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Abstract

It is an intriguing possibility that our world may consist of more than
three spatial dimensions, compactified on such a small scale that they so far
have escaped detection. In this thesis, a particular realization of this idea –
the scenario of so-called ’universal extra dimensions’ (UED) – is studied in
some detail, with a focus on cosmological consequences and appplications.

The first part investigates whether the size of homogeneous extra dimen-
sions can be stabilized on cosmological time scales. This is necessary in order
not to violate the stringent observational bounds on a possible variation of
the fundamental constants of nature.

An important aspect of the UED model is that it can provide a natural
explanation for the mysterious dark matter, which contributes nearly thirty
times as much as luminous matter like stars, galaxies etc. to the total energy
content of the universe. In the second part of this thesis, the observational
prospects for such a dark matter candidate are examined. In particular, it is
shown how dark matter annihilations taking place in the Milky Way could
give rise to exotic contributions to the cosmic ray spectrum in photons and
antiprotons, leading to distinct experimental signatures to look for. This in-
cludes a comparison with similar effects from other dark matter candidates,
most notably the neutralino, which appears in supersymmetric extensions
of the standard model of particle physics.
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Notation and conventions

For the metric, a timelike signature (+ − − ...) is used, except for the dis-
cussion on the stabilization of extra dimensions in Chapter 4, where the
conventions of Misner, Thorne and Wheeler [93] are adopted, which includes
in particular a spacelike signature.

The number of spacetime dimensions is denoted by d. Higher-dimensional
spacetime coordinates are indicated by a capital X with capital latin indices
M,N, ... ∈ {0, 1, ..., d− 1}. Four-dimensional (4D) coordinates are given by
a small x with greek indices µ, ν, ... (or small latin letters i, j, ... for spacelike
indices), as in

xµ ≡ Xµ (µ = 0, 1, 2, 3) ,

xi ≡ X i (i = 1, 2, 3) .

Extra-dimensional coordinates are denoted by

yp ≡ X3+p (p = 1, 2, ..., d− 4) .

The sum convention is always implicitly understood, i.e. one has to take the
sum over any two repeated indices.

Following common practice, in the case of only one extra dimension,
the above notation will be changed slightly by denoting extra-dimensional
components with a sub- or superscript 5. Spacetime indices thus take values
{0, 1, 2, 3, 5} and the coordinate for the extra dimension will be y ≡ y1 ≡ X5.

Conventions for gamma matrices, Feynman diagrams etc. follow those
of Peskin and Schroeder [103]. Higher-dimensional quantities like coupling
constants and Lagrangians will be denoted with a ’hat’ (as in κ̂2, L̂Higgs) to
distinguish them from their 4D analogs (κ2, LHiggs). Finally, all expressions
in this thesis are presented in natural units, where c = ~ = 1. Useful
conversion factors for energy and length scales are then given by:

1GeV = 1.78 · 10−24 g = 1.60 · 10−3 erg = 1.16 · 1013K ,

(1GeV)−1 = 1.97 · 10−14 cm = 6.38 · 10−36 kpc = 5.91 · 10−4 s .
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Acronyms often used in this thesis

ACT Air Cherenkov telescope
BBN Big Bang nucleosynthesis
CMB Cosmic microwave background radiation
CMS Center of mass system
ED Extra (spatial) dimension
FRW Friedmann-Robertson-Walker
KK Kaluza-Klein
LKP Lightest Kaluza-Klein particle
MSSM Minimal supersymmetric standard model
NFW Navarro-Frenk-White
SM Standard model (of particle physics)
SN Supernova
UED Universal extra dimension(s)
WIMP Weakly interacting massive particle
4D Four dimensions, four-dimensional
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Chapter 1

Introduction

Since long back in time, people have kept wondering about the universe
as a whole and put considerable effort into understanding its origin, its
appearance today and the place we take in it – both in a physical and in a
metaphysical sense, as these aspects usually were closely intertwined. Along
the way, some cultures developed impressive astronomical knowledge – in
ancient Babylon, for example, one could already predict the movement of the
moon and the planets to an astonishing precision – but it was not long before
the beginning of the last century that cosmology as a scientific discipline took
its origin. Since then there has been an enormous gain in understanding, not
the least due to the advance of ever more powerful observational techniques,
and by now there has emerged a consensus on the basic picture of how
the universe began and what it looks like on large scales. However, grand
questions still remain unanswered, most notably those concerning the nature
of the mysterious dark matter and dark energy, which make up 95 percent
of the total energy and matter content of the universe – while visible objects
like stars, galaxies and nebulae only account for less than about 1 percent,
the rest being in ordinary, but non-luminous matter.

Seemingly completely unrelated, it was realized in the 1920s that in con-
trast to our everyday experience there might actually exist more than only
three spatial dimensions. While this idea originally was regarded as a mere
mathematical ’trick’ allowing the unified description of Einstein’s general
relativity and Maxwell’s electrodynamics, it took some time to realize its
potential physical significance. After a temporary period of less activity in
that field, interest in extra-dimensional theories exploded with the advent
of string theory – a candidate for a unified description of all physics, which
(at least in its usual formulation) turned out to be inconsistent unless one
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2 CHAPTER 1. INTRODUCTION

allowed for the presence of extra dimensions.
In the following, the focus will be on a particular model, that of so-

called universal extra dimensions (UED), where all standard model (SM)
particles feel the presence of the extra dimensions and can propagate freely
through the internal space. While containing the main general aspects of
higher-dimensional theories, an appealing aspect of this idea is certainly
its simplicity. Furthermore, from a particle physics’ point of view, there are
several attractive features connected to the UED scenario – such as providing
a mechanism for electroweak symmetry breaking, or possible explanations
for the observed number of fermion generations and the stability of the
proton. The main reason why the UED model has received so much interest
in recent years, however, seems to be its cosmological impact, namely the
fact that it rather naturally gives rise to a viable dark matter candidate. As
will be motivated in detail, this so-called Kaluza-Klein (KK) dark matter
particle is a massive vector boson, providing an interesting phenomenological
alternative to the supersymmetric neutralino, which is the most well studied
dark matter candidate.

The outline of this thesis is as follows. Chapter 2 gives a brief review of
the concordance model of cosmology, which summarizes the current know-
ledge about both the evolution and the overall composition of the universe.
An introduction to some general aspects of higher-dimensional theories is
then presented in Chapter 3, followed by a detailed description of the UED
model. In order not to contradict observations, it is absolutely essential that
extra dimensions are stable on cosmological timescales; this will be further
elaborated on in Chapter 4, where also the stabilization prospects of the
simple case of homogeneous extra dimensions are studied in more detail.
In Chapter 5, the lightest KK particle appearing in the UED model will
then be motivated as a both interesting and viable dark matter candidate;
a short summary will be given of the phenomenology that has been worked
out earlier, before presenting in detail the prospects for indirect detection
of this type of dark matter particles in both the cosmic gamma-ray and
antiproton spectrum. Chapter 6, finally, concludes with a short summary
and outlook. The Feynman rules for the case of one UED, as well as some
comments on a generalization to more than one UED, are collected in two
appendices A and B.

The articles [I-VI], listed on page 111 and enclosed thereafter as a sup-
plement, make up an integral part of this thesis. The main results of [I, II]
about the stabilization of homogeneous extra dimensions are found in Chap-
ter 4, while those about the indirect detection of Kaluza-Klein dark matter
[III, IV, V] (and neutralino dark matter [VI]) are summarized in Chapter 5.



Chapter 2

The Cosmological

Concordance Model

The last few years have seen the rise of cosmology from a discipline bound
to large uncertainties, seemingly based on vague assumptions and unable to
make any firm statements about the universe as a whole, to a science that
can adress these most fundamental questions with an outstanding precision.
Today, one has a rather good handle on the basic picture and understands
fairly well the evolution of the universe from a very dense, hot and uniform
initial state to the vast and complex place that we observe today. While the
theoretical foundations already were laid much earlier, a milestone being the
formulation of the theory of general relativity in 1915 [56], it was only due
to very recent developments in observational techniques that this success
was made possible. Just to mention the most prominent, this includes all-
sky precision measurements of the cosmic microwave background [118], the
compilation of great large-scale structure catalogues [100, 121] and the sys-
tematic observation of distant supernovae [111, 101]. In fact, by now there
has emerged a concordance model of cosmology that can explain basically
all available observations and describes both the evolution and the current
state of the universe with only a handful of parameters.

Despite this great success, grand questions still remain to be answered.
Most notably, virtually nothing is known about the nature of roughly 95 %
of what the universe consists of today. These mysterious contributions to
the total energy budget are called dark matter and dark energy, respectively,
but these names rather paraphrase our ignorance than give any hints about
the underlying physics. The only thing that seems to be clear is that no
standard explanation, including ordinary types of matter or energy as we
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4 CHAPTER 2. THE COSMOLOGICAL CONCORDANCE MODEL

observe them on earth, is available for these phenomena – so one or the
other form of new physics has to be involved and it is not unlikely that
its discovery would mean a scientific revolution similar to that of general
relativity or quantum mechanics.

This chapter gives a short overview of the concordance model of modern
cosmology, starting with a brief summary of Big Bang theory (Section 2.1)
and how an inflationary phase of an accelerating expansion in the early
unniverse can provide the necessary initial data for it (Section 2.2). The
observational evidence for the dark components of the universe, together
with possible detection strategies, is then reviewed in Section 2.3.

2.1 The Big Bang in a nutshell

Standard cosmology rests on three pillars – general relativity, the cosmo-
logical principle and a description of matter as a perfect fluid. The cosmo-
logical principle states that the universe is homogeneous and isotropic on
large scales, i.e. it looks basically the same at all places and in all direc-
tions. From this principle, it follows that spacetime can be described by the
Friedmann-Robertson-Walker (FRW) metric,

ds2 = gµνdx
µdxν = dt2 − a2(t)

[

dr2

1− kr2 + r2dΩ2

]

, (2.1)

with k = 0, 1,−1 for a flat, positively and negatively curved universe, re-
spectively. For the approximately flat geometry that we observe, the scale
factor a(t) thus relates physical distances λphys to coordinate (or comoving)
distances r via λphys = ar.

An ideal fluid is defined by an energy-momentum tensor that takes the
following form in the rest frame of the fluid:

Tµν = diag(ρ, p, p, p) . (2.2)

To relate its energy density ρ and pressure p, one usually also specifies an
equation of state,

p = wρ . (2.3)

Inserting (2.1) and (2.2) into the field equations of general relativity,

Rµν −
1

2
R gµν + Λ gµν = κ2Tµν , (2.4)
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one arrives at the Friedmann equations

ȧ2 =
κ2

3
ρa2 +

Λa2

3
− k , (2.5a)

ä = −κ
2

6
(ρ+ 3p)a+

Λa

3
, (2.5b)

which describe the time evolution of the scale factor a and are thus the
basic cosmological equations of motion. The second Friedmann equation,
(2.5b), is often also referred to as the Raychaudhuri equation. Note that the
cosmological constant Λ in these equations appears in the form of a perfect
fluid with constant energy density and pressure ρΛ = −pΛ = Λ/κ2. By
expressing all energy densities in terms of a critical density ρc ≡ 3ȧ2/(κ2a2),
one can bring the first Friedmann equation into the form

Ω + ΩΛ = 1 + k/ȧ2 , (2.6)

where Ω ≡ ρ/ρc and ΩΛ ≡ ρΛ/ρc. This means that if the various contribu-
tions to the total energy density add up to the critical density, the universe
is flat (k = 0).

The spectra of remote galaxies are observed to be more redshifted for
larger distances to our galaxy, the usual interpretation being that we live
in an expanding universe; in the FRW metric (2.1), the redshift z is readily
obtained as

1 + z ≡ νemit

ν0
=

a0
aemit

, (2.7)

where νemit is the signal frequency at the time of emission and ν0 the fre-
quency as it is observed today. The strong energy condition requires on the
other hand that

ρ+ 3p > 0 . (2.8)

From the second Friedmann equation it therefore follows that the growth of
the scale factor a has always been decelerating (neglecting for the moment
the possible existence of a cosmological constant). Since we observe ȧ > 0
today, this means that the universe started off with an initial singularity at
which a = 0. This is the basis for the notion of a Big Bang as the beginning
of both space and time. An important observation is the fact that in such a
spacetime, there appears a horizon which characterizes the maximal length
that any particle or piece of information can have propagated since the Big
Bang:

dH(t) = a(t)

∫ r(t)

0

dr′
√

1− kr′2
= a(t)

∫ t

0

dt′

a(t′)
. (2.9)
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This particle horizon dH is usually well approximated by the Hubble radius
H−1 ≡ a/ȧ.1

From the two Friedmann equations, or directly from energy conservation,
Tµ;µ = 0, one obtains

(ρa3)˙ + p(a3)˙ = 0 . (2.10)

Assuming w = const. in the equation of state, this can be integrated to give

ρ ∝ a−3(w+1). (2.11)

Radiation (highly relativistic matter), for example, has an equation-of-state
parameter w = 1/3 and thus scales as ρ ∝ a−4. Going back in time, it will
therefore start to dominate the total energy budget over any contribution
from (non-relativistic) matter with w = 0 and ρ ∝ a−3 – or, of course, a
constant contribution ρΛ. The energy density for black body radiation is
given by ρr ∝ geffT 4, where geff is the effective number of degrees of freedom.
The temperature in the early universe increases therefore as

T ∝ g−1/4eff a−1 (2.12)

with a decreasing scale factor a, which motivates the picture of a hot Big
Bang.

Starting from a reasonably dense and hot initial state – beyond which one
would have to take into account effects from unknown physics at very high
energies – one can now reconstruct the thermal history of the universe as it
is sketched in Table 2.1. This picture shows a remarkable agreement with
basically all cosmological data, of which the abundances of light elements
as formed during Big Bang nucleosynthesis (BBN) and the existence of the
cosmic microwave background (CMB), providing a snapshot of the universe
at an age of about 300 000 years, are the most prominent. The isotropy
of the latter, as well as that of the distribution of galaxies on very large
scales, gives a further justification to the underlying assumptions of the
cosmological principle.

1 Whenever a ∝ tn, with n < 1, as is the case for both a radiation- and a matter-
dominated universe, one has dH = t/(1 − n) and H−1 = t/n. During an inflationary
phase (see next section) with H ≈ const., however, dH grows exponentially with time.
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t T event

10−42 s 1019 GeV Planck-epoch (quantum gravity)

∼ 10−35 s ∼ 0 inflation

10−10 s 100 GeV electroweak phase transition

10−4 s 100 MeV formation of protons and neutrons

10−2 s 10 MeV γ, ν, e−, e+, n, p in thermal equilibrium

1 s 1 MeV ν decoupling, e−e+ annihilation

100 s 0.1 MeV nucleosynthesis of light elements (BBN)

104 y 1 eV matter starts to dominate

105 y 0.1 eV formation of atoms, CMB

109 y 10−4 eV protogalaxies and first stars begin to form

1010 y 2.728 K today

Table 2.1: A very rough guide through the thermal history of the universe.

2.2 Inflation as a paradigm

Given a set of initial data, standard Big Bang theory is enormously succesful
in explaining almost any cosmological observation. A more thorough analy-
sis, however, shows that these initial data describing the very early universe
have to be fine-tuned in an extreme way in order to match all the measure-
ments that are made today. The two most well-known examples of this are
the flatness and the horizon problems. As to the first one, if the universe
does not start out exactly flat, an analysis of the Friedmann equations shows
that it tends to become more and more curved as it evolves; it is therefore
hard to understand the close to flat geometry that we observe today. The
horizon problem, on the other hand, points out that for example the CMB
shows a large degree of homogeneity – even though the sky actually consists
of about 105 patches that did not have any causal contact between the Big
Bang and the emission of the CMB photons.

Another shortcoming of classical cosmology is that it cannot account
for the rich structure the universe exhibits today, since the FRW metric
describes a completely homogeneous and isotropic universe. Of course, it is
relatively straight-forward to use a perturbed version of this metric instead,
start with some statistical distribution of density fluctuations and evolve
them in time. The primordial power spectrum that describes these initial
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density fluctuations, however, must again be treated as an input to the
theory and has no independent justification. In particular, all observations
of large-scale structures, from the CMB to the distribution of galaxy clusters,
suggest that the primordial power spectrum is scale-invariant, which means
that the spectrum does not depend on any length scale, if taken at the
moment of horizon-entry of that particular scale. Within the framework of
Big Bang theory alone, there is no way to understand why this should be
the case.

In the beginning of the 1980s it was proposed that the very early uni-
verse might have undergone a period of accelerating expansion [72]. Such
an era of inflation, it was claimed, would provide the necessary initial con-
ditions for Big Bang cosmology and thus a solution to all the problems and
shortcomings mentioned above. (See footnote 1 for a direct explanation of
how the horizon problem is solved).

From the Raychaudhuri equation (2.5b) it follows that the strong energy
condition (2.8) must be violated during inflation. The easiest way to accom-
plish this – besides by a pure cosmological constant – is via a scalar field Φ
in a potential V (Φ); for a FRW metric, its energy density and pressure are
given by

ρΦ =
1

2
Φ̇2 + V (Φ) +

(∇Φ)2
2a2

, (2.13)

pΦ =
1

2
Φ̇2 − V (Φ)− (∇Φ)2

6a2
. (2.14)

For an approximately homogeneous universe with a slowly rolling scalar
field, i.e. 1

2 Φ̇
2 ¿ V (Φ), one finds an equation of state with nearly constant

ρΦ ≈ V (Φ) ≈ −pΦ. From (2.10), this results in an exponentially growing

a(t) ∼ e(κ/
√
3)V (Φ) t . (2.15)

The evolution of the field Φ itself is given by its equation of motion in the
background FRW metric,

Φ̈ + 3HΦ̇ + V ′(Φ) = 0 . (2.16)

In the beginning, it moves only very slowly down the potential due to the
presence of the Hubble damping term, but eventually it will roll faster and
faster and then start to oscillate rapidly around the minimum of V (Φ). At
this moment, inflation stops and the scalar field decays into SM particles;
after such a phase of reheating, the universe evolves as in ordinary Big Bang
cosmology.
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Quantum fluctuations of the scalar field during inflation become effec-
tively classical in the expanding background [105] and these perturbations
in the scalar field density are later inherited by ordinary matter, thus giving
rise to a primordial power spectrum for density fluctuations. As it turns out,
this spectrum is generically scale-invariant up to small corrections, with the
details depending on the exact shape of the potential V (Φ). Inflation does
thus not only provide the desired form of the spectrum but also in principle
testable tiny deviations from it.

Currently, there is no really convincing candidate for a scalar field that
could drive inflation and at the same time is well motivated from particle
physics. Rather than being a concrete model, inflation should therefore more
be viewed as a general mechanism, or paradigm, that is capable of providing
satisfying initial conditions for Big Bang cosmology. In such general terms,
the scalar field is often referred to as the inflaton. A particularly simplis-
tic version is that of chaotic inflation [87], where the inflaton is initially
displaced from its real vacuum by, e.g., quantum fluctuations; any region,
however tiny in size but with a large enough displacement of the inflaton,
would blow up as described above and, after only a relatively short phase of
inflation, fill a volume corresponding to the whole observable universe today.

2.3 A universe in darkness

The observation of distant type Ia supernovae shows that they appear fainter
than one would expect, taking into account their redshift, i.e. distance, and
the fact that one has a fairly good handle on the intrinsic brightness of these
objects [111, 101]. This situation is usually interpreted as an indication that
the universe is currently undergoing an accelerated expansion, just as during
inflation. One can explain, or rather parametrize, such a behaviour by intro-
ducing a dark energy component to the total energy budget of the universe.
This name already indicates its mysterious nature, about which virtually
nothing is known; the only fact that can be deduced from observations is
that it dominates the universe today and that it has an equation of state
parameter w close to −1. The observation of the anisotropies in the CMB
[118] gives independent evidence for a dark energy component and, together
with the SN Ia data, allows for a quite accurate determination of its energy
density.2

2The evidence coming from CMB observations actually depends on a prior that excludes
very low values of the Hubble constant today – which, however, is strongly suggested by
the results of large structure surveys [100, 121].
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The explanation for the observed dark energy might in principle just be
a cosmological constant Λ as it appears in Einstein’s equations. However, in
order to get the value that is observed today, i.e. an energy density of about
120 orders of magnitudes less than the at first sight more natural Planck
scale, one has to invoke extreme fine-tuning. Connected to this is the often
quoted ’why now?’ or coincidence problem: on cosmological time scales, the
Λ domination began only rather recently and within a very short period of
time it would lead to an exponentially expanding de Sitter universe, where
all galaxies are redshifted beyond observability – so why do we live during
that very short transition from matter- to Λ-domination that actually allows
us to observe a universe that resembles ours? To remedy these problems,
one has tried to explain the dark energy by the introduction of a scalar field,
which would have a similar effect today as the inflaton during inflation. The
initial hope connected to such a quintessence field [131] was that one could
avoid any fine-tuning problems thanks to the existence of tracker solutions
that naturally explained why such a field would start to dominate only
relatively shortly after the beginning of matter domination. As it turned
out, however, the problem of fine-tuning was just reformulated and now
re-appeared in adjustable parameters of the model. Follow-up models like
k-essence [14] currently do not give satisfactory explanations for the nature
of the dark energy either. Finally, due to the Lorentz invariance of the
vacuum, all matter fields should contribute to the total energy-momentum
tensor with vacuum quantum fluctuations that have the same form as a
cosmological constant. A naive calculation of these contributions, however,
gives a vacuum energy density that is many orders of magnitude above the
observed one, even if large cancellations that would follow from the existence
of supersymmetry are taken into account [127]. To answer these unresolved
questions, often summarized under the name of the cosmological constant
problem(s), and to provide an explanation for the nature of dark energy, is
one of the most outstanding challenges in modern physics.

Dark energy is not the only mysterious component of the universe. On
the contrary, observations on a wide range of distance scales indicate that
there must be a large amount of non-relativistic, pressureless matter that
greatly outnumbers all known objects emitting visible light, or electromag-
netic radiation at any other frequency. This dark matter can thus not be
seen directly, not even with the most powerful telescopes, but betrays its ex-
istence only indirectly through its gravitational influence on other objects.
Such indirect evidence comes from various independent sources, ranging
from galaxy rotation curves [102] and the mass-to-light ratio of galaxy clus-
ters [16], to the comparison of N-body simulations with the results from
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Figure 2.1: The composition of the universe as inferred from CMB observations and
large scale structure surveys [121]. Less than 1% of the total energy content is due to
visible matter in stars, galaxies etc., and only about 5% comes in the form of baryons.
The nature of 95% is thus completely unknown.

large-scale structure surveys [100, 121]. What is more, in order not to spoil
the succesful predictions of BBN [98] and to account for the observed CMB
spectrum [118], ordinary matter in the form of baryons can only contribute
about 12% to the dark matter, so the rest must be attributed to some
new, yet unknown physics. Fig. 2.1 shows the resulting picture that the
cosmological concordance model provides for the overall composition of the
universe today, taking into account all the observational evidence that has
been mentioned so far.

Contrary to the case of dark energy, however, there do exist reasonable
candidates to explain the dark matter content of the universe. A popu-
lar assumption is that dark matter is made up of a yet unknown species
of particles that were produced in the early universe; these particles would
obviously have to be stable on cosmological time scales, electrically neutral
and colourless. One of the most attractive examples are weakly interacting
massive particles (WIMPs) that arise in all kinds of extensions of the stan-
dard model of particle physics. In the early universe, they would decouple
from the thermal bath of SM particles once their interaction rate falls be-
hind the expansion rate of the universe. More accurately, as for any other
particle, the evolution of the WIMP number density n is described by the
Boltzmann equation,

dn

dt
+ 3Hn = −〈σv〉

(

n2 − neq2
)

, (2.17)
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where 〈σv〉 is the thermally averaged annihilation cross section times the
relative velocity and neq is the numer density at thermal equilibrium; the
latter gets exponentially suppressed, neq ∼ e−mWIMP/T , once the tempera-
ture T of the universe has dropped to a point where the WIMP becomes
non-relativistic. While the complete dynamics can be complicated and only
be obtained by solving the full Boltzmann equation, it is usually a good
estimate that the resulting relic density of these particles today is given by

ΩWIMPh
2 ∼ 3 · 10−27 cm3 s−1

〈σv〉 , (2.18)

where h is the Hubble constant in units of 100 km s−1Mpc−1 [81]. For
masses and coupling strengths roughly at the electroweak scale, ΩWIMP au-
tomatically comes out to be of the right order of magnitude to account for
the observed dark matter density. The most important case when a more
rigorous analysis of the Boltzmann equation has to be performed, leading
to potentially large corrections to the naive expression (2.18), is that of
co-annihilations [70]. These appear if the lightest WIMP, that would later
constitute the dark matter, is accompanied by other new particles that are
almost degenerate in mass and thus thermally accessible during the freeze-
out process of the former. A prototype WIMP is the neutralino, the lightest
supersymmetric particle. In this thesis, the focus will be on another WIMP
candidate that is motivated by an extra-dimensional extension of the SM;
it will be discussed in detail in Chapter 5.

Since a large part of this thesis is devoted to a particular dark matter
candidate, it seems appropriate to discuss in the remainder of this chapter
the various detection strategies that have been developed to identify the
(particle) nature of dark matter in general. These can be grouped into two
different approaches. In direct detection experiments one tries to trace the
dark matter particles themselves: when, e.g., a WIMP scatters elastically
off an atom in a large detector, the transferred recoil energy can in princi-
ple be used as a signature to look for. The experimental challenge lies in
the very small WIMP cross sections on the one hand and a relatively high
background due to radioactive contamination and activation on the other
hand. Consequently, this type of experiments is usually placed underground
to shield the cosmic radiation, such as the Edelweiss experiment in the Fre-
jus Underground Laboratory [113] or CDMS II in the Soudan mine [7]. The
DAMA [30] direct detection experiment is the only one so far that actually
has claimed the detection of dark matter particles, the signature being an
annual modulation of the signal as expected due to the earth’s movement
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around the sun and thus through the galactic halo of dark matter; this de-
tection, however, is highly debated and has not been confirmed by similar,
more sensitive experiments.

The purpose of indirect detection experiments, on the other hand, is to
look for possible products of dark matter annihilations. The stability of
dark matter particles over cosmological time scales is usually guaranteed by
a symmetry which forbids the decay into SM particles. For the neutralino
and the particular dark matter candidate that later will be discussed in this
thesis, however, this symmetry takes the form of a parity operation, so pair-
annihilation is possible. The largest annihilation rates are then expected
from regions with high dark matter densities such as the center of the Milky
Way or other (nearby) galaxies. Even the innermost region of very massive
celestial bodies like the earth or the sun are of interest, where dark mat-
ter particles can become gravitationally trapped and accumulate until their
density eventually saturates due to self-annihilation. The only annihilation
products that can escape the interior of the sun or the earth are neutrinos,
and in order to detect them, there are great neutrino telescopes planned or
already in operation – like AMANDA [5] and ICECUBE [6] that use the
antarctic ice as detector material.

Potentially promising signals from the galactic center can be searched
for in all kinds of cosmic rays. Photons and neutrinos have the advantage
that they do not interact with the interstellar medium, so the uncertainty
in their respective fluxes results mainly from the shape of the dark matter
distribution – which, however, is only rather poorly known (see Section 5.2).
Gamma rays are among the most studied signatures of WIMP dark mat-
ter; they are observable both from space-based missions like EGRET [91]
and GLAST [65], which is to be launched in 2007, and from ground-based
atmospheric Cherenkov telescopes (ACTs) such as VERITAS [86], CAN-
GAROO [122], HESS [3] and MAGIC [61]. These two types of experiments
are complementary in energy range; while the (space-based) direct detec-
tors of gamma rays have an upper bound above which they can no longer
resolve the energy of the incident photons (300 GeV for GLAST), ACTs
are bounded from below in that gamma rays with energies less than about
30 GeV do not produce electromagnetic showers in the atmosphere, so they
cannot be detected by these types of telescopes.

Antiparticles like positrons or antiprotons are also very interesting sig-
nals to look for since their background flux is much lower than that of their
corresponding partners. Due to their charge, however, their interaction with
the interstellar medium can no longer be neglected. Instead, one has to treat
their propagation as a diffusion process, with only rather poorly determined
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parameters and – in contrast to the case of photons and neutrinos – little
chance to make a clear connection between their origin and the direction
from where they are detected. An experimental issue here is to correctly
discriminate between different particle species – which becomes more diffi-
cult for higher energies since then the deflection in external magnetic fields
goes down. Upcoming experiments like PAMELA [40] and AMS-02 [19] will
be able to probe the spectrum of antiparticles to an unprecedented accuracy
and to much higher energies than what has been achieved before.

A general difficulty for these types of indirect dark matter detection is to
correctly account for the various astrophysical processes that may occur in
the galactic center or halo; it is therefore important to provide unambiguous
signatures like, e.g., the gamma ray line signal from direct dark matter
annihilation (see Section 5.3.2).



Chapter 3

Extra Spatial Dimensions

It seems to be a trivial empirical fact that our world consists of four space-
time dimensions. However, at the beginning of the 20th century Nordström,
and in particular Kaluza and Klein (KK) realized, that there actually may
exist additional spatial dimensions – as long as they are compactified on such
a small scale that we have not yet been able to resolve them [97, 82, 84]. An
analogy often used as a demonstration of this idea is that of an ant living
on a hose: To us, i.e. from a distance, the hose looks one-dimensional, while
the ant living on its surface experiences a two-dimensional world.

The basic idea of this proposal will be illustrated in Section 3.1 with the
introduction of some new concepts and general consequences arising from
the presence of extra spatial dimensions (EDs). Section 3.2 then presents a
very short historical review of some of the various existing extra-dimensional
scenarios, before a particular model, that of so-called universal extra dimen-
sions (UED), is introduced and discussed in full detail in Section 3.3. It is
this scenario that has particularly interesting cosmological implications and
that will be the main focus for the rest of this thesis.

3.1 General features of Kaluza-Klein theories

An important conceptual issue that is connected to the existence of tiny,
curled-up EDs is a larger spectrum of states from the point of view of a four-
dimensional observer, i.e. one generically expects new particles to appear
in such theories. Qualitatively, this can be understood in the following
way: Imagine some particle propagating in one of the extra-dimensional
directions – we cannot directly ’see’ its movement, but still the particle has
some additional (kinetic) energy compared to the same particle at rest and

15
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this energy appears as a higher mass to a four-dimensional observer. More
quantitatively, consider the case of a scalar field Φ with mass m in five
dimensions. Assuming spacetime to be flat, it is described by the Klein-
Gordon equation:

(

2
(5) +m2

)

Φ(xµ, y) =
(

∂2t −∇2 − ∂2y +m2
)

Φ(xµ, y) = 0 . (3.1)

If the fifth dimension is compactified on some scale R,

y ∼ y + 2πR, (3.2)

this means that any function of y can be expanded into a Fourier series. In
particular, Φ may be decomposed as Φ(xµ, y) =

∑

nΦ
(n)(xµ) e−i

2πn
R and the

Fourier components Φ(n) are then found to fulfill the Klein-Gordon equation
in four dimensions:

(

2 +m2
n

)

Φ(n)(xµ) =
(

∂2t −∇2 +m2
n

)

Φ(n)(xµ) = 0 , (3.3)

with

m2
n = m2 +

( n

R

)2
. (3.4)

In the four-dimensional description of the theory there appears thus an (infi-
nite) tower of massive KK states Φ(n).1 The mass of the first KK-excitation
is inversely proportional to the radius of the ED, i.e. one needs a small ra-
dius in order to explain why such a particle has not (yet) been seen. This
corresponds to the naive expectation that the low-energy (or large distance)
limit of four-dimensional physics should not be affected by the existence of
very small EDs. However, the exact structure of the KK-tower depends on
the geometry of the internal dimensions and, of course, on the type of the
fields that are allowed to propagate there.

Another important aspect shared by all theories involving EDs is that
one expects at least some coupling constants to vary with the size of the
internal space. To understand this, consider for example the gravitational
action in 4 + n dimensions,

S =
1

2κ̂2

∫

d4+nX
√

|g| R , (3.5)

where R is the higher-dimensional curvature scalar. Assume now that
spacetime is separable and that the metric can be written in the form

1Note that if the ED had a timelike signature, all these states were tachyons. Another
reason why extra temporal dimensions are undesirable is the existence of closed timelike
loops, leading to possible violations of causality [18].
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gAB dXAdXB = gµν(x
ρ) dxµdxν + g̃pq(x

ρ, ys)dypdyq. Integrating over the
internal dimensions then results in

S =
1

2κ2

∫

dny
√

|g̃|
∫

d4x
√

|g| R+ ... , (3.6)

where R now is the 4D curvature scalar constructed from gµν . This action
describes four-dimensional gravity with an effective coupling ’constant’ that
is related to the (fundamental) higher-dimensional one by

κ2 = V −1κ2, (3.7)

where V =
∫

dny
√
g̃ ∼ Rn is the volume of the internal space. The miss-

ing terms ’...’ appearing in (3.6) come from the expansion of the higher-
dimensional curvature scalar, R[gMN ] = R̄[gµν ] + ..., and in Section 4.3 it is
shown that they correspond to scalar fields appearing in the effective, four-
dimensional theory (see also [34, 71]). A similar argumentation to the one
presented here for the gravitational field can be put forward for other fields
that contribute to the higher-dimensional action [85, 124, 64]. For all such
fields one thus expects their coupling constants to vary with the size of the
EDs. As one might expect, there are tight observational constraints on such
a variation, so one must essentially demand stable EDs for the whole idea
presented here to make sense. This issue will be taken up in Chapter 4.

There is yet another aspect that is common to all extra-dimensional the-
ories: for small distances between two test masses, one expects a deviation
from Newton’s law, V (r) ∝ r−1, for the gravitational potential between
them. This can be understood from the fact that the Laplace operator (in
flat space) locally takes the form

∇2 =

(

∂

∂X1

)2

+ ...+

(

∂

∂Xd−1

)2

, (3.8)

so for very small distances, the solution to the Laplace equation ∇2V = 0
is given by

V (r) ∝ r−(d−3) . (3.9)

Taking the full (globally defined) Laplace operator for the case of a com-
pactified internal space, one therefore expects a potential that interpolates
between the expression (3.9) for small and Newton’s law for large distances.
As it begins to feel the presence of EDs, gravity thus gets stronger – which
is just the same observation as already expressed in the relation (3.7) be-
tween 4D and fundamental coupling constants. Again, the same will be



18 CHAPTER 3. EXTRA SPATIAL DIMENSIONS

true not only for gravity, but for all interactions living in higher dimensions.
Conventionally, deviations from Newton’s law are parameterized as

V (r) ∝ 1

r

(

1 + αe−r/λ
)

. (3.10)

The leading order corrections due to the presence of EDs can always be writ-
ten in this form, also for the case of curved EDs [83]. Direct measurements
of Newton’s law with torsion pendulae have started to probe the gravita-
tional potential in the sub-mm regime; see [79] for a recent review on the
resulting constraints on the (α, λ) parameter plane.

3.2 Modern extra-dimensional scenarios

The original proposal of Nordström [97], Kaluza [82] and Klein [84] was to
study 5D general relativity in an attempt to unify gravity and electromag-
netism. Klein, in particular, imposed a ’cylinder condition’ for the higher-
dimensional metric gMN , i.e. compactified the ED on a small circle and
demanded that the derivatives in the EDs can be neglected (which corre-
sponds to saying that the KK masses, introduced in the previous section,
are large enough not to influence the known low-energy physics). An addi-
tional (rather ad hoc) assumption was that g55, i.e. the radius of the ED, is
constant in both space and time. Identifying part of the higher-dimensional
metric as a vector potential,

g5µ ≡ κAµ , (3.11)

it is then relatively straight-forward to show, that the Einstein-Hilbert action
(3.5) in 5D reduces to gravity plus electromagnetism in 4D,

S =

∫

d4x
√

|g|
(

R

2κ2
− 1

4
FµνF

µν

)

, (3.12)

where Fµν = ∂µAν − ∂νAµ as usual.

This unification of two seemingly very different interactions came rather
as a surprise. Furthermore, taking into account that one had started out
with a 5D theory in vacuum, it was considered remarkable that not only
the gravitational but even the electromagnetic field could now be thought
of as purely geometrical in origin. Of course, this sparked an immense in-
terest in whether also the weak and strong forces could fit into this scheme,
leading to a unification of all interactions of nature. In fact, it was found in



3.2. MODERN EXTRA-DIMENSIONAL SCENARIOS 19

the 1960s that allowing for more compactified EDs could lead even to non-
Abelian vector fields in the 4D theory [48]: That the identification (3.11)
was possible can be traced back to the fact that an infinitesimal coordi-
nate transformation in y just takes the form of a gauge transformation of
an Abelian vector field; in a similar way, non-Abelian transformations are
generated by infinitesimal isometries of a more complex internal manifold.
The smallest number of dimensions that can give rise to a group containing
SU(3) × SU(2) × U(1) is 11 [129]. Towards the end of the 1970s, finally,
supergravity Kaluza-Klein models became popular. There, one finds parti-
cles with spin higher than 2 in the spectrum of the 4D theory as soon as
one considers more than 7 EDs. Since such particles are usually thought of
as not being quantizable consistently, it therefore became natural to restrict
oneself to 11 spacetime dimensions. However, there are also several problems
connected to 11D supergravity – for example, there seems to be no natural
way to get chiral fermions [129], and there is no hope of renormalizability to
all orders in perturbation theory. For a nice review on Kaluza-Klein thories
see [18].

After the first excitement had faded away, the idea of EDs was considered
less and less attractive – until the rise of superstring theory which revived
these old ideas when it was realized that a consistent quantization only
seemed possible in 10 spacetime dimensions. The basic idea of string theory
is to replace point particles by strings, which describe a two-dimensional
world sheet (in contrast to the one-dimensional world line of a particle) as
they move through spacetime. Quantization then leads to a spectrum of
different oscillations (of the same ’type’ of string) which correspond to the
different particles that we observe. An attractive aspect of using strings in-
stead of particles is that the ultra-violet divergences of quantum field theory
(associated to correlation functions for very small distances) can be cured
as they are smeared out over the length of the string, which thus appears as
a natural effective cutoff in the theory. It is hoped, though far from being
proven yet, that string theory – or its generalization to M theory [130] –
can provide a consistent, unified description for matter, gauge bosons and
gravity.

In string theory, there appear non-perturbative, lower-dimensional ob-
jects, called branes, to which the endpoints of open strings are attached [106].
Closed strings, on the other hand, can propagate freely through the entire
higher-dimensional spacetime, often referred to as the bulk. The spectrum
of closed strings always contains a massless spin-2 field, which is identified
as the graviton, and that of open strings contains various massless vector
fields, which can be thought of as the observed gauge fields. This led to the
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idea that we, and all the matter and gauge fields, might live on a (3+1) -
dimensional brane, while gravity is not confined to it and therefore fully feels
the presence of the EDs. As proposed by Arkani-Hamed, Dimopoulos and
Dvali (ADD) [13], this observation might be used as a motivation for a phe-
nomenological attempt to explain the hierarchy problem, i.e. the feableness
of gravity as compared to other interactions: By allowing for the presence
of relatively large EDs, one can see from (3.7) that the fundamental scale
of gravity can be mucher higher than what it appears to be in 4D. For two
EDs, one would for example need a compactification scale of approximately
a mm to explain a fundamental scale of gravity at the electroweak scale.

It was realized by Randall and Sundrum (RS1) that it is possible to solve
the hierarchy problem even for a scenario where the EDs are quite small
[109]. They proposed that spacetime is not separable but has a warped
geometry of the form

ds2 = e−2krc|φ|ηµνdx
µdxν + r2cdr

2 , (3.13)

where k is a mass scale of the order of the Planck mass and rc the size of the
ED. In this model, we and all SM particles are confined to a brane at φ = π;
gravity appears weak on that brane due to the exponential suppression factor
in front of the (3 + 1)-dimensional Minkowski metric.

Later, the same authors realized in [110] that one may actually consider
the limit of an infinitely large ED, rc →∞, and still recover Newton’s law of
gravity for an observer on the brane if the curvature scale of the bulk anti-
deSitter space is less than about a mm. The possibility of a non-compact
ED came certainly as a surprise and can be traced back to the special form
that the spectrum of continuous KK modes takes in the case of a warped
geometry. This second model (RS2), however, does no longer provide a
solution to the hierarchy problem.

3.3 Universal Extra Dimensions

The model of universal extra dimensions (UEDs) was introduced some years
ago by Appelquist, Cheng and Dobrescu [10] and is basically the higher-
dimensional version of the standard model of particle physics. As a conse-
quence, all SM fields are accompanied by a whole tower of increasingly more
massive states; following the same line of arguments as in the first part of
this chapter, the KK masses for these states are then given by

M (n) ≡
√

m2
EW +

( n

R

)2
(3.14)
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for SM particles with electroweak masses mEW.
From now on, it will be assumed for simplicity that there is only one

UED.2 Current collider bounds then set an upper limit of R−1 & 300 GeV
on the compactification scale [10, 2], while the LHC will probe scales down
to about 1.5 TeV [46]. For comparison: Direct measurements of deviations
from Newtons law give much less stringent bounds on the allowed size of
one ED, R−1 ≥ (160µm)−1 ∼ 0.1 eV [79].

A naive higher-dimensional version of the SM, compactified on a circle,
would actually not only give new massive fields in the form of KK tow-
ers, but also additional massless, scalar degrees of freedom; this is because
the fifth component of a 5D vector field transforms as a scalar under 4D
Lorentz transformations. Light scalar fields, however, are not observed and
their existence is heavily constrained by solar system observations and fifth
force experiments [128]. A possible solution to this problem lies in a com-
pactification on an orbifold S1/Z2 rather than on a circle. In addition to
the usual identification y ∼ y + 2πR, there is then a mirror symmetry be-
tween points that are mapped onto each other under the orbifold projection
y → −y. With

y ∼ 2πR− y , (3.15)

compactification thus effectively takes place on a line segment [0, πR]. Under
such an orbifold projection PZ2 any field φ transforms even, PZ2φ(x

µ, y) =
φ(xµ,−y), or odd, PZ2φ(x

µ, y) = −φ(xµ,−y). Obviously, odd fields do not
have zero modes,

φeven(x
µ, y) =

1√
2πR

φ(0)even(x
µ) +

1√
πR

∞
∑

n=1

φ(n)even(x
µ) cos

ny

R
, (3.16a)

φodd(x
µ, y) =

1√
πR

∞
∑

n=1

φ
(n)
odd(x

µ) sin
ny

R
, (3.16b)

and in that way the above mentioned problem can be avoided by assign-
ing suitable transformation properties under PZ2 (the factors in front have
been extracted for later convenience). As it turns out, the same idea also
allows for chiral fermions in the effective 4D theory – even though chiral
fermions do not exist in five dimensions (see Section 3.3.4). The idea of
a compactification on an orbifold is inspired by string theory, where one
uses this approach as an approximate way of describing the compactifica-
tion on Calabi-Yau spaces, which have a much more complex structure but

2See Appendix B for some comments on a generalization of this. The discussion on the
stability of EDs in Chapter 4 is also not restricted to the case of only one ED.
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give the same low-energy spectrum of states and provide basically the same
mechanism of producing chiral fermions [50, 51].

Since the SM in higher dimensions exhibits dimensionful couplings, it
is not renormalizable (see, e.g., [103]). The UED model should therefore
be viewed as an effective theory in four dimensions that is valid up to some
cutoff scale Λ. From the demand that the loop-expansion parameters should
be smaller than unity, i.e. that perturbation theory is still valid, one can
estimate that new physics should not appear before a cutoff of Λ ∼ 20R−1

[10]. Theoretical motivations to consider the UED scenario as introduced
above include a way to achieve electroweak symmetry breaking without the
explicit need of a Higgs field [12], as well as providing possible explanations
for the observed number of fermion generations [52] or the very long life-time
of the proton [11]. It furthermore provides in a natural way a viable dark
matter candidate (see Section 5.1), which is the main motivation to study
it in this thesis.

In the remainder of this chapter, the field content and interactions of the
effective four-dimensional theory of the UED model will be discussed in full
detail (see Appendix A for a list of the resulting Feynman rules).

3.3.1 Gauge fields

As already mentioned, the fifth component of a gauge field AM transforms as
a scalar under 4D Lorentz transformations, so it should be odd under orbifold
projections in order to avoid light scalar fields in the 4D theory. Demanding
that the first four components Aµ transform even, so that their zero modes
can reproduce the ordinary 4D fields, this actually follows directly from
gauge invariance: Since

Arν(x
µ, y) = Arν(x

µ,−y) ∼ Arν(xµ, y) +Dνθ
r(xµ, y) , (3.17)

one knows that the gauge functions θr(xµ, y) of an arbitrary gauge group
have to transform even. Therefore, ∂yθ

r transforms odd and

Ar5(x
µ, y) = −Ar5(xµ,−y) (3.18)

has to show the same behaviour.

Let us now consider the standard model in 5D. Neglecting SU(3), the
gauge field Lagrangian reads

L̂gauge = −
1

4
FMNF

MN − 1

4
F rMNF

rMN , (3.19)
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with the U(1) field strength

FMN = ∂MBN − ∂NBM (3.20)

and the SU(2) field strength

F rMN = ∂MA
r
N − ∂NArM + ĝεrstAsMA

t
N . (3.21)

The four-dimensional theory is now obtained by inserting the appropriate
expansions (3.16a, 3.16b) of the higher-dimensional fields and integrating
over the internal dimension. In particular, since the fifth components of
the gauge fields have no zero modes, the familiar SM Lagrangian will be
recovered in the low-energy limit.

A more detailed look at the contributions from the U(1) gauge group
gives

L(kin)gauge =

∫ 2πR

0
dy − 1

4
(∂MBN − ∂NBM )(∂MBN − ∂NBM )

= −1

4

(

∂µB
(0)
ν − ∂νB(0)

µ

)(

∂µB(0) ν − ∂νB(0)µ
)

−1

4

∞
∑

n=1

(

∂µB
(n)
ν − ∂νB(n)

µ

)(

∂µB(1) ν − ∂νB(1)µ
)

+
1

2

∞
∑

n=1

(

∂µB
(n)
5 +

n

R
B(n)
µ

)(

∂µB
(n)
5 +

n

R
B(n) µ

)

, (3.22)

with the same expressions valid for the kinetic parts of the other gauge
fields as well. At each KK level, there thus appears a massive vector field

B(n). The scalar fields B
(n)
5 , however, do not constitute physical degrees

of freedom, since one can make them disappear by a gauge transformation

(3.17) with θ = − (R/n)B
(n)
5 . This is reasonable already from a naive

counting of degrees of freedom: massless 5D and massive 4D vector fields
both have three degrees of freedom, so there is simply no room left for an
additional scalar degree of freedom.

The scalar fields thus play the role of Goldstone bosons that give the KK
vector modes their mass. This picture is slightly complicated by the fact
that there are additional Goldstone bosons associated to each vector boson,
which are connected to the usual Higgs mechanism of electroweak symmetry
breaking. As discussed in detail in the next section, the mass eigenstates of
the theory are then linear combinations of these contributions, resulting in
a spectrum of Goldstone as well as physical scalar modes.
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The cubic and quartic terms appearing in (3.19) give rise to interaction
terms in the 4D Lagrangian. At zero KK level one recovers the SM result,
with

g ≡ 1√
2πR

ĝ (3.23)

being the ordinary 4D SU(2) coupling constant. (This relation holds for
all 5D coupling constants and their 4D counterparts.) At higher KK levels,
one finds couplings between both vectors and scalars; the resulting Feynman
rules are listed in Appendix A.

3.3.2 The Higgs sector

The Higgs field is a complex SU(2) doublet,

φ ≡ 1√
2

(

χ2 + iχ1

H − iχ3
)

, χ± ≡ 1√
2
(χ1 ∓ iχ2) , (3.24)

with a 5D Lagrangian that reads

L̂Higgs = (Dαφ)
† (Dαφ)− V (φ) . (3.25)

Setting the hypercharge to 1/2, the covariant derivative appearing above is
given by

Dα = ∂α − iĝArα
σr

2
− i

2
ĝYBα , (3.26)

where σr are the Pauli matrices,

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

, (3.27)

and ĝY the higher-dimensional U(1) coupling.
The potential V (Φ) is chosen in such a way that spontaneous symmetry

breaking occurs, a prototype being the ’mexican hat’ potential3

V (φ) = −µ2φ†φ+ λ(φ†φ)2 (3.28)

with

λ =
µ2

v̂2
=
m2
H

2v̂2
. (3.29)

With such a potential, the Higgs field acquires a non-zero vacuum expecta-
tion value v̂ that can be chosen to lie in the H direction. To reformulate the

3In 4D, the most general renormalizable Lagrangian is actually of the form (3.25), with
a potential like (3.28).
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theory as an expansion about the true vacuum, one therefore has to replace
H → H + v̂ in the Higgs Lagrangian (3.25).

It is now useful to introduce the standard combinations of vector fields
as they appear in the Glashow-Weinberg-Salam electroweak theory:

W±
M ≡

1√
2
(A1

M ∓ iA2
M ) , (3.30a)

AM ≡ swA3
M + cwBM , (3.30b)

ZM ≡ cwA3
M − swBM , (3.30c)

with

sw ≡ sin θw =
ĝY

√

ĝ2 + ĝ2Y

, cw ≡ cos θw =
ĝ

√

ĝ2 + ĝ2Y

, (3.31)

so that e = sw g = cw gY . Suppressing Lorentz indices, the quadratic part
of the Higgs kinetic term in (3.25) is then given by

L̂(2)Higgs,kin =
1

2
(∂H)2 +

1

2
(∂χ3 −mZZ)

2 +
∣

∣∂χ+ −mWW
+
∣

∣

2
, (3.32)

where

mW ≡
ĝv̂

2
=
gv

2
, mZ ≡

mW

cw
(3.33)

are the usual SM masses for the vector bosons.

Both in (3.22) and in (3.32) there appear unwanted cross-terms that
mix scalar and vector degrees of freedom. They can easily be eliminated by
adding suitable gauge-fixing terms to the Lagrangian:

L̂gaugefix = −1

2

∑

i

(

Gi
)2 − 1

2

(

GY
)2
, (3.34)

Gi = 1√
ξ

[

∂µAiµ − ξ
(

−mWχ
i + ∂5A

i
5

)]

, (3.35a)

GY =
1√
ξ

[

∂µBµ − ξ
(

swmZχ
3 + ∂5B

i
5

)]

. (3.35b)

This is a non-covariant generalization of the Rξ gauge. From the effective
4D theory’s point of view, however, one is anyway restricted to 4D Lorentz
transformations and under these, the above expressions remain invariant.
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With these lengthy but necessary preparations, one can now introduce
those linear combinations of the scalar degrees of freedom that will turn out
to be the mass eigenstates of the 4D theory:

a
(n)
0 ≡ M (n)

M
(n)
Z

χ3 (n) +
mZ

M
(n)
Z

Z
(n)
5 , (3.36a)

G
(n)
0 ≡ mZ

M
(n)
Z

χ3 (n) − M (n)

M
(n)
Z

Z
(n)
5 , (3.36b)

a
(n)
± ≡

M (n)

M
(n)
W

χ± (n) +
mW

M
(n)
W

W
± (n)
5 , (3.36c)

G
(n)
± ≡

mW

M
(n)
W

χ± (n) − M (n)

M
(n)
W

W
± (n)
5 , (3.36d)

where M (n) ≡ n/R. To finally find the total scalar spectrum of the 4D
theory, one has to add up the quadratic scalar contributions from (3.19),
(3.28), (3.32) and (3.34) and then integrate over the internal dimension (the
Higgs doublet Φ should be present at zero KK level, so it has to transform
even under orbifold projections). The result is:

L(kin)scalar =

∞
∑

n=0

{

1

2

(

∂µH
(n)∂µH(n) −M (n)

H

2
H(n)2

)

+
1

2

(

∂µG
(n)
0 ∂µG

(n)
0 − ξM

(n)
Z

2
G

(n)
0

2
)

+

(

∂µG
(n)
+ ∂µG

(n)
− − ξM

(n)
W

2
G

(n)
+ G

(n)
−

)

}

+

∞
∑

n=1

{

1

2

(

∂µa
(n)
0 ∂µa

(n)
0 −M

(n)
Z

2
a
(n)
0

2
)

+

(

∂µa
(n)
+ ∂µa

(n)
− −M

(n)
W

2
a
(n)
+ a

(n)
−

)

+
1

2

(

∂µA
(n)
5 ∂µA

(n)
5 − ξM (n)2A

(n)
5

2
)

}

. (3.37)

At zero level, one recovers the SM case with one physical Higgs field H (0)

and three Goldstone bosons G
(0)
0 = χ3 (0), G

(0)
± = χ± (0). For higher KK

levels, however, one has four physical scalar fields H (n), a
(n)
0 and a

(n)
± . In
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addition, there are four Goldstone bosons A
(n)
5 , G

(n)
0 and G

(n)
± that generate

the masses for the KK vector modes A
(n)
µ , Z

(n)
µ and W

± (n)
µ , respectively.

The zero mode contributions of the cubic and quartic terms in (3.25)
reproduce of course just the interactions of the SM model Lagrangian. The
corresponding Feynman rules, together with those for higher KK modes are
collected in Appendix A.

3.3.3 Ghosts

Ghosts are needed in order to cancel the unphysical contributions from time-
like and longitudinal polarization states of non-Abelian vector fields (as well
as Abelian vector fields in the case of spontaneous symmetry breaking).
Following the Faddeev-Popov quantization method, the ghost Lagrangian is
determined by how the gauge fixing terms that were introduced in (3.35)
vary under infinitesimal gauge transformations

δAiM =
1

ĝ
∂Mθ

i + εijkAjMθ
k , (3.38a)

δBi
M =

1

ĝY
∂Mθ

Y . (3.38b)

It is given by

L̂ghost = −c̄a
δGa
δθb

cb , (3.39)

where a, b ∈ {i, Y } and the ghost fields ca are anti-commuting, complex
scalars that transform even under orbifold projections.

Under the gauge transformations (3.38), the Higgs transforms as

δΦ =

[

i
θiσi

2
+ i

θY

2

]

Φ ≡ 1√
2

(

δχ2 + iδχ1

δH − iδχ3
)

, (3.40)

with

δχ1 =
1

2

[

θ1H − θ2χ3 + θ3χ2 + θY χ2
]

, (3.41a)

δχ2 =
1

2

[

θ1χ3 + θ2H − θ3χ1 − θY χ1
]

, (3.41b)

δχ3 =
1

2

[

− θ1χ2 + θ2χ1 + θ3H − θYH
]

. (3.41c)

After a rescaling ca → (ĝ(Y )

√
ξ)1/2ca, the kinetic part of the 4D ghost La-

grangian then becomes

L(kin)ghost =
∞
∑

n=0

c̄a(n)
{

−∂2δab − ξMab(n)
}

cb
(n)
, (3.42)
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where the mass matrix Mab(n) is given by

M (n) =













M
(n)
W

2
0 0 0

0 M
(n)
W

2
0 0

0 0 M
(n)
W

2
−1

4v
2ggY

0 0 −1
4v

2ggY
1
4v

2g2Y +M (n)2













. (3.43)

Performing the electroweak rotation (3.30), the ghosts will thus end up

with masses
√
ξM

(n)
W and

√
ξM

(n)
Z . The fact that these masses are gauge-

dependent, just as those of the Goldstone modes, indicates the unphysical
nature of these fields.

Finally, the interaction terms of the ghosts with gauge fields and scalars
can be derived in a straight-forward way from the cubic part of the higher-
dimensional ghost Lagrangian (see Appendix A).

3.3.4 Fermions

Before discussing the fermionic content of the 5D UED model, let us start
this section with a short general introduction to spinors in d dimensions.
The operators acting on them are Dirac matrices ΓM that represent the
Clifford algebra:

{ΓM ,ΓN} = 2ηMN . (3.44)

For even d = 2k + 2, these are 2k+1 × 2k+1-matrices that can explicitly
be constructed in an iterative way starting from the Pauli matrices [107].
For odd d = 2k + 3, one takes the matrices for the case of one space-time
dimension less and adds

iΓ ≡ i1+kΓ0Γ1...Γ2k+1 (3.45)

(or −iΓ) to give the missing matrix Γ2k+2. From the gamma-matrices one
can then construct a set of matrices

ΣMN ≡ i

4

[

ΓM ,ΓN
]

(3.46)

that satisfy the Lorentz algebra, i.e.
[

ΣMN ,ΣOP
]

= i
(

ηNOΣMP − ηMOΣNP + ηMPΣNO − ηNPΣMO
)

. (3.47)

The so-called Dirac representation of both algebras is spanned by spinors
s = (s0, ..., sk), where sa = ±1

2 are the eigenvalues of the operators

Sa ≡ Γa+Γa− − 1

2
. (3.48)
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The raising and lowering operators appearing here are defined as

Γ0± ≡ i

2
(±Γ0 + Γ1) , (3.49a)

Γa± ≡ i

2
(Γ2a ± iΓ2a+1) (for a = 1, ..., k) (3.49b)

and anticommute with each other:

{Γa+,Γb−} = δab (3.50a)

{Γa+,Γb+} = {Γa−,Γb−} = 0 . (3.50b)

In odd dimensions, this (2k+1-dim.) Dirac representation is irreducible as a
representation of the Lorentz algebra. In even dimensions it can be reduced
to two inequivalent (2k-dim.) Weyl representations that only act on the
subspaces with Γ s = ± s:

2k+1
Dirac = 2k

Weyl + 2k′
Weyl . (3.51)

(This is because {Γ,ΓM} = 0 and therefore [Γ,ΣMN ] = 0; in odd dimensions,
however, Γ is itself an element of the Clifford algebra and does thus no longer
(anti-)commute with ΓM or ΣMN ).

The eigenvalue of Γ is called chirality ; it takes the value +1 if there is
an even number of sa = +1

2 and −1 for an odd number. This property can
be used to construct projection operators

PR,L ≡
1

2
(1± Γ) , P 2

R,L = PR,L , PLPR = PRPL = 0 , (3.52)

that project out the chiral parts of any spinor

ψ = PRψ + PLψ ≡ ψR + ψL . (3.53)

As a side-remark, chiral states in 4D are states of definite helicity, which
is defined as the projection of the particle’s spin onto the direction of its
motion; states of positive (negative) chirality have also positive (negative)
helicity and are therefore called right-handed (left-handed). Finally, with
the help of the projection operators introduced above, one can easily see that
chiral fermions have to be massless, since any mass term in the Lagrangian
would mix states of different chiralities:

L̂f = ψ̄ (i6D −m)ψ = iψ̄R 6DψR + iψ̄L 6DψL −m
(

ψ̄RψL + ψ̄LψR
)

. (3.54)
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To conclude this detour, chiral fermions only exist in an even number of
dimensions.

Let us now return to the UED model. According to what has been said
above, one can use

Γ = iγ0γ1γ2γ3 ≡ γ5 (3.55)

both in four and in five dimensions to split up any spinor in its chiral parts
as in (3.53). Under 5D Lorentz transformations, ψR and ψL would then
obviously mix. Restricting oneself to 4D Lorentz transformations, however,
they do not mix. Therefore, one may assign different orbifold transformation
properties to these states and thereby recover the SM situation at the zero
mode level, where one has singlets ψs and doublets ψd of definite chirality:

ψd =
1√
2πR

ψ
(0)
dL

+
1√
πR

∞
∑

n=1

(

ψ
(n)
dL

cos
ny

R
+ ψ

(n)
dR

sin
ny

R

)

, (3.56a)

ψs =
1√
2πR

ψ(0)
sR

+
1√
πR

∞
∑

n=1

(

ψ(n)
sR

cos
ny

R
+ ψ(n)

sL
sin

ny

R

)

. (3.56b)

Note that in the above expressions, for every SM fermion

ψ(0) = ψ
(0)
dL

+ ψ(0)
sR

= ψ
(0)
d + ψ(0)

s (3.57)

there appear two fermions at each KK level:

ψ(n)
s ≡ ψ(n)

sL
+ ψ(n)

sR
(3.58a)

ψ
(n)
d ≡ ψ(n)

dL
+ ψ

(n)
dR

. (3.58b)

To make this more evident, let us consider the kinetic part of the fermion
Lagrangian, with the anticipation of a fermion mass mEW from electroweak
symmetry breaking,

L̂(kin)fermion = iψ̄dΓ
M∂Mψd + iψ̄sΓ

M∂Mψs −mEW

(

ψ̄sψd + ψ̄dψs
)

. (3.59)

Next, introduce those KK fermions that will turn out to be the mass eigen-
states of the 4D theory:

ξ
(n)
d ≡ cosα(n)ψ

(n)
d + sinα(n)ψ(n)

s , (3.60a)

ξ(n)s ≡ sinα(n)γ5ψ
(n)
d − cosα(n)γ5ψ(n)

s , (3.60b)

where the mixing angle

tan 2α(n) =
mEW

n/R
(3.61)
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is effectively driven to zero except for the top quark. With the expansions
(3.56) and Γµ = γµ, Γ5 = iγ5, one then finds

L(kin)fermion =

∫ 2πR

0
dy L̂(kin)fermion

= ψ̄(0) (i6∂ −mEW)ψ(0)

+
∞
∑

n=1

ξ̄(n)s

(

i6∂ −M (n)
)

ξ(n)s

+
∞
∑

n=1

ξ̄
(n)
d

(

i6∂ −M (n)
)

ξ
(n)
d , (3.62)

where the fermion KK masses M (n) are given by the usual relation (3.14).
Fermions couple to gauge bosons through the covariant derivative that

appears in the kinetic part of the Lagrangian:

L̂(vector)fermion = i (ψ̄′d,U , ψ̄
′
d,D) Γ

M

(

−iĝArM
σr

2
− iYdĝYBM

)(

ψ′d,U
ψ′d,D

)

+iψ̄′s,UΓ
M (−iYs,U ĝYBM )ψ′s,U

+iψ̄′s,DΓ
M (−iYs,DĝYBM )ψ′s,D , (3.63)

where U and D denote up-type (T 3 = +1/2) and down-type (T 3 = +1/2)
fermions, respectively, and Ys,U , Ys,D, Yd are the hypercharges of the corre-
sponding SU(2) representations. Note that the ψ′ in the above expression
are SU(2) × U(1) eigenstates, not the 5D mass eigenstates ψ that appear
in (3.59). For leptons, the states ψs,U (i.e. right-handed neutrinos) do not
exist and therefore one can replace ψ′ → ψ [103]. For quarks, one still can
choose ψ′s = ψs, but the doublet eigenstates are related by unitary matrices
UU,D:

ψ′d,U
i
= U ijU ψ

j
d,U , ψd,D′

i = U ijDψ
j
d,D , (3.64)

where i, j run over all (three) families. The matrix V = U †UUD is known as
Cabbibo-Kobayashi-Maskawa mixing matrix.

Finally, there is the Yukawa coupling of fermions to the Higgs field:

L̂(Yukawa)fermion = −λ̂D
[

(ψ̄d,U , ψ̄d,D) · Φ
]

ψs,D − λ̂U
[

(ψ̄d,U , ψ̄d,D) · Φ̃
]

ψs,U + h.c. ,
(3.65)

where the conjugated Higgs field is defined by Φ̃a ≡ εabΦ
†
b. Taking into

account all three families of fermions, the coupling strengths λ̂d and λ̂u
are actually given by 3 × 3 matrices – but in the basis of fermion mass



32 CHAPTER 3. EXTRA SPATIAL DIMENSIONS

eigenstates that is chosen here, they are diagonal in flavour. Performing
the shift H → H + v̂ from electroweak symmetry breaking corresponds to
replacing

L̂(Yukawa)fermion → L̂(Yukawa)fermion −
(

λ̂Dv̂√
2
ψ̄d,Dψs,D −

λ̂U v̂√
2
ψ̄d,Uψs,U + h.c.

)

, (3.66)

which gives a mass mEW = (λ̂D,U v̂)/
√
2 to the fermions.

Finally, from (3.63) and (3.65), one can derive the 4D Feynman rules
for interactions between fermions and gauge bosons or scalar fields (see Ap-
pendix A).

3.3.5 Radiative corrections

So far, only electroweak mass contributions to the various states of the 4D
theory have been discussed. For KK modes, however, radiative corrections
can generically be expected to be much more important: assuming a com-
pactification scale of about 1 TeV, the relative contribution of the former
to the first KK level mass is given by (mEWR)

2 and ranges from 10−12 for
electrons to 10−2 for the top quark, while the latter should give corrections
of the order O(α) from the relevant gauge couplings, which is at the percent
level.

Radiative mass corrections arise from vacuum polarization diagrams,
i.e. higher-order contributions to the two-point correlation functions. In
order to calculate the net effect of the presence of EDs, one has to subtract
the corresponding diagram in four dimensions from its higher-dimensional
analogue; with this prescription, all ultra-violet divergences that are present
already in the 4D theory are cancelled and the result is a mass shift δm2

that is purely due to radiative corrections deriving from the presence of EDs
[46].

One can isolate two types of contributions to these mass shifts. The first
one is attributed to the compactification on a circle S1, which does not break
5D Lorentz invariance locally, but globally. As a non-local effect, loops can
wind around the compact dimension as shown in Fig. 3.1; since there is
no analogue of such loops in the 4D theory, their contribution will survive
the subtraction scheme described above. The second type is a local effect
that derives from the fact that 5D translational invariance is broken at the
boundaries of S1/Z2. By expressing all fields in terms of auxiliary fields that
do not obey the orbifold symmetry, one can effectively describe the S1/Z2

compactification by introducing modified 5D propagators in the same theory
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xµ

y

Figure 3.1: Example of a loop winding around the EDs, giving rise to a 5D Lorentz
invariance breaking contribution to the two-point correlation function.

compactified on S1 [66]. In contrast to the first type of contributions to the
mass-shift, this one is no longer finite by itself but has to be renormalized
by introducing counterterms localized at the orbifold fixpoints. In order
to keep the model-dependence on unknown physics at the cutoff scale Λ
under control, one usually follows the self-consistent assumption that these
boundary terms are small at that scale. In that case there is no mixing
among different KK modes and each mode receives, in addition to the first
effect, a contribution to its mass that is logarithmically proportional to Λ.

The resulting spectrum of the first KK level has been calculated in [46]
and is shown in Fig. 3.2. As can be seen, the degeneracy of KK masses at
tree level is lifted at the one-loop level and the lightest KK particle (LKP)
can be identified as the first KK excitation of the photon. Having a closer
look at the mass matrix for the A3 and B gauge bosons,

(

(

n
R

)2
+ δm

(n)
A3

2
+ 1

4v
2g2 −1

4v
2ggY

−1
4v

2ggY
(

n
R

)2
+ δm

(n)
B

2
+ 1

4v
2g2

)

, (3.67)

one finds that the nth KK level Weinberg angle is given by

tan 2θ(n) =
v2ggY

2
[

δm
(n)
A3

2
− δm(n)

B

2
+ v2

4 (g
2 − g2Y )

]

. (3.68)

Generically, one has δm
(n)
A3

2
− δm

(n)
B

2
À v2ggY (see also Fig. 3.2), which

means that the Weinberg angle is effectively driven to zero at any KK level.
Therefore, the LKP is well approximated by B(1), the first KK excitation of
the weak hypercharge boson and in the following, these two expressions will
be used interchangeably.

Instead of taking the exact expressions as determined in [46], one might
also consider to follow a more phenomenological approach and treat the



34 CHAPTER 3. EXTRA SPATIAL DIMENSIONS

Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK
level, a) at tree level and b) including one loop radiative corrections, for R−1 = 500 GeV
and ΛR = 20. The first column shows the gauge and Higgs bosons, where {H0, H±, A0}
correspond to {H, a±, a0} in the notation introduced in Section 3.3.2. In the second
column, the quark doublet (Q) and singlets (u, d) as well as lepton doublet (L) and singlet
(e) are shown for the first two families; In the last coloumn, finally, this is repeated for
the third family to illustrate the large electroweak mass shift of the top quark.

radiative corrections to the KK masses as an independent input to the theory
(see, e.g., [114]). For simplicity, it is then often assumed that all KK modes
except for the LKP are degenerate in mass; this approach should in general
not have a great influence on the phenomenology of the model, except for
some special situations like co-annihilations (see the discussion in Chapter
5.1).



Chapter 4

Stabilization of

Homogeneous Extra

Dimensions

As outlined in the last chapter, a generic property of theories involving EDs
is that the observed four-dimensional couplings can no longer be regarded
as fundamental constants of nature but rather emerge as effective quantities
in the low-energy limit of the theory. This means that all interactions with
fields fundamentally living in more than four dimensions exhibit couplings
that vary with the volume – and sometimes even shape – of the internal
space.

Possible variations of the observed coupling constants, on the other hand,
are heavily constrained (see Section 4.1). Since most of these constraints
come from cosmological considerations, this means that the EDs have to
be effectively stabilized on cosmological timescales. One of the main tasks
in KK cosmology is therefore to provide a dynamical explanation for this
stabilization and, in order not to spoil the successes of standard cosmology,
to find late-time solutions to the higher-dimensional equations of motion
that describe (4+ n)-dimensional spacetimes of the form F 4×K, whith F 4

being the ordinary Friedmann solution and K a compact, (nearly) static
n-dimensional manifold. The case of non-compact EDs (see Section 3.2) is
of course also of importance, but will not be considered here.

The general setup and the resulting Friedmann equations to study the
evolution of a homogeneous, higher-dimensional universe are presented in
Section 4.2. An alternative way to arrive at the equations of motion, this
time from the point of view of the effective lower-dimensional theory, is then

35
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described in Section 4.3. In both cases, as shown in Section 4.4, one is lead
to the conclusion that homogeneous EDs can easily be stabilized during both
radiation and vacuum energy dominated epochs of the cosmological evolu-
tion; during matter domination, however, one encounters generic problems.
Section 4.5 discusses the possibility of explicitly adding stabilization mech-
anisms to the original theory; it turns out that even in this case one cannot
get exactly static solutions as soon as the amount of non-relativistic matter
in the universe is no longer negligible – though it seems that the existing
bounds on time-varying EDs can nevertheless be satisfied rather easily.

The material presented in this chapter is based to a large degree on the
accompanying papers [I] (Sections 4.2 and 4.4) and [II] (Section 4.3 and part
of Section 4.5).1 Note that in this chapter the sign-conventions of [93] are
used, meaning in particular that the signature of the metric is space- rather
than timelike as in the rest of this thesis.

4.1 Constraints on the allowed time variation of

extra dimensions

Since gravity cannot be disentangled from spacetime itself, Newtons con-
stant (i.e. the 4D gravitational coupling constant) G = κ2/8π will inevitably
vary with the volume of the internal space for any extra-dimensional sce-
nario. As it has become obvious from the discussion in Section 3.3, the UED
model exhibits furthermore the interesting feature that all interactions pick
up the same volume factor (3.7), relating higher dimensional (i.e. funda-
mental and thus truly constant) and 4D (i.e. observed) coupling ’constants’.
In the following, the most important bounds on a possible time variation
of any of these constants will therefore be presented in the form of a short
overview. For a more detailed review, see [124].

The variation of the gravitational constant today is best constrained by
radar measurements of the orbital separation of Earth, Venus and Mercury,
which gives Ġ/G . 10−12 yr−1 [9]. On cosmological time scales, one may
use the fact that a variation in G would change the expansion rate of the
universe during BBN; this translates into the demand that ∆G/G . 0.2
between BBN and today [124]. While a time-varying G certainly also would
have impacts on the CMB, it is hard to draw any definite conclusions about
the allowed amount of variation in a model-independent way; this is because
not only the value of G at photon decoupling, but (due to the integrated

1The contribution to the proceedings of ’Phi in the Sky. Workshop on the cosmological
role of scalar fields.’ [41] can be read as a comprehensive summary of the work in [I, II].
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Sachs-Wolfe effect) its entire evolution history since then will influence the
spectrum of the CMB anisotropies.

Limits on a possible variation of the electromagnetic coupling constant
αem are much tighter and derive from various different eras of the cosmo-
logical evolution. In fact, there has even been the claim that one can see
a variation ∆αem/αem ∼ 10−5 at z ∼ 1 from the absorption lines of dis-
tant quasars [125, 126] – which, however, has been contested by Bahcall
et al. [17]; the newest upper bound from this kind of observations lies
nearly two orders of magnitude below the originally claimed effect [119]. A
change in the electromagnetic coupling would also clearly have an impact on
the synthesis of light elements during BBN; this places an upper bound of
∆αem/αem . 10−2 at zBBN ∼ 1010 [25]. CMB observations can in principle
be used to infer ∆αem/αem . 10−2 at z ∼ 103 [75], but there is a strong de-
generacy with other cosmological parameters and this method therefore only
works if one has a good handle on them, i.e. if they can be determined by
independent observations. Finally, one may even use the 149Sm abundances
as found in the natural reactor at Oklo, West Gabon, to get a constraint of
∆αem/αem . 10−8 at z ∼ 0.14 [63]. However, this last constraint should be
taken with a grain of salt when considering the allowed variation of αem in a
cosmological context; this is because it is taken from a region of particularly
high matter density – i.e. the earth – and depending on how the radion (the
scalar field that corresponds to the volume of the internal space, see Section
4.3) couples to the matter part of the 4D Lagrangian, one may actually be
able to evade his constraint.

A change in the coupling strength of the weak interaction shows an ef-
fect in similar areas as discussed above for the case of αem. For example,
the value of the Fermi constant GF has of course an impact on nucleosyn-
thesis; in order not get a wrong prediction for the observed helium abun-
dance, in particular, one arrives at almost the same constraints as before,
i.e. ∆GF /GF . 10−2 at zBBN [43]. However, these kinds of analyses are
generally hampered by the fact that some of the effects may be mimicked
by, e.g., an independent variation of the Yukawa couplings; it seems there-
fore difficult to draw any definite conclusions that are independent of how
electroweak symmetry breaking takes place or how the Fermion masses are
generated [124].

To summarize, the cosmologically maybe most important conclusion is
that the volume of the internal space must not have changed by more than
about one percent since BBN. One should, however, remember that this and
other constraints usually only derive from ’snapshots’ of the cosmological
history and little is known about what could have happened in between.
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4.2 The higher-dimensional Friedmann equations

By varying the action

S =
1

2κ̂2

∫

d4+nX
√−g

(

R− 2Λ + 2κ̂2L̂matter

)

(4.1)

one arrives at Einstein’s field equations in d = 4 + n dimensions:

RAB −
1

2
R gAB + Λ gAB = κ̂2TAB . (4.2)

For a separable spacetime like F 4 × K, the internal space has to be an
Einstein space as a consequence of these field equations [117]. A natural,
though obviously rather simplified cosmological ansatz for (4.2) is thus a
higher-dimensional metric of the form

gAB dXAdXB = gµν dxµdxν + b2(xµ)g̃pq dypdyq , (4.3)

where g̃pq depends on the internal coordinates yp only. Taking gµν to be
of FRW form (2.1) and assuming b = b(t), one now has two scale factors
a(t) and b(t) that describe the cosmological evolution of the ordinary, large
dimensions and the internal space, respectively. Such a choice of the metric
determines the energy-momentum tensor to be of the form2

T00 = −L̂matter = ρ̂ , Tij = p̂agij , T3+p 3+q = p̂b b
2g̃pq , (4.4)

which is that of a homogeneous but in general anisotropic perfect fluid in
its rest frame.

From the field equations (4.2), one now finds the higher-dimensional
version of the ordinary Friedmann equations:

2Note that there is a typo in the corresponding expressions in [II, 41]. Furthermore,
some of the sign conventions there do not really follow standard practice. While neither
of this changes any of the results of [II, 41], it might still be quite confusing; when in
doubt, please refer to this thesis for the (hopefully) correct version. Note furthermore
that gµν and ’hatted’ quantities are introduced in a way that is different from [I, II, 41],
but consistent with the conventions of the rest of this thesis.
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ḃ

b

)2

+
kb
b2



 = Λ− κ̂2p̂a

(4.5b)

b̈

b
+ 3

ȧ
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 =
2Λ

n+ 2
+

κ̂2

n+ 2
(ρ̂− 3p̂a + 2p̂b) (4.5c)

where a dot denotes differentiation with respect to t.
One can immediately see that for exactly static extra dimensions, and

after an appropriate rescaling of Λ, the first two equations are nothing but
the ordinary Friedmann equations (2.5). The question then is, how (4.5c)
can be satisfied simultaneously.

4.3 Dimensional reduction

Before returning to this question, let us first take a different perspective and
consider the dimensionally reduced theory rather than the field equations
(4.2) that were obtained by varying the higher-dimensional action. After
integrating (4.1) over the internal dimensions, with the ansatz (4.3) for the
metric, one arrives at the following four-dimensional action:

S =
1

2κ̄2

∫

d4x
√−g bn

(

R+ b−2R̃ + n(n− 1)b−2∂µb∂
µb− 2Λ + 2κ̂2L̂matter

)

,

(4.6)
where κ̄2 ≡ κ̂2/

∫

dny
√
g̃ and R (R̃) is the curvature scalar constructed from

gµν (g̃pq). By a conformal transformation to a new metric ḡµν = bngµν ,
this action can be rewritten in the so-called Einstein frame, where the 4D
curvature scalar appears without any conformal prefactors:

S =

∫

d4x
√−ḡ

(

1

2κ̂2
R̄− 1

2
∂µΦ∂

µΦ− Veff(Φ)
)

. (4.7)

This describes four-dimensional gravity minimally coupled to a scalar field

Φ ≡
√

n(n+2)
2κ̄2

ln b (sometimes referred to as radion), with a potential

Veff(Φ) = −
R̃

2κ̄2
e−

√

2(n+2)κ̄2

n
Φ +

1

κ̄2

(

Λ− κ̂2L̂matter

)

e
−

√

2nκ̄2

n+2
Φ
. (4.8)
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The equations of motion derived from (4.7) are as expected equivalent to
the higher-dimensional field equations (4.5) that were obtained with the
approach of the last section. Equation (4.5c), in particular, gets a rather
intuitive interpretation – it is the equation of motion for the radion,

∇̄µ∇̄µΦ = V ′eff(Φ) . (4.9)

The quest for static solutions has thus been reformulated into the question
whether the effective potential Veff(Φ) exhibits minima or not.

As a by-product, the alternative approach of this section allows one
to address a subtle issue related to higher-dimensional theories of gravity,
that has received attention only rather recently and has been completely
neglected in the first days of Kaluza-Klein cosmology: Since there are in
principle infinitely many, mathematically equivalent frames that are related
to each other by a conformal transformation, caution must be taken as to
which of the conformally related metrics one identifies as the physical one.
The requirement that the conformally transformed system in four dimen-
sions has positive definite energy actually singles out a unique conformal
factor [117, 47, 59], which is just the one that transforms to the Einstein
frame (4.7). This suggests that ḡµν – rather than the naive first guess gµν
– should be regarded as the physical metric, with dt̄ ≡ b

n
2 dt being the

measured cosmological time and ā ≡ bn2 a the ordinary 4D scale factor.
This issue does not seem to be completely settled yet, though. In par-

ticular, the choice of the Einstein frame results in a non-minimal coupling
of the scalar field to the rest of the matter part via the form of the effec-
tive potential in (4.8). This has sometimes been used as an argument why
one instead should regard the Jordan frame as the physical one, see e.g.
the discussion given in [47, 59]. Even the explicit view that all conformally
related frames are not only mathematically but also physically equivalent
finds sometimes still support [60].

Given the tight bounds on the allowed time-variation of b, however, the
difference between a and ā (or t and t̄) should of course be negligible for all
practical purposes.

4.4 Cosmological evolution of scale factors

From equation (4.5c) it is obvious that static solutions can only exist if

ρ̂− 3p̂a + 2p̂b = const. (4.10)

(and Λ and kb are tuned in a suitable way). Only in that case, to use
the language of Section 4.3, the minimum of the effective potential Veff(Φ)
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becomes time-independent. If furthermore Λ = kb = ρ̂− 3p̂a + 2p̂b = 0, the
effective potential is flat, i.e. independent of Φ.

So when can one expect (4.10) to hold? Obviously, one possibility is
given by ρ̂, p̂a and p̂b being constant separately – as is the case for a cos-
mological constant. Also during radiation domination (with p̂a = 1

3 ρ̂) one
can have static solutions if the pressure in the extra dimensions is constant
or negligible. However, for periods of the cosmological evolution with other
equations of state one cannot expect to find static solutions unless one al-
lows for rather contrived equation-of-state parameters. In particular, during
matter domination (with p̂a ¿ ρ̂) one would need p̂b = −1

2 ρ̂, which is very
hard to motivate.

With exactly static solutions being no longer an alternative, one has to
study in detail the evolution of the scale factor b(t) and make sure that it
does not violate the existing bounds that were reviewed in Section 4.1. To
do this, the details of the model must be specified, particularly the equation-
of-state parameters during various eras of the cosmological evolution. In the
following, this is done for the special case of Kalua-Klein dark matter ap-
pearing in the UED model (see Section 3.3 and 5.1). The runaway-behaviour
for b that is found, however, does not seem to be very specific for UEDs but
rather a general feature of homogeneous extra-dimensional models. In fact,
problems with the stabilization of EDs even arise in certain braneworld mod-
els once one allows for non-relativistic contributions to the matter content
[15].

4.4.1 Case study: Universal extra dimensions

Let us assume that the LKP constitutes most of the dark matter. The
momentum of the LKP in the direction of the internal space is basically
given by the compactification scale, which is about 1TeV. This is much
larger than the particle’s rest mass, even if the LKP was not the B(1) but the
first KK excitation of any other SM particle, so from a higher-dimensional
perspective our universe has always been dominated by relativistic matter
(neglecting for the moment the rather recent vacuum energy domination).
This means that one has an equation of state

p̂a =
1

3
ρ̂, p̂b = 0 (4.11)

during what looks like radiation domination and

p̂a = 0, p̂b =
1

n
ρ̂ (4.12)
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Figure 4.1: The evolution of the scale factors a and b, as well as the fractional energy
density in non-relativistic matter ρ̂m/ρ̂ for n =1 (thin), 2 (medium) and 7 (thick) with
(ρ̂m/ρ̂)i = 10−7 and Λ = kb = 0. The figure on the left (from [I]) shows the case of KK dark
matter, where the matter-dominated period is described by an equation of state p̂a = 0,
p̂b = 1/nρ̂. The right figure (from [41]) shows the case where the LKP-contribution to the
dark matter is negligible and one instead has p̂a = p̂b = 0 during matter-domination.

during what looks like matter domination from a four-dimensional point of
view.3

Starting with a tiny amount of LKPs in the radiation-dominated regime,
Fig. 4.1 shows the evolution of the scale factors for such a set-up. For com-
parison, the case of p̂a = p̂b = 0 during matter-domination (i.e. negligible
LKP contribution to the dark matter) is also included. In both cases, the
scale factor b starts to grow much faster than allowed by the constraints
given in Section 4.1 once the energy density in matter reaches about 10% of
the total energy density. In fact, also the evolution of the scale factor a (as
well as that of ā) deviates significantly from that of standard cosmology. In
conclusion, such a behaviour is definitely ruled out.

3For more details see [I]. It should be noted that the interpretation of pa = p̂a κ̂
2/κ2

as the ordinary pressure in 4D implicitly relies on the (incorrect) assumption that gµν is
the physical metric. As remarked before, for approximate static solutions this is a sublety
without great practical relevance.
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4.5 Stabilization and the recovery of standard cos-

mology

In order to find a dynamical explanation for the stabilization (and compact-
ification) of extra dimensions one usually introduces additional background
fields. Since their role is to separate ordinary from the internal space, they
typically contribute an effective action of the form

Sbg = −
∫

d4+nX
√−gW (b) (4.13)

to the theory. This means that one has to replace L̂matter → −(ρ̂ +W ) in
(4.8), where ρ̂ now denotes the energy density of everything but the back-
ground fields. As a result of this, the effective potential Veff would no longer
be flat during radiation or vacuum energy domination, but have a mini-
mum at which the scalar field can be stabilized. However, during matter
domination, or for virtually any other equation of state, this minimum is
still time-dependent through its dependence on ρ̂ [II]. Exactly static solu-
tions during matter domination are therefore not possible to achieve in this
framework either, even though the ansatz (4.13) is very general.

On the other hand, if the potential well at the minimum of W (Φ) =
W (b(Φ)) is steep enough, the time-dependent term ρ̂ in Veff should only
shift the minimum slightly. In that way, the runaway-behaviour of the scale
factor b that was found in Section 4.4.1 could be avoided; this would allow an
effective stabilization of the EDs and thus a recovery of standard cosmology.

To quantify this last remark, assume that Λ = kb = 0. Starting off
very near the minimum Φ0 due to the contribution of W (Φ), the effective
potential (4.8) can be written as

Veff(Φ) '
m2

2
(Φ− Φ0)

2 +
κ2

κ̄2
ρ e
−

√

2nκ̄2

n+2
Φ

≡ m2

2
(Φ− Φ0)

2 + ρ e
−(1−3wa+2wb)

√

nκ̄2

2(n+2)
(Φ−Φ0) , (4.14)

where in the last step the 4D energy density ρ as it appears in the Einstein
frame was identified by using

ρ̂ ∝ a−3(1+wa)b−n(1+wb) = ā−3(1+wa)b−n/2(−1−3wa+2wb) , (4.15)

with wa,b ≡ p̂a,b/ρ̂; it is that part of the effective potential that does not
depend on the scalar field Φ for small deviations about its minimum. With
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this, the actual minimum of the effective potential is given by

Φmin = Φ0 +
1− 3wa + 2wb

m2

√

nκ̄2

2(n+ 2)
ρ e
−(1−3wa+2wb)

√

nκ̄2

2(n+2)
(Φmin−Φ0) .

(4.16)
Let us now estimate the effect of such a shift in the minimum since BBN,

where the density in non-relativistic matter was ρ ∼ ρ0z
3
BBN ∼ 1019 eV4.

Setting wa = wb = 0 for simplicity, one finds that the resulting change in the
scale factor b is only about 0.006 % for a mass as tiny as m = 10−16 eV (this
is almost independent of n). For m = 5 ·10−19 eV, however, b already grows
by a factor of roughly 10 between BBN and today if it evolves adiabatically
and remains in the minimum of the effective potential.

Equation (4.16) thus nicely summarizes the main aspects of this chapter:
If condition (4.10) is not satisfied, homogeneous extra dimensions cannot be
stabilized since the minimum of the effective potential is time-dependent;

the change in the scale factor b/b0 = exp
[√

2κ̄2

n(n+2)(Φmin − Φ0)
]

, however,

remains relatively small once one allows for an explicit stabilization mech-
anism. In fact, this does not come as a surprise but can be traced back to
the fact that the coupling of Φ to L̂matter – and thus to ρ – is suppressed
by the (4D) Planck-scale. Still, it is important to realize that an explicit
stabilization mechanism actually is needed if one allows for extra spatial
dimensions and that there exist constraints on the associated effective po-
tential regarding the steepness around its minimum.

Let us conclude this chapter by mentioning two possibilities for how such
a stabilizing potential might arise. A first idea might certainly be just to
include a cosmological constant Λ and the curvature scalar R̃ for the internal
space. From (4.8), these contributions result in a mass term

m2
Λ = −Λ8(n+ 1)

n(n+ 2)

(

2Λ

R̃

)n
2

(4.17)

in the effective potential. This stabilization mechanism can thus only work
for a (rather large) negative cosmological constant and a hyperbolic internal
space. (Λ and R̃ must have the same sign for the effective potential to have
an extremum at all).

A more realistic proposal is therefore the one that was recently inves-
tigated by Bucci et al. [42]. In a toy model reminiscent of the full UED
scenario, they calculated the effective potential due to quantum corrections
and find a radion mass of about m ∼ 10−6 eV. Given the analysis above,
this would clearly suffice to effectively stabilize the extra dimensions.



Chapter 5

Kaluza Klein Dark Matter

As motivated in the introductory chapters, WIMPs are particularly attrac-
tive dark matter candidates. In Section 3.3, the model of universal extra
dimensions was presented in some detail. Here, it will be shown that the
lightest Kaluza-Klein particle (LKP) appearing in this model is an interest-
ing realization of such a WIMP, and for extra dimensions at the TeV scale
it will automatically come out with the right relic density today. In contrast
to the perhaps most studied example of a WIMP, the supersymmetric neu-
tralino, it is not a Majorana fermion. Instead, it is well approximated by
the massive vector particle B(1), the first KK excitation of the weak hyper-
charge gauge boson. Consequently, there is a rich and new phenomenology
to explore.

In the first part of this chapter, it will be motivated that the LKP in-
deed is a viable dark matter candidate that is stable over cosmological time
scales; this part also contains a short review on its direct and indirect de-
tection properties that have been studied in recent years. The remainder
of the chapter is then devoted to other, previously neglected signatures in
the cosmic ray spectrum that would result from B(1) annihilations in the
Milky Way. Since the annihilation rate depends crucially on the dark mat-
ter distribution, Section 5.2 describes briefly various possible halo profiles,
including the case of substructures, or dark matter ’clumps’. Section 5.3
then presents the expected gamma-ray spectrum from B(1) annihilations in
the galactic center, including both the continuous part of the spectrum and
the line signal from direct annihilation. Internal bremsstrahlung is found
to be a very important component to the former; for comparison, this ef-
fect is therefore analysed also for other scenarios, where the dark matter is
composed of scalar particles or neutralinos. In Section 5.4, finally, possible

45
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distortions in the antiproton spectrum from B(1) annihilations throughout
the diffusive halo are discussed.

This chapter contains a summary of the main results from the accompa-
nying paper [III] on the continous gamma-ray signal (Section 5.3.1), paper
[IV] on the line signal (Section 5.3.2) and paper [VI] that discusses the im-
portance of internal bremsstrahlung for heavy neutralinos (Section 5.3.3).
The antiproton spectrum (Section 5.4) has been investigated in detail in
paper [V].

5.1 A new dark matter candidate

In the presence of one UED, one has to compactify the extra dimension on an
orbifold S1/Z2 in order to get the right amount of degrees of freedom in the
low energy limit of the 4D theory. This has been discussed in detail in Section
3.3. The boundaries of the orbifold, however, break translational invariance
and therefore extra-dimensional momentum – corresponding to KK number
in the 4D theory – is no longer a conserved quantity. Such KK number
violating couplings appear as higher-order quantum corrections to the KK
number conserving couplings at tree level that are collected in Appendix A.
They are located at the orbifold fixpoints and can be calculated using the
same procedure that was described in Section 3.3.5 for the determination of
radiative corrections to the KK masses [46].

If the counterterms at the orbifold fixpoints are identical, however, there
is a remnant of the original full translational invariance left, namely trans-
lations by πR that take one fixpoint to the other. The corresponding con-
served quantity, to all orders in perturbation theory, is KK parity and given
by (−1)n, where n is the sum of the KK numbers of all particles that appear
in the interaction under consideration. This can easily be seen by recalling
that any higher-dimensional field can be expanded in Fourier series (3.16),
and for each term in such a series one has

cos
n(y + πR)

R
= (−1)n cos ny

R
, (5.1a)

sin
n(y + πR)

R
= (−1)n sin ny

R
. (5.1b)

Due to KK parity, the LKP is therefore stable and can not decay into SM
particles. This is reminiscent of the case of supersymmetry, where R-parity
ensures the stability of the lightest supersymmetric particle [81].

The fact that the LKP, well approximated by the B(1), is both stable,
electrically neutral and colourless, makes it prima facie an interesting dark
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Figure 5.1: (From [58], as based on [114]) The B(1) relic density without coannihilations
(solid line), and including coannihilations with three SU(2) singlet leptons with a mass
shift of 5% (dashed line) and 1% (dotted line). The grey band indicates the WMAP bound
of ΩCDMh

2 = 0.12± 0.02.

matter candidate. The next step then is to calculate its relic density today in
order to see whether it matches the observational needs. For that purpose,
one has to solve the Boltzmann equation for all KK modes, or at least for
those that have a mass close to that of the B(1), and determine their number
density after freeze-out; eventually, all heavier KK modes will then decay
into the B(1) and SM particles. This has been done in [114] and the result is
shown in Fig. 5.1: for a compactification scale of 0.5TeV . mB(1) . 1TeV,
which is just outside the range of present colliders, one finds a B(1) relic
density in accordance with the WMAP [118] data of ΩCDMh

2 = 0.12 ±
0.02. One should, however, bear in mind that in this calculation the effect
of co-annihilations has been taken into account only in a rather simplistic
and approximative way; doing a full numerical analysis of the Boltzmann
equation, and taking into account the whole spectrum of states with their
respective radiative mass shifts as discussed in Section 3.3.5, could therefore
substantially alter the predictions for the B(1) relic density.

The detection properties of KK dark matter have already been studied
in some detail in previous analyses and look quite promising for next genera-
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tion’s detectors. As far as direct detection is concerned, the spin-dependent
cross-section between B(1) particles and target nuclei can be three to four
magnitudes larger than the spin-independent cross-section. On the other
hand, there is a rather strong dependence on the mass number which com-
pensates for this difference; an analysis of these two effects shows that detec-
tors with heavy target nuclei like germanium and xenon are best suited for
B(1) direct detection. The best present limit of mB(1) & 0.4TeV from such
experiments comes from the Edelweiss [113] experiment and is thus roughly
comparable to the limit from accelerator data. The planned ton-scale de-
tectors GENIUSII and XENON will be able to probe the whole mass range
that gives cosmologically interesting relic densities [45, 115].

The study of indirect detection of KK dark matter has mainly been fo-
cussed on neutrinos from B(1) particles trapped in the sun and the earth
[45, 76], as well as positrons [77, 78] and gamma rays [45, 33] from B(1) an-
nihilations in the galactic halo and center, respectively. The number density
of LKPs in the sun, but not yet in the earth, is likely to have reached an
equilibrium between capture and annihilation rate. The branching ratio for
annihilation into neutrinos is about 1%, which translates into the need of a
kilometer scale neutrino telescope in order to detect such a monochromatic,
high-energetic neutrino signal from the sun. Such a signal could potentially
even be used to discriminate between the B(1) and a neutralino since the
latter would most likely not yet have reached its equilibrium concentration
in the sun. Another interesting channel is the annihilation into electron-
positron pairs, B(1)B(1) → e+e−: with a branching ratio of about 20%,
one would expect this to give a distinguished peak signal in the positron
spectrum, at an energy equal to the B(1) mass. Due to propagation effects,
however, the peak is washed out and only for relatively low masses one
would actually be able to see such a striking signature above the positron
background - unless one allows for high boost factors due to clumpy halo
distributions, see Section 5.2.2. Finally, the photon spectrum that has been
studied previously does not show any characteristics that would make it
particularly promising for indirect LKP detection. As discussed in Section
5.3, this situation changes drastically when taking into account internal
bremsstrahlung of lepton final pairs as well as the line signal from direct
B(1) annihilation.
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5.2 The galactic mass distribution

The number of LKP (or any other dark matter particle of mass mB(1)) pair
annihilations per unit time and volume element is given by

dn

dt
=

1

2
〈σv〉 ρ

2(r)

m2
B(1)

, (5.2)

where v is the relative velocity of the two particles, σ the cross section for
the annihilation channel in question and ρ(r) the LKP (mass) density at
the position r where the annihilation takes place. The rate of the particles
produced in the final state thus depends quadratically on ρ, making it most
promising to look for regions of high dark matter concentrations when inves-
tigating possible observational consequences. On the other hand, this also
means that any attempt to accurately predict cosmic ray fluxes as a means
of indirect dark matter detection is greatly hampered by the fact that the
exact distribution of dark matter in our galaxy is still unknown to a large
extent. It therefore seems appropriate at this stage to discuss possible halo
profiles in some detail, including in particular the existence of substructures,
before presenting various indirect detection channels for (mostly) LKP dark
matter in the remainder of this chapter.

5.2.1 Smooth halo profiles

Direct observations can only poorly constrain the form of the halo profile
in the Milky Way, especially in its central parts, so it is usually taken from
N-body simulations of gravitational clustering. These simulations, however,
currently reach resolutions of merely 0.1 kpc for galaxies with the size of
the Milky Way. This means that the innermost slope of the density profile
can only be inferred by an extrapolation and is therefore principally bound
to have a considerable amount of uncertainty. Another thing to be aware of
is the fact that these N-body simulations still cannot account for the pres-
ence of baryons (and their coupling to photons) and therefore only include
interaction- and pressureless (dark) matter. An important aspect of baryons
is that they can fall faster into the potential well of the halo than the dark
matter particles themselves, because they are charged and thus can get rid
of their angular momentum by the emission of photons. After the infall of
baryons the potential well becomes steeper, which eventually should also
lead to higher central dark matter concentrations; this mechanism is known
as baryonic compression.
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Having all that in mind, an often used parameterization of possible spher-
ical halo profiles is given by

ρ(r) = ρ0

(

R0

r

)γ [1 + (R0/a)
α

1 + (r/a)α

]
β−γ
α

, (5.3)

where the parameters (α, β, γ) determine the halo model in question, R0 =
8.5 kpc is the distance of the sun to the galactic center and ρ0 ∼ 0.3 GeV cm−3

the local halo density. The scale radius a determines where the transition
for the radial dependence of ρ from large (ρ ∝ r−β) to small (ρ ∝ r−γ)
galactocentric distances takes place. N-body simulations favour cuspy halo
distributions like the NFW profile [95] with (α, β, γ) = (1, 3, 1), or the even
more cuspy Moore profile [94] with (1.5, 3, 1.5). Sometimes, one considers
for comparison also the case of an isothermal sphere, (2, 2, 0), which has a
constant density core and results in rather conservative values for cosmic
ray fluxes. There are indications that the scale radius a is not really an
independent parameter but strongly correlated with the virial mass of the
galaxy [57]; for the Milky Way and an isothermal sphere (NFW, Moore)
profile, one finds a = 4 kpc (21.7 kpc, 34.5 kpc) [62]. Finally, the most
recent simulations actually suggest a universal halo profile of the form

ρ(r) ≈ ρ0 exp
[

− (r/a)
1
n

]

, (5.4)

with n ≈ 5 [96, 92]. However, taking into account the effects of baryons
in a simple model of adiabatic contraction [36], this profile is effectively
transformed to a Moore profile [54, 108, 67].

Apparently, cuspy profiles with γ ≥ 1 exhibit divergent dark matter
densities in the central part of the halo. Since this is obviously an unphysical
result, one usually introduces by hand an inner cutoff radius rc, below which
the density stays constant. The most extreme (i.e. smallest possible) value
for rc is obtained by the observation that self-annihilation of dark matter
particles forbids too high densities; it can be calculated by demanding that
the innermost part of the halo is in an equilibrium state, where the self-
annihilation rate 〈σannv〉 ρ/mB(1) equals the typical inverse time scale for the

formation of the singularity, (Gρ̄)
1
2 , with ρ̄ being the average halo density

at collapse [22].

5.2.2 Substructure and clumps

Following numerically the evolution of primordial density fluctuations, one
finds that structure forms hierarchically, with the smallest structures form-
ing first and only later merging to larger structures. It is therefore plausible
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that there exist substructures (“clumps”) within the smooth halo distri-
butions discussed in the last section. This is highly relevant for the indi-
rect detection of dark matter, since the overall flux of a given cosmic ray
species at earth is always obtained by an effective average over the corre-
sponding local dark matter annihilation rates (5.2). Thus, as the difference
〈ρ2〉 − 〈ρ〉2 > 0 gets generically larger for more inhomogeneous dark matter
distributions, the existence of clumps can potentially greatly enhance the
expected annihilation signal.

Dark matter clumps have recently seen a revival of interest, triggered
by the discovery that for every WIMP candidate there appears a natural
cut-off Mc in the power spectrum, below which density perturbations are
washed out by collisional damping and subsequent free streaming (see [69]
for a review); above the cutoff, the power spectrum falls steeply with larger
masses. As a consequence, a considerable part of the dark matter should
have collapsed into substructures with a mass of about Mc, thereby form-
ing the first gravitationally bound objects in the cosmological evolution.
Numerical simulations seem to confirm these analytical predictions; with
promising looking survival probabilities, there is furthermore a good chance
that these microhalos can give a sizeable contribution to the total amount
of dark matter in the solar neighbourhood today [49].

Let ρcl(Mcl, rcl) be the typical density profile inside a dark matter clump
of massMcl, and ncl(Mcl, r) the number density of such clumps at a position
r in the halo. The effect of dark matter annihilations inside the clumps alone
is then obtained by replacing

ρ2(r) →
∫

dMcl

∫

d3rcl ncl(Mcl, r− rcl)(ρcl(Mcl, rcl))
2 (5.5)

' ρ0

∫

dMclMclδ(Mcl)ncl(Mcl, r) (5.6)

in the source function for the cosmic ray species under consideration. The
dimensionless quantity

δ ≡ 1

ρ0

∫

d3rcl (ρcl(Mcl, rcl))
2

∫

d3rcl ρcl(Mcl, rcl)
(5.7)

that appears here is a measure of the effective density contrast between an
average dark matter clump and the local halo density. The last step in (5.6)
is valid if ncl does not change very much on scales of the order of the size of
a clump, i.e. for the whole region of integration one has ncl(Mcl, r − rcl) ≈
ncl(Mcl, r). This should be a good approximation for any realistic scenario,
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in particular when the dominant part of substructures comes in very small
clumps.

A natural assumption is that the microhalos trace the mass distribution
except for regions very close to the galactic center, where strong tidal forces
or interactions with stars are expected to have destroyed all substructure by
now. Assuming for simplicity furthermore that the clumps mainly come in
one particular size, their number density is given by

ncl =
f

Mcl
ρ(r)Θ(r −Rd) , (5.8)

where Rd is the radius inside which all substructure has been completely
disrupted and f the fraction of the dark matter outside Rd that comes in
clumps. With this, the replacement (5.5) simplifies to

ρ2(r)→ fδρ0 ρ(r)Θ(r −Rd) . (5.9)

For the indirect dark matter detection by means of photons, the bulk an-
nihilation signal is expected from a region very close to the galacic center
(see next section) and the contribution from clumps is therefore most likely
negligible.1 Antiprotons, however, originate from all over the halo and in
that case the contribution from clumps in the simplified model described
here gives about fδ/2 times the flux that is expected without clumps (see
Section 5.4 and [V] for more details). The numerical simulations do not yet
reach sufficient resolutions to calculate δ in a satisfying way, but values for
fδ of up to several hundred or thousand do not seem unreasonable [49, V].
Clumps may thus significantly enhance the annihilation flux in antiprotons
(as well as that in positrons or other charged particles).

1This is true for the average effect of many small clumps. The situation can change
drastically if one instead considers the effect of individual, possibly very nearby clumps. In
fact, one may be tempted to interpret the recent serendipitous discovery of a gamma-ray
point source without optical counterpart [4] along these lines.
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5.3 Gamma rays from B
(1) annihilations

As a means of indirect dark matter detection, gamma rays are interesting
for two reasons. First, since they propagate through the interstellar (or
intergalactic) medium almost without interacting, they can directly probe
regions of high dark matter concentrations such as the galactic center, other
galaxies or nearby dark matter clumps. Prospects for the detection of an
exotic contribution to the gamma-ray spectrum become, secondly, more and
more promising with the advent of new, giant telescopes with unprecedented
sensitivity and energy resolution.

When looking towards a region of enhanced dark matter density, the
expected integrated gamma-ray flux at earth is given by

Φγ(ψ) =
Nγ〈σv〉γ
8πm2

B(1)

∫

l.o.s
d`(ψ)ρ2(r) , (5.10)

where the integral is along the line of sight for a given angle ψ of observation,
〈σv〉γ the annihilation rate into photons and Nγ the number of photons per
B(1) pair annihilation. A real detector has only a finite angular resolution
∆Ω, so one has to average over the angular dependence of the line-of-sight
integral that appears above. It is then convenient to introduce the dimen-
sionless quantity

〈J〉∆Ω(ψ) ≡
1

8.5 kpc

(

1

0.3 GeV cm−3

)2 1

∆Ω

∫

∆Ω
dΩ

∫

l.o.s.
d`(ψ)ρ2(r) ,

(5.11)
which contains all the astrophysical uncertainties connected to the expected
gamma-ray flux (as opposed to the underlying particle physics that enters
through mB(1) and 〈σv〉γ) [28]. With this, the flux becomes

Φγ(ψ) = 9.4·10−13
(

Nγ〈σv〉γ
10−26 cm3s−1

)(

1TeV

mB(1)

)2

·∆Ω 〈J〉∆Ω(ψ) cm
−2s−1sr−1 .

(5.12)
For example, when looking towards the galactic center with a detector like
the H.E.S.S. telescope, i.e. with an opening angle of ∆Ω = 10−5 sr, one
obtains

∆Ω 〈J〉∆Ω(0) = 0.13 b sr . (5.13)

In this expression, one has to set b = 1 if the dark matter density ρ fol-
lows a NFW profile [44]. On the other hand, starting with an initial NFW
distribution, but taking into account the effect of baryonic compression due
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Figure 5.2: Contributions to B(1)B(1) → `+`−γ. In principle, there also exist diagrams
with an s-channel Higgs boson; due to the small Higgs mass m2

H ¿ s, however, these are
greatly suppressed as compared to the ones shown above.

to the dense stellar cluster that is observed to exist very near the galactic
center, the boost factor b may be as high as 1000 [108, 32].

In this section, it will be shown that photons radiated away from charged
particle final states give a large contribution to the high-energy part of the
photon spectrum, providing a promising signature when it comes to dis-
criminating a possible annihilation signal from the gamma-ray background
(which most probably is dominated by astrophysical processes). This is a
very generic result, so this spectral signature is not only discussed for the
B(1), but for comparison also for the case of neutralino and scalar dark
matter. Finally, the line signal from direct annihilations into photons, if
detected, would of course provide independent “smoking gun” evidence for
particle dark matter; in Section 5.3.2, the corresponding rates for the B(1)

are therefore presented and contrasted with today’s and future’s detector
performances.

5.3.1 The continuous signal

The main annihilation channel of B(1) pairs is into charged leptons, which is
a good motivation to consider internal bremsstrahlung processes as depicted
in Fig. 5.2, where an additional photon appears in the final state. The
computation of the corresponding Feynman amplitudes is straight forward
and, as found in [III], the resulting differential photon multiplicity is well
approximated by

dN `
γ

dx
≡ d(σ`+`−γv)/dx

σ`+`−v
' α

π

(x2 − 2x+ 2)

x
ln

[

m2
B(1)

m2
`

(1− x)
]

, (5.14)

where x ≡ Eγ/mB(1) . The factor of α/π in front is expected from the
electromagnetic coupling and the phase space difference between two- and
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three-body final states. In addition to that, there is a large logarithm due to
a collinear divergence that is known from standard electrodynamics: highly
relativistic leptons tend to loose their energy very rapidly by the emission
of photons parallel to their direction of movement.

In addition to this primary source of photons, there are several secondary
contributions to the photon spectrum. Synchroton radiation from the final
state leptons, for example, can be a significant source of photons at low
energies; when compared to the observed radio flux from the galactic center,
one may use this to derive bounds on the UED model that are comparable
to those coming from electroweak precision measurements at colliders [33].
Inverse Compton scattering on CMB photons and starlight might contribute
even at higher energies, but generally this is expected to be only a small
correction [8]. Finally, the fragmentation of final state quarks and τ leptons
contributes to the total photon spectrum even at the high energies that
will be the focus here, mainly through the decay of neutral π0 bosons. To
account for this, parametrizations for the respective photon multiplicities
dN q,τ

γ /dx are adopted, as obtained in [62] by using the Monte Carlo code
Pythia [116].

The total differential number of photons per B(1) pair annihilation is
then obtained by

dN eff
γ /dx ≡

∑

i

κidN
i
γ/dx , (5.15)

where the sum is over all contributing processes and κi are the correspond-
ing branching ratios. Previous analyses of the photon flux correspond to
the relatively soft and sharply falling spectrum from quark fragmentation
alone that is shown as a dashed line in Fig. 5.3. For intermediate ener-
gies, τ fragmentation (dotted line) becomes much more important, while
at energies close to the B(1) mass, internal bremsstrahlung dominates, giv-
ing rise to a very hard total gamma-ray spectrum with a sharp cutoff at
the highest kinematically accessible energies. Following a conservative ap-
proach, internal bremsstrahlung from charged final states other than leptons
has been neglected here due to the small annihilation branching ratio into
vector bosons on the one hand and in order to avoid the complexity of a
detailed study of quark fragmentation on the other hand. (Note, however,
that Pythia’s way of handling quark final states should in principle take
into account internal bremsstrahlung, though certainly not to a fully satis-
fying extent, see also [35]). These other charged final states might thus in
principle further enhance the photon yield at high energies, though this is
not expected to be a large effect.
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Figure 5.3: The total number of photons per B(1)B(1) annihilation (solid line). Also
shown is what quark fragmentation alone would give (dashed line), and adding to that τ
lepton production and decay (dotted line). Here, a B(1) mass of mB(1) = 0.8 TeV and a
5% mass splitting at the first KK level was assumed, though the result is actually quite
insensitive to these parameters.

The origin of the TeV gamma-ray signal from the direction of the galactic
center, as observed by the H.E.S.S. collaboration [3], is still unexplained. In
Fig. 5.4, the corresponding data points are shown together with the expected
spectrum from annihilating Kaluza-Klein dark matter withmB(1) = 0.8 TeV,
smeared over the detector resolution of 15 %. While annihilating LKPs
certainly cannot explain the whole range of data, it is interesting to note that
the expected flux comes out to be of the right order of magnitude for rather
reasonable assumptions about the boost factor b. Once one understands the
underlying physics of the background signal better, one may thus well be able
to extract such an exotic contribution from the total spectrum, especially
since one has quite a remarkable signature to look for. Another point to
notice is that even if one expects a sharp cutoff around 1 TeV for KK dark
matter, the shape of the spectrum for lower energies comes remarkably close
to what is observed for the whole range of energies. To illustrate this, the
hypothetical case of an LKP with mB(1) = 9 TeV is also included in Fig. 5.4;
while a B(1) with such a high mass is excluded because it would overclose the
universe, one might speculate that there exist other reasonable extensions of
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Figure 5.4: The H.E.S.S. data [3] compared to the gamma ray flux expected from a
region of 10−5 sr encompassing the galactic center, for a B(1) mass of 0.8 TeV, a 5% mass
splitting at the first KK level, and a boost factor b around 200 (dotted line). The solid line
corresponds to a hypothetical 9 TeV WIMP with similar couplings, a total annihilation
rate given by the WMAP relic density bound, and a boost factor of around 1000. Both
signals have been smeared to simulate an energy resolution of σ = 15%, appropriate for
the H.E.S.S. telescope.

the SM that would allow such high masses. In fact, for a hypothetical dark
matter particle with similar – but about three times stronger – couplings to
SM particles as the B(1), one would automatically both get the right relic
density for a 10 TeV particle and be able to reproduce the flat TeV spectrum
as observed by the H.E.S.S. collaboration.

5.3.2 The two photon annihilation line signal

The direct annihilation of B(1) particles into photons, B(1)B(1) → γγ, is
loop-suppressed so the resulting photon flux from, e.g., the galactic center
cannot be expected to be very large. On the other hand, the detection
of such a monochromatic line signal would definitely be a “smoking gun”
signature for the existence of particle dark matter, so it is of great interest
to carefully study this process, just as it has been done previously for the
case of neutralino annihilation [27, 29].

By an analysis of the Lorentz structure of the Feynman amplitude, one
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can considerably simplify the necessary amount of calculations; in the limit
of vanishing relative velocity v of the incoming B(1) particles, and after tak-
ing into account all symmetries of the process, there remain only a few scalar
coefficients to be calculated. Alternatively, one may use the symmetries as
a cross-check of the analytical results. This analysis is described in detail in
the accompanying paper [IV], so there is no need to repeat it here.

For a subset of contributing diagrams, namely the fermion box diagrams
shown in Fig. 5.5, the corresponding cross section is found to be

σv =
α2emα

2
Y g

4
eff

144πm2
B(1)

{

3 |B1|2 + 12 |B2|2 + 4 |B6|2 − 4Re [B1 (B
∗
2 +B∗6)]

}

,

(5.16)
where

g2eff ≡
∑

Q2Y 2 =
52

9
, (5.17)

and the sum is over all SM fermions with charge Q and hypercharge Y . The
three scalar coefficients B1, B2 and B6 that appear here can be expressed in
terms of six known scalar loop integrals, with the corresponding analytical
expressions given in the appendix of [IV].

In addition to the relatively small number of fermion box diagrams, there
exist numerous diagrams containing scalar particles. The 22 different types
of diagrams, i.e. those that are not related by any obvious symmetries, are
shown in Fig. 5.6. Obviously, it would be a formidable task to calculate all
these contributions analytically. Numerically, however, it can be done in a
fairly straight-forward way by implementing the necessary Feynman rules
of Appendix A in the FormCalc package [74]. The result of this numerical
computation is that all the scalar diagrams merely make up a few percent
of the total cross section. Note, finally, that the contribution of diagrams
containing higher KK excitations is suppressed by the appearance of large
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Figure 5.6: The different types of scalar diagrams, up to first KK level, that contribute
to B(1)B(1) → γγ.

masses in the propagators; as an illustrative example, this general expecta-
tion has been confirmed numerically by including second level KK fermions
in the spectrum of states.

In conclusion, the analytical expression (5.16) should give an approxi-
mation to the full annihilation rate into two photons that is correct at the
percent level. When it comes to observational prospects for such a gamma-
ray line from the direction of the galactic center, today’s detector resolutions
are unfortunately not sufficient to resolve its natural linewidth of about 10−3

that results from a Doppler shift due to the galactic velocities of the LKPs.
In Fig. 5.7, the expected gamma-ray spectrum around the LKP mass is
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plotted for various detector resolutions; as can be seen, one would need a
resolution of at least 1% in order to discriminate the line signal from the
continuous signal discussed in the previous section.

To conclude this section, there are two other processes, B(1)B(1) → Zγ
and B(1)B(1) → Hγ, that result in a monochromatic gamma-ray line at an
energy

Eγ = mB(1)

(

1−
m2
Z,H

4m2
B(1)

)

. (5.18)

Due to the high mass of the B(1), these lines cannot be resolved separately,
but effectively add to the γγ line, thus further enhancing the signal. The
diagrams contributing to the Zγ line have a very similar structure as for the
γγ case – except for the fact that Z bosons also have an axial vector part in
their coupling to fermions. Taking this into account, one can compare the γ
and Z coupling strengths to obtain as a quick estimate that the Zγ process
should enhance the gamma ray signal shown in Fig. 5.7 by about 10%; this
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estimate has been confirmed numerically. The contribution from the Hγ
line, absent in the supersymmetric case, would further enhance the signal.
However, since the diagrams that contribute here have a rather different
structure, the analysis of this process is much more involved and has not
been carried out so far.

5.3.3 Discrimination against other dark matter candidates

As seen in the previous sections for the case of KK dark matter, internal
bremsstrahlung from lepton annihilation products gives a very characteris-
tic signature for the gamma-ray spectrum, with a sharp cutoff at the LKP
mass. In fact, this is a rather generic effect that should occur in a similar
way also for other dark matter candidates, whenever they annihilate into
charged particles, thus providing a hitherto undiscussed signature for indi-
rect dark matter detection (see however the very recent [35], where a similar
observation was made). Since it is hard to imagine that any astrophysical
effect could mimic such a signature, its observation would give a similar
strong evidence for the WIMPy nature of dark matter as the observation
of the line signal from direct annihilation. As an illustration of this idea
and for the purpose of a direct comparison with the case of KK dark mat-
ter, radiation from charged particle final states will therefore be studied in
the following for two different dark matter candidates, the neutralino and a
scalar dark matter particle. It will be shown that this type of contribution
to the gamma-ray spectrum can have important observational consequences,
even in cases where one can not expect as dramatic enhancement factors as
logmB(1)/me.

Neutralinos

The neutralino is the most well-studied WIMP dark matter candidate and
arises as the lightest new particle in supersymmetric extensions of the SM,
where all SM fermions (bosons) are equipped with a bosonic (fermionic) su-
persymmetric partner; for a detailed review on supersymmetric dark matter,
see [81, 23, 31]. While the annihilation into (light) leptons is helicity sup-
pressed, a considerable branching ratio can go into charged gauge bosons,
depending on the parameters of the model. The focus will therefore in the
following be on this particular annihilation channel and the case of heavy
neutralinos, since then one can expect large enhancement factors mχ/mW ,
in analogy to what was found in (5.14) for lepton final states.

In general, the neutralino is a linear combination of the superpartners of
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the gauge and Higgs fields,

χ ≡ N11B̃ +N12W̃
3 +N13H̃

0
1 +N14H̃

0
1 . (5.19)

However, things simplify considerably if one considers the case of a pure
Higgsino, with N13 = ±N14 and N11 = N12 = 0, which has to be satisfied
approximately for heavy neutralinos if supersymmetry is to provide a unifi-
cation of coupling constants at the scale of grand unified theories (GUTs).
The case of a pure wino gives, up to an overall factor, the same results as
for a Higgsino, while a pure bino does not couple to W at lowest order at
all. Eventually, one will of course be interested in a full analysis even for the
case of mixed states. The main purpose of the present treatment, however,
is simply to draw attention to the new kind of signatures one can expect in
the case of supersymmetric dark matter.

For a pure Higgsino, the only diagrams with W+W−γ final states are
shown in Fig. 5.8. A peculiarity of supersymmetry is that the neutralino is a
Majorana fermion, which means that it is its own antiparticle. In situations
like this, one can encounter diagrams with crossing fermion lines. When
calculating them, particular care must be taken to treat all spinor indices
correctly (see, e.g., [73] for a complete list of Feynman rules); as a cross-
check of the results it is therefore of great advantage to have access to an
independent method of calculation. This is found by observing that, in the
limit of very low relative velocity, the pair of incoming neutralinos must be
in an initial state that is an S-wave with pseudoscalar quantum numbers
due to the Majorana nature of the neutralino. To project out this state, one
inserts the operator

P1S0 ≡ −
1√
2
γ5 (mχ − 6p) , (5.20)

where p is the momentum of one of the incoming χ, in front of the product
of gamma-matrices from the fermion line; instead of summing over all spin
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M2 µ mA mf̃ Af tanβ mχ mχ±1
Zh W± Ωχh

2

3.2 1.5 3.2 3.2 0.0 10.0 1.50 1.51 0.92 0.39 0.12

Table 5.1: MSSM parameters for the model used in Fig. 5.9, and the resulting neu-
tralino mass (mχ), chargino mass (m

χ
±
1
), higgsino fraction (Zh), branching ratio into W

pairs (W±) and neutralino relic density (Ωχh
2), as calculated with DarkSusy [68] and

micrOMEGAs [21]. Masses are given in units of TeV.

states, one then just has to take the trace over the spinor indices. All
analytical results of [VI] were obtained by both explicitly calculating the
diagrams of Fig. 5.8 and their counterparts with crossed ingoing fermion
lines, as well as by applying the projector method (5.20), where one only
has to calculate the diagrams that are explicitly given in Fig. 5.8.

The analytical results for the photon multiplicity are shown in Fig. 5.9
and compared with the example of a concrete set of parameters as it might
be realized in the minimally supersymmetric standard model (MSSM). To
illustrate two different effects that can be singled out in the spectrum, the
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Figure 5.10: The total expected differential photon distribution from χχ annihilations
(solid line), using the MSSM model of Table 5.1. The contributions fromW fragmentation
and χχ → γγ, Zγ lines (dotted), as well as from the radiative processes χχ → W+W−γ
(dashed), are shown separately. On the left, the actual spectrum is displayed, while the
figure on the right shows a zoom-in of what this would look like for a detector with an
energy resolution of 15 percent.

hypothetical cases of a very high neutralino mass and a large mass shift
between the neutralino and the chargino in the propagator, respectively, are
also shown. Both cases lead to a significant enhancement of the photon flux
at high energies, albeit for very different reasons. In the limit of high neu-
tralino masses, the outgoing W bosons can be treated as light and are thus
expected to show a similar (divergent) infrared behaviour as QED photons;
for kinematical reasons, however, a very low-energetic W is automatically
accompanied by a high-energetic photon. For large mass-shifts, on the other
hand, the effect of longitudinal charged gauge bosons becomes visible. While
these polarization states are not possible for a 1S0 final state with only two
vector particles, this channel opens up when an additional photon is added
to the final state.

Apart from the processes shown in Fig. 5.8, one expects neutralino in-
duced contributions to the gamma-ray spectrum from W± fragmentation as
well as from the γγ [27, 29] and Zγ [123] lines. The total expected spectrum
for the same MSSM model as in Fig. 5.9 is plotted in Fig. 5.10, including
what it would look like with a detector resolution of 15%, which is typical
for current ACTs. Clearly, the signal from internal bremsstrahlung has two
different effects. First, it enhances the peak signal by a factor of 2, even
though the peak signal is known to be already very large for high neutralino
masses. Secondly, it fills out the ’dip’ just below the peak, thereby dramat-
ically increasing the photon flux at somewhat lower energies. In summary,
photons radiated from charged gauge boson final states of (heavy) neutralino
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Figure 5.11: The only annihilation channel of the proposed light scalar dark matter
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annihilation provide a striking signature and a promising signal to look for.
Furthermore, the form of the spectrum should make it rather easy to dis-
tinguish between heavy neutralinos and LKPs as dark matter candidates
– provided, of course, that the total flux is high enough to be detectable
(which depends on the dark matter profile in the halo, as explained in the
last sections).

Scalar dark matter

Recently, the proposal of a very light scalar dark matter candidate, with a
mass in the range from 1 to 100 MeV, has been discussed in some detail (for
a review, see [37]). The underlying particle physics model, however, is not
motivated by any fundamental theory but constructed in a phenomenological
and rather ad hoc fashion. Still, it is intriguing to see the principal possibility
to evade the considerable observational bounds from colliders, i.e. the fact
that such a light particle indeed could have escaped detection by for example
LEP. A major advantage of this model, and in fact a main reason why it was
proposed in the first place, is that it could explain the 511 keV line from
e+e− annihilation [38] that is observed from the direction of the galactic
center and for which so far no astrophysical explanation exists [80].

The idea is that the scalar dark matter particle χ couples to the gauge
boson of a new, spontaneously broken U(1) symmetry, called a U boson,
whose only coupling to SM particles is to fermions. Pairs of dark matter
particles can then annihilate through the s-channel process that is shown
in Fig. 5.11. The only other kinematically accessible annihilation channels
are into photons and neutrinos, and these are basically postulated not to
exist, thereby evading in particular any direct gamma-ray constraints from,
e.g., the CMB. Low energetic positrons loose their energy primarily through
ionization, so the production of potentially detectable gamma rays from
synchroton radiation or inverse Compton scattering is also avoided in this



66 CHAPTER 5. KALUZA KLEIN DARK MATTER

model [120].
As it was realized in [20], however, internal bremsstrahlung of the pro-

duced e+e− pairs is a source of photons that cannot be switched off. To
estimate this effect, the authors of [20] used an already available result for
the kinematically similar process e+e− → µ+µ−γ; with a corresponding
replacement of the appearing masses, this is given by

dσ

dEγ
= σtot ×

αem
π

1

Eγ

[

ln

(

4m2
χ

m2
e

(

1− Eγ
mχ

)

)

− 1

][

1 +

(

1− Eγ
mχ

)2
]

.

(5.21)
Since the lowest order cross section σtot is determined by the requirement
that one can explain the strength of the 511 keV line, the gamma-ray spec-
trum can be calculated without knowing any details of the couplings of the
U boson. A comparison with the EGRET [91] data on the gamma-ray spec-
trum in that energy range can then be used to constrain the dark matter
particle mass to be less than 20 MeV. This means that a large parameter
range of the originally proposed model is excluded.

These constraints can be improved by performing the actual calculation
for the process that is depicted in Fig. 5.11, with the additional emission of
a final state photon. The coupling of the scalar particle to the U boson is
given by

g(p1 − p2)µ (5.22)

and that of the U boson to electrons by

γν (gRPR + gLPL) , (5.23)

where p1, p2 are the momenta of the incoming particles and g, gR, gL are
unknown coupling constants. Note that, when compared to the case of KK
or neutralino dark matter, the calculation of the radiative correction to the
lowest order cross section is considerably complicated by the fact that one
may no longer consider the case of vanishing relative velocity between the
incoming particles, v = 0, since in that limit the coupling between scalar and
vector particles vanishes as well. This means that one has more kinematical
degrees of freedom and, consequently, the angular integration is no longer
trivial to perform.

For the three body final state that is considered here, the cross section
is given by [55]

dσ =
|M|2

64(2π)5vm2
χ

dEγ dEe dα dβ dγ , (5.24)
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Figure 5.12: The cross-section for scalar dark matter annihilating into e+e− pairs plus
an additional photon in the final state, for mχ = 20 MeV and normalized to the lowest
order cross section (solid line). The approximation used by [20] is shown as a dashed line.

where Ee is the center-of-mass energy of the electron and α, β, γ are the
Euler angles, as defined for example in [112]. Let φγ , φ+ and φ− be the
angles of the γ, e+ and e− with p1 in the center-of-mass system (CMS),
respectively. They can be related to the Euler angles as follows:

cosφγ = cosα cos γ − sinα sin γ cosβ (5.25a)

cosφ± = cosα cos(γ ± ϕ±)− sinα sin(γ ± ϕ±) cosβ . (5.25b)

The CMS-angles ϕ± between the e± and the photon can easily be expressed
in terms of Eγ and Ee. Now, it is important to realize that the only way
φγ and φ± enter in the Feynman amplitudeM is in the form v cosφγ,±. By
expanding |M|2 in v and retaining merely terms to lowest order, one can
therefore greatly simplify the angular integrals in (5.24) so that even the
integral

∫

dEe becomes analytically performable.
The result is shown in Fig. 5.12, together with the approximate form

(5.21) that was used in [20]. Again, the photon spectrum does not depend
on the choice of the coupling constants, as everything is related to the ze-
roth order process of Fig. 5.11. As one can see, the full calculation basically
confirms the approximation of [20], especially at lower energies. At high en-
ergies, one gets an enhancement of up to 35% as compared to the expression
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(5.21). This translates into an improved upper bound of mχ . 10 MeV for
the allowed scalar dark matter particle’s mass, instead of mχ . 20 MeV as
found in [20].

5.4 High-energetic antiprotons

In contrast to gamma rays, the interaction of antiprotons with the inter-
stellar medium as well as (largely unknown) galactic magnetic fields cannot
be neglected. Their propagation should therefore rather be understood as a
diffusive process through the galactic halo, and the direction of a detected
antiproton at earth reveals only little about its spatial origin. In order to de-
scribe the diffusive motion of charged (anti-)particles through the interstellar
medium, one usually adopts cylindrical models of the Milky Way, with a thin
disk containing all the stars and a much thicker diffusive halo of the same ra-
dius Rh; at the border of this propagation region, the particles are allowed to
escape freely. Above a certain threshold, the diffusion coefficient is assumed
to scale with the particle rigidity as a power-law, D(R) ∝ Rδ (δ ∼ 0.7),
which means that high-energetic particles tend to loose their energy more
quickly. The advantage of such a simple model is that analytical solutions
to the diffusion equation are available and that it still gives a rather reason-
able account of the basic underlying physics. Analytical solutions are even
available when one refines this model considerably, such as allowing for the
presence of a galactic wind, blowing the particles away from the disk. One
may also take into account the effect of the (time-varying) solar activity on
charged particles near earth, as well as reacceleration by stochastic magnetic
fields during propagation or shock waves from supernova remnants. In the
following, however, the focus will be on the very high-energy regime, where
these effects can be neglected compared to the other uncertainties involved
(see [24, 53] and references therein). The parameters of the propagation
model can be constrained by analyzing the flux of stable nuclei, mainly by
fitting the observed boron to carbon ratio B/C [89].

The background flux is dominated by antiprotons from inelastic colli-
sions of cosmic ray protons with hydrogen and helium in the interstellar
medium. Since the spectra of both cosmic ray protons and helium nuclei
are quite well known, one can again use the B/C ratio to determine the prop-
agation parameters describing the diffusion model and obtain a prediction
for the background flux that fits the available antiproton data remarkably
well [90]. A clear drawback here is that the highest energy for which such
data currently are available is about 40 GeV; this situation will change with
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upcoming experiments like PAMELA [40] and AMS-02 [19]. Until then, one
has to rely on extrapolations for propagation parameters in the high-energy
regime.

Antiprotons from LKP annihilations

Annihilating KK dark matter is an additional source of antiprotons through-
out the galactic halo. At tree level, those final states that can hadronize and
then fragmentize into antiprotons are top and charm (∼ 11%) as well as bot-
tom quark pairs (∼ 0.7%), charged (∼ 0.9%) and neutral (∼ 0.5%) vector
bosons, and Higgs bosons (∼ 0.6%). Another interesting channel is the
(loop-suppressed) production of gluon pairs, which has a very similar struc-
ture to the process B(1)B(1) → γγ that was discussed before. Here, however,
only the fermion box diagrams displayed in Fig. 5.5 have to be taken into
account, with of course no contribution from leptons. In contrast to the two
photon case, this is an exact statement, valid to zeroth order in the quark
masses mq (which is also the limit in which the two photon analysis has
been performed ). To see this, note that the only additional diagrams that
could potentially contribute are shown in Fig. 5.13. A fermion triangle with
only vector couplings, however, is exactly cancelled by its antifermion coun-
terpart; therefore, the first diagram does not contribute at all. The second
diagram has a fairly simple Lorentz structure and can be calculated in the
same way as described in [IV] for the two photon case. For each quark, one
then finds the following contribution to the Feynman amplitude:

iMµ1µ2µ3µ4 = −iαsαYBgg,H
1

{

gµ1µ2pµ3pµ4 − 1

2
gµ1µ2gµ3µ4

}

, (5.26)
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where p is the momentum of the incoming B(1) particles and the scalar
coefficient

Bgg,H
1 =

ξ

4−m2
H/m

2
ξ(1)

(

16(1− ξ)C0(4, 0, 0; ξ, ξ, ξ)− 8
)

(5.27)

is suppressed by a factor of ξ ≡ m2
q/m

2
B(1) that can be traced back to the

Yukawa coupling of the Higgs to the quarks. (The scalar loop integral C0

is defined in the appendix of [IV]). Even for the top quark, this contributes
with less than 2% to the total two gluon cross section. To finally get this total
cross section, up to O(ξ0), one has thus just to take the expression (5.16),
restrict the summation in (5.17) to quarks and substitute the electric charge
Q by 1 (this corresponds to setting g2eff = 11/2); the color average is then
performed by the simple recipe α2

em → (2/9)α2
s [26]. As a result, one finds

that gluon pairs are as copiously produced as neutral gauge bosons at tree
level.

With the exception of the Higgs boson, the fragmentation functions
dNf/dT (mB(1) , T ) for any annihilation product f , where T is the p̄ kinetic
energy, can easily be obtained by Monte Carlo programs such as Pythia

[116]. From this, the Higgs fragmentation function can be found by letting
the Higgs decay in flight and then boosting and adding up the fragmentation
functions for all its decay products that fragmentize into antiprotons. To

see how this works in detail, boost first with |vH | =
√

1−m2
H/m

2
B(1) from

the CMS into the system where one of the Higgs final states is at rest. In
this system, the Higgs decays into some pair of (anti-)particles XX̄, each
with an energy mH/2 and an angle θ between vH and their own direction of
motion. Transforming back to the CMS, each of the Higgs decay products
has an energy of

EXCMS =
mB(1)

2

(

1 +
√

(1−m2
H/m

2
B(1))(1− 4m2

X/m
2
H) sin θ

)

. (5.28)

Since one starts out with a Higgs pair, the contribution of this particular an-
nihilation process is given by 2 ·dNX/dT (EX

CMS, T ), i.e. twice the amount of
antiprotons that a particle with mass EX

CMS decaying into an XX̄ pair would
give. The total Higgs fragmentation function dNH/dT is then obtained by
summing over all relevant Higgs decay channels and averaging over θ:

dNH

dT
= 2 · 1

4π

∫

dΩ
∑

X

dNX

dT
(EX

CMS, T ) . (5.29)
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Figure 5.14: The individual contributions to the total antiproton differential spectrum
(thick solid line) from quark final states (dashed lines), vector bosons (dotted lines) and
the Higgs (light solid line). From top to bottom at the left margin, the corresponding
channels are B(1) pair annihilations into tt̄, cc̄, gg, bb̄, HH, W+W− and ZZ, respectively.
The B(1) mass in this example has been chosen as mB(1) = 1000 GeV.

Fig. 5.14 shows the individual contributions to the antiproton differential
spectrum from B(1) annihilations,

g(T ) ≡
∑

f

Bf dN
f

dT
, (5.30)

where Bf is the branching ratio for the respective annihilation channel and
the fragmentation functions have been taken from the DarkSusy package
[68], which uses tabulated results of a large number of events simulated with
Pythia. For the Higgs, it has been assumed for simplicity that it decays
mainly into bb̄ and W+W−, which is reasonable for a Higgs mass of around
130 GeV [1]. As expected, the contributions from top and charm quarks
clearly dominate most of the spectrum. For very high energies, however,
charged vector bosons become almost more important. Note also the non-
negligible contribution from gluons.
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Expected antiproton fluxes

The number of antiprotons per unit time, energy and volume element that
are produced by LKP annihilations at some position r in the galactic halo
is described by the source function

Qp̄(T, r) =
1

2
〈σannv〉B(1)

(

ρB(1)(r)

mB(1)

)2
∑

f

Bf dN
f

dT
. (5.31)

Once one specifies the source function, one can find a solution to the diffusion
equation for the setup described at the beginning of this section. Due to
the cylindical symmetry of the problem, it can be written as an expansion
in Bessel functions and for the antiproton flux at earth one finds

Φp̄(R0, T ) =
1

4π
vp̄(T )

∞
∑

s=1

J0

(

ν0s
R0

Rh

)

M0
s (0) , (5.32)

where vp̄(T ) is the antiproton’s velocity, ν0s the sth zero of J0 and M0
s (0) =

M0
s (0, T ) is defined in [24]; it involves spatial integrals over the whole prop-

agation region that have to be calculated numerically. A technical problem
connected to the computation of the flux (5.32) is that the series only con-
verges rather slowly, taking into account the non-negligible computation
time that is required for the numerical integration of M 0

s (0). However, the
convergence behaviour can be improved considerably by defining

Φ
(0)
i ≡

1

4π
vp̄(T )

i
∑

s=1

J0

(

ν0s
R0

Rh

)

M0
s (0) , (5.33a)

Φ
(n+1)
i ≡ 1

5

i+4
∑

j=i

Φ
(n)
j . (5.33b)

Fig. 5.15 illustrates the effect of considering Φ
(n)
i instead of the original series

Φ
(0)
i : Already for low values of n, the convergence is much faster and one can

therefore significantly reduce the number of φs that have to be computed in
order to arrive at a given level of accuracy.

The impact of different halo profiles or LKP masses on the expected
antiproton flux has been discussed in detail in the accompanying paper [V].
The conclusion is that for smooth halo distributions one cannot expect any
distortion of the background spectrum. Allowing for clumpy halo distribu-
tions, however, can result in a significant change of the background flux.
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Figure 5.15: The numerical convergence of the flux as calculated at T = 100 GeV, in
arbitrary units. See text for further details.

This is illustrated in Fig. 5.16 for a boost factor of around 100, which seems
quite achievable. In fact, such a distortion in the antiproton spectrum can be
considered as a very useful signature for B(1) dark matter when combined
with the distinguished peak in the positron spectrum [76]. For the high
LKP masses that are cosmologically interesting, this positron peak is usu-
ally washed out so that it cannot be distinguished against the background;
for boost factors that give a distortion of the antiproton spectrum, however,
it has to show up. Such a coincidence of these two signals is absent for ex-
ample in the case of supersymmetry (where one can get similar distortions
of the antiproton spectrum, though sometimes only for even higher boost
factors), since there the annihilation of neutralino pairs into light leptons is
helicity suppressed. It will therefore be exciting to await upcoming exper-
iments like PAMELA [40] and AMS-02 [19] that will be able to probe the
spectrum of both high-energetic antiprotons and positrons.
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Figure 5.16: (From [V]). The dotted line shows the antiproton background flux as
determined in [90], extrapolated for the energy range from 100 GeV to 1 TeV. The expected
antiproton contribution from annihilating KK dark matter for the case of a clumpy NFW
profile with fδ = 200 (giving a boost factor of about 100) and mB(1) = 800 GeV is
plotted as a dashed line and the solid line gives the expected total spectrum. The data
points are taken from the balloon-borne experiments BESS [99, 88] and CAPRICE [39].
Furthermoore, the detectional prospects of PAMELA [40] and AMS-02 [19] are indicated
by displaying their projected data after three years of operation.



Chapter 6

Summary and Outlook

The idea that our world consists of more than the observed three spatial
dimensions is a fascinating possibility, both conceptually and phenomeno-
logically. In this thesis, a particular extra-dimensional model was scrutinized
and its possible implications for cosmology carefully studied. This model of
universal extra dimensions (UEDs) is basically a higher-dimensional version
of the standard model of particle physics, where all particles are allowed to
propagate in the higher-dimensional bulk.

It is important to realize that a varying volume of the internal space
of any higher-dimensional theory leads to varying coupling constants in the
corresponding (effective) four-dimensional theory. Extra dimensions there-
fore have to be stabilized in order to evade the strong observational bounds
on such a variation. In the simplest case of homogeneous extra dimensions,
static solutions for their size arise naturally from the higher-dimensional
field equations of general relativity during both radiation and vacuum energy
dominated eras of the cosmological evolution. During matter domination,
however, no static solutions exist. Adding an explicit stabilization mech-
anism, this situation does not change; it seems, however, that the extra
dimensions can be effectively stabilized already for very shallow potentials
and that any observational bounds therefore can be satisfied rather easily.

The cosmologically most relevant aspect of the UED model is that it
naturally gives rise to a dark matter candidate B(1), which is the first
Kaluza-Klein excitation of the weak hypercharge gauge boson. In this thesis,
prospects for various indirect detection possibilities of Kaluza-Klein dark
matter have been studied in some detail and found to be promising. This
included, in particular, the contribution of annihilating B(1) particles to the
gamma-ray and antiproton spectrum. As a by-product, it was discovered

75
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that charged particle final states from the annihilation of any dark matter
particle are very interesting in that final-state radiation can contribute signif-
icantly to the gamma-ray spectrum. The expected signature, with its sharp
cutoff at the dark matter particle’s mass, provides a new and promising way
for the indirect detection of dark matter. For illustration, this process was
therefore studied not only for Kaluza-Klein dark matter, but also for scalar
and neutralino dark matter.

An attractive feature of the UED model is that it contains only very few
free parameters – in principle only the compactification scale R and the high-
energy cutoff Λ – and the whole cosmologically interesting range of these
parameters will be scanned throughout by the LHC. This has to be con-
trasted with the huge parameter space of supersymmetry, where one cannot
exclude all neutralino dark matter candidates even if no supersymmetric
particles are found at the LHC. There is a second, more phenomenologi-
cal reason why it is interesting to study the B(1): it can serve as a sim-
ple prototype for massive vector dark matter particles. So far, there is no
direct evidence for the nature of dark matter nor for the existence of super-
symmetry. It is therefore important to keep an open mind and seriously
consider other dark matter candidates – or, taking into account the plethora
of existing proposals, rather types of candidates – than only the neutralino,
which in this general context may be viewed as the prototype of a Majorana
fermion dark matter particle.

For the near future, several obvious roads for a further study of Kaluza-
Klein dark matter open up. First, a more detailed investigation of possible
astrophysical effects in the context of the indirect detection methods dis-
cussed in this thesis should be undertaken. This includes the fate of the
produced electrons and positrons as well as a closer look at the propagation
model for antiprotons, especially at lower energies, where one in contrast to
higher energies already has access to rather accurate data. Secondly, it is
certainly worth to reconsider the freeze-out process and to improve the cal-
culation of the B(1) relic density, taking co-annihilations into full account.
The cutoff in the power spectrum, finally, that leads to the existence of
small dark matter clumps as the first gravitationally bound objects, has so
far only been calculated for the neutralino (and for the axion). It would be
important to see, whether the scale at which this cutoff appears is a result
that is universal for WIMPs or whether the predictions would change in the
case of a massive vector dark matter particle like the B(1).



Appendix A

Feynman rules and

interaction terms for the

UED model

In the following, a complete list of (bulk) interaction terms appearing in
the five-dimensional UED model is presented in a way that makes it easy
to derive Feynman rules for all particles appearing in the spectrum of the
effective 4D theory. In these expressions, 4D Lorentz indices are suppressed
whenever there is no risk for confusion. The three-point vertex rules for all
states up to the first KK-level are then given explicitly. Here, all momenta
are taken to be ingoing.

Since all these interaction terms are located in the bulk, they are KK
number conserving. In principle, there also appear counterms to radiative
corrections at the orbifold fixpoints, giving rise to additional interactions
that can violate KK number conservation [46]. These terms, however, are
suppressed by the cutoff-scale Λ and will therefore not be considered here.

The spectrum of states

As it has been discussed in detail in Section 3.3, the vector part of the spec-

trum for the 4D theory consists of the SM fields A(0)µ, Z(0)µ and W
(0)µ
± ,

as well as their first-level KK excitations; since the Weinberg angle is essen-

tially driven to zero for KK states, B(n)µ, A3 (n)µ and W
(n)µ
± (n ≥ 1) are

treated as mass eigenstates. For each vector particle, there will be a ghost
c that is associated to it. In addition, there appear physical scalar states

H(0), H(n), a
(n)
0 , a

(n)
± , and Goldstone modes χ3 (0), χ± (0), G

(n)
0 , G

(n)
± , A

(n)
5
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in the theory. Finally, for every SM fermion ψ(0), one has two towers of KK

fermions ψ
(n)
s and ψ

(n)
d - except for neutrinos, which only come in a singlet

version both at zero and higher KK levels. These physical states are related
to those appearing fundamentally in the theory by (3.30), (3.36) and (3.60);
in order to derive Feynman rules, it proves very convenient to have also the
inverse of these expressions at hand:

A3
M = swAM + cwZM (A.1a)

BM = cwAM − swZM (A.1b)

Z
(n)
5 =

mZ

M
(n)
Z

a
(n)
0 −

M (n)

M
(n)
Z

G
(n)
0 (A.2a)

χ3 (n) =
M (n)

M
(n)
Z

a
(n)
0 +

mZ

M
(n)
Z

G
(n)
0 (A.2b)

W
± (n)
5 =

mW

M
(n)
W

a
(n)
± −

M (n)

M
(n)
W

G
(n)
± (A.2c)

χ± (n) =
M (n)

M
(n)
W

a
(n)
± +

mW

M
(n)
W

G
(n)
± (A.2d)

ψ(n)
s = sinα(n)ξ

(n)
d − cosα(n)γ5ξ(n)s (A.3a)

ψ
(n)
d = cosα(n)ξ

(n)
d + sinα(n)γ5ξ(n)s (A.3b)

Finally, following the conventions of [103], the propagators for internal
particles read

for scalars :
i

q2 −m2 + iε
, (A.4)

for fermions :
i(6q +m)

q2 −m2 + iε
, (A.5)

for vectors :
−i

q2 −m2 + iε

(

ηµν − qµqν

q2 − ξm2
(1− ξ)

)

. (A.6)

Ghosts and Goldstone bosons have the same propagators as physical scalars,
with masses

√
ξmV , where mV is the mass of the associated vector boson.
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Three-point vertices

When reducing the five-dimensional Lagrangian L̂ to a 4D Lagrangian L,
one encounters integrals over various combinations of fields that transform
even (3.16a) or odd (3.16b) under orbifold transformations. For three even
fields X,Y, Z, for example, one has

∫ 2πR

0
dy XY Z =

1√
2πR

{

X(0)Y (0)Z(0) +X(0)Y (1)Z(1) +X(1)Y (0)Z(1)

+X(1)Y (1)Z(0)
}

, (A.7)

while for one even field X and two odd fields U, V , one finds:

∫ 2πR

0
dy XUV =

1√
2πR

X(0)U (1)V (1) . (A.8)

The integration over any other combination of three fields gives zero.

Vector-vector-vector couplings

The interaction terms that are involved here originate from the cubic terms
in the ’free’ gauge field Lagrangian (3.19),

L̂(V V V ) = −iĝ
[

∂νA3µ
(

W−
ν W

+
µ −W+

ν W
−
µ

)

+A3µ
(

∂νW
−
µ W

+ ν − ∂νW+
µ W

− ν

+∂µW
+
ν W

− ν − ∂µW−
ν W

+ ν
)

]

. (A.9)

This gives rise to the following 4D Feynman rules:

q1 q2

q3

V1, ρ

V2, µ

V3, ν

igV1V2V3
[

(q1 − q2)νηρµ

+ (q2 − q3)ρηµν + (q3 − q1)µηρν
]
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where

g
A(0)W

(0,1)
+ W

(0,1)
−

= −e (A.10)

g
Z(0)W

(0,1)
+ W

(0,1)
−

= −cw g (A.11)

g
A
(1)
3 W

(0,1)
+ W

(1,0)
−

= −g (A.12)

Vector-vector-scalar couplings

The interaction terms that are involved here originate from the cubic parts
of the corresponding terms in both the ’free’ gauge field Lagrangian (3.19)
and the kinetic term of the Higgs Lagrangian (3.25),

L̂(V V S) = iĝ
[

W+
5

(

W−∂yA
3
)

−W+
5

(

A3∂yW
−)+A3

5

(

W+∂yW
−)− c.c

]

+ĝ

[

mZ

2cw
H(ZZ) +mWH

(

W+W−)
]

−iĝY
[

mWχ
− (BW+

)

− c.c
]

(A.13)

This gives rise to the following 4D Feynman rules:

S

V1, µ

V2, ν

igV1V2S · ηµν

where

g
A(0)W

(0)
± χ∓ (0) = ∓iemW (A.14)

g
Z(0)W

(0)
± χ∓ (0) = ±igs2wmZ (A.15)

gZ(0)Z(0)H(0) =
g

cw
mZ (A.16)

g
W

(0)
+ W

(0)
− H(0) = gmW (A.17)

g
A(0)W

(1)
± G

(1)
∓

= ∓ieM (1)
W (A.18)

g
Z(0)W

(1)
± a

(1)
∓

= ±ig mZ
M (1)

M
(1)
W

(A.19)
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g
Z(0)W

(1)
± G

(1)
∓

= ∓igcwM (1)M
(1)

M
(1)
W

(

1 +
s2w
c2w

( mW

M (1)

)2
)

(A.20)

gZ(0)A3 (1)H(1) = gmZ (A.21)

gZ(0)B(1)H(1) = −gY mZ (A.22)

g
W

(0)
± A3 (1)a

(1)
∓

= ∓ig mW
M (1)

M
(1)
W

(A.23)

g
W

(0)
± A3 (1)G

(1)
∓

= ±igM (1)M
(1)

M
(1)
W

(A.24)

g
W

(0)
± A3 (1)G

(1)
∓

= ±igM (1)M
(1)

M
(1)
W

(A.25)

g
W

(0)
± B(1)a

(1)
∓

= ∓igY mW
M (1)

M
(1)
W

(A.26)

g
W

(0)
± B(1)G

(1)
∓

= ∓igY mW
mW

M
(1)
W

(A.27)

g
W

(0)
± W

(1)
∓ A

(1)
5

= ±ieM (1) (A.28)

g
W

(0)
± W

(1)
∓ a

(1)
0

= ±ig mW
M (1)

M
(1)
Z

(A.29)

g
W

(0)
± W

(1)
∓ G

(1)
0

= ∓igcwM (1)M
(1)

M
(1)
Z

(A.30)

g
W

(0)
± W

(1)
∓ H(1) = gmW (A.31)

gA3 (1)A3 (1)H(0) = gmW (A.32)

gA3 (1)B(1)H(0) = −gY mW (A.33)

gB(1)B(1)H(0) = g
s2w
c2w

mW (A.34)

g
W

(1)
+ W

(1)
− H(0) = gmW (A.35)

g
W

(1)
± B(1)χ∓ (0) = ∓igY mW (A.36)
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Vector-scalar-scalar couplings

The interaction terms that are involved here originate from the correspond-
ing cubic parts of both the ’free’ gauge field Lagrangian (3.19) and the
kinetic term of the Higgs Lagrangian (3.25),

L̂(V SS) = iĝ
[(

W−∂A3
5

)

W+
5 +

(

W+∂W−
5

)

A3
5 +

(

A3∂W+
5

)

W−
5 − c.c

]

+iêA
[

(∂χ+)χ− − c.c.
]

+
i

2
(ĝcw − ĝY sw)Z

[

(∂χ+)χ− − c.c.
]

+
ĝ

2cw
Z
[

(∂H)χ3 −H(∂χ3)
]

+
ĝ

2

[

W+
(

(∂H)χ− −H(∂χ−)
)

+ c.c.
]

+i
ĝ

2

[

W+
(

χ3(∂χ−)− (∂χ3)χ−
)

− c.c.
]

(A.37)

This gives rise to the following 4D Feynman rules:

q1

q2

V, µ

S1

S2

igV S1S2 · (q1 − q2)µ

where

gA(0)χ+(0)χ− (0) = e (A.38)

gZ(0)χ+ (0)χ− (0) = g
cw
2
− gY

sw
2

(A.39)

gZ(0)χ3 (0)H(0) = i
g

2cw
(A.40)

g
W

(0)
± χ∓ (0)H(0) = i

g

2
(A.41)

g
W

(0)
± χ∓ (0)χ3 (0)

= ∓g
2

(A.42)

g
A(0)a

(1)
+ a

(1)
−

= e (A.43)

g
A(0)G

(1)
+ G

(1)
−

= e (A.44)

g
Z(0)a

(1)
+ a

(1)
−

=
1

2
(gcw − gY sw)

(

M (1)

M
(1)
W

)2

+ gcw

(

mW

M
(1)
W

)2

(A.45)
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g
Z(0)a

(1)
± G

(1)
∓

= ∓1

2
(gcw − gY sw)

mW

M
(1)
W

M (1)

M
(1)
W

(A.46)

g
Z(0)G

(1)
+ G

(1)
−

= gcw

(

M (1)

M
(1)
W

)2

+
1

2
(gcw − gY sw)

(

mW

M
(1)
W

)2

(A.47)

g
Z(0)H(1)a

(1)
0

= −i g

2cw

M (1)

M
(1)
Z

(A.48)

g
Z(0)H(1)G

(1)
0

= −i g

2cw

mZ

M
(1)
Z

(A.49)

g
W

(0)
± a

(1)
∓ A

(1)
5

= ±g mW

M
(1)
W

(A.50)

g
W

(0)
± G

(1)
∓ A

(1)
5

= ±g M
(1)

M
(1)
W

(A.51)

g
W

(0)
± a∓(1)a

(1)
0

= ∓g
2

M (1)2

M
(1)
W M

(1)
Z



1− 2
m2
w

M
(1)
W

2



 (A.52)

g
W

(0)
± G∓(1)a

(1)
0

= ∓3

2
g
mW

M
(1)
W

M (1)

M
(1)
Z

(A.53)

g
W

(0)
± a∓(1)G

(1)
0

= ∓g
(

cw +
1

2cw

)

mW

M
(1)
W

M (1)

M
(1)
Z

(A.54)

g
W

(0)
± G∓(1)G

(1)
0

= ±gcw
M (1)

M
(1)
W

M (1)

M
(1)
Z

(

1− 1

2cw

mW

M
(1)
W

mZ

M
(1)
Z

)

(A.55)

g
W

(0)
± a∓(1)H(1) = i

g

2

M (1)

M
(1)
W

(A.56)

g
W

(0)
± G∓(1)H(1) = i

g

2

mW

M
(1)
W

(A.57)

g
A3 (1)χ±(0)a

(1)
∓

= ±g
2

M (1)

M
(1)
W

(A.58)

g
A3 (1)χ±(0)G

(1)
∓

= ±g
2

mW

M
(1)
W

(A.59)

gA3 (1)χ3 (0)H(1) = i
g

2
(A.60)

g
A3 (1)a

(1)
0 H(0) = i

g

2

M (1)

M
(1)
Z

(A.61)
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g
A3 (1)a

(1)
0 H(0) = i

g

2

mZ

M
(1)
Z

(A.62)

g
B(1)χ±(0)a

(1)
∓

= ±gY
2

M (1)

M
(1)
W

(A.63)

g
B(1)χ±(0)G

(1)
∓

= ±gY
2

mW

M
(1)
W

(A.64)

gB(1)χ3 (0)H(1) = −igY
2

(A.65)

g
B(1)a

(1)
0 H(0) = −igY

2

M (1)

M
(1)
Z

(A.66)

g
B(1)G

(1)
0 H(0) = −igY

2

mZ

M
(1)
Z

(A.67)

g
W

(1)
± χ∓ (0)H(1) = i

g

2
(A.68)

g
W

(1)
± a

(1)
∓ H(0) = i

g

2

M (1)

M
(1)
W

(A.69)

g
W

(1)
± G

(1)
∓ H(0) = i

g

2

mW

M
(1)
W

(A.70)

g
W

(1)
± a

(1)
∓ H(0) = i

g

2

M (1)

M
(1)
W

(A.71)

g
W

(1)
± χ∓ (0)a

(1)
0

= ∓g
2

M (1)

M
(1)
Z

(A.72)

g
W

(1)
± χ∓ (0)G

(1)
0

= ∓g
2

mZ

M
(1)
Z

(A.73)

g
W

(1)
± a∓(1)χ3 (0)

= ∓g
2

M (1)

M
(1)
W

(A.74)

g
W

(1)
± G∓(1)χ3 (0)

= ∓g
2

mW

M
(1)
W

(A.75)
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Scalar-scalar-scalar couplings

The interactions that are involved here originate from the corresponding cu-
bic parts of both the kinetic and the potential terms of the Higgs Lagrangian
(3.25),

L̂(SSS) = −iêA5

[

(∂yχ
+)χ− − c.c.

]

− i

2
(ĝcw − ĝY sw)Z5

[

(∂yχ
+)χ− − c.c.

]

− g

2cw
Z5

[

(∂yH)χ3 −H(∂yχ
3)
]

− g

2

[

W+
5

(

(∂yH)χ− −H(∂yχ
−)
)

+ c.c.
]

−ig
2

[

W+
5 (χ3(∂yχ

−)− (∂yχ
3)χ−)− c.c.

]

− g

2cw
mZZ5Z5H

−gmWW
+
5 W

−
5 H + igYmWB5

[

W+
5 χ

− − c.c.
]

− ĝ
4

m2
H

mW

(

2Hχ+χ− +HHH +Hχ3χ3
)

(A.76)

This gives rise to the following 4D Feynman rules:

S1

S2

S3

igS1S2S3

where

gH(0)H(0,1)H(0,1) = −3

2
g
m2
H

mW
(A.77)

gH(0)χ+ (0)χ− (0) = −g
2

m2
H

mW
(A.78)

gH(0)χ3 (0)χ3 (0) = −g
2

m2
H

mW
(A.79)

g
H(0)a

(1)
+ a

(1)
−

= −gmW



1 +
1

2

m2
H

m2
W

(

M (1)

M
(1)
W

)2


 (A.80)

g
H(0)a

(1)
± G

(1)
∓

=
g

2
M (1)



1− m2
H

M
(1)
W

2



 (A.81)
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g
H(0)G

(1)
± G

(1)
∓

= −g
2
mW

m2
H

M
(1)
W

2 (A.82)

g
H(0)a

(1)
0 a

(1)
0

= − g

cw
mZ



1 +
1

2

m2
H

m2
Z

(

M (1)

M
(1)
Z

)2


 (A.83)

g
H(0)a

(1)
0 G

(1)
0

=
g

2cw
M (1)



1− m2
H

M
(1)
Z

2
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g
H(0)G

(1)
0 G

(1)
0

= − g

2cw
mZ

m2
H

M
(1)
Z

2 (A.85)

g
χ3 (0)H(1)a

(1)
0

=
g

2cw
mZ

M (1)

M
(1)
Z

(

1− m2
H

m2
Z

)

(A.86)

g
χ3 (0)H(1)G

(1)
0

= − g

2cw
M (1)M

(1)

M
(1)
Z

(

1 +
m2
H

M (1)2

)

(A.87)

g
χ3 (0)a

(1)
± G

(1)
∓

= ±ig
2
M (1) (A.88)

g
χ± (0)a

(1)
∓ H(1) =

g

2
mW

M (1)

M
(1)
W

(

1− m2
H

m2
W

)

(A.89)

g
χ± (0)G

(1)
∓ H(1) = −g

2
M (1)M

(1)

M
(1)
W

(

1 +
m2
H

M (1)2

)

(A.90)

g
χ± (0)a

(1)
∓ A

(1)
5

= ∓ie (A.91)

g
χ± (0)a

(1)
∓ a

(1)
0

= ±igY
2
swmZ

M
(1)
W

M
(1)
Z

(A.92)

g
χ± (0)G

(1)
∓ a

(1)
0

= ∓ig
2
M (1)M

(1)
Z

M
(1)
W

(A.93)

g
χ± (0)a

(1)
∓ G

(1)
0

= ± i
2
(gcw − gY sw) M (1)M

(1)
W

M
(1)
Z

(A.94)
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Fermion-fermion-vector couplings

The interaction terms that are involved here originate from the covariant
derivative in the kinetic terms of the fermion Lagrangian (3.63). For quarks,
they read

L̂(QQV ) = ψ̄id,Uγ
µ

(

YdĝYBµ +
ĝ

2
A3
µ

)

ψid,U + ψ̄id,Dγ
µ

(

YdĝYBµ −
ĝ

2
A3
µ

)

ψid,D

+Ys,U ĝY ψ̄
i
s,Uγ

µBµψ
i
s,U + Ys,DĝY ψ̄

i
s,Dγ

µBµψ
i
s,D

+
ĝ√
2
V ij

(

ψ̄id,Uγ
µW+

µ ψ
j
d,D + ψ̄id,Dγ

µW−
µ ψ

j
d,U

)

, (A.95)

where the indices i, j indicate the family. Let ξ = U,D denote the mass
eigenstates as given in (3.60) for up (T 3 = +1/2) and down (T 3 = −1/2)
type quarks, respectively. Defining Q ≡ T3 + Y = Ys as usual, one can now
derive the following Feynman rules:

V µ

ξ̄1

ξ2

iγµgV ξ̄1ξ2

where1

gA(0)ξ̄(0)ξ(0) = −Qe (A.96)

g
A(0)ξ̄

(1)
(s,d)

ξ
(1)
(s,d)

= −Qe (A.97)

gZ(0)ξ̄(0)ξ(0) = (T3gcw − YdgY sw)PL − YsgY swPR (A.98)

g
Z(0)ξ̄

(1)
d
ξ
(1)
d

=
g

cw

(

−Yds2w + T3c
2
w cos2 α(1) − T3s2w sin2 α(1)

)

(A.99)

g
Z(0)ξ̄

(1)
s ξ

(1)
s

=
g

cw

(

−Yds2w + T3c
2
w sin2 α(1) − T3s2w cos2 α(1)

)

(A.100)

g
Z(0)ξ̄

(1)
s ξ

(1)
d

=
g

cw
T3 sinα

(1) cosα(1) (A.101)

1Observe that one always has gV ξ̄1ξ2 = g∗
V †ξ̄2ξ1

.
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g
A
(1)
3 ξ̄(0)ξ

(1)
d

= T3g cosα
(1)PL (A.102)

g
A
(1)
3 ξ̄(0)ξ

(1)
s

= −T3g sinα(1)PL (A.103)

g
B(1)ξ̄(0)ξ

(1)
d

= YsgY sinα(1)PR + YdgY cosα(1)PL (A.104)

g
B(1)ξ̄(0)ξ

(1)
s

= −YsgY cosα(1)PR − YdgY sinα(1)PL (A.105)

g
W

(0)
+ Ū

(0)
i D

(0)
j

=
g√
2
VijPL (A.106)

g
W

(0)
+ Ū

(1)
d,i
D
(i)
d,j

=
g√
2
Vij cosα

(1)
Ui

cosα
(1)
Dj

(A.107)

g
W

(0)
+ Ū

(1)
s,i D

(i)
s,j

=
g√
2
Vij sinα

(1)
Ui

sinα
(1)
Dj

(A.108)

g
W

(0)
+ Ū

(1)
d,i
D
(i)
s,j

=
g√
2
Vij cosα

(1)
Ui

sinα
(1)
Dj
γ5 (A.109)

g
W

(0)
+ Ū

(1)
s,i D

(i)
d,j

=
g√
2
Vij sinα

(1)
Ui

cosα
(1)
Dj
γ5 (A.110)

g
W

(1)
+ Ū

(0)
i D

(1)
d,j

=
g√
2
Vij cosα

(1)
Dj
PL (A.111)

g
W

(1)
+ Ū

(0)
i D

(1)
s,j

= − g√
2
Vij sinα

(1)
Dj
PL (A.112)

g
W

(1)
+ Ū

(1)
d,i
D
(0)
j

=
g√
2
Vij cosα

(1)
Ui
PL (A.113)

g
W

(1)
+ Ū

(1)
s,i D

(0)
j

= − g√
2
Vij sinα

(1)
Ui
PL (A.114)

(In these expressions, there is of course no summation over i, j.) The above
Feynman rules can also be used for leptons by replacing V ij → δij and re-
membering that QU = Ys,U = 0 (which means that there are no singlet
neutrinos).

Fermion-fermion-scalar couplings

The interaction terms that are involved here originate from the covariant
derivative in the kinetic terms of the fermion Lagrangian (3.63) and the
Yukawa coupling (3.65). For quarks, they are given by

L̂(QQS) = i

(

YdĝYB5 +
ĝ

2
A3
5

)

ψ̄id,Uγ
5ψid,U + i

(

YdĝYB5 −
ĝ

2
A3
5

)

ψ̄id,Dγ
5ψid,D

+iYs,U ĝYB5ψ̄
i
s,Uγ

5ψis,U + iYs,DĝYB5ψ̄
i
s,Dγ

5ψis,D

+i
ĝ√
2
V ij

(

W+
5 ψ̄

i
d,Uγ

5ψjd,D − h.c.
)
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−2
√
2iĝ

(

mDi

mW
χ+ψ̄id,Uψ

i
s,D +

mU i

mW
χ−ψ̄id,Dψ

i
s,U − h.c.

)

−2ĝH
(

mDi

mW
ψ̄id,Dψ

i
s,D +

mU i

mW
ψ̄id,Uψ

i
s,U + h.c.

)

+2iĝχ3
(

mDi

mW
ψ̄id,Dψ

i
s,D −

mU i

mW
ψ̄id,Uψ

i
s,U − h.c.

)

, (A.115)

where the indices i, j indicate the family. To get the corresponding expres-
sions for leptons, one has to set Ys,U = 0 and V ij = δij . In the following,
ξ = U,D will denote up (T 3 = +1/2) and down (T 3 = −1/2) type mass
eigenstates as given in (3.60). When working in unitary gauge (ξ →∞), all
Goldstone bosons disappear from the theory. Here, the Feynman rules are
therefore only given for physical fields:

S

ξ̄1

ξ2

igSξ̄1ξ2

where2

gH(0)ξ̄(0)ξ(0) = −2g mξ

mW
(A.116)

g
H(0)ξ̄

(1)
d
ξ
(1)
d

= −4g mξ

mW
sinα(1) cosα(1) (A.117)

g
H(0)ξ̄

(1)
s ξ

(1)
s

= −4g mξ

mW
sinα(1) cosα(1) (A.118)

g
H(0)ξ̄

(1)
(d,s)

ξ
(1)
(s,d)

= −2g mξ

mW

(

1− 2 cos2 α(1)
)

γ5 (A.119)

g
H(1)ξ̄(0)ξ

(1)
d

= −2g mξ

mW

(

sinα(1)PR + cosα(1)PL

)

(A.120)

g
H(1)ξ̄(0)ξ

(1)
s

= 2g
mξ

mW

(

cosα(1)PR + sinα(1)PL

)

(A.121)

2Observe that one has gSξ̄1ξ2 = g∗
S†ξ̄2ξ1

for scalar couplings; pseudo-scalar couplings,

however, pick up an additional minus sign since (ψ1γ
5ψ2)

† = −ψ̄2γ
5ψ1.
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g
a
(1)
0 ξ̄(0)ξ

(1)
d

= i
mZ

M
(1)
Z

{

(T3gcw − YdgY sw) cosα(1)PR + YdgY sw sinα(1)PL

}

−4igT3
mξ

mW

M (1)

M
(1)
Z

(

sinα(1)PR − cosα(1)PL

)

(A.122)

g
a
(1)
0 ξ̄(0)ξ

(1)
s

= i
mZ

M
(1)
Z

{

(T3gcw − YdgY sw) sinα(1)PR + YdgY sw cosα(1)PL

}

+4igT3
mξ

mW

M (1)

M
(1)
Z

(

cosα(1)PR − sinα(1)PL

)

(A.123)

g
a
(1)
+ Ū

(0)
i D

(1)
d,j

= −4i g√
2

M (1)

M
(1)
W

δij

(

mDj

mW
sinα

(1)
Dj
PR −

mUi

mW
cosα

(1)
Dj
PL

)

+i
g√
2

mW

m
(1)
W

Vij cosα
(1)
Dj
PR (A.124)

g
a
(1)
+ Ū

(0)
i D

(1)
s,j

= 4i
g√
2

M (1)

M
(1)
W

δij

(

mDj

mW
cosα

(1)
Dj
PR −

mUi

mW
sinα

(1)
Dj
PL

)

+i
g√
2

mW

m
(1)
W

Vij sinα
(1)
Dj
PR (A.125)

g
a
(1)
+ Ū

(1)
d,i
D
(0)
j

= −4i g√
2

M (1)

M
(1)
W

δij

(

mDj

mW
cosα

(1)
Ui
PR −

mUi

mW
sinα

(1)
Ui
PL

)

−i g√
2

mW

m
(1)
W

Vij cosα
(1)
Ui
PL (A.126)

g
a
(1)
+ Ū

(1)
s,i D

(0)
j

= 4i
g√
2

M (1)

M
(1)
W

δij

(

mDj

mW
sinα

(1)
Ui
PR −

mUi

mW
cosα

(1)
Ui
PL

)

−i g√
2

mW

m
(1)
W

Vij sinα
(1)
Ui
PL (A.127)

(In these expressions, there is of course no summation over i, j.) The cor-
responding rules for Goldstone bosons can readily be obtained from the full
expression (A.115), whenever they should be needed.
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Ghost-ghost-vector couplings

The relevant coupling terms follow from the ghost Lagrangian (3.39) as

L̂(GGV ) = ĝεijk∂µAiµc̄
jck . (A.128)

From this expression, it is straight-forward to derive the corresponding 4D
Feynman rules. Since one can always choose to work in unitary gauge
(ξ →∞), where the ghosts disappear from the theory, this is not done ex-
plicitly here.

Ghost-ghost-scalar couplings

These couplings follow from the ghost Lagrangian (3.39) as

L̂(GGS) = ξc̄a
[

ĝεijkδiaδkb∂yA
j
5 −

ĝaĝbv̂

4
Iab
]

cb, (A.129)

with

I =









H −χ3 χ2 χ2

χ3 H −χ1 −χ1
−χ2 χ1 H −H
χ2 −χ1 −H H









(A.130)

where i, j, k ∈ {1, 2, 3} and a, b ∈ {1, 2, 3, Y }. Again, the corresponding
Feynman rules are not given here, but can be derived from the above ex-
pression whenever one decides not to work in unitary gauge.

Four-point vertices

Just as for the three-point vertices, one encounters also in this case certain
types of integrals over various combinations of odd and even fields. The only
integrals that do not vanish, are those over four even fields W,X, Y, Z,

∫ 2πR

0
dyWXY Z =

1

2πR

{

W (0)X(0)Y (0)Z(0) +W (1)X(1)Y (0)Z(0)

+W (1)X(0)Y (1)Z(0) +W (1)X(0)Y (0)Z(1)

+W (0)X(1)Y (1)Z(0) +W (0)X(1)Y (0)Z(1)

+W (0)X(0)Y (1)Z(1) +
3

2
W (1)X(1)Y (1)Z(1)

}

,

(A.131)
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over four odd field S, T, U, V ,
∫ 2πR

0
dy STUV =

3

4πR
S(1)T (1)U (1)V (1) , (A.132)

as well as over two odd fields S, T and two even fields X,Y :
∫ 2πR

0
dy STXY =

1

2πR

{

X(0)Y (0)S(1)S(1) +
1

2
X(1)Y (1)S(1)S(1)

}

.

(A.133)
In the following, all terms in the higher-dimensional Lagrangian that

lead to interactions between four fields in the 4D theory will be collected.
In contrast to the case of the three-point vertices, however, the correspond-
ing Feynman rules will not be given explicitly; with the help of the above
integrals, they can be derived in a rather straight-forward way.

Vector-vector-vector-vector couplings

These couplings derive from the quartic terms in the ’free’ gauge field La-
grangian (3.19) and take the form

L̂(V V V V ) = − ĝ
2

2

{

(

W+W−) (W+W−)−
(

W+W+
) (

W−W−)

+2
(

W+W−) (A3A3
)

− 2
(

W+A3
) (

W−A3
)

}

.

(A.134)

Vector-vector-scalar-scalar couplings

The interaction terms that are involved here originate from the correspond-
ing quartic terms in both the ’free’ gauge field Lagrangian (3.19) and the
kinetic term of the Higgs Lagrangian (3.25),

L̂(V V SS) = ĝ2
(

W+W−)W+
5 W

−
5 −

ĝ2

2

((

W+W+
)

W−
5 W

−
5 + c.c

)

+ĝ2
(

A3A3
)

W+
5 W

−
5 + ĝ2

(

W+W−)A3
5A

3
5

−ĝ2
((

W+A3
)

W−
5 A

3
5 + c.c

)

}

+
1

2

{1

2
(2êA+ ĝ/cwZ)

2 + ĝ2W+W−
}

χ+χ−

+
1

4

{ ĝ2

2c2w
ZZ + g2W+W−

}[

HH + χ3χ3
]

− iĝĝY
2

B
[

W+(H − iχ3)χ− − h. c.
]

. (A.135)
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Scalar-scalar-scalar-scalar couplings

Couplings between four scalars, finally, derive from the corresponding quar-
tic terms in both the kinetic and the potential parts of the Higgs Lagrangian
(3.25),

L̂(SSSS) = −1

2

{1

2
(2êA5 + ĝ/cwZ5)

2 + ĝ2W+
5 W

−
5

}

χ+χ−

−1

4

{ ĝ2

2cw
Z5Z5 + ĝ2W+

5 W
−
5

}[

HH + χ3χ3
]

+
iĝĝY
2

(cwA5 − swZ5)
[

W+
5 (H − iχ3)χ− − h. c.

]

− ĝ
2

32

m2
H

m2
W

(

2χ+χ− +HH + χ3χ3
)2
. (A.136)
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Higher KK levels

From the higher-dimensional interaction terms that were given in this Ap-
pendix, one can in principle also derive all necessary Feynman rules for
higher KK levels. The only thing that is needed in order to perform these
calculations, is a generalization of the integrals over even and odd fields.

When deriving three-point couplings in the 4D theory, for example, one
will encounter the following integrals:

∫ 2πR

0
dyXY Z =

1√
2πR

{

X(0)Y (0)Z(0)

+
∞
∑

n=1

[

X(0)Y (n)Z(n) +X(n)Y (0)Z(n) +X(n)Y (n)Z(0)
]

+
1√
2

∞
∑

n,k,l=1

X(n)Y (k)Z(l)
[

δn,k+l + δn,l−k + δn,k−l
]

}

,

(A.137)

as well as

∫ 2πR

0
dyXUV =

1√
2πR

{ ∞
∑

n=1

X(0)U (n)V (n)

+
1√
2

∞
∑

n,k,l=1

X(n)U (k)V (l)
[

− δn,k+l + δn,l−k + δn,k−l
]

}

.

(A.138)

As before, the integrals over any other combination of three fields vanish.
Similar expressions can be given as generalizations of (A.131), (A.132)

and (A.133); those integrals arise when one derives Feynman rules for the
interaction between four fields.
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Generalizing to more than

one UED

For n UEDs, the simplest compactification choice is
[

(S1 × S1)/Z2

]n/2
if n

is even and
[

(S1 × S1)/Z2

](n−1)/2 × (S1/Z2) in case it is odd. The Fourier
expansion of fields that are odd and even under orbifold transformations,
respectively, then takes the following form:

φeven(x
ν , ya) =

1

(2πR)
n
2

φ(0)even(x
ν) +

√
2

(2πR)
n
2

∑

j1+...+jn≥1
φ(j1..jn)even (xν)fneven(ji, y

a) , (B.1)

φodd(x
ν , ya) =

√
2

(2πR)
n
2

∑

j1+...+jn≥1
φ
(j1..jn)
odd (xν)fnodd(ji, y

a) , (B.2)

with

fneven(ji, y
a) =

[n/2]−1
∏

l=0

cos

(

j2l+1y
2l+1 + j2l+2y

2l+2

R

)

· cos
(

jny
n

R

)

,

(B.3)

fnodd(ji, y
a) =

[n/2]−1
∏

l=0

sin

(

j2l+1y
2l+1 + j2l+2y

2l+2

R

)

· sin
(

jny
n

R

)

,

(B.4)

where the last factor only appears if n is odd.
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The spectrum of states

Let us now discuss how higher-dimensional fields transform under 4D Lorentz
transformations – or, more precisely, under

SO(3, 1)× SO(n) ⊂ SO(d− 1, 1) . (B.5)

Gauge fields are SO(d− 1, 1) vectors. Under (B.5), they transform as

d→ (4,1) + (1,n− 4) . (B.6)

The first part transforms as a 4D Lorentz vector; it should therefore be even
under orbifold transformations so that its zero-mode can be identified with
the ordinary 4D gauge fields. The second part describes a set of (n−4) states
that are 4D Lorentz scalars; this part thus has to transform odd under the
orbifold projections in order not to get scalar zero modes.

Fermions are SO(d − 1, 1) spinors. As discussed in Section (3.3.4), in
the Dirac representation spinors can be written as s = (s0, ..., sk), where
n = 2k − 2 for even n and n = 2k − 1 for odd n. This is very convenient,
since now one can easily relate (parts of) representations of different dimen-
sionalities just by comparing the corresponding eigenvalues sa. Under (B.5),
in particular, spinors decompose as

2k+1 → (22,2k−1) = (2,2k−1) + (2′,2k−1) . (B.7)

This means that one has a set of 2k−1 quantities that transform as ordinary
4D spinors under 4D Lorentz transformations, and each of them splits up
into two parts of different chirality. All but one of the resulting states have
to transform odd under orbifold transformations in order to recover the right
spectrum of states for the zero modes.

As a side remark, if n is even, the higher dimensional spinor splits into
two chiral parts that transform under 4D Lorentz transformations as

2k → (2,2k−2) + (2′,2k−2′) (B.8)

2k′ → (2′,2k−2) + (2,2k−2′) . (B.9)

Restricting oneself to states of definite chiralities in the higher-dimensional
theory (as one should do when assigning electroweak singlet and doublet
states), one can thus reduce the number of chiral states in the 4D theory by
a factor of 2.

As apparent from (B.1, B.2), all the states discussed here come equipped
with KK towers that are characterized by numbers (j1, ..., jn).
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Collider bounds and cosmological consequences

For d ≥ 6, the electroweak observables considered in [10] become ever
more cutoff-dependent, because the KK spectrum is denser than in the
5D case. For 6D, the inferred lower bound on the compactification scale
is R−1 & 400-800 GeV; however, already beyond a cutoff of Λ ∼ 5R−1, per-
turbation theory breaks down. In the case of more than two UEDs, the
cutoff-dependence is so severe that no reliable estimates for the allowed size
of the EDs are available [10].

For two UEDs, one finds two LKPs – B(1,0) and B(0,1) – that are degen-
erate in mass and do not interact with each other at tree level. The relic
density is therefore just twice the value of the 5D case and, accordingly,
the preferred mass range in order to account for the required dark matter
density lowered by a factor of about

√
2. One might also consider a com-

pactfication on T2/Z4 (instead of T2/Z2). In that case one has two stable
particle B(0,1) and B(1,1); since the latter is about 40% heavier than the
LKP, the relic density calculation is not affected and one therefore arrives
at the same LKP mass range as in the 5D case [114]. For more than two
UEDs, it is no longer so easy to generalize the results from one UED, since
then the number of fermionic degrees of freedom is greatly enhanced (see
the discussion above).
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