and only keeping
terms up to first order in the coupling constant

Eg?—e prfn[zaJ“—i-PL ,PJ_‘ng(AZ_S—i-AJ'_—i—?J_ — A,

PP+ AuaPL) vod)] e s

(P )

where the expansion

1 1 A,
+0 , 3.84

D =5~ 0+ O) (389
has been used. After using the identifications i9f — p) and P* — pl, the
terms of O(g?) determine the 2-point correlation function of the collinear quark
field in momentum space. The Feynman rule for the n-collinear quark propa-

gator is then found to be

______ _——— = WP (3.85)
(pe, pr) 2 prpy P e
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where the convention that collinear quarks will be denoted by dashed lines has
been adopted. The same result can be obtained directly from the massless
quark propagator in QCD, ip/(p2 + i€), by switching to lightcone coordinates
and expanding the momentum to leading power as

p= %pz +0(\)  and  p*=pfp; +pi., (3.86)
where the plus components have been identified as residual momenta, since la-
bel momenta do not have a plus component, and the minus and perpendicular
components as label momenta, since they are parametrically larger than their
residual counterparts.

The first term of O(gs) in eq. (3.83]) describes the interaction between collinear
quarks and ultrasoft gluons, which can be seen to lead to the Feynman rule

[, a
> oo- igST“n”é. (3.87)
4 (quQ'r)

/l (péa pr)

/
/

The other four terms of O(gs) give rise to an interaction between the collinear
quark field and a collinear gluon. By explicitly decomposing the gluon field
into lightcone components, it can be factored out to yield the interaction term

ft

P 1 1
—iP-x
L= P G gy (0 + Puot = PL oz P+ 7 5P )

nt
Gk -

(3.88)
The collinear quark fields &, and &, will in general carry different label mo-

menta. Calling these py and gy respectively and acting with the label operators
on the corresponding fields then yields the Feynman rule given by
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u,a
In I
- igSTa<n,u+ ﬁe{ﬂ " ’Vﬁfu
// (QEa QT) e Py
/l (pe,pr) _ ﬂ%p{l ﬁ“) ﬁ ’ (389)
// qy Py 2

/

where the collinear gluon is depicted by an ordinary gluon line crossed by a
straight line. If the expansion in eq. were to be continued to O(g?),
one additional interaction term would arise, leading to a Feynman rule for the
4-point interaction between two collinear gluons and two collinear quarks.

3.5 Gauge symmetry in SCET;

The scaling of the allowed gauge transformations in SCET] can be either
collinear or ultrasoft, leading to two distinct types of transformations for each
ultrasoft and collinear quark and gluon field. As currents in SCET} are in
general not invariant under collinear gauge transformations, the inclusion of a
Wilson line containing collinear gluons is required to ensure gauge-invariance.
An additional reason for the necessity of this Wilson line is the fact that it takes
an arbitrary number of unsuppressed interactions between collinear gluons and
quarks into account.

3.5.1 Collinear and ultrasoft gauge transformations

Under a general local gauge transformation in QCD, as given in eq. (2.2)), the
collinear quark fields transform as

gn,pe — Z/{(:L') gn,pg and gn,pg — gn,pg uT($)7 (3'90)

where the definition U(z) = exp[i¢®(x)T?] has been introduced. Under this
transformation, the first term in the collinear quark Lagrangian from eq. (3.83)),
involving the (residual) partial derivative, transforms into

7

P EUN )0 Y U &, = P 6 i0f - 06T ) Be (301
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where the derivative in the second term should be understood to only act
upon the terms within square brackets. The arbitrary function ¢%(z) can in
principle be of O(A?), which would spoil the gauge invariance. To avoid this
from happening, the allowed gauge transformations in SCET; are limited to
collinear and ultrasoft gauge transformations, denoted by U, () and Uy, ()
respectively, which scale as

iO* Uy () ~ QN3 1,)) U (z)
0 Uys(z) ~ QN2 NN Uys(z) - (3.92)

The collinear gauge transformation can be Fourier transformed to momentum
space, decomposed into label and residual momenta and then Fourier trans-
formed back in only the residual momentum in complete analogy with the
collinear quark field in eq. , leading to |76-78|

A~

Up(z) = e P2, (x) = e P2 Z Up,p, (), (3.93)
Pe#0

where x now only refers to the position conjugate to the residual momentum
and will often be suppressed from here on. Although the local gauge trans-
formations in eq. are expressed in position space, the collinear gauge
transformations involve the label momentum, which is not transformed back
to position space. The multiplicative nature of the gauge transformations in
position space would turn into a convolution in momentum space for continu-
ous momenta. Since the label momenta are discrete, this convolution involves
a sum rather than an integral, leading to

b — Un&n =Y Unpyaqy &nge = Unipp—g; Enar (3.94)
qe#0

as the transformation of the collinear gauge transformation from position space
to label momentum space. In the final step, the convention that repeated label
momenta are to be summed over has been introduced.

From the gauge transformation of the gluon field in QCD, given by

At — ul Ay ot (3.95)
Js

the collinear transformation of the collinear gauge field A} in SCET| can be

obtained by replacing 9" — Dls, as described in eq. (3.78), and restricting

the collinear transformations to U,,. Employing the same notation for discrete

convolutions in the label momentum then leads to

1
AL — Un,py—qp Ag,qg—kg + ;5qe,kngs]uT (3.96)
S

n,kg
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where d4, 1, is the Kronecker delta forcing the two label momenta to be equal.
The cumbersome notation for these discrete convolutions can be made more
intuitive by defining the collinear gauge transformation matrix U, (x) in label
momentum space through its entries as

Un(%)py.q0 = Un,py—q,(T) (3.97)

where py and ¢ denote the row and column of the matrix respectively. In this
notation the collinear quark field is regarded as a vector in label momentum
space and the set of collinear gauge transformations of all the fields in SCET}
is given by

wus(x) U—n> 1%5(33) )

z) A x x - I (z
Af(e) o Un(a) (A4(2) + - Dh,)UL ()

S

A (z) Moy AP (2). (3.98)

The ultrasoft gauge transformations involve only the position variables conju-
gate to the residual momenta, so they are analogous to the gauge transforma-
tions in QCD. As every field in SCET} has a dependence on residual momenta,
each field transforms under ultrasoft gauge transformations. The complete set
of ultrasoft gauge transformations is given by

sy Ups() &n (),

sy U () hus ()

wus ($)
Al (z) s Uys(a) Al(2) UL (2)

z) Y x x Low T (2). .
Al () 45 Una() (Ala(e) + 08 ) Ul (2) (3.99)

The absence of a term involving the partial derivative in the transformation of
the collinear gluon field reflects the fact that the ultrasoft fields describe physics
at long distances, while the collinear fields correspond to smaller distances [78§].

3.5.2 The collinear Wilson line

To study the consequences of the collinear gauge transformations, the proces in
which a quark with flavor ¢’ turns into a quark with flavor ¢ may be considered.
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Figure 3.6 A single collinear gluon interacting with the incoming quark in
the quark-to-quark current.

In full QCD, the current corresponding to this proces is given by
CD, -
TP = g T by | (3.100)

where i = V, A refers to either a vector or an axial-vector coupling. By consid-
ering the situation in which the incoming quark is n-collinear and the outgoing
quark n-collinear, the corresponding SCET current is given by

RO S

gq’ i £q n qaq',0 — éqm F? fq’,ﬁ ) (3.101)

where the shaded blob signifies the transition from the quark ¢’ to the quark
q. The corresponding subscripts ¢’ and ¢ on the collinear quark fields will
be dropped from here on. Under ultrasoft gauge transformations, both fields
transform in a similar way, so that the current is left invariant. The n-collinear
quark field is invariant under m-collinear gauge transformations, but the n-
collinear quark field transforms according to eq. (3.98). Since an analogous
reasoning holds for n-collinear gauge transformations, the current as a whole
does not appear to be invariant under collinear gauge transformations.

Apart from the apparent gauge-dependence of (for example) the quark-to-
quark current, there is another issue with the current description of the fields
in SCET. Consider adding an additional n-collinear gluon to the n-collinear
quark in the quark-to-quark current, leading to the diagram in fig. and the
current
bz ol pt+q* _h
T = S G e )+ G ra a1
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AL | ¢*
gﬁ én
> L)y----#----
pl"’

Figure 3.7 The correction to the quark-to-quark current by a single n-collinear
gluon. The quark propagator from fig. [3.6| has been integrated out, moving the
collinear gluon into an effective operator.

Keeping the terms of leading power in A\ than yields

_gsA;
q

Jh = [ }Ff £ (3.103)
The internal propagator has been integrated out and at leading power the
addition of a collinear gluon to the quark-to-quark current can be described
by an effective operator as shown in fig. [3.7] As the additional gluon in fig. [3.6]
is n~collinear, its minus component appearing in eq. is not suppressed
and this diagram has to be taken into account already at leading power in \.

This observation can be extended to an arbitrary number of n-collinear gluons
so that all diagrams involving all possible numbers of additional n-collinear
gluons have to be taken into account. A general diagram of this sort, involving
m additional n-collinear gluons, is shown in fig. Iteratively using the result
for the addition of a single gluon and summing over all permutations then leads
to the quark-to-quark current in SCET [76|

_ _gs)m A%la_AgLQ:_. . A%’m,_
Jhrm =¢ [ ( — T, TTY | THE, .
e ! pgl;ls mb (g ) gy +a3)--- 221 4) e

(3.104)

The position conjugate to the residual momentum, although suppressed in
the notation, is the same for each field, reflecting the locality of an effective
operator analogous to fig. but with m gluons entering the vertex. The
addition of any possible number of n-collinear gluons to the quark-to-quark
current is then obtained by summing this expression over all possible m

[ 1% _F i
Jqq’ o Z Jqq’,m =& Wnli &n, (3.105)
m=0
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Figure 3.8 The quark-to-quark current with m additional n-collinear gluons
attached to the incoming n-collinear quark.

where the collinear Wilson line W,, in momentum space has been defined as

W, = Z Z Z A?ﬁé_l_ A?%}z R Tam  pazpar
(Zz’:l )

permsm0agm (@00 F @)

(3.106)

Here the sum over the label momenta of the gluon fields has been made explicit.
Writing out the first few terms of the sum over m explicitly gives

s) 1

perms

1
+§ — A A, d, (3.107)
q1,92 ql + a2 ) ” (ql ) ‘11

so that each term is obtained by multiplying the previous term from the left
by the gluon field and the momentum in the denominator from the next order
in m. The momenta in the denominator of each term can be replaced by the
label operator, which then acts on each field to its right. This then allows the
Wilson line in (label) momentum space to be written as |76}/77]

W= eXp[—gS%A;] . (3.108)

perms

All additions of all possible numbers of n-collinear gluons to the incoming 7-
collinear quark field in the quark-to-quark current can thus be replaced by the
insertion of a single n-collinear Wilson line. By the same reasoning all additions
of n-collinear gluons to the n-collinear quark can be taken into account through
an 7i-collinear Wilson line. In addition to accounting for an arbitrary number of
unsuppressed collinear gluon attachments, the collinear Wilson line also serves
to restore gauge invariance, which will be the topic of the next section. The
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interaction between n-collinear gluons and n-collinear quarks (and between 7-
collinear gluons and 7n-collinear quarks) is already present in the Lagrangian
in eq. and does not require a treatment analogous to the one presented
in this section.

3.5.3 Collinear gauge invariance

In (label) momentum space, the collinear Wilson line can be defined through
the equation

0=iD; Wn = (P~ + g A7) W, (3.109)

The action of the minus component of the collinear covariant derivative on the
collinear Wilson line in combination with any other operators can be deter-
mined from this definition, leading to the identity

iD; Wy, =W, P~ . (3.110)

The fact that the collinear Wilson line is a unitary operator then allows the
label operator and its inverse to be written as

1 1
P~ =W/iD; W, and —=WI—"—W,. (3.111)
P- 1Dy,
The collinear Wilson line exclusively contains collinear gluon fields that trans-
form under ultrasoft gauge transformations as given in eq. (3.99) so that the
U,s and Z/{JS will cancel each other in between each pair of gluon fields, leading

to an ultrasoft gauge transformation of the collinear Wilson line given by

Wy 25 Uy W UL, (3.112)

mirroring the transformation of a single collinear gluon field.

The behavior of the minus component of the collinear gluon field under a
collinear gauge transformation can be determined from eq. (3.98)) and is ex-
plicitly given by

Ay e U, (A7 + 91873—) uj,, (3.113)

where the minus component of the ultrasoft covariant derivative defined in
eq. has been plugged in. Writing the transformation of the collinear
Wilson line symbolically as W,, — W) | its definition in eq. transforms
under a general collinear gauge transformation as

0=14iD, W,, — (UULP™ +gU, A, UL + U, PT[UL) W, (3.114)
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where the label operator in the final term is understood to only act upon the
matrix in square brackets. Using the product rule for the label operator, the
first and third term can be combined and lead to the transformation

0=iD, W, — U, (P~ 4 gsA,) Ul W, (3.115)
To satisfy this equation, the collinear Wilson line has to transform as

W, 2 U, W, (3.116)

under collinear gauge transformations. This transformation of the collinear
Wilson line, which was included in the quark-to-quark current in eq. in
order to take all possible additions of all possible numbers of collinear gluons
into account, then leaves the quark-to-quark current invariant under collinear
gauge transformations. Accompanying collinear quark fields by a collinear
Wilson line will in general ensure the invariance of all currents in SCET under
collinear gauge transformations.

3.5.4 Reparametrization invariance

By making an explicit choice for the light-like vectors n#* and 7* in eq. (3.9),
the original Lorentz symmetry was broken. There are three possible transfor-
mations under which these explicit light-like vectors still obey their defining

properties from eq. (3.8)), given by [80,89]

I S
L n' —nt+r) and a* — 0¥,

II _ II _ _
I n* — nt and 7t — M 47,
P S NS | S
III: n* — €°n and nt — e °n*, (3.117)

where the displacement vectors rﬁi and f‘j_ are perpendicular to both n* and
n*. By multiplying the light-like vectors by an n-collinear momentum, trans-
forming the product according to these three reparametrization transforma-
tions and demanding that the transformed expressions respect the n-collinear
scaling Q(A\2, 1, \) leads to the definite parametric scaling

i~ X, o~ and s~1. (3.118)

This means that for an n-collinear momentum only the displacement vector
rl is restricted. Demanding that an arbitrary n-collinear momentum pf; re-
mains invariant under these reparametrization transformations then leads to
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the transformations of the perpendicular component

H M
I T _ n
I: le — ng—é‘ " —?( L Pnl),
11 TL n
II: pﬁalZL—?:—7( L'pnl)a
e opt, ALt (3.119)

The SCET; Lagrangian is unique by power counting, gauge invariance and
reparametrization inveriance (RPI), as can be shown by applying these gen-
eral transformations to each term in the Lagrangian. Physically, transforma-
tion (I) corresponds to a (small) change in the direction of n*, which leaves
the n-collinear momentum n-collinear. As the vector n* acts only as an auxil-
iary vector in this case, transformation (II) can change its direction by a large
amount. Transformation (III) can physically be interpreted as a boost in the
2-direction.

Another ambiguity was introduced by splitting the momentum in a label and
a residual part in eq. . A small amount proportional to A2 may freely
be shifted from the label momentum to the residual momentum or vice versa,
as long as it has a vanishing plus component in order to preserve the power
counting. This then describes a fourth reparametrization transformation as

pr Nooprpr and ot s ior —be, (3.120)

with b+ ~ Q(0, A2, A2). The collinear quark field then transforms accordingly
as

(PH 4 i0") € py —s (PH+i0") €% &y pyrs - (3.121)

Although the label operator and the residual partial derivative scale differ-
ently, they are tied together through this transformation so that the combined
operator P* + 10k connects different orders in A to one another. As the (full)
partial derivative was identified by this combination in eq. , it makes
sense to gauge the label operator and residual partial derivative as a combined
operator. Since P+ = 0, the plus component of this combination can simply
be gauged as

[Pt 40| — iDT =i} + g, A} + g A/

us "’

(3.122)

where the covariant derivative was given in eq. (3.70)). To gauge the minus and
perpendicular components, it is necessary to inspect the behavior of the various
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covariant derivatives under gauge transformations. Collinear gauge transfor-
mations of the covariant derivatives can be read off from the transformations
of the gluon fields and read

C N — Uy, =1t

D, —— Uy,eD, U],

Dt oy, D" Ul

? nl n? nl ¥Yn>

iDT 4 U, DU,

iDl, —— iDH_. (3.123)
Their transformations under ultrasoft gauge transformations can be found in

a similar way and are given by

iDy s Uy iDy U

us ?
Dt M DM UL
t nl us nl “tus»

iDt s Y, iDT Ul

us
iDF, s Uy iDE U (3.124)

Simply identifying the label operator with D}, and the residual derivative
with iDL does not work since they transform differently under collinear gauge
transformations. This can be remedied by using the collinear Wilson line and
its transformation properties so that the combined label operator and residual
partial derivative can be gauged uniquely by [80L89]

[P~ 4i0 ] — iD~ =4iD, + W,iD,, W,
[P} +id" ] — iDY =iD" +W,iD" W, (3.125)

usl "' n

3.6 Ultrasoft-collinear factorization

The SCET] collinear quark and gluon Lagrangians from eqs. (3.73) and (3.79)
still contain ultrasoft fields through the occurrence of the covariant derivatives.
The ultrasoft and collinear fields can be completely decoupled from one an-
other through a convenient field redefinition. The interactions between both
types of infrared degrees of freedom are then moved from the Lagrangian into
the currents and external operators, which will describe the hard scattering.
This separation of the soft and collinear quarks and gluons at the level of
the Lagrangian enables the derivation of factorization theorems for numerous
processes.
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Figure 3.9 A single ultrasoft gluon interacting with an incoming collinear
quark.

3.6.1 The ultrasoft Wilson line

The collinear Wilson line from eq. incorporates all possible additions
of collinear gluons to the SCET currents and restores the gauge invariance
of these currents. The additions of ultrasoft gluons can be considered in a
similar way by starting with the diagram in fig. in which a single ultrasoft
gluon is absorbed by a collinear quark that then enters the rest of the diagram,
represented by I'. The internal propagator of the collinear quark is given by

eq. (3.85) and reads

W Py
propagator = ——F———— 3.126

& 2 gfp, +ie’ ( )
where the fact that ultrasoft particles carry no label momentum and the on-
shell condition for the external collinear quark have been used. The label mo-
mentum can be divided out, although depending on its sign this might change
the sign of the 7e. Using this expression and omitting the ie for simplicity for

the moment, the expression for the combined diagram can be obtained using
the Feynman rule from eq. (3.87)) and is given by

1
Jep =T [—gsqu;s] €n, (3.127)
where the slashed light-like vectors have combined into a projection operator
obeying P,&, = &, and the subscript on the residual momentum has been

dropped since g* does not carry any label momentum.

Extending this to the addition of an arbitrary number of ultrasoft gluons, as
shown in fig. and correcting for all possible permutations then leads to
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Figure 3.10 The addition of an arbitrary number of ultrasoft gluons to an
external collinear quark.

the expression

_ m Aa1,+ a2,+ am,+
J,m:F[Z (C0)" Au” (1) A (@) - Al ) g,y s,

e ™ (@D ) ()
(3.128)

Adding all possible numbers of gluon additions and comparing to the result in
eq. (3.106)), an ultrasoft Wilson line |78| can be identified as

S —95)™ Aty (0) AR (¢2) - AL (g
v,=3 3 gl) (A (@) A () g arepr

m=0 perms m: (@ )g) +aq3)--- (Z,:Z q; )
(3.129)

in momentum space. For the collinear Wilson line W,,, the subscript n referred
to the fact that n-collinear gluons were attached (to an n-collinear quark), while
here it refers to the collinear direction of the quark that the Wilson line follows.
As the ultrasoft Wilson line exclusively involves residual momenta, which are
Fourier transformed back to position space in the SCET framework, a position
space expression for the Wilson line itself is natural as well and is given by

B 0
Y, (z) =P exp [igs/ ds A% (x4 sn)T*|, (3.130)

—0o0

where the P denotes path ordering and the dependence on x has been made
explicit for clarity. Making this dependence implicit again, the ultrasoft Wilson
line in position space obeys the identities

YIV,=1 and D]V, =0. (3.131)

The Eikonal propagator in eq. (3.126|), from which the structure of the ultrasoft
Wilson line follows, will be slightly different for other types of external particles,
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leading to slightly different Wilson lines. The complete set of ultrasoft Wilson
lines in position space is given by

- 0
Yo+ =P expligs / ds At (x + sn)] for incoming quarks,
B
YTL_ =P exp|igs / ds Al (z + sn)} for outgoing quarks,
L Jo

r 0
YTL =P exp —igs/ ds Al (x + sn)] for incoming antiquarks,
L —0o0

r o0
Y, =P exp —igs/ ds At (z + sn)] for outgoing antiquarks, (3.132)
L 0

where P denotes anti-path-ordering.

3.6.2 BPS field redefinitions

The fact that external collinear quarks will always be accompanied by an ar-
bitrary amount of ultrasoft gluons motivates the redefinition [90,91]| of the
collinear quark field as

gnape — Y/n 571,1%7 (3.133)

so that the ultrasoft Wilson line is implicitly taken into account. A similar
analysis can be done for external collinear gluons, leading to an ultrasoft Wilson
line in the adjoint representation, ergdj, which can be related to the ultrasoft
Wilson line in the fundamental representation in eq. (3.130) by

Vb Tl =Y, T*Y;] (3.134)
From this, the complete set of redefinitions for the collinear fields, called the
Bauer-Pirjol-Stewart (BPS) field redefinitions |7§]|, is found to be

é-n:p@ — ?TL é-n:p@ ’
szpg — Yn Agvpf Y’J ’
W, — Y, W, Y,

Cnpy — Yo Cn,p, }7717 (3.135)
where the transformation of the collinear Wilson line automatically follows

from that of the collinear gluon field. The transformation of the ghost field
will not be discussed but has been included for completeness.
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Starting from the collinear quark Lagrangian from eq. (3.73)), replacing the
inverse covariant derivative using the identity in eq. (3.111) and plugging in

the expressions for the remaining covariant derivatives leads to

1
FWJ;UPL + gSAnL)} Zign )
(3.136)

szog) = e—z‘Pm gn iD;—s =+ gsAjz_ + (7PL + gSA”L>Wn

where D, = iD,4+gsA; has been identified. Doing the BPS field redefinitions
then introduces ultrasoft Wilson lines next to the collinear quark and gluon
fields that mutually cancel trivially for all terms except the first, which involves
the ultrasoft covariant derivative. The cancellation of the ultrasoft Wilson lines
for this term can be obtained by using the defining equation from eq.
on on arbitrary operator, leading to the identity

iD}, Y, =Y, id, (3.137)

analogous to the one obtained for the collinear Wilson line in eq. .

This equation can then be used to pull the ultrasoft Wilson line through the

ultrasoft covariant derivative, after which it cancels against its conjugate from

the other collinear quark field. The BPS field redefinitions then finally lead to

the collinear quark Lagrangian

%W;{(?L + gSAnJ_) Zign )
(3.138)

L 05) — ¢ P gn zaj + gsA;t + (’PJ_ + gsAnJ_)Wn

where all ultrasoft gluons have been removed. The exact same exercise can
be done for the collinear gluon Lagrangian, after which the ultrasoft gluons
will have been completely decoupled from the collinear fields. Since any field
redefinition has to be done for all occurring instances of the fields, this process
of ultrasoft-collinear factorization effectively moves the ultrasoft gluons from
the Lagrangian into the currents. The quark-to-quark current from eq. ,
for example, will change under the BPS field redefinitions into

T — [EaW] [VIYA] T (W] . (3.139)

Here, the attachment of all possible numbers of collinear gluons to the quarks
are represented by the collinear Wilson lines W,, and W and the attachment
of all possible ultrasoft gluons to both the collinear quarks and the collinear
Wilson lines are taken into account by the ultrasoft Wilson lines }N/n and ffﬁ.
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3.7 Hard-collinear factorization

Since SCET is an effective theory that only describes the infrared dynamics of
QCD, the effect of any hard interaction has to be included through a matching
procedure. In contrast with EFTs such as the Fermi theory of weak interac-
tions, where the matching equations are multiplicative, SCET is matched to
QCD through a convolution between the Wilson coefficients and the effective
operators or currents.

Since SCET is a quantum field theory in its own respect, it requires a regu-
larization and renormalization procedure to deal with UV divergences. The
renormalization of the Wilson coefficients matching SCET to QCD leads to
a renormalization group equation whose solution relates Wilson coefficients
at different energy scales to one another and allows for the resummation of
Sudakov logarithms [92].

3.7.1 Wilson coefficients

Just as any other effective field theory, SCET has to be matched onto a full
theory (QCD in this case) through Wilson coefficients that encode the dynam-
ics of the high-energy degrees of freedom from QCD that are not described
by SCET. In order for the large momenta p* ~ ) on which the Wilson co-
efficients will in general depend to be gauge invariant, they must come from
combinations of fields that are invariant under collinear gauge transformations,
e.g. from the combination &, W,,. To accomplish this, the Wilson coefficient has
to depend on the label operator, which is able to extract the combined large
label momentum from products of fields. Including such a Wilson coefficient,
which is now itself an operator instead of a number, for the quark-to-quark
current (before doing the BPS field redefinition) then gives

Tt = Coq (=P, =P5) [EWal TY (Wi
= [Ean] qu’ (737];_7 P};_) F? [Wﬁfﬁ] ) (3.140)

where the inclusion of the minus signs is conventional. The Wilson coefficient
can be turned back into a number by introducing an integration over the new
label momenta w,, and wy as

oa = /dwn dws Coq (Wn,wn) [EaWa] 8(wn — PIT)TH 8(wn — PL) [Wakal

(3.141)
Defining the delta functions to be part of the operator as
Oh (wn,wr) = [EWa] 8(wn — PIT)TH 0(wn — PL7) [Wakal, (3.142)
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then leads to
Tog = /dw" dwr Coq (wn, wi) Oy (wn, wa) | (3.143)

where the hard and collinear degrees of freedom have completely factorized.
The hard-collinear factorization can be obtained for any SCET operator by
using the fact that eq. (3.110)) leads to the more general identity

(D, )F =Wy (PT)F W (3.144)

for integer k, so that a general function f can always be written as |77,/78]
f@Dg)zlﬁmﬂP_)Wﬁ:i/dwf@Q[W@é@;P‘)W@]. (3.145)

As ultrasoft Wilson lines do not carry any label momentum, they commute
with the label operator so that the BPS field redefinitions can be done either
before or after the hard-collinear factorization.

After including the Wilson coefficients to match the SCET currents to QCD,
collinear quark fields are always accompanied by a collinear Wilson line and
the delta function that picks out the large momentum piece of the field. This
then motivates the definition of the quark jet field as |76L|77]

Xnw = [0w =P ) xu] = [6(w—P)WiE], (3.146)

where the label operator is defined to act only within the square brackets. In
a similar way the gluon jet ﬁeldﬂ can be defined as

B =B dw-P) = gl[Pl_W,I [iD;,iD" W, 6(w — PT’)} . (3.147)
S

where again the derivatives act only within the (outer) square brackets. The
two degrees of freedom of this gluon jet field can be associated with the two
physical gluon polarizations.
It can be shown that all other possible collinear operators can be reduced to
combinations of these quark and gluon jet fields and the label operator P!
to all orders in A [89], so that the complete set of collinear building blocks in
SCET is given by

Collinear building blocks: Xnw, Bh, ., and PY . (3.148)

This set is to be supplemented by the ultrasoft operators in order to fully
describe all SCET processes.

%In SCETi, these quark and gluon jet fields are instead called quark and gluon parton
fields.
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3.7.2 Matching ete™ — dijets at one loop

Beyond tree-level, the procedure of matching SCET to QCD, i.e. determining
the Wilson coefficients, will involve integrals over the unconstrained loop mo-
menta. The division of the momentum into a label momentum and a residual
piece changes these integrals according to eqs. and , which need
to be recombined into a single integral in order to handle loop integrals of the
form

Noop = / ddp f(p), (3.149)

where f is a general function of the momentum p. For a collinear momentum
pr that has been split up according to the label formalism, this function will
look like f(p;",p, ,pe1), and loop integrals in the label formalism are given by

b =>" [ d%, f(o],p) pes)
Pe#0

= / dpr (P} 0 per) — / d?p, fO(p,0,0), (3.150)
Pe

where the final term is called a zero-bin subtraction and ensures that the
(0,0)-box in the grid shown in fig. |3.5|is not counted twice [83]. Since only the
plus component of the residual momentum appears in the integrand and the
boxes in the grid refer to a particular minus and perpendicular momentum, the
function f(p;",p, ,pe1) must be constant throughout each box. The residual
momentum integral can thus be evaluated at any place in the box, which is
accomplished by a shift in the label momenta

Z/ddpr fwf oy per) = Z/ddpr fwl oy +pr pes +pr1)
Pe Pe

~ [t 1), (3.151)

where the original splitting of the momentum as p* = p’; + pl! has effectively
been reversed. The zero-bin subtraction term can be shifted in the same way
so that a general loop integral is found to be equal to

= / dp (£(p) — 1O p)) . (3.152)

The zero-bin subtraction term is obtained from the function f by first changing
the scaling of the label momenta to O(\?) (the scaling of the ultrasoft modes)
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and then keeping only terms up to the same order as in the original loop inte-
gration, taking into account that the integration measures d%p and d%p, scale
differently.

The process eTe™ — dijets, shown in fig. [3.3] provides an ideal example to
study the procedure of matching SCET to QCD in more detail. In this process,
the incoming leptons form a virtual photon or Z boson that subsequently
decays into a quark and an antiquark that both undergo a cascade of collinear
splittings, forming two jets of particles, each collinear to a different direction.
The QCD current of this process is given by

JEOPH = g T g, (3.153)

where the i = V, A again either refers to a vector or an axial-vector coupling.
The SCET current is simply the quark-to-quark current for ¢q and was already

given in eq. (3.141)). In terms of the quark jet fields it readﬂ
Jag = / dwy, dws, Cog(Wns Wi ) Xnwn TF Xitws - (3.154)

The integration structure can be simplified by using the fact that the vectors
n* and n* must occur with equal powers within each operator, which is a
consequence of RPI-III from eq. . This then implicates that w, and wg
can never occur individually, as only their product respects RPI-III, so that the
Wilson coefficient reduces to Cyg(wn,wn) = Cyg(wnwn). A final simplification
follows from momentum conservation, which forces both integration measures
to be equal to the invariant mass of the incoming particles Q. The SCET
current then reads

a7 = Cag(Q*) Xn Tf X7 - (3.155)

The large momenta on which the Wilson coefficients depend will in general
always be constrained by external kinematics as long as the current contains
at most one collinear building block for each distinct collinear direction.

The Wilson coefficients are determined by calculating diagrams up to some
desired order in both QCD and SCET. These results should agree in the IR
regime, while their UV behavior will be different. The SCET calculation will
in general lead to additional UV divergences that need to be removed through

10 Although ete™ — dijets is described by a single current in both QCD and SCET, there
might in general be more Dirac structures representing the current in SCET, each accom-
panied by its own Wilson coefficient.
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Figure 3.11 The three diagrams describing the QCD corrections at NLO to
the process eTe™ — dijets.

a renormalization procedure. The Wilson coefficients are then defined as the
difference between the QCD result and the renormalized SCET result. Since
the renormalization will introduce a scale-dependence, the Wilson coefficients
will obtain a dependence on the renormalization scale in analogy with the
scale-dependence of the coupling constant in eq. ([2.18).

The tree-level diagrams for eTe™ — dijets in QCD and SCET evaluate to the
same result so that the leading-order Wilson coefficient is equal to

Cyg(@%) =1+ O(ay). (3.156)

The matching of the SCET current to QCD at 1-loop accuracy will be per-
formed in Feynman gauge. To make a clear distinction between the UV and
IR divergences in QCD, the former will be treated by dimensional regulariza-
tion while the latter are regularized by considering the quark and antiquark as
off-shell particles. After the renormalization procedure, the combined result of
the three QCD diagrams shown in fig. is given by

= [ () -l ) GE) ] ™
3.15

where p? = p? = p3 # 0. The non-vanishing diagrams for this process in
SCET, prior to performing the BPS field redefinitions, are shown in fig.
and are regulated in the same manner as the QCD diagrams. The diagrams on
the second line represent the collinear vertex corrections that contain interac-
tions between the collinear (anti)quark and the corresponding collinear Wilson
line. The wavefunction renormalization diagrams, involving ultrasoft instead
of collinear gluons, vanish since the Feynman rule in eq. describing their
interaction involves the light-like vector n* and n-n = 0. Evaluating the SCET
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Figure 3.12 The nonvanishing diagrams describing the NLO corrections in
SCET to the process eTe™ — dijets, before the BPS field redefinitions are
performed. The collinear gluons in the graphs on the second line are taken out
of the collinear Wilson line.

loop integrals leads to the combined (bare) result [75,76,93|

2 2 2
Miscwr = 0|5+ 7 = Pm(G) 2w () < ()
2 2 2

_ 41@%) - 4111(;3) +8— 52} JAP - (3.158)
The zero-bin that has been subtracted as part of the integration cf. eq.
is scaleless in this case and vanishes. However, as was already discussed in
sec. the reason that it vanishes is that the 1/e poles from the IR regime
cancel against those related to the UV regime and subtracting the zero-bin
effectively turns all 1/e divergences in SCET into UV divergences. In the
difference between the QCD and SCET results, all the IR divergences regulated
by the off-shellness p? # 0 cancel and the (bare) 1-loop Wilson coefficient is
given by

bare [ )2 _ asCr _E _§ g _Q 1.2 _Q2
Cog (@7 6) =1+ 47 { €2 €+€1n< w2 ) ln(;ﬂ )
)

2 2
84
)-+%

+31n( /fi

] + O(a? (3.159)
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which can be seen to be independent of i, as it should. This Wilson coefficient
is then renormalized through]

Coa™(Q?,€) = Zgg(Q®, €, 12) Cgqg(Q*, 1), (3.160)

where the scale factor, containing the counterterms, is given by

Zyr =14 2CF [—2 _3 71 ( ﬂQQ)} +O(ay). (3.161)

A7 e €

This then leads to the renormalized Wilson coefficient [93]

Coa(@p) = 1+ 2CF [—m?( Q2)+31 ( £2>—8+W2], (3.162)

47 6

up to corrections of O(a?), matching the SCET current for ete™ — dijets to
the QCD result at one loop.
3.7.3 Resummation of Sudakov logarithms

The scale-independence of the bare Wilson coefficient leads to the renormal-
ization group equation

dCy(Q* 1) _
N d -
1%

dZ‘]‘j(Q2a €, :U’)

_Z;ql(Q2767 /J“)H du

|ca@m, @
in complete analogy to the scale-independence of the bare coupling constant
that led to the beta function in eq. (2.20). The term in square brackets is
known as the anomalous dimension v,5(Q?, 11) of the Wilson coefficient and is
found to be equal to

(@) = I (=) . (3.164)

4

The structure of this anomalous dimension is order-independent so that at each
order there will be a single logarithm and a constant term.

If the Wilson coefficient is evaluated at a scale p? that is significantly different
from —@?, the first term in the anomalous dimension will dominate over the
second term and the combination of the coupling constant «s and the loga-
rithm might be counted as an O(1) number. The expansion in «a; is then no

"n general, the effective theory has to be renormalized before it is matched onto the full
theory. However, since QCD is already renormalized here, the matching may be performed
before renormalizing the SCET result.
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longer a sensible perturbative series and the more correct grouping of terms
can schematically be visualized by

Yaa(Q% 1) ~ [os L] + s + o L] + [af + ol L] + ..., (3.165)

where L stands for the logarithm in the anomalous dimension and each term
might carry a different coeflicient. The first term in this expansion is known as
the leading logarithm (LL) and subsequent terms are known as next-to-leading
logarithm (NLL), next-to-next-to-leading logarithm (NNLL) etc. From this ex-
pansion, it is immediately clear that at any desired order N"LL, the term in
the anomalous dimension containing the logarithm is required at (n+1) loops,
while the constant term is needed only at n loops.

The RGE for the Wilson coefficient at LL can then be expressed as

dIn(Cya(Q? 2 C
dlnp T o

where w? = —Q? has been defined for simplicity. This RGE, together with the

RGE for the coupling constant at LL from eq. (2.22)), forms a set of coupled

differential equations. The latter can be used to rewrite the logarithm in the
anomalous dimension as

ln<%> - /:wdln,u’ - _Z(aiu) - aiw)) , (3.167)

m

so that, after separating variables and integrating from the boundary scale pg
to the arbitrary scale p, the RGE for the Wilson coeflicient can be written as

W= 2 oy 8CF W=t dag (1)) I
/C,uod1“<c@q<‘?’fi>> =R chuo a0 ey~ ) (319

where the definition of the beta function has again been used to change vari-
ables. Solving the integrals and shifting the coupling constant as(—@Q) to

as(po) using eq. (2.23) then yields

_(O?2 1 s

qu(Q2 1) — ex [_ 287TCF (7 14 as(po) lnr)] ’
Coa(@%, po) Boous(po) \r as(w)

where 7 = as(u)/as(po). Finally, the coupling constant at the scale w can

be shifted to the scale pg at LL through the relation in eq. (2.23)) so that the

solution

(3.169)

4Cp

Cal@p) 87Cr (1 W\~
e = R )| G) T @
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is obtained. This solution relates the Wilson coefficient at some scale u to the
result at some other scale pg. The structure of this solution can be seen more
clearly by choosing the boundary scale g = w, so that the only dependence on
the scale w left is through the strong coupling constant. Again writing as(w)
in terms of as(1) and expanding for small as then gives the LL solution

e e LS kot (2)].

where the constant is given by

n+1 n—
K, = ((n)+1)(2ﬁ£r> g (3.172)

The result in eq. is known as the Sudakov form factor at leading loga-
rithm. Upon expanding the exponential, the term involving the logarithm with
the highest power at each order in as(u) in the Wilson coefficient Cyg(Q?, 1)
is recovered. This can be seen explicitly at O(«s) by a comparison with the
term involving the squared logarithm in eq. (3.162)).

Since the series in the argument of the exponential is simpler than the series
obtained upon expansion of said exponential, the structure of the Wilson coeffi-
cient is most conveniently expressed by considering its logarithm. Performing a
similar calculation at higher logarithmic accuracy will lead to the series shown
schematically in fig. This figure depicts the relation between the counting
of terms with the same logarithmic accuracy and the original counting of terms
with the same order in the coupling constant. The rows are composed of terms
of the same order n in the N”LO counting and the columns contain terms of
the same order in the N"LL counting.

If the Wilson coeflicient is calculated directly at some arbitrary scale p, its
logarithms might be large and spoil the convergence of the perturbative series.
The solution of the RGE can be used to instead calculate the Wilson coefficient
at the scale w (where the logarithms are minimized) and then evolve it to
the scale p using the Sudakov form factor, reproducing the most important
logarithms at each order in as. This process is known as resummation [94,95|.

3.8 Separation of scales

As a consequence of the disentanglement of the collinear and ultrasoft degrees
of freedom in the SCET} Lagrangian, inclusive cross sections and decay widths
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Figure 3.13 A pictorial representation of the difference between fixed-order
counting (blue dashed boxes) and resummation-order counting (red solid

boxes). The potentially large logarithms are denoted by L and all possible
coefficients and constants are indicated by occurrences of #.

will also factorize into distinct sectors involving only a single type of modes.
For differential cross sections representing measurements on the external state
of a particular process, the contributions of the various modes to the mea-
sured observable have to be shown to factorize as well. The various functions
representing the factorized sectors can be calculatedlﬂ independently to some
desired accuracy and are then multiplied or convolved with one another to
form the differential cross section.

These functions are subject to a renormalization procedure analogous to that
of the Wilson coefficient and lead to similar renormalization group equations.
Each sector contains logarithms that can be minimized at a particular scale,
after which the solutions to the RGEs can be used to evolve each function
back to a common factorization scale, resumming all the logarithms in the
cross section in the process.

3.8.1 Factorization theorems

Currents J* that describe scattering processes at lepton colliders appear in the
cross section as squared transition amplitudes integrated over all intermediate
states as

0~ D Ly (OIT{J"HX)(X|T{J"}|0) (2m)*6(q — Px), (3.173)
X

where ¢/ is the combined momentum of the incoming leptons and P the
total momentum of the outgoing particles in state X. The leptonic tensor

12Tn the case of non-perturbative regimes, they can be determined from experiment instead.
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L,,, describes any behavior of the incoming process not described by the cur-
rent (such as the formation of the intermediate vector boson in the case of
ete™ — dijets) and the 7' and T denote time-ordering and anti-time-ordering
respectively. The sum over all intermediate states X is understood to be an
integral for continuous variables and contains both the phase space integration
and any kinematic restrictions relevant for the process under consideration.
After the BPS field redefinitions from eq. , the collinear and ultra-
soft degrees of freedom in SCET completely factorize at the level of the La-
grangian, so that the Hamiltonian and therefore also the Hilbert space factorize
into these distinct sectors as well. Taking an explicit outgoing state with two
collinear sectors in addition to the ultrasoft sector, like the outgoing state for
eTe” — dijets, this factorization of the Hilbert space is given by

1X) = 1X0) |1 X5) [ Xus) » (3.174)

after which the symbolic sum over X in the cross section turns into three
distinct sums over X,,, X5 and X,s. The various collinear and ultrasoft fields
in the matched SCET current act only within their respective sectors so that
a product of three different matrix elements arises. Each sector has to be a
color singlet in its own respect. For example, the n-collinear matrix element
reduces to

a Y 5(117 c —C
(01X 1) (X X2, 10) = = (013, [ Xn) (X | X510) (3.175)

where a,b and ¢ are color indices, N, denotes the number of colors and a
sum over repeated indices is implied. The Dirac structure that still connects
different sectors can be rearranged by a Fierzing procedure to completely dis-
connect the soft and collinear matrix elements. For SCET currents involving
two collinear quark fields, e.g. the current for ete™ — dijets, the only non-
vanishing structure that the Fierzing procedure leads to is the vector Currenﬂ
Sticking with the example of eTe™ — dijets, the cross section after this factor-
ization of the collinear and ultrasoft sectors in both spin and color takes the
form [96197]

o~ Ag Z C2(Q%, w)|? (2m)*6(q — Px,, — Px, — Px,.)
XnyX'ﬁ;Xus

01X X (X a0 (01 X)X 0}

X <0’T{Y£Yn}|Xus><Xus|T{Y7IYﬁ}|0> ’ (3'176)

13This statement holds for unpolarized beams, more structures are possible when polarized
beams are considered.
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where the constant Ay contains the leptonic tensor, the coefficient that the
Fierz identity leads to and the sum over ¢ = V, A. Each of the three distinct
matrix elements is understood to be traced over color, spin, or both as ap-
propriate. The light-like vectors 9% and 7 appear in the collinear sectors after
decomposing the gamma matrices in terms of lightcone coordinates.

The sums over the external states X,, X5 and X, involve the kinematic re-
strictions that ensure a particular configuration. For the case of eTe™ — dijets,
this entails forcing the outgoing state to contain exactly two jets. This restric-
tion can be taken into account explicitly by measuring the hemisphere mass
from eq. of both hemispheres a and b and demanding the result to be
small. If there would be more than a single direction per hemisphere along
which collinear particles exit the hard process, the mass of that hemisphere
would become sizable. The measurement of the hemisphere masses m?2 and
mg can be implemented in the cross section by inserting

1—/dm /dmb m2 — QUi +K5)) 6(m2 — QUi +k.,)) . (3.177)

where the momenta inside the delta functions have been expanded to leading
power and the large label momentum has been identified as k, = ki = Q.
The integration measures can then be brought to the left-hand side to obtain
a cross section differential in the hemisphere masses. After factorizing these
measurement delta functions as well as the overall momentum-conserving delta
function, the cross section will be completely factorized and each independent
sector is connected to the others only through either a multiplication or a
convolution. For the example of eTe™ — dijets, the factorized cross section
then takes the form [96]

do

7dm§ dmg ~ H;;(Q, 1) /dsn dsp dkf, adk,, P’ (5(m — 5p — QK a)

SR — s — Qhy ) Ji(n) Ty (s2) SEE™ (Rl b y) . (3.178)
where s, = Qk; and s; = Qk;, . An implicit sum over i and j, representing the
relevant partonic channels, is to be understood. For the process under consider-
ation, these are {i,j} = {q,q} and {7, 7} = {q, ¢}. The hard function H;;(Q, 1)
is defined as the squared absolute value of the Wilson coefficient, multiplied by
the Born cross section. The jet functions J;(s,) describe the particles in the
final state collinear to the outgoing quark and antiquark. The hemisphere soft
function Shem‘(kjs .a» Kusp) encodes the contribution of the ultrasoft radiation
to the measurement of both hemisphere invariant masses. Both the jet and
soft functions are independent of the underlying hard interaction and can in-
dividually be calculated perturbatively. A global soft function can be obtained
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from the hemisphere soft function through [96},98|

Sii(k) = / bty o Ak SEE™ (Bt a0 K ) 0k = kil o — K y) - (3.179)

us,a’ “us,b us,a us,b
This soft function, often called the thrust soft function or inclusive soft func-
tion, is defined as the vacuum matrix elemenﬂ

Sia(h) = 3 T [OI IOV} 8(k — P ~ PO TV 00, 0)} 0}
(3.180)

where the trace is over color, N, denotes the number of colors and the operators
P, and P, serve to pick out the plus and minus component of the momenta
going into hemispheres a and b respectively. This soft function will play a
role in the combined resummation of transverse momentum and beam thrust
in chap. Using this inclusive soft function, the factorization in eq.
may be turned into the factorization for a cross section differential in the the
variable known as thrust 7, which for the case of hemisphere invariant masses
is given by 7 = (m2 +m?)/Q?. The explicit form of this factorization is given
by [96]
do k sp+ sﬁ>

=~ Hy(Qu ) /dk s s Ji(sn) Jj(s7) S(k) (7 — 5=

(3.181)

In processes with other measurements, more differential soft and jet functions,
involving the measurement of multiple momentum components, might be nec-
essary. In proton-proton collisions, the partons that are extracted from the
proton undergo collinear splittings before initiating the hard interaction, as
was described in sec. 2.3:3] Due to the collinear nature of these interactions,
the evolution of a parton from its extraction out of the proton until its ini-
tiation of the hard interaction is described in SCET by a collinear function
called a beam function [99,(100]. The beam function is related to the parton
distribution functions through the matching equation

Bi(t,z,p) = Z/liinj(t,z,u) fi (g,u> [1 + (’)(AétCD)] , (3.182)
T Ja

where the sum runs over all possible partons. The matching coefficients Z;;
can be determined perturbatively and at tree-level they are given by

Zij(t, z, /L) = 51']' (5(1 - Z) 6(t) 5 (3183)

This definition holds for both ¢ = ¢ and g (and j = q or q respectively). The matrix
element for i = g differs only from eq. (3.180) by N. — N2 — 1.
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so that the beam function reduces to the conventional PDFs at leading order.
The matching coefficients are known to O(a2) |101,/102] and can be found
in app. [B:2l As is the case for jet and soft functions, the measurement of
additional components of the incoming partons leads to more differential beam
functions, analogous to more generic PDFs such as the transverse-momentum-
dependent PDF.

3.8.2 Resummation

After the renormalization procedure, the various functions that might appear
in factorization formulas will depend on the common scale . A perturbative
calculation of these functions will in general yield a result containing powers
of logarithms (or the distributional analogs, plus distributions, which can be
found in app. [A]) involving the scale p. As the power of these logarithms grows
at every order in ay, the scale p has to be picked such that the logarithms
remain small to ensure the convergence of the perturbative expansion of each
function. For the hard function in eq. , for example, logarithms of
—Q?/u? appear at each order in perturbation theory, as shown in eq. ,
so a viable choice for the scale would be pu ~ Q. The scale at which the
logarithms inside a particular function are minimized is called the natural or
canonical scale of the function. Different functions will in general contain
logarithms of different ratios and therefore have different canonical scales, so
that no single choice of ;1 can minimize the logarithms in all the perturbative
functions at once.

Each function F occurring in a particular factorization formula is renormalized
according to the general equation

FP(t,€) = Zp(t, e, ) @ F(t, 1), (3.184)

where ¢ represents a variable on which the function F' depends and ® refers
to either a multiplication or a convolution. For the renormalization of the
Wilson coefficient in eq. this is an ordinary multiplication. For many
perturbative functions the renormalization is done through a convolution as

Fhare( ¢) = /dt’ Zp(t—t, e, u) F(t', ). (3.185)

The fact that the bare function is scale-independent then leads to a renormal-

ization group equation for the renormalized function, as was seen already for

the renormalized coupling constant in eq. (2.20) and the renormalized Wilson

coefficient in eq. (3.163]). The general form of such an RGE is dictated by
dF(t, p)

— = t F(t 3.186
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where v is the anomalous dimension of the function F' and ® refers to the same
type of multiplication or convolution structure as before. For a multiplicatively
renormalized function, such as the Wilson coefficient, the RGE is therefore also
multiplicative and the anomalous dimension takes the general form

et 1) = 0 T @) () + 7). (3.187)

where the cusp anomalous dimension Fcusp(a s) is a general factor that appears
in all anomalous dimensions. Both the cusp and the non-cusp anomalous
dimensions are expansions in «g defined by

cusp Z Fz (as )n—l—l and Z PyX § ( )'IH-I7

(3.188)

where the superscript ¢ = ¢, g refers to anomalous dimensions involving either
quarks or gluons respectively. The coefficients of the cusp anomalous dimen-
sion can be found up to three loops in eq. (C.33). The coeflicients of the
non-cusp anomalous dimension differ per function (indicated by the subscript
X) and can also be found in app. for the various functions that occur in
this thesis. The exact argument of the logarithm depends on the variable on
which the function F' depends.

Functions that are renormalized through a convolution structure will in gen-
eral contain plus distributions and delta functions instead of logarithms and
constants. The general expression for their anomalous dimension is given by
the distributional analogue of eq. , namely

’YF(ta 1) =ap Fcusp<as)£0<t7 1) + ’Y%(as)é(t) ) (3189)

where Lo(t, ) = Lo(t/w)/p is the notation used to represent plus distributions
as described in app. [A]

The first step towards the general solution to a multiplicative RGE entails a
separation of variables and integration from some fixed scale ug to an arbitrary
scale p to obtain

F(t, p) /ln'u / /
In(——"+%) = dlnp' yp(t, 1) . (3.190)
<F(tnu0)) In po

The definition of the beta function in eq. (2.20) can be used to rewrite the
logarithm in the anomalous dimension according to

(L) = ()= [ cw(L) - [

n po as(po) B(y)

Inp
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Plugging the general form of the anomalous dimension in and again changing
integration variables according to the definition of the beta function then yields

F(t, p)
i (Frre)

where the evolution kernels have been defined as

) - [ap 1n<:0>77%(uo,u) — arKi(po, 1) +Kyg(uo,u)} , (3.192)

as(p) dz

ﬁ%(#oa /‘) = / m I‘3:usp($) ’

as(po)

- as() qg r dy
Ki Ho, H) = / YR Féus x / ETY
F( ’ ) as(po) 5(1") p( ) as(,uo)ﬁ(y)
K. (1os 1) = / " ) (3.193)
LA as(po) 5(1") F . .

Explicit expressions for these evolution kernels can be found up to NNLL in
app. . The final result that relates the function F'(¢, ) at a scale u to the
same function at some other scale g can then be found through exponentiation
and reads

F(ta M) - UF(t7 Ho, ,u) F(ta MO) ) (3194)

where the evolution of the function F between the two different scales is de-
scribed by the evolution function

t N\ arnh(po.u) ;
( ) T exp —aFKF(HOa,U)‘f‘Kfy;(HOaM)]- (3.195)

UF (ta Ho, :U’) =
For the Wilson coefficient, this procedure was performed explicitly in sec.[3.7.3
at LL accuracy for the canonical value of the scale g at which all the loga-
rithms are minimized.

Functions that are renormalized through a convolution lead to renormalization
group equations of the form

dF(t
= [ttt e, (3.196)

which can be changed to ordinary multiplicative RGEs by a transformation
to for example Fourier space or Laplace space. The Laplace transform of a
function F'(t, ) is defined analogous to the Fourier transform in eq. (A.19) as

Pls,p) = /O T dtest F(t ) (3.197)
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leading to a general expression for the anomalous dimension in Laplace space
given by

Yr (s, M) = —ar Ff}usp(as) In(se™p) + ’y}’(as) : (3.198)

Since both the RGE and the anomalous dimension now have the same form as
their multiplicative counterparts, the solution (in Laplace space) to the RGE
of a function renormalized through a convolution structure has the same form
as eq. (3.194)). The transformation of this solution back to momentum space
leads to a convolution between the function F' and the evolution function Up
given by

Pt ) = / At Up(t — 1, o, 1) F(E' 10) - (3.199)

The evolution function in momentum space can be found by an inverse Laplace
transform and reads

exp[—ar K} (10, 1) — apye mp(ko, 1) + Ko (1o, 1)]
L1+ ap i (po, )]
< (ar b 0D @) £ 60), (3200)

UF(tv Mo, /’L) =

where the plus distribution of the form £*(t, u) is defined in app. .

Each function in a factorization formula has to be evaluated at the same scale p,
which might cause the logarithms inside the functions to grow large and spoil
the perturbative convergence if p differs significantly from the natural scale
of the functions. The solution to the RGE of each function can be used to
instead calculate every function at its own natural scale, where the logarithms
are guaranteed to be small, and then evolve the functions to a common scale p.
For the factorization of ete™ — dijets in eq. , for example, this would
lead to
do k  sp,+ sﬁ>

dTNU;—I(Qnquu)HZ](Q,,UzH)/ddendSné(T—Q_ QZ

x / ds!, U (s — . iy, 1) Jo(sh 1) / dsty U3 (s — st pirs 1) T (5o, 1)

< [aH U= K s ) S5 (8. (3.201)

In this way, all the logarithms in the cross section are resummed to some log-
arithmic accuracy determined by the order at which the various ingredients
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Order | Functions 4 I‘éusp B
LL LO 1-loop  1-loop
NLL LO 1-loop  2-loop  2-loop

NLL/ NLO 1-loop  2-loop  2-loop
NNLL NLO 2-loop  3-loop  3-loop
NNLL’ | NNLO 2-loop  3-loop  3-loop

N3LL NNLO 3-loop 4-loop 4-loop

Table 3.1 Overview of the required ingredients necessary for achieving a de-
sired logarithmic accuracy. The columns denote the required order in ay of
the perturbative functions entering the factorization formula, the non-cusp and
cusp anomalous dimensions and the beta function respectively.

(perturbative functions, anomalous dimensions and the beta function) are in-
cluded. An overview of the required ingredients for the first few orders of
logarithmic accuracy is given in table In the primed-order counting [103],
the fixed-order coefficients are included to one order higher compared to the
conventional, unprimed orders.

Since the physical cross section does not depend on the common scale p, it
can be chosen freely. It is often convenient to pick this scale equal to the nat-
ural scale of one of the perturbative functions occurring in the factorization
formula to avoid the evolution of that particular function. The independence
of the cross section on the scale p also leads to a consistency relation for the
anomalous dimensions, requiring that they must add up to zero.

3.9 SCETq

Since the contribution of ultrasoft radiation to observables sensitive to the
transverse momentum is suppressed with respect to collinear radiation, SCET}
does not provide a correct description for these types of observables. As some
of the most interesting measurements (such as the transverse momentum spec-
trum of the Higgs boson) fall into this category of observables, a different
version of the effective theory, in which the perpendicular components of the
collinear and soft modes scale equally, is required. The modes of this theory,
known as SCETy, were already discussed briefly in sec. and are equal
in virtuality. The separation between soft and collinear modes is instead a
separation in rapidity, which leads to singularities unregulated by dimensional
regularization. The treatment of these singularities leads to a separate renor-
malization group equation connecting functions at various rapidities to one
another.
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3.9.1 Soft degrees of freedom

The parametric scaling of the n-collinear, n-collinear and ultrasoft degrees of
freedom appearing in SCET} are given by

pgNQ()‘Qala)\)? p%NQ(17)‘27)‘) and péjs NQ()‘27/\27)\2)7
(3.202)

respectively. The small lightcone component of each of the collinear modes is
of the same size as its counterpart from the ultrasoft mode, allowing for inter-
actions between ultrasoft and collinear particles. As the other components of
the collinear degrees of freedom dominate over those from the ultrasoft sector,
the scaling of collinear particles remains unchanged under these interactions.

The fact that the perpendicular component of the collinear radiation always
dominates over the perpendicular component of the ultrasoft radiation prevents
SCET! from being the correct EFT to describe processes in which observables
sensitive to the transverse momentum of soft radiation are measured. The
correct version of the EFT, known as SCETy, contains the same collinear de-
grees of freedom as SCET], but whereas the latter contains ultrasoft degrees
of freedom, the former instead contains soft degrees of freedom that scale as

PE~ QAN (3.203)

The perpendicular component of the soft and collinear modes is now indeed of
the same parametric size so that both will contribute to measurements involv-
ing the transverse momentum.

Soft particles in SCET; change the scaling of collinear particles when the
two interact, resulting in a mode with the parametric scaling Q (A, 1, ), which
is off-shell and needs to be integrated out. This situation is similar to the
coupling of an n-collinear gluon to an n-collinear quark in SCET1y, as discussed
in sec. , where the parametric scaling of the quark is changed to Q(1, 1, \)
by the interaction. Taking an arbitrary number of interactions with n-collinear
gluons into account and integrating out all the resulting off-shell propagators
then led to an effective coupling involving the collinear Wilson line. The off-
shell modes resulting from the soft-collinear interactions in SCET; can be
integrated out in a similar fashion, leading to a soft Wilson line given by

0
Sn(z) =P exp [igs/ ds Af(z +sn)|, (3.204)

—00

that has to be included to ensure gauge-invariance. A convenient procedure of
matching SCET to QCD is to first match to SCET}, which then in turn gets
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Figure 3.14 The degrees of freedom present in SCETy;. The hard, collinear

and soft modes are colored gray, green and red respectively. The dotted straight
lines represent the separation in rapidity between the collinear and soft modes.

matched to QCD |[78]/104]. Consider the set of modes

o~ QNLYVA),  ph ~Q(LAVA)  and  pE~ QAN N,
(3.205)

where the latter is the soft mode from SCET}; and other two are known as
hard-collinear modes. The soft modes have a virtuality equal to p? ~ A\2Q?,
the hard-collinear modes have a virtuality of p,Qm ~ AQ? and their relative
hierarchy is the characteristic SCET} hierarchy. The hard-collinear and soft
degrees of freedom can then be decoupled (factorized) in the usual way through
the BPS field redefinitions in SCET}, as described in sec. The matching
to SCETy can be performed after the decoupling by lowering the virtuality
of the hard-collinear modes to the virtuality of collinear modes p2 ~ A\2Q2.
As long as the product of operators representing the hard scattering in the
SCET] theory contains (for each collinear sector) at most a single operator
that involves hard-collinear as well as soft fields, e.g. the current J(’;q, the
matching procedure simply entails making the change from ultrasoft to soft
Wilson lines, Y,, — S,. For time-ordered products with two or more such
operators, the matching becomes more involved and will lead to a convolution
between the SCETT current and a Wilson coefficient in the usual way.
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3.9.2 Rapidity divergences

To avoid counting infrared singularities twice when performing momentum
integrals, the zero-bin has to be subtracted as described in sec. The zero-
bin in SCET] is obtained by changing the scaling of the collinear modes to an
ultrasoft scaling, which entails scaling down the minus and the perpendicular
component of the n-collinear momentum pj, ~ Q(A%,1,)\) to @QA2. In the
(p~,pT)-plot on the left-hand side of fig. this then corresponds to leaving
the hyperbola described by p? ~ A2Q? and ending up on the ultrasoft hyperbola
described by p? ~ MQ?2.

In the case of SCET}q, the zero-bin is obtained by raising the plus component
and lowering the minus component of the n-collinear momentum to the scale
Q. This leaves the invariant mass p?> = p*p~ unchanged, as it should since the
collinear and soft modes are not separated in virtuality (they lie on the same
hyperbola in fig. . The separation between these two degrees of freedom
is a separation in the ratio of their plus and minus components p™/p~, which
is conventionally expressed as the rapidity

p

which was already defined in eq. . The lines of constant rapidity that
separate the soft and collinear modes in SCETy; are then lines of constant
pt/p~ and are shown as dotted lines in fig. . As the rapidity is not boost
invariant, regulators such as dimensional regularization that regulate Lorentz-
invariant quantities like the invariant mass p? do not regulate any singularities
corresponding to a separation of modes in their rapidity.

The rapidity singularities arise from the (Eikonal) denominators in the soft and
collinear Wilson lines given in egs. and and can be regulated
through multiple methods. A method that is closely related to dimensional
regularization is to use the so-called n-regulator [105{106] to modify the Wilson
lines in momentum space by|E|

Sp(x) = Z exp{;ﬁsw (’P_ ;KPJF)_WQAfL(JJ)}

perms

Wa@) = > exp [_gsw2 (@)*"A; (g;)} . (3.207)

P- v
perms

Y = ;ln(er> : (3.206)

The combination of P~ — P in the soft Wilson line is equal to twice the
momentum in the 2-direction. The plus component of the label operator in the

5 These expression hold at one loop. At higher orders they are slightly more compli-
cated [105].
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collinear Wilson line is parametrically much smaller than its minus component,
hence it can be dropped at leading power. The scale v is analogous to the scale
p in dimensional regularization in that it ensures that the mass dimension
of the expression as a whole remains unchanged. The power n is similar to
the infinitesimal € in dimensional regularization and will lead to poles of 1/7.
Finally, the parameter w plays the role of a fictitious coupling (it will eventually
be set to unity), analogous to as, which is renormalized through

WP = w(n,v) "2, (3.208)

so that a rapidity renormalization group equation, similar to eq. (2.20)), is
obtained as

V%w(n, v)= —g w(n,v). (3.209)
After this additional regularization procedure, perturbative functions in fac-
torization theorems containing soft or collinear Wilson lines will contain di-
vergences in both 1/e and 1/n. The limit  — 0 has to be taken first, with
n/e” — 0 for all n. After also taking the limit € — 0, the parameter w may be
set to w = 1 and counterterms can be added to absorb the poles in both 1/n
and 1/e to render the resulting perturbative function finite. Regulating and
renormalizing rapidity divergences then introduces logarithms containing the
scale v in these functions in addition to the logarithms containing the scale
p. To ensure these logarithms remain small enough to render the perturba-
tive expansion of the function valid, a procedure analogous to the one used to
achieve the same goal for logarithms involving the scale u in sec. 3.8:2] may
be employed. Each function will thus obey both a u-RGE and a v-RGE with
their respective anomalous dimensions schematically given by

dz
Yo = fZ_lp@ and Y=—Z v—, (3.210)

where Z denotes the combination of all relevant renormalization factors. Solv-
ing both RGEs will then lead to two evolution equations, one evolving the func-
tion from a scale g to another scale u, as given in eq. (3.194)) or eq. ,
and one evolving the function from a scale 1 to the scale v. As the order of the
v and v derivatives may be interchanged, the u- and v-anomalous dimensions
are related through

dyw _

3.211
Ml W ( )

and the evolution is independent of the path chosen in the (i, ) plane. Picking
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Figure 3.15 A pictorial representation of two possible ways of running a
function from the scales pp and vy to the scales g and v. The running in p
and v is represented by the red and blue arrows respectively.

the path shown by the solid arrows in fig. for definiteness, the complete
evolution of a function F' from its natural scales pg and 1 to a set of common
scales p and v is then given by

F(ta K, V) = UF(ta KOs [y V) ® VF(t7 Mo, Vo, V) ® F(ta Mo, VO) ) (3212)

where, as before, the ® encodes either a multiplication or a convolution struc-
ture. The evolution function Vg (t, po, 1o, v) evolves the function F' from the
scale vy to the scale v at fixed o and Up(t, no, 1, V), given in eq. (3.195)) or
eq. (3.200), evolves the function from g to p (at fixed v). All rapidity diver-
gences occurring in this thesis will be treated using the n-regulator described
in this section.

3.10 SCET,

The specific measurement under consideration determines the relevant degrees
of freedom and therefore the version of SCET that is appropriate for the given
situation. For measured variables depending on the plus or minus lightcone
components, SCET] is the correct theory, while measurements depending on
the transverse component are properly described by SCETy;. When both types
of measurements are considered simultaneously, neither version of SCET fully
describes the process and an additional set of degrees of freedom has to be
included in order to provide a complete description [107,/108]. To see how
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Figure 3.16 The relevant modes for SCET . The hard, collinear, collinear-
soft and soft modes are colored gray, green, blue and red respectively.

these new modes arise, consider a SCET-type measurement My depending
on the perpendicular lightcone component of the particles in the final state
and a SCETi-type measurement My, depending on their other two lightcone

components. In the first case, the expansion parameter is given by A\i = M1/Q
and the collinear degrees of freedom are given by

Pl ~ QA 1, M) ~ (M7/Q, Q, M),
p% ~ Q(L >‘I2I? )\H) ~ (Qa MIQI/QvMH) . (3213)
The additional measurement of M7 leads to a second power counting in the

expansion parameter A\; = Mj/Q and is sensitive to a new set of degrees of

completely fixes their scaling to

freedom with either a plus or minus component p* ~ Q\;. Demanding that
these modes also contribute to the measurement of My; and are on-shell then

p%s ~ Q()\Ia A%I/)\Ia )\H) ~ <M17 MI2I/M17 MH) ;
Phs ~ QAT/AL At A ) ~ (Mg /My, My, M), (3.214)
for the case in which A\; < A1;1. These modes are known as collinear-soft modes

since their scaling is somewhere in between the scaling of the collinear and soft

degrees of freedom. The complete set of modes describing SCET is made up
by the collinear, and collinear-soft degrees of freedom from eqs. (3.213]) and
(13.214)), supplemented by the usual soft mode given by

P~ Q(Ar, A, Ar) ~ (My, My, My),

(3.215)
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and is shown in fig. .16 These degrees of freedom can be seen to reduce to
the usual SCET; and SCETT sets of modes in the regions where A\ ~ A;p and
A1 ~ /A respectively. In the first case, the soft mode and the two collinear-
soft modes join to form a single soft degree of freedom. In the second case the
collinear-soft modes are absorbed by the collinear modes and the scaling of the
soft mode reduces to the ultrasoft scaling from SCETj.

The emission of an arbitrary number of n-collinear gluons from an 7-collinear
quark field is captured by the collinear Wilson line W,, given in eq. . In
SCET,, a similar Wilson line describing the emission of an arbitrary number
of m-collinear-soft gluons is defined as

0
Vo(z) =P exp [igs/ ds A, (x+sn)| . (3.216)
— 0o
In SCETq, the interactions between soft gluons and n-collinear quarks give
rise to off-shell propagators that have to be integrated out and yield soft Wil-
son lines in a similar fashion. For SCET., the same situation occurs when
collinear-soft degrees of freedom interact with the n-collinear quark, so that
an additional collinear-soft Wilson line is required to ensure gauge-invariance.
This second collinear-soft Wilson line is given by

0
Xn(z) =P exp [igs/ ds Al (z +sn)|, (3.217)
—00

in complete analogy to the soft Wilson line in eq. . In addition to the
soft and collinear gauge transformations considered in eqs. (3.98]) and (3.99)
respectively, the collinear-soft gluons occurring in SCET ;. give rise to collinear-
soft gauge transformations. These transformations leave the quark fields x,(z)
as well as the soft Wilson lines Sy, (z) invariant and only transform the collinear-
soft Wilson lines as [108|

Vi (2) 222 Ups(z) Vi)

Vi(z) Hoosy

X (z) Hnes

sy X (2) (3.218)

Vﬁ(‘r) )
Uns(z) Xn(2),
Xa(x)

and similarly for n-collinear-soft gauge transformations. The matrix U,s(z)
appearing here is the n-collinear-soft equivalent of eq. (3.97). From these
transformations it is clear that the collinear-soft Wilson lines must always occur
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in the combination V;| (z)X,(z) and X;L(z)Vﬁ(x) to ensure the collinear-soft
gauge invariance of SCET currents. The collinear-soft Wilson lines V;,(z) and
Xy (z) do not transform under collinear gauge transformations and transform
in the same way as collinear fields do under soft gauge transformations, i.e as

Va(z) == Us(@) V() Ul(2),
Va(z) —== Uy(z) Valx) Ul (2),
Xn(w) === Us(w) Xp(2) Ul (2),
Xa(z) —— Us(z) Xp(x) Ul () . (3.219)

To completely decouple the various degrees of freedom in the SCET, La-
grangian, a field redefinition similar to the BPS field redefinition in eq. (3.135|)
can be performed by [107]

Vi(x) — Sp(x) Va(2) Sl(x),
Vi(x) — Sa(x) Va(w) Sh(z),
Xn(z) — Sn(z) Xn() S:[L(x)a
Xn(z) — Sa(z) Xn(z) Sk(x), (3.220)

after which the soft, collinear and collinear-soft modes no longer interact with
one another.

To ensure the regulation of rapidity divergences in SCET ., the same regulator

that is used for the soft Wilson line S, (z) in SCETy in eq. (3.207) can be

employed for the collinear-soft Wilson lines, leading to

o) = 3 o) 72w (B "]

perms
_ I\ —m/2
Xo(z)= 3 exp[Pg_stPV‘) " A;S(m)}, (3.221)
perms

where the momentum operators in the regulator have been expanded to lead-
ing power.
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Joint two-dimensional resummation
in ¢gr and O-jettiness

In scattering processes that are subjected to the measurement of multiple ob-
servables, various types of logarithms can appear and may grow large, depend-
ing on the exact hierarchy between the measurements. In this chapter, the
process of Drell-Yan pp — Z/v* — £7¢~ is considered with a simultaneous
measurement of the transverse momentum ¢ of the signal lepton pair and the
hadronic resolution variable 0-jettiness 7, also known as beam thrust [99,(109].
The different possible hierarchies between these two measurements lead to
distinct descriptions of the corresponding regions in phase space, each being
described in a different way and leading to a different factorization formula.
The framework that enables the resummation of all logarithms involving both
gr and T is developed in this chapter through the construction of appropriate
two-dimensional profile scales that combine the various regimes. In addition,
perturbative uncertainties are assessed and the cross section obtained in the
EFT approach for small values of the measured observables is matched to full
QCD at large gr and 7. This setup is flexible in the sense that both the
matching procedure and the estimation of uncertainties can be changed in a
fairly straightforward way.

Although Drell-Yan is used as an example, the methods developed in this
chapter apply equally well to any other color-singlet production process. The
matching procedure is even more generic and can be used for any type of two-
dimensional resummation for which the correct EFT description is known for
each relevant region of phase space. Furthermore, the framework can be used
at any order for which the relevant perturbative ingredients are availableﬂ
This chapter starts in sec. [£.I]with a motivation describing the various available
methods of resummation and its importance in the case of the simultaneous
measurement, of gr and 7. In sec. the relevant parametric regimes and

'Some double-differential ingredients required at NNLL’ and N®*LL are already known [110].
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their respective factorizations are discussed. The combination of these various
regimes into a single cross section prediction is addressed in sec. [£-3]and the ob-
tained numerical predictions for the fully resummed, two-dimensional (g7, 7T)
spectrum, obtained at NNLL+NLO accuracy, can be found in sec. [4.4, The
material presented in this chapter reflects the research published in ref. |2].

4.1 Motivation

The increasing accuracy of measurements at the LHC places high demands on
the precision and versatility of theoretical predictions. Fixed-order perturba-
tion theory has proven to be a powerful tool to describe a large number of LHC
processes, provided the measurement is sufficiently inclusive. With increasing
data sets, however, more fine-grained measurements become possible and in-
creasingly differential quantities come into focus. These more exclusive cross
sections often involve several physical scales set by the hard interaction and the
differential measurements or cuts applied on the final state. When these scales
are widely separated, the perturbative series at each order is dominated by
logarithms of their ratios. The resummation of these logarithms to all orders
is crucial in order to arrive at the best possible predictions.

4.1.1 Methods of resummation

The resummation of the large logarithms that arise due to the separation of the
various relevant scales in scattering processes may be carried out either through
numerical or analytical means. Numerical methods that achieve resummation
for measurements sensitive to soft and collinear radiation are known as parton-
shower Monte Carlo event generators. These parton showers provide fully ex-
clusive final states so that in principle any desired measurements or cuts can be
imposed on the generated events. Existing implementations of parton showers
are only formally accurate at about leading-logarithmic level, depending on the
evolution variable of the shower, the specific observables under consideration
and other implementation detailﬂ Furthermore, estimating the perturbative
uncertainties of parton showers is challenging, which is in part due to their lim-
ited perturbative accuracy. Popular examples of parton-shower Monte Carlo
event generators include Pythia |112}/113|, Herwig [114-116]|, and Sherpa |117].

There are various analytic methods available for the higher-order resumma-
tion of infrared-sensitive observables. These include the Collins-Soper-Sterman

2A recent detailed analysis can be found in ref. [111].
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(CSS) formalism [45,(118]|119], seminumerical methods based on the coherent-
branching formalism [120-123], and methods using renormalization group evo-
lution in effective field theories of QCD, such as SCET, which is described in
detail in chap. [3] The common drawback of analytic resummation methods
is that they only apply after a sufficient amount of emissions have been inte-
grated over, which is why they have been primarily used for the resummation
of single-differential observables. Their crucial advantage is that they can be
systematically extended to higher orders, and theoretical uncertainties can be
addressed in a more reliable way.

4.1.2 Double-differential resummation

There has been much progress in extending analytic resummation methods to
cases involving multiple variables. One of the most well-known examples is the
joint resummation of transverse momentum gp and threshold (large z) loga-
rithms [1,[124H129] which will be the main focus of chap. 5] Other examples
include the combined resummation of g7 and small x [130], N-jettiness (or
jet mass) with dijet invariant masses [107,[131], two angularities [132.|133], jet
mass and jet radius |134], jet vetoes and jet rapidity |135,136], or threshold and
jet radius in inclusive jet production [137,|138]. Another well-understood case
is when an infrared-sensitive measurement is separated into its contributions
from mutually exclusive regions of phase space [96},98,(139|. Finally, different
infrared-sensitive measurements performed in different regions of phase space
may require the resummation of nonglobal logarithms [140-145|.

Most of these examples either involve different variables that effectively re-
solve different subsequent emissions, or involve a primary resummation vari-
able that is modified by an auxiliary measurement or constraint. In con-
trast, the methods developed in the current chapter are aimed at resolving
emissions at the same level by simultaneously measuring two independent,
infrared-sensitive observables. Extending analytic resummation to such gen-
uinely multi-dimensional resolution variables is of key theoretical concern, as
it allows for a more complete description of the emission pattern beyond LL,
effectively filling a gap between analytic resummation methods and parton
showers. So far, this has been achieved at NNLL for the case of simultane-
ously measuring two angularities in ete™ collisions |133].

4.1.3 Process and measurements

Although the framework developed in this chapter applies to any type of color-
singlet production at hadron colliders, the Drell-Yan process, pp — Z/v* —
¢+~ , will be considered for concreteness. Drell-Yan production was already
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discussed in sec. and a schematic diagram of the process can be found in
fig. [2.6] The corresponding cross section is taken to be differential in the total
invariant mass @) and rapidity Y of the lepton pair (or, in general, the color-
singlet final state), defined in egs. and respectively. In addition,
the process is subjected to the measurement of two distinct resolution variables.
One of the observables of interest is the total transverse momentumlﬂ qr of the
color-singlet final state. The other measured variable is O-jettiness 7 (also
known as beam thrust) [98,(99,(109}/146|, defined as

% - ki 2qp - ks
TE%:;min{ qQa , qZ?b } (4.1)

where the sum runs over all particles ¢ with momentum k; in the final state,
excluding the color-singlet final state. The massless reference momenta ¢, and
qp are given by

+Y
e
o = Lz n

in accordance with eq. . Different variations of O-jettiness exist, depend-
ing on the exact definition of the measure factors @), and Qp, which need to
obey Q.Qp» = Q2. Although all numerical results in the current chapter are
obtained using the leptonic definition @, = @ = Q, the developed framework
applies equally well to other definitions, so the measure factors will be kept
generic.

Since all lightcone components of soft degrees of freedom are small and ener-
getic particles with small transverse momenta must have either a small plus
or minus component, the minimum prescription eq. ensures that both
their contributions to O-jettiness are parametrically small. On the other hand,
the plus and minus components of energetic radiation with large transverse
momentum must both be sizable, so that the value of T is dominated by these
emissions. Requiring 7 to be small then ensures the absence of any energetic
radiation with large transverse momentum and can thus be used to veto central
jets. In contrast, an imposed cut on g7 will act as a general jet veto, making
no distinction between central and more forward jets.

and q = nt, (4.2)

Achieving the combined resummation in both ¢r and 7 is conceptually impor-
tant because these observables are prototypes for two large classes of infrared-
sensitive observables. The measurement of ¢r constrains the transverse mo-
mentum of initial-state radiation, while the measurement of 0-jettiness con-
strains its virtuality. These two types of observables give rise to different types

3Transverse with respect to the axis of the incoming proton beams.
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of logarithmic structures and each is described by a different version of SCET.
The measurement of 7 is correctly described by SCET}, while SCETy is the
appropriate theory to describe the gr measurement, as discussed in sec.
Beyond providing a prototype for combining resummations performed using
SCET; and SCETYy, the joint resummation of ¢ and 7 is also of direct phe-
nomenological interest. First of all, both are important variables individually.
The measurement of 7 in bins of gy [147] can probe the so-called underly-
ing event in hadron collisions, i.e. the interactions between the remnants of
the protons after the extraction of the partons that initiate the hard inter-
action. Furthermore, the Geneva Monte Carlo event generator [148}/149] uses
T as the underlying jet resolution variable for the event generation, achiev-
ing NNLL'+NNLO accuracy in 7 in conjunction with fully showered and
hadronized events. While other observables, such as ¢r, benefit from the un-
derlying high resummation order, they do not enjoy the same level of formal
accuracy in Geneva as 7 itself. The joint resummation of 7 and ¢r to a given
order enables extending the event generation in Geneva to also be accurate in
qr to the same order.

The double-differential factorization for transverse momentum and 0-jettiness
was first considered in ref. [108|. There the regions of phase space described by
SCETT and SCETyy were identified, together with the appropriate intermediate
effective theory SCET.., described in sec. that connects them. The goal
of this chapter is to develop an explicit matching procedure that combines the
three different theories, SCET, SCET ., and SCETyy, such that the resumma-
tion structure of each is recovered in its respective region of phase space. As
an additional condition, the method is required to enable the recovery of the
single-differential resummation in either one variable upon integration over the
other.

4.2 Resummation framework

The relative contribution of the various degrees of freedom to both ¢r and T
depends on the specific hierarchy between these imposed measurements. Each
hierarchy corresponds to a distinct region in phase space and in each of these
regions the cross section can be factorized in a different way. There are two
regimes in which only logarithms involving one of the two measurements are
resummed, while the other observable acts as an auxiliary variable, inducing
no additional logarithms. The third relevant regime is described by two dis-
tinct expansion parameters and its factorization formula can be used to resum
logarithms of both types of measurements.
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Figure 4.1 The relevant parametric regimes in the (¢p,7) plane and their
SCET descriptions. The solid lines correspond to the phase-space boundaries

gr = T (green) and qr = /QT (blue).

Extending the validity of these factorizations towards large values of the mea-
surements requires matching them to fixed-order QCD results. Correctly de-
scribing this region entails turning off the resummation, which can be achieved
through the use of profile scales. Certain variations of these profile scales and
the common scale towards which all ingredients are evolved then allows one
to estimate perturbative uncertainties due to both the resummation procedure
and missing higher-order contributions.

4.2.1 Overview of parametric regimes

The various momentum scales relevant to the dynamical behavior of the initial-
state radiation (ISR) are fixed through the simultaneous measurement of gr
and 7. The scale of the hard interaction is set by the invariant mass @ > Aqcp
of the Drell-Yan lepton pair. The typical transverse momentum of emissions
that recoil against the lepton pair is set by the measurement of gr < ). Soft
or ultrasoft emissions can contribute to the measurement of 7 <« () at cen-
tral rapidities (]Y| < Yiax) via either of the projections onto ¢4 and ¢’ in
eq. . The homogeneous scaling of their momentum components then im-
plies that their characteristic transverse momentum is p; ~ 7. In addition,
collinear radiation with a typical energy p? ~ @Q can contribute to 7 through its
small momentum component without upsetting the hierarchy 7 < Q). These
collinear emissions then have a typical transverse momentum p.; ~ /QT .
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The factorization and resummation structure of the cross section differential
in both gr and T depends on the parametric hierarchy between these scales.
There are three relevant parametric regimes [108|, which are illustrated in

fig.

In the first (blue) regime, representing the parametric hierarchy 7 < qp ~
VQT, ultrasoft emissions with transverse momentum p,s; ~ 7 and collinear
emissions with transverse momentum p., ~ /QT both contribute to the T
measurement. Due to the parametric relation p,s| < p.1, the gr measurement
is determined solely by collinear emissions. The appropriate EFT description
for this regime is SCET}. It has the same renormalization group (RG) structure
as the single-differential T spectrum, with gr acting as an auxiliary variable.
This SCET] regime is discussed in more detail in sec. [£.2.2]

The opposite (green) regime corresponds to the hierarchy 7 ~ qr < /QT,
in which both soft and collinear emissions have transverse momentum pg; ~
Pel ~ qr and thus contribute to the gr measurement. On the other hand, only
soft radiation at central rapidities contributes to 7, while the contribution from
collinear radiation is suppressed. This regime is described by SCETy, whose
RG structure is analogous to that of the single-differential g7 spectrum, with
T as the auxiliary variable. This SCETq regime is discussed in more detail in
sec. [£.2.3]

The intermediate (red) regime in the “bulk”, T < gr < /QT, shares features
with both “boundary” cases. As in the SCET regime, central soft radiation
contributes to 7, while, as in the SCETy regime, collinear radiation con-
tributes to gp. This regime is described by two distinct expansion parameters,
which gives rise to collinear-soft degrees of freedom that contribute to both
measurements [108|, as described in sec. The relevant EFT description
is provided by SCET, which in this case shares elements with both SCET}
and SCETy;. The SCET, regime and its relation to the regimes on the two
boundaries are discussed in sec. £.2.4

4.2.2 The SCET; regime

In this regime, characterized by the hierarchy T < qr ~ +/Q7T, both ultrasoft
and collinear modes are constrained by 7, while only collinear modes can
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contribute to gp. The scaling of the relevant modes in this regime reads

n-collinear: ph (7' Q.\/QT ) ( o) QT),
.
n-collinear: ph (Q T.VQT) ~ ) ( 6T )

ultrasoft: ply ~ (T,7,T). (4.3)

These degrees of freedom lead to a factorization formula for the cross section
given by [99,/150|

dot
) S— e At [ d2Fy Bi(ta, 2a, ka,
dQdY dgrdT ¥ Q“/ / Ta Ko, 1)

X /dtb /d kb B](tlhxb’ kba ,U’) /dk S”(k:,,u)
x 8(gr — Ko+ Fol) 6 (T = 2= = - — B, (a4)
which holds up to power corrections of the form E|

do B dot T ¢ T?
dequTdT_dequTdT[ +O<Q Q2’>]' (4.5)

The hard function H;;(Q, p) describes the short-distance scattering that pro-
duces the lepton pair through the off-shell v* or Z and is equal to the square
of the matching coefficient determined in sec. multiplied by the Born
cross section given in eq. . In addition to @, it depends on the partonic
channel encoded by the subscripts ¢ and j, which are implicitly summed over
all relevant combinations of quark and antiquark flavors on the right-hand side
of eq. .

The beam functions B;(t, z, kr, ) describe the extraction of a quark (or anti-
quark) from the proton with momentum fraction x, virtuality ¢, and transverse
momentum k. They are a more differential version of the beam functions de-
scribed in eq. (3.182)). The momentum fractions are directly related to @ and
Y as given in eq. (2.39). The ¢t and kT encode the contribution of the collinear
radiation to the measurement of 7 and gr respectively, as captured by the
measurement delta-functions on the last line of eq. . For t ~ k% > A(QQCD,
these beam functions can be matched onto the PDFs [99/|100L|{150] through

x Adep Moep
thkT, Z/ thsz, )fj<z,u)[1+0( £ R )}

(4.6)

4Lorentz invariance suggests that power corrections in gr always appear in terms of ¢2.
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The soft function S;;(k, 1) was already mentioned in sec. It encodes the
contribution from soft radiation to the 0-jettiness measurement and depends
on the color charge of the colliding partons. Explicit expressions for the hard,
beam and soft functions can be found up to 1-loop accuracy in app. B}

The factorization in eq. (4.4) separates the physics at the canonical SCET
scales given by

Wy~ Q, wp ~ VAT, ps~T. (4.7)

By evaluating all the perturbative ingredients at their respective natural scales
and evolving them to a common scale, all logarithms of 7/Q ~ uf/ub, ~

(1l /1hy)? ~ (u/pl)? are resummed.

The hard and soft function in eq. are the same as those appearing in the
single-differential 7 spectrum and do not depend on ¢r. The RG consistency
of the cross section then implies that the RGE of the double-differential beam
functions must also be independent of g7, such that the overall RG structure of
the cross section is equivalent to the single-differential case. This leads to the
conclusion that gr takes the role of an auxiliary measurement in the SCET}
resummation and no large logarithms of g will appear in the cross section as
long as the parametric relation qr ~ /QT is satisfied.

The cross section in eq. nevertheless provides a nontrivial and genuinely
double-differential extension of the single-differential case. This is already vis-
ible from the structure of the power corrections in eq. . Furthermore, the
gr dependence does affect and is affected by the T resummation because the
double-differential beam functions enter in a convolution with the beam and
soft evolution functions. Physically, they account for the total gr recoil from
all collinear emissions that are being resummed in 7.

The factorization of the double-differential spectrum in eq. , and the fac-
torization formulas in the following sections, do not account for effects from
Glauber gluon exchanges, in which spectator partons interact with one an-
other. These exchanges can connect partons from different hadrons and may
spoil factorization. However, their perturbative contribution is expected to
enter only at O(a?) (corresponding to N*LL/) [151,[152|, which is well beyond
the precision of the currently available perturbative ingredients. If so desired,
they may be included using the Glauber operator framework from ref. |153].

Due to the power corrections shown in eq. (4.5)), the factorization theorem in
eq. (@.4) breaks down for large T ~ ¢2./Q ~ Q. To extend the description of
the cross section to be valid for these large values of the measured variables,
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Figure 4.2 Left: Comparison of singular and nonsingular contributions to the
fixed O(a;) double spectrum as a function of 7, with ¢gr = v/QT kept fixed.
The solid red line shows the full QCD result and the dashed blue line the singu-
lar contributions contained in the SCET} result eq. . The dotted green line
shows their difference, which corresponds to the power corrections indicated
in eq. . Right: SCET] profile scales and their associated variations. The
dotted lines (and the yellow band) indicate common up,/down variations of
and ply from varying . The dashed lines (and the green band) are variations
of 8 that only act on ,u%. In both plots, the thin vertical lines correspond to
the transition points (xg, 1,2, x3) given in the text.

the power corrections have to be reinstated. This can be achieved by matching
to the full fixed-order result using a standard additive matching given by
dO’fnatCh — dO‘I‘HI + [do‘FO — dO’[] . (48)
Here the abbreviation do = do/(dQ dY dgr dT) has been employed and doro
denotes the fixed-order cross sectionf’| in full QCD. The subscripts on the
scales on the right-hand side indicate whether doj is RG evolved using the
SCETY resummation scales u! (whose precise definitions are discussed below
in eq. ), or whether it is evaluated with all scales set to a common fixed-
order scale uro.
By construction, doy evaluated at a common scale upo exactly reproduces the
singular limit of dopo, such that the term in square brackets in eq. is
a purely nonsingular power correction at small 7 < @, which can simply
be added to the resummed cross section. This is checked explicitly at fixed
O(as) in the left panel of fig. The full QCD result (solid red) is compared
to the SCETY singular limit (dashed blue) as a function of 7, while keeping
gr = VQT fixed to ensure that all classes of power corrections in eq.

5The cross section to a fixed, predetermined order in o, i.e. without any resummation.
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uniformly vanish as 7 — 0. This is indeed satisfied, as the difference (dotted
green) vanishes like a power.

For T ~ @, the SCETy singular contribution and the power corrections are
of the same size, implying that the resummation must be turned off to not
upset the O(1) cancellation between them and correctly reproduce the fixed-
order result. This is commonly achieved by using profile scales [103}|154],
i.e. by having ply = ph(T) and pk = pk(T) transition from their canonical
values from eq. at small 7 to a common high scale for large 7. This is
schematically represented by

s (T) — ply = pro for T — Q,
ps(T) — py =pro  for T — Q. (4.9)

As a result, the first and third term in eq. (4.8 exactly cancel in this limit, so
the matched result reproduces dopg as desired.

Due to the equivalent RG structure, the profile scales used for the single-
differential structure may be employed in the double-differential case as well.
The profile scales developed for the closely related case of SCET-like jet vetoes
in ref. |[155] and used for the single-differential 7" resummation in Geneva |149|
are given by

1 = 1FO fiun (ZQ-)’ Iy = pFo [frlun(gﬂ 2 and  py = pro,

(4.10)
with the profile function f., given by [156]
ac()(l—l—%) r < 2xq,
z 20 <z < 71,
— T — _ 2

1— (2—z1 —x2)(z—x3)2
2(x3—x1)(x3—2x2)

1 T3 < T.

T2 < x < T3,

Based on fig. the transition points governing the turn-off towards the fixed-
order regime x ~ 1 are chosen as (x1,x2,z3) = (0.2,0.5,0.8). In addition,
eq. turns off the resummation in the nonperturbative region = < 2x,
where g = 1GeV/Q is chosen. For upg itself, the central scale upo = @ is
used. The central scale choices are illustrated as solid lines in the right panel
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of fig.
The perturbative uncertainties in dafnat‘:h are estimated by considering two

different sources. The first uncertainty contribution, Ar, is inherent to the
SCET] resummation. It is estimated by varying the individual SCET] scales
while keeping upo fixed, effectively probing the tower of higher-order loga-
rithms that are being resummed. For this, the profile scale variations [155|

defined by
Jis = HFO [fvary<g)r ]“I““(Z)-) ,

iy = MFO{ [fvary(gﬂa }un<g) }1/2_5, (4.12)

are used. Here a = 8 = 0 corresponds to the central scale choice in eq. (4.10))
and the variation factor is defined as

2(1 — 22 /23) 0<z<uz3/2,
Jvary(®) = 1+ 2(1 —x/x3)? 23/2< 1 <13, (4.13)
1 r3 < T.

It approaches a factor of two in the resummation region at small x and reduces
to unity toward the fixed-order regime at x = x3, where the resummation is
turned off. The estimate for Aj is obtained by computing dol . . for each of
the four profile scale variations

(@, 8) = {(+1,0),(=1,0),(0,+1/6),(0,—1/6) } , (4.14)

and taking the maximum absolute deviation from the central result. These
variations are also indicated in the right panel of fig. No explicit vari-
ations of the transition points are performed since they are found to have a
subdominant effect.

For the second uncertainty contribution, Apg, common variations of upo up
and down by a factor of two in all ingredients of eq. are considered.
Since ppo enters in all p! scales as a common overall factor, each inherits the
same variation, which leaves all resummed logarithms invariant. Hence, the
pro variation effectively probes the effect of missing higher-order corrections

in the fixed-order contributions. The final uncertainty estimate for da{nateh is
obtained by adding both contributions in quadrature,
1/2
A‘Eotad =A@ AFO = (A% + A%o) / . (4.15)

The matched result dafnamh in eq. (4.8]) on its own constitutes a prediction for
the double-differential spectrum that covers the part of phase space described
by the parametric relation g ~ /QT .
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4.2.3 The SCET; regime

In this regime, characterized by the hierarchy T ~ g7 < +/QT, both soft and
collinear emissions are constrained by ¢p. Only soft radiation is constrained
by the 7 measurement, while collinear radiation remains unaffected by it. The
relevant modes in this regime scale as

2
n-collinear: pF ~ (%,Q,QT),

2
n-collinear: ph ~ (Qy%,QT)a

ultrasoft:  pli, ~ (g7, qr,qr) ~ (T, T, 7). (4.16)
In this case, the cross section factorizes as [108§]

doqp

o = Hij dQEaBi a Ea dQE B E
dQdY dgr dT J(Q;,U)/ (w y Ras y)/ b j(wb, by Ly U)

X /dk /dQEs Sij(k7];87u7y)

x 0(qr — |ka + ko + ks|) 6 (T — k) . (4.17)
This factorization formula receives power corrections of the form
do dO’H T qr
= 4.18
d0dY dgr dT dequTdT[ +O(Q TQ) (4.18)

The hard function H;;(Q, p) is the same as in eq. (4.4). The beam functions
Bi(w, k7, pu,v) are the same transverse-momentum-dependent beam functions
as in the single-differential g spectrum. The large momentum components w

in eq. (4.17)) are given by
=QetY = 2,Fem and wp = Qe Y = 2pEem (4.19)

and the trivial dependence of the beam function on FE.p,, is suppressed. For
k‘2 > ACD’ the beam functions satisfy a matching relation similar to the one

in eq. (4.6) [49/99L/105]/157-160], given by
A2
Bi(w,/zT,u, Z/ 7Iz]WkTaZ,Ua )f]( )|:1+O< 2ZCD):|
em’ T
(4.20)

The double-differential soft function S;;(k, ES, u,v) encodes the contribution
of soft radiation to both 7 and gp. The explicit expressions of the various
perturbative ingredients are gathered in app. [B]
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The RG consistency of the cross section implies that both the g and v RGE
of the double-differential soft function do not depend on 7. Hence, the over-
all RG structure of the double-differential cross section is equivalent to the
single-differential ¢7 spectrum, with 7 acting as an auxiliary measurement.
The factorization in eq. separates the physics at the canonical SCETy;
invariant-mass and rapidity scales

g~ Q, (s~ qr, (g ~qr,
v ~Q, v ~qr. (4.21)

It has been known for a long time [161] that directly resumming the logarithms
of gr/@Q in momentum space is challenging due to the vectorial nature of g,
though by now approaches for doing so exist [162,163|. The same complications
arise here for the double-differential spectrum. This issue can be bypassed, is as
commonly done, by carrying out the resummation in a conjugate space known
as impact parameter (br) space [94,95,157,[164]. The Fourier transform from
dr to l;T turns the vectorial convolutions in eq. into simple products at
br = \I;T] The canonical SCETyy scales in bp-space are then given by

g~ Q, (s ~ bo/br (g ~ bo /by,
Vg ~Q, 1/}91 ~ bo/br, (4.22)

where the inclusion of by = 2e™ 72 ~ 1.12291 is conventional.

By evaluating the functions in the factorization theorem at their canonical
scales and evolving them to a common scale in both p and v, all logarithms
of (bo/br)/Q ~ up/umg ~ ps/wg ~ vs/vp are resummed. In ref. [163] it was
shown that the canonical resummation in by space is in fact equivalent to the
exact solution of the RGE in momentum space, except for the fact that one
effectively uses a shifted set of finite terms in the boundary conditions (similar
to the difference between renormalization schemes).

A characteristic feature of the resummed g7 spectrum is that the rapidity
anomalous dimension v/, depends on the scale p through ay and is thus itself
perturbatively renormalized at its intrinsic scale g, so that for scales u # ug
it requires resummation [105|. Solving its RGE leads to the expression

YL (br, 1) = =4 (o, 1) + 71 po (b7, 10) + Fhynp (b7) » (4.23)

where all logarithms of u/pg are resummed inside the evolution kernel 77%
defined in eq. (3.193). The canonical choice of pg that eliminates all large
logarithms in the fixed-order boundary condition ¥, ro (b7, po) is given by

Mo ~ bo/bT . (4.24)
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Figure 4.3 Left: Comparison of singular and nonsingular contributions to
the fixed O(as) double spectrum as a function of gy, with 7 = ¢p kept fixed.
The solid red line shows the full QCD result and the dashed blue line the
singular contributions contained in the SCETy result in eq. . The dotted
green line shows their difference, which corresponds to the power corrections
indicated in eq. . The thin vertical lines correspond to the transition
points (z1,x2,x3) given in the text. Right: SCET hybrid profile scales as a
function of by /br for representative values of gp. The inset shows the behavior
of the profile in the nonperturbative region by/br ~ Aqcp, where the dashed
orange line indicates the canonical value of ,u%, ug and VISI.

By choosing pg as a function of by such that it freezes out to a perturbative
value at large by, the Landau pole at by ~ 1/Aqcp is avoided. The mis-
match to the full result that this leads to can in principle be captured by a
nonperturbative model %,np(bT)a which can be extracted from experimental
measurements at small gr. Recently, it was shown that it could also be deter-
mined from lattice calculations [165]. For the purpose of this chapter it will
be set to zero for simplicity. The explicit scale choice made for ug is given in
eq. (4.27)).

The description of the cross section in eq. (4.17)) can be extended to the fixed-
order region qr ~ T ~ @ through an additive matching given by

dofpateh — dan} un T [dUFo - dUH] (4.25)

HFO ’

in analogy with the SCET} case in eq. . Here the subscript p'' indicates
that dopp is evaluated at the SCET resummation scales ,uH (given below in
eq. ) in by space, and then numerically Fourier transformed back to mo-
mentum space. The subscript pupo indicates that it is instead evaluated at
a common fixed-order scale prpo, which can be done directly in momentum
space. Analogous to the discussion for SCET}, the term in square brackets in
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eq. (4.25) is by construction a purely nonsingular power correction for small
gr. This is illustrated in the left panel of fig. [£.3] which shows that the differ-
ence (green dotted) between the full QCD result (solid red) and the SCETy;
singular result (dashed blue) indeed vanishes like a power as gr — 0 along the
line of fixed 7 = qr.

Approaching gr ~ T ~ @, the ¢gr resummation must again be turned off to
ensure that the delicate cancellations between singular and nonsingular con-
tributions occur and to properly recover the correct fixed-order result for the
spectrum. This can be achieved by constructing hybrid profile scales that de-
pend on both by and g7, and undergo a continuous deformation away from the
canonical by scales in eq. as a function of the target gp value. This is
schematically represented by

w slar br) — py =pro  for  qr — Q,

VJIBI,S(QT,bT) — py = pro for qar — Q. (4.26)

The scale pg does not need to asymptote to urpo towards large gr because its
effect on the matched result is already turned off as l/gI — ug. In this limit, the
first and last term in eq. exactly cancel, leaving the fixed-order result
doro. A set of central scales that achieves the conditions in eq. in a
relatively simple way is given by

N}'II = Vg = HKFO,

m_ I I n (4r bo )
Hp = Hg Vg HFO run( Q ) b*(bT) Q )

bo
= e 4.27
Ho = 3% o) ( )
where fIl is a hybrid profile function given by
rIlgn(xa y) =1+ grun(x>(y — 1) . (428)

This function controls the amount of resummation by adjusting the slope of
the scales in by space as a function of ¢p/Q via the function

1 O <x S xl y
R G Y L
grun(:c) = (;1_2;3%)(13—331) (4‘29)
(ws—a1)(ws—72) xg <x <3,
0 r3 < x.

As a result, for gr < x1@Q the slope is equal to unity, yielding the canonical
resummation, while for gr > x3@Q, the slope vanishes so the resummation is
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fully turned off. In between, the slope smoothly transitions from one to zero,
which transitions the resummation from being canonical to being turned off.
This is illustrated in the right panel of fig. The same transition points
as for SCET] are used, i.e. (z1,x2,23) = (0.2,0.5,0.8), which is supported
by fig. [£.3] This approach differs from the hybrid profile scales introduced in
ref. [166]. While the latter also satisfy the requirements in eq. , they do
not reproduce the exact canonical bp-space scales for ¢r < ) because they
introduce a profile shape directly in by space.

As discussed below eq. , a nonperturbative prescription is required when
the canonical value of g (or Mg, or ,ug) approaches the Landau pole at by /bp ~
Aqcp. This is achieved by evaluating the hybrid scales at b*(br), defined by

br
b (bp) = —— 4.30
) 1+ b7 /bmax )

rather than at by itself. Here by/bmax 2 Aqcp ensures that all scales are
canonical for small by ~ b*, but remain perturbative for large by where b* —
bmax, as shown in the inset in the right panel of fig. In line with the choice
of nonperturbative turn-off parameter in the SCET| case, the value

bo/bumax = 1 GeV (4.31)

is adopted. The functional form of eq. is the same as in the standard
b* prescription [95|164], although any other functional form with the same
asymptotic behavior is also viable. It must be stressed, however, that b* in the
current setup only affects the scales, so it essentially serves the same purpose
as the zg nonperturbative cutoff in the SCETT scales in eq. . By contrast,
the standard b* prescription corresponds to a global replacement of by by b*,
including the measurement itself. For the single-differential g7 spectrum, this
global replacement induces power corrections of O(b% /b2 ) that scale like a
generic nonperturbative contribution. While these might complicate the ex-
traction of nonperturbative model parameters from data |167], they are not a
critical issue.

For the double-differential case, however, the standard b* prescription does in
fact not work. This is because substituting b* for by in the physical measure-
ment, at least at fixed-order, renders Fourier integrals of the double differential
SCETy; soft function divergent. This can be seen from eqgs. ) and (B.37] -,
which only depend on z = bpT. Substituting by — b* makes them asymptote
to a constant for any 7, upsetting their required asymptotic behavior ~ 1/z2.
The resummation uncertainties for damamh are estimated by adopting the set
of profile scale variations introduced for the SCETy-like jet veto in ref. [156].
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Figure 4.4 The single-differential ¢r spectrum at NLL (blue) and
NNLL+NLO (red with orange band), using the ¢p resummation method de-
scribed in the text. The bands indicate A @ Apo. In the right panel, the
uncertainties are shown as percent differences relative to the central result at
each order.

They are given by

b = o [ ()] 188, (5 ).

o = o [fons ()] 10 (5 55)-

o= vo [fon ()] ™ (G )

VJIBI = MFO fvary (g) vVBa (4.32)

where each of the four variation exponents can be v; = {+1,0,—1}, and fyary
was given in eq. (4.13). The central scale choice corresponds to

(UusvvllsvquavVB) = (0707070) b (433)

and there are in principle 80 possible different combinations of the v;. Since the
arguments of the resummed logarithms are ratios of scales, some combinations
of scale variations will lead to variations of these arguments that are larger than
a factor of two, and should therefore be excluded [156]. After dropping these
combinations, only 36 different scale variations for the SCET1 regime are left.
To probe the uncertainty in the nonperturbative prescription, two independent
variations of by/bmax = {0.5GeV,2GeV} are added to these, after which the
SCETyr resummation uncertainty Ay is determined as the maximum absolute
deviation from the central result among all 38 variations. Variations of the
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transition points are not considered since their contribution is again found to
be subdominant.

As for SCET], Apo is estimated by overall variations of upo by a factor of
two, which is inherited by all the SCETyy scales, so it probes the fixed-order
uncertainties while leaving the resummed logarithms invariant. The total un-

certainty estimate for dalnfa“h is then obtained as

Afbal = At & Aro - (4.34)

The matched result daﬁ‘a“h in eq. (4.25) provides a prediction for the double-
differential spectrum that covers the part of phase space where 7 ~ qr.

Since this is a novel method of performing the ¢r resummation, it makes sense
to inspect its impact on the single-differential g spectrum as well. In fig. [1.4]
the gp spectrum at both NNLL+NLO and NLL are shown, both with the
uncertainties estimated as described above. The results look very reasonable,
providing an indication that the ¢r resummation procedure described above
performs as intended. Note that there is a slight pinch in the uncertainty bands
around gr = 15 GeV, indicating that the uncertainties there are likely a bit
underestimated. This is an artifact of scale variations that is not unusual to
be seen in resummed spectrum predictions.

4.2.4 The SCET, regime

This regime is characterized by the hierarchy 7 < ¢r < +/QT and in-
volves two distinct expansion parameters, leading to intermediate collinear-soft
modes. As described in sec. [3.10] these collinear-soft modes contribute to both
the gr and the 7 measurement, which uniquely fixes their scaling. Central soft
modes only contribute to 7 as in SCETy, while the energetic collinear modes
only contribute to ¢y as in SCET;. The modes in this regime then scale as

2
n-collinear: ph ~ (ql,Q7QT),
n-collinear-soft: ph, ~ (’T ,

n-collinear: ph ~ (Q,

2
n-collinear-soft: pk, ~ (q?T,Ta qr

ultrasoft: plt, ~ (T,7,7T). (4.35)

The collinear-soft modes have the same virtuality as the collinear modes, p2, ~
P2~ q%, but have a more central rapidity el ~ grp /T, which is small compared
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to the rapidity el¥ ~ Q/qr of the collinear modes. Hence, the two have a
SCETTyr-like relation and become a single collinear mode in the SCET limit
qr ~ v/QT. At the same time, the collinear-soft and soft modes have a SCET-
like relation, being separated in virtuality, and become a single soft mode in
the SCETy limit 7 ~ gp. In this way, SCET, is able to smoothly connect
the SCET! and SCETy regimes. This is similar to the collinear-soft mode
originally introduced in ref. [107], which instead connected two SCET] theories.
The cross section in SCET . factorizes as [108]

dos 2 . o7 :
—:H’L ) dkaBi avkaa ’ d“ky, B; 7k7 ’
dequTdT J(Q N)/ (w MV)/ b ](wb b/’LV)
X /dﬁ;f /dQZa,%(Kj,Za,u, V) /cwb— /dQEby,-(e;,Zb,u,u)
x /dk Sij(ky 12) 8 (g — |ka + Kb + €4 + Gy])
W KJF wa_
xO(T — 2% -2t k), 4.36
( Qa Qb ) ( )
which holds up to power corrections
do do g% T2
= 1+40(=,—5)]|- 4.37
dQdY dgrdT _ dQdY dgrdT [ + (TQ’ q%) (4.37)

The hard function is again the same as before. The beam functions are the
gr-dependent beam functions from SCETyy, while the soft function is the
T-dependent soft function from SCET;. The new ingredient is the double-
differential collinear-soft function .7;(k, ET, i, v), which encodes the contribu-
tions of the collinear-soft modes to both gy and 7. Like the soft function in
eq. (3.180)), it is defined as a matrix element of Eikonal Wilson lines, but like
the beam functions, it describes radiation that goes into a definite hemisphere.
The explicit expression of this collinear-soft function to 1-loop order can be

found in app.

The factorization formula in eq. can be interpreted as a refactorization
of either of the double-differential SCETy and SCETyy cross sections [108|,
which precisely reflects the relation between the degrees of freedom described
above. On the one hand, the SCET| double-differential beam function can be
expanded in the SCET limit g7 < /QT, upon which it factorizes into the
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SCET|1 beam function and the collinear-soft function as

Bi(Wkaw/ECma ETa /’L) = /d2ZT B’i(w7 ET - ZT? , V) ‘%(kv ZT? 12 V)

X [1 n O(f;i)] . (4.38)

The dependence on the rapidity scale v of the two terms on the right-hand side
must cancel, while their p-dependence must combine into that of the left-hand
side. This allows the derivation of the RGEs for the collinear-soft function as
given in egs. ) and -

Similarly, expandmg the SCETy; double-differential soft function in the SCET
limit 7 < ¢r, it factorizes into the SCET} soft function and the two n-collinear-
soft and n-collinear-soft functions as

Sij(k, ko, i, v) /d%/ At 0k by, ) /deb— iy kr — Up, 1, v)

2

% Sij (k _ wél;j - wgb ) {1 + O(ZQ )] . (4.39)

Since the left-hand side does not depend on w,p and @, p, this dependence
must also drop out on the right-hand side, and therefore in the whole SCET
cross section in eq. . This can be achieved explicitly by recalling that
Wawp = Qu@p = Q? and rewriting

. + ~
d£+’y<€+ Ea,,u, )dgb_*%(eb_vebauay)é(T_ — — 7—k>

= dk;_ %(k;aza’ M? QU‘V
Wa

A S
" N (T — kit —ky — k)
= dk} Fi(k$ Lo, pv) dky F5(ky Oy, 11, v) 6(T — ki — ky — k), (4.40)

where in the first step, a change of variables from Efb to kT = welt/Q, and

k, = wyl, /Qy has been made. In the second step, an evolution in rapidity
from v,y = Qqp V/wap back to a common v at fixed p has been performed, for
which the rapidity evolution factors exactly cancel because

ln( . ) +In (V) - m(gf:) ~0. (4.41)

The SCET factorization in eq. (4.36]) fully disentangles the physics at the
canonical SCET scales given by:

ph~Q, wh~ar, wh o~ aqr, ps~T,
Vg ~Q, V} ~ q%/’T. (4.42)
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As for SCETYy, the gr resummation is performed in impact parameter space,
transforming the vectorial convolutions in eq. (4.36) into simple products. In
br space, the canonical SCET scales read

MJ]'—FINQa MENbO/bTa #}NbO/bTa #;NTa
vh~Q, vl ~ (bo/br)?*/T . (4.43)

By evaluating all functions at their natural scales and evolving them to common
scales, all logarithms of large ratios of the scales in the problem, given by

(bo/br)? v T ub
QT vy bo/br  ul,’
bo /b + + +
O/Twu—fwu—f and Iw'u—i, (4.44)
Q Frg Mg Q  uy

are resummed. The logarithms of the first ratio appear in the double-differential
SCET; beam function in the limit ¢y < /QT, and are resummed in SCET ;.
by the additional v evolution in the refactorization in eq. . Similarly,
logarithms of the second ratio appear in the double-differential SCET7; soft
function in the limit 7 < g, and are resummed in SCET, by the additional

p evolution in eq. (4.39).

4.2.5 Outer space

There are two additional regions of phase-space that are left blank in fig. [4.1]
The region above the SCETY regime is characterized by the hierarchy ¢r <
T < /QT, while the region to the right of the SCET] regime corresponds to
T < /QT < qr. Both of these regions are power suppressed.

As discussed in sec. [4.2.3] only soft radiation contributes to the 7 measurement
in SCETyy, as the collinear contributions are power suppressed. However, in
the regime in which gr < T, even the soft contribution to 7 becomes power
suppressed. In this hierarchy, a single real emission at fixed O(as) is kinemati-
cally impossible both in SCETyy as well as in full QCD. Soft emissions at higher
orders can populate this region of phase space as long they are approximately
back-to-back such that their transverse momenta largely cancel. The cross
section in this regime is then power suppressed by (’)(q% /T?). Equivalently,
expanding the SCETy; factorization of the double-differential cross section in
the limit g7 < T reduces it to the single-differential ¢ spectrum with an over-
all 0(7), which is exploited in the numerical implementation cf. eq. .
Physically, this means that by integrating the double spectrum in SCETy; up
to some Teut > qr, the single-differential g7 spectrum is recovered, while the



4.3. Matching effective theories 119

effect of the cut is power suppressed in this limit. Note that there is also a
contribution from double-parton scattering [168-171] in this region, where the
two jets produced in the second interaction alongside the Z boson are nat-
urally back-to-back and not power suppressed. This contribution is still not
expected to exceed the single-parton scattering contribution by much because
double-parton scattering itself is power suppressed by O(A?QCD /T?), with T
setting the scale of the second hard scattering producing the back-to-back jets.

Similarly, in the limit v/Q7 < g7, even the contribution from collinear radia-
tion to gr becomes power suppressed in SCET] (cf. eq. ) and at leading
power, the single-differential 7 spectrum with an overall d(¢r) is recovered.
An additional subtlety for \/QT < qr is that very energetic forward radiation
with energy ~ ¢%/7 can theoretically contribute [108], pushing the hard scale
up to q% /T > Q. However, the cross section in this kinematic configuration
is very strongly suppressed by the PDFs; allowing for its description at fixed-
order in this framework.

The above analysis justifies focusing on the shaded regions of phase space in
fig. 1.1}, corresponding to the main SCET}, SCETy, and SCET . regimes.

4.3 Matching effective theories

The various factorization formulas described in the previous section need to
be matched to each other and the fixed-order result in order to obtain a single
expression for the cross section differential in both gy and 7. Since the interme-
diate regime contains an additional expansion with respect to both boundary
regimes, matching the former to the latter can be done in a way analogous
to the matching of the SCET; or SCETy; factorizations to the fixed-order in
eqgs. and (4.25)).

The SCET. factorization formula describing the bulk region in phase space
reduces to the SCET; and SCETy; factorizations in the respective character-
istic kinematical regions. Most of the canonical SCET, scales, however, do
not agree with the canonical scales of both boundary theories. The canonical
rapidity scale of the collinear-soft function is even different from both corre-
sponding canonical boundary scales. To remedy this, profile scales are needed
that pick out the correct canonical scale in each region according to the hier-
archy between T and gp (or its conjugate by). Between the canonical values,
the profile scales must then ensure a smooth interpolation.

By picking all canonical scales in terms of the profile functions defined in
eqs. and , turning off the resummation towards the fixed-order
region is automatically included. This method ensures that any scale varia-
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Figure 4.5 Venn diagram of power corrections to the factorized double-
differential spectrum. SCET} (blue) and SCETy; (green) each capture a set of
power corrections that is expanded away in the SCET . factorization (red) and
the opposite boundary regime. A third class of power corrections to the over-
all soft-collinear limit is captured by the fixed-order calculation in full QCD

(gray).

tions performed for the boundary theories will automatically propagate into
the matched cross section. In addition to these inherited uncertainties, the
points at which the interpolated profile scales initiate and end the transition
from one canonical scale to the next are also arbitrary to some extent. To
assess this uncertainty in the matching procedure, the transition points of the
interpolation are varied as well, yielding an additional contribution to the total
uncertainty.

4.3.1 Structure of power corrections

An important feature of the EFT setup described in the previous section is
that the factorized cross section in SCET differs from the ones in SCETT and
SCETTy; only by a subset of the power corrections it receives relative to the full
QCD result, so

doy B doy ﬁ
dQdY dgrdT _ dQdY dgrdT [l + O(TQ) :
dor B doy ﬁ
dQdY dgrdT _ dQdY dgrdT [1 + O(q% )] (4.45)

This is illustrated in fig. and follows from comparing eq. (4.37) to eq. (4.5))
and eq. (4.18]), respectively. Crucially, eq. (4.45)) also holds when the cross

sections are evaluated at a common (not necessarily fixed-order) scale. For
example, both o1 and o share a logarithmic singularity with respect to 7/Q,
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Figure 4.6 Singular/nonsingular comparison between SCET| and SCET at
NNLL (only resumming logs of 7) as a function of gr for fixed T = 5GeV
(left) and as a function of T for fixed g7 = 15 GeV (right). The solid red lines
show the full SCET} result including resummation. The dashed blue lines show
the corresponding SCET . singular limit with only SCET] resummation. The
dotted green lines show their difference, corresponding to the power corrections
indicated in eq. . The thin vertical lines indicate the choice of transition
points (a1, ae,as) with respect to the regime parameter a (upper horizontal
axis), which will be discussed in sec. m

which can be resummed by running between the scales of the hard, soft, and
(refactorized) beam functions. In SCET., this amounts to setting the p*
scales to be equal to their u! counterparts as

1 I
pp=my=pp, vh=vi=pro and  p§=pg,  (446)
such that any large logarithms inside the (refactorized) beam function in
eq. (4.38) are treated at fixed-order. The notation da+| ; is used to indi-
cate that doy is evaluated at scales that satlsfy eq - A natural way to
judge the size of the power corrections in eq. is then to compare da+’

to d01| ., with the choices for u! as given in eq. - This comparison is
shown 1n fig. [£.6] for representative choices of fixed 7" and gy at NNLL. The
power-like behavior of the difference [daI da+]u (dotted green) as either
gr — 0 for fixed T (left panel) or T — oo for fixed ¢r (right panel) can clearly
be read off. This also provides a nontrivial check on the implementation of
o1 and 0. This comparison in fig. is analogous to the usual procedure
of comparing the full-theory result for a cross section with its singular EFT
limit at a common scale upg. Here, SCET} takes on the role of the full theory,
while SCET provides the singular limit, and the comparison is performed at
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Figure 4.7 Singular/nonsingular comparison between SCET; and SCET at
NNLL (only resumming logs of br) as a function of T for fixed gr = 15 GeV
(left) and as a function of g7 for fixed 7 = 5 GeV (right). The solid red lines
show the full SCET; result including resummation. The dashed blue lines show
the corresponding SCET . singular limit with only SCETy resummation. The
dotted green lines show their difference, corresponding to the power corrections
indicated in eq. (4.45)). The thin vertical lines indicate the choice of transition
points (ag4, as, ag) with respect to the regime parameter a (upper horizontal
axis), which will be discussed in sec. m

common scales .

Similarly, both o1 and o4 have a common singular structure as ¢r/Q — 0. In
this case, resumming the shared logarithmic terms requires running between
the hard, beam, and (refactorized) soft function. In SCET, this amounts to
setting the ut scales to be equal to their p'' counterparts as

,u} = ,u;C =y and 1/} =i, (4.47)
which treats the large logarithms in the refactorized double-differential soft
function in eq. at fixed-order. This choice of scales is denoted by do ‘u“’
with scale setting in by space and the inverse Fourier transform understood
as described in sec. [4.2.3] The explicit choices for the various p!' are given in
eq. . In fig. , a comparison between dour|#II and d0H|MII is shown at
NNLL as a function of 7 at fixed gr (left) and vice versa (right). Even when
evaluated at its intrinsic scales, doyg ‘u“ (solid red) still exhibits an unresummed

singularity as 7 /qr < 1, which, as expected, is captured by da+‘un (dashed

blue) up to power corrections (dotted green). This check is highly nontrivial
as it involves an additional Fourier transform on both sides of the comparison.
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Figure 4.8 Singular/nonsingular comparison between the matched SCET de-
scriptions and QCD at fixed O(as) as a function of gr for T = qr/2 (left)
and 7 = gr (right). The solid red line shows the fixed-order QCD double

spectrum, the dashed blue line the matched SCET result in eq. (4.48)), and the
dotted green line the difference.

As a final important consequence of fig. the complete infrared structure of
the double-differential spectrum for any hierarchy between ¢gpr and 7 adhering
to both ¢r < Q and T < @ is obtained by adding the SCET; and SCETy;
cross sections and removing the overlap between the two by subtracting the
SCET, cross section as

do B doi n dorr _ doy
dQdY dgr d7 ~ |dQdY dgrd7 ' dQdY dgrd7  dQdY dgrdT
a T
X [1 n O(@, Q)} . (4.48)

In fig. a numerical check of this relation at fixed O(«as) is depicted, which
requires setting all scales equal to a common pupo. The comparison is plotted
as a function of ¢r along lines of fixed 7 /qr = 1/2 (left) and 7 /qr = 1 (right).
Excellent agreement is found between the full result (solid red) and the first
line on the right-hand side of eq. (dashed blue), as evident from the
power-like behavior of their difference (dotted green) as qp, 7 — 0.

This singular /nonsingular comparison is qualitatively different from the struc-
ture of power corrections in either SCETT or SCETy; alone, which were already
verified in fig. and fig. Because SCET; and SCETy; both involve an
additional expansion about a specific hierarchy between g and 7, they incur
power corrections of O(7T2/¢%) and O(g2/(QT)), respectively. Accordingly,
they only recover the singular limit of full QCD when approaching it along
specific lines in the (gp,7T) plane. This is different from fig. where the
combined expression in eq. (dashed blue) describes the singular limit
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qr, T — 0 along an arbitrary line of approach, with the ratio qp/7 effectively
controlling the “admixture” of power corrections of O(¢%/Q?) and O(T/Q), re-
spectively. Other fixed ratios of ¢gr and T have been verified to also correctly
describe the singular behavior of full QCD.

4.3.2 Matching equation

The structure of power corrections discussed in the previous section, together
with the all-order resummation shared between SCET . and SCET} or SCETYy,
suggests the following matching formula to describe all regions of the double-
differential spectrum:

domatch dg+‘u+ + [dot — da+]“1 + [domr — d0+]“n

+ [dO'FO — dop — dop1 + d0'+] (4.49)

HFO

The only ingredient in this matching formula that has not yet been discussed
is da+|# +, for which all ingredients in the SCET factorization are evaluated

at the SCET scales u, such that the full RGE of SCET is in effect. When
the power corrections in eq. are small, i.e. the parametric assumptions
of SCET, are satisfied, the pu* scales are given by the canonical scales from
eq. . As for p'I, these scales are set in by space, followed by an inverse
Fourier transform. Upon approaching the SCET; region, the resummation
inside the refactorization of the beam function in eq. must be turned
off, which imposes the conditions

wh(qr, T, br) — ph(T)
1 (g, T, br) — pp(T) for qr — \/QT, (4.50)
vl (qr, T, br) — vi(qr, T, br)

on the scales u™. Since the soft functions in the SCET, and SCET] regimes
are identical, the soft scale is required to adhere to the condition

ud(gr, T,br) — ps(T) for qr — /QT. (4.51)

These relations are required to hold for every value of bp.

Similarly, upon approaching the SCETY region, the scales inside the refactor-
ized soft function eq. (4.39) must become equal, leading to the conditions
/’Lg(QTv 7-7 bT) — :U’g (QT7 bT)
wh(qr, T,br) — ps(qr,br) for qr — T. (4.52)

V}(QTv 7-7 bT) — VE(QT; bT)
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Furthermore, the scales of the common beam function in SCET; and SCET ¢
can be identified by

ph(ar, T,br) — ph(qr, br)

for gp — T. (4.53)
VE(QT,T, bT) — Vg(qTabT) }

Some of the above requirements for the behavior of the scales at the boundaries
are already satisfied by the canonical SCET scales, e.g. the canonical soft
scales in SCET, and SCET; are simply equal. The canonical collinear-soft
rapidity scale, given by

(bo/br)? e

is the most demanding canonical SCET scale as it does not coincide with the
corresponding scale on either boundary.

V}(QT: Ta bT) =

It is instructive to explicitly consider the behavior of eq. (4.49) on the SCET;
and SCETq; phase-space boundaries, as well as in the fixed-order region. By

construction, for any choice of u* scales satisfying eqgs. (4.50) and (4.51)) it
automatically follows that

d0+’u+ — da+‘u1 for gr — VQT . (4.55)
From this, the matched cross section can be seen to reduce to

do™mateh dgl‘ul + [ddpo — dUI] s + [dUH - dU_:,.] Il

— [dor — doy] for gr — QT . (4.56)

HFO

This mostly coincides with the result in eq. of matching doy to the fixed-
order result dopp, and is guaranteed to capture all large logarithms of 7/Q
captured by the SCET; RGE. It improves over eq. by also resumming log-
arithms of g7/@Q in the power corrections of O(7?/¢%.), encoded in [aH —a+] -
This is not a numerically large effect and cannot be exploited to achieve the
resummation of 7 at next-to-leading power, as it is only a subset of all power
corrections.

Similarly, egs. (4.52)) and (4.53) imply that
d0+’”+ — da+‘uu for g — T, (4.57)
and consequently
do™match dUII‘un + [dO’FO — dan] ro + [dO'I — d0+]MI

— [dor — doy | for g — T . (4.58)

HFO
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Scale | SCET} SCET. SCETq;
i Q Q Q
1B VTQ bo/br bo/br
VB Q Q
7z bo/br

Vy (bo/br)?*/T

us T T bo/bT
Z bo/br

Table 4.1 Summary of canonical scales in SCETy, SCET,, and SCETy; as
given in eqs. (4.7), (4.22)) and (4.43)). For SCET and SCETyy, the canonical

scales are given in by space.

This mostly coincides with the result in eq. of matching dory to the fixed-
order result dopo, and thus captures all large logarithms of ¢ /Q captured by
the SCET; RGE. In addition, it resums logarithms of 7/@Q in the O(¢2./(TQ))
power corrections encoded in [doy — do],1.

Finally, in the fixed-order region, all ut, p!, and u'! scales become equal to
pro. Thus as desired, the matched prediction reduces to the fixed-order result

dg™mateh dUFO‘,U«FO for ar, T — Q. (4.59)

4.3.3 Profile scales

The central SCET scales are obtained using a regime parameter that selects
the appropriate combination of scales from the boundary theories in each region
of phase space, and selects a third, independent choice in the SCET “bulk”
when necessary. The profile functions that handle the transition to fixed-order
can conveniently be reused from SCET} and SCETy;.

The canonical scales for SCETy, SCETy;, SCET . are summarized in table [d.1]
At these scales, the arguments of the logarithms in the ingredients of the
factorized cross section are of order one, i.e. all large logarithms are resummed
by RG evolution. In order to facilitate the interpolation between the canonical
scales in different regimes, the regime parameter is defined as

o—g_ T/ (4.60)

| In(gr/Q)|
Its definition is carefully chosen such that ¢ = 1 when the SCETT parametric
relation gy = /T Q is satisfied exactly, and ¢ = 2 on the SCET; boundary
of phase space, where gp = T. As illustrated in the left panel of fig. [£.9] the
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Figure 4.9 Left: Illustration of the regime parameter a that governs the
matching between EFTs. For a = 1 the SCET| parametric relation qr = QT
is satisfied exactly, whereas the SCET; parametric relation gr = 7T yields
a = 2. Right: Helper functions used to interpolate between scales on the
boundaries (SCETy, SCETy) and in the bulk (SCET. ). The helper functions
have continuous derivatives and always sum to one. The individual helper
functions are exactly equal to unity in their respective canonical regions.

canonical SCET region lies at intermediate a ~ 1.5. The requirements on the
SCET . scales were given in egs. and for the transition to SCETY,
and in eqs. and for the transition to SCETy;. To satisfy each of
these requirements, weighted products of scales on the boundary and in the
bulk are taken. Schematically, this is given by

M+ _ [,ul]hl(a) [ngulk} h+(a) [Mll]hn(a)‘ (4.61)

The weights in the exponents are given by helper functions that depend on the
regime parameter a, as illustrated in the right panel of fig. They satisfy

hl(a) + h+(a) + hH(a) =1, (4.62)

for any a and are given explicitly in eq. below. The helper functions
ensure that the appropriate scales are used in each region, e.g. hy(a) is equal to
unity in the vicinity of @ = 2 and vanishes for a < 1.5, with a smooth transition
in between. The explicit form of eq. for the soft and collinear-soft scales
is given by

hi(a hi(a hir(a
/‘} = [F‘IB] 1@ [M},bulk] o [Ng] u )’
V} = M @ [V;;’,bulk] (@ [’4191] hH(a)v
g = 5] [ [l (4.63)
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As mentioned before, the most nontrivial of these cases is v, which must
be equal to the overall scale v in the SCETy region in order to turn off the
rapidity resummation there, has a distinct canonical value in the SCET | bulk,
and must asymptote to yet another value on the SCET1; boundary. The scale
;fsr also requires a distinct treatment in the bulk to ensure that the hierarchy
qu— < u}, inside the refactorized soft function, as implied by the SCET, power
counting, is not upset by variations (see next section). The central choices for
the above scales in the bulk are taken to be

bo
Fona)
[ (% i)

n _ T
'uy,bulk = HFO frun( Q b*(

+ _ ’b
V% bulk — HFO (T
run <@)
T
1
/J’:St,bulk = HFO frun(é) . (464)

The profile function f!, was introduced for the transition between SCET| and
fixed-order QCD in eq. 7 and the hybrid profile function fIl for the tran-
sition between SCET1; and QCD in eq. . The nonperturbative b*(br) pre-
scription was defined in eq. (4.30[). These functions turn off the resummation
of logarithms involving g7 (br) and 7 respectively as the fixed-order regime
is approached, and also ensure that scales are frozen in the nonperturbative
regime to avoid the Landau pole. Away from the nonperturbative region, the
above bulk scales all assume their canonical values for ¢7, 7 < @ as given in
table 4.1 and asymptote to upo when simultaneously taking g7, 7 — Q. The
beam function scales in the bulk can simply be associated with their SCETy;
counterparts and only require a transition towards the SCET boundary. They
are therefore given by

E [M%]hl(a) [Mg]h-s-(a)Jrhn(a)

v = v ] 1(a) v II] h+-(a)+hir(a) (4.65)

I

i

For the numerical implementation, the helper functions hj 114 are chosen as

1 a<ai, 0 a<ay,

hu(a) = 1 —cio3(a) a1 <a<as, hu(a) = case(a) as < a<as,
c312(a) a2 <a<as, 1 —cous(a) a5 <a<ag,
0 as < a, 1 ag < a,

h+(a) =1- hI(a) — hH(a) s (4.66)
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where the polynomials governing the interpolation between zero and one are
given by
(@ — a;)?

c,-jk(a) = (ai — aj)(ai _ ak) . (467)

The transition points a1 . ¢ determine the transition between the different re-
gions, as can be seen from the helper functions in fig. [£.9]

For values a3 < a < ayq, the exact canonical SCET | scales are selected, imply-
ing that the resummation of logarithms of both g7 and 7 is fully turned on.
For lower values a1 < a < as, the additional gr resummation is smoothly
turned off and for a < a1, the SCET] scales are used so that only logarithms
of T are resummed. Conversely, for higher values of the regime parameter
as < a < ag, the resummation of 7 logarithms is smoothly turned off. At
values ag < a, the SCETY; scales are selected by the helper functions, and the
additional resummation of logarithms of 7 is completely turned off.

In practice, the transition points

(al,ag,ag,a4,a5,a6) = (0.5, 1.0, 1.5, 1.5, 1.75, 2.0), (4.68)

are chosen. This choice ensures that for a > ag = 2, the SCETy; resummation
is fully recovered and that the kinematic edge at gr ~ T is faithfully described
by preserving the O(1) cancellation between o }u“ and the SCET1 nonsingular
contribution visible at a ~ 2 in the left panel of fig. In figs. and
corresponding values of a are indicated on the horizontal axis at the top of the

panels.
On the other hand, the power corrections from SCET7 are smaller and tend
to set in at values of a lower than the naively expected a = 1, which can

be seen in fig. 4.6 For example, an O(1) cancellation between 0+‘MI and
the SCET7 nonsingular is only in effect around a ~ 0.5 in the right panel of
fig. 1.6} leaving more room for slowly turning off the SCET, resummation
down towards a; = 0.5.

The physical reason behind this is the fact that the SCET nonsingular encodes
the suppression of collinear recoil beyond the naive phase-space boundary at
a ~ 1 (corresponding to gr ~ +/QT) that is washed out by the PDFs, unlike
the sharp kinematic edge at gy ~ T encoded in the SCET nonsingular.

For simplicity, the choice a3 = a4 is made for the central prediction, so that
the canonical SCET region gets reduced to a single point at a = 1.5. The
transition points ao and as are fixed as the midpoints between aq and a3 and a4
and ag respectively. Variations of the transition points, including independent
variations of as and a4, are considered as part of the uncertainty estimates
described in the next section.
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4.3.4 Perturbative uncertainties

Perturbative uncertainties are assessed by varying the scales that enter the
matched prediction in eq. . Following the same approach as for SCET}
and SCETqy on their own (see secs. and , a similar distinction be-
tween resummation uncertainties and a fixed-order uncertainty is made. The
fixed-order uncertainty Agg is again estimated by varying ugo up and down by
a factor of two, i.e. by setting upo = {Q/2,2Q}. Since all scales (in any piece
of the matching formula) include an overall factor of upg, the ratios between
the various scales remain unchanged and the same logarithms are resummed.
The fixed-order uncertainty Apo is then taken to be the maximum deviation
from the central cross section.

Several sources of resummation uncertainties entering the matched prediction
in eq. (4.49)) are considered. To probe the tower of logarithms of 7 /@ predicted
by the SCET; RGE, variations of MIB and ,ufg parametrized by a and g as in
eq. (4.12) are taken into account. This directly affects the resummed power
corrections [dal — da+]m captured by SCET]. In addition to this, d0+}u+
inherits the SCET] variations near the corresponding boundary since there hy
is large and the SCET scales in egs. and strongly depend on the
SCET] scales. The setup developed in this chapter thus ensures that in (or
near) the SCET] region, variations probing resummed logarithms of 7/Q are
properly treated as correlated between the SCET 4 cross section and the SCET}
matching correction. When referring to the matched prediction in eq. ,
A7 is taken to be the maximum deviation of dopaien from its central value
under these correlated variations of a and 3.

In complete analogy, A is defined as the maximum deviation under corre-
lated variations of pyr described in sec. [£.2.3] These variations act on both
[daH — da+]“n and da+‘“+, where now the SCET, scales inherit variations
from g near the SCETy boundary (where hyp is large). As a result, A
probes an all-order set of logarithms of (by/br)/Q predicted and resummed
by the SCET RGE, and properly captures the correlated tower of logarithms
in SCET . It should be stressed that the current setup is fully generic with
respect to the method chosen to perform scale variations for the boundary
theories, as any variation will automatically be inherited by SCET .

As a final source of uncertainty, the uncertainty inherent to the matching pro-
cedure and the choice of SCET scales in the bulk is considered. To estimate
this, 8 variations of the transition points (a1, as, a4, ag) are taken into account.
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These are given by

(Tv_’_v_)v (_a\l/a_7_)7 (_7_7_7\1/)7 (_>T7T7_)7
(\J/v_7_7_)7 (_a_aTa _) ) (_7_7_7T)7 (_?\14\1/7_)7 (469)
where T and | indicate a variation by 4+0.2 and —0.2 respectively. A dash

indicates keeping the transition point fixed, and the relations as = (a1 + ag)/2
and as = (a4 + ag)/2 are always retained. In addition, the two variations

B e = P (ql)ﬂﬂ u (ql b0>
. ,bulk FO T run va*Q )

—v/2

M;bulk = MFO (q?:r) V f}un(Z;) ) (4.70)
of the SCET, bulk scales are included. Here v = {+1/6,—1/6} and v = 0
corresponds to the central scales in eq. . Similarly to the role of 8 in
the SCET] variations in eq. (4.12)), making the strength of the ~ variations
depend on the ratio ¢r/7 ensures that the hierarchy pug < p» implied by the
SCET, power counting is not upset by variations, counting by /by ~ gr. The
third independent bulk scale V}bulk does not require an independent variation

because it only enters through rapidity logarithms of VE / 1/}, which are already
being probed by variations of I/E inherited from SCETy. Taking the envelope
of the eight transition point variations and the two bulk scale variations, a third
contribution to the resummation uncertainty is obtained, which is denoted by
A,. The total uncertainty assigned to the matched prediction is then given
by adding all contributions in quadrature

Atotal = Ay & A1 @ A & Aro (4.71)

4.3.5 Differential and cumulant scale setting

Before presenting the numerical results of the framework developed in this
chapter, the issue of differential versus cumulant scale setting must be ad-
dressed. For simplicity, the case of a cross section differential only in O-jettiness
T will be used as an example. There are two quantities of interest in this case,
namely the spectrum do/d7 and the cumulative cross section o(7Teyt) with a
cut on 7. The two quantities are related by

Tsut do—

where the dependence on Q? and Y is suppressed for readability. In a resum-
mation analysis, one can implement the resummation scales either in terms of
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the differential variable 7 to directly predict the spectrum, or in terms of the
cumulant variable 7.yt to predict the cross section integrated up to 7eut. The
other observable then follows from eq. . Using differential scale setting
(indicated by the subscript), the differential and cumulant cross section are
explicitly given by

dogig _ do
d7 AT lum’

odiff(Teut) = /thdT[ (T > Top) 5

do do
a7l +9(’T< Ta )d'T ﬁp)] . (4.73)

In the first term under the integral in the cumulant cross section, all scales
i entering the resummed and matched prediction depend on the integration
variable 7. Because the described setup only reliably predicts the spectrum
away from the nonperturbative region, the resummed spectrum with differen-
tial scale setting is integrated up from some small nonperturbative cutoff 7y,
and an “underflow” contribution compensating for the missing interval is in-
cluded as the second term under the integral. For the underflow contribution,
i.e. for T < Typ, the spectrum is evaluated at fixed scales corresponding to Typ,
such that the integral can be done analytically. The underflow contribution is
Sudakov suppressed and thus typically small.

When the scales are set at the level of the cumulant, the cumulative and dif-
ferential cross section are instead given by

7?:ut
Ucumul(,]::ut) :/ dT dT (Tout)

documul . di |:
d7 AT lum

S w0

In this case, the scales in the cumulative cross section depend on Teyt, and not
the integration variable T, so the integral up to 7.y can easily be performed
analytically. The expression for the differential cross section arises from taking
the derivative of the cumulant cross section, where the chain rule leads to the
sum of derivatives of each of the scales p; in p with respect to 7.

Cumulant scale setting ensures that for 7eyy — @, the resummed and matched
cumulant cross section exactly reproduces the inclusive fixed-order cross sec-
tion. This follows from the generic requirement on profile scales in the fixed-
order region,

wi(Teut) — HFO for Tt — Q. (4.75)

Thus for cumulant scale setting, the spectrum has the correct (fixed-order)
normalization. However, the additional derivatives of the scales in eq. (4.74)
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tend to produce artifacts in the spectrum if the profile functions ;(7") used to
interpolate between the resummation region 7 < @ to the fixed-order region
T ~ @ undergo a rapid transition. Moreover, the scale variations using cumu-
lant scale setting tend to produce unreliable uncertainties for the spectrum.
If instead differential scale setting is used, the spectrum is free from such ar-
tifacts. However, the integral of the spectrum will not exactly recover the
inclusive fixed-order cross section, and the uncertainties obtained for the cu-
mulant by integrating the spectrum scale variations tend to accumulate and
end up being much larger than they should be for the total cross section. The
reason for this is that the spectrum models the differential cross (and the cor-
responding uncertainties) point-by-point in 7 and fails to accurately describe
any long-range correlations. As in the case of the spectrum with cumulant
scale setting, this mismatch purely arises from residual scale dependence, and
is therefore formally beyond the working-order. It can however still be numer-
ically significant, which is why in general the scale setting appropriate for the
quantity of interest should be used, i.e. cumulant scale setting should be used
when making predictions for the cumulant, and differential scale setting when
the spectrum is the quantity of interest.

The issue of differential versus cumulant scale setting is well appreciated in the
literature for the single-differential case, see e.g. refs. [103}[149,172,/173|. It ul-
timately results from the fact that long-range correlations across the spectrum
are not accounted for by the profile scales used for the differential predictions.
Conversely, profile scales for the cumulant do not correctly capture the slope
of the cumulant and its uncertainty. An elaborate procedure for obtaining a
spectrum with differential scales that still produces the exact cross section and
uncertainties was developed in ref. [173]. In the Geneva Monte Carlo genera-
tor, the mismatch between differential and cumulant scales is accounted for by
adding explicit higher-order terms [149].

For a simultaneous measurement of gr and 7T, there are in principle four
quantities of interest, namely the double-differential spectrum do/dgr d 7T, the
single-differential spectra do(¢$")/dT and do(Tey)/dgr with a cut on the
other variable, and the double cumulant o (g3, Teut). They are all related by
integration or differentiation, allowing for four different ways of setting scales
in each case. All numerical results in sec. [£.4] are obtained by using the ap-
propriate combination of differential or cumulant scale setting with respect to
either g7 or T for each quantity. This is achieved by evaluating the resummed
prediction at profile scales given by the setup described in secs. [£.2.2] and [£.2.3]
as well as sec. but with g7 and T replaced by ¢5** and T, respectively as
appropriate. This guarantees that artifacts from profile functions in spectrum
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observables are avoided and ensures that cumulant observables have the correct
limiting behavior. For example, o(g5", Teut) will by construction recover the
inclusive fixed-order cross section when lifting both cuts, while do(g$"*)/dT
and do(Tcut)/dqr exactly recover the resummed and matched prediction for
the respective inclusive spectrum at large values of the cut.

Nevertheless, it is interesting to investigate how well the different combinations
of differential and cumulant scale setting fare for observables other than the
one they are designed to describe. However, since this comparison between the
various scale settings is not the main topic of interest in this chapter, the issue

is instead discussed in more detail in app. [D]

4.4 Results

The results obtained for Drell-Yan production pp — Z/v* — £1£~ at the LHC,
with the simultaneous measurement of the transverse momentum g of the lep-
ton pair and the O-jettiness event shape 7 are presented in this section. The
center-of-mass energy is taken to be E¢y, = 13TeV. The invariant mass @ of
the lepton pair is measured in addition and the rapidity Y is integrated over.
For results obtained at the invariant mass () = my, the notation pp — Z is
used to denote the process, while results at other invariant masses are denoted
by pp — Z*. The subsequent decay and the contribution from the virtual
photon are included in either case.

To obtain numerical results for the SCETT, SCETy, and SCET . contributions,
all pieces of the relevant double-differential factorized cross sections have been
implemented in SCET1ib [174] to O(as) and their RGEs to NNLL accuracy.
The fixed NLO contributions in full QCD are obtained from MCFM 8.0 [175-
177]. The MMHT2014nnlo68cl [40] NNLO PDFs with five-flavor running and
as(myz) = 0.118 are used. Since nonperturbative effects have not been in-
cluded, results are presented down to 1 GeV in both ¢p and 7.

4.4.1 Double-differential spectrum

To highlight the necessity of the simultaneous resummation of large logarithms
of both g7 and T, results for the double spectrum (the cross section double-
differential in ¢r and 7) are shown where only some of the logarithms are
resummed. These results are shown as surface plots in fig. where the
double-differential spectrum is plotted with respect to log;, g and log;, T for
better visibility. In each case, the left rear wall of the surface plot shows the
result of integrating the double-differential spectrum up to Teyt = 100 GeV.
Similarly, the right rear wall shows the projection onto the single-differential
spectrum in log;, 7, with a cut at ¢5"* = 100 GeV.
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Figure 4.10 The double-differential Drell-Yan cross section at fixed NLO
(top), resummed NNLL7+NLO (center), and NNLL,,+NLO (bottom). The
resummed predictions are obtained by using only SCET; (SCET}) renormal-
ization group evolution to resum logarithms of 7 (qr), as outlined in sec.
(sec. , and matching the result to the fixed-order cross section. For better
visibility, the spectrum is shown with respect to log;, ¢r and log;, 7. On the
rear walls, the results of integrating the double spectrum over either variable
up to a cut at 100 GeV are shown.
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The top left panel of fig. shows the spectrum evaluated at fixed O(ay),
without any resummation. The double-differential fixed-order spectrum di-
verges logarithmically for small 7 at any value of gy, while its projections
onto the single-differential spectra in ¢ and T feature double-logarithmic sin-
gularities. Notably, the double-differential spectrum has a sharp kinematic
edge along qr = 7. This sharp edge is unphysical because it only reflects
the kinematics of a single on-shell emission with transverse momentum kg at
rapidity n, which contributes at most 7 = kr eIl < kp = gp. Due to the vec-
torial nature of gy, however, back-to-back emissions can populate the region
T > qr at higher orders, and the kinematic edge will be smeared out.

Next, the cases in which only logarithms of one variable are resummed are con-
sidered, while logarithms involving the auxiliary variable are treated at fixed-
order. In the middle panel of fig. [1.10] the result of resumming logarithms of
T using the SCET] matched result in eq. is shown. The resummation
is performed at NNLL and is matched to full NLO, which is referred to as
NNLL7+NLO. As discussed in sec. [£.2.2] this prediction is valid as long as
the parametric relation 7 < g7 ~ +/QT is satisfied. This corresponds to the
SCET| phase-space boundary (blue) in fig. running from the region of small
T and intermediate gr towards the fixed-order region where gr ~ 7T ~ Q. It
is clear that away from its region of validity, the NNLL7++NLO result contains
unresummed large logarithms of gr because at any point in 7 the prediction
diverges for very small gr. The power corrections of O(T?2/ q%) grow large
when approaching the diagonal 7 = ¢p (the green line in fig. and en-
code the phase space boundary at gr ~ 7. Since this boundary is treated
at fixed-order, it leads to the same sharp kinematic edge along the diagonal
that was also present in the fixed-order spectrum without any resummation.
The projections onto the rear walls highlight that only 7 is resummed. The
single-differential g7 spectrum still diverges as gr — 0, while the 7 spectrum
features a physical Sudakov peak.

In the bottom panel of fig. the result of resumming logarithms of (the vari-
able conjugate to) ¢r to NNLL and matching to fixed NLO, using the SCETy;
matched result in eq. is shown. This order is denoted by NNLL,,.+NLO.
The result is valid for 7 ~ qr < +/QT, i.e. around the SCETy; phase-space
boundary (green) in fig. where the onset of a Sudakov peak from the g7 re-
summation and a smooth kinematic suppression towards 7 > ¢gp can be seen.
However, the NNLL, +NLO result diverges for smaller values of 7. This is
due to unresummed large logarithms of 7 in both the factorized cross section
in SCETy and terms of O(¢2/(QT)) that are treated at fixed-order as part of
the matching correction. In this case, the single-differential projections show
a Sudakov peak in ¢r, but a logarithmic divergence at small 7.
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Figure 4.11 The double-differential Drell-Yan cross section at NNLL+NLO,
at Q@ = myz (top) and Q = 300GeV (bottom), with respect to log;y¢r and
log,y 7. The contour plots indicate total perturbative uncertainties relative to
the cross section, i.e. A¢otal = A+ & A1 D A & Aro.

The final results for the Drell-Yan double spectrum as given by the fully
matched prediction in eq. are shown in fig. m Here, all resummed
contributions are evaluated at NNLL and matched to fixed NLO. This achieves
the complete resummation of all large logarithms in the double spectrum, so
this order is simply referred to as NNLL+NLO. The top row of plots is for
@ = myg, i.e. for Drell-Yan production at the Z pole. In the bottom row,
the invariant mass () = 300 GeV is considered as a representative phase-space
point at higher production energies. The matched and fully resummed double
spectrum features a two-dimensional Sudakov peak that is situated between the
two parametric phase-space boundaries as indicated in fig. [£.1] It is smoothly
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Figure 4.12 Breakdown of resummation uncertainties contributing to the
relative uncertainty in the top right panel of fig. showing (from left to
right) A, Aqp, and A4, As in fig. regions where the cross section is small
are left blank.

suppressed beyond these boundaries, and shifts towards higher values of ¢r
and T for Q = 300 GeV, as expected. Integrating the double spectrum over
either variable also results in a physical Sudakov peak, as can be seen from
the projections onto the rear walls. Up to small differences in scale setting
discussed in sec. [£.3.5 the left and right rear walls agree with the result of
integrating the NNLLg, +NLO and NNLL7+NLO results in fig. over T
and gp, respectively. The contour plots in fig. show the total perturbative
uncertainties A¢ota1 as percent deviations from the central result for the dou-
ble spectrum. As described in sec. Aiotal combines the estimates of all
sources of resummation uncertainty in the prediction. The contour plots are
left blank in the region where do/(dQ dlog,qqr dlog;, T) is less than 3% of
its peak height.

In fig. the uncertainty for the Drell-Yan double-differential spectrum at
@) = my is broken down into its contributions from the SCET}, SCET|; and
SCET, resummation uncertainties. As expected, the SCET] resummation
uncertainty dominates in the SCET} region of phase space, and similarly for
SCETy;. The SCET resummation uncertainty is largest along the phase-space
boundaries, indicating that it is mostly sensitive to variations of the transition
points, i.e. the points where the intrinsic SCET . resummation is turned off in
the matched prediction.
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Figure 4.13 The double-differential Drell-Yan cross section for fixed g7, as a
function of 7 (left) and for fixed 7, as a function of g (right). The solid red
curves are slices of the surface plots shown in the top left panel in fig. .11} up
to Jacobians. The blue dashed (green dotted) curves correspond to the middle
(bottom) panel of fig. m The thin vertical lines indicate the transition
points a; described in sec. The SCET] prediction (dashed blue) has an
unphysical edge at T = qr, see fig. {10} and is not shown beyond 7 = 0.8 ¢
to avoid distraction.

4.4.2 Comparison with boundary theories

To further highlight the differences between the fully double-differential resum-
mation and the single-differential resummation at either NNLL,,, or NNLL~,
slices of the surface plots are considered in fig. keeping gr (left) or T
(right) fixed. The solid red curve corresponds to the matched and fully re-
summed cross section in eq. , with the uncertainty band given by the to-
tal perturbative uncertainty Agotal as given in eq. . The matched SCET]
(dashed blue) and SCETy; (dotted green) predictions correspond to the mid-
dle and bottom panel of fig. [£.10] respectively. Their uncertainty bands are

given by Al . and Al defined in egs. (4.15) and (4.34), which only probe



140 Chapter 4. Joint two-dimensional resummation in qp and 0-jettiness

27\v\\‘1\ L L L B B B B 2-57\\\\‘\\\V‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\\\\\7
g F . pp — Z (13 TeV) ] g r pp — Z (13 TeV) ]
é) L qr = 15 GeV match | CDU 2 } T =5GeV match {
B 1‘5j NNLL+NLO - match B E F NNLL+NLO I amatch ]
a L ot ] a L ot ]
= [ __gmateh | = L8[ __ gmateh ]
= 1 whopt 7S r ptoptt 4
] L ——gpach D F - o gparch ]
§ I A N N match | § 1/ N No—0 match |
o o1 o L i 4
<] L ] [«7 r b
3 05 1 T o050 =
5 r 18 N T ]

ol Cly \ P S W N sen 3

0 5 10 15 0 5 10 15 20 25 30 35 40
T [GeV] qr [GeV]

Figure 4.14 Slices of the double-differential Drell-Yan cross section at gr =
15GeV (left) and 7 = 5GeV (right). The solid red, dashed blue, and dotted
green curves are identical to the central results in fig. The solid blue and
green curves depict the SCETT and SCETyy limits of the fully resummed result,
given in eqs. (4.56) and (4.58). The thin vertical lines indicate the transition
points a; described in sec. @

a subset of higher-order terms as predicted by the respective RGE. The SCET;
prediction features an unphysical sharp edge at 7 = ¢p, which is also visible
in the middle panel of fig. and for this reason is cut off at 7 = 0.8 q7.
All panels in fig. [£.13] show that the final prediction smoothly interpolates be-
tween the SCET; and SCETy; boundary theories, both for the central values
and for the uncertainties. Specifically, the matched prediction tends towards
SCET] for small values of 7 and large values of gr and towards SCETyy for
large values of 7 and small values of gr. The plots on the left show that
SCETqy only captures logarithms of 7 at fixed-order, leading to a diverging
spectrum as 7 — 0, while the complete NNLL result features a physical Su-
dakov peak. Conversely, the SCET] result diverges as gr — 0, but is rendered
physical by the additional g7 resummation at NNLL.

The fully resummed prediction does not exactly agree with either boundary
theory, even beyond the final transition points a; and ag where the intrin-
sic SCET resummation is turned off completely. The reason for this is that
even in these limits, the matched cross section in eq. @D improves over the
matched SCETT and SCETyy cross sections in egs. and by an addi-
tional resummation of power-suppressed terms, as can be seen from egs.
and . To assess the size of this effect, both single-differential resum-
mations (dashed blue and dotted green) are again compared to the matched
prediction (solid red) in fig. m For reference, the cases where o4 in the
matched prediction is evaluated at u! (solid blue) or u'! (solid green) directly
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Figure 4.15 The single-differential 7 (left) and ¢r (right) spectrum with
a cut on the other variable at NNLL+NLO. The different curves represent
different values of the cut. The solid red lines correspond to the inclusive
single-differential spectrum obtained by lifting the cut.

are included. From for example the right panel, it can be verified that for
gr larger than the right-most vertical line (where a < ai), the difference be-
tween the solid blue and the dashed blue curves indeed amounts to a small
power-suppressed set of higher-order terms, while the best prediction (solid
red) recovers the solid blue curve as it must. Similarly, for g7 lower than the
left-most vertical line (where a > ag), the difference between the solid green
and dashed green curves can be seen to be a small correction, reflecting the
size of power-suppressed higher-order terms predicted by the SCET; RGE in
this region. In this region, the solid red prediction recovers the solid green
curve exactly. The asymptotic limits are interchanged in the left panel, where
a < a1 towards the left and a > ag towards the very right of the plot.

4.4.3 Single-differential spectra with cuts

In addition to the cross section differential in both ¢r and 7, the setup de-
veloped in this chapter can also be used to predict the fully matched and
resummed double cumulant cross section and the single-differential g (or T)
spectrum with a cut on the other variable. Some results for these observables
were already discussed in sec. [£.3.5] from a more technical point of view. In
fig. some more detailed results for the single-differential spectra with an
additional cut are shown, where the left panel shows do(¢5")/dT as a func-
tion of T for various values of ¢$'*, and the right panel shows do(Teut)/dgr
as a function of gp for various values of Tcy. By increasing the value of the
cut, they can be seen to approach the inclusive single-differential spectra (solid

red), with which they must agree when sending q%ut — 00 or Tyt — 00, respec-
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tively. This agreement occurs by construction because cumulant scale setting
is used for this prediction as discussed in sec. [£.3.5] From these plots it can
be seen that cuts on the other variable shape either spectrum in a nontrivial
way. Tight cuts < 10 GeV push the peak to lower values and suppress the tail,
where the g7 spectrum is somewhat more resilient to cuts on 7 than vice versa.
Intermediate cuts ~ 10 — 15 GeV do not change the peak in a substantial way
and mostly lead to a suppression in the tail, while the effect of cuts = 40 GeV
is almost negligible in the g7 and T ranges of interest.

4.4.4 Conclusions

The cross sections of color-singlet production processes at hadron colliders,
such as Drell-Yan, that are subject to the simultaneous measurement of gp
and 7, involve Sudakov logarithms of both 7/Q and ¢r/Q. In this chapter,
the simultaneous resummation of both kinds of logarithms has been achieved
at NNLL accuracy, and was matched to fixed-order results at NLO. The setup
explored in this chapter accomplishes this by employing SCET} and SCET}; to
describe the regions 7 < qr ~ /T Q and T ~ qr < /T Q, respectively, and
SCET} to describe the bulk of phase space in between these boundaries |108].

The framework developed in this chapter allows for the matching of several
factorized cross sections, corresponding to different regions of phase space, to
one another through a Venn-diagram method that avoids double counting. It
includes the appropriate profile scales for the various ingredients in the factor-
ization formulas that respect all relevant canonical scaling relations and at the
same time smoothly interpolate between the different regions of phase space.
In addition, selected variations of these scales are used to estimate perturba-
tive uncertainties in the resulting cross sections. Determining the profile scales
is significantly more involved than in the usual single-differential case, and is
further complicated by the requirement to choose scales in impact parameter
(br) space for SCETy; and SCET..

The presented setup of the profile scales is flexible in the sense that scale
variations are inherited from the single-differential resummation of 7 and g¢r
and other procedures for estimating uncertainties in the individual resumma-
tions can be incorporated. The profile scales facilitate the transition between
SCETy, SCET 4 and SCETy; according to the introduced regime parameter a,
designed such that a = 1 for SCET and a = 2 for SCETy;. The precise transi-
tion points in a were chosen by comparing the various singular and nonsingular
contributions, and are varied as part of the uncertainty estimate.

Finally, a new hybrid (depending on both g7 and br) scale choice for gr re-
summation is included that allows the resummation to strictly take place in
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br space, while turning the resummation on and off according to the target
gr value. It was shown that the simultaneous resummation of 7 and ¢r using
this setup yields the correct resummed single-differential cross sections after
integrating over either 7 or gr. This requires choosing scales at the level of
the differential or integrated (cumulative) cross section as appropriate.

While the predictions obtained here are of some direct phenomenological inter-
est, as T has been measured in bins of g7 [147], the presented analysis is also an
important step towards precise and differential predictions for LHC cross sec-
tions in general. Specifically, the Monte Carlo event generator Geneva [148]/149|
is based on resummed predictions at NNLL' accuracy for the cross section dif-
ferential in 7, and would benefit from the simultaneous resummation of ¢p.
Indeed, the NNLL results clearly indicate that only resumming the logarithms
of either 7 or ¢ gives a poor description of the double-differential cross sec-
tion. The methods displayed in this chapter apply at any order and for any
color-singlet production process, allowing for a straightforward extension once
the relevant perturbative ingredients become available.






5

Transverse momentum resummation
at threshold

The momenta of the partons that initiate the hard scattering process in hadron
collisions are fractions of the momenta of the colliding protons from which they
are extracted. As the PDFs fall off steeply for larger momentum fractions, the
probability of producing heavy particles is dominated by the scenario in which
the extracted partons lose very little of their momentum before entering the
hard process. This implies that the initial-state radiation tends to be soft
and these processes naturally occur near the partonic threshold. The partonic
cross section of such processes contains logarithms that grow large near this
threshold such that their resummation is important in order to obtain reliable
predictions. In addition, in cross sections differential in the transverse momen-
tum of the heavy particle, logarithms of the ratio of this transverse momentum
and the invariant mass of the particle occur as well. If the transverse momen-
tum is parametrically smaller than the invariant mass, these logarithms must
be resummed in addition to the threshold logarithms. This joint resummation
has been studied extensively and a framework that achieves NLL accuracy was
developed in refs. |125] and [124]D This setup performs the resummation of
threshold logarithms in Mellin space, while the logarithms involving the trans-
verse momentum are resummed in impact parameter space. The success of
this framework is evident from the number of cases to which it was applied,
including prompt-photon [178|, electroweak [126], Higgs boson [127], heavy-
quark [179], slepton pair [180] and gaugino pair [181] production.

In the current chapter, a novel method that achieves the joint resummation
of threshold and transverse momentum logarithms at NNLL and beyondE] is
developed. In sec. [5.1] the relevant kinematic regimes are identified and fac-
torization theorems valid to all orders in the strong coupling constant are

! After the completion of the article that this chapter represents (ref. [1]), the setup from
refs. |125] and [124] was extended to NNLL accuracy in refs. [128] and [129].
2In fact, all the ingredients required for N3LL accuracy are currently available.



146 Chapter 5. Transverse momentum resummation at threshold

discussed. The various consistency relations that hold between these different
regimes are addressed and checked in sec. 5.2 after which the combination
of the distinct regions and the resummation are discussed in sec. [5.3] This
chapter is largely based on the work presented in ref. [1].

5.1 Factorization

Heavy color-singlet production processes, such as Higgs production or the pro-
duction of supersymmetric particles, naturally occur near the partonic thresh-
old 1 — z <« 1, where the partonic threshold parameter z is given by

@ &
I

Here Q? denotes the invariant mass of the produced heavy particle and § =
£.& B2, is the partonic center-of-mass energy. The partons are extracted from
the protons with momentum fractions &, ; and emit initial-state radiation, re-
ducing their momentum fractions to x4, before initiating the hard process.
The ratio of these momentum fractions is then given by 2z, = %4.p/&qp-

To achieve a framework that allows for the joint resummation beyond NLL,
a relative power counting between 1 — z and the transverse momentum qp >
Aqcp of the heavy particle must be assumed. Three distinct regimes, corre-
sponding to different hierarchies of these parameters, are identified as

(5.1)

Z = Zg2p =

1. Transverse momentum regime: Aqep/Q < qr/Q <1 —2z~ 1,
2. Intermediate regime: Aqep/Q < qr/Q <1 -2 K1,
3. Threshold regime: Aqep/Q < qr/Q ~1—2z<k1. (5.2)

Hierarchies in which the transverse momentum of the heavy particle is para-
metrically larger than 1 — z are kinematically suppressed. The reason for this
is that the total momentum of the initial-state radiation is constrained by the
strong bound on 1 — z. In particular this means that the combined transverse
momentum of the initial-state radiation must adhere to this bound and, since
it must recoil against the initial-state radiation, so must the transverse mo-
mentum of the heavy particle. The same kinematic regimes and the resulting
factorization theorems described in this chapter were independently identified
in position space in ref. [182].

The factorization theorems for the transverse momentum and threshold regime
are simply more differential versions of the standard transverse momentum and
threshold resummation. The intermediate regime requires the use of SCET,
which contains additional collinear-soft degrees of freedom as was discussed in

both sec. B.10l and sec. [4.2.41
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5.1.1 Transverse momentum regime

The transverse momentum regime is characterized by the parametric hierarchy
Aqep < qr < (1-2)Q ~ Q. The parametric size of the energy of the incoming
protons is p® ~ @, while their virtuality scales like pTp~ ~ A(ZQCD, uniquely
fixing the scaling of the n*-collinear and n#-collinear modes. As this regime
does not suffer from any threshold restrictions, the scaling of the isotropic
soft radiation is set by the measurement of the total transverse momentum.
Furthermore, the lack of any threshold restriction on the energy of the real
radiation allows for additional collinear splittings within the proton that can
contribute to the gr measurement. The scaling of the modes in this regime is
then given by

A2 CD
(%7 Q7 AQCD) 9
n-collinear: ph ~ 5
<%7 Q7 qT) )
A2 I
(Q, %DvAQCD) :
n-collinear: ph ~ 9
4t
QJ A qT) }
G
soft: p* ~ (qr,qr.qr) , (5-3)

and is shown schematically in fig. The n- and n-collinear modes with p? ~
A(QQCD correspond to the collinear PDF, which is matched onto the transverse-
momentum-dependent (TMD) beam function. For this reason, these modes
were left implicit in the SCETyy regime in sec. [£.2.3] Here they are listed ex-
plicitly to make the connection to the threshold regime (described in sec. 5.1.2))
more clear. The set of modes in eq. leads to the transverse momentum
factorization of the cross section given by

d0'1

— .. 27, . 7
m - HZJ(QHM) /d$a /d kq Bz(xaECm7ka7M7 7/)

X /dl‘b /dQEb Bj (24 Eem, kb, 1, V)
x /d%‘s Sij(Esy 1y v) 8(T — 2azp) 8 (qr — |k + Ko + ks|),  (5.4)

which holds to all orders in the strong coupling constant. Here the hadronic
threshold variable has been defined as

T=Q*/E%, = xaxp. (5.5)
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Figure 5.1 The power counting of collinear (green) and soft (red) modes for

the transverse momentum regime. The scaling of the hard modes (gray) is
shown for reference. The dashed lines show the various invariant-mass hyper-
bolas.

The transverse momentum factorization yields the full cross section up to power
corrections of the form

do

doy

_ 9T
Q7 dgr ~ AQ%dgr [”O< >] |

The hard function H;;(Q, i) encodes the short-distance scattering of the par-

o (5.6)

tons and depends on the partonic channel, denoted by ¢ and j. Since color-
singlet production is considered here, the implicit sum over {3, j} is restricted to
the channels {¢, 7}, {7, ¢} and {g, g}. The TMD beam functions B;(w, k7, u, v/)
are the same as those encountered in sec. [£.2.3] and are matched onto the

PDFs [4999,105/157H160] through eq. (4.20)). The threshold logarithms of 1—z
reside in the diagonal matching coefficients Z;;, but are small due to the para-

metric hierarchy of this region. The TMD soft function Sij(ET, , V) encodes
the contribution of soft radiation to the measurement of the total transverse

loop can be found in app.

momentumlﬂ Explicit expressions for these perturbative ingredients up to one

3The TMD beam and soft function are often combined into one object [158-{160]. This is

inconvenient here because the intermediate regime involves the TMD soft function with

collinear-soft functions instead of the standard TMD beam functions. Though they are
related, see eq. (5.21)), they differ in the rapidity logarithms, see eq. (5.34).
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Figure 5.2 The power counting of collinear (green) and soft (red) modes
for the threshold regime. The scaling of the hard modes (gray) is shown for
reference. The dashed lines show the various invariant-mass hyperbolas and
the nonperturbative modes that are not factorized are grouped together

5.1.2 Threshold regime

The threshold regime is characterized by the parametric hierarchy Aqcp <
qr ~ (1 — 2)@Q < Q. The energy of the real radiation is now set to be of the
order of (1 — z)@, so that the scaling of the modes representing collinear split-
tings within the protons is now bounded by the threshold parameter. Both
collinear modes in each sector are nonperturbative and combine into (thresh-
old) PDFs. The soft radiation still contributes to the transverse momentum
measurement, but is also restricted by the threshold parameter. The modes in

the threshold regime are shown in fig. and their scaling is given by

Aden
n-collinear: ph ~ < f 7Q,AQCD) | A2
(ﬁv (1- Z)QvAQCD) ~ ( 2;D7QT7AQCD> ;
, DA
n-collinear: ph ~ <Q Q QSD A2
(( )Q’(iD QCD) ~ (qT’ p—

— A :
)Q QCD)
soft:  ph ~

T
(¢rsar.qr) ~ (1 —2)Q,(1 - 2)Q,(1—2)Q) .

(5.7)
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The threshold factorization of the cross section that these modes lead to is
given by

dosg — H.. % hr ﬁ hr
Qzdg ~ Hu@m [ £ (Eas 1) 3 £ (& m) (5.8)
; ; " )
X /d(2k2)/d2k8 Sij(QkS,ks,u)6<1— f6 0 )5(qT— 1) |

which is valid for all orders in ay and reproduces the full cross section up to
power corrections given by

do  dos
dQ?dgr — dQ?dgr
The threshold PDFs ff¥(¢, ) encode the extraction of a parton i from a

proton in the threshold limit & — 1. The k¥ in eq. (5.8) is the energy of the
soft radiation that arises from the threshold restriction

Q% = ((aBem — k3 ) (& Eem — k) =5 — Q(kye™ Y +kFe¥) + O((1 - 2)%Q?)

of T kre Y kfeV 9
Q <§a£b+ 0 + 0 +0((1-2) )). (5.10)
At hadronic threshold, where 1 — 7 =1 — Q?/E? < 1, the rapidity scales as
Y ~ O(1-z2) and can be dropped. This implies that only the energy of the soft
radiation, k; + kI = 2k?, is probed. The rapidity Y can also be eliminated at
partonic threshold, as will be shown in sec. [5.1.4}
The fact that the soft radiation contributes to g7, but is also restricted by the
threshold parameter leads to the more differential soft function in eq. . Us-
ing the approach in ref. [183|, this new soft function can be obtained explicitly
at one loop a;

[1 +O(1- z)} . (5.9)

- ¢ d d 2E°\  7?
'.20 :as’l 0 2127—— 11
SZ]( k°, kr, @) 2 d(2k0) dk%{@(lﬁ )H(kT)[ n < 7 ) 12 (5.11)
2 0
+ 0(K° — k) <2a2 —4a ln(ki> + 2Liz(—e‘2“))} } ,
T

where a = arccosh(kg/kr) and C; is equal to Cp for the quark-antiquark
channels and equal to C'4 for gluonic channels. This soft function is directly
related to the fully-differential soft function of ref. [184]. The projection from
kT and k= onto 2k° does not affect the renormalization, but is responsible
for the complicated finite terms above. To distinguish it from the double-
differential soft function appearing in eq. , it will be referred to as the
projected fully-differential soft function.

4 Azimuthal symmetry implies 5(ET —...)=6(k*—...)/x, allowing for the elimination of
vector quantities.
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5.1.3 Intermediate regime

The intermediate regime is described by the parametric hierarchy Aqcp <
gr < (1 — 2)Q < Q. The threshold restriction determines the scaling of
the collinear modes, which can no longer contribute to the gr measurement.
The soft radiation does contribute to this measurement, but is not restricted
by the threshold condition. There are additional collinear-soft modes in this
regime whose scaling is uniquely fixed by their sensitivity to both the trans-
verse momentum measurement and the threshold restriction [108]. A schematic
representation of the modes in this regime is shown in fig. The explicit
scaling of the various degrees of freedom is given by

A2
( %;D ; Q) AQCD)
n-collinear: ph ~ A2
CD
(aiQi)C)’ (1 - Z)Q7 AQCD) )
(Q,A%§D7AQCD),
n-collinear: ph ~ 9
QCD
1—
(( Z)Q7 (1 — Z)Q? QCD> ;

n-collinear-soft: ph  ~ ((1372)@’ (1- Z)QNJT) )

i-collinear-soft:  pt, ~ ((1 - 2)Q, — L __
n-collinear-so s (( 2)Q, z)Q’qT) ,
soft: pk ~ (qr,qr,qr) - (5.12)

The factorization, valid to all orders in «j, that these modes lead to is given
by
d{a

dUQ dfb

m: Zj(Qa ) fthr(gaa ) fthr /dk Szg Saﬂa )

/d€ /d2€ ,7 a,,u, v) /dﬁzr /dz&,%(ﬁb ,Eb,u, v)

A L
xé(l—@—a— Q)é(qT—\€a+€b+kS]). (5.13)

It yields the full cross section up to power corrections of the form

2

do_ _do L,
dQ2dgr  dQ2dgr [1 + 0(1 Z5 = z)zQQ)} . (5.14)
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Figure 5.3 The power counting of collinear (green), collinear-soft (blue) and
soft (red) modes for the intermediate regime. The scaling of the hard modes
(gray) is shown for reference. The dashed lines show the various invariant-mass

hyperbolas and the nonperturbative modes that are not factorized are grouped
together.

This intermediate regime involves more expansions than both regimes discussed
in the previous sections, but it allows for the independent resummation of gp
and threshold logarithms, whereas the threshold parameter was constrained to
be of a specific size for the previously addressed regimes. The matching onto
the effective theory and the decoupling of the modes follows from refs. [107]

and [108]. An essential step in proving the factorization involves the cancel-
lation of Glauber gluons, which was shown in ref. [125] using the methods
developed in refs. [185], [118] and [119]. The convolution structure of the fac-
torization theorem arises due to momentum conservation, which yields

Q% = (€aBom — 03) (& Bem — ) =5 — Q€7 e7Y

s e ) +0((1-2)%Q%)
- - + Y
:Q2(£T€b+€agy+€b5 +(’)((1—z)2)).

(5.15)

At hadronic threshold, Y is again power suppressed and drops out. The issue
of eliminating Y at partonic threshold is addressed in sec. [5.1.4

The new ingredient in eq. ((5.13)) is the hatted collinear-soft function that en-
codes the contribution of collinear-soft radiation to the measurement of gr.
At first sight, this hatted collinear-soft function appears identical to the ones

employed in the case of the joint resummation of transverse momentum and
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0-jettiness in sec. and calculated in ref. [108]|. They involve the other light-
cone component, but the calculation is symmetric under ¢~ ++ ¢*. However,
the zero-bin that accounts for the overlap with other modes differs between
the two. In ref. [108|, the zero-bin vanished in pure dimensional regulariza-
tion, converting all IR divergences into UV divergences. Here, the zero-bin
that accounts for the overlap with collinear radiation with energy (1 — 2)Q
plays a similar role, but there is also a non-trivial zero-bin from the overlap
with soft radiation, which can be taken into account throughf]

G Ty, ) = / @0 (0 Ty — T ) S @), (5.16)

where Sigl is the inverse of the TMD soft function. The hatted n-collinear-
soft function on the left-hand side involves the n-collinear momentum com-
ponent. The n-collinear-soft function (from eq. ) that appears on the
right-hand side ordinarily involves the n-collinear momentum component, but
is here evaluated using the m-collinear momentum component instead. Here
the rapidity regulator |[¢T — ¢7|7" has been left unexpanded. This distinction
is irrelevant for the soft function, where k™ and k£~ are of the same parametric
size. By consistency of the various factorization theorems, the same must be
true for all other ingredients as well. If the regulator were to be expanded as
|0t — 0|7 — [£7|7", the zero-bin would be scaleless. However, the regulator
then explicitly breaks the £~ <+ T symmetry, so that the hatted collinear-soft
function is still not the same as the one from ref. [108], given in eq. (B.38).
The explicit expression of the hatted collinear-soft function, obtained in this

way at one loop, is given in eq. (B.40)).

5.1.4 Partonic threshold

At hadronic threshold, the rapidity Y drops out of the threshold restriction
in eq. since it scales as Y ~ O(1 — z). At partonic threshold, this is
no longer true and in principle a soft function differential in k~, k™ and kr
is required. However, since the soft function consists of Wilson lines that are
boost-invariant (invariant under the RPI-IIT transformation from eq. ),
the dependence on e*Y can be removed by a convenient boost so that

Si‘(k_eya k+6_Y7 ET, :LL) = Sl](k_a k+7 ET, :u) : (517)

5The relation between zero-bins and inverse soft functions can be found in refs. [186}[187].
Intuitively, this can be seen by Fourier-transforming eq. to br-space, effectively
turning the convolution into a multiplication, so that the soft function (representing the
soft overlap, i.e. the zero-bin) is divided out of the collinear-soft function.
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This implies that Y can be eliminated from eq. (5.10) at partonic thresh-
old as well, and the soft function only depends on k7 and the combination
2k =k~ + kT,

This argument does not immediately carry over to the case of the hatted
collinear-soft functions in the intermediate regime because their rapidity reg-
ulator explicitly breaks boost invariance. Performing a similar boost for the
hatted collinear-soft functions leads to

Fillg e oy p,v) = e Fi(ly Loy pyveY)
‘5%(8;6_1/7217’#7 V) = GY‘E%'(Z;vaa/JHVe_Y) : (518)

Y in front

Since these hatted collinear-soft functions appear together, the e*
of both functions will mutually cancel. The same factors appearing in their
arguments in combination with the rapidity scale may be eliminated using

their rapidity evolution as

x-(e;,?a,u, VeY) = /dQZ; V; (Za — Zg,,u, v, VeY) %(ﬁ;,zg,u, v),
5%(6;,2}1,”, l/e*Y) = /dQZg V}(Zb — Zg,u, v, I/e*Y) 5’%(6;,?’,% v). (5.19)

In the final result, the evolution kernels cancel against one another as
/ &7, / A28, 8(qr — (B + Ty + K ) (5.20)
X V;;(Za — Zﬁl,,u,l/, I/GY) V;(Zb — Zg,,u, v, Vefy) = (5(qT — ]Z; +Z§, + ESD ,

for the partonic channels under consideration. These manipulations are similar
to those performed in eq. (4.40) and lead to the conclusion that Y may also
be dropped from eq. (5.15) at partonic threshold.

5.2 Consistency relations

The factorization of the cross section in the intermediate regime involves an ad-
ditional expansion with respect to both the transverse momentum factorization
and the threshold factorization. When these factorizations of the boundary re-
gions are considered in the hierarchy of the bulk region, they should agree
with the SCET factorization. This leads to consistency relations between the
perturbative ingredients of the three factorization theorems.

Since the factorized cross sections should be independent of the arbitrary scales
u and v, the dependences of the various functions on these scales must mutually
cancel. This leads to an additional consistency relation for each factorization
formula, linking the anomalous dimensions of the ingredients to one another.
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5.2.1 Consistency between regimes

When the factorization of the transverse momentum regime in eq. is con-
sidered in the threshold limit 1 — z <« 1, it should match onto the factorization
theorem for the intermediate regime in eq. . Inspecting the fixed-order
content in both formulas then leads to a consistency relation given by

Iij(wa,ba ET7 Za,bs My l/) = 5ij Qtyzl ((1 - Za,b>Q7 ET: 12 l/)
X [14+0(1 = 243)] , (5.21)

where Z;; is the matching coefficient of the TMD beam function defined through
eq. (4.20), zap = xap/Eap as before and wyp = T4 pLem. By comparing the
expressions for the TMD matching coefficients and the hatted collinear-soft
function at one loop, given in eq. (B.40)), eq. (5.21) is indeed found to be sat-
isfied.

The threshold factorization in eq. ([5.8)) must, in an analogous way, match onto

the intermediate regime. This then implies another consistency relation, given
by

Sij (2K, Er, /d£ /d% Tl loy 1, v) /de; /dQZ’b,;ﬁj(e;,Zb,u,y)

X /d ks Sij(ks, pu,v) 8(2K° — £ — 4)

- - 5o k2,

x 6 (B — |0y + Oy + Fs|) [1+O<(k )2)}, (5.22)
where 2k” = (1 — 2)Q. Since the projected fully-differential soft function on
the left-hand side does not involve any rapidity divergences, all of them must
cancel between the hatted collinear-soft functions and the TMD soft function
on the right-hand side. At one loop, this consistency relation reduces to

S @K, b, 1) = 27 (2K, K, p,v) + 6(2k%) S (B, p,v),  (5.23)

up to corrections of order k%/(k")?. To check this relation explicitly, the pro-
jected fully-differential soft function from eq. (5.11) has to be expanded as

asCz

Sij (2K, ko, p) = —La(kF, 1?) 6(2K°) + 2L0(2K°, 1) Lo(kF, 1)

_ ia(zko) 5(1@)] [1 + O((:Q)Q)} S (29
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Using the expressions for the TMD soft function and the hatted collinear-soft
function from eq. and eq. respectively, the consistency relation
between the threshold regime and the intermediate regime is explicitly found
to be satisfied at 1-loop accuracy.

5.2.2 Consistency within regimes

Since the cross section is an observable quantity, it must be independent of
the scales p and v. This requirement can be translated into consistency re-
lations for the anomalous dimensions of the various ingredients occurring in
a factorization theorem. Since the rapidity RGE of each ingredient involves
the same anomalous dimension multiplied by a numerical prefactor, only the
independence of the factorizations on the scale p provides non-trivial consis-
tency relations. The RGEs and anomalous dimensions of all the ingredients
occurring in the various regimes are gathered in app. [C|

Consistency of the transverse momentum factorization in eq. ([5.4) implies the
relation

Vi (Q%, 1) + V5 (was 1y v) + A (wo, 1, v) + F5(p,v) = 0, (5.25)

where 7% (Q?, i) is the anomalous dimension of the relevant hard function,
equal to the squared absolute value of the anomalous dimension of the corre-
sponding hard matching coefficient, given in app. [C.I] This relation can be
verified using the relation Q2 = wqwp. The tildes on the anomalous dimensions
corresponding to the TMD beam and TMD soft functions serve to distinguish
them from those corresponding to the inclusive beam and soft functions.

For the threshold factorization in eq. (5.8)), the various anomalous dimensions
are required to satisfy

i ()2 0 2 i (Q — 2k°

Y (Q7, 1) 0(2k7) + o\ "o

This implies that the anomalous dimension ’Ay:‘g of the projected fully-differential

soft function is equal to that of the threshold soft function in ref. [188]. A

relation between the non-cusp anomalous dimension of the projected fully-

differential soft function and the beam thrust soft function can also be obtained.

The consistency relation for deep inelastic scattering in the threshold limit [189]
is given by

) + 352K, 1) = 0. (5.26)

Vi (as) + 75 (as) + 7 (as) = vir(as) +vp(as) +75(as) =0, (5.27)
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where the fact that the non-cusp anomalous dimension of the jet function is
equal to that of the virtuality-dependent beam function has been used [100].
Using this, the consistency of the threshold factorization in eq. (5.26]) leads to

vp(as) = vplas) +F5(as) = 0. (5.28)

The relation in eq. (5.27)) can also be used to rewrite the non-cusp anomalous
dimensions in the consistency relation of the beam thrust factorization for
Drell-Yan [99] as

’Y}I(O‘S) + 2')’12'9(045) + Vg(QS) = 733(05) - 7}(O‘S> + 'YfS‘(CVS) =0. (5.29)
Comparing these then leads to the all-order relation
As(as) = —75(as) - (5.30)

The consistency relation for the factorization in the intermediate regime from

eq. (5.13]) reads
(@) + 3501 81— €) + 295 + 2055 (L9 ) =0,
(5.31)

This can be used to determine the non-cusp anomalous dimension of the hatted
collinear-soft function through

4 (0s) = —3 (g () + 27} () + F() (532

which vanishes up to 2-loop order. Alternatively, the zero-bin in eq. ([5.16]) and
consistency of the SCET factorization in eq. (4.36) [108] imply that

'AY?Y(O‘Q = —%(7}{(045) + 2’?}3(@5) + 7?'9(0‘8)) - 5’%(045)

= 2 (las) + 7)) (53

where the second line follows from the consistency of the SCETy factorization
in eq. (4.17). This relation has been verified up to two loops.

5.3 Resummation

The natural scales that minimize the logarithms in each of the perturbative
ingredients can be read off directly from the anomalous dimensions in app.
and are given in momentum space by

pH ~Q, wB ~qr Koy ~qr, s ~ qr,
vg~w~Q, vy~ (1-2)Q, vs ~qr. (5.34)
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The simultaneous resummation of logarithms of ¢g7/Q and 1 — z is achieved
by evaluating each ingredient at its natural scale, where it contains no large
logarithms, and evolving them to a common g and v scale. The orders at
which the various ingredients are required in order to obtain resummed results
at some desired accuracy are summarized in table [3.1] The evolution function
that relates a function at some scale pg to the same function at a different
scale p is obtained by solving the u-RGE of said function. For multiplicatively
renormalized functions, i.e. the hard function, the TMD beam function and the
TMD soft function, the evolution function was given in eq. . For the
other functions, renormalized through a convolution structure, the evolution
function can be found in eq. .

The evolution functions that relate the perturbative functions at different ra-
pidity scales vy and v can be obtained in a similar way through the v-RGEs.
It is most convenient to perform the resummation of logarithms involving g
in impact parameter space [94,95,/157,|164], as discussed in sec. 4.2.3] The
Fourier transform will turn all the convolutions in gy occurring in the factor-
ization formulas and the RGEs into multiplications. For the scales in eq. ,
this would simply entail replacing gr — bo/br.

5.3.1 Combining regimes

To obtain a cross section that describes the joint resummation of g7 and thresh-
old throughout all three regimes described in the previous sections, the various
factorization formulas have to be matched to one another. Because of the
consistency relation between the transverse momentum regime and the inter-
mediate regime, given in eq. , choosing the rapidity beam scale as

vg~(1-2)Q, (5.35)

smoothly interpolates between these regimes. Schematically, this can be writ-
ten as

dojye doy
dQ%der ~ dQ@dar,, o’

(5.36)

In ref. [190], it was noted that such a scale choice removes the large logarithms
in the anomalous dimension of the TMD beam function matching coefficient.
The factorization analysis performed in this chapter establishes that this in-
deed sums all threshold logarithms in the intermediate regime.

Matching the transverse momentum, threshold and intermediate regime can
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be done in an additive way through

dojyors  dog n doy  dop
dQ?dgr  dQ?dgr  \dQ%*dgr dQ?dgr

+ d0'3 B dO‘Q
dQ?*dgr dQ?dgr

V'y?:VB>

o > , (5.37)

in complete analogy to the matching of the various EFT regimes in the previ-
ous chapter in eq. . Here the subscripts v ; = vp and v = vg indicate
that the additional threshold resummation and transverse momentum resum-
mation are turned off respectively. The intermediate regime plays a crucial role
by accounting for the overlap between both boundary regimes. To smoothly
turn off the resummation when approaching either of these boundary regimes,
profiles functions [103}/154] akin to those developed in sec. are required.
Finally, the fixed-order region can also be included in the matched cross section
in complete analogy to eq. to yield the total cross section

do_ doita4s dopo  doito4s
dQ?dgr dQ?dgr = [dQ%*dgr dQ?dgr

(5.38)

HFO

When profile scales are employed at the level of the cumulant, this additive
matching ensures that the inclusive cross section with threshold resummation
is recovered upon integration over qr.

5.3.2 Conclusions

The framework developed in this chapter allows for the simultaneous resumma-
tion of threshold and transverse momentum logarithms in heavy color-singlet
production processes. The setup resums all the logarithms directly in momen-
tum space. Using SCET, three kinematic regimes characterized by distinct hi-
erarchies were identified. The three regimes have their own degrees of freedom
and each leads to a different all-order factorization theorem. These factoriza-
tions can be used to obtain resummed predictions by evaluating the various
ingredients at their natural scales, minimizing their logarithms, and evolving
them to a common scale.

The consistency of each factorization theorem was checked explicitly, as was
the consistency between the intermediate region and the boundary regions.
All the ingredients necessary for resummation at NNLL accuracy are gathered
in apps. [B]and [C| but the discussed setup is not limited to this resummation
order. In fact, all ingredients for N3LL resummation can be obtained from
the literature. The required 4-loop cusp anomalous dimension was given in
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ref. [191] and the 4-loop beta-function can be found in refs. [192,/193]. Re-
sults for the relevant 2-loop hard functions and their corresponding non-cusp
anomalous dimensions were obtained in refs. |189}/194-199]. The 2-loop TMD
beam and soft functions were calculated in refs. [200-206] and the 2-loop pro-
jected fully-differential soft function can be extracted from ref. [207]. The
remaining non-cusp anomalous dimensions that are required at N3LL (and the
2-loop hatted collinear-soft function) can be obtained from refs. [198,208-211|
or through consistency relations.

To describe the full phase space, the three factorizations have to be matched to
one another and to the full fixed-order QCD result. Two of the three regimes
are related through a particular scale choice and all three can be matched
through an additive procedure similar to the one employed in chap. [4

It should be noted that the same approach can be used to describe heavy par-
ticle production in the presence of a veto on jets with qjj?t > ¢, where instead
of transverse momentum logarithms, the cross section contains logarithms of
¢$**/Q. The convolutions in gr are then replaced by multiplications where

each ingredient depends on qCTUt, but the framework is otherwise the same.
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Generalized threshold factorization

Existing factorization theorems for color-singlet production processes near kine-
matic threshold at hadron colliders are obtained in the limit in which the mo-
mentum fractions x, and x; of both incoming partons approach z,; — 1. In
this chapter, the more general situation, in which only one of the momentum
fractions is restricted, is considered. In sec. [6.1] a novel factorization formula,
describing this forward threshold configuration in which x, — 1 while z} is
left unconstrained, is derived. By combining this with an analogous factoriza-
tion of the opposite limit and accounting for the overlap between the two, a
generalized threshold factorization is obtained. The resulting approximation
of the cross section of this factorization is checked extensively against avail-
able exact results in sec. [6.2] In sec. [6.3] some first applications are described.
These include the approximation of the exact partonic rapidity spectrum and
a comparison to the soft threshold expansion at higher powers. This chapter
proceeds largely along the lines of ref. |3].

6.1 Factorization

The production of some color-singlet final state L in combination with hadronic
radiation X in proton-proton collisions is schematically given by

p(PY) +p(B)) = L(g") + X (P), (6.1)

where the definition of the momenta of the various ingredients has been made
explicit. In this chapter, these types of processes are considered at hadronic
center-of-mass energies E% = (P, + P,)?. The final state L is characterized
by its total invariant mass () = ﬁ, rapidity Y, and transverse momentum
gr = |gr|- The invariant mass and rapidity are related to the momentum
fractions x, and x; through eq. and the cross section differential in
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these momentum fractions can be parametrized as [118,/119,/185|

/dza L Cor o) i (x ,u> fg( ,u> (6.2)

Here 6;(2q, 2p, pt) denotes the partonic cross section, f; j(x, jt) are the standard
PDFs, and a sum over the partonic indices ¢ and j is left implicit.

da:a dxb

6.1.1 Motivation

In the soft threshold limit 7 = Q?/E2, — 1, explored in a more differential
setting in sec. m, the cross sectlon from eq. is known to factorize
as [212-217|

dm dx — ”QM/dk: /k+5thrk kT, )
Jr

" thr[xa<1 QeY) u} thr[mb(1+QiY),u}, (6.3)

up to power corrections of O(1 — 7). In this limit, the partons extracted
from the protons directly initiate the hard interaction, described by the hard
function H;;(Q, ). Any additional hadronic radiation is forced to be soft and
is encoded in the threshold soft function Sg-‘r(k*, kT, u). Only the hard Born
processes, e.g. q¢ — v* or gg — H, contribute in the limit 7 — 1 and are
included in the hard function. Any nondiagonal partonic channels such as
qg — Lq vanish in the soft threshold limit. The threshold PDF £ (z, 1) was
already introduced in eq. and describes the extraction of a parton ¢ from
the proton in the limit x — 1.

At the partonic level, the soft threshold limit is given by z = 2,2, — 1 and
implies that both z,; — 1. By using the fact that the threshold PDF is related
to the usual PDF through

F (@1 41— 2),p) = —fz( ,u) (6.4)

at leading power in 1 — z, the threshold factorization of the partonic cross
section is found to be

Gij(2ay 20, 1) = Hij(Q, 11) S (20, 2, 1) - (6.5)
Here, the threshold soft function at partonic threshold is defined as

SHT (2ar 25, 1) = QS (QeX (1 — 24), Qe (1 — 2), 1) - (6.6)
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Since z = 7/(£4&p), and the PDFs fall off steeply for larger values of the mo-
mentum fractions &, 3, logarithms of 1 —z can dominate the PDF integral even
for typical values of 7 ~ 107 at the LHC. Because of this, the soft thresh-
old factorization has been used extensively in the literature. It allows for the
all-order resummation of large logarithms of 1 — z, as studied in for example
refs. [188]195,212-233|. The resummation at next-to-leading power (NLP) in
1 — z has also received recent interest [234-236.

Because of the dominance of the threshold logarithms, the inclusive partonic
cross section at fixed-order can be approximated by successively adding higher-
power terms in 1 — z, as was done for Drell-Yan and gluon-fusion Higgs pro-
duction at N3LO in refs. [237-244].

6.1.2 Forward threshold factorization

Before aiming for a factorization theorem for the cross section differential in the
momentum fractions z, and xp, it will prove convenient to first consider mea-
suring the lightcone momenta ¢+ of the produced color-singlet state directly.
Working in the hadronic center-of-mass frame, these momentum components
are fixed by

- L. rq
+ — N2 2 —
¢ =Q° +aqr and Y = §1n<q—+), (6.7)

and corresponding momentum fractions can be defined as

/2 1 2
gt Q +qT6iY

T = = , 6.8
F PaTb Ecm ( )

where the momenta of the incoming protons P, = PbJr = FE.n have been
plugged in. These momentum fractions manifestly obey z_ > x, and x4 > xp,
so that the conditions z, — 1 and z; — 1 imply z_ — 1 and 4 — 1
respectively. The generalized threshold limit that is considered here is given
by

)\%CD <N~l-z_x1 for generic = , (6.9)

where A\qcp = Aqep/Q. In this limit, the emissions in X are found to have
moment

P~ (a Py —q  Bxy) ~ (07 X \Watqg), (6.10)

which corresponds to a collinear scaling in the n-direction. Physically this

Since the total X contains the beam remnant in addition to these emissions, the notation
p’ is used here instead of P%.
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Figure 6.1 Illustration of Drell-Yan at large rapidities.

entails that, at large ¢~ (or, equivalently, large Y'), the hadronic final state
that recoils against the produced color-singlet L becomes collimated with the
incoming beam, as shown in fig. [6.1] This situation implies a factorization
theorem for the cross section differential in z_ and z, given by

do

t
. — H.AaTao thr v '
T do, = Halaa ,u)/dtfl [x_(1+q+q7),u} B(t,xs,p), (6.11)

which holds to leading power in 1 — x_. The derivation of this factorization
formula will be described below. In this factorization, B;(t, z, 1) represents the
inclusive beam function [99,/100], defined in eq. (3.182)), that is also present in
the exclusive factorization formula for N-jettiness [99,/109]. The hard function

H;;(Q, 1) is the same as in eq. (6.3))

The measurement of the transverse momentum ¢r can be considered in ad-
dition to that of z_ and z;. From eq. it follows that in general
qr ~ px1 ~ AQ, so that the dependence on ¢r is entirely described by the
n~collinear modes. The factorization from eq. then takes the slightly
altered form

do
dox_ dz4 dgp

=Hij(¢" g, p) /dt fibe [1:, (1 + )a#} Bj(t,zy,qr, 1)

(6.12)

qtq

which holds up to corrections of O(A?2 ~ 1—x_). This factorization involves the
double-differential beam function |110}/150] that already occurred in eq.
for the joint resummation of 0-jettiness and gr. Its matching onto the PDFs
was given in eq. (4.6) and explicit expressions of the matching coefficients can
be found in app. [B:2

From the scaling Aqcp < A, adopted in eq. , the relation A\qcp ~ A2 may
be considered without loss of generality. This relation can be understood by
realizing that A\qcp denotes the scale of the PDFs, which is in general allowed
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Mode Lab frame Leptonic frame (Y = 0)

P (a7, \q, A/q qt) Q (1,23, 1)

Py (q+, %, AQCD) Q (1, \cps Aqep)

Adep

P, ( p= aq_aAQCD) Q(AécpalaAQCD)
1 A2 B A2

Py (ﬁ E?D,AQQ 7AQCD> Q( (igD;)\Qy)\QCD)
A2 A2 A2

P, ( QCD7 QCD7 QCD) 0 22 )\2 7)\2
q q+ \/ﬁ (QCD QCD QCD)
Adep Adep

Pg ( prl >AQCD> Q (Mcp» Ageps Aqep)

Table 6.1 Relevant modes in the limit A\qcp ~ A ~1—2" < 1in the lab
(hadronic center-of-mass) frame and the leptonic frame, where Y = 0.

to be as large as A2 and does not necessarily have to be nonperturbative. If
this scale does happen to be nonperturbative, then the physics below Aqcp
is simply described by the PDF evolution. Since A? is allowed to be as small
as AQcp, it may be nonperturbative as well. The only relevant issue is that
A > Aqcp is perturbative. In order to derive the factorization formula in
eq. (and by extension also the one in eq. ), the relevant degrees of
freedom have to be identified. These modes are summarized in table [6.1] and
will be described in more detail in what follows.

The hadronic final state X is described by n-collinear modes, denoted by pg.
Their minus component follows from momentum conservation, but their plus
component is unconstrained, leading to the scaling given in eq. . As
P2~ N2qTqT ~ \2Q% > AéCD, these modes describe the perturbative QCD
final state X.

The partons inside the incoming protons are described by the modes P, and
P;. Since these modes are nonperturbative, their momenta are constrained via
P2~ P2~ A(2QCD' Furthermore, for their momentum fractions to be of the
required size to initiate the hard interaction, their components must scale as
P ~q and PS ~ xEem ~ qF.

The interactions between the pz and P, modes are described by soft modes,
which must then necessarily adhere to p; ~ p; ~ A2Q and ps; ~ P, ~
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Aqcp. Hence, they have a SCETj-like relation with respect to the p; modes
and a SCETy-like relation with respect to the P, modes. The interactions
with these soft modes decouple at the level of the Lagrangian via the BPS
field redefinitions (see sec. and are moved into soft Wilson lines. In the
scenario in which Aqcp ~ A, the soft modes become degenerate with the pj
and P,, modes.

The power counting of the modes and the relations between them are easiest
in the leptonic frame, in which the color-singlet final state has a total rapidity
Y = 0. This frame is obtained by boosting ¢* — \/qt¢~ ~ Q. In this frame,
the ps modes are genuinely 7i-collinear and the scaling of the soft modes is
homogeneous. In the lab frame, the ¢ and ¢~ have to be kept track of sepa-
rately, since the generalized threshold limit involves a large ¢—, but a generic
g". The resulting p; modes in the lab frame do not appear to be 7i-collinear
because ¢T ~ A\?¢~ is in principle allowed. They are, however, collinear rel-
ative to the soft modes, which are boosted in the n-collinear direction in the
lab frame and effectively become n-collinear-soft modes [107,/108].

Finally, there are additional ultrasoft modes p, s and Glauber modes p¢g, which
describe the possible interactions between P, and Pj. The requirement that
the latter are kept on shell by these interactions means that p,, ~ P; and
plry ~ Pr. As the ultrasoft modes themselves are required to be on-shell
modes as well, they are uniquely fixed by this. The effects of the Glauber
modes and ultrasoft modes cancel, so they are not considered here any further.
This follows from the collinear factorization theorem [118}/119,/185|, since the
measurement considered here is still inclusive over all perpendicular momenta
at the scale Aqcp@.

There are no interactions between the various modes in the leading-power
SCET Lagrangian, so that the cross section factorizes into separate matrix
elements, each describing a single sector [99]. The p; and P; modes combine
into the beam function and the P,, and ps; modes into the threshold PDF, as
discussed in refs. [245]246)].

The arguments of the functions in the factorization follow from overall mo-
mentum conservation, which (at leading power in A) must hold for label and
residual momenta separately. The label momenta carried by the P, and Pj
modes are given by w,, ~ wz ~ Q. The residual momenta of the collinear and
soft modes are ki | ~ AQ and kp ~ ks ~ A2Q. Overall momentum conservation
is then enforced through the delta functions

8w — ") 6(wn — q7) 8(kns +Gr) d(ky — k). (6.13)

The first three delta functions lead to the z+ and ¢; arguments of the thresh-
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old PDF and beam function. The analogous §(kJ — k) has disappeared by
absorbing the kr-dependence into wy, [99).

By combining the P, and ps modes, the threshold PDF depends on (w, +
ky)/P; = x_(1+k;/q). In this case, the momentum k; ~ A\2Q of the pq
modes has to be taken into account because it is much larger than the typical
residual momentum k,; ~ A(QQCDQ of the P, modes that is absorbed into wy,.

The fourth delta function finally leads to the convolution in t = ¢qtkz .

6.1.3 Kinematic endpoint factorization

The additional dependence on gr enables a change of variables back to the
original momentum fractions x, and x3, directly corresponding to the experi-
mentally accessible variables () and Y. By expanding in the small parameter

A~ +/T—xz_ ~qr/Q, the argument of the threshold PDF reads
2

t
x,(L+qw7):Jh( +§§5+éﬁ) (6.14)
at leading power in A. There is no Jacobian, so that the factorization from
eq. (6.12)) simply takes the form

do — H.. thr qi L ' R
dr,drydgr His(Q: 1) /dtf [ ( + 2002 - QQ) } Bj(t, xp, G, 1)
(6.15)

up to power corrections of O(1 — x,). The additional gr measurement, which
was crucial in enabling the translation back to x4, can now be integrated over
to obtain the inclusive rapidity spectrum

which holds up to power corrections of O(1 — z,), but is valid for generic
zp. Here the shift ¢ — £ = ¢ + ¢%/2 has been made. The modified inclusive
(virtuality-dependent) beam function is defined as

2
&@%mz/ym&ﬁ

k -

_lakaTau)a (617)
which is a projection of the double-differential beam function that absorbs the
shift ¢+ — £. It obeys the same RGE as the inclusive beam function B;(t,x, i),
but has different constant terms. The matching of the modified inclusive beam
function onto the PDFs is given by

=3 [T e 5(Za) 102 s
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and is completely analogous to eq. (3.182). Explicit expressions for the match-
ing coefficients are gathered in app. [B-2

Because the factorization in eq. (6.16)) is valid for any xy, it must also contain
the soft threshold factorization from eq. (6.3)) as xp — 1. This implies that, at
leading power in 1 — xy, the modified inclusive beam function obeyﬂ

» - dk™* thr.— 1.+ thr k*

By(whk™ o) = | =SBk ) | (14 )] (6.19)
An identical relation holds for the double-differential beam function. These
relations have been checked explicitly through O(a?2).

W

By adding the result in eq. and the analogous result in the opposite limit
(xp — 1 for generic x,) and subtracting their overlap, which is precisely given
by the soft threshold limit, the generalized threshold factorization is obtained
as
do
dz, dzy

=H,, |: Z‘thr ® Ej + Bz ® f]@hr + Szt]hr ® fithr ]‘ghr} ’ (620)

where all arguments have been omitted for clarity and ® indicates the rele-
vant convolution structures. The corresponding partonic generalized threshold
factorization is given by

6(2a, ) = Hye [51%' I} (20> 2) + Lis (26 2a) O¢j — Oki 0o SEF™ (2, Zb)} , (6.21)

where the primed matching coefficients

T3j(2as 2) = Q* Li (Q*(1 — za), ) (6.22)

have been defined for convenience.

6.2 Validation

The exact rapidity spectra are known to NLO for Higgs production through
gluon fusion [247] and to NNLO for Drell-Yan |248,249], allowing for a direct
comparison of the factorization formula in eq. to these exact results. The
validation for the NLO results is carried out analytically, while the comparison
at NNLO is performed numerically. For simplicity, all scales will be set to
¢ = @ in this section, and the scale-dependence of various functions will be
left implicit.

2The indices carried by the soft function actually indicate a color channel, not individual
flavors. The absence of i on the left-hand side is therefore merely a consequence of the
convention in which the soft function carries two indices.



6.2. Validation 169

6.2.1 Analytic validation at NLO

The partonic equivalent of the kinematic endpoint factorization from eq. (6.18])
is given by

Gij(2as 2) = Hie(Q, 11) Tij(2ar 2, 1) (6.23)

at leading power in 1 — z,. This result can be compared at NLO against the
exact Drell-Yan partonic rapidity spectrum from refs. [248| by expanding the
latter in the limit z, — 1. These results are expressed in terms of the partonic
variables z and y, which are related to z,; through

zp(1 — 23)
= d = . 6.24
£ Fe®oan Yo 1= 2am)(za + ) (6.24)

The Jacobian between the two parametrizations is then given by

dedy _ 2[1—y(1—2)J1 - (1 —y)(1 - 2)]
dzg dz 1—22 ’

(6.25)

and the integration limits 0 < z, 5 < 1 correspond to0 <z <land 0 <y < 1.
In order to be able to compare the NLO results for pp — ~+* predicted by
eq. (6.23) against the exact partonic results from ref. [248], the plus distribu-
tions in z and y have to be translated to distributions in z, and z, at leading
power.

Plus distributions are defined through their integral over integration regions
that include the singularity, and the fact that they reduce to their argument in
the bulk, i.e. in regions away from the singularity. The relations between the
plus distributions in the bulk can be obtained by directly plugging in eq. .
The boundary terms can be determined by comparing the integrals over the
region given by z, < z.(z,y) < 1 and x, < zp(z,y) < 1 for generic z, and
xp. This integration region is indicated by the gray box in the (zg, 2)-plane in
fig. and can be expressed in terms of z and y as

0[2a(2,y) > za] 0]2(2,y) > x4
= H[xaa:b <z< min{ma,xb}] B[ylow(z) <y< yhigh(z)] + H[max{xa,xb} < z]
+ G[xb <z< ma] H[y < yhigh(z)] + H[xa <z< xb] G[ylow(z) < y] . (6.26)

The integration bounds in y are given by

2(1 — 22 T2 — 22
sl = (=) o) =

1—2)(22+2) 1—2)(z4a3)’ (6.27)



170 Chapter 6. Generalized threshold factorization

Za

Figure 6.2 The (zg4, 2p)-plane as parametrized by (z,y). The relevant inte-
gration region z, < z, < 1 and x, < z, < 1 (for z, > x3) is indicated by the
gray area. The red lines indicate the integration boundaries on z, the dotted
black lines represent integration paths over y for fixed z. Lines of constant y
are given as dashed blue lines.

and are indicated in fig.[6.2] Relations between the two parametrizations can be
derived by integrating distributions in terms of z and y over the region given in
eq. (6.26)), expanding the result to leading power in 1—x,, and comparing to the
corresponding integral over the same region in terms of z, and z,. The identities
between distributions that are required at NLO are collected in table[6.2] The
final entry in table contains the most intricate structure. Integrating this
structure over the gray shaded area in fig. yields

1 1
| s [ ayolztei) - 2] 0Ln(z.0) - ] £02) (L0(w) + Lo(1 ~ )
0 0

min{zq,zp} Ta
:/ dzga(z)+gb(2)+9[ma—xb]/ dz 9a(?)

aTp I-2 b

Tp
+ Olxp — 4] / dz fbizi , (6.28)

where the functions

ga(2) = ln(%> and a(z) = IH<W> , (6.29)

have been introduced for convenience. By defining the functions G,(z) and
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dzdy x LHS =dz,dz, x RHS

f(2)6(y) f(26) 6(1 — 24)

r(2) Lo(y) r(2p) [ ( 22 )6(1 — 24) + Lo(1 — Za)] +O(1)
f(z)o(1— f(za) 6(1 —Zb)

r(z) Lo(1 — ) o

( (
r(z) 0’1 -y)%) o

Lo(1— z) TS — 24) 6(1 — 25) — L1(1 — 24) 6(1 — )
x[Lo(y) + Lo(1 —y)]  +Lo(1— 2za) Eo(l —2) = 6(1 = za) L1(1 — 2)
+0(1 = z4) 25 In({222) + O(1)

1zb

Table 6.2 Translation identities of distributional structure between the
(z,y) and (zq,2p) parametrizations. Here f(z) is an arbitrary (potentially
distribution-valued) function and 7(z) = O((1 —2)") has at most an integrable
singularity as z — 1. When indicated, the relations receive power corrections
in 1 — z, starting at O(1) = O((1 — 2,)°).

Gp(z) such that

dGal2) _ga(2) g d5() _ el2)
dz 1—2z dz 1—2z

(6.30)
the integral in eq. (6.28)) is found to be equal to
1 1
| s [ ayoleten) = 2] 0La(z.0) - 0] L) (£0(w) + £o(1 ~ )
0 0

= Gal(zq) + Gp(wp) — Go(zaxp) — Gp(Taxy) - (6.31)

A possible primitive for G, () is given by

1—
Gap(2) = —In(1 — 2)In(—z + i0) — L12<1 - ;b)

—Lig( 1=z —zO) Lis(2), (6.32)

where the imaginary parts cancel between the different terms. Comparing the
integral given in eq. (6.31) against the exact distribution in the bulk then gives
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rise to the explicit distributional identity

T £0(2) (£olw) + Lol1 ~ )
- [”;5(1 —20)6(1 — z) — L1(1 — 20) 6(1 — 2) + Lo(1 — z4) Lo(1 — 23)
(01— 2) £1(1— 2) + (1~ z) - _1% 1“(12+szb)
1 2z, 1
00— 2) g 1n<1+za)+(1+2a)(1+%)}. (6.33)

The result given in the last line of table[6.2)is then obtained by expanding the
right-hand side to leading power in 1 — 2z,. The result in eq. relates plus
distributions of some function y(z,, z3) to simpler plus distributions of 1 — z,
and 1 — zp, plus regular terms. Additional boundary terms are then generated
by moving the regular terms out of the plus distributions. In this sense, it is
the two-dimensional analog of typical distributional identities such as

1+ 22
1—=z2

] = 2Lo(1 — ) + 2001~ 2) — (1+3). (6.34)
N

After expanding the exact partonic cross sections from ref. [248] to leading
power in 1 — z, using the results in table [6.2] they can be compared against
the NLO predictions from the partonic factorization formula in eq. . The
hard function for producing a virtual photon can be found up to one loop in
app. B.1] Since the hadronic cross section is differential in dz, dz; instead of
dQdY’, this hard function should be multiplied by the Jacobian E2 /(2Q),
effectively changing

4o

= 3N, Q2

dojqB
d@

Here the Drell-Yan process has been restricted to qg — v* — ¢7¢~ and the
quark charge @, has been factored out explicitly. Because the RGE of the
double-differential beam function in eq. does not involve /%’T, the modified
inclusive beam function must satisfy the same RGE. From consistency with the
DGLAP equation in eq. , the RGE for the modified matching coefficient
is then found to be

ds
i Z/dt’/ Lin(t u)

x[wawm 1) —26()Piyas, )| . (6.36)

n Q. (6.35)
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Solving this equation order-by-order in perturbation theory then yields the
matching coefficients of the modified inclusive beam function up to the co-
efficients of the 0(¢), which are not predicted by the RGE and have to be
calculated explicitly from eq. . Apart from these boundary terms, the
matching coefficients of the modified inclusive beam function have the same
structure as the matching coefficients of the inclusive beam function. Results
for the modified matching coefficients can be found in app. [B:2}

Defining the perturbative expansion of the partonic cross section as

Gij(2a, %) = (%r)n 6,(}7’) (24> 2p) 5 (6.37)

n=0

and plugging the results for the hard function (adjusted by eq. (6.35)) and the
modified inclusive beam function into eq. (6.23]) up to O(ay) yields the results

6. (2, %) = 01Q2 (8iq0g) + Gighs) 6(1 — 2a)8(1 — 2) |

&éé—)(za, 2p) = U};QQE [Fg L1(1 = 2,) (1 — z)

q
7B,0

+ Lo(1 = z0) (= 52501 = =) + P ()

2
FO(1 - z) (5(1 ~ ) (%Fg + chgJ) + Lg;)(zb))] ,

50 (s ) = Q2 [Lo(1 = 20) P () + (1 = 2a) I{1) (1) (6.38)

The results for ¢ <> ¢ are identical and the gg and gq channels are power-
suppressed. The partonic cross section determined here is related to the
parametrization used in ref. [248] via

,Y7q
. _dzdy op"  ref 213
Gij(2a, 2p) -0,

= Gods 22 00 (z,y) . (6.39)

When this difference is taken into account, and the results from ref. [248| are
expanded to leading power in 1 — z,, exact agreement with the partonic cross

sections in eq. (6.38]) is found.

The rapidity distributions for gluon-fusion Higgs production pp — H at NLO
were obtained in ref. [247]. In this case, the difference in parametrizations is
found to be

dzdy o%" [d&ij}ref- 217

. (6.40)

Gij(%a 2) = dz,dzp, =
a
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Figure 6.3 Comparison of the O(a?) contribution to pp — ~* predicted
by the endpoint factorization in eq. (blue) against the full result from
Vrap (red). Dashing in the blue line indicates negative results. The difference
is shown in green and the error bars indicate integration uncertainties.

The distributions with arguments y(1 — y) that appear in ref. [247] can be
translated through

S(y(1—y)) =d(y) + (1 —y),
Lo(y(1—y)) = Lo(y) + Lo(1 —y), (6.41)

which follow from comparing full integrals and applying partional fractioning.
The results from ref. [247] may then be expanded to leading power through
the identities in table Comparing these against the results obtained from
eq. by plugging in the relevant perturbative ingredients given in app.
to O(as), exact agreement between the two is found for all channels.

6.2.2 Numerical validation for Drell-Yan at NNLO

To numerically validate the factorization formula for the inclusive rapidity
spectrum from eq. for Drell-Yan at NNLO, the hard function and match-
ing coefficients of the modified inclusive beam function are implemented up to
2-loop accuracy in SCET1ib [174]. The results are compared against Vrap [249),
considering pp — 7*, keeping s = 0.118 fixed, and using flat PDFs ' (z) =
fi(z) = 6(1 —x) for simplicity. This effectively amounts to taking cumulant in-
tegrals of the partonic cross section, meaning that plus distributions £,,(1—z,)
contribute In"(1 — z,), delta functions 6(1 — z,) integrate to unity and power
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corrections of O((1 — z,)°) turn into O(1 — x,). In fig. the numerical
comparison of the O(a?) contribution for Drell-Yan is shown as a function of
1 — x4, while 2, = 1072 is kept fixed. Excellent agreement between the end-
point factorization (blue) from eq. and the full cross section (red) from
ref. [249] is found in the singular limit z, — 1, with the difference (green)
vanishing like a power. Although fig. involves only a single representative
value of x;, other values have been checked as well and show a similar agree-
ment. Furthermore, the agreement in the singular limit is also found to hold
for pp — Z/~* on the resonance.

Analogous numerical comparisons have been performed for each individual
channel as well. Here the ij = gq channel includes all topologies in which i
and j are part of the same quark line. The leading-power limit then corre-
sponds directly to the ggV matching coeflicient of the modified inclusive beam
function in eq. . This channel also includes contributions from topolo-
gies q@7 — g — q@V. The qq' channel includes all remaining quark-initiated
processes, which (at leading power) corresponds to the combination of the ggS
and ¢qV matching coeflicients in eq. . The results are shown in fig.
Each partonic channel shows excellent agreement between the prediction from
eq. (6.16) and the singular limit of the full result from ref. [249|. The system-
atic deviation in the ¢g channel around 1 —z, ~ 10~ is also found at NLO, for
which exact agreement was found analytically in sec. [6.2.1] These deviations
can thus be attributed to a systematic effect in the PDF integrations in Vrap.

6.3 Applications

A way to determine the quality of the generalized threshold approximation
is to compare its deviation from the exact cross section against the deviation
that the traditional soft threshold approximation exhibits. This study is per-
formed in sec. [6.3.1 where the generalized threshold approximation is found to
agree better with the exact cross section for Drell-Yan than the soft threshold
approximation at both NLO and NNLO. The main reason for this is the fact
that the partonic cross section involved in the former contains terms of higher
powers in 1 — z, and 1 — 2, than the partonic cross section involved in the
latter. Furthermore, higher powers in the generalized expansion are found to
approach the full result faster than higher powers in the soft expansion.
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Figure 6.4 Breakdown of fig. [6.3|into partonic channels. The O(a?) contribu-
tions predicted by eq. (red) and the full result from Vrap (blue) in the
limit x, — 1 are shown. Their difference is shown in green and the dashes in
the blue line indicate a negative result. The gg channel is power suppressed,
so its full result by itself vanishes like a power.

6.3.1 Generalized threshold approximation

The performance of the generalized threshold factorization in eq. can be
determined by investigating how well it approaches the full fixed-order result in
comparison to the soft threshold factorization from eq. . The full NNLO
rapidity spectrum is computed using Vra}ﬂ , while eq. is imple-
mented using SCET1ib [174]. The MMHT2014nnlo68cl NNLO PDFs with
ag(mz) = 0.118 are used and ny = 5 active flavors are considered. The results
for the O(as) and O(a?) contributions to the Drell-Yan rapidity spectrum are
shown in the first and second row in fig. respectively. These results have
been separated into quark channels (¢¢ + g¢') and channels involving at least
one gluon (qg + gq + gg). The O(ay;) results for Higgs production are shown

3The current public version Vrap 0.9 assumes fy(x) = f;(2) for ¢ = s,¢,b, which is in
conflict with most recent PDF determinations. For the numerical results presented in this
section, it has been manually modified to allow for possible sea quark asymmetries.
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Figure 6.5 The O(as) (top row) and O(a?) (middle row) contributions to the
Drell-Yan cross section and the O(as) (bottom row) contributions to the Higgs
cross section. Shown are the full result (solid red), the generalized threshold
approximation (dashed blue) and the soft threshold approximation (dotted
gray). The results in the left and right columns are obtained at u = @ and
= Q/2 respectively. All of the results are normalized to the tree-level cross
section or,0.
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on the third row in fig. [f.5] For Drell-Yan, the generalized threshold limit
(blue) is found to approximate the full result (red) well for all channels and
all Y. It performs significantly better than the soft threshold approximation
(gray), which provides a much less accurate approximation in the ¢g channel
and none for the other channels. For gg — H, the generalized threshold ex-
pansion also performs superior to the soft one, although it is still O(20%) off.
This is consistent with the expectation that for gluon-induced processes, hard
central radiation plays a larger role than for Drell-Yan.

6.3.2 Exact partonic cross sections at NLO

Since the generalized threshold factorization in eq. (6.21)) contains the full
singularity structure in both 1 — 2z, and 1 — z;, it is possible to determine the

exact partonic cross sections in terms of z, and z,. The power corrections to
eq. (6.21) can be obtained by evaluating

p.c. = & (2a; 2) — {Hm T3.j(2as %) + Hij Z1i(20, 20) — Hij 53" (2a Zb):|bu1k7
(6.42)

where the terms in square brackets are to be evaluated in the bulk z,; < 1,
where delta functions vanish and plus distributions reduce to their arguments.
The first two terms in square brackets, representing expansions in 1 — z, and
1 — zp respectively, are obtained by plugging in the relevant perturbative in-
gredients from app. [Bl The final term may be obtained from either of these
by performing an additional expansion in the opposite limit. The results from
refs. [248] and [247], written in terms of z,, are used for the full cross section
6(za, 2p). Adding the power corrections determined in this way to the general-
ized threshold factorization in eq. then leads to the exact cross sections
in terms of z, and z,.
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Using the perturbative expansion in eq. (6.37)) and defining z, = 1 — 2, and
Zpy = 1 — zp, the NLO coefficient for the g channel in pp — ~* is found to be

&g}j) (Zaa 2b, Q, :u)
o 51Q2Cr

+46(24)L1(Zp) + {—2(1 + 25)Lo(Za)

= 5(24)0(2) (2% — 16) + 4L1(24)6(Z) + 4L0(Z4) Lo(Zp)

2(1+z§)lnzb+4ln< 2z )

0(z,) 2z, — 4(1 Inz, —
- (Z“)[Z” 1+ z) 2 % % \11 %

2
Zh

s+ a) (1) ] - a5 atan) [220(a) + S6) - 1+
2(22 + zg)[(l + 20)% + 2025(3 + 224 + 2a2)]

+ (1 + 20) (1 + 25) (20 + 2)2

+ (24 ¢ zb)} , (6.43)

where (a <> b) indicates that the expression in curly brackets is to be repeated
with collinear directions a and b interchanged. The gg channel for Drell-Yan
is given by

Z (o2 Q1)
B QTF
_ 4ln<%> S+ 2) + zg)(lza -
— 423 (1 4z 228) F223(1 422 + 228 — 4z) — 42))
+ 222 2(1 + 4z + 827 — 823 — 4z)) + 22422 (1 + 42 — 222 — 42))
—2:3(1— 2z + 2z§)] . (6.44)

=2(2 + 2)Lo(Za) + 6(Za) { (22 + 22) ln( 22

Ao %
1 +Zb> + szb]

E [—42225’

The gq channel simply follows from 6&1)(%,21),@, W) = ((1 )(za,zb,Q w) and

results for q <> ¢ are identical.

The partonic cross section for gluon-fusion Higgs production can be para-
metrized as

O-Z](Za7zbvmt7mH ,Uf) - UB Oés ‘Ct mg, | Z( ) Za,Zb,mH,M),

(6.45)

where the Born cross section a%gH and the Wilson coefficients Cy(my, 1) and

Cyg(mp, 1), resulting from integrating out the top-quark and matching onto
SCET respectively, are given in app. [B-1]
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The NLO coefficient of the gg channel in terms of z, and z;, is then found to
be

ﬁg(];) (Zaa 2y, MH, ,U,)
Ca

1 1
T ALo(za)Lo(z) + {Mo(za) [b P zg} +40(z2) {

= 2126(2a)0(%) + 4L1(Za)0 (%) + 46(24) L1(Z)

_ 1+ 2 In(1 + zp) 1+
—31nzb—|—2ln< 5 )— 2 —zb(3—2zb—|—zb ( )
3 I ~ (1= + z§)2

4ln<—mH)5(za) {250(%)%

4z,
za(1+ 2a)(1 + 25) (20 + 25)* [
+ 2222 (16 + 172 + 1227 + 625 + 225)
+ 232p(5 4+ 222 + 1227 + 820 + 825 + 227)
+ 22(3 4 222 + T2 + 224 + 420 + 220)

+ 222 + 2 + 3282} + 22223 (5 4 5z + 227)

+ zam(d+ 2+ 22+ 20+ 2)| + (20 & zb)} . (6.46)

The qg and gq channels are related by ﬁéi,)(za, 2y MU, ) = ﬁé}z)(zb, Zay MV [4)
and the latter is given by

ﬁé}l)(zanzbamHaN) o _ . 2- 22[)—}—22
= 2£0(Za) _
CF Zh
2—-2 2 27
+26(Zq) |:Zb + L <ln( “b ) — 21n<u>>:|
2b I+ 2 me
2
" [232_22 +2p) 254 — 22 — 4z + Tz — 27
(1+ 24)2(2a + 2)3 al b+ 2) + za b~ 4% b b)

+ zqzp(4 — dzy + 422 + 20 — 22) — 22 (=2 + 22, — 222 + zg’)} . (6.47)

The ¢q channel is fully regular and reads

ﬁgllj)(zmzb,mH,M) N2 —1 A1+ zaz)(Z2E + 2225 — 42228 + 22 + 22)

C’F Nc (Za + Zb) ’
(6.48)

where N, denotes the number of colors.

The NLO Drell-Yan cross sections agree with the results in refs. [214}|250,
251] and the NLO Higgs production cross sections are in full agreement with
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Figure 6.6 Schematic comparison between the first few N™LPg. and
N™LPge, of the inclusive cross section. The columns and rows denote the
powers m, and my of 1 — z, and 1 — z;, that are included at various orders in
the expansion. The lower left box represents the LPgg, while the first row and
column make up the LPgep.

ref. |248]. The exact cross sections obtained in this section have also been com-
pared numerically against the rapidity spectra obtained from Vrap 0.9 [249|
for Drell-Yan and from Sushi 1.7.0 [252,[253] for Higgs production, finding
excellent agreement. As the (z,y)-parametrization is used in Vrap 0.9, this
effectively confirms the distributional identities given in table [6.2]

6.3.3 Subleading powers

The total partonic cross section may be expressed as a series in the powers of
both 1 — 2z, and 1 — 2z, schematically

Gij(zar2n) = > 6™ (20, ) | (6.49)

Ma,Mp

where each coefficient function scales as &Z-(;l“’mb) (Zar 2p) ~ (1=24)™a(1—2p)™.

The leading-power soft approximation eq. corresponds to all terms with
mg = mp = —1. Higher powers in this expansion, denoted by N LPg.g, are
obtained by considering all terms with m, + my + 2 < m. The leading power
of the generalized threshold approximation eq. captures all terms with
min{m,, my} = —1. Higher powers in this expansion, denoted by N™LPgen,
correspond to terms with min{m,, mp} = m —1. The relation between the soft
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Figure 6.7 Deviations of the generalized (dashed blue) and soft (gray) thresh-
old expansions from the full NLO result for Drell-Yan. The left-hand plot shows
the result for the ¢ channel and the right-hand plot corresponds to the qg+ gq
channel. The deviations are given as a percentage of the LO result.

and generalized threshold power expansions is illustrated in fig. The devi-
ations of the various powers of the soft (gray) and generalized (blue) threshold
expansions from the full result are shown in fig. for the various channels
in Drell-Yan. For the g channel, an order-of-magnitude improvement when
going from LPgen to NLPge, is found, which should be contrasted with the
relatively small improvement between NLPg. and N3LPg.. For the qg + gq
channel, where the LPg.p vanishes, the LPge, already performs better than
even the N3LPg.g result for most values of Y. Results at different scales are
found to exhibit a similar behavior.

The fact that the generalized threshold approximation performs better than
the soft one was to be expected. The reason for this is that the performed
expansion of the partonic cross section in both z, and z;, is valid near all edges
of the partonic phase space, i.e. for z, — 1 and arbitrary z; and vice versa,
whereas the soft threshold expansion is valid only near a single point on the
edge, where both z, — 1 and z, — 1. It can in fact be seen from fig. [6.6] that
each order in the generalized threshold expansion fully contains two orders of
the soft expansion. The LPge, result, for example, contains the entire NLPgqg;
constribution. However, since the RGE of the beam function does not predict
its dependence on x, this cannot be used to perform a resummation at NLPgg; .

6.3.4 Conclusions

In this chapter, a novel factorization formula that describes the kinematic
endpoint (the limit of large rapidities) was derived. It describes all kinematic
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limits in z, and z; or, equivalently, in @ and Y, including in particular the
limit |Y| — Ymax at generic ). Unlike the hadronic threshold limit @ — Ecp,
this limit is directly accessible at the LHC.

Traditional soft threshold factorization theorems only involve the Born par-
tonic subprocess, e.g. ¢¢ annihilation for Drell-Yan, while other partonic chan-
nels are typically treated as power corrections at fixed-order. The factorization
obtained in eq. also captures the non-diagonal collinear splittings in the
unconstrained direction at leading power.

The partonic cross section described by this new factorization theorem has
been checked against the exact results for all channels of the relevant processes
(Drell-Yan and Higgs) to the highest available accuracy. Agreement within
a few percent is found for generic values of the rapidity, while the results at
larger rapidities agree increasingly well.

This new endpoint factorization enables the resummation of large logarithmic
corrections that arise when one PDF is probed at large x, (with the extracted
parton as the “projectile”), while capturing the full dynamics of the struck “tar-
get” at small or intermediate x. Although only color-singlet processes have
been considered in this chapter, the same methods may be used to generalize
soft threshold factorizations for other processes as well.
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Exploring the benefit of joint
resummation

The simultaneous resummation of two different measurements has been consid-
ered for many specific cases, including the ones described in previous chapters.
In this chapter, the benefit of such joint resummations is investigated in a case
study, focussing on the collection of eTe™ event shapes called angularities. In
addition to the advantage that the combined resummation of two different
observables provides, the added benefit of the simultaneous resummation of
more observables is considered as well. The method used to quantify the im-
provement that resummed distributions provide is described in sec. The
required resummed results are obtained either from parton shower Monte Carlo
event generators or through an analytical method. The analytic resummation
of an arbitrary number of angularities at NLL accuracy is described in sec.
Results for the added benefit of the joint resummation of multiple angularities
are shown in sec. [7.3] The methods and results covered in this chapter closely
follow the contents of ref. [4].

7.1 Setup and method

To study the added benefit of simultaneously resumming multiple variables, the
amount of information that a certain resummed cross section contains about a
cross section involving a different variable has to be determined. The specific
example used to study this is described in sec. The degree to which
cross sections involving a certain number of resummed variables are able to
reproduce cross sections differential in a different variable has to be quantified.
The method that is used for this employs a reweighing procedure, which is
described in sec. [L.T.21
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7.1.1 Motivation

Although chaps. [f] and [f] describe the simultaneous resummation of two kine-
matic variables, one could in principle consider the simultaneous resummation
of ever more observables, which might lead to increasingly precise predictions
for differential cross sections. All of these observables ultimately correspond
to measurements that are performed on the same final state, so that some de-
gree of correlation between the measured observables is to be expected. These
kinematic correlations might then diminish the added benefit of resumming
an increasing number of variables. The current chapter explores this concept
by considering the simultaneous resummation of a number of variables and
investigating to what degree this can be used to improve the prediction of a
cross section differential in a different variable.

For concreteness, the process of eTe™ — dijets is considered, upon which the
measurements of a certain number of event shapes, known as angularities [254],
are performed. Angularities are defined as

€q = ;;El [sin(%)]a, (7.1)

where () is the center-of-mass energy and the sum runs over all final-state
particles ¢ with energy FE; and angle 6; with respect to a chosen axis. By
altering the parameter «, various distinct angularities are obtained, which
include variables closely related to thrust [255] and (total) broadening [256,257|
for « = 2 and a = 1 respectively. All outgoing particles are considered to be
part of either of the two final-state (hemisphere) jets and the angularity in
eq. (7.1)) is obtained by adding the angularities corresponding to both jets. For
each of these, the sum in eq. is restricted to the particles contained in
the corresponding jet and the angle 6; is measured with respect to the Winner-
Take-All axis [258,259] of that jet. This axis is by construction insensitive to
the recoil of soft radiation.

Since distributions involving angularities tend to be peaked around small values
of eq, the more natural variable ¢, = log, e, is used throughout this chapter
as well. The term “angularity” will be used for both e, and /.

7.1.2 Optimal reweighing procedure

Cross sections are obtained by integrating the squared amplitude of a process
over the phase space of the final state. The squared amplitude effectively as-
signs a weight to each point in phase space, related to the probability of the
process under consideration leading to the final state represented by that point.
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If no such weight is provided, i.e. if the squared amplitude is absent, the phase
space is called flat. In flat phase space, there are no preferred points so that,
up to four-momentum conservation, each point is assigned an equal probabil-
ity. Hence, by measuring observables using flat phase space, no information
about the probability of the process enters in determining the differential cross
section. The procedure that is employed to assess the degree to which re-
summed cross sections are able to reproduce cross sections differential in a
different variable is based on reweighing the results from flat phase space by
the resummed results. To perform this procedure in general, a resummed cross
section differential in n angularities ¢,,, with ¢ € I = {i1,...,4y}, is required.
The cross section differential in £, with j ¢ I, is then obtained by reweighing
the cross section differential in all n+ 1 angularities originating from flat phase
space with the resummed cross section, i.e.

darewelgh / daﬂat daresum daﬂat
[dfa] (7.2)

The resummed cross sections differential in n angularities are obtained through
either analytical resummation, described in detail in sec. [7.2] or via Monte
Carlo parton showers.

The flat k-body phase space is generated by using Rambo [260] “on diet” [261].
A slight modification is included that improves the sampling in the collinear
and soft regions. Specifically, a transformation is performed that distributes
the first random number of “Algorithm 1”7 in ref. [261] logarithmically. To
compensate for this, the weight of the event is adjusted by the Jacobian of
this transformation. This then ensures that the phase space is sampled suffi-
ciently to also obtain reliable predictions for small values of the angularities.
The generated momenta pY, ..., pl are then clustered into two hemisphere jets
by the exclusive kr [262] algorithm with the Winner-Take-All recombination
scheme [258,259| 263| using the FastJet package [264]. This involves deter-
mining the distance measure

d;; = 2min{ E?, EQ} (1 — cos(by5)) (7.3)

for all pairs of particles with momenta p{’ and p;‘ . The particles ¢ and j that
give rise to the smallest d;; are then clustered into a single, new momentum
péj) according to

Euj) = Ei + Ej,

Pij) _ pi/lpil it E; > Ey,
|ﬁ(ij)| p;/1p;| it Ep > Ej.
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The complete algorithm of determining distance measures and clustering mo-
menta is then iterated until only two momenta are left, representing the two
hemisphere jets. By determining which original momenta were clustered into
the same momentum, each particle can be assigned to either of the two jets,
after which the angularities of interest can be calculated.

The various distributions occurring in eq. are constructed in 16 equally
spaced bins of each angularity ¢,, on the interval [—4, 0] and the integration is
approximated by a sum over bins. It has been verified that the chosen binning
does not alter the conclusions in sec.

The deviation of the reweighed distribution in eq. ([7.2)) from the corresponding
resummed result obtained from a direct calculation can be translated into a
goodness-of-fit measure by

Xi] = /dgaj

The optimal set I of n angularities that, averaged over all 5 in a chosen set,
approaches the single-differential cross section do/df,; best when reweighing
can be found by considering the global goodness-of-fit variable

1
2 _ E 2
X - N —-n . Xa]- 9 (76)
J¢l

2
dgreweigh B doresum

dl, dlo,

(7.5)

where N represents the number of angularities that are summed over and n
the number of angularities used to reweigh with.

7.2 Analytic resummation of n angularities

The analytic resummation of n angularities is carried out through factorization
formulas obtained using SCET. The various kinematic regions in phase space
and the relevant degrees of freedom for each region are determined in sec. [7.2.]
by making use of Lund planes. The factorization formulas for each region are
presented in sec. and the resummation is carried out in sec. [7.2.3] The
procedure used to match the resummed cross sections of the various regions in
phase space to one another is described in sec. [7.2.5] This method is based on
the power corrections, addressed in sec. [7.2.4] that each factorization receives.

7.2.1 Phase space regions and degrees of freedom

In the collinear limit, the probability Wj;(z, 8) of a particle j emitting a particle
1 can be characterized in terms of the momentum fraction z of the radiated
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— 1li
Lo X collinear

Figure 7.1 Illustration of the Lund plane with = = log;y(1/0) and y =
log,g(1/z). The crosses represent emissions and the red line the measure-
ment of an angularity £, set by the dominant emission. There can be no
emissions in the shaded area, while emissions above this region only contribute
at higher orders. The green and orange dot denote the collinear and soft mode
respectively.

particle and its angle 8 with respect to particle 7 as

0
dWij(Z,H) i Qg Pz(J )(Z)

dodz o« 0

At LL accuracy, the splitting functions given in app. are proportional to
~ 1/z, so that these emissions are distributed uniformly in x = log;,(1/6) and
y = logp(1/2). The Lund plane [265] spanned by these variables is shown in
fig. [T.I] where the crosses indicate various emissions. The angularity arising
from a single emission with small z and 6 can we written as

(7.7)

by = —y —Qax, (78)

where the identiﬁcationsﬂ 2E;/Q — z; and 6;/2 — 0 are made with respect
to the definition in eq. . This then corresponds to a straight line in the
Lund plane with slope —a. Due to the uniform distribution of emissions in
the (logarithmically spaced) Lund plane, a single emission will dominate the
measurement at LL accuracy, as indicated by the red line in fig. All
emissions above and to the right of this line are more soft, more collinear,

'The factor of 1/2 is purely for convenience and does not affect the leading logarithms.
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or both and only enter beyond LL accuracy. There are no emissions below
the line, otherwise one of these would have been the dominant emission. The
shaded area under the line corresponds to the Sudakov factor describing the no-
emission probability and can be used to calculate the cumulative cross section
at LL through

cut

eg d 4o,C
O_(ecut) — / de, di = 0'% exp(— i X [gray area] X 1112 10) y (79)
0 €a T

where 0% is the Born cross section. The boundary of the shaded area in
fig. is fixed by the points at which it crosses both axes. The cross section
can thus be obtained from these points, which correspond to degrees of freedom
in SCET. For the measurement of a single angularity, these are ultrasoft and
collinear modes, represented by the orange and green dot respectively. Each
collinear direction gives rise to a distinct collinear mode, so for the process
ete™ — dijets currently under consideration, there are two collinear modes.
The scaling of these modes is given by

n-collinear: ph ~ Q(e?,/a, 1, eé/a) )
ni-collinear: ph ~ Q(1, e/, eiy/a) ,

ultrasoft: ply ~ Q(eq, €a,€a) - (7.10)

When the simultaneous measurement of two angularities ¢,, and ¢,, is con-
sidered, the straight lines describing the variables in the Lund plane have to
cross one another at some point to ensure that the cross section involves both
measurements. Assuming the hierarchy oy > ay for definiteness, three distinct
cases can be distinguished, as shown in fig. The boundaries of these three
regions of phase space for the simultaneous measurement of two angularities
are found to be given by

Regime 1: — Loy < =Ly, and “ftay _ —lao 7
a1 a9
. . _foq _Eaz
Regime 2: —lyy < —l, and — < ——,
a1 a9
. . _ _foq _‘6042
Regime 3: —loy =4y, and —— < ——, (7.11)
a1 a9

which agree with the regions of phase space identified in refs. [108,{132}[133]. In
all three cases, there are soft (orange) and collinear (green) degrees of freedom.
The intermediate regime 2 additionally contains a collinear-soft mode (blue),
described in more detail in sec. .10} which contributes to both measurements
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Figure 7.2 The measurement of two angularities ¢,, and ¢, represented in
the Lund plane. Each panel describes a distinct region of phase space. The left
and right panels involve only collinear (green) and soft (orange) modes, while
the center panel contains an additional collinear-soft (blue) mode. Emissions
in the shaded region are vetoed.

since it corresponds to the intersection of the lines representing those measure-
ments.

This method of finding all relevant regions of phase space through the use
of Lund planes can be generalized to the simultaneous measurement of an
arbitrary number of angularities. There is only one additional subtlety that has
to be taken into account when more than two angularities are considered, which
is illustrated in fig. [7.3] for three angularities with parameters a; > ag > as.
If the line corresponding to ¢,, were to be placed above the position indicated
by the dotted line, the angularity ¢,, would no longer be connected to the
boundary of the region in which emissions are forbidden and hence not affect
the cross section. The point at which the dotted line crosses the y-axis is given
by

O = 1 (ay — a5)l, — (01— a3)l, (7.12)

as L — o (<31 1 3)fas | - .

The phase space of a cross section involving an arbitrary number n of angu-
larities can be divided into various regions, as listed explicitly in eq. for
n = 2. The region that involves the largest amount of angularities is the one
for which the edge of the forbidden (gray) region in the Lund plane involves
every line corresponding to an individual angularity. For n = 2, this corre-
sponds to the central panel in fig. and for n = 3, this situation is depicted
in fig. This region will be denoted by R, (a1, ...,a,), and its boundary
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Figure 7.3 The Lund plane describing the region of phase space for the si-
multaneous measurement of three angularities that involves all angularities.
The various modes are denoted by the green (collinear), orange (soft) and blue
(collinear-soft) dots. The dotted line serves to indicate the point C§1*?, which
shows up in the boundary conditions of the regions of phase space.

conditions in phase space are given by

y-conditions:  —loy; > Loy, Cgi®? > Loy, ..., Cgr2%=t> A, ,
. 14 l ¢ 14
z-conditions: —-om > Lo %2, T (7.13)
[67% Qp—1 (65) a1

The first line contains the set of n — 1 conditions that the points at which each
line in the Lund plane crosses the y-axis should adhere to. The n—1 conditions
on the second line ensure the correct hierarchy of the points at which these
lines cross the z-axis. As these conditions consist solely of inequalities, this
region in n-dimensional phase space is itself n-dimensional and will be referred
the as the “bulk”.

Regions that involve fewer angularities can be obtained by raising or lowering
the point at which an angularity crosses either axis in the Lund plane, such that
two modes (the colored dots) merge. This can be seen explicitly in fig. by
starting from the central panel and raising —/,, until it reaches —¢,, = —44,
in the right panel, sliding the mode indicated by the blue dot up to the orange
dot in the process.

In full generality, the boundaries of a region in phase space involving a subset
of angularities g,,...,¢g,, with m <n and {B1,...,8m} C {ou,..., o} are
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found to be described by the conditionsE|

y-conditions: —lg, > —ls,, C’g;52 >—lgy, ..., Cg::”ﬁm*l > —lg,, ,
14 14 14 14

z-conditions: —-2m » _ Pm=1 y e, P —ﬂ,
Bm Bm-1 B2 B

B-conditions:  —fg, = —{g, for every «; with a; > 81,

Cﬁfﬁf“ =V, for every «; with 8; > a; > Bj41,

{ 0.
_Bm _ _Coi for every «; with B, > a;, (7.14)
Bm Q;

where the B-conditions (boundary-conditions) contain all restrictions on the
angularities that are only connected to the boundary of the shaded area in
the Lund plane through a single point, i.e. the angularities not involved in
the region. As any such regime is characterized by n — m equalities, it rep-
resents an m-dimensional region in the n-dimensional phase space, denoted
by Rm(Bi,...,0m). By considering all possible combinations of angularities,
it then follows that there are (nfm) different regions of dimension m in the
phase space of n angularities.

7.2.2 Factorization

The relevant degrees of freedom for the bulk regime for n = 2 angularities are
depicted by the colored dots in the central panel of fig. The orange dot
represents the ultrasoft mode, the green dot the n- and n-collinear modes, and
the blue dot corresponds to the n- and n-collinear-soft modes that contribute
to the measurement of both angularities. The factorization formula for this
regime was derived using SCET in refs. |108,133| and is given by

d2O.R2 (Oq ,OCQ)

d(Q* eq,) d(Q*2€q,)

= HQ‘?(Q’ :U’) SQQ(Qaleal ) M) g [‘Sﬂ(Qalqu 9 Qa2€a2nu)] ?

® [J(Q%eny, )], (7.15)

(%)

where a sum over the relevant relevant combinations of quark and antiquark
flavors is understood and the squares of the collinear-soft function and jet
function are defined as

(7 (Q% €ar, Q%€ay, 1)]”

[J(Q%ar 1))’

Lgﬂq(Qal €ay s QOQ €ag»y M) ® ylf(Qaleoq ) QaQ €as ,u) )

aq,002

JQ(QanAa M) % JQ(QQGCM :U’) : (716)

2Note that although the convention 81 > ... > B is still used, subsequent 8; and 8;11 do
not necessarily correspond to consecutive «;.
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Convolutions between two functions f and g are indicated by

f(@ ) 99(Q ) = [AQe) F(@%0 ~ Q) g(@ L), (.47
where f and g may depend on additional arguments. Convolutions in multiple
variables are indicated by the corresponding subscripts.

The hard function Hyq(Q,p) in eq. (7.15) includes the Born cross section
0% and describes any virtual corrections. The jet function Jy(Q%eq, 1) de-
scribes collinear radiation and the contributions of soft and collinear-soft radi-
ation to the measured angularities are taken into account by the soft function
Sqq(Q%eq, ) and collinear-soft function .74(Q% eq,, Q"% €q,, 1) respectively.
At NLL accuracy, only tree-level expressions are required for the perturbative
functions. The hard function reduces to the Born cross section at tree-level and
the other functions are simply products of delta functions of their arguments.

The region of phase space represented by the left panel of fig. [7.2] can be reached
from the region Ra(aq,ag) by raising —¢,, /oy or lowering —¢,, /as until the
two are equal, matching the collinear-soft modes to the collinear modes in the
process. The factorization formula of this region then no longer contains any
collinear-soft functions, but instead involves jet functions depending on both
angularities. The explicit factorization then reads

d20.R1 (Oq)

d(Q* eq,) d(Q*2€q,)

- HQQ(Q7 N) SQ@(Qaleal ’ M) g? [J(Qaleal ) Qa2 ea2 ) ,U')] ? :
(7.18)

In this regime, soft radiation does not contribute to the measurement e, and
the factorization formula is simply a more differential version of the factoriza-
tion formula for the measurement of a single angularity ey, .

Analogously, to obtain the factorization formula describing the region of phase
space depicted in the right panel in fig.[7.2] the soft and collinear-soft functions
merge into a more differential soft function to yield

d2gFa(a2) . . X ,
d(Qeq,) d(Q*2ey,) = Hyq(Q; 1) Sgq(@ €ar, Q% eas, 1) ((18; [J(Q 260427#)] .
(7.19)

This is then a more differential version of the factorization theorem for the
single-differential cross section in e,,. As the regions Rj(aq) and Ry(a2), de-
scribed by the factorizations in eqs. and respectively, are both
connected to the region Ra(ay,as), the former are known as “daughter re-
gions” with respect to the latter. The region Ra(aq, ) is then referred to as
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a “parent region” with respect to both Ri(«;) and Rj(a2). The factorization
in eq. (7.15)), valid in the region Ra(aq,a2), involves an additional expansion
with respect to the factorizations of both daughter regions, but may be used
to simultaneously resum logarithms of both angularities.

The RGEs and anomalous dimensions of the perturbative functions appear-
ing in the factorizations are given in app. [C.]] Making use of these, the p-
independence of the cross section leads to a consistency requirement on the
anomalous dimensions. For the factorization formula in eq. this condi-
tion given by

0 = 2944(Q% 1) 6(Q% €a,) (Q™%€qy) + 274(Q% €y, 1) 6(Q ea,)
+ 275, (Q% eay; Q" eay, 1) +75(Q M eay, 1) 6(Q™eay) , (7.20)

where the bars on the soft and collinear-soft anomalous dimensions serve to
distinguish them from other soft and collinear-soft anomalous dimensions ap-
pearing throughout this thesis. By plugging in the explicit anomalous dimen-
sions, this consistency relation is indeed found to be satisfied.

For the measurement of n angularities, the factorization formula for the cross
section describing the bulk region R, (aq,...,ay,) follows from the modes ap-
pearing in the corresponding Lund plane. Specifically, there is a single soft
mode, a single collinear mode (for each of the two collinear directions) and
there are n — 1 collinear-soft modes (per collinear direction), leading to the
general factorization formula

dno.Rn(oq,...,ocn)

d(Qeq,)...d(Qe,,)

= H(Q, 1) S(Q™ eqy, 1)

@1) [y(Qaleo‘l’ Qa260‘2’u)]2 @; T (Xli [‘Sﬁ(Qakeam Qak+1eak+1aﬂ)]2 ?l‘ o
« [ « [e7’5N
O [F@Q a1, Q@ ean, )] @ [T(Q 0 0)]” (7.21)

where the subscripts ¢ and ¢ have been left implicit. When taking deriva-
tives of this expression with respect to u, the anomalous dimensions of all
intermediate collinear-soft functions effectively combine into a single collinear-
soft anomalous dimension involving the angularities e,, and e,,,, leading to
the conclusion that this factorization formula also obeys the corresponding
consistency relation. Factorization formulas corresponding to regions that in-
volve fewer angularities are again obtained by merging two degrees of freedom,
i.e. merging two functions into a single, more differential function.

Since at NLL accuracy all perturbative functions are delta functions, the more-
differential functions that arise due to the merging of modes do not give rise
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to any different results for the cross section. This then implies that (at least
at NLL) the cross section for a specific kinematic region of interest does not
depend on the total set of angularities that are measured, but instead only on
the subset of angularities that occur in said region.

7.2.3 Resummation

The large logarithms in a factorization formula such as eq. may be re-
summed by evaluating each ingredient at its natural scale (where its logarithms
are minimized) and then evolving them to a common scale. RGEs that involve
a convolution may be solved in a conjugate space such as Laplace space. Plug-
ging the solutions in the factorized cross section in eq. and performing
the inverse Laplace transform then yields the resummed cross section in mo-
mentum space. The resummation is performed at the level of the cumulative
cross section, which is obtained by the analog of the first equality in eq.
for n angularities. The cumulative cross section is then found to be

o p[Ky + K§(on) + 2Ky — v (2ns + 1§~ (an))]
OR,(a1,..an) — 9B n—1
L1+ 277 + 0" (an)]

Q \"1 [ Qeq, \nS(ar) Qea N 2am1y
G G (57)
" ﬁ exp[K§(ait1) — Ki(ai) —vemy ()]
1 F[l"‘”g “(O‘i)]

i1—1 1—a Qi1 =05\ (o—D(1—ayy1)
><<e§2“ eéif“;(—Q ) > . (7.22)

Mg i+1

The various functions that appear are defined in terms of the evolution kernels
that can be found in app. as

) 4 ) 4
Ky(aj) = = — Kp(piivr, 1), ns(ag) = —— (i 1)
J
— 20‘% q _ 2 q
Ky= Kol m) + Ko (s i) = 7o)
Ky = _4K12(#Ha 1)+ Ky (i, ) nu = 4Ant(p, p) . (7.23)

Furthermore, the notation

n (i) — (i) =

Wiie) dof / i—1i
7 I‘cusp(as> =ng ’ (ai)7 (724)
as(uz 1, z S)
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Region R,(a1,...,a,) Boundary conditions By (aq,...,an)

R3(0n, a, a3) -

Ry(a1, a2) Cay = egg/az

Ry(ar, a3) Cay = (23702 fea2—01)1/(a3—01)
Ro(av2, a3) Cay = €ay

Ry (Oél) Con = egf/oq and Cay = eg;lg/oq
Ri(az) €a; = Cay and  eq, = egg/”
Ry (a3) €a; = €as and  eq, = €qq

Table 7.1 The boundary conditions of the various regions in the three-
angularity phase space with a; > a2 > as.

has been introduced. The natural scales of the functions at which the large
logarithms are minimized depend on the (sub)set of angularities relevant to the
region under consideration. Denoting this set of angularities by 51, ..., Bm, the
various scales are given by

pa =Q, ps = po,1 = Qeg, ,

py=Qeg ™™, py(Bi, Biv1) = piit1 = Q( s > , (7.25)
(&
6i+1

where each angularity e, should be understood to represent the cumulative
variable €S

7.2.4 Power corrections

The power corrections to each factorization formula can be determined by
considering the ratio of scales involved in the functions that are merged into
a more differential function when transitioning towards a lower-dimensional
(daughter) region in phase space. The measurement of three angularities will
be used as an example to display this procedure. The various regions of phase
space and their B-conditions, i.e. the equalities in eq. , can be found
in table for ;1 > a2 > as. In general, the power corrections of a fac-

torization formula valid in an n-dimensional region R, (a1, ..., a,) towards an
(n—1)-dimensional daughter region R,,_1 (a1, ..., q;, &it1,. .., 0y ) are denoted
by P,(ai,...,an;q;). The argument after the semicolon indicates the angu-

larity that appears in the parent region, but not in the daughter region. Using
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this notation, the power corrections from the one-dimensional regions towards
the fixed-order region are given by [133]

P (s o) = eBinl2/asl], (7.26)

7

The power corrections of a factorization formula representing a two-dimensional
parent region towards the neighboring one-dimensional daughter regions are
given by

uy(ai,aj))#
p () ’
NY(ai7aj))#

ps(eg) 7/

Py(ai, aj;a5) = (

PQ(Oéi, aj; Oéi) = ( (7.27)
The different powers # may be fixed by demanding that each power correction
should reduce to the power corrections of the one-dimensional region at the
corresponding boundary, i.e.

!
[Pa(ei, 53 05)] g, () = Prlei o),

!
[PQ(OZZ', 7 Oél)] Bi(ai) = Pl(Oéi; Oéi) s (7.28)
where the boundary conditions By can be found in table[7.1] By plugging in the
various scales, the complete set of power corrections (indicated by the absence
of the semicolon) of the factorization formula representing a two-dimensional

region is then found to be

€ ] [ ATy
PQ(aivaj): {( a-/Ja.> ) <z) } <729)
ea) €a;

The power corrections from the three-dimensional region towards any of its
daughter regions can be found in an analogous way. By demanding that these
power corrections reduce to those of any of the daughter regions at the cor-
responding boundaries, the complete set of power corrections of the three-
dimensional region is

aj min(2/ay,1] a;min[2/a;,1]

-2 & aj—oy o—oj N\ ——— I
P €ay, @3 €af kea; 7\ (oj—ap)(aj—ay)
3(04i7aj7ak’) - eak/aj ) i—ay ’

’ €a;
a; J

a; min[2/a;,1]

<€O‘i ) e } . (7.30)

€a;
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This procedure can be generalized to the case of regions involving n angu-
larities. There are three different types of power corrections that need to be
considered, all of them already present for n = 3. They are given by

Y

En(oﬂy-"van;an)
P Lag) =
n(alu"'vaTHan)_ Ot"/()énfl
Qn—1

Can €a; .
Gt ditl for 2<i<n-—1,

=il 0i—1—0G \ Ep(ai,...,an;0u)
P”(ah""a";ai) = < Q1 — Q41 >
€a;

e En(at,....ans00)
Po(ai,...,an;aq) = (al> . (7.31)
€as
The powers E can then be found by requiring
!
[Pn(ah coey Qipg al)]Bn—l(a17~-~,an—1) - Pn—l(ala B e 7 O[l) )
!
[Pa(ar,...,om; O‘i)]Bn,l(az,...,an) = Po1(ag,...,an; ), (7.32)

for2<i<n-—1.

7.2.5 Matching phase space regions

The different regions in phase space that are found by using the Lund planes
are each described by different (cumulative) cross sections. In order to obtain
a combined prediction valid throughout phase space, these regions need to be
matched to each another. For any given point in n-dimensional phase space,
the combined cumulative cross section is defined as a linear combination of all
possible regions that occur in phase space as

U(eala s 7€Oén) = Z am(ﬁla ceey 6m) O'Rm(ﬁl""’ﬁm), (733)
R
where again 1, ..., By is any subset of the full set of angularities ay, ..., ay,.

The dependence of the transition variables a,, and the cross sections o on
the full set of angularities has been suppressed. The sum runs over all regions
R, with n > m > 0 and the set of transition variables is normalized as

D am(Bi, ... Bm) =1, (7.34)

R,

at every point in phase space spanned by the n angularities under consider-
ation. In principle, this includes the matching to the fixed-order region Ry,
but this matching is not performed here for simplicity, so that ag = 0. Fol-
lowing the approach in ref. [266|, the specific admixture of transition variables
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am(B1, ..., Bm) at a given point in phase space is determined by the size of the
power corrections to the factorization formula valid at that point. The tran-
sitions between the different regions are realized through a transition function

defined as

0 if x> x;,
ftrans(xi,xf,flf) = Z?:O cj(xi,:rf) xlif T >x>Tp, (7.35)
1 ifry>ua,

which smoothly interpolates between 0 and 1. The coefficients c; are deter-
mined by demanding the continuity of fi;ans and its first and second derivative
at both transition points z; and z;. The explicit expressions obtained in this
way are given by

B 10w%x? — bzl + a? 10(3:?@ + 4z px; + 2?)

CO(xia xf) - (xf — xi)5 ) C3<m’i7 flff) = (xf — xi)g, )
30z22? 15( ;
' . % ' _ Ty + xz)
c1 (@i, zf) (fo_l'i)s ’ ca(wi, xf) (zf — ;)5
30(z%x; + xpa?) 6
[t I
’ - _ , : = 7.36
ca(w; xf) (ﬂUf — !Ti)5 cs (2 .’Ef) ($f — xi)g) ( )
The values of the transition variables a,, (51, ..., mn) at a given point p in the
n-dimensional space spanned by fq,, ..., s, are determined iteratively. First,

all transition variables are set to 0. The region in which point p lies is then
determined through the conditions given in eq. . If it lies outside of
all regions, all coefficients are kept at zero. If p lies inside a certain region
R (B, ..., Bm) involving m angularities, the following procedure is followed

e The set of daughter regions involving m — 1 angularities, obtained by
removing any single angularity from R,, (81, ..., m), is determined.

e The shortest Euclidean distance in the space spanned by lq,,...,%q,
from the point p towards each daughter region is determined using the
method of Lagrange multipliers [267]. These distances are translated to
a number between 0 and 1 through eq. , where the initial and final
points z; and x ¢ correspond to the distances where the power corrections
are 10% and 50% respectively. The result of this procedure is denoted
by @m(Bi,--.,Bm;B;), where the angularity after the semicolon again
indicates the angularity that is involved in the parent region, but not in
the daughter region.
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e The coefficient of the region R, (81, ..., Bn) is defined through

am (B, Pm) =1— mjax[dm(ﬁl, . ,Bm;ﬁj)] , (7.37)

and a preliminary weight by,—1(71,...,Ym—1;0:) is assigned to each of
the m daughter regions Ry,—1(71,...,Ym—1). The [; after the semi-
colon in this case indicates the angularity that should be added to the
set {71,y Ym-1} C {B1,...,Bm} to recover the set of angularities
{B1,...,Bm} on which the parent region depends. These preliminary
weights are given by

Zlm(ﬁla ce 7ﬁm; Bl) [1 - am(ﬁla . aﬁm)}
Zj [&m(ﬁla---vﬁmQBj)] ‘

bm—l(’YL c e Ym—1; /BZ) -
(7.38)

e For each of the daughter regions R,,_1, the steps above are repeated
in order to determine the transition variables a,,_1. The only notable
difference is that the right-hand side of eq. is to be multiplied by
a factor 0 < 7 < 1, given by the sum of all the preliminary weights that
the region under consideration might have inherited from all of its parent
regions. For a region R,,—1(71,-..,Ym—1) this factor is then given by

T = Z bm—l(’Ylv ceey Ym—15 ﬁz) . (739)

This procedure is repeated until all regions from R, down to Rz have been
considered. The transition variables of the regions Ry(f;) are then given by
the sum of all preliminary weights

ai(B) = Zbl (Bi; B5) 5 (7.40)

they might have inherited from any of their parent regions. After all transition
variables have been determined, the cumulative distribution can be obtained
through eq. . Due to the finite bin size, the cumulative distribution turns
out to slightly decrease towards the fixed-order region in a small number of
bins. To ensure these binning effects do not lead to negative spectra upon
differentiation, any such bins are set equal to the average of their neighboring
bins.
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Figure 7.4 The Herwig (solid red), Pythia (dashed blue) and analytical NLL
(dotted green) predictions for the ¢1 o (left panel) and f5 ¢ (right panel) distri-
butions. The fixed-order region has been grayed out and the analytical results
have been normalized to the fraction of the area of the Herwig results that lies
to the left of that region.

7.3 Results

The results of the reweighing procedure described in sec. for both an-
alytically and numerically obtained resummed cross sections are presented
in this section. Comparisons of reweighed cross sections with directly com-
puted cross sections are gathered in sec. [7.3.1] The results for the goodness-
of-fit parameter, which serve to assess the benefit of increasingly differential
resummed cross sections, are shown in sec. Most numerical results
are obtained from Herwig 7.1.4, for leading-order ete™ — dijets (exclud-
ing bottom and top quark jets) at a center-of-mass energy @ = 1 TeV. The
final-state parton shower is turned on, but the hadronization and initial-state
QED radiation are switched off. For comparison, corresponding results from
Pythia 8.240 are used as well. Unless indicated otherwise, 4-body phase space
is used in the reweighing procedure and the set of angularities a; = 0.2 X s
with s = 1,2,...,15 is considered. The differential cross sections obtained
from Herwig, Pythia and flat k-body phase space are acquired through the
generation of 107 events. In the implementation of the analytical results, the
value of oy is kept constant below 2 GeV in order to avoid the Landau pole.

7.3.1 Reweighed results

The single-differential angularity distributions obtained by using either Herwig,
Pythia or the analytic method described in sec. [7.2] are compared in fig. [7.4]
for two representative angularities /1o (left panel) and f2 ¢ (right panel). The
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Figure 7.5 Two examples of the reweighing procedure using Herwig for ¢ 9
(left panel) and ¢56 (right panel). The dashed yellow, dotted green and dash-
dotted blue curves depict the results for reweighing with n = 1, n = 2 and
n = 3 angularities respectively. The red curve shows the distribution directly
obtained from Herwig.

results for Herwig and Pythia are in good agreement with one another. The
analytical result agrees very well with the numerical results for the angularity
l9.6, but shows some deviations for #15. The reason for this is that the re-
summation region in phase space is very narrow in the latter case compared
to the former, so that the limited number of bins leads to larger numerical
discrepancies.

The reweighing procedure is performed using the optimal set ISP of angulari-
ties that minimizes the global goodness-of-fit variable in eq. . The results
for reweighing with n = 1,2 and 3 angularities are shown in fig. [7.5] by the
dashed yellow, dotted green and dash-dotted blue curves respectively. The
optimal sets of angularities are given by IT?* = {0.8}, I5** = {0.2,1.8} and
IP* = {0.2,1.4,2.8}. The resulting global goodness-of-fit x2 is indicated for
each number of angularities n used to reweigh with. The solid red curves rep-
resent the single-differential resummed result directly obtained from Herwig.
The left panel depicts the results for o; = 1.2 and the right panel shows the
results for o; = 2.6. For a; = 1.2, reweighing with an increasing number of
angularities does not provide a significant improvement. For o; = 2.6, how-
ever, the improvement from reweighing with two angularities over reweighing
with a single angularity is substantial.

The corresponding set of plots obtained by the analytic resummation is shown
in fig. The optimal sets I2P as determined by Herwig are used and the total
set of considered angularities is restricted to a; = 0.2 X s with s =6,7,...,15.
This restriction is imposed because angularities with lower parameters a; tend
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Figure 7.6 Two examples of the reweighing procedure using analytic predic-
tions for ¢1 o (left panel) and ¢3¢ (right panel). The dashed yellow and dotted
green curves depict the results for reweighing with n = 1 and n = 2 angu-
larities respectively. The red curve shows the distribution directly obtained
by projecting down from the three-angularity cross section. The fixed-order
region is grayed out.

to peak closer to (or even in) the fixed-order region, which is not included in
the analytical results. Considering a restricted set of angularities then ensures
that a sufficient number of bins are populated also for lower values of «;.

All distributions that enter in these plots are obtained from projecting the
resummed result differential in three angularities with angularity exponents
{aj,1.4,2.8} down to cross sections involving either one or two angularities.
For example, the resummed cross section that is used in the reweighing pro-
cedure leading to the dotted green line in the left panel in fig. [7.6] is obtained
through the projection

doresum / doresum
— = [ d{,. . 7.41
T ) Al Al Al (4

These projections turn out to deviate somewhat from the corresponding re-
summed cross section obtained from a direct analytic calculation, i.e. without
any projection. This discrepancy is expected to be largely due to binning is-
sues. As described in sec. [7.2.1] the number of distinct kinematic regions in
phase space increases dramatically when cross sections differential in more an-
gularities are considered. The result of the differential cross section in (the
center of) each bin is obtained by determining the cumulative cross section
on the edges of the binE| and taking a numerical derivative. Due to the rela-

3The use of cumulative cross sections is required to, at least theoretically, enable the re-
covery of the inclusive cross section |103,(172,/173|. This issue is discussed in more detail

in sec. @
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Figure 7.7 The goodness-of-fit XZ{], from the reweighing procedure with n =1
(solid red), n = 2 (dashed blue) and n = 3 (dotted green) angularities. In
each case, the optimal set I*" of angularities is used. The left panel shows the
results from Herwig and the right panel the analogous results from Pythia.

tively small number of bins and the increasing number of kinematic regions,
situations in which the edges and the center of a bin lie in different kinematic
regions might occur. In these cases, the prediction of the spectrum (at the cen-
ter of the bin) is determined from input provided by cumulative distributions
obtained from factorization formulas that are not valid at that point. As this is
a binning issue, the effect is expected to diminish when a larger number of bins
is considered. In order to be able to focus solely on the differences that arise
due to reweighing with a different number of angularities, the projected distri-
butions are used for the analytic results. The results in fig. obtained in this
manner then show a similar behavior to those in fig. [7.5| For ¢, , (left panel),
the improvement from reweighing with one angularity to reweighing with two
angularities is not significant. For ¢, , (right panel), this improvement, re-
flected by the global goodness-of-fit x2, is about an order of magnitude. The
result for reweighing with n = 4 angularities is not shown since the severity
of the aforementioned binning issue increases for cross sections involving more
angularities, causing the results for n = 4 to be unreliable.

7.3.2 Optimal reweighing improvement

To determine the maximal degree to which the resummation of n angularities
can be used to approximate cross sections differential in a single angularity,
the optimal set IoP* of angularities that minimizes the global x2 from eq.
is used. Up to n = 3 angularities, all possible sets I are considered in order
to find the global minimum, denoted by Xr2nin' For n = 4 and n = 5 angular-
ities, this minimum is found by starting from the optimal set I;fjtl forn —1
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Figure 7.8 The global minimum x; ., for reweighing with n =1,...,5 angu-

larities using Herwig (left panel) and Pythia (right panel). The value of 2
at n = 0 (blue dot) shows the result from pure flat phase space, without any
reweighing.

angularities and iteratively determining the angularity whose addition to Islitl
leads to a minimum in x2. This last method has been verified by applying it
to n = 3, for which it yields results that are very close to the global minimum.
The value of the global minimum y2. is rather sensitive to statistical fluc-
tuations, owing to the finite size of the Monte Carlo samples distributed over
16™*! bins. Furthermore, it is not expected to follow a Gaussian distribution.
To obtain an estimate of the statistical uncertainty, the reweighing procedure
is performed with 11 replicas of the 10® events. The median of the 11 values of
anin obtained in this way is taken as the central prediction and the spread of
the 7 most central results as the statistical uncertainty, roughly corresponding
to one standard deviation.

The individual Xaj from eq. ([7.5) that are determined by reweighing with

the optimal set Ig** of angularities are called Xij,min- Fig. shows the im-
provement obtained for cross sections differential in a single angularity /,;
through reweighing with the optimal set of n = 1,2,3 angularities using
either Herwig (left) or Pythia (right). The results for the goodness-of-fit
Xij,min shown here correspond to the median of the results of all 11 replicas.
Reweighing with n = 1 angularity using Pythia leads to the same optimal set
I?P = {0.8} for each of the 11 replicas, so that X%.S,min vanishes. Since the
optimal angularity for Herwig is not the same in each of the 11 replicas, this
behavior is absent in the left plot. For n = 2 and n = 3, however, X%.Q,min van-

ishes since a; = 0.2 is always part of the optimal sets I,"" and I5"". Reweighing
with n = 2 angularities is found to perform substantially better than reweigh-
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Figure 7.9 The global minimum x; ;, for reweighing with n =1,...,5 angu-

larities from 5-body (left) and 6-body (right) phase space using Herwig. The
value of x2 at n = 0 (blue dot) shows the result from pure flat phase space,
without any reweighing.

ing with only a single angularity for all target angularities ¢,; except those
very close to angularities occurring in the optimal set I7 P For n = 3, there is

a non-negligible, but less significant, improvement over n = 2.

In fig. |7.8] the global minimum goodness-of-fit X?nin is shown for n =1,...,5.
The left and right panels again contain results obtained using Herwig and
Pythia respectively. The result at n = 0 (the blue dot) represents the descrip-
tion of angularity distributions by predictions without any reweighing, i.e. from
pure flat phase space, and provides a reference value for the reweighed results.
The median values are shown as red dots and the black error bars correspond
roughly to one standard deviation, obtained using the procedure described
above. Reweighing with two angularities is found to improve substantially
over reweighing with a single angularity, while reweighing with three angular-
ities improves only slightly over reweighing with two angularities. The benefit
of reweighing with n = 4 or n = 5 angularities becomes increasingly smaller.
The left and right panel in fig. show analogous results for anin, obtained
by using 5- and 6-body flat phase space respectively. While the qualitative be-
havior is largely the same, there are some numerical differences. Specifically,
the larger number of particles worsens the sampling of the collinear and soft
regions of phase space relevant for angularities and hence increases the statis-
tical fluctuations, reflected by the larger uncertainties.

The qualitative behavior of the displayed results has been verified to be similar
for different center-of-mass energies (Q = 200 GeV and () = 4 TeV.
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7.3.3 Conclusions

In this chapter, the benefits and limitations of joint resummation have been
addressed, using as an example the simultaneous resummation of n angularities
in ete™ collisions. Specifically, the degree to which resummed cross sections
differential in n angularities can be used to reproduce cross sections differen-
tial in a single, different angularity, was investigated. This was done through a
procedure in which a flat phase-space generator is reweighed by the resummed
cross section involving n angularities, which is then compared against the di-
rect result for various single-differential cross sections.

The resummed cross sections are obtained from both Monte Carlo parton
showers (Herwig and Pythia) and through the analytic method developed in
sec. [7.2] Although a framework for the simultaneous resummation of two an-
gularities was already described in refs. |108,(132,/133], identifying all the phase
space regimes and relevant modes, and smoothly connecting them through the
estimation of power corrections significantly increases the complexity of the
method for three or more angularities.

An order-of-magnitude improvement was found when reweighing by distribu-
tions involving two angularities over reweighing with a single-angularity dis-
tribution, demonstrating the benefit of joint resummation. Reweighing with
an increasing number of angularities yields some further improvement, albeit
with an increasingly diminishing effect. Augmenting Monte Carlo parton show-
ers by analytic resummation at NLL is probably not very beneficial due to
the sizable perturbative uncertainty at this order. Matching the NLL results
to a fixed-order calculation, or performing the resummation at NNLL would
likely improve this. The presented setup can in principle also be extended to
hadronic collisions with final-state jets. In that case, gluon jets also have to be
considered and non-global logarithms [140] will arise from soft radiation that
simultaneously contributes to the angularities (measured on the jets) and the
out-of-jet region.
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Conclusions

As the accuracy of measurements at particle colliders such as the LHC in-
creases, ever more exclusive final states can be considered. To match the
demand of current experiments, precise predictions of increasingly differential
cross sections are required. When multiple observables that constrain QCD
radiation are measured on a particular final state, logarithms of the ratios of
their corresponding scales occur in the cross section. When these scales are
widely separated, the logarithms grow large and require resummation.

The research described in this thesis is aimed at both improving the resumma-
tion accuracy of some existing frameworks, as well as developing new methods
for the simultaneous resummation of multiple types of logarithms. The con-
sidered measurements are sensitive to infrared (soft and collinear) radiation
that arises in the context of QCD, which was addressed in chap. 2] By using
SCET (discussed in chap. , factorization formulas that separate the various
energy scales may be obtained. Through the renormalization group evolution
of the ingredients in such a factorization, the large logarithms of the ratios of
said scales may be resummed.

The simultaneous resummation of logarithms involving the transverse momen-
tum ¢gr and logarithms involving beam thrust 7 was performed at NNLL
accuracy and matched to the NLO fixed-order result in chap. 4] The matching
of the various regions of phase space, each described by a different factorization
theorem, was carried out through the use of profile scales that smoothly inter-
polate between them, by introducing a regime parameter. Furthermore, a new
hybrid scale choice was used in order to perform the resummation of logarithms
of gr in impact parameter space, while transitioning towards the fixed-order
region as a function of the value of g instead of its Fourier-conjugate. The
resummed double-differential cross section was shown to reproduce both single-
differential cross sections upon integration over the other variable. Since T has
been measured in bins of gr, the results obtained in this chapter are of some
direct phenomenological interest. Furthermore, the presented results clearly
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show that resumming only logarithms involving either g or 7 provides a poor
description of the double-differential cross section. The Monte Carlo genera-
tor Geneva uses T as its jet resolution parameter and would benefit from the
additional resummation of logarithms of g7.

In chap. a setup for the joint resummation of transverse momentum and
threshold logarithms in heavy color-singlet production was developed. The
method is not limited to any order and currently all ingredients are available
for resummation at N3LL accuracy. The factorization theorems valid in the
various regions of phase space were matched to each other and to the fixed-
order result through the additive procedure also employed in chap. [d The
described method may be of some importance to Higgs production or the pos-
sible production of supersymmetric particles, but can also be used to describe
heavy-particle production in the presence of a veto on jets.

A novel factorization formula for processes occurring near the kinematic thresh-
old was derived in chap. [6] In contrast with the traditional soft threshold fac-
torizations, this new factorization also holds in the limit of large rapidities for
generic invariant masses, which is directly accessible at the LHC. It describes
the complete soft and collinear singular structure and includes the nondiag-
onal partonic channels. This generalized threshold factorization was checked
against all currently available results and was found to improve over the soft
threshold factorization. It may be used to improve a number of theoretical pre-
dictions and to resum the large logarithms that occur when one of the PDFs
is probed at large Bjorken-z.

In chap.[7] a framework was developed that allows for the simultaneous resum-
mation of an arbitrary number of e*e™ event shapes, known as angularities, at
NLL accuracy. By reweighing a flat phase space generator by these resummed
results, or those obtained from Herwig or Pythia, the degree to which cross sec-
tions differential in a single, different angularity can be predicted was studied.
Reweighing with resummed cross sections involving two angularities was found
to improve by an order of magnitude over reweighing with a single-differential
resummed cross section. This highlights the added benefit of joint resumma-
tions, such as the ones presented in chaps. [dand[5] Reweighing with resummed
cross sections involving three or more angularities was found to provide only a
small additional improvement. Although the benefit of including the analytic
resummation at NLL accuracy in Monte Carlo parton showers is likely to be
small, the corresponding NNLL resummation of n angularities might lead to
increasingly precise parton showers. This is important for Machine Learning
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techniques applied to the field of jet substructure, which often rely on samples
from these Monte Carlo parton showers.

The research presented in this thesis involves the development of precise and
multi-differential cross section predictions. As the Standard Model is tested
with an ever-increasing accuracy, such predictions are vital in the current
search for the faintest hints of new physics from beyond the Standard Model
that might hide within the experimental data.






A

Plus distributions and Fourier
transforms

The plus distribution [f(2)]3° = [0(z)f(2)]3° of a function f(z), which is less
singular than 1/22 for  — 0, is defined to be equal to its argument for z # 0
and to integrate to zero on the interval between 0 and its boundary condition.
Adopting the notation and conventions from ref. [154], these defining conditions
read

[f(x)]io =f(z) if 2#0 and /Oxodx [f(a;)]fro =0. (A.1)

The definition of the plus distribution can then be written as

[/(2)]*° = lim [0(3: — ) f(@)+ 6z —e) / " da’ f(;c’)} . (A.2)

e—0 z0

Plus distributions with different boundary conditions zy and xq are related
through

F@)T = @]+ [ a5, (A.3)

o

For the specific choice xg = 1, the superscript is left implicit. Integrating the
plus distribution against a test function g(z) gives

/_xm“dx (@] g(z) = /Oxmaxdx f(z) (g(x) = g(0)) + g(0) /xmaxdf’f f(x),
(A4)

from which it follows that the integral over the plus distribution is given by

/ e | Fla))™ = /x :maxdx (). (A.5)

—00
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The plus distributions that occur most often are defined as

In"(x)

x

L,(x)= and LY z) = 11_a , (A.6)
= =),

for a > —1 and integer n > 0. The L, (x) appear in the useful expansion

zg‘? _ —% 5(x) + Lo(x) — € L1(z) + O(e2) . (A7)

The two plus distributions in eq. (A.6]) are related through

a* .,

Ln(x) = @E (x)

. (A.8)

Their arguments may be rescaled by a constant A > 0 through the relations
" /n In"*(\)
n = 1 b n— _—
ALn(A\z) kZ::o <k> () Lo-k(@) + = (=),
A —1

ALY (Ax) = X (x) + o(z). (A.9)

The convolution between two L£%(z) is given by

/ da’ L9z — 2') Lo() = <£“+b(:v) + j(f)b)wa, b)
4 (é + %) Lo () — %E“(:U) _ 2£b(x) (A10)
where
Viap) = 2@l®) 1 1 (A.11)

The convolutions between an £%(x) and an L, (z) or between two L, (z) can
be obtained by taking derivatives according to eq. . The explicit results
can be found in ref. [154] and are not repeated here.
The particular two-dimensional plus distribution, originally defined in ref. [108§],
that is required in some intermediate steps is given by

d d

La(x1,29) = 151(1) do ey O(zy — 22)0(x, — €)Inzy (Inzy — Inx)
1

+ 1 O(x? — x2) (o — €2) In? 25| . (A.12)
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For distributions with dimensionful arguments in one spatial dimension, the
shorthands

L(k,p) = ;L’n (i) and L%k, p) = lliﬁa<lk;> , (A.13)

are employed. Furthermore, a useful distribution occurring in evolution func-
tions can be defined as
e_ﬁYEa

Valx) = m(aﬁa(:n) +6(x)) . (A.14)

For dimensionful arguments, the definition

Va(k, p) = ;Va (z) (A.15)

is used in accordance with eq. (A.13). For identical p, these obey the useful
group property

/ A0Va(k — £, 1) Vo, 1) = Vs (k1) (A.16)

Distributions with different arguments p are related through

/

Valk, p1) = (%)“vaw,u’). (A.17)

For the plus distributions in two spatial dimensions, the conventions of ref. |163]
are adopted. Defining k% = |kr|?> > 0, the two-dimensional delta function and
plus distributions are given by

S(kr) = = 5(0%)

e - aa(5)7] = ome(Gh). e

The Fourier transformation, connecting an n-dimensional momentum p to its
position-space conjugate x, is defined as

1) = G i@ and fo) = @ f@). ()
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For functions depending on the two-dimensional momentum ET (or its conju-
gate br), that exhibit azimuthal symmetry, i.e. f(k7) = f(kr), this simplifies
to

f(kr) = % /Ooode br Jo(brkr) f(br),

f(br) =2 /OoodkT kr Jo(brkr) f(kr), (A.20)

where Jo(z) signifies the 0*'-order Bessel function of the first kind. Azimuthally
symmetric functions g, differential in k7, obey
dg 1 dg
dET o kr dkp

and  g(bp) = §(br), (A.21)

where the lack of any argument for dg/ dkr is conventional. The Fourier trans-
forms of the various £, (kr, ) may be found in ref. |[163]. The transforms of
the distributions required for this thesis are explicitly given by

/ A2kp e R 5(Fp) = 1,
/dQET e~k br Lo(kp,p) = —Ly,
/d2ET e_“;T'gT Cl(ET, ) = %LQ ,
(A.22)

where

b2 HQ
Ly = m( T ) with by =2e7 ~ 1.12201 ... . (A.23)
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Perturbative functions

The various perturbative functions appearing throughout the factorization the-
orems in this thesis are summarized here. Different functions of the same type
are denoted by the same symbol but can be distinguished through their ar-
guments. For example, the inclusive soft function and the TMD soft function
are denoted by S;;(k, 1) and Sij(ET, w, v) respectively. In cases where the ar-
guments of two different functions are equal, or where confusion may arise,
different symbols will be used. For example, the modified beam function from
chap. [0]is written with a hat. Fourier-transformed functions are denoted by a
tilde, e.g. Sij(bT, i, v) represents the TMD soft function in impact parameter
space.

B.1 Hard functions

The Wilson coefficient matching the quark current in QCD onto SCET was
computed to O(a) in refs. [93268] and given in eq. (8.162). The hard function
involved in Drell-Yan cross sections differential in the invariant mass () is then
given by [99]

d
Q@) =3 d”g (abia + diadsa) ICa( @) (B)

where the sum runs over ¢ = {u, d, ¢, s,b} and the squared matching coefficient
is explicitly given by

2 2 2
|Caq(Q%, 1) —1+aSiF [—1 2(22 >—|—31n<§ )—8+7g] (B.2)

up to corrections of O(a?). The differential Born cross section for qg —
Z/~v* — T4~ is given by
dof,  8maZ, [Qg (v + ag) (vf + af) — 2Qqugve(1 — m%/Q?)

dQ ~ 3N.EZ,Q (1-m%/Q%)2 +m%T%/Q

} , (B.3)
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where er, is the fine-structure constant, IV is the number of colors, Q) is the
quark charge in units of |e|, vy, and a4 are the standard vector and axial
couplings of the leptons and quarks, and my; and I'; are the mass and width
of the Z boson. If ¢ — ~* is considered, only the first term in square brackets
contributes.

The hard function for gluon-fusion Higgs production in the limit m%{ < 4m?
is given by

& (B.4)

2
Hij(my,mp, p) = 0§ | Co(mu, )| 09054 |Cog(mur, 1)

and can be distinguished from the hard function for Drell-Yan through its
arguments. The Born cross section is given by

g9H _ 1

—_—— B.
75 - 72mv2(N2-1) (B.5)

where v? = 1/(v/2G ) ~ 246.22 GeV is the Higgs vacuum expectation value.
The Wilson coefficient Cy(my, pt) results from integrating out the top quark in
a contact interaction suppressed by v [269-272| and is given by

Cu(ma, 1) = 1+ Z‘—W [5C4 — 3CF] + O(a2). (B.6)

The Wilson coefficient Cyq is obtained by matching the composite gluon oper-
ator onto SCET, leading to [195.|196,273|

’Z?) + 7”2] +0@?). (B

B asCy
Cog(mp,p) =14+ o {—111( G

B.2 Beam functions

The virtuality-dependent beam function, also known as inclusive beam func-
tion, is matched onto the PDFs through

A2
QCD
Bi(t,z,p) = Z/ ”tzuf]( )[1%—0( " )} (B.8)
The matching coefficients up to O(ay) are given by [99,/100,274|
Iij(t, Z,/L) = 5”‘ 5(t) (5(1 — Z) + Zf; |:(5Z] Pé ,Cl(t,,uz) (5(1 — Z)

T Lol 1) PO (=) 4 6(1) %)], (B.9)
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where the short-hand notation

i
7B,o

5 (B.10)

PY(2) = PP (2) = 05601 - 2)

has been introduced. The coefficients Fg and 7%’0 of the cusp and non-cusp

anomalous dimensions are listed in app.|C.2[ and the Pi(jo)(z) are defined by

PI(2) = 2T 0(:)Pyg(2), P9 (2) = 204 0(2)Pyg(2) + Bo 31— 2)..

The Altarelli-Parisi splitting functions are given by

Py(2) = Lo(1 = 2)(1+ 22) + 261 — 2),

— )2
qu(’«’) = H(lz)a
Pyy(z) = ((1 - 2)2 +22)7
(1 — 2z + 22)?

Pyy(2) = 2L0(1 — 2) (B.12)

z

The finite terms in eq. are explicitly given by

IV(2) =205 |£1(1 — 2)(1 + 2%) — 7;25(1 —2)+ (1 —z— 11“; ln(z))} ,

10 (2) = 2T [qu(z) (m(l - Z) - 1> + 1] , (B.13)
=I5 = 2) — Pyy(2) ln(z)} ,

where any step-functions forcing 1 > z and z > 0 have been left implicit.
The 1-loop matching coefficients [205,275| for the TMD beam function, whose
analogous matching onto the PDFs was given in eq. (4.20)), are given by

Iij(w, ET) Zy by V) = 52] 5(1 — Z) 6(ET)

Qg i v 733,0 _ i
4 — [_51] (Fo hl(w) + 5 ) 0(1 —2) Lo(kr, 1)

+ P Ll + 6 I (B



220 Appendix B. Perturbative functions

where the finite terms include a tilde to distinguish them from those appearing
in eq. . As they do not depend on kp, their expressions in momentum
space and impact parameter space are equal, so this tilde cannot be confused
with the Fourier transform. The matching coefficients of the TMD beam func-
tion in position space read

= g i 14 ryiB,O
Iij(w, bT, Zy My V) = 51']‘ 5(1 - Z) + E |:51J <F0 ln(;) + ) 5(1 — 2) Lb

2
~ PO(2) Ly + fi(;)(z)] . (B.15)
The finite terms are in this case given by
ID(z)=2Cr (1~ 2), I{D(z) = 2CF 2,
ID(z) =4Tpz(1-2), IP(z)=0, (B.16)

where again any (1 — z) and 6(z) have been omitted.

The matching equation for the double-differential beam function was given in
eq. (4.6). It is convenient to decompose its matching coefficients as

Tij(t, 2, ke, 1) = 8(kr) Tij(t, 2, p) + ATy (¢, 2, b,y 1) (B.17)

The AZ;; piece can be interpreted as a correction over the limit ¢ < k%, where
recoil from collinear radiation is power suppressed and the double-differential
beam function becomes proportional to (5(/2T). By construction, it vanishes
when integrated over ET. At 1-loop accuracy, it can be extracted from the full
calculation of Z;;(t, z, kr, w) [150L276] and has the compact form

AI@](t7 Z, ];;Ta M) - %Al(l)(t7 Z, ];;T) + O(ag) ,
1-2

AL Fr) = Laltp) P )| Lo (1 - 2 50) o) |, (B
where the plus prescription on the second line may be dropped freely as the
term in square brackets vanishes for ¢ — 0. Accumulating over the transverse
plane up to ¢5** > 0 leads to the result

- - - 1—
/ﬁkewm Frl] AL (4,2 Fr) = —Lo(t,1u?) P (2) 0] (a)? < —1] .
(B.19)
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The modified inclusive (virtuality-dependent) beam function was defined in
eq. (6.17) as a projection of the double-differential beam function. This pro-
jection implies that the matching coefficients are related through

2

R . k .
Iij(t,z,u) = /d2kTIZ‘j (t — —T,Z, kT,,u> . (B.20)

By defining the perturbative expansion of the matching coefficients as

i'ij(t,z,u) = Z(%;)njl(f)(t,z’u) ) <B21)
n=0

and solving the RGE from eq. (6.36)) order-by-order in g, the tree-level and
1-loop matching coefficients are found to be

Tt 2, 1) = 655 6(t) 5(1 — 2),
Al)(ta 2y /’L) = El(tv NQ) 5’Lj F6 6(1 - Z)

)

+ Laft ) [P - 806,601 - 2)] + 600 (). (B22)

The 2-loop expression is given by

7\2
I (8, 2,10) = Ls(t, 1?) 6y o) o1~ 2)

2
o Th 3 (0)
+ Lo(t, 1) —<50 + *’)’BO)% 6(1 —2) +3F;7(2)

. Z. 2 .
(FZ) +@ Yo+ (7340) +le> 0ij0(1 — 2)

— (Bo+7h0)PO) + (PO @ PO) (o) + raffj-”(z)}

2 ,}/Z
+ 5T07B0 — %1)5@‘5(1 —2)

+ Laltos)| (Gl + T

2 7
1 ™ i p(0 Y ~(1
+ PO (z) - FrOP}j)(z) . (/30 + —30)153.)(,2)

(1) 0 7))

+3(t) 17 (2), (B.23)
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and the 3-loop matching coefficient reads

(rp)°

I (1,2, m) = Lo(t,42%) b =5 6(1 = 2)
)
+ 2att ) 2005 [ (G + 2200 2) + PP
. T .
b Lalt ) | (08 + B+ 2
2
v % 5 )
+ ( 340) +T )5ij5(1 —z) - (*50 +7BO>P1'(]'O)(Z)
I
(P 0 P) )+ 2 10|
7(3)
where the notation (¢®h)(z f dz' /2" g(2') h(z/2") is used to indicate Mellin

convolutions of two functlons in z, which are evaluated analytically using the
MT package [277]. The dots in the 3-loop result indicate terms proportional
to Lo1.2(t, 4#?). Including these terms is straightforward, but they have been
omitted for the sake of readability. The boundary terms ffjn )(z) are not pre-
dicted by the RGE, but instead have to be calculated directly from eq. .

At one loop, the relation

2z

71 _ 7 (0)
Ty (62, 1) = Ty (8, 2, 1) + 0() Py (2) In et

v

(B.25)

holds for all partonic channels. The explicit expressions for the 1-loop finite
terms are given by

I{D(2) = 208 0(=) | £2(1 = 2)(1 4 22) - 7;:6(1 — )+ 01— 2)(1—2)

+ Pyy(2) In 52

2(1 - 2)
s +0(1—z)2z(1—z)},

21 — 2\2 2
Wozt2)” %5(1 —2) + Pyy(z)In

ID(2) = 2T5 6(2) [ Pyy () n

I§)(2) = 2046() [ £1(1 = 2) =—— el
2(1—2)

1+ 2

99

W () = 205 0(2) [qu(z) In FO(1— 2) z} . (B.26)

The 2-loop quark finite terms are conveniently decomposed by their flavor
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structure as

1) (2) = <@—@ﬂ@%@+ﬂ”@u
jé?q)? (Z) qu (Z) = 51] Iqq%/(z) + 1(2) (Z) ’
7(2 £(2) _ 72
Itgzg) (z) = Iqlg (2) = Iég)(z) ) (B.27)

as was done for the inclusive beam function in refs. [101,/102]. The explicit
expressions for the finite terms of the 2-loop matching coefficients may be
found in ref. [3].

B.3 Soft functions

The (beam) thrust soft function, also known as the inclusive soft function, is
given up to O(as) by [99,[278279|

2

i, ) = 8(k) + Tow|. @

OZSCZ'
o |:8,C1 (k‘, /L) +

where C; is equal to either C'r or C'4 for i = ¢q,q or ¢ = g respectively. The
TMD soft function in momentum space, up to O(as), is given by [105]

- - asCh - - v -
Sij(kT, W, I/) = 6(kT) + - [—2£1(k‘T, ,u) + 4£0(1€T, u) ln<;> - 66<kT):| .
(B.29)
In impact parameter space, the TMD soft function reads
~ _ asC; 9 v 72
Sii (b, 11, v) - [—Lb AL, ln(;) - 6] , (B.30)

with L given in eq. (A.23).
The projected fully-differential soft function was given in eq. (5.11) and is
repeated here for completeness

Szj(2k07 ET, /‘L) =

asC; d d 2k0) B w2

72 d(2k0) dk%{ﬂ(k‘o) 0(kr) [2 In® < m D (B.31)
0

2;;) + 2Li2(—62a)):| } :

where a = arccosh(ko/kr). The projection from the fully-differential soft func-
tion from ref. [184] onto 2k leads to the complicated finite terms.

+0(k° — kr) <2a2 —4a ln(
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The double-differential soft function [108| can conveniently be decomposed into
a term involving the TMD soft function and a correction term as

S’L](ka ];;Tv M, V) - 6(k) S’L](ETa M, V) + AS’LJ(kv ET: My V) . (B32)

The correction is in this case over the limit & > ET, where the contribution of
soft radiation to the 7 = k measurement becomes power suppressed. At one
loop, the correction term is given by

AS;i;(k, B, p,v) = Z—;ASfD(k, fr) + O0(a?),

5 LA (ﬁ k;?> —6(k) EI(ETHU):| ; (B.33)

ASWY (&, kr) = 40; {
i (k, k) o

Ty

where LA was defined in eq. (A.12). The second line is not yet manifestly
independent of u, but can be simplified by noting that

La(z1,22) — 8(21) L1 (22) = djlddme( )[ 12(9:2)} (B.34)

This can be shown by writing all three distributions in terms of 6(x; — €) and
O(xo — €2) for infinitesimal ¢, collecting terms, and noting that the result is
finite as € — 0. The required double-cumulant of ASS ) for Tewt > 0 and
¢ > 0 can be read off from eq. and is equal to

Teut >k . Teu
/ dk:/ &y ASY (k, Er) = 4Ck 0(g3 —Tcut)[—mn?( t)] :

cut
T

(B.35)
Using eq. (B.34) and integrating by parts also yields the cumulant up to Tyt >
0 in position space as

7~cut 2 YE
(1) N "177 _ e
/ dk A5 (k br) = 4CF[ z 3F4<1,1,1,2,2,2,2, 4) 21n < 5 )]

(B.36)

where & = by Tew and ;Fj(z1, ..., 2591, .., Y5 2) is the generalized hypergeo-
metric function. Finally, the spectrum of Agl(]l Vat T>0in position space is
given by

&) P B oo g TN (T
A8 (T,bT)_4CF7_[2:r 2F3<1,1,2,2,2, 4) 41n( 5 ) . (B.37)

where now x = by T.
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B.4 Collinear-soft functions
The collinear-soft function appearing in eq. (4.36) is given at one loop by [108]

asC;

1 |40k, 1) Lo(kr, 1) — 46(k) L1 (k7. )

Fi(k, kr, p,v) = 6(k)5(kr) +

+ 45(k) Lo(kr, 11) ln<%) - ié(k)&(ET)} :

(B.38)
The position-space equivalent is given by
~ asCj 2
%(k,bT,M,V) = 6(k) + Ar _4Lb£0<kvu) _2Lb 6(k)
v 2
AL, m(;)a(k) - 35(@] . (B.39)

The 1-loop expression for the hatted collinear-soft function from eq. (5.13) is
given by

O(SCZ‘
4w

Gk, Fp, o v) = 6(k)3(Fr) + [4co<k, ) Lo(Fr. )

— 45(k) Lo(Er, ) 1n(:)} . (B.40)
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Renormalization group evolution

In app. [C.J] the renormalization group equations and anomalous dimensions
of the various perturbative functions that appear in factorization theorems
throughout this thesis are gathered. The ingredients required for resummation,
including the beta function, cusp anomalous dimension and the relevant non-
cusp anomalous dimensions, are given in app. [C.2]

C.1 Renormalization group equations
The RGE for the Drell-Yan matching coefficient is given by
d
M@qu(QQ, 1) = Y4q(Q% 1) Cog(@Q, 1) ,

N2
gl Q1) = Pyl In(—5-) + 98 (a). (©1)

For the gluon-fusion Higgs production matching coefficient, the RGE instead
reads

d
Macgg(mHa p) = VQQ(mH» 1) ng(mHa 1) 5

m? ol
Suglitrr, ) = Tyl 1n(T5E) 498 (a) — (e - 22 (e

S

The RGE of the inclusive beam function is given by

d 7
M@Bz’(t,w,u) = /dt' vp(t =t p) Bi(t', z, 1),

Yt 1) = =2y (@) Lo(t, 1) + v (as) (). (C.3)
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The TMD beam function adheres to the u-RGE

d . - B}
/’L@B’L(w') kT? K, V) = PYB(wa K, V) B’L(wa kT7 H, V) )

~3 i 4 ~1

Ty (@, v) = 2hp(as) (2 ) + 7). (C.4)

where the anomalous dimension can be distinguished from that of the inclusive
beam function by the tilde. Since it does not depend on kp, it is equal to its
Fourier transform. The v-RGE of the TMD beam function in position space
is given by

d - 1, )
VaBi(w, bT?,U’a V) = _ivy(bTﬂu) B’i(wv bT,/L, V) . (CS)

The rapidity anomalous dimension reads

3 (br, 1) = —4Anp (o, 1) + 75 po (b7, 110) + Fbup (bT) » (C.6)

where the evolution kernel 77{; was defined in eq. (3.193). The nonperturbative
model ’Nyﬁmp (br) is set to zero throughout this thesis. The fixed-order boundary
condition of the resummed rapidity anomalous dimension through NNLL reads

2

~3 « . « . . .
Aipolbr po) = 32| =200 | + (55 |ThLE — 204y +ba ] (G

where the 1-loop coefficient *yf,,o = 0 has already been plugged in. For the
regulator employed here, the 2-loop coefficient is given by [205]

128 112
Yv,1 = Ci [—CA<9 - 56(3) - 509] . (C~8)
The RGE of the double-differential beam function is given by
d . A -
M@Bl’(ta z, kr, M) = /dt/ ’le(tL - tla M) Bi<t/7 z, kr, M) ) (Cg)

where the anomalous dimension is equal to that of the inclusive beam function

in eq. (C3).

The RGE of the parton distribution functions, better known as the DGLAP
equation, is given by

d 'd
) = 2 | Zorsena s (Z). (C.10)
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where the expansion

Pylanz) =3 (%) R, (1)

4
n=0

has been defined. For the threshold PDFs, the mixing between PDFs of dif-
ferent flavors is suppressed and the RGE and anomalous dimension simplify
to [220]

d T ! 7 r
u@ffh (z, 1) =/ da’ 7z — 2/, ) f (2 )

Vi, ) = 2P (g, 1+ ), (C.12)
where now
hr > ag n+l thr (n)
Pas ) =Y (5) P @), (C.13)
n=0

The coefficient that occurs in this thesis is given by
PO (z) = 2Cp 0(2) P2 () ,
Pt (x) = 2£o(1 — ) + S6(1 — ) (C.14)
The RGE of the inclusive soft function is given by

d .
Sl m) = [ A (0 =K ) Sy (. )

75k, 1) = AT¢gp(as) Lok, ) + v (s)d (k) (C.15)

The TMD soft function obeys the u-RGE
d ad ~i ad
/‘L@Sl '(kTa M, V) = ’YS(:LLa V) S’L'j (kT7 122 V) y
~i — AT H ~i
T v) = A (a) (£ +54(a). (C.16)

where the tilde serves to distinguish between the TMD and the inclusive soft
function. Its v-RGE in position space reads

d - ] )
Vasij(anu’a V) = 7V(bT7M) Sij(anqu) . (Cl?)
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The RGE of the projected fully-differential soft function from eq. (5.11)) is
given by

d = . .
Sz](2k07 kT’ ,LL) = /d(2klo) ’3/39(2]{:0 - 2k,07 .LL) Sij(2k/07 kT, ,LL) )

Hau
i
5(2K°, 1) = —4AT¢ugp(s) Lo (2K, 1) +A5(s) 6(2K°) . (C.18)
The double-differential soft function is described by the RGEs
d - i o
/’L@SZ (k7 kTa M, V) - 75(“7 V) Slj(k7 kTa My V) )
V@‘S’L‘j(kv bT7 K, V) = ’Yy(bT7 ,U’) SZ](ku bT7 M, V) ) (019)

where the anomalous dimensions of the u-RGE is equal to that of the TMD
beam function.

The RGE of the soft function appearing in the factorizations describing the
measurement of n angularities in sec. [7.2.2] is given by

d =1 a a @
u@&j(Q”‘emu) —/d(Qo‘e’a)vS(Q Ca = Q%€ 11) Sij(Q% €, 1)
. 4 .
Y5(Q%€qs 1) = Erf)usp(as)ﬁo(@aeaa n)

+ [ (as) = 2T () 1n(i322)} 5(Q%a),  (C.20)

where the bar serves to distinguish the anomalous dimension from the other
soft anomalous dimensions.

The p-RGE of the collinear-soft function appearing in sec. [4.2.4] is given by

d . . .
g i o) = / Ak oy (k — K, v) Fi(K R )

2

i i H i
’717(]{’17 ,LL, ]/) = _2Fcusp(a8)£0 <k7 7) + 'YV(O‘S) 5(k) ’ (C21)
while its »-RGE in position space reads
d - 1, -
v——Si(k,br, p,v) = 5 3, (br, 1) Si(k, br, i, v) - (C.22)

dv 2
The pu-RGE of the hatted collinear-soft function from sec. [5.1.3]is given by
d . - , .
/’L@%(k’a kT7 My V) = /dk, 'S/ZS”(]{; - klv Hy V) ‘%(k,a kT? Hy V) )
3y (ky1,v) = =2k (0) Lo (ks 2 ) +45(a0)6() . (C:28)
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The v-RGE of the hatted collinear-soft function in position space reads
d > 1_; X
V@%(lﬂ,b’]‘,ﬂ, V) = —5’)/1,(1)’]‘,/1,)%(]@ bT?H? V)' (024)

The RGE of the collinear-soft function appearing in the factorization of the
cross sections differential in multiple angularities is given by

A e Qe = [A(@°€,) [a(@%) A@ €, QPen)
X V/(Q%a —Q%,, Q%5 — Q¢ 1),
T (Q€a, Q%es, 1) = 1Féusp<as)ﬁo<c2aea, 1) 3(Q%g)
+ o I Ty (@) £0(Q e 1) 6(Q )
+75(as) 6(Q%a) 8(Q7es) (C.25)
where the bar again serves to distinguish the anomalous dimension from other
collinear-soft anomalous dimensions.

The jet function appearing in the same factorization formula is renormalized
through

Q) = / A(Q ) V(@ — Qv 1) THQ L 1)
2

ﬁriusp(as)ﬁo(Qaeow Ma) + ’Yff(as) 5(Qa€0¢> : (CQG)

Y (Q%as i) = —

C.2 Anomalous dimensions

The beta function is expanded as

o0 g\t
Blas) = ~2a, nzoﬁn(h) , (C.27)
with coefficients in the MS scheme, up to three loops, given by [280,281]
Bo = E Ca— g FNf,
B = gcA - (gcA +4OF) Tpny,
By = 2?27 i+ (Ch - 108 CrCa — g C3) 2T ny
+ (5 Or + ;—i Ca) ATE RS (C.28)
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Solving the RGE of the strong coupling constant, given in eq. (2.20), up to
three loops yields the running coupling

X b1
(@) ~ ) | dmpo MY
Oés(uo) ,32 1 52 InX 1
T [50(1_X>+5(1§<X+X_1>]’ (C.29)

where X = 1+ as(uo)BoIn(p/po)/(2m). The evolution kernels appearing in
the solutions of the various RGEs are defined through

- as(k) dqg . z dy
Ki Ho, 1) = / EYIRY 1_‘Z:us T / TR
F( 0 ) as(po) B(CC) p( ) as(uo)ﬁ(y)

‘ as(u) dp .
nr (Ko, 1 —/ 2 Deusp(®) 5
F( 0 ) as(uo)ﬁ(x) p( )

as(p) dz i
Ky (o) = [ e L] (C.30)

Their explicit expressions at NNLL accuracy are found to be

K& (p, o) = Lo [M(l— ! —lnr) + <le - 61)(1—7’4—1117")

“18 oo ' 7 Ty fo
51 2 Oés(,U«O) /B% B2 1—r?
+2—ﬁoln (’f’)—l- ppe <<ﬂg_60)< 9 +1HT‘)
sy B
+ (5OF6 - 53)(1 —r+rinr)

_ (Fé_ﬁlf’i)<1—r>2>]
T Bl 2 ’

i _ I as(po) (T1 BiY,
o) = =+ 2200 (- By
g (p0)? <F12 B BT n ﬁ B ﬁg) r? — 1]
1602 \T,  Bol% 52 fBo) 2 |’
| _ o os(mo) (V1 B,
K o) = = 552 4 221 (73-(70 He-v). (©31)

where 7 = as(p)/as(pp). The cusp and non-cusp anomalous dimensions are
expanded as

[e.e]

i s n+1 . o . Ie% n+1
Fhplas) = > Th($2) and  x(a) =Y vka(52) - (C32)
n=0

n=0
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where the superscript ¢ = ¢, g distinguishes between quarks and gluons. The
coefficients of the MS cusp anomalous dimension to three loops are [208,1282]
283|

6:4017

Fil = 40} [CA(Ei; — 7;) — %TF nf:| = %CZ; [(4 — 71'2)CA + 550] )

; 245 13472 11zt 22(3
FQ:”“%[C%(G_’ 27 5 3 )

418  40m?  56(3
+CaTrng (57 + 5 =57
55 16
+ Cp Tr nf(—E v 16{3) - ST} nﬂ, (C.33)

where ¢ = ¢, g and, as before, Cy = Cr and Cy = Ca.

The coefficients of the non-cusp anomalous dimension of the hard matching
coefficients are given by

Vo = —6CF,
yglzz_c%[(%z—52@)cg+-03—4w2+48@)6&~+(if+w¥>6ﬂ,
V0 =—2Po

7%J::CM[(—J;8-%4@)C%-F(—%f-%if)ﬁ@ — 261,

Vin = —2nf, . (C.34)

The coefficients of the non-cusp inclusive beam anomalous dimension are [100-
102} 274]

'7%,0 =6Cp,

[ /146 121 272
by = Cr| (S5 —806)Ca + (8 — 4 +48G:)Cr + (5 + g)ﬂo] ,
7%,[) = 2607

o= Ca (BE - aaa)ea+ (5 - B0 )m] 251 (C.35)
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The coefficients for the TMD beam function are instead given by [205]
4
B0 = 6Cr,
~q 2 47T2
Yp1 = Cr|(2—24¢3)Cs + (3 — 4m* + 48(3)CFr + (1 + T)BO ’
;)’/%’O = 250 9
V1 =Ca [(—8 +24¢3)Ca + 860 — 22CF] + 650CF . (C.36)

The coefficients of the non-cusp anomalous dimension of the soft functions are
given by

I Y I
V5,0 = V5,0 = V5,0 = Vs0 =0,

, y Ny 128 112 272
Y51 = —Vs51 = Y51 =Ci [<—9 + 56(3) Ca+ <? — 3>ﬁ0] . (C.37)

The collinear-soft functions have non-cusp coefficients given by
’Yéﬁ,o = ’A}éﬁ,() = ’79,0 = ﬁiyg =0,
Y1 = —781> (C.38)

where the last line follows from eq. (5.33)). The 1-loop non-cusp anomalous
dimension of the jet function in the n-angularity factorizations is given by

V50 =6Cp. (C.39)
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Differential and cumulant scale
setting

The topic of differential versus cumulant scale setting was raised in sec. [1.3.5
The main differences between the two were discussed, most notably, the failure
of the integrated spectrum to recover the inclusive cross section when differ-
ential scale settings are used and the less reliable uncertainties obtained when
employing cumulant scale setting. All results obtained in sec. [£.4] involve the
corresponding scale setting, e.g. the prediction for a cross section differential
in 7 and cumulative in gr uses differential scale setting for the former and
cumulative scale setting for the latter, so that these issues are avoided.

In this appendix, the performances of the various combinations of differential
and cumulant scale settings to predict observables other than the ones they
were designed to describe accurately are investigated. Of particular interest is
the performance of the (g, T) scale setting described in earlier sections at the
level of cumulant observables. This can be done by transforming a spectrum
using differential scale setting in gy and 7 to a prediction for the cumulant up
to ¢ and Teut, using the analog of eq. . The only nontrivial new pro-
cedure is computing the double cumulant directly from (g7, 7T) scales, where
the overlap in underflow contributions has to be taken into account by

do
dgr dT lu(ar,T)

cut

qr Teut
ot (@, Tou) = / dgr / a7 [e(qT > ) O(T > Tap)

do
dgr dT 1@, 1)
do
dgr dT lu(ar, Tap)
do
dgrdT u(q;pffnp)] '

Since the distinction between differential and cumulant scale setting is only

relevant for gp versus ¢5'* but not for the underlying resummation in by

+0(qr < q7°) (T > Tap)
+0(qr > q7") (T < Tap)

—0(qr < q) (T < Tap) (D.1)
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Figure D.1 The double cumulant cross section as a function of Tey for g5 =
100 GeV (left) and as a function of ¢5** for Ty, = 100 GeV (right). The bands
indicate the total perturbative uncertainty Agotal, See sec. @

space, the dependence of the hybrid scales on by is suppressed. In practice,
q;p = Top = 1 GeV is used and the integrals in eqgs. and are imple-
mented as sums over logarithmically spaced bins with bin size A(log,qqr) =
A(logiy T) = 0.08, where the spectrum is evaluated at the logarithmic mid-
point of each bin. Scale variations in the integrated results are performed by
integrating each instance of the spectrum separately and computing maximum
deviations from the central results in the end. The final results are interpolated
for clarity.

In figures[D.I]to[D.3] the default scale setting for various cumulant observables
(solid orange) is compared against more differential scale settings (dashed blue
and dotted green), i.e. choosing u in terms of g rather than ¢$" and/or T
rather than Tey. Fig. shows the double cumulant cross section, for which
the scales are by default set in terms of ¢5** and Teye. The horizontal refer-
ence line indicates the inclusive fixed-order cross section. In fig. the T
spectrum with a cut on gy is shown. The default scales for this cross sec-
tion are expressed in terms of ¢5"* and 7. Fig. depicts the converse gp
spectrum with a cut on 7. In both figs. and the left panel shows
the dependence on the cut at a representative point along the spectrum, with
the reference line indicating the resummed prediction for the inclusive (strictly
single-differential) spectrum. The right panel in either figure shows the spec-
trum at a representative choice of the cut.

It should be noted that, in all cases, the cumulative predictions obtained us-
ing the default scale setting (solid orange) cleanly asymptote to the respective
target observable (the reference line) for large values of the cut. The central
double-differential prediction in the left panel of fig. [D-3]slightly overshoots the
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Figure D.2 The T spectrum with a cut on gr as a function of ¢5** at fixed
T = 5GeV (left) and as a function of T at fixed ¢5** = 100 GeV (right). The
bands indicate the total perturbative uncertainty Agotal, see sec. [£:3.4 The
colors correspond to different scale setting prescriptions with the solid orange
line representing the default scale setting.

inclusive result beyond the phase-space boundary Teut = qr (where the cal-
culation is effectively a leading-order calculation), but is within uncertainties.
Furthermore, the uncertainty obtained using the default scales is smaller than
any of the ones obtained from more differential scale settings. As described
before, this is expected since differential scale setting cannot account for cor-
relations between different bins of the spectrum, giving rise to a larger band
in the cumulant cross sections.

Another conclusion that can be drawn is that predictions obtained using qr or
g5 scale setting are mutually compatible. In other words, their uncertainty
bands (very nearly) overlap, as long as the scale setting with respect to T
is done the same way in both cases. This can be seen from the right panel
of fig. by comparing the default (g5, Teut) scales (solid orange) and the
(g7, Teut) scales (dotted green). Similarly, in fig. it can be seen that the de-
fault (g5, T) scales (solid orange) and the (qr, T') scale setting (dashed blue)
roughly differ by their respective uncertainties. These relations are expected
since the (unphysical) scale dependence is canceled by higher-order corrections,
which the scale variations are designed to probe. For the case of qr versus q%‘t
scales, the specific choice of hybrid profile scales in eq. is the reason
that differences between the two prescriptions only start to appear when turn-
ing off the resummation, such that g, is nonzero. For example, for a high
Tewt = 100 GeV, which is also a good approximation for the inclusive g7 spec-
trum, the two prescriptions fully agree in the canonical region g3 < 20 GeV
(see the right panel of fig. . This is responsible for the good overall agree-

ment since most of the cross section is concentrated in the canonical region.
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Figure D.3 The g7 spectrum with a cut on 7 as a function of Tyt for ¢r =
15 GeV (left) and as a function of gr for 7Teuy = 100 GeV (right). The bands
indicate the total perturbative uncertainty Aotal, see sec. [£.3.4] The colors
correspond to different scale setting prescriptions with the solid orange line
representing the default scale setting.

The comparison of T versus Teus scales is much less favorable, with the for-
mer failing to reproduce the latter’s inclusive limit within uncertainties in all
cases. This is in line with the discrepancy reported in ref. for a single-
differential measurement of thrust in e™e™ collisions at a comparable working-
order (NLL'+NLO). The mismatch is most striking between the default scales
(solid orange) and (g7, T) scales (dashed blue) in figs. and implying
that more effort is required to ensure both a correct integral and the best pos-
sible prediction for the shape of the double-differential spectrum.

The conclusion of the analysis presented here is then that the mismatch mostly
reduces to the question of differential versus cumulant scale setting in 7 alone,
so that the methods developed for the single-differential case in refs. ,
can be brought to bear here as well if desired. However, since this is a well-
known issue that is merely inherited from the single-differential case, the matter
is not pursued any further here.

To illustrate that the issue is indeed a correlated higher-order effect related
to scale choices, a modification of the profile scales can be considered. To be
specific, the canonical scale pk ~ (uh)?/ul; ~ T in SCET] can be lowered
by a factor of ¢ = 0.5 without parametrically violating the canonical scaling.
Including a smooth interpolation to the fixed-order and nonperturbative region,
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Figure D.4 Left: The double cumulant cross section as a function of Tey for
¢ = 100 GeV for different scale setting prescriptions, with a modified slope
¢ = 0.5 of the SCET} profile scales, see eq. . Right: The gr spectrum
with a cut on 7 as a function of Ty for different scale setting prescriptions,
also using modified SCET} profile scales with ¢ = 0.5. The bands indicate the

total perturbative uncertainty Agotal, See sec. @

this can be achieved by replacing eq. (4.11]) with

2,.2
mo(l—l—%) < 2xo/c,
cx 2xp/c < x <7,
! — — — 2
frun(c; T)=qcx+ (22(25”22_;1:3?;?_;611) r1 <z < w9, (D.2)
(2—cx1—cx2)(z—23)
1= 2(131—1101)%963—:102?3 ro <w < w3,
L T3 < T,

\

and keeping the entire remaining profile setup unchanged. Setting ¢ = 1 then
recovers the original eq. . The results obtained using the modified profile
function from eq. are shown in fig. where the left panels of figs.
and [D.3] are repeated using the modified setup. For simplicity, the modified
profile function is used for both differential and cumulant scale setting. It can
be seen that the simple modification eq. already substantially improves
the agreement between differential and cumulant scale setting, with the result
from (g$",T) scales (dotted green, left panel) covering the inclusive fixed-
order cross section and the result from (g7, T) scales (dashed blue, right panel)
covering the result from single-differential gr resummation, at the price of much
larger uncertainties.

In conclusion, with additional effort, for example by applying the methods
used in refs. , it would be possible to fully reconcile the best possible
predictions for both the differential shape and the cumulant of the double-

differential spectrum.






Summary

This thesis represents research that has been conducted in the field of elemen-
tary particle physics. Although this is a fundamental science and has little
to do with the everyday life, it does address questions that appeal to the
imagination of many, such as “What is everything made of?”, or “What keeps
everything together?”. Exactly because everybody wonders about these things
from time to time, this summary is aimed at a broad audience.

The goal of this summary is then to provide the reader with a small glimpse
into the world of elementary particles and the modest contribution that this
thesis makes to it.

The Standard Model

Although the idea that all matter is built up from tiny building blocks is
thousands of years old, it was not until the nineteenth century that the first
experimental evidence for this was provided. Discoveries followed one another
in rapid succession and at the moment over a hundred different building blocks
are known. These particles are called atoms and are about a million times as
small as the width of a human hair.

With the discovery of the atom, the search for the most fundamental build-
ing blocks of nature seemed to have come to an end. It was therefore a big
surprise when experiments conducted around the twentieth century showed
that the atoms themselves consisted of even smaller particles. Every atom
was found to contain a positively charged nucleus, surrounded by a cloud of
negatively charged particles, called electrons, each with an electrical charge
of —1. The atomic nucleus is in turn made up out of protons and neutrons.
The proton has an electrical charge of +1, exactly opposite to the charge of
the electron. Neutrons are, as their name suggests, neutral and do not carry
any electrical charge. Since atoms as a whole are electrically neutral, they
must contain an equal amount of protons and electrons. The exact number of
protons (and electrons) in an atom determines the specific type of atom. For
example, a helium atom contains two protons and two electrons, while an iron
atom consists of twenty-six protons and electrons. The number of neutrons in
an atom may vary, corresponding to different so-called isotopes.
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Figure 1 A schematic representation of an atom. Electrons (the yellow orbs)
orbit around the nucleus, which contains protons (the red orbs) and neutrons
(the blue orbs). The up- and down-quarks (the orbs with arrows pointing up
or down) are visible in the enlarged pictures of the proton and neutron.

Even though the existence of only three fundamental building blocks seemed
very elegant, protons and neutrons were also found to consist of smaller parti-
cles. These particles are called up-quarks and down-quarks and have an elec-
trical charge of +2/3 and —1/3 respectively. A proton contains two up-quarks
and one down-quark, while a neutron carries two down-quarks and a single
up-quark. A graphical representation of an atom can be found in figure
Apart from electrical charge, the quarks turn out to carry an additional type
of charge: color charge. Despite the somewhat confusing name, this charge has
nothing to do with actual color. Where electrical charge comes in two sorts
(positive and negative), there are three possible color charges, denoted by red,
green and blue. Just as the combination of a positively charged particle and
a negatively charged particle is electrically neutral, three particles with a red,
green and blue color charge together form a color-neutral combination (also
known as white). The three quarks inside a proton (or inside a neutron) all
have a different color, so protons (and neutrons) carry no net color charge.
Only color-neutral particles such as protons and neutrons can be observed di-
rectly.

Up-quarks, down-quarks and electrons are currently believed to be fundamen-
tal particles of matter: they cannot be divided into smaller particles. There is
one additional matter particle, called the electron-neutrino, which is not im-
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portant here, but is mentioned merely for completeness. All known matter is
eventually built from these four elementary particles.

The existence of the four matter particles is predicted by a theory developed
around 1967 that carries the somewhat pretentious name the Standard Model.
The Standard Model additionally predicts two exact copies of each of the four
matter particles, with the only difference that these copies have a larger mass.
Each of these three collections, all containing four matter particles, is called a
generation.

Apart from the existence of matter particles, the Standard Model also describes
the forces that act between these particles. There are three forces within the
Standard Model: electromagnetism, the strong nuclear force and the weak nu-
clear force. The fourth and final known force, gravity, is not described by the
Standard Model. Particles are only affected by a certain force if they carry a
specific type of charge. For example, particles are only affected by the electro-
magnetic force if they are electrically charged and only by the strong nuclear
force if they carry a color charge.

The forces between the matter particles are transmitted by force-carrying par-
ticles. The force carrier of the electromagnetic force is the photon, the particle
that light is also made of. The strong nuclear force is transferred by the gluon.
The three quarks in the proton are thus held together because they exchange
gluons and in doing so exert an attractive force upon each other. The strong
nuclear force has a fitting name: the force between two quarks in the proton is
roughly equal to the force required to lift three male African elephants. The
crucial difference between photons and gluons is the fact that photons them-
selves are not electrically charged, but gluons do carry a color charge. This
then means that gluons also affect one another through the strong nuclear
force.

The third force, the weak nuclear force, is transmitted through so-called W -
and Z-particles and is responsible for the radioactive decay of some atoms.
The final particle that is contained within the Standard Model is the Higgs
particle. The Higgs particle is not a matter particle or force carrier, but pro-
vides a mechanism through which the other particles acquire their respective
masses.

A schematic overview of the particle content of the Standard Model is shown in
figure[2l Every particle whose existence the Standard Model predicts has been
discovered in experiments. Furthermore, no elementary particle that is not
predicted by the Standard Model has ever been found. Hence, the Standard
Model is an enormously successful theory. Despite its successes though, it
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Figure 2 The particles that are described by the Standard Model and the
year of their discovery. The first three columns represent the three generations
of matter particles, while the fourth column contains the force carries.

cannot be the ultimate theory of the universe. One of the many both theoretical
and experimental motivations for this is the fact that gravity is not contained
within the Standard Model.

The search for new particles that are not predicted by the Standard Model is
one of the biggest challenges of modern-day particle physics.

Searching for particles

The method that is used to search for new particles is based on what is probably
the most famous equation in physics:

E=mc. (1)

Here E stands for energy, m for mass and c is a constaniﬂ What this for-
mula then entails, is that energy and mass can be converted into one another
according to some exchange rate, which happens to be ¢?. The conversion of

1To be precise, it is the speed of light, roughly equal to a billion kilometers per hour.
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Figure 3 The ATLAS detector. The detector is 46 meters long and has
a diameter of 25 meters. The protons enter the detector from both sides
and collide in the middle. Around this location, multiple layers of advanced
measuring equipment are installed, allowing for the detection of various kinds
of particles. The displayed people show the scale of the detector.

mass into energy occurs for example in the generation of nuclear energy, or in
the detonation of an atomic bomb. The exact same exchange rate applies in
the other direction as well, so energy can also be converted into mass.

The current experimental setup that uses this principle is based in Geneva
and is called the Large Hadron Collider (LHC). The LHC is a 27 kilometer
long, circular tunnel, built about a hundred meters under the surface. In
this tunnel, protons are accelerated in opposite directions until they revolve
around the tunnel more than 11000 times per second. The protons are then
made to collide, allowing the quarks (and gluons) inside the protons to interact
with each other. Because of the enormous amount of energy that is stored in
the motion of the protons, new particles may be created in these interactions
through equation (). These might be particles from the Standard Model that
are already known, but may also be new, as of yet undiscovered particles.

Many detectors are set up near the location where the protons collide (see
for example figure , in order to be able to measure the end products of the
interactions that take place. There is, however, a catch: most particles decay
into different particles before reaching the detectors. From a single measured
final state it is therefore impossible to determine whether a particle from the
Standard Model, or a new particle was created in the original interaction.
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However, by performing a great number of collisions, at the LHC about forty
million per second, and counting the amount of times that a certain final state
is measured, the probability of that final state to occur can be determined.
This measured probability can then be compared against the prediction from
the Standard Model. If the experimentally determined probability of a certain
final state is found to be larger than predicted by the Standard Model, it may
be concluded that particles must have been created that lead to that particular
final state, but are not included in the Standard Model.

Theoretical predictions

Through the use of the Standard Model, the probability for a specific process
to occur can be calculated. By adding the probabilities of all processes that
lead to a certain final state, the probability of that final state can be deter-
mined. This may be compared with rolling two dice, where the final state is
the total number of pips that the dice show. By throwing the two dice many
times and counting how often some final state, for example ‘ten pips’, occurs,
the probability of that final state can be determined experimentally.

To theoretically predict this probability, the probabilities of all possibilities
that lead to this final state have to be added. There are three possibilities that
lead to ‘ten pips’, namely: EJE) CIEJ and EICI. The total amount of possible
outcomes when throwing two dice is equal to 6 x 6 = 36, for each of the six
possibilities of the first die, the second die can take six different values. For
the case of fair dice, the probability of each possibility is the same, so the total
probability of the final state ‘ten pips’ is equal to 3/36, which comes down to
a little over eight percent.

Individual processes in particles physics are often represented graphically by so-
called Feynman diagrams. An example of a Feynman diagram is shown on the
left-hand side in figure [ where the particles A and B on the left represent the
initial state (the particles that collide) and the particles C' and D on the right
the final state. By drawing and calculating all possible Feynman diagrams that
give rise to the same final state (the particles C' and D), the total probability
of that state can be predicted.

There is, however, a complication: particles can temporarily split into two
different particles, which may subsequently recombine into a single particle.
This is for example the case in the Feynman diagram on the right in figure [d]
which has the same final state as the left diagram. Since a particle resulting
from such a splitting may itself split again, this gives rise to an infinite amount
of possibilities that all lead to the same final state. As calculating infinitely
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B D B D

Figure 4 Two Feynman diagrams with possible scenarios in which the incom-
ing particles A and B give rise to the final state composed of the particles C
and D.

many diagrams would take a lot of time, this seems to be a problem.

The solution to this issue follows from the fact that every interaction between
two particles (every black dot in the diagrams in figure reduces the prob-
ability of a diagram. The exact factor by which the probability is reduced
depends on the type of interactions. For example, for interactions between
quarks and gluons, which are governed by the strong nuclear force, the prob-
ability of a certain scenario decreases roughly by a factor of ten for every two
interactions. For these strong interactions, this reduction factor, known as a
coupling constant, is denoted by the symbol as.

The infinite amount of scenarios that lead to a specific final state can then be
organized according to the amount of interactions (black dots) that appear per
scenario as

Probability of final state = ¢ + agsxc1 + a?xcz + ., (2)

where the dots denote the fact that the series continues to infinity. The first
term on the right-hand side, cg, represents the probability that no interaction
takes place. In that case, the final state has to be equal to the initial state.
The next term, ay X c1, is the combined probability of all the diagrams that
contain exactly two interactions (like the left diagram in figure 4)). Because of
the reduction factor ag, this term is about ten times as small as the previous
term. The third term, o2 x c2, represents the probability of all diagrams with
exactly four interactions (like the diagram on the right in figure . This term
contains two instances of the reduction factor, hence it is about 10 x 10 = 100
times as small as the first term cg.
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Figure 5 A collision between two incoming protons (the black arrows). The
momentum of one of the produced particles is indicated by the blue arrow.
The transverse momentum is the degree to which this momentum points in a
direction perpendicular to the protons, indicated by the red dashed arrow.
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Because every next term in equation is smaller than the previous term, the
series may be truncated at a given point, provided that one accepts that the
prediction is no longer exact, but is an approximation instead. For example, if
only the terms cg and as X c1 are taken into account, the error that is made is
proportional to the reduction factor of the third term, which amounts to a2 ~
1/100. This shows the power of this method: By calculating only two terms
in an infinite series, the true answer may be approximated to 1% accuracy.

Multiple measurements

Apart from the probability that a specific final state occurs, experiments are
also able to measure certain properties of that state. An example of a prop-
erty that can be measured is the so-called transverse momentum. Momentum
is the amount of energy with which a particle moves in a certain direction. The
term ‘transverse’ indicates that the momentum is measured in the direction
perpendicular to the direction in which the protons at the LHC move before
they collide, see figure

The meaning of momentum becomes clear in an example from everyday life:
There is more energy in a car moving with 50 kilometers per hour than there
is in a car moving 30 kilometers per hour. The first car then has a larger
momentum than the second. A fully loaded truck that drives at 50 kilometers
per hour contains more energy than the car driving at 50 kilometers per hour,
so the truck has an even larger momentum.

In nature, (transverse) momentum is a conserved quantity. It cannot be lost,
only transferred from one particle to the next. In the scenario depicted in the
diagrams in figure [4, the transverse momentum of the final state then has to
be equal to the transverse momentum of the initial state. Since the momen-
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tum is measured in the direction perpendicular to the incoming protons, the
transverse momentum of the initial state (and therefore also the final state)
has to be zero by definition. What is then the reason that nonzero transverse
momenta are measured at the LHC?

Before the incoming particles are considered as the initial state, so before the
diagrams in figure 4] begin, these particles can emit radiation. This radiation
consists of so-called soft and collinear particles. Soft particles carry very little
energy, so little in fact that they might not even be measured by the detectors.
Collinear particles propagate in exactly the same direction as some other par-
ticle, so they are often also not detected as individual particles. By emitting
this radiation, the incoming particles can obtain a transverse momentum that,
by momentum conservation, must be equal (but opposite) to the transverse
momentum of the soft and collinear radiation. The transverse momentum of
the final state is then completely determined by the soft and collinear radia-
tion, which is difficult to detect.

All measurements considered in this thesis are affected in one way or another
by the soft and collinear radiation.

The energy of the soft and collinear radiation is vastly lower than the energy
with which the incoming particles collide and eventually form the measured
final state. Combined measurements of the probability of a certain final state
and the transverse momentum are thus sensitive to processes that occur at two
completely different energies.

Simultaneously considering a process occurring at a small energy Fgmay and a
process occurring at a large energy Flarge, leads to a problem in the theoretical
calculation. It turns out that the coeflicients c1, c2, . .. develop a dependence on
the ratio of the energies, Flarge/Esman. To be more specific, this ratio appears
in every coefficient to the same power as the power of the coupling constant o
that corresponds to that coefficient. The coefficient cs, for example, depends on
the ratio (Ejarge/ Egman)?. A typical value of this ratio might be Frarge/ Esman =
10. In that case, this ratio effectively cancels the suppression from «; in each
term. The result is then that every term in equation is roughly of the same
size again, so that the series cannot be truncated anymore.

Effective theories, factorization and resummation

Because the issue occurs due to the attempt to describe two completely differ-
ent processes simultaneously, the solution is very intuitive: try to separate the
two processes and consider them individually.



250 Summary

The measurement of the transverse momentum is fully determined by the soft
and collinear radiation and is completely insensitive to the energetic interac-
tion between the two colliding particles. This measurement might then just as
well be described by a simplified version of the Standard Model, from which
everything that has to do with the energetic collision of the incoming particles
is omitted. What remains after all (to this measurement) irrelevant informa-
tion has been removed, is called an effective theory.

The principle of effective theories can be found in everyday life as well. A
mason, for example, does not have to take the attractive force between atoms
into account in order to build a house.

By means of an effective theory, the series in equation can be split into two
different series, one depending only on Egy.n and the other only depending
on Flage. Such a division is called factorization since the series is split into
two (independent) factors. As both of these factors now depend on only a
single energy, they can be calculated individually, without the appearance of
any large ratios. Both series can then be truncated after a certain amount of
terms.

These factors are eventually recombined to obtain a single result. This process
is known as resummation and effectively ensures that the ratios of Fiarge / Esman
no longer appear in the coefficients of the series in equation . Instead, the
total contribution of all these ratios is taken into account in a single, overar-
ching coefficient that is calculated during the resummation process.

In general, it is not easy to prove that such a factorization is actually possible.
Furthermore, the procedure depends on the exact measurement (in this case
the transverse momentum) that is being done. For every variable that one
would like to measure, a new factorization has to be proven.

The work described in this thesis encompasses the development of factoriza-
tions and resummations of processes in which two or more measurement are
considered simultaneously. The procedure described above is significantly com-
plicated in these situations. Every measurement might in principle correspond
to a different energy, so multiple ratios of energies can occur in the coeffi-
cients of the series in . In that case, it has to be proven that the series can
be factorized into as many factors as there are measurements. On the other
hand, some of the measurements might also correspond to the same energies,
so that a factorization into a smaller number of factors might be in order. One
of the most important challenges when considering multiple measurements si-
multaneously is then to figure out which factorization has to be used in which
situation.

In chapter [4] the simultaneous resummation of two measurements is carried
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out, one of which is the transverse momentum. This resummation enables
the calculation of predictions that are valid for all possible energies that these
measurements might have with respect to each other and to the energy of
the incoming, colliding particles. The final predictions are shown in three-
dimensional graphs in figure The results in this chapter represent the
first predictions of the combination of the two measurements under consider-
ation. This particular combination of measurements has been considered at
experiments and may also be used to improve simulations of particle collisions
made by certain computer programs.

The simultaneous factorization and resummation of two measurements is also
the subject of chapter )] Again, one of the measurements is the transverse
momentum. Although the measurements in this chapter are not factorized
and resummed for the first time, the developed procedure does lead to a more
accurate result than the previous methods. This framework may be applied
to the production of Higgs bosons, or that of hypothetical, unknown, heavy
particles that are not predicted by the Standard Model.

The factorization that is derived in chapter [6] is a more general version than
currently known in the literature and has many future applications. It is the
first factorization that describes both the soft and the collinear behavior of a
certain class of processes.

Finally, in chapter[7] the question of how many measurements can be resummed
simultaneously is raised. The idea behind this question is the fact that all mea-
surements ultimately measure some property of the same set of particles (the
final state). It might then be the case that every property of the final state
is known after a certain amount of measurements, so that subsequent mea-
surements do not provide any new information. This means that additional
measurements no longer give rise to new ratios of energies in the coefficients
in equation . In that case, the resummation of these extra measurements
is not required. The results of this chapter imply that the resummation of
two measurements provides a large improvement over resumming only a single
measurement. A reassuring conclusion, given the subjects of the other chap-
ters in this thesis. In addition, the results show that resumming even more
measurements provides an increasingly smaller improvement.

In short, the research described in this thesis is aimed at improving the pre-
cision of the predictions that the Standard Model makes. By determining the
probability of these known processes with an increasing accuracy, it will hope-
fully become possible to discover new and unknown particles. After all, to find
a needle in a haystack, one first has to know exactly what hay looks like.






Samenvatting

Dit proefschrift representeert onderzoek dat is gedaan in het veld van de ele-
mentaire deeltjesfysica. Hoewel het een fundamentele wetenschap is en weinig
van doen heeft met het alledaagse leven, richt het zich wel op vragen die tot
de verbeelding van velen zullen spreken, zoals “Waar is alles uit opgebouwd?”,
of “Wat houdt alles bij elkaar?”. Juist omdat iedereen zich dit soort dingen wel
eens afvraagt, is deze samenvatting gericht op een breed publiek.

Het doel van deze samenvatting is dan ook om de lezer een klein inzicht te
verschaffen in de wereld van de elementaire deeltjes en de bescheiden bijdrage
die dit proefschrift daaraan levert.

Het Standaardmodel

Hoewel het idee dat alle materie is opgebouwd uit kleine bouwstenen al dui-
zenden jaren oud is, werden de eerste experimentele bewijzen hiervoor pas in
de negentiende eeuw geleverd. De ontdekkingen volgden elkaar snel op en mo-
menteel zijn er meer dan honderd verschillende soorten bouwstenen bekend.
Deze deeltjes worden atomen genoemd en zijn ongeveer een miljoen keer zo
klein als de dikte van een haar.

Met de ontdekking van het atoom leek de zoektocht naar de meest fundamen-
tele bouwstenen van de natuur tot een einde te zijn gekomen. Het was dan
ook een grote verrassing toen experimenten rond het begin van de twintigste
eeuw aantoonden dat atomen zelf ook weer bestonden uit nog kleinere deeltjes.
leder atoom bleek te bestaan uit een positief geladen kern, omringd door een
wolk van negatief geladen deeltjes, genaamd elektronen, elk met een elektrische
lading van —1. De atoomkern is op zijn beurt weer opgebouwd uit protonen
en neutronen. Het proton heeft een elektrische lading van +1, precies tegen-
overgesteld aan dat van een elektron. Neutronen zijn, zoals de naam doet
vermoeden, neutraal en hebben geen elektrische lading. Omdat atomen als ge-
heel elektrisch neutraal zijn, moeten ze dus net zoveel protonen als elektronen
bevatten. De precieze hoeveelheid protonen (en dus ook elektronen) in een
atoom bepaalt over wat voor soort atoom het gaat. Een heliumatoom bevat
bijvoorbeeld twee protonen en twee elektronen, terwijl een ijzeratoom bestaat
uit zesentwintig protonen en elektronen. Het aantal neutronen in een atoom
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Figuur 1 Een schematische weergave van een atoom. Elektronen (de gele
bollen) cirkelen rond de kern die protonen (de rode bollen) en neutronen (de
blauwe bollen) bevat. The up- en down-quarks (de bollen met omhoog en
omlaag wijzende pijlen) zijn zichtbaar in de vergrootte afbeeldingen van het
proton en neutron.

kan variéren, wat leidt tot verschillende zogenaamde isotopen.

Ondanks dat het hebben van slechts drie fundamentele bouwstenen erg elegant
was, bleken protonen en neutronen zelf ook weer te bestaan uit kleinere deel-
tjes. Deze deeltjes worden up-quarks en down-quarks genoemd en hebben een
elektrische lading van respectievelijk +2/3 en —1/3. Een proton is opgebouwd
uit twee up-quarks en een down-quark, terwijl een neutron twee down-quarks
bevat, maar slechts een enkele up-quark. Een grafische weergave van een atoom
is te vinden in figuur

Buiten de elektrische lading blijken de quarks nog een extra soort lading te
dragen: kleurlading. Ondanks de ietwat verwarrende naam heeft deze lading
niks te maken met een daadwerkelijke kleur. Waar elektrische lading in twee
verschillende vormen voorkomt (positief en negatief), zijn er drie mogelijke
kleurladingen, die aangeduid worden met rood, groen en blauw. Net zoals een
positief geladen deeltje en een negatief geladen deeltje samen neutraal zijn,
vormen een rood, een groen en een blauw geladen deeltje samen een kleur-
neutraal geheel (ook wel wit genoemd). De drie quarks in een proton (of in
een neutron) hebben alledrie een andere kleur, dus protonen (en neutronen)
hebben netto geen kleurlading. Alleen kleur-neutrale deeltjes, zoals protonen
en neutronen kunnen direct worden geobserveerd.
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Voor zover bekend zijn up-quarks, down-quarks en elektronen fundamentele
materiedeeltjes: ze kunnen niet meer verder worden opgedeeld in kleinere deel-
tjes. Er is nog één extra materiedeeltje, genaamd het elektron-neutrino, dat
hier verder niet van belang is, maar alleen wordt genoemd voor de volledig-
heid. Alle bekende materie is uiteindelijk opgebouwd uit deze vier elementaire
deeltjes.

Het bestaan van de vier materiedeeltjes wordt voorspeld door een theorie die
werd opgesteld rond 1967 en die de ietwat hooghartige naam het Standaard-
model draagt. Het Standaardmodel voorspelt verder nog twee exacte kopieén
van elk van de vier materiedeeltjes, met als enige verschil dat deze kopieén
een grotere massa hebben. Ieder van deze drie collecties, elk bestaand uit vier
materiedeeltjes, wordt een generatie genoemd.

Buiten het bestaan van de materiedeeltjes, beschrijft het Standaardmodel ook
de krachten die tussen deze deeltjes werken. Er zijn drie krachten binnen het
Standaardmodel: elektromagnetisme, de sterke kernkracht en de zwakke kern-
kracht. De vierde en laatste kracht die bekend is, de zwaartekracht, maakt
geen deel uit van het Standaardmodel. Deeltjes kunnen alleen worden bein-
vloed door een bepaalde kracht als ze een specifiek soort lading bezitten. Zo
worden deeltjes alleen beinvloed door de elektromagnetische kracht als ze een
elektrische lading hebben en alleen door de sterke kernkracht als ze een kleur-
lading hebben.

De krachten tussen de materiedeeltjes worden overgebracht door krachtdra-
gende deeltjes. De krachtdrager van de elektromagnetische kracht is het foton,
het deeltje waar ook licht uit bestaat. De sterke kernkracht wordt overgebracht
door het gluon. De drie quarks in het proton worden dus bij elkaar gehouden
doordat ze gluonen met elkaar uitwisselen en zo een aantrekkende kracht op
elkaar uitoefenen. De sterke kernkracht heeft zijn naam niet voor niets: de
kracht tussen twee quarks in een proton is ongeveer gelijk aan de kracht die
nodig zou zijn om drie Afrikaanse mannetjesolifanten op te tillen. Het grote
verschil tussen gluonen en fotonen is het feit dat fotonen zelf geen elektrische
lading dragen, maar gluonen wel een kleurlading hebben. Dit betekent dat
gluonen ook kracht uitoefenen op elkaar.

De derde kracht, de zwakke kernkracht, wordt overgebracht door zogenaamde
W - en Z-deeltjes en is verantwoordelijk voor het radioactief verval van som-
mige atomen. Het laatste deeltje dat deel uitmaakt van het Standaardmodel
is het Higgsdeeltje. Het Higgsdeeltje is geen materiedeeltje en ook geen kracht-
drager, maar is verantwoordelijk voor een mechanisme waardoor de andere
deeltjes aan hun massa komen.
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Figuur 2 De deeltjes die deel uitmaken van het Standaardmodel en het jaar
van hun ontdekking. De eerste drie kolommen zijn de drie generaties materie-
deeltjes en in de vierde kolom staan de krachtdragende deeltjes.

Een schematische weergave van de volledige deeltjesverzameling die het Stan-
daardmodel bevat, is te vinden in figuur [2] Alle deeltjes die het Standaardmo-
del voorspelt, zijn ook daadwerkelijk aangetroffen in experimenten. Daarnaast
is er geen enkel elementair deeltje gevonden dat niet door het Standaardmodel
werd voorspeld. Het Standaardmodel is dus een enorm succesvolle theorie.
Toch kan het niet de ultieme theorie van het universum zijn. Een van de vele
zowel theoretische als experimentele motivaties hiervoor is bijvoorbeeld het feit
dat de zwaartekracht niet door het Standaardmodel wordt beschreven.

De zoektocht naar nieuwe deeltjes, die niet door het Standaardmodel worden
voorspeld, is een van de grootste uitdagingen van de moderne deeltjesfysica.
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Figuur 3 De ATLAS detector. De detector is 46 meter lang en heeft een
diameter van 25 meter. De protonen komen de detector binnen vanuit beide
kanten en botsen in het midden. Om deze plek heen zitten meerdere lagen ge-
avanceerde meetapparatuur, die in staat zijn om verschillende soorten deeltjes
waar te nemen. De afgebeelde personen geven de schaal van de detector weer.

Zoeken naar deeltjes

De methode die men gebruikt om te zoeken naar nieuwe deeltjes is gebaseerd
op de misschien wel bekendste formule uit de natuurkunde:

E=mc. (1)

Hierin staat E voor energie, m voor massa en is ¢ een constante Waardeﬂ Wat
deze formule dus zegt, is dat energie en massa in elkaar omgezet kunnen wor-
den aan de hand van een bepaalde wisselkoers, die gelijk aan ¢? blijkt te zijn.
De omzetting van massa in energie vindt bijvoorbeeld plaats bij het opwekken
van kernenergie, of in de ontploffing van een atoombom. Exact dezelfde wissel-
koers geldt echter ook de andere kant op, dus energie kan ook worden omgezet
in massa.

De huidige experimentele opstelling die gebruik maakt van dit principe staat
in Genéve en heet de Large Hadron Collider (LHC). De LHC is een 27 kilo-
meter lange, cirkelvormige tunnel, die zo’'n honderd meter onder de grond ligt.
In deze tunnel worden protonen eerst in tegenovergestelde richting versneld
totdat ze meer dan 11000 keer per seconde rond gaan. Vervolgens laat men
de protonen tegen elkaar aan botsen, waardoor de quarks (en gluonen) in de

Om precies te zijn, de lichtsnelheid, gelijk aan ongeveer een miljard kilometer per uur.
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protonen interacties met elkaar kunnen aangaan. Vanwege de enorme hoeveel-
heid energie die in de beweging van de protonen zat, kunnen in deze interacties
dan deeltjes ontstaan via vergelijking . Dit kunnen bekende deeltjes uit het
Standaardmodel zijn, maar mogelijk ook nieuwe, tot nog toe onbekende deel-
tjes.

Bij de plek waar de protonen botsen zijn een hoop detectoren opgesteld (zie
bijvoorbeeld figuur , zodat de eindproducten van de interacties die plaats-
vinden kunnen worden gemeten. Er zit echter een addertje onder het gras: de
meeste deeltjes vervallen in andere deeltjes voordat ze bij de detectoren aanko-
men. Het is dus onmogelijk om aan de hand van een gemeten eindtoestand met
zekerheid te zeggen of er oorspronkelijk een deeltje uit het Standaardmodel, of
een nieuw deeltje was gecreéerd.

Door heel veel botsingen te laten plaatsvinden, bij de LHC zo’n veertig miljoen
per seconde, en het aantal keer te tellen dat een bepaalde eindtoestand wordt
gemeten, kan echter wel de waarschijnlijkheid van die eindtoestand worden be-
paald. Deze waarschijnlijkheid kan dan worden vergeleken met de voorspelling
die het Standaardmodel doet. Indien de experimenteel gevonden waarschijn-
lijkheid van een specifieke eindtoestand groter is dan wat het Standaardmo-
del voorspelt, kan de conclusie worden getrokken dat er deeltjes moeten zijn
ontstaan die ook tot die specifieke eindtoestand leiden, maar niet door het
Standaardmodel worden beschreven.

Theoretische voorspellingen

Met behulp van het Standaardmodel kan de waarschijnlijkheid worden uitge-
rekend dat een specifiek proces voorkomt. Door alle waarschijnlijkheden van
alle processen die tot een bepaalde eindtoestand leiden op te tellen, kan vervol-
gens de totale waarschijnlijkheid van die eindtoestand worden bepaald. Dit is
te vergelijken met het gooien van twee dobbelstenen, waarbij de eindtoestand
het totaal aantal ogen dat de dobbelstenen aangeven is. Door heel vaak twee
dobbelstenen te gooien en te tellen hoe vaak bijvoorbeeld de eindtoestand ‘tien
ogen’ voorkomt, kan de waarschijnlijkheid van die eindtoestand experimenteel
worden bepaald.

Om deze waarschijnlijkheid theoretisch te voorspellen, moet de waarschijnlijk-
heid van elke mogelijkheid die tot deze eindtoestand leidt worden opgeteld.
Er zijn in totaal drie mogelijkheden die tot ‘tien ogen’ leiden: (I3, CIEJ en
3. De totale hoeveelheid mogelijke uitkomsten bij het werpen van twee dob-
belstenen is gelijk aan 6 x 6 = 36, voor elk van de zes mogelijkheden van de
eerste dobbelsteen kan de andere dobbelsteen immers zes verschillende waar-
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Figuur 4 Twee Feynman diagrammen met mogelijke scenarios waarop twee
inkomende deeltjes A en B de eindtoestand bestaande uit deeltjes C' en D
kunnen vormen.

den aannemen. In het geval van eerlijke dobbelstenen is de waarschijnlijkheid
van elke mogelijkheid gelijk, zodat de totale waarschijnlijkheid van de eind-
toestand ‘tien ogen’ gelijk moet zijn aan 3/36, wat neerkomt op iets meer dan
acht procent.

In de deeltjesfysica worden individuele processen vaak grafisch weergegeven in
zogenaamde Feynman diagrammen. Een voorbeeld hiervan is weergegeven in
de linkerafbeelding in figuur [ waar de deeltjes A en B aan de linkerkant de
begintoestand voorstellen (de deeltjes die botsen) en de deeltjes C en D aan de
rechterkant de eindtoestand. Door alle mogelijke Feynman diagrammen die tot
dezelfde eindtoestand (de deeltjes C en D) leiden te tekenen en uit te rekenen,
kan dan de totale waarschijnlijkheid van die eindtoestand worden voorspeld.
Er is echter een complicatie: deeltjes kunnen tijdelijk opsplitsen in twee andere
deeltjes, die vervolgens weer samensmelten tot één deeltje. Dit is bijvoorbeeld
het geval in het rechterdiagram in figuur {4} dat dezelfde eindtoestand heeft als
het linkerdiagram. Aangezien een gesplitst deeltje zelf ook weer zou kunnen
splitsen, zijn er dus oneindig veel mogelijkheden die tot dezelfde eindtoestand
leiden. Omdat het uitrekenen van oneindig veel diagrammen wel erg veel tijd
zou kosten, lijkt dit een probleem te zijn.

De oplossing van dit probleem zit in het feit dat elke interactie tussen twee deel-
tjes (elk zwart bolletje in de diagrammen in figuur [4)) de waarschijnlijkheid van
een diagram verkleint. De precieze factor waarmee de waarschijnlijkheid wordt
verkleind hangt af van het soort interacties. Voor interacties tussen quarks en
gluonen, beschreven door de sterke kernkracht, geldt bijvoorbeeld dat de waar-
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schijnlijkheid van een bepaald scenario ongeveer tien keer kleiner wordt voor
elke twee interacties. Deze verkleiningsfactor, ook wel koppelingsconstante ge-
noemd, wordt voor de sterke kernkracht aangegeven met het symbool a.

De oneindige verzameling scenarios die tot een specifieke eindtoestand leiden
kan vervolgens worden geordend aan de hand van de hoeveelheid interacties
(zwarte bolletjes) die per scenario voorkomen als

Waarschijnlijkheid van eindtoestand = ¢y + azxc; + a§><02 + ..., (2

waar de puntjes aangeven dat de reeks zich tot in het oneindige voortzet. De
eerste term aan de rechterkant, cp, is de waarschijnlijkheid dat er geen inter-
actie plaatsvindt. In dat geval moet de eindtoestand dus gelijk zijn aan de
begintoestand. De volgende term, a; X cq, is de gezamenlijke waarschijnlijk-
heid van alle diagrammen met precies twee interacties (zoals het linkerdiagram
in figuur . Vanwege de verkleiningsfactor «, is deze term ongeveer tien
keer zo klein als de voorgaande term. De derde term, o2 x ¢, staat voor de
waarschijnlijkheid van alle diagrammen met precies vier interacties (zoals het
rechterdiagram in figuur 4)). Deze term bevat twee verkleiningsfactoren en is
dus ongeveer 10 x 10 = 100 keer zo klein als de eerste term cg.

Omdat ieder volgende term in vergelijking steeds kleiner is, kan de reeks op
een bepaald moment worden afgekapt, mits men accepteert dat de voorspel-
ling niet langer exact is, maar slechts een benadering. Als bijvoorbeeld alleen
de termen ¢y en ag X ¢; worden meegenomen, is de fout die wordt gemaakt
proportioneel met de verkleiningsfactor van de derde term, ofwel o ~ 1/100.
Dit laat de kracht van deze methode zien: Door slechts twee termen van een
oneindige reeks uit te rekenen, kan het daadwerkelijke antwoord tot op 1%
nauwkeurigheid worden benadert.

Meerdere metingen

Buiten de waarschijnlijkheid dat een bepaalde eindtoestand voorkomt kunnen
experimenten ook eigenschappen van die eindtoestand meten. Een voorbeeld
van een eigenschap die kan worden gemeten is de zogenaamde transversale im-
puls. Impuls is de hoeveelheid energie waarmee een deeltje zich in een bepaalde
richting voortbeweegt. Het begrip ‘transversaal’ betekent dat de impuls wordt
gemeten in de richting loodrecht op de richting waarin de protonen bij de LHC
bewegen voordat ze tegen elkaar botsen, zie figuur

De betekenis van impuls wordt duidelijker aan de hand van een voorbeeld uit
het alledaagse leven: Er zit meer energie in een auto die met 50 kilometer per
uur rijdt, dan in een auto die met 30 kilometer per uur rijdt. De eerste auto
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Figuur 5 Een botsing tussen twee inkomende protonen (de zwarte pijlen). De
impuls van een van de geproduceerde deeltjes is weergegeven met de blauwe
pijl. De transversale impuls is de mate waarin deze impuls loodrecht van de
botsende protonen af wijst, weergegeven door de rode, gestippelde pijl.
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heeft dan dus een grotere impuls dan de tweede. In een volgeladen vrachtwa-
gen die met 50 kilometer per uur rijdt zit weer meer energie dan in de auto die
met 50 kilometer per uur rijdt, zodat de vrachtwagen een nog grotere impuls
heeft.

In de natuur is (transversale) impuls een behouden grootheid, het kan niet
verloren gaan, maar alleen worden overgedragen van deeltje op deeltje. In het
scenario afgebeeld in de diagrammen in figuur [4] moet de transversale impuls
van de eindtoestand dus gelijk zijn aan de transversale impuls van de begin-
toestand. Aangezien de impuls wordt gemeten in de richting loodrecht op de
inkomende protonen, zou de transversale impuls van de begintoestand (en dus
ook de eindtoestand) per definitie gelijk aan nul moeten zijn. Hoe kan het dan
toch zo zijn dat er een transversale impuls gemeten wordt bij de LHC?

Voordat de inkomende deeltjes als dusdanig worden beschouwd, dus voor de
diagrammen in figuur |4 beginnen, kunnen deze deeltjes straling uitzenden.
Deze straling bestaat uit zogenaamde zachte en collineaire deeltjes. Zachte
deeltjes hebben heel weinig energie, zo weinig dat ze mogelijk niet eens geme-
ten worden door de detectoren. Collineaire deeltjes bewegen in exact dezelfde
richting als een ander deeltje, zodat ze vaak ook niet individueel waargeno-
men kunnen worden door de detectoren. Door uitzending van deze straling
kunnen de ingaande deeltjes dus een transversale impuls verkrijgen die van-
wege impulsbehoud gelijk (maar tegengesteld) moet zijn aan de transversale
impuls van de zachte en collineaire straling. De transversale impuls van de
eindtoestand wordt dus eigenlijk volledig bepaald door de zachte en collineaire
straling, ook al is die zelf erg lastig te meten.

Alle metingen die in dit proefschrift worden beschouwd, worden op een be-
paalde manier beinvloed door de zachte en collineaire straling.
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De energie van de zachte en collineaire straling is vele malen lager dan de ener-
gie waarmee inkomende deeltjes tegen elkaar botsen en uiteindelijk de gemeten
eindtoestand vormen. Gecombineerde metingen van zowel de waarschijnlijk-
heid van een bepaalde eindtoestand als de transversale impuls zijn dus gevoelig
voor processen die plaatsvinden bij twee totaal verschillende energieén.

Het tegelijkertijd beschouwen van een proces met een kleine energie Eyjein €n
een proces met een grote energie Egro0t, levert een probleem op voor de theore-
tische berekening. Het blijkt dat de coefficiénten c1, ca, ... afhankelijk worden
van de verhouding tussen de energieén, Fgroot/Eklein. Om precies te zijn komt
deze verhouding in elke coefficiént voor tot dezelfde macht als de macht van
de koppelingsconstante «a; die bij die coefficiént hoort. Dus de coefficiént co
is bijvoorbeeld afhankelijk van de verhouding (Egroot/ Fiaein)?. Een typische
waarde van deze verhouding kan bijvoorbeeld Egroot/Ekiein = 10 zijn. In dat
geval doet deze verhouding in elke term dus effectief de verkleinende werking
van o, teniet. Het gevolg hiervan is dan dat iedere term in vergelijking
weer ongeveer even groot is, zodat de reeks niet meer afgekapt kan worden.

Effectieve theorieén, factorisatie en hersommatie

Aangezien het probleem ontstaat doordat wordt geprobeerd om twee totaal
verschillende processen tegelijkertijd te beschrijven, is de oplossing eigenlijk
heel intuitief: probeer de processen los van elkaar te beschouwen.

De meting van de transversale impuls wordt volledig bepaald door de zachte
en collineaire straling en is totaal ongevoelig voor de hoog-energetische inter-
actie tussen de botsende deeltjes. Deze meting kan dus net zo goed beschreven
worden met een versimpelde versie van het Standaardmodel, waaruit alles dat
te maken heeft met de energieke botsing van de inkomende deeltjes weg is ge-
laten. Wat er overblijft nadat alle (voor deze meting) onbelangrijke zaken zijn
weggehaald, wordt een effectieve theorie genoemd.

Het principe van effectieve theorieén is ook in het alledaagse leven terug te
vinden. Een bouwvakker hoeft bijvoorbeeld geen rekening te houden met de
aantrekkingskracht tussen atomen om een huis te kunnen bouwen.

Door middel van een effectieve theorie kan de reeks in vergelijking worden
opgesplitst in twee verschillende reeksen, één die alleen afhangt van Fyein en
één die alleen van Egroor afthangt. Een dergelijke opsplitsing wordt een facto-
risatie genoemd, aangezien de reeks wordt gesplitst in twee (onafhankelijke)
factoren. Aangezien allebei deze factoren nu van slechts één energie athangen,
kunnen ze allebei apart van elkaar worden uitgerekend, zonder dat er grote
verhoudingen tevoorschijn komen. Beide reeksen kunnen dan dus worden af-
gekapt na een bepaald aantal termen.
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Uiteindelijk worden deze factoren weer samengevoegd om zo één resultaat te
krijgen. Dit proces wordt hersommatie genoemd en zorgt er effectief voor dat
de verhoudingen FEgroot/Exlein niet langer voorkomen in de coefficiénten van
de reeks in vergelijking . In plaats daarvan wordt de totale bijdrage van al
deze verhoudingen in één keer in rekening gebracht door een overkoepelende
coefficiént die tijdens de hersommatie wordt berekend.

In de praktijk blijkt het lang niet altijd eenvoudig te zijn om te bewijzen dat
een factorisatie daadwerkelijk mogelijk is. Daarnaast is de procedure afhan-
kelijk van de precieze meting (in dit geval de transversale impuls) die wordt
gedaan. Voor elke variabele die men zou willen meten, moet er een nieuwe
factorisatie worden bewezen.

Het onderzoek beschreven in dit proefschrift omvat de ontwikkeling van fac-
torisaties en hersommaties van processen waarin twee of meerdere metingen
tegelijkertijd worden beschouwd. De hierboven beschreven procedure wordt in
deze gevallen aanmerkelijk complexer. Met elke meting kan in principe een
andere energie gemoeid gaan, zodat er meerdere verhoudingen van energieén
kunnen voorkomen in de coefficiénten van de reeks in vergelijking . In dat
geval moet worden bewezen dat de reeks kan worden gefactoriseerd in evenveel
factoren als er metingen zijn. Het kan echter ook zo zijn dat een aantal metin-
gen met dezelfde energie corresponderen, zodat een factorisatie in aan kleinere
hoeveelheid factoren van toepassing is. Een van de belangrijkste opgaven bij
het beschouwen van meerdere metingen is dan ook om uit te zoeken welke
factorisatie er wanneer gebruikt moet worden.

In hoofdstuk [4] wordt de gelijktijdige hersommatie van twee metingen uitge-
voerd, waarvan er eentje de transversale impuls is. Dankzij deze hersommatie
is het mogelijk om tot een voorspelling te komen die geldig is voor alle ener-
gieén die deze metingen zouden kunnen hebben ten opzichte van elkaar en de
energie van de inkomende, botsende deeltjes. De uiteindelijke voorspellingen
zijn weergegeven in de drie-dimensionale grafieken in figuur[£.11] De resultaten
in dit hoofdstuk zijn de eerste voorspellingen van de combinatie van de twee
metingen die hier worden beschouwd. Deze specifieke combinatie van metingen
is experimenteel bekeken en kan ook worden gebruikt om computersimulaties
van botsingen te verbeteren.

Ook in hoofdstuk [5] wordt de factorisatie en hersommatie van twee metingen
beschreven. Wederom is een van de metingen de transversale impuls. Hoewel
het niet voor het eerst is dat de metingen in dit hoofdstuk tegelijkertijd worden
gefactoriseerd en gehersommeerd, leidt de ontwikkelde procedure wel tot een
accurater resultaat dan de al bestaande methodes. Dit kan worden toegepast
op de productie van Higgs bosonen, of dat van hypothetische, zware, onbe-
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kende deeltjes die niet door het Standaardmodel worden voorspeld.

De factorisatie die wordt afgeleid in hoofdstuk [6] is een meer algemene versie
dan bekend in de literatuur en heeft vele toepassingen in het verschiet. Het
is de eerste factorisatie die zowel het zachte als het collineaire gedrag van een
bepaalde klasse van processen beschrijft.

Tot slot wordt in hoofdstuk [7] de vraag gesteld hoeveel metingen er eigenlijk
tegelijkertijd gehersommeerd kunnen worden. Het idee achter deze vraag is
het feit dat alle metingen uiteindelijk iets meten aan dezelfde set deeltjes (de
eindtoestand). Na een bepaald aantal metingen zou het dus zo kunnen zijn dat
alle eigenschappen van de eindtoestand al bekend zijn en dat nieuwe metingen
geen nieuwe informatie meer verschaffen. Dit betekent dat er bij het doen van
extra metingen geen nieuwe verhoudingen tussen energieén meer tevoorschijn
komen in de coefficiénten in vergelijking . Zodoende zal er dus ook geen
hersommatie van deze extra metingen meer nodig zijn. De resultaten van dit
hoofdstuk impliceren dat het hersommeren van twee metingen een grote ver-
betering geeft ten opzichte van het hersommeren van slechts één meting, een
geruststellende conclusie gezien het onderwerp van de andere hoofdstukken in
dit proefschrift. Daarnaast laat het resultaat zien dat het hersommeren van
verdere metingen een steeds kleiner voordeel oplevert.

Het onderzoek in dit proefschrift is kort gezegd dus gericht op het verbeteren
van de precisie van de voorspellingen die het Standaardmodel doet. Door de
waarschijnlijkheid van deze bekende processen met een grotere nauwkeurigheid
te bepalen, wordt het hopelijk mogelijk om nieuwe, onbekende deeltjes waar te
nemen. Immers, om een speld in een hooiberg te vinden moet men eerst exact
weten hoe het hooi eruit ziet.
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