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Abstract

With the availability of cheap powerful computers multivariate methods
of analysis that hitherto were impractical are now feasible. We describe a
method, which is being used by the D@ collaboration, to find optimal cuts
for any given n-tuple of event variables. The method, which we have dubbed
the random grid search, is an efficient variant of the search for cuts on a Teg-
ular grid. The results of this method compare favorably with those from a
feed-forward neural network." This is illustrated using the extraction of a top
quark signal from multi-jet data, as an example.
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I.INTRODUCTION

A basic task in high energy physics research is to classify an event as either signal
or background. An event is described by an n-tuple ¢ = (1,...,z,) of variables, which
variables are chosen—using physical intuition—to capture the essential features of the events.
The n-tuples populate an n-dimensional space called, appropriately, feature space. The
mathematical task then is to divide the feature space into regions that best isolate the signal
events from the background. Intuition suggests that the best way to find the boundaries
between these regions is to minimize the probability to mis-classify signal and background
events. One can regard the various event classification methods as simply different ways to
approach this ideal. Here we compare two methods: classification using a a feed-forward
neural network and classification using a simple variant of the grid search.

II. EVENT CLASSIFICATION
A. In Principle

The particle reactions—that is, events—studied today are seldom of the sort that can
be classified unambiguously as either signal or background. We must resort to probabilistic
methods of classification that, in princple, require knowledge of the probability density
functions f(z|s) and f(z|b), respectively, of the signal and background n-tuples. In addition,
we may need the prior probabilities p(s) and p(b), respectively, for the signal and background.
The quantity p(s)/p(b) is the signal to background ratio before event classification. We note
that p(s) + p(b) = 1, fdzf(z|s) = 1 and [dzf(z|b) = 1.

The boundaries that minimize the probability to mis-classify are obtained as solutions
of the equation

f(z|b)p(b)

where cis a constant. The quantity »(z) is called the Bayes discriminant function. It bears
a simple relationship to Bayes’ theorem:

r(z) = fels)p(s) _ c (1)

r

1+r

p(slz) = (2)
The probability p(s|z) is precisely that required to classify events: it is the probability that
an event is of the signal class given that it is characterized by the n-tuple . Notice the
logical distinction between p(s|z), the Bayesian posterior probability, and the probability
p(als) = f(z]s)da.

The equation r(z) = constant, or equivalently p(s|z) = constant defines hypersurfaces
between signal and background regions that separate these regions optimally. These hyper-
surfaces are referred to as decision boundaries. Observe that we can always absorb the prior
probabilities into the constant in equation 1; so we don’t really need these priors, in which
case the Bayes discriminant function r(z) reduces to the well-known likelihood ratio, and
p(s|z) simplifies to '
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B. In Practice

It is generally impossible to write down an analytic form for the n-dimensional densities
f(z|s) and f(z[b) and so it might appear that our project to compute r(z) is doomed to
failure. Happily this is not the case for the following reason. Under suitable circumstances,
that we shall not comment upon here, the output of a feed-forward neural network provides
a direct approximation to the probability p(s|z) [1]. But, while it is true that this result and
others [2] provide a sound mathematical underpinning for neural networks, this is somewhat
offset in practice by the difficulty of assessing the quality of the approximation. That
observation, coupled with its (unwarranted [3]) “black box” stigma, fuels the search for better
ways of classifying events with conventional methods that, nonetheless, are multivariate in
spirit.

III. THE RANDOM GRID SEARCH

Conventional analyses in high energy physics separate signal from background by apply-
ing a set of cuts #; > 2, 3 > 25,.... We shall refer to (2,... , 2n) as a cut-point. The cuts
are usually arrived at by a laborious process of trial and error moderated by common sense.
Unfortunately, there is no guarantee that this procedure will lead to optimal cuts. A better
way to obtain optimal cuts is to perform a systematic search for them over a grid of points.

A search over a regular grid, however, is inefficient: a lot of time can be spent scanning
regions of feature space that have few signal or background points while spending the same
amount of time scanning regions that are dense in points. Moreover, the number of grid
points grows rapidly with bin count and dimensionality (like the number of bins raised to
the power of the number of dimensions). It would be more efficient to put most of the
computing cycles where there are most points.

The best way to do that is to use the actual distribution of points z = (21,...,2,) as
a set of cut-points. The points could, for example, have been generated by a Monte Carlo
simulation of the events. The set of cut-points forms a grid with random spacing between
lines, that is, a random grid. In the example described below we used the distribution of
the signal points as the set of cut-points.

IV. AN EXAMPLE: TT —> 6JETS

An important objective of the D@ collaboration is to study the decay modes of the
recently discovered top quark [4]. The most challenging mode is that in which the top quark
decays into a b quark and a W boson with the W bosons decaying hadronically. In this
mode the signal to be extracted is tiny compared with the QCD multi-jet background. It is,
therefore, of the utmost importance to find optimal cuts. For this the random grid search
can be used to good effect as we now illustrate.



We consider a 3-dimensional feature space containing the n-tuples z = (C, A, N) where
C = Y |Er;|/ ¥ Ej is the centrality, A = 3/2 x smallest eigenvalue of 3 p°p®/ 3" p? is the
aplanarity and N = Y |er;|N;/ 3 |er;| we refer to simply as the “jet count” [5]. The
quantities Er, £ and p are, respectively, the jet transverse energy, the jet energy and the
jet momentum; N; is the number of jets above the jth transverse energy threshold er;. The
sums are over all jets in the event. These variables have been found to provide a useful
degree of separation between signal and background. For example, figure 1 shows the degree
of separation between the signal and background in the variables N and A. The signal is
simulated ¢ decays to jets, assuming a top quark mass of 180 GeV/c?; the background is
from multi-jet QCD data.

The grid search was done with 5000 signal events as the supplier of cut-points. With
5000 background events and another 5000 signal events we counted the number of signal and
background events S; and Bj;, respectively, that passed the cuts specified by the cut-point
z; = (C, A, N);. This was repeated for every cut-point. These data can be usefully displayed
in the unit square with the signal fraction, S;/5000, on the vertical axis and the background
fraction, B;/5000, running horizontally. The entire calculation took about 40 CPU seconds
on a DEC Alpha 3000 Model 600 workstation.

A similar calculation was performed on the (1-dimensional) output of a feed-forward
neural network having 3 input nodes, 5 nodes in a single hidden layer and one output node.
That is, each output value, which approximates the posterior probability p(s|C, 4, N), was
taken as a cut-point and the corresponding signal and background fractions were calculated.
The network was trained with 2000 iterations, using the JETNET program (V3.0) from the
University of Lund, and using 5000 events divided equally between signal and background.
This required about 300 CPU seconds on the same model of workstation. The results of the
random grid search and neural network are compared in figure 2.

The outer envelope of the points pertaining to the random grid search (the open circles
in figure 2) defines the set of optimal cuts for the given n-tuple of variables. The network
curve, as expected, is higher than this envelope. But, given its simplicity the random grid
search does remarkably well. This is especially true for rejection factors against background
of 30 or higher.

This example illustrates that with a modest amount of work it is possible to put to
good use the considerable computing power that is now at our disposal. We have seen that
a simple grid search, modified as indicated, requires no more CPU time to execute than
that required to train a feed-forward neural network. Moreover, the optimal cuts obtained
are applied directly to the orignal physics—motivated variables and as such are immediately
intelligible.

ACKNOWLEDGMENTS

We thank our colleagues at D@ for many useful discussions. This research is supported
in part by the U.S. Department of Energy.



REFERENCES

[1] D.W. Ruck et al, The multilayer perceptron as an approximation to a Bayes optimal
discriminant function, JEEE Trans. Neural Networks 1 (4) (1990) 296; E.A. Wan, Neural
network classification: a Bayesian interpretation, IEEE Trans. Neural Networks 1 (4)
(1990) 303.

(2] E.K. Blum and L.K. Li, Approximation theory and feedforward networks, Neural Net-
works, 4 (1991) 511.

[3] See, for example, J. Linnemann, these proceedings.

[4] D@ Collab., S. Abachi et al., Observation of the Top Quark, Phys. Rev. Lett. T4 (1995)
2632. CDF Collab., A. Abbe et al., Observation of Top Quark Production in pp Collisions
with the Collider Detector at Fermilab, Phys. Rev. Lett. T4 (1995) 2626.

[5] We thank Fyador Tkachov for pleasant and instructive discussions that inspired one of
us (C.S.) to invent this variable. F. Tkachov, Phys. Rev. Lett. 73 (1994) 2405.



FIGURES

g 0.6 o ® -
=
2
Q °
2
O
]
L)
0 1 | |
0 0.1 0.2 0.3 04
Aplanarity

FIG. 1. (Jet count)/10 vs. aplanarity. The open circles are background points and the closed
circles pertain to signal.
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FIG. 2. Signal fraction vs. background fraction for the grid (open circles) compared with the
results from a network (closed circles). Note the large spread in the points computed with the
grid. It is a warning that the phase space for finding poor cuts is much larger than that for finding
optimal ones!



