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EPIGRAPH

The explorer who will not come back or send back his ships to tell his tale is not an explorer, only
an adventurer; and his sons are born in exile.

—Ursula K. Le Guin, The Dispossessed
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ABSTRACT OF THE DISSERTATION

High Energy Problems, Low Energy Solutions

by

Shauna Michelle Kravec
Doctor of Philosophy in Physics
University of California San Diego, 2019

Professor John McGreevy, Chair

This dissertation covers topics in the intersection of high energy and condensed matter
physics. It is motivated by the question, ‘Given information about physics at the highest energy
scale, how does that constrain the theory at low energies?’ This is a difficult question as complexity
can be ‘emergent’, leading to a rich and unpredictable variety of possibilities.

In the first half of the thesis we discuss ‘symmetry protected topological phases’; states of
matter whose low-energy physics is described by an ‘invertible’ topological field theory. Such
theories encode ‘anomalies’ and imply exotic surface states when defined on a manifold with
boundary. We study a model in five dimensions whose anomalous boundary is electromagnetism,

but where the elementary electric and magnetically charged particles are fermions.
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In the second half we discuss ‘non-relativistic conformal field theories’ at finite charge
density. One possibility for the low-energy physics of such systems is that of a superfluid
ground-state, realized experimentally in systems of ultra cold fermi gases. Additionally, such
theories have a ‘state-operator correspondence’ which relates their operator spectrum to states in
a harmonic trap. This enables us to use the field theory of the superfluid to calculate properties of

the operator spectrum systemically in the limit of large charge.
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Chapter 1

Introduction

My research lies at the intersection between condensed matter and high energy theory.
Central to both of these fields is the question: What can we say about the behavior of quantum
field theories at low-energy? Broadly interpreted, this is the problem of characterizing different
phases of matter. In the generic case, where the field theory is strongly interacting and perturbation
theory is not reliable, this is a very difficult question and one where experiment has proved to be a
valuable guide. For example, a gas of electrons in two dimensions can be metallic despite strong
magnetic field, and a gas of quarks and gluons confines to neutral hadrons at low temperatures.

What are some of the behaviors of quantum field theories at low energy? One possible
outcome is a mass gap for all excitations. At energies below the gap, this may appear to be a
boring possibility. However, not all gapped phases are equal. One non-trivial possibility is that
the low-energy physics is described by a topological quantum field theory. These topological
phases are distinct from more conventional gapped systems, and host a wide variety of exotic
phenomena like the fractionalization of charge and statistics, anomalous boundary states, and
topologically protected degeneracy. Experimental realizations include the quantum hall states, as
well as topological insulators and superconductors.

The simplest possible topological phases are known as symmetry protected topological



phases or SPTs. These systems dont host fractionalized particles, and appear trivial from a bulk
point of view. However if they are defined on a space with a boundary, they give rise to exotic
physics at that edge. If considered in isolation, the theories that describe the edges of SPTs have
anomalies. In order to truly be symmetric, and sometimes even well defined, they require the
extra dimensional bulk. The topological field theories that describe SPTs exactly encode the
physics of the anomaly.

In the first half of this thesis (Chapters 2 and 3), a question we (John McGreevy, Brian
Swingle, and 1) answered was: Are there quantum field theories in D=3+1 dimensions which
are only realized as the boundary of some D=4+1 topological phase? From a high energy point
of view, this is equivalent to discovering new anomalies. A particularly subtle example is that
of Maxwell theory, where both the electron and the monopole are fermions. This all-fermion
electrodynamics is actually impossible to realize without either a charge-neutral fermion or
an entire extra dimension. We argued this on the basis of electromagnetic duality, and gave a
construction of the five-dimensional topological field theory which captures the anomaly.

As the edge states of many topological phases demonstrate, another possible outcome
is the existence of gapless excitations at low-energies. An important case is systems tuned to a
critical point. At these special places in parameter space, there is an emergent scale symmetry.
The low-energy physics is then often described by a conformal field theory. The importance of
conformal field theories is well appreciated in both condensed matter, for their use in predicting
critical exponents and other universal properties, and in high energy physics, as highly symmetric
quantum field theories and for their role in the AdS/CFT correspondence.

While we know a lot about conformal field theories on the basis of symmetry alone, it is
generically difficult to calculate many quantities of interest. This is again due to the presence of
strong interactions. This has led people to develop many interesting and powerful techniques,
such as the conformal bootstrap. Another approach, developed recently, applies to CFTs with

additional global symmetry. States of the CFT with finite charge densities are amenable to an



effective field theory description, controlled in the limit of large density. This is essentially a
condensed matter of CFTs. On the sphere such states are related to charged operators. For
example, the ground state energy determines the lowest lying operator dimension. This allows
one to use the EFT to calculate the operator spectrum and correlation functions.

As described in the second half of this thesis (Chapters 4 and 5), we (Sridip Pal and
I) extended this approach to the case where scale invariance exists, but time and space are
distinguished. These ‘non-relativistic conformal field theories’ (NRCFTs) appear as effective
descriptions of several condensed matter systems, such as ultracold fermi gases at unitarity. They
have a state-operator correspondence, which relates operators to states in a harmonic potential.
By assuming a superfluid ground state in this potential, something which has been experimentally
demonstrated for unitary fermions, we were able to construct the relevant EFT to arbitrary order
and in any dimension. Using this EFT, we were able to compute the dimensions of charged scalar
operators, the spectrum of low-lying excited states, as well as correlation functions of charged
operators. We also computed the dimensions of operators with large spin and charge. These are
especially noteworthy, as they correspond to vortex configurations of the superfluid. Together,

these results constrain the large charge sector of any NRCFT with a superfluid ground state.



Chapter 2

A gauge theory generalization of the

fermion-doubling theorem

2.1 Abstract

It is possible to characterize certain states of matter by properties of their edge states. This
implies a notion of ‘surface-only models’: models which can only be regularized at the edge of
a higher-dimensional system. After incorporating the fermion-doubling results of Nielsen and
Ninomiya into this framework, we employ this idea to identify new obstructions to symmetry-
preserving regulators of quantum field theory. We focus on an example which forbids regulated

models of Maxwell theory with manifest electromagnetic duality symmetry.

2.2 Introduction

This paper is about obstructions to symmetry-preserving regulators of quantum field
theories (QFTs), in 3+1 spacetime dimensions. The most famous example of such an obstruction

is the theorem of Nielsen and Ninomiya [2, 3, 4, 5]. The basic statement of this theorem forbids



regularization of free fermions preserving chiral symmetry!. We will approach the study of such
obstructions by thinking about certain states of matter, in one higher dimension, with an energy
gap (i.e. the energy of the first excited state is strictly larger than the energy of the groundstate,
even in thermodynamic limit). More precisely, we will study the low-energy effective field
theories of such states; below the energy gap, these are topological field theories (TFTs) in
4+ 1 dimensions. Such states will be difficult to realize in the laboratory. We will use them to
demonstrate an obstruction to any regularization of Maxwell theory which preserves manifest
electric-magnetic duality.

To convey the idea of how the study of such extra-dimensional models can be useful for
understanding the practical question of symmetry-preserving regulators of 3+1-dimensional QFTs,
we must digress on the subject of realizations of symmetries in QFT and in condensed matter. A
basic question in condensed matter physics is to enumerate the possible gapped phases of matter.
Two gapped phases are equivalent if they are adiabatically connected (varying the parameters
in the Hamiltonian whose ground state they are to get from one to the other, without closing
the energy gap). An important possible distinguishing feature of different phases is how the
symmetries of the Hamiltonian are realized. This leads to Landau’s criterion which characterizes
states by what symmetries of the Hamiltonian are broken by the groundstate. Considering this to
be understood, it is interesting to refine the question to “How do we distinguish gapped phases
that do not break any symmetries?”

A sophisticated answer to this question, vigorously advocated by Wen [6, 7], is topological

order. A phase with topological order can be characterized by three related properties’:

1. Fractionalization of symmetries, that is, emergent excitations which carry statistics or

quantum numbers which are fractions of those of the constituents.

2. Topology-dependent groundstate degeneracy; this is a consequence of property 1, since the

'In odd spacetime dimensions, chiral symmetry is replaced by parity symmetry in this statement.
These are sufficient conditions; a complete characterization is possible in two dimensions in terms of adiabatic
modular transformations [7] the generalization to higher dimensions seems not to be known yet.



groundstates must represent the algebra of flux insertion operators associated with adiabatic

braiding of quasiparticle-antiquasiparticle pairs.

3. Long-range entanglement, which may be quantified [8, 9] by the topological entanglement
entropy v, a universal piece of the von Neumann entropy of the reduced density of region
A of surface area /(A) in the groundstate: S(A) = ¢(A)A —7 (where A is nonuniversal).
For abelian states, 7y is the logarithm of the number of torus groundstates, and vanishes for

states with short-ranged entangled states [10].

Topological order is interesting and difficult. Recently, a simpler question has been
fruitfully addressed: “What are possible (gapped) phases that don’t break symmetries and don’t
have topological order?” (For a nice review, see the second part of [11].) In this paper we will use
the spatial-topology-independence of the groundstate degeneracy as our criterion for short-range
entanglement (SRE). The Eg state in 2+1 dimensions [12, 13, 14, 15] is a known exception to
this characterization.

A way to characterize such nearly-trivial states is to study them on a space with boundary.
A gapped state of matter in d + 1 dimensions with short-range entanglement can be (at least
partially) characterized (within some symmetry class of Hamiltonians) by (properties of) its edge
states (i.e. what happens at an interface with the vacuum, or with another SRE state). The idea
is simple: if we cannot adiabatically deform the Hamiltonian in time from one state to another,
we must also not be able to deform the Hamiltonian in space from one state to another, without
something interesting happening in between. The SRE assumption is playing an important role
here: we are assuming that the bulk state has short-ranged correlations, so that changes we might
make at the surface cannot have effects deep in the bulk.

A useful refinement of this definition incorporates symmetries of the Hamiltonian: An
symmetry-protected topological (SPT) state, protected by a symmetry group G, is a SRE, gapped
state, which is not adiabatically connected to a product state by local Hamiltonians preserving

G. Prominent examples include free fermion topological insulators in 3+1d, protected by U (1)



and ZZT , which have an odd number of Dirac cones on the surface. Free fermion topological
insulators have been classified [16, 17]. Interactions affect the connectivity of the phase diagram
in both directions: there are states which are adiabatically connected only through interacting
Hamiltonians [18], and there are states which only exist with interactions, including all SPT states
of bosons [19, 20, 21, 22].

A simplifying property is that the set of SPT states (protected by a given symmetry group

N

A 4R

LS

A-A

G) forms a group.

Figure 2.1: Visual depiction of the group operation on SPT states.

The addition law is tensor product of Hilbert spaces, and addition of all interaction terms
allowed by G. The inverse operation is simply addition of the mirror image. We emphasize that
with topological order, destroying the edge states does not modify the nontrivial physics (e.g.
fractional charges) in the bulk: states with topological order do not form a group. A conjecture

for the identity of this group (in d space dimensions, for given G) is the group cohomology



group H+1(G,U(1)) [23]. Exceptions to this conjecture have been found [20, 21, 24, 25] and
are understood by [13]. For our present purposes, we do not need to know how to classify these
states. The existence of this group struture has the following implication [20, 21, 24, 25, 26],
which we may pursue by examples.

Suppose that the edge theory (e.g. with vacuum) of a (D + 1)-dimensional SPT state
were realized otherwise — that is, intrinsically in D dimensions, with a local Hamiltonian respecting
G. Then we could paint the conjugate local theory on the surface of a (D + 1)-dimensional space
hosting the SPT state without changing anything about the bulk. By allowed (G-preserving, local)
deformations of the surface Hamiltonian, we could then completely destroy the edge states. But
this contradicts the claim that we could characterize the (D + 1)-dimensional SPT state by its
edge theory. We conclude that the edge theories of SPT states cannot be regularized intrinsically
in D dims, while preserving G. We will refer to them as “surface-only models”. More generally,
we can consider the interface between pairs of SRE states; the edge theory for interface between
any pair of SPT states is also a surface-only theory.

The Nielsen-Ninomiya result is implied by this logic. Consider free massive (relativistic,
for convenience) fermions in 4+1 dimensions: S = [ d*"'x¥ (d 4 m) . The two signs of m label
distinct phases. One proof of this arises by coupling to an external gauge field via the fermion
number current AS = [d SxA“‘PyH‘P. The effective action involves a quantized topological term:
m dx

A eabcdeAanche .

1 D] iSa+1[VA] _
Og/[ le m| ] 2472

The domain wall between the two phases hosts an exponentially localized chiral fermion field
[27, 28], a fact which has been useful for lattice simulations [28, 29].

A more famous D = 3 4 1 analog begins with a massive fermion in 3+1 dimensions:

S = /d3+1x\i1 <a+m+imy5) P



If we demand time-reversal (1) invariance, 7z = 0, and +m label distinct SPT states protected by
ZZT . Coupling to an external gauge field

4
ﬂ d*x abcd

log/[DlP]ei&Jrl[‘P,A]:‘m’ 5t FoypFog.

produces a quantized magnetoelectric effect with 6 = 0,7 [30]. The domain wall hosts a single
Dirac cone in 2+1d. (We must emphasize that in both the above examples the protecting symmetry
which distinguishes these states from the trivial insulator includes charge conservation.)

This suggests the following strategy for generalizing these results away from free fermions.
Study a simple (unitary) gapped or topological field theory in 4+1 dimensions without topological
order, with symmetry G. Consider the model on the disk with some boundary conditions. The
resulting edge theory is a “surface-only theory with respect to G — it cannot be regulated by a
local 3 4+ 1-dim’l model while preserving G.

What does it mean to be a surface-only state? Such a model is perfectly consistent
and unitary; it can be realized at the edge of some gapped bulk theory. However, it cannot be
regularized in a local way consistent with the symmetries in absence of the bulk.

It (probably) means these QFTs will not be found as low-energy EFTs of solids or in
cold atom lattice simulations. Why ‘probably’? This perspective does not rule out emergent
(“accidental””) symmetries, not explicitly preserved in the UV. An example of a SPT-forbidden
symmetry emerging in the IR occurs in critical Heisenberg spin chains, where the spin symmetry
is enhanced to an O(4) which rotates the spin order into the valence bond solid order.

It also does not rule out symmetric UV completions that include gravity, or decoupling
limits of gravity/string theory. (UV completions of gravity have their own complications!) String
theory strongly suggests the existence of Lorentz-invariant states of gravity with chiral fermions
and lots of supersymmetry (the Eg X Eg heterotic string, chiral matter on D-brane intersections,

self-dual tensor fields...) some of which can be decoupled from gravity.



2.3 A simple family of topological field theories in 4+1 dimen-
sions

Here we will study simple field theories in 4+1 dimensions, whose path integral is gaussian.
We follow an analog of the K-matrix approach used in [14] to study 2+1 dimensional SPT states.

Specifically, consider 2Np 2-form potentials lew ~-» 10 4+ 1 dimensions, with action

K,
Scs[B] = 2—;] - B'ndB’ . 2.1)
4

M ,N = 0..4 is a 4+1 dimensional spacetime index, /,J = 1..2Np, and X is a smooth 4-manifold
(sometimes with boundary).

In 47+ 1 dims, K is a skew-symmetric integer 2Np x 2Np matrix. This basic difference
from 241 dimensional CS theory (where the K-matrix is symmetric) arises from the fact that
the wedge product of two-forms is symmetric, and hence B A dB = %d(B A B), and thus the
symmetric part of K produces a total derivative. The action is independent of a choice of metric
on R x X5,. Just as one may add an irrelevant Maxwell term to CS gauge theory, these models
may be considered as the g — oo limit of the non-topological models with (‘topologically massive’

[31]) propagating two-forms with action
T
S— / 2 4B £ #dB’ + Scs B : 2.2)

the mass scale M determines the energy gap.

These models have a long history, including [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42].
The canonical quantization of closely-related models was discussed in [36, 37]. (The difference
from the models we study comes from issues related to the compactness of the gauge group, as in
(3.4) below. This includes the quantization of the level and the resulting conclusion about the

finiteness of the dimension of the Hilbert space.) The linking number of (homologically-trivial)

10



pairs of surfaces was constructed as an observable of this theory in [38, 37].

Moore [43] refers to these models as both trivial and difficult. They are trivial in that
the path integral is gaussian, and difficult in the sense that there are lots of subtleties in defining
what’s being integrated over. We will not highlight all these subtleties, but we will endeavor to
not be wrong?. Moore and collaborators [43] have studied such generalizations of CS theory and
their edge states with great care. In particular, the paper [41] constructs the partition function
for the theory we study below and relates it to a piece of the A’ = 4 super Yang-Mills partition
function.

This relation arises because these models are realized as a ‘topological sector’ of type IIB
strings on AdS5 x X5 [39]; the simplest case with two 2-forms arises for X5 = S°, where the forms
may be identified as B! = Bygys, B> = Crg which couple to fundamental strings and D1-branes

respectively; the CS term (2.1) arises from

1 (5) N
s 9——/ F ABAdC:——/ BAdC
= o Adssxss KR 21 JrRxx

and allows for the ending of N F-strings holographically dual to the baryon vertex of A’ =4 SYM
[45, 46]. S-duality of 1IB string theory acts by interchanging the two-forms. This symmetry of
(2.1) will play a crucial role below.

We focus on the Abelian case. The action § is invariant under the gauge redundancies

B ~ Bl +a\ (2.3)

3This paper [44] gives a readable description of the dangers here. We can go a long way toward avoiding running
afoul of the subtleties which are resolved by formulating the model in terms of differential cohomology if we only
consider manifolds whose homology has no torsion. Even with this restriction we can say something interesting.
More subtle distinctions between 4+1d phases that only arise on manifolds with torsion in their homology will have
to wait for future work.

11



where A/ are one-forms. We will impose large gauge equivalences:
B' ~B' 4+ n%0q, [0%€H2(X,Z), n*ezl® (2.4)

where b? = dimH?(X,ZZ) is the 2nd Betti number of X. In the case of 2+1 CS gauge theory of
R x X,, the analogous identification arises naturally from large gauge transformations [34, 35]
A=A+ig 'dg, with g(x)= eiZZl:(fZ) Jig 1% o
where o, form a basis of H'(X,,7), and x is a base point. In the 4+1 dimensional case, we
don’t know what a group-valued one-form is, but retain the natural identification (3.4). (A
mathematical formalism which produces this identification in a ‘natural’ way is described in
[44].) This identification was not imposed in the otherwise-identical models studied in [36].
This class of models has been used [47, 48, 49, 40, 41, 50, 51, 43] to ‘holographically’
define the partition function of the edge theory. (These papers focus mainly on the case of bulk
spacetime dimension D = 4¢ + 3: 1+1d chiral CFTs, conformal blocks of the 5+1d (2,0) theory.)
In this paper, we are using this same relation to a different end.
Finally, we note that the simplest model (2.1) with one pair of two-forms is equivalent
to a Zy 2-form gauge theory [49, 52]. The case we will be most interested in, with k = 1, can

therefore be regarded as a kind of ‘Z; gauge theory’, which nevertheless has a something to

teach us.

12



2.4 Bulk physics

2.4.1 Whenis this an EFT for an SPT state?

For this subsection we suppose that dX is empty. We wish to ascertain the size of the
Hilbert space, and its dependence on the topology of X. Thinking of this as the EFT for some
4+1 dimensional gapped state of matter, at energies below the gap, this number is the groundstate
degeneracy (up to e~ (Ystemsize)-gap finjte_size effects). If this degeneracy is dependent on the
topology of X, then this state has topological order in the bulk [6]. A closely related calculation
appears in section 6 of [44], in the case of a theory of p-forms in 2p 4 1 dimensions, for the case
of odd p.

Many aspects of the problem are analogous to the case of 2+1 dimensional CS 1-form
gauge theory. The kinetic term in (2.2) is analogous to the Maxwell term, and g has units of
energy. With g < oo in (2.2), there are excited states of energy E o g, analogous to higher Landau
levels. As in 2+1d, this is an example of an inclusion of metric dependence which does not
change the nature of the phase. We will focus on the limit g — oo.

And as in the 2+1d case, the identification (3.4) means that the gauge-inequivalent

operators are labelled by cohomology classes, here [0y] € H?(X,Z):
Folm) = e2nim1meI
where the identification on B implies m € ZZ. These operators satisfy a Heisenberg algebra:
/ / 21tim°‘m/B(K*1)UI
Fo () Forg (1) = Foo (1) Faog, (m) "1™ “.

This kind of algebra is familiar from the quantum Hall effect, and from 2+1 dimensional CS
theory. Its only irreducible representation is the Hilbert space of a particle on a ‘fuzzy torus.’

of dimension 2Nzb?(Z). The number of states depends on the intersection form on the second

13



homology of X:

This is a b*(X) x b*(X) symmetric matrix, which has various properties guaranteed by the theory
of 4-manifold topology [53]. For a smooth, compact, oriented, simply-connected 4-manifold, it is
unimodular (i.e. has |det I| = 1). It is even if X is a spin manifold (i.e. it admits spinor fields, i.e.
its first Steiffel-Whitney class vanishes). Its signature is not definite.

Consider the simplest nontrivial case where »?(X) = 1, which case I is a I x 1 matrix.
The simplest example is £ = IP? where [ = 1 [53].

We may arrive at the same conclusion by expanding the action in a basis of cohomology
representatives:

(54,2

b )
Bl = 0ub' (1), span{wg} = H*(X4,7Z),

a=1

SO

KU/ / I JB KIJ/ Joj JB
S=— [ dt W ANOgb' “b'P = — [ dtI,gb'"b
21 5, 2P 21 op

which describes a particle in »?(X) dimensions with a magnetic field in each pair of dimensions
of strength k.

First we further assume that there is just one pair of B-fields, Np = 1 and (WLOG by a
GL(Np,7Z) rotation) we take K = kic”. Then the hilbert space is that of a particle on a periodic
1d lattice with £ sites:

FIQ) =[Q), [w) = R'|Q), w= 1.k

Here 7; = F;(1). (Note that 7/} = 1L.)
Now keep this simplest X but take more pairs of B-fields. We can skew-diagonalize the

K-matrix, so that we find Np copies of the previous discussion, with various k, which are the
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skew-eigenvalues of K:

-k 0 0 O

0 0 —k O

So the dimension of the Hilbert space of the bulk in this case is

Np
dimH (br(£) =1,1=1) =[] ka =PI K,

a=1

the pfaffian.

If 7 > 1, it multiples k, in the commutation relation. This gives
dimH (by(£) =1,1) = [ ] ka = Pf (IK).

Now consider a more general 4-manifold where b, > 1. Then there are b, Np pairs of
canonically-conjugate variables. By GL(2b,Np,ZZ) rotations, we can choose a basis to diagonalize
I ® K. Since I is symmetric, this matrix is still skew-symmetric. If we call its skew-eigenvalues

A4, and the number of groundstates is

bg(Z)NB
dmH = [[ M=Pf (I0X)|.
A=1

The conclusion from this discussion is that if / ® K has any skew-eigenvalues which
are larger than one, the system has bulk topological order: a topology-dependent groundstate

degeneracy.
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2.4.2 This is a model of bosons

We observe that if X is a spin manifold, then we may take the entries in K to be half-
integer, while preserving the consistency of the theory (in particular, the fact that the number of
groundstates is an integer). A choice of spin structure was not required for the calculation we
did here, but would be for other observables. Such models would provide low-energy effective
theories for fermionic models, analogous to odd k CS gauge theories in two dimensions, as is
familiar from the integer quantum Hall effect and was studied in great detail by [50].

The preceding statements provide low-energy evidence that the models (2.1) for integer
K can arise as the low-energy EFT for models of bosons. High-energy evidence for this claim
comes from [54], which constructs a local bosonic lattice model which produces this EFT at low

energies.

2.5 Surface states

2.5.1 2+1d case with boundary

Here we briefly review some relevant properties of 2+1d CS gauge theory on a spacetime
of the form R x X with a spatial boundary, 0X [34, 35, 49, 50, 6]. We will further assume for
convenience that H”(X,0%) = 8% — the topology (specifically, the relative cohomology) of the
bulk is trivial.

The gauge group consists only of gauge transformations which go to the identity at the
boundary. Transformations which act nontrivially do not leave the CS action invariant; if we
wished to mod out by them we would need to add degrees of freedom to cancel this variation,
and would arrive at the same description. The CS equation of motion for Ag is a constraint which
imposes 0 = F' which means that

A=g ldg (2.5)
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which we can choose to vanish in the bulk. In the abelian case we can take A = d¢, with ¢ ~ ¢+2n
compact. We arrive at a theory of compact free bosons.

The Hilbert space of edge states is specified universally by the bulk — the CS action
evaluated on (2.5) gives So = [r.ox %8,(1)1 9,0’ which determines the canonical equal-time

commuators

[07(x), 0" (x")] = 2mik7; 8 (x — ).

However, the Hamiltonian governing these bosons comes entirely from the choice of boundary
conditions, since the bulk action is linear in time derivatives. The non-universal velocity of the
chiral edge modes is not encoded in the Chern-Simons action; this is natural from the quantum
Hall point of view, where this velocity is determined by the slope of the potential confining the
Hall droplet. The non-universal velocity term arises if we choose the ‘boosted’ boundary condition
A+ VvA|sz = 0, where x is the coordinate along the boundary. (Note that this is a boundary
condition, not a gauge choice — v affects the physics.) This gives S[0] = ﬁ (07 + vdy) 0,0,
which shows that the edge boson is chiral; the sign of v is correlated with the sign of k in order
that the energy be bounded below. Alternatively, and more covariantly, we may use units with
v =1 and impose A — *A |5z = 0 [43]. We may neglect the possibility of a matrix of velocities

if we include a coupling to disorder [55, 56], which we should unless we are interested in SPT

states protected by translation invariance.

2.5.2 4+1d abelian two-form gauge theory with boundary

As in the previous discussion, we consider the bulk spacetime to be R x ¥4 with nontrivial
boundary 0%y, and trivial topology in the bulk. The gauge transformations must act trivially at

the boundary.
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We will focus on the simplest case where K = kicZ. Consider

k
S[B,C] = —/ (BAC—C A dB)
2n RxX%y
/ ( 1C/\*C—l—kB/\C)
Reaz, \4g2 " 4n

A convenient boundary condition (imposed by free variation of (2.6) with the boundary

k 1
(ﬁB—ng*qC) |824 =0.

terms indicated) is:

The path integral over B produces a delta function forcing C to be flat [49]:

/[DB]eiS:éS[dC] — C=da.

1
— da A x4da
4g2 /R><824 !

This is ordinary Maxwell theory. We know how to regularize this theory with a local

S[C=dd] =

lattice boson model * We infer from the logic described above that we are forced to break some
symmetry of (2.1) in order to realize its edge states in a local way. What symmetry must we break
in writing such a local model?

We answer this burning question in the next section, after which we comment on more
general boundary conditions. The general abelian case produces a collection of copies of Maxwell

theory. This can be seen by block-diagonalizing K by a GL(2Np,ZZ) rotation.

“For example,

==
I

2
- L (g
vertices,v€Ag \L€s(v)
- Y Il & +hec-TY n. (2.6)

PEA; £€d(p) leA

A, = {p-simplices}. s(v) = {edges incident on v (oriented ingoing)} and [b,,n,] = i is a number-phase representa-
tion; b, = b, +2m,n, € Z.
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2.6 Symmetries

CS gauge theories in 2+1d have bulk ‘topological’ conserved currents. When these
theories arise from quantum Hall states, some linear combination of these currents can be
interpreted as electron number:

1

J is conserved when A is single-valued. In 4+1d, the analog is pairs of string currents

1
7 A !
J,UV = _ZRE#VPGKaPBGK .

We can use these symmetries to demonstrate that different K label nontrivial, different states.
In D =2+ 1 CS theory, we can couple the particle currents J/ = xdA’ to external 1-form

potentials, 4;:

log/[DAl]eifj;tAdA+ileﬂl’ :/ (amk~"),, Alaa’
241

This term in the effective action demonstrates a quantized Hall response; in the absence of
topological order (detk = 1), nye% is an integer. This is one way to distinguish the integer
quantum Hall state from a trivial insulator. In the 2+1d case, the thermal Hall response o< ¢y — cg
makes this distinction even in the absence of charge conservation.

The analogous stratagem in D = 4+ 1 is to couple the string currents J/ = xdB! to external

2-form potentials, B;:
log/[DBI]eifﬁBdBHfhﬂ%’:/(47.5[(I)UQ;Id@J '

This term exhibits a quantized ‘string Hall’ response to external 3-form field strengths, which

again is an integer in the absence of topological order, PfaffK = 1). This response distinguishes
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this state from the completely trivial state of bosons in 4+1 dimensions.

e Translation invariance is a red herring. In fact, breaking translation invariance with static
disorder helps to produce a uniform speed of light in the edge theory. Indeed, the lattice

model [54] should have the same edge states.

e Stringy symmetries: Jg)\bdy = Eg,JECO|bdy = —By. E; = d;ay — dpa; By = €4;j(diaj — 9ja;)

are ordinary E&M fields

-

Jy% = 8,~jka,~Cjk = eijka,-ajak =V-B

B o
JyO = Sl’jka,'Bjk = eijkaiejk,Eg =V-E.

This is ordinary charge, of course it has to be conserved.

e C: (B,C) = —(B,C) is (E,B) — —(E,B). This is preserved in pure U(1) lattice gauge

theory.

o TP:t — —t,xM — —xM i — —i, B— —B,C — C as two-forms. Acts in the usual way on

the EM field as (E,B) — (E,—B).

e | Electric-magnetic Duality: (B,C) — (C,—B) |The global symmetry which interchanges

B and C is a manifest symmetry of the bulk theory. It acts on the boundary gauge field as

electromagnetic duality (E,B) — (B, —E).
e Just as in string theory and gauge theory [57], the Z, EM transformation just described

B
is a subgroup of a classical SL(2,R) symmetry acting on (B,C)” as a doublet —
C

with ad — bc = 1. The continuous parts of this group, where a,b,c,d ¢ ZZ
c d C
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do not preserve the integrality condition (3.4), and are not symmetries of the quantum

theory. The SL(2,7Z) subgroup is generated by
1
S§ = and T=

SS is the EM duality transformation above, and T adds a boundary term [g. oy %RC NC;

this shifts the 0 angle of the surface gauge theory by 27.

This EM duality symmetry is effectively unbreakable in the 4+1d CS theory. Even with
arbitrary boundary conditions, breaking Lorentz invariance, the scaling freedom in the relationship
between B, C and a, d, and in the duality map itself always allow a symmetry operation exchanging

a and d. The general boundary condition is of the form
0= (B+61C+02*B+C3*C) ‘82 .

Of the three real coefficients c¢;, one may be absorbed in the speed of light, a second may be
absorbed in the relationship between C and the Maxwell potential a, and the third may be absorbed
in the duality map, (B,C) — (AC,A"'B) 7.

The only way to break the manifest EM duality symmetry of the bulk is to add charged
matter, in the form of strings which end at the boundary. Any matter we add has a definite charge
vector (ge,qm). Even if the matter comes in dual pairs, condensing matter with a definite charge
vector will gap out the boundary photon (and the matter with the dual charge vector).

Charged matter in the surface Maxwell theory arises from strings which are minimally
coupled to the bulk 2-forms and terminate at the boundary. The precise spectrum of matter is

information additional to the low-energy bulk action we have described; it is specified in a lattice

This transformation also acts on the large gauge identification map (3.4), and on the surface acts as the usual
(fake) rescaling of the charge lattice by (eq.,8qm) — (Aeq.,A~'gqn) preserving Dirac quantization ge = 27.
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UV completion [54].

We conclude that it is not possible to regularize Maxwell theory in a way which retains
manifest electromagnetic duality symmetry. This is consistent with the existence of U(1) lattice
gauge theory, and its UV completions in terms of lattice models with local Hilbert spaces [58, 12],
in which EM duality is not manifest on the lattice. Of course, we still do expect this symmetry to

emerge in the IR limit of these models.

2.7 Discussion

2.7.1 7d CS theory and the (2,0) superconformal theory

There are many generalizations of the kind of nearly-trivial bulk theory we have studied

above. Consider the following 6+1d Chern-Simons theory

k
S7[cP)] = e /R N c® nact
6

For k = 1, there is no topological order, and the model is completely trivial in the bulk. To study
the edge states, we examine solutions of the bulk equations of motion C () = dc@, with the

boundary condition: Cp;; = v(%6C);;. The resulting action is

§71C) = dc@)] :% / el (3¢ reac?).
Rx0dXg

c 1s a self-dual 2-form potential in 5+1d. In this case (as in the 2+1d CS theory and the integer
QHE), no symmetry is required to protect the edge states. We conclude that this model cannot be
regularized intrinsically in 5+1 dimensions.

This model describes the ‘topological sector’ of the Ag (2,0) superconformal theory in 6d

[39, 40, 51] — the worldvolume theory of an M5-brane in M-theory. The conjecture that these
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exotic QFTs can be consistently decoupled from gravity underlies much recent progress in string
theory (e.g. [59] and references thereto). In particular, by compactification, its existence makes
various deep 4d QFT dualities manifest. This model reduces to the simple model without fermions
or scalars when the partition function preserves enough supersymmetry [40]. We conclude that
the (2,0) theory cannot be regularized preserving a sufficient amount of supersymmetry to allow
this. It is possible that further inquiry in this direction can provide guidance for better definitions

of string theory.

2.7.2 Would-be gauge anomalies and surface-only models

Many surface-only obstructions, including the Nielsen-Ninomiya examples, are directly
related to anomalies in the protecting symmetry: They would be gauge anomalies if we tried to
gauge the protecting symmetry. This property has been used to identify nontrivial SPT states in
[60].

We described an obstruction to regularizing a self-dual 2-form theory in D = 5+ 1; this,
too, can be understood in terms of a known anomaly. Just as for chiral CFTs (the chiral boson
theory is a theory of a self-dual 1-form field strength), a gravitational anomaly was relevant here.
In 1+1 dimensions, the chiral central charge c¢; — cg, which determines the magnitude of the
thermal Hall effect, measures an anomaly that obstructs coupling the theory to gravity. A similar
gravitational anomaly arises for the 6d self-dual tensor theory [61].

Are all of surface-only obstructions to realizing a symmetric regulator merely anomalies
we would find should we try to gauge the symmetry? Thinking of anomalies as ‘symmetries
broken by any regulator’ the answer would seem to be ‘yes’ [26]. It is true that the NN theorem
can be interpreted as the statement that no chirally-symmetric regulator can produce the correct
chiral anomaly in a background gauge field coupled to the vector current.

It is not clear, however, whether our present notion of ‘anomaly’ is general enough to

make this the correct answer. Here is some evidence that there can be obstructions more general
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than obstructions to gauging symmetries:

1. A known example [60] is SPT states protected by time-reversal Zg . It is not clear what it
would mean to gauge an antiunitary symmetry (all numbers are real?), so it is not clear that
obstructions to regularization arising from demanding ZZT symmetry can be thought of as

would-be discrete gauge anomalies.

2. From our discussion above, we can conclude that it is impossible to gauge electromagnetic
duality in Maxwell theory. Previous literature suggesting that it is impossible to gauge EM
duality includes [62, 63, 64]. (In other models in other dimensions, it is possible to gauge
analogs of EM duality [65].) We do not know how to describe this phenomenon in terms
of a known Z, anomaly. We note, however, that a model which resulted from identifying
configurations related by the S transformation could not be CPT invariant, since CPT in 4k

spacetime dimensions relates helicity 4-1 states.

We observe (following [49]) that the model we get on the surface is exactly in the form
given by [57]. We are forced to conclude that the manifestly EM-duality-invariant (but not
manifestly Lorentz-invariant) model described in [57] cannot be regularized. (Note that
Lorentz invariance is not the protecting symmetry: breaking Lorentz-invariance in the bulk

of the 5d CS theory has no effect on the surface states.)

3. Finally, it would be very interesting to find obstructions to supersymmetry-preserving regu-
lators. Gauging supersymmetry leads to supergravity. Consistency of quantum supergravity

is much harder to verify than the absence of quantum violations of the current.
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2.8 Appendix: A simple but non-unitary TFT

Here we consider analogous gaussian models where the fields are grassman-valued p-

forms in 2p+1 dimensions:
KIJ

Y AdY.

Our motivation for thinking about this was that this reverses the behavior of the K matrices
as a function of the parity of p, relative to the case of bosonic forms. That is: in 2+1 dimensions
(odd p), the K-matrix is antisymmetric, while in 4+1 dimensions (even p) the K-matrix is
symmetric.

There is an analog in 1+1 dimensions which is called the bc CFT, an example of which
arises in string theory. There b, ¢ are grassmann fields with action [ boc. there one can consider
the spin of (b,c) to be (A, 1 —A) respectively; it is a CFT for any A with (chiral) central charge
cp=—3(2A—1)>+1. L =1 is free complex fermions, 1= 1. The spin doesn’t make any
difference in terms of counting of degrees of freedom in 1+1d, it just affects the form of the stress
tensor. If we take the spins to be 0,1 (A = 0), so that we have a one-form and a zero-form we get
¢ = —2. It is a non-unitary theory (the central charge is positive in a unitary CFT).

Such a system violates the usual connection between spin and statistics, which is general
for unitary relativistic quantum field theories (indeed we will find that it is not unitary). If we add
a Maxwell-like term — (ay) then surely this action will propagate ghosts. But in the topological
limit m — 0, nothing propagates, and we might hope it is unitary, but has no relativistic UV
completion. As we will see by finding the space of states on a closed manifold, it is not.

If we study the quantization of this model on a closed manifold ¥, we can expand

bP (%o, Z

'Y[ = Z (D(XGOL]
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and find
K1y 10B7
S:/dl‘ﬁ[aﬁea GB s

with Iog = szp 0 A\ 0 the intersection form on p-cycles. Quantizing this system leads to the

canonical anticommutation relations
{e(ﬂ’eﬁ]} — 4TCh (K—]>IJ (I—])OCB ]

In any dimension 2p there are manifolds with indefinite signature of the intersection form on
the middle homology. If the RHS is of indefinite signature, the Hilbert space representing this

algebra has states of negative norm.
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Chapter 3

All-fermion electrodynamics and fermion

number anomaly inflow

3.1 Abstract

We demonstrate that 3 4 1-dimensional quantum electrodynamics with fermionic charges,
fermionic monopoles, and fermionic dyons arises at the edge of a 4 4 1-dimensional gapped state
with short-range entanglement. This state cannot be adiabatically connected to a product state,
even in the absence of any symmetry. This provides independent evidence for the obstruction
found by [66] to a 3 4 1-dimensional -distance completion of all-fermion electrodynamics. The

nontriviality of the bulk is demonstrated by a novel fermion number anomaly.
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3.2 Introduction

Topological Phases

What are phases of matter? What properties distinguish phases from each other? These
questions are of central importance to the study of condensed matter physics.

Recent work has emphasized the importance of symmetry, topology, and entanglement in
distinguishing gapped! phases beyond the physics of spontaneous symmetry breaking. These are
often referred to as “topological phases”.

Some such phases are described, at low energies, by topological quantum field theories in
some spacetime dimension D.? Examples include the Chern-Simons theory in D = 2+ 1 and its
role in describing quantum hall fluids [67] as well as BF-theory in describing topological phases
inD=3+1.[68]

It is often interesting to consider these theories defined on a manifold with spatial boundary.
For example the Chern-Simons theories generically host a rational conformal field theory on the
D =141 boundary. We will refer this as the “edge physics” of a given theory.

Among these theories we can distinguish two classes: theories which are “invertible” and
those which are not.[69]

From a physics point of view, invertibility means that within the Hilbert space of the
theory one can identify an “inverse ground state” |(g.s)~') such that if you took two copies of
the Hilbert space and consider |y) = |g.s)|(g.s) ') one can find a quasi-local unitary operator
U which transforms |y) to a product state.[70] Moreover this procedure should be possible on
any manifold on which the field theory is defined, independent of its topology. This rules out the

possibility of ground state degeneracy which depends on topology.?

li.e. the energy of the first excited state is strictly larger than the energy of the groundstate, even in thermodynamic
limit

Following Sachdev’s convention, we’ll use D = d + 1 to denote the number of spacetime dimensions.

3 As one may guess a distinguishing feature of the “non-invertible” theories is a topology dependent groundstate
degeneracy. These phases are referred to as “topologically ordered” or ’long-range entangled”. For a review, see e.g.

(7]
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This state |(g.s)~!) itself occurs as the ground state of an invertible topological phase
sharing the same global symmetries. This leads to a natural group structure for these theories
where the group addition law is tensor product of Hilbert spaces, and addition of all terms to the
Hamiltonian allowed by some global symmetry G.*

Identifying these groups is known as “classifying” invertible topological phases and has
been the subject of much theoretical activity. [23, 17, 70, 71]

Such phases are often referred to as “short-range entangled”, ”symmetry protected topo-
logical phases”, or ”SPTs” though the role of global symmetry is somewhat opaque from the
discussion thus far. Indeed, non-trivial invertible phases which do not require a global symmetry
G to be protected” are rare and interesting.

Much more common are examples where the topological phase requires a non-trivial
global symmetry G to be respected in order to distinguish these phases from trivial gapped
systems. Examples include the free-fermion topological insulators protected by time-reversal, the
Haldane chain in one dimension protected by SO(3) spin rotation symmetry or time reversal, as
well as the host of models described in ref [23].

Up to now the only known examples that don’t require symmetry are (copies of) the
fermionic chiral (p + ip) superfluid states®, Kitaev’s Eg state of bosons [13, 14, 15] (bothin2+1
dimensions), and Kitaev’s majorana chain in 14 1 dimensions [72] (provided we assume fermion
number is unbreakable).

In this paper, we construct another example of a short-range entangled topological phase
not protected by any symmetry. It is made from bosons in D =4 + 1 dimensions and its edge

hosts a version of electrodynamics where all charged objects are fermions.

4Sometimes one further restricts terms permissible. For example in the study free-fermion theories one only
allows terms which are quadratic in the fermionic operators. These groups may not be isomorphic to the group found
when allowing all generic interactions. In this context it can be referred to as the “’collapse” of the free-fermion
classification by interactions. See ref. [18]

3i.e. the Hamiltonian cannot be continuously/adiabatically deformed to a trivial theory by the action of a local
unitary without closing the gap. This is what is meant to distinguish different gapped phases.

%in which the Z, symmetry is ungauged and the vortices are not dynamical objects
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Edge Physics

Following the aforementioned examples, it is believed that such invertible topological
phases are characterized by their edge states.” This must be the case as the physics in the “’bulk”
dimension appears trivial ®

This implies that the physics which may arise at the edge of a D-dimensional SPT (and
any low-energy effective field theory description thereof) must have features which may not arise
intrinsically, in the absence of the extra-dimensional bulk.

That is, there must not be a local lattice model (or other regulator) in strictly d — 1 spatial
dimensions which regulates the edge theory and preserves all of its symmetries. For example,
there is no way to regulate a chiral fermion in one dimension, by virtue of its gravitational
anomaly, and there is no way to regulate free chiral fermions in three dimensions due to the chiral
anomaly.’

This realization [1, 74] implies that the study of SPT states may be used to identify
obstructions to symmetric regulators of quantum field theory (QFT). In simple examples, such an
obstruction can be identified with an ’t Hooft anomaly coefficient [75], a well-known obstruction
to gauging a global symmetry of a field theory. When realized at the edge, the bulk theory cancels
the anomaly by anomaly inflow [27]. However, there are examples, particularly for discrete
symmetries, where there is no previously-known anomaly.!?

Examples of such obstructions which go beyond familiar global anomalies include many
interesting states in 2+ 1 dimensions, such as the algebraic vortex liquid [1], time-reversal-
invariant Z, gauge theory where all quasiparticles are fermions (the “all-fermion toric code”)
[1, 25], other topologically ordered states in 2+ 1 dimensions [80, 24, 81, 82, 83, 84], and a

simple three dimensional example [74].

"The subject is reviewed in [11, 73].

81t lacks fractionally charged excitations, always has a unique ground state, satisfies the area-law of entanglement
entropy without any interesting corrections, etc.

°As a reminder chiral in D = 1+ 1 simply means left or right moving. In odd spacetime dimension chiral
symmetry is replaced by discrete parity symmetry.

19Formal attempts to interpret SPT obstructions in these terms include [76, 77, 78, 71, 79].
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This paper may be regarded as a sequel to [74], which identified an obstruction to a
regulator for ‘pure’ U(1) gauge theory which manifestly preserves electromagnetic duality.!!
While this is a gaussian model, such a no go result is interesting given attempts to construct such
manifestly duality-symmetric realizations [57]. Further, it shows the impossibility of gauging
electromagnetic duality, a conclusion which was argued from a very different point of view in
[62, 63, 64].

Here we point out that a stronger obstruction may be found by adding ‘matter’ to the bulk
model studied in [74]. The model we find at the surface is 3 4+ 1-dimensional electrodynamics
where all of the minimally-charged (electrically and/or magnetically) particles are fermions. This
system has been discussed recently in [66], which demonstrated that it does not admit an interface
with vacuum — it is not ‘edgeable’.

To be precise, ref. [66] showed that all-fermion electrodynamics cannot be realized in
3 4 1-dimensions if the microscopic regulator consists entirely of bosonic degrees of freedom.
If we add to the microscopic physics gauge-invariant fermion degrees of freedom, then we
can bind the gauge invariant fermion to the minimally charged fermionic objects to produce
minimally charged bosonic objects. Bosonic electrodynamics of course can be regulated in
strict 3 4 1-dimensions, by U(1) lattice gauge theory [86], or (more locally) by a U(1) toric code
[87, 88].

We note that the classification of [71] includes a nontrivial state in 4 + 1 dimensions
without symmetry. Ref. [89] attributes fermionic excitations to its surface states. We anticipate
that the independent construction in this paper can be interpreted as a physics-based realization of
the machinery in that work.

Why is the bulk nontrivial?

That the edge of the 4 4 1-dimensional system realizes all-fermion electrodynamics, com-

bined with an argument that all-fermion electrodynamics cannot be regulated in 3 + 1 dimensions,

"'"The edge theory of this model was studied further in [85].
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implies that the bulk is a non-trivial 4 + 1-dimensional state of matter. Ref. [66] (Appendix D)
has given one such argument for the absence of a 3 4 1d regulator of all-fermion electrodynamics.
Hence the bulk is a nontrivial state of matter; any representative groundstate of which is not
adiabatically deformable to a product state. We provide two independent demonstrations of bulk
non-triviality, one from the point of view of the edge (in §3.3.3), and one that uses directly the
bulk (in §3.6).

Since no symmetry is required to define the bulk state, it is a topological phase of matter
which is protected from all weak Hamiltonian perturbations. However, it is still short-range
entangled [70, 90]: two copies of the bulk state can be deformed into a product state, so it is its
own ‘inverse state’.

In the context of microscopic bosonic phases, the only other known example of a short-
range entangled state which is distinct from the trivial phase in the absence of any symmetry is
the Eg state in D = 2 + 1 dimensions.'2

As stated above, the distinguishing feature of the Eg state is its chiral edge modes at an
interface with the vacuum. A sharp and universal characterization of these chiral edge modes is
the thermal Hall response: heat will be transported uni-directionally without dissipation along
the boundary of the sample. In the language of anomalies, the nontriviality of this example
is demonstrated by the chiral central charge c_ = c¢; — cg of the edge states. c_ represents a
gravitational anomaly of the edge CFT, and this is a construction of gravitational anomaly inflow.

In the D = 4 4 1 dimensional example studied here, the analogous signature of the
nontriviality of the state seems to be fermion number anomaly inflow, as we show in §3.6.

We demonstrate that this effect also occurs in the D = 3 + 1 boson SPT protected by time
reversal symmetry studied in [68, 91, 1, 25, 24].!3 This phase is an example of an SPT which lies

outside the group cohomology classification of ref. [23] and we refer to it as such.

12as well as multiple copies of this state, which comprise an integer classification

13 A related phenomenon was described for edge states of 3+1d SPTs whose protecting group contains U(1) in
[24]. In that case, the anomaly occurs upon gauging the U(1).
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A possible surface termination of this SPT consists of an all-fermion toric code, a model
which has no D = 2 + 1 realization with time reversal symmetry. Our claim implies that the
preservation of time-reversal in the all-fermion toric code comes at the cost of the conservation of
fermion number!

We emphasize that the main conclusion of this paper pertains to models made from bosons
in D =4+ 1 dimensions. As we show, the addition of microscopic gauge-invariant fermions to
the system removes any obstruction to realizing the edge physics in strict D = 3 + 1 dimensions.
Such a gauge-invariant local fermion cannot arise at the edge of a bosonic system. From the point
of view of a lattice field theorist attempting to regularize the given low-energy field theory, having
to add an extra species of massive fermion at the cutoff may not seem like a huge price. However,
we regard the demonstration that such a step is required as fascinating and requiring a systematic
understanding.

The paper is structured as follows. First (§3.3), we review the physics of two-form Chern-
Simons (“BdC”) theory in 4 + 1 dimensions and show that it admits an edge which supports
all-fermion electrodynamics. The group of electromagnetic duality transformations, which can
be realized as an exact symmetry of the bulk BdC theory, plays an important role in the analysis.
Second (§3.4), by considering the path integral of all-fermion electrodynamics on CP?, we show
that all-fermion electrodynamics cannot have a bosonic regulator. This constitutes a proof of
bulk non-triviality via edge non-regularizability. Third (§3.5), we show how to construct the
bulk non-trivial state from layers of ordinary (e.g., with bosonic charges) electrodynamics by
condensing dyon strings. Finally, we show how to interpret the obstruction in terms of a fermion
number anomaly of the all-fermion electrodynamics (§3.6) and show that similar physics is

realized in the non-trivial time-reversal (1) protected bosonic SPT in 3 4 1 dimensions (§3.7).
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3.3 The BdC model coupled to matter

3.3.1 BdC summary

We begin by describing the action of the BdC theory and reviewing its basic properties
[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Consider 2-forms lele (I = 1..Npg labels the form,

MN are the spacetime indices) in 4 4- 1 dimensions, with the topological action

K,
S[B]:l/ B A dB’ 3.1)
21 JrRxx

where X denotes the space of interest.

To process this action, we need a little exterior algebra: a p-form o, and a g-form f3,
satisfy o, A By = (—1)P9B, A aip and d(o, ABy) = day, AR, + (—1)Pa, AdB,. Hence we have
B'AB’ =B/ AB' and

B'ANdB' =d(B'AB’) —dB' AB (3.2)

so up to a total derivative the action is anti-symmetric in /J. Thus K is an anti-symmetric
2Np x 2Np matrix. Shortly we show that in order for (3.1) to govern the low-energy effective field
theory of a short-range entangled bulk state, K must also be an integer matrix with det(K) = 1.
Also, since BAdB = %d(B A B) is a total derivative, we must have an even number of such
two-forms.

We note that we view the topological field theory action (3.1) as the extreme low-energy
effective field theory for a gapped state of matter. In particular we can consider the addition of

generic irrelevant bulk terms like the bulk Maxwell term

W

2 dB' N+dB’ (3.3)

RxX

(where « is the Hodge duality operation).
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So long as the action of (3.1) is not a total derivative, i.e. if the number of two-forms is
even, then the term (3.3) does not produce a gapless excitation in the D = 4 + 1 bulk.

This is analogous to the situation in D = 2 4 1 for Chern-Simons theory. The models
described may be considered as the g — oo limit of the non-topological models with (“topologically
massive” [31]) propagating two-forms with action given by the sum of (3.1) and (3.3).

The local gauge transformations B! ~ B! + dA! are redundancies of the model. An
important further ingredient of the definition of the model [49, 41, 43] is the ‘large gauge’
identifications:

B ~ B+ n%0q, [0% € HA(Z,Z), n*czl® (3.4)

where the betti number b?(X) = dimH? (X, ZZ) is the dimension of the second integer cohomology
of X. This requires the entries of K to be integers'*.

The equations of motion following from (3.1) are, VI,
K;;dB’ =0. (3.5)

When K has full rank, these equations are solved by flat two-form fields, which are identified
by local gauge equivalences, and there are therefore no local degrees of freedom. As a result,
the gauge-inequivalent operators (analogs of Wilson loop operators) are labelled by cohomology
classes

Fo(m) = &2Tm o8’ (3.6)

with [0] € H?(X,Z). The identification (3.4) on B implies m! € Z.
Using equal-time canonical commutators for B, the flux operators (3.6) satisfy a Heisen-

berg algebra:

o (1) Faoy (1) = F (1) o () 2 n (K1) o (3.7)

14In this paper we will only discuss this model on manifolds without torsion homology. For the machinery required
to lift this restriction, see [44].
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Here
IOCB = /Z(D(x VAN 0)5

is the intersection form on H?(X,7Z), which is a b*>(X) x b*(X) symmetric matrix.

In analogy with Chern-Simons theory, the algebra (3.7) is realized on the space of ground-
states. The ground state degeneracy is given by the dimensions of irreducible representations of
(3.7).

Consider the minimal case (relevant later on) where £ =CIP?, for which 5*(CIP?) = 1 and
I = 1. The smallest representation of the algebra (3.7) is then |Pf(K)|-dimensional. Because we
wish to study invertible systems, which have a unique ground state on all manifolds, we require
detk = Pf2(K) = 1. [74]

The BdC theory is a special case of (3.1) where we take Np = 2 and let B'=B,B*=C,
and K = kic”; we must set k = 1 for this state to be short-range entangled. !’

We now review its physics on a space with boundary [74, 85]. In the presence of a
boundary, the solutions of the equations of motion produce physical excitations: a one-form
field a localized at the boundary. This mode is physical because gauge transformations which
are nontrivial at the boundary do not preserve (3.1). Boundary terms (whose coefficients are
non-universal) produce the Maxwell action for a. In particular, the boundary condition arising
from variation of an action with the leading irrelevant operators (i.e. the bulk Maxwell terms

(3.3)) is:
kool
(368~ 3274€) bz =0

Upon a convenient rescaling, the identification of boundary degrees of freedom is:
B=da, C=xda. (3.8)

An important symmetry of the topological action (3.1) is the group SL(2Np,ZZ) of field

ISWhen k > 1 the system has topological ground state degeneracy depending on b%(Z), namely K groundstates
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redefinitions that preserve the identifications (3.4). We emphasize that this symmetry is not
necessary for the 4+1 bulk to be distinct from a trivial phase; indeed, this symmetry may be
broken by UV physics, but it turns out to be very convenient to analyze certain topological features
of the physics assuming this symmetry holds. In the case of the BdC theory, the group is SL(2,7Z)
and it is closely related to the group of duality transformations on the boundary electrodynamics.

The action of SL(2,7ZZ) on B,C is in the fundamental representation

B B
—M
C C
. . 1 1 . .
with M € SL(2,7Z). The ‘T ’ transformation T = is a symmetry because B A dB is a total
01
derivative; by (3.8), this transformation shifts the theta angle of the surface gauge theory by 21.
. 0 1 . .
The ‘S’ transformation S = is a symmetry because of (3.2), and acts as electromagnetic
-1 0

duality on the boundary gauge field. These two transformations generate SL(2,7Z). Notice that
on B,C, the Z, center of the duality group acts nontrivially (this is charge conjugation at the

edge).

3.3.2 Coupling to strings (matter)

Just as a one-form gauge field A couples minimally to the worldline of a charge, [, 14iine A

a two-form gauge field B couples minimally to the worldsheet of a string, [,

orldsheet B- Adding
matter to Chern-Simons theory is usually [6] described in terms of a statistics vector, /7, so that
the quasiparticle (here, ‘quasistring’) current is the two-form I; xdB!. If B! are normalized as in
(3.1), the I; must be integers, so that ifeliB g periodic under shifts of the periods of B over all
topologically nontrivial 2-cycles X.

Gauge invariance under B! ~ B! 4+ d\ requires that strings not end in the bulk of the
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sample. However, strings can end at an interface with vacuuum. Then because of the identification
(3.8), the ends of the strings are electric and magnetic charges under the boundary gauge field a.
Indeed, given a string which terminates at a boundary, the coupling [, 14sheet B feduces to the
coupling [odiine @ by Stokes’ theorem.

We discuss in detail below the statistics of the surface particles arising at the ends of the
bulk string matter. As a preliminary, note that the modular group SL(2,7Z) acts on the string
matter as well. This action is necessary to preserve the coupling between string worldsheets and

two-form fields.

3.3.3 Edge physics

We now consider an edge of the D = 4 + 1 dimensional BdC bulk which supports U(1)
electrodynamics in D = 3+ 1 dimensions [74]. As anticipated in the introduction, the crucial
question is: what are the statistics of the basic charged particles on the edge?

Because the edge electrodynamics is a stable phase of matter and because the statistics
of the charged particles is topological data, these statistics must be stable to the breaking of all
symmetries in the problem. Hence to determine the statistics we may assume extra symmetry and
be confident that we have the correct statistics even if we later break the symmetry (for example
by allowing the electron and monopole to have different masses) to realize the generic situation.

Thus suppose that we preserve the manifest SL(2,7Z) duality symmetry of the BdC theory.
Duality symmetry implies that the charge e and the monopole m have the same statistics, since

they are related by the symmetry. For G = U(1), the full duality group is SL(2,7Z), and it acts

ge a b ge . . o1
on the charge vector by — . In particular, the transformation (T*S)

dm c d dm
—_——

eSL(2,Z)
takes the charge to the (1, 1) dyon € = em. The boundstate with these quantum numbers must

therefore have the same statistics as the charge and the monopole. Since these are particles in
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3+ 1 dimensions, they may be either all bosons or all fermions.

Figure 3.1: A depiction of the calculation of dyon statistics. The spikes represent the flux
produced by the dyon at the center.

Naively both possibilities are allowed, but in fact, if e and m have the same statistics, then
€ must be a fermion. This phenomenon is sometimes called ‘spin from isospin’ [92, 93] (when
the electrodynamics is UV completed by SU(2) gauge theory with an adjoint higgs field). Note
that we must assume there are no gauge-invariant fermions around, otherwise we could bind such
a fermion to the dyon without changing its charges and turn it into a boson.

To see this efficiently, consider two identical dyons well-separated in space compared to
any cutoff scales. Since they are identical particles, moving one of them adiabatically in an arc of
angle 7 around the other results in the same state (up to an innocuous center-of-mass translation).

The Berry phase acquired in doing so is

n T Dirac
<p=e/ do %(925,@) = Tmge
0 ~—_———

Dirac monopole field

If g and e have the minimal charges, saturating the Dirac quantization condition, then
Y(x1,x2) = €y (xp,x1) = —y(x,x1)
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and these particles are fermions. The extra % unit of angular momentum comes from the
electromagnetic field. Note that any exchange phase coming from the constituent e and m
particles cancels because we assumed they were both bosons or both fermions.

Thus we reach the remarkable conclusion that the model with a duality-symmetric spec-
trum of all bosons is not even self-consistent! On the other hand, an all-fermion spectrum is
self-consistent: because of the additional }2—1 unit of angular momentum in the electromagnetic
fields, the dyon boundstate of two fermions is still a fermion [94].

To prove that the bulk is non-trivial we argue by contradiction and suppose that all-fermion
electrodynamics can be realized in strict D = 3 + 1 dimensions with microscopic bosons only.
Then we could place a field theory realization on CIP? since the theory is bosonic and requires no
spin structure for its definition. However, something bad happens, which we describe next, in
§3.4.

Hence there must be no UV completion in the same dimension with only microscopic
bosons. Since the BAC theory provides a UV completion of all-fermion electrodynamics with
only bosons at its edge, it follows that the bulk BdC phase is necessarily distinct from the trivial
phase. Alternatively, the results of [66] also imply that all-fermion electrodynamics cannot be
realized in strict D = 3+ 1 dimensions without gauge-invariant fermions, so again we conclude

that the bulk BdC phase is distinct from the trivial phase.

3.4 The Bad Thing that Happens on CIP*

To show the impossibility of a bosonic regulator of all-fermion QED, we show that there
is no consistent way to define the partition function on CIP%. To make the argument we suppose:
Postulate 1: A U(1) gauge theory with gapped matter (and hence the value of the U(1) gauge
theory path integral on a closed manifold M, modulo non-universal garbage) is specified by the

theta angle and the coupling and by the spectrum of charges.
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But what theta angle and coupling you ask? What data about the spectrum? More

specifically, we suppose:
Improved Postulate 1: The value of the gauge theory path integral on a closed manifold M,
modulo non-universal garbage, depends only on the bare coupling T =6 + % (and %), and on
a choice of statistics for the excitations with minimal electric and magnetic charges, e, m. We
include the dependence on the particle masses and various other couplings in the category of
‘non-universal garbage’.

A crucial point here is that the effective theta angle (at energies below the gap to charged
excitations) may receive contributions from integrating out the matter, as is familiar from the
study of topological insulators (e.g. [95, 96]).

A useful perspective then, is that all such gauge theories may be realized by starting with a
theory of some bosonic or fermionic matter with a U(1) global symmetry, possibly in a non-trivial
SPT state, and gauging that U(1) symmetry. This is equivalent to coupling “pure” U(1) gauge
theory to bosonic or fermionic matter in various U(1) protected SPTs. A possibility which we
must also discuss is a case with no charged matter, studied with related intent in [97, 74].

Let us consider the action of duality on the gauge theory partition function. We are

free to relabel the gauge fields using the electric-magnetic duality group T — ?&3, (a,b,c,d €
ZL,ad — bc = 1) but we must keep track of the particle statistics as well. We will be most interested
in the T transformation which takes 6 — 0+ 27. Recall [94] that shifting the theta angle produces
a spectral flow on the charge lattice: monopoles acquire electric charge proportional to %.
Therefore (in the absence of other data, an absence for which we argue below) the choice
of statistics of the charged matter gives an invariant meaning to the duality frame. Denote the
statistics labels on the gauge theory as follows: BBF if e is a boson, m is a boson and (therefore)
em is a fermion, BFB if e is a boson, m is a fermion, em is a boson, etc. Note that by the

spin-from-isospin argument, this labeling is redundant (the statistics of em is determined by those

of e and m), but it will help emphasize the important distinction between the all-fermion case and
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the other cases. If we allow neutral fermions, then we have both bosons and fermions in each
charge sector, and the labeling scheme breaks down; we assume no neutral fermions. If there are
no charged particles, then any duality transformation in SL(2,7Z) is a redundancy: a relabeling of
fields.

For example, the Witten effect [94] implies that for any four-manifold M,
T:Zy(t,BBF) =Zy(t+ 1,BFB).

On the other hand, consider the case where M =CIP?; this example is interesting because it has a

two-cycle & with unit self-intersection. This means that a line bundle with ¢; = /4 has

m (EPZF/\F: 1

Therefore the partition sum is

Zop2(0) = /DAeSO[AHiS:Z L FIF _ Z

clznh

/ [DA]ne—So[A}-H%nz

where C, labels the sector of the gauge field configuration space with [, % =n. Zop2(0) is
therefore periodic in © with period 47. (This fact is discussed in detail in [97]; the odd intersection
form on CIP? also plays a role in the discussion of [71].)

Since we know that Zrp2 (T, BBF) is not the same as Zpp2(T+ 1,BBF) but that it is
the same as Zpp2 (T +2,BBF), it follows that integrating out charged matter which makes the
monopole a fermion generates an extra theta term with coefficient 2t (mod 47), in agreement
with previous results [94].

Finally, let us turn to the case of Z(t, FFF). By the Improved Postulate 1 we have

Zy (T, FFF) = Zy(t1+1,FFF)

42



for all 4-manifolds M on which the theory is defined. However, this equation can only be true if
M has an even intersection form. If the theory had a bosonic regulator, then we could place it on
manifolds with an odd intersection form and no spin structure, such as CIP%. The theory cannot
be placed on manifolds with odd intersection form, hence the theory does not have a bosonic
regulator'®.

In order for this periodicity in 0
Zop2(t+ 1,FFF) = Zppa (v, FFF)

to be a consistency condition (that is: its violation is an anomaly) we require that the modular
properties of the partition function are determined entirely by the spectrum of electric and
magnetic charges. We argue for this claim in a series of comments, which can be regarded as an

attempt to make precise the lack of structure in U(1) gauge theory:

e First, we emphasize that the statistics of particles in all charge sectors (ge,q,) are fixed by
the elementary ones (1,0), (0,1) (the generators of the charge lattice) and the demand that
there are no neutral fermions. For example, the spectrum of the FFF theory cannot contain
a magnetic-charge-two monopole which is a fermion, because then binding such an object

to the (boson) boundstate of two charge (-1) monopoles would produce a neutral fermion.

e In gauge theories with more interesting gauge group or massless matter content, other labels
are required to specify the partition function. For example, gauge theories where a 27-shift
of 6 produces a different gauge theory were discussed recently in [99]. The new labels

there arise from extra topological invariants (beyond the Pontryagin invariant) of gauge

16Note than an additional consequence of its lack of spin structure is that CIP?> cannot occur as the boundary of
some smooth, compact 5-manifold; it has a non-vanishing Stiefel-Whitney number. See Theorem 4.10 of [98]. This
theorem prevents a contradiction with the fact that the partition function of the all-fermion electrodynamics on M
can be obtained from the BdC theory on a space whose boundary is M. Two disjoint copies of CIP?> can occur as the
boundary of e.g. CIP? x [0, 1]. In this case, the instanton sums in the two copies of all-fermion electrodynamics are
correlated by the fact that B = da; + das is flat in the bulk, again avoiding contradiction.
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bundles whose structure group (the gauge group) is semisimple but not simply connected

(a pedagogical exposition of this subject can be found in §3 of [100]).

Here we are studying G = U(1) where this issue does not arise. That is: The smooth
topological data of a line bundle (the structure group is U(1)) on a simply connected
manifold is just the first Chern class (for a discussion which makes this clear see e.g. page

3 of [97]). Therefore this possibility for modifying the periodicity of theta is not available.

Another potential source of a theta-dependent phase in the partition function is a possible
T-dependence in the gravitational couplings in the effective action for the gauge fields upon
integrating out the gapped charged matter. Such couplings are crucial in computing the
partition function of topologically twisted gauge theories [100] on various four-manifolds,
and are discussed further in [97]. In that context, such terms produce anomalous factors

under the S transformation, but not under the T transformation.

Further, to see that this is not a meaningful loophole here, we can take the perspective
described above: we couple an SPT with G = U(1) symmetry (in curved space) to the
electromagnetic field. The gravitational effective action for the SPT is completely fixed
before the coupling to the EM fields, which is when 7 is introduced. Therefore, the T

dependence of the action below the gap is completely fixed by the matter content.

So the basic question is: what other kinds of UV gerbils can there be in U(1) gauge theory
which might affect the T-dependence of the partition function? We can see that the answer

is ‘none’ as follows.

Adding fermions restores 27 periodicity of the theta angle. This matches nicely with the
fact [19, 20] that the 0 angle for a background gauge field is only periodic mod 47 in a
system made of bosons (since the surface at = 21 would have odd-integer quantum Hall

response, which is not compatible with bosonic statistics of all neutral excitations). This
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argument implies that only fermions in the charge spectrum can change the periodicity in

theta by 2. But we’ve already accounted for the fermionic charges.

As a nice corroboration of our understanding, note that the counting of non-trivial states
here is consistent with the counting of U(1) protected SPT states [20]. In particular, absent

time reversal, the three states BBF, FBB, and BFB are smoothly connected.

Finally, we believe that the argument described here implies that there is no such thing as
‘pure’ U(1) gauge theory, i.e. U(1) gauge theory without any charged matter at all. !7 From
the low energy point of view, the problem with the all-fermion model is simply that the
spectrum is duality invariant, and so cannot be rearranged by the Witten effect. The same is

true if there are no charges, and so we have:
!
ZM(T+ 1,—— —) = ZM(’C, - — —)

(where the dashes emphasize the absence of charged matter). The fact that this demand is
violated for M =CIP? was observed in [97]. We believe that the above argument implies that
this failure should be regarded as an inconsistency. We note that there is no known regulator
of this model. The U(1) toric code is described at low energies by electromagnetism
coupled to gapped matter with spectrum BBF. Ordinary lattice gauge theory is simply the
limit of the toric code where the electric excitations are made infinitely heavy; in particular
it still contains gapped magnetic monopole excitations. (A term by which one might try to
lift these excitations completely, e.g. ¥ plaquettes A - (A X @), is not single-valued under the

equivalence ay — ay +2nny,ny € Z.)

Perhaps there exists a consistent low energy theory where there are only magnetic charges;

17 In
matter.

D =3+ 1 except, perhaps, as the boundary of a D =4 + 1 topological phase such as the BdC theory without
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in that case, we have the condition
!
ZM(T+ 1; _B_) = ZM<T> - _B)

which is not falsified by the lack of a spin structure of M.

The fact that there is an obstruction to a duality-invariant regulator of ‘pure’ electromag-
netism was argued in [74] (with hindsight, this result also follows from the calculation of
[97]). Here we are making the further claim that there is no regulator at all. The argument
above shows that there is no bosonic regulator. Many of the other anomalies discussed
in this paper may be cured by adding neutral fermions. In this case, it is difficult to see
how the addition of gapped, neutral fermionic excitations can help. In particular, the fact
that the fermion is neutral means that integrating it out does not generate a theta term.
However, the presence of microscopic neutral fermions amounts to a refusal to put the
system on a manifold without spin structure, such as CIP?! (Since the fermions are neutral,
the existence of a spin, structure does not help.) So indeed there is no obstruction to a

fermionic regulator.

We discuss below in §3.7 the consequences of the analogous line of argument for the

all-fermion toric code in D =2+ 1.

3.5 Coupled Layer Construction

In this section, we describe a 4+1d local lattice model which realizes the continuum

model above, using a coupled layer construction (precedents for such an approach include

[101, 102, 14, 1, 103]). Like the edge-based proof of bulk non-triviality, the motivation for the

layer construction comes from edge physics. If SPTs are only non-trivial because of their edge

states, then we should be able to construct interesting SPTs by sewing together pairs of edge
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states as follows.

First, observe that every short-range entangled state with a non-trivial edge has an inverse
short-range entangled state with a non-trivial edge and with the property that the composite
short-range entangled state has a trivial edge. In other words, for every non-trivial (anomalous)
edge E there is another non-trivial edge £~! such that E x £~! ~ 1 is trivial. We then imagine
a stack of such edges, (1 E; ")...(E,E, "), which can clearly be reduced to a trivial state by
pairing ‘E; with £i_1. However, we may also pair fi_] with Z; 11 in such a way that the edges
and E, ! are left un-paired. Assuming interactions are local in the layer index 7, these remaining
actual edge states cannot be paired with each other and we have produced a non-trivial bulk state.
More generally, we may take any lower dimensional “layers” and try to couple them in a similar

non-integrable fashion to produce a bulk short-range entangled state with non-trivial edge states.

m ET\ 3
€ m

- 4
¢ \EJ 5
m e

Figure 3.2: A representation of the coupled layer construction, following [1]. The layers are
coupled by condensing the objects circled in red.

We make a coupled-layer construction of the all-fermion electrodynamics following (very
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directly) the one made in [1] for the all-fermion toric code. It produces a trivial bosonic bulk, and
the correct edge physics. As an essential part of the construction, we are able to argue that this
bosonic bulk is well-described by the BdC theory.

The method by which we construct the bulk can be called ‘dyon string condensation’. It
has a lot in common with the dyon condensation mechanism of statistics transmutation in 3+1
dimensions employed in [104]. The construction can also be regarded as an oblique version of
‘deconstruction’ of the extra dimension [105]; this will be a useful perspective for understanding
the origin of the BA dC term.

First we give a brief summary of the construction:

e Each layer, labelled i = 1..n, is ordinary electrodyamics with bosonic charges: the
electron and monopole e;, m; are gapped bosons. This model is certainly regularizable in 3+1d by
itself on an ordinary Hilbert space of bosons on links and sites. Denote the (fermionic) dyon in
each layer as g;.

e b, = ejmlur 1€i+2 are mutually-local bosons.

e Condensing b; (obliquely) confines the layer gauge fields a;41,i+1=2..N — 1.

e At the top layer: m €3, S]Lmlsz, S}L survive, are fermions, and are the electron, monopole
and dyon of a surviving (Coulomb-phase) U(1) gauge field. A similar statement pertains to the
bottom layer.

In the bulk, in the continuum, we will arrive at the claim that this is the BdC theory with

gapped string matter.

3.5.1 Warmup: deconstruction of lattice electrodynamics

First consider the following toy example, which really is ‘deconstruction’ of 4 + 1d
U(1) x U(1) gauge theory on an interval, in the sense of [105]. (A quiver diagram for this
construction, more familiar in the high-energy theory literature, appears in Fig. 3.3.) Collocate an

even number N of layers of (cubic, say) 3d lattices each of which hosts U(1) lattice gauge theory
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Figure 3.3: Two representations of the (warmup) coupled-layer construction for D =4 + 1
Maxwell theory with gauge group U(1), x U(1),. The top figure is the direct analog of the
previous figure; the bottom is a ‘quiver’ or ‘moose’ diagram familiar from the high energy
physics literature.

coupled to charge-1 lattice bosons e;, with arbitrary hopping terms in the three spatial dimensions.
For definiteness, we could consider each layer in the zero-correlation length limit where it

is described by a solvable Kitaev-like model with a rotor on each (oriented) link, [E;,a;] = id; 1,

EeZ,a~a+2r, with

Higyer = Y (A-E)*— Y cos(Axa).
+ O

A is a lattice gradient operator. The first sum is over vertices and the second over plaquettes of
the square lattice.[106] The charged bosonic matter arises at sites where 0 # A-E € ZZ.

Couple together the layers by the (completely local and gauge invariant) terms

AH:VZZ(]B,-(x)|2—v2)2. (3.9)
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Here x labels a site of the 3d lattice. Fig. 3.3 shows the case of N = 6 layers, with b;,i = 1..4

circled. Minimizing the potential (3.9) causes b; to condense,
b, = eje,urz — yel%iit2 (3.10)

higgsing [T; U(1); = U(1)even X U(1)odd. The phases a; ;1 provide the link variables in the extra
dimension. Layers with odd i and even i are decoupled. The result is 4 4 1d Maxwell theory with
G = U(1)even X U(1)0dd, with massless bulk photons. So this is not the bulk state we are looking
for, but it will be instructive.

U(1) lattice theory in 4+1 dimensions should have a kinetic term for the link variables
along the extra dimension. This E)ZC - term arises as follows. The conjugate variable E to a arises

x+-4

from the amplitude fluctuations of b:

f)l = eial(V—f— El), f);L = (V-l— E[)e_ial .

b (x),b;(y)] = —i8,y8;; = [a;,Ey] = —id;p.

Expanding the condenser term (3.9) about the minimum, b™b —v? = 2vE + .., we find
AH =V47*Y B} + ..
[

The Hamiltonian should also contain terms which suppress flux through plaquettes parallel

to the extra dimension: ) 4cosA x a. These terms arise from microscopic gauge

plaquettes || x

invariant terms including the hopping term for b:

b;(x+f ol At [ o
N L )

X0 po£d +h.c.
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where a; is the pre-existing gauge field within layer i. Upon condensing the b;, the new interlayer
gauge field a; ;> combines with the existing within-layer gauge fields to form a closed Wilson
loop in the p4 plane for each term in the g sum.

It will be useful to remind ourselves about magnetic monopoles in U(1) lattice gauge
theory (e.g. [107]). A region R of the lattice whose boundary dR has $r B = 2mg contains g
magnetic monopoles, g € Z. This means that the number of monopoles is not conserved on the
lattice; for example, consider a region which is a single 3-cell V of the lattice; we may change
$5y B from 0 to 27 without changing anything, since the gauge field is periodic a ~ a4 27 and
B=Vxa.

To make contact with the BdC theory, it will be illuminating to dualize the odd/even gauge

fields a®/¢ to 2-form potentials: f%/¢ = da®/¢ = xdC°/¢. The action is

1
s=Y / (—de“A*dCO‘JrCO‘A*j,%).
a=o,e”5d \ 8o,

By the Meissner effect, magnetic flux tubes of the broken relative U(1)s collimate the
monopoles into monopole strings. They must do so, since, by construction, objects magnetically

¢/° are minimally coupled to the dual field C*/° and must be strings. States where

charged under a
the total magnetic charge in different layers is not equal do not have finite energy. We sequester a

few more details about this to appendix §3.9.

3.5.2 Dyon string condensation in more detail

The actual construction of the nontrivial gapped bulk is as follows. Again each layer is
ordinary electrodynamics with bosonic charges. We will call €; = ¢;m; the dyon in each layer,
which is a fermion. The object b; = eijleHz is a boson (two fermions plus one boson, and no
net electric charge to produce extra statistics, equals a boson).

The objects b; (i = 1..N —2), for all i, are mutually local (i.e. their charge vectors
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satisfy gje; — gje; = 0,Vi, j = 1..N — 2) under the total U(1) (in particular, they all have g
0, q,{{’ml = 1). This means that it is possible to couple the layers so that these objects condense
[108, 109, 110].

Explicitly, we can cause them to condense by adding the completely local gauge invariant
hamiltonian AH = V ¥, ¥;(|b;(x)|*> — v?)2. The phase of the condensate b;(x) = vel%i+? is again
a link variable along the extra dimension; unlike the simple construction of §3.5.1, the duality
frame in which this object is the vector potential rotates as we increase i.

Condensing b; (obliquely) confines the gauge fields in the layers a;11,i+1=2...N —1.
Objects which are not mutually local with b; are confined. What’s left? We are condensing N — 2
objects in a theory with gauge group U(1)", so two gauge fields remain massless. The charged
objects which are mutually local with the condensate and therefore not confined [108, 109, 110]
are (just as in the 2d Z; case [1]):

e At the top layer : €1,m 8; and their boundstate elmleg (and powers and products of these) and

e At the bottom layer: sN,mN,lej\,,eNmN,lej\, etc.

At the top layer, the objects €; ,mlsz are both fermions, and have charge (¢.,g,) = (1,1)
and (—1,0) respectively. The boundstate has charge (0, 1) and is therefore also a fermion, by the
standard argument reviewed above, because there is still a Maxwell field at the top layer.

To see the full effect of condensing b;, consider the blue box in the figure at right. Although
E?mH_l is mutually local with m;€; 1, the constituents are not. This has the consequence that

condensing b; binds the monopole strings of a¢/? to electric flux lines of ¢®/¢! This is precisely

the effect of the additional term
1 1
AS = /—CeAdC" - /—B/\dC
21 21

in the low-energy description.
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Figure 3.4: Coupled layer construction, the objects in the box are mutually nonlocal.

3.5.3 Alternative description of layer construction

Here we make contact between the coupled layer construction of the previous subsection
and the general description (in the section introduction) in terms of coupled layers of ‘£ and £~!
which guarantees the correct edge states.

Again let E denote a single copy of all-fermion electrodynamics. First we note that
the all-fermion electrodynamics is its own inverse: £ = £~! in the sense that two copies of
all-fermion electrodynamics can be regularized in 3 4+ 1 dimensions. More specifically, £ x E
is deformable (by adding local, gauge-invariant interactions) to ordinary bosonic U(1) gauge
theory. To see this'8, let e and & denote the electrons in £ and £~!. Define b = e¢é', which is a
boson. If we condense this boson, we higgs U(1)£ x U(1),-1 to the diagonal U(1) subgroup.
The object e is a fermion charged under this gauge group; it is related to € by taking charges from

the condensate. We should think of this object as the dyon of ordinary BBF electrodynamics,

18 An essentially identical argument shows that the all-fermion toric code is its own inverse.
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because all of the other excitations which are mutually local with the condensate are bosons:
e m,im,€ = em and € = ém are non-local with respect to the condensate, so they are confined.

e M = mii" is a boson which differs from e by one unit of electric charge, and so we should

think of it as the monopole. It is related by taking stuff from the condensate to €€.

e Adding e to M we get another boson (since we are combining two mutually non-local
fermions) e'; apparently we should regard this as the elementary electrically charged

boson.

We conclude that E x E~! is separated by simple Higgs transition from the phase U (1)rpp, with
a propagating photon (if it’s in the deconfined phase), and therefore has a D = 3 4 1 regulator.

It is important to note that the remaining electrodynamics still has charged matter which
may be condensed to higgs or confine the photon; the choice of whom to condense means that
various bulk models are possible.

So, while a single copy of all-fermion electrodynamics cannot be regulated in 3 41
dimensions, a pair of copies can be so regulated since U (1) rpp can be so regulated and E x £~ ~
U (1)rpp. The layer construction in §3.5.2, when applied a slab of finite thickness, provides just
such a regulator. As long as the thickness of the slab is not taken to infinity, the two copies of
all-fermion electrodynamics can be regarded as living in 3 4 1 dimensions.

Further insight into the layer construction is obtained by viewing the construction in
terms of a stack of such slabs, where each slab, denoted (Ef‘l), hosts two copies of all-fermion
electrodynamics, one on the bottom surface and one on the top surface. The stack of slabs is
denoted (‘£ E, l)...(fnf,j 1) where i = 1,...,n indicates the extra spatial dimension. Pairing up
the all-fermion states within each slab produces the trivial bulk state in 4 4 1 dimensions. Pairing
Zli_l with Z; | across neighboring slabs realizes the bulk non-trivial state. This way of thinking

about the layer construction realizes the motivating idea given in the section introduction.
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To be a little more explicit, condensing only b; = (e,-}topéT produces layers of

i bottom)
ordinary F'BB electrodynamics, by the preceding argument. This returns us to the starting point
of the layer construction of the previous section. The slabs of FBB electrodynamics can then be
confined to produce a trivial bulk state.

To produce the non-trivial bulk state, the gluing may be performed by repairing the
missing condensates at the top and bottom of Fig. 3.2. In particular, think of each pair ﬂ-flfl

as a copy of Fig. 3.2. At the top we have fermionic charges € and m€,; at the bottom we have

fermionic charges S}L\,_lmN and Sva- If we glue the bottom to the top by condensing
by-1= (€]
N—1 = (Ey_mN)E

and

bN = 8;(,(1’11182)

then we get the BAC theory rolled up on a circle, i.e. the coupled layer construction has translation

invariance i — i+ 1. And in particular, there is no photon in the bulk.

3.5.4 Extension to D =3+ 1 and derivation of BF theory

The logic by which we inferred the presence of the BdC coupling from the coupled layers
construction can be applied to the original construction [1] of the D = 3 + 1 boson SPT state with
time-reversal symmetry. The string of magnetic excitations is a vortex line; the mutual nonlocality
of the constituents of the condensed boson glues this vortex line to the electric flux lines of the
other gauge field. The result is that the bulk model contains a term of the form ﬁB A F. That
the bulk theory admits such an effective description is well-known [68]. An implication of this
derivation which has not been appreciated to our knowledge is that the all-fermion toric code —
when realized on the surface of a bosonic SPT — suffers a fermion-number anomaly, as we discuss

in the next section.
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3.6 Fermion number anomaly inflow

We will now interpret the obstruction studied here in terms of global anomaly inflow. The
only symmetry involved in this system is fermion parity. We emphasize that in the bulk there are
no fermions; however, the Jackiw-Rebbi effect demonstrates clearly that gauge fields are capable
of carrying this quantum number.

In the following we show that the fermion number conservation on the surface of the
4+1d short-range-entangled state constructed in the previous section is violated by high-energy
processes.

There is a precedent for such violation of fermion number by quantum gauge theory.
The Witten SU(2) anomaly [111] can be regarded as an anomaly for fermion number: in a
Witten-anomalous gauge theory, instanton events create an odd number of fermions and hence
violate fermion parity conservation; this is not something we know how to describe with a local
field theory.

In the prehistory of SPT physics, a subset of the authors [112] studied a system where the
Witten anomaly played a crucial role in preserving the integrity of the classification of statistics
of 3+ 1d particles. In particular, the Witten anomaly was argued to forbid a gauge theory whose
monopoles carry a single majorana zero mode (which monopoles, if they could be deconfined,
would enjoy non-Abelian statistics). That paper also described a 4+1d dimensional model whose
edge realized such a gauge theory, and therefore could be regarded as exhibiting ‘Witten anomaly
inflow’.

Fermion number anomaly. The all-fermion electrodynamics, as it arises on a surface of
the coupled-layer construction, exhibits crucial differences from an intrinsically 341-dimensional
system with a bosonic regulator. First of all, note that the slab geometry constructed in §3.5

harbors gauge-invariant states with a single fermionic particle at the top layer!®. Since all femionic

“Here we are assuming that the 3d geometry is noncompact, so that the flux has somewhere to go. If the 3d
spatial sections are compact, we cannot have a single string stretching from one end of the slab to the other because
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excitations carry some gauge charge (either electric or magnetic) — as they must in a system with
a bosonic regulator — there is no state in a putative 3+1 dimensional realization of this form.
Further, the coupled layer construction of §3.5 directly shows that fermion number can
be transported across the extra dimension, as follows. Consider a state with an excitation of
€1, the dyon at the top layer. This excitation can for free absorb bosons from the condensate,
which include objects of the form b; = SJ{mzsg,. Combining these two objects we get something
with the quantum numbers of m»€3. This looks a bit like a bulk fermion excitation, but this
object is confined (since it is not mutually local with b,, which is condensed). Also condensed is
bz = 8§m4£5; adding one of these in, we get mymy4€s. The bottom layer (for argument, we take
N = 6 layers, as in the figure above) supports a deconfined fermion excitation 82m6 = fbottom-

The condensate plus top-layer excitation fiop = €1 1s related to this by
fopb1b3 = momame fl .
With arbitrary (even) N, we have:
fropb1b3...by 1y = mam..any fi o

This equation is understood to be true modulo the creation of neutral excitations (which are all
bosonic, by assumption).

This strongly suggests that a monopole string (mpmamg...) (bosonic, but confined) allows

of the bulk Gauss law:

oS ) 1
():@:*JerCer*ng—z (3.11)

which is a 3-form. If we integrate this over a 3d region Y at fixed time and codimension 1 in space, we get
0 = ( number of strings penetrating the region, counted with orientation) + / (C++dB/g?).
oY

The last term is the usual Gauss’ law term for a 2-form potential, but the important thing is that the dependence on
the fields on the RHS of (3.11) is a total derivative. So if there is no boundary of Y — such as if the whole space is
T3 x (0,1) and we choose Y to be the T3 at some fixed position along the interval — then the net number of strings
must be zero.
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fermions to tunnel from the top layer to the bottom layer. A quantitative statement to this effect is
that there is a nonzero amplitude in the groundstate |g;) for a pair of fermions to be created at top

and bottom, connected by a monopole string:

<85|fbott0mm2m4~-'met1L)p’gS> = <gs|ﬁ0pﬁ2pb1b3~--bN/2|gS> = Vn(85|ﬁOpfth‘8S> #0

V' ~ e~L decays exponentially in the thickness of the slab, but this implies a finite tunneling
amplitude. (Here n(N) = NT’Z.)

Since all fermions are charged either electrically or magnetically (it is ambiguous which
should be interpreted as the electron and which as the magnetic monopole), the fermion number
anomaly also implies a discrete gauge anomaly. That is, rotating the phase of every fermion by ©
is part of the U(1) gauge group (though not only the electric group in any one duality frame). This
is similar to Goldstone’s understanding of the Witten anomaly [113] (as cited in [114, 115, 116]).

Putting two copies of the system together removes the anomaly. From the point of view
above, it is because the monopole strings will reconnect so that they only attach fermions at the

same surface. A similar mechanism of reconnection was described in [112].

3.7 Consequences for all-fermion toric code

So far we’ve discussed bosonic SPTs in D =4 + 1 with no symmetry, and have briefly
mentioned bosonic SPTs in D = 3 + 1 with time-reversal (7)) symmetry. In both cases, there is
a symmetry-preserving termination which is a gauge theory where all the matter is fermionic.
There are many illuminating connections between these two problems. To understand them, we
must now discuss the D =3+ 1 7 invariant SPT [68, 91, 1, 25, 24] in more detail.

Briefly, the bulk 3 4 1 dimensional state is a quantum phase of bosons protected by time
reversal symmetry. The bulk theory has a surface termination consisting of 2 + 1 dimensional ZZ;

gauge theory in which the charge, the vortex, and charge-vortex composite are all fermions. As in
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the case of all-fermion electrodynamics, the statistics of the charge-vortex composite actually
follows from those of the charge and the vortex provided there are no gauge-invariant fermions in
the spectrum. What does time reversal have to do with such a 2 4 1 dimensional state? Naively,
the answer is not much: all topological data, e.g., fusion rules, quantum dimensions, braiding
phases, etc. are real numbers, so time reversal invariance doesn’t seem to provide a constraint on
the topological data.

However, there is one piece of topological data which is sensitive to 7 and that is the chiral
central charge, c_. Furthermore, in a microscopic bosonic model, the value of c_ is constrained
by the topological data. If we have anyon types labeled by a with quantum dimensions d, and

topological spins s,, then the chiral central charge is determined, mod8, by [117, 118, 12]

2 2Tis,
Zadae ¢ _ eZﬂ:ic,/S

V¥ad;

(3.12)

In a model of abelian anyons, all d, = 1 and the total quantum dimension, D = \/m, is simply
the square root of the number of anyon types (including the identity). The fact that the central
charge is only determine mod 8 is not an accident [12]. The Eg state of bosons has no anyonic
excitations but has chiral central charge c_ = 8, hence we may add layers of the Eg to any anyon
model without changing the anyon content but shifting the chiral central charge by 8.

For the familiar Z, gauge theory in which charges and vortices are bosons, we have

a€{l,emem},d,=1,s] =5, =5y =0, and s, = 1/2. Hence (3.12) gives

p2mic- /8 _ 3+;_1) -1 (3.13)

hence ¢ = Omod8. In other words, the minimal Z, gauge theory has no chiral edge states.

However, if we consider the all-fermion gauge theory, then we find

e 8 _ 1+32(—1) _ (3.14)
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hence ¢ =4mod8. Thus the all-fermion gauge theory must have chiral edge states and hence
must indeed break 7. The reason why this state can be realized in a 7 -invariant manner at the
surface of a 7 -invariant 3 4 1 bulk state is that in this case it is impossible to create an edge for
the gauge theory at which the chiral edge states can be exposed.

Now we turn to connections between the system just discussed and the all-fermion
electrodynamics in D = 3+ 1. First, suppose all-fermion electrodynamics did have a time reversal
symmetric bosonic regulator. Then so does the all-fermion toric code. The argument is as follows.
Condense pairs of charges in 3+1d (thereby higgsing the gauge group to Z;), and place the
system on IR? x S, where the radius of the S' is L. The Z, topological order implies that states
with different ZZ, flux through the circle are split only by an amount of order Equx ~ ¢ Lilogt|/8
where ¢ is a hopping amplitude for ZZ, charged quasiparticles, and & is the bulk correlation length.
The regime of interest has L >> & (so that our field theory analysis is valid) and Eqyx >> me, myy,
where m, and m,, are the rest energies of the electric and magnetic quasiparticle excitations. The
result is then the all-fermionic toric code with, by assumption, a time-reversal symmetric bosonic
regulator. Assuming that no such regulator exists for the all-fermion toric code, no such regulator
can exist for all-fermion electrodynamics. (And as [66] point out, the case with time reversal
symmetry is actually the crucial case, in the sense that the SPTness of the state persists even upon
breaking time reversal.)

Second, all-fermion electrodynamics does have a time reversal symmetric fermionic
regulator. Indeed, it is equivalent to BBF electrodynamics by binding the neutral fermion to the
electron. (In this case there are particles of both statistics in each charge sector; for purposes
of discussion, we label a model by the statistics of the lightest particle in each sector.) Again
condense charges and compactify on a circle. This produces a time reversal symmetric fermionic
regulator for the all-fermion toric code. And again, we can convert FFF toric code to BBF toric
code in the process.

It is instructive to ask what happens to the chiral central charge formula (3.12). The
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answer is that the formula only applies when the regulator is bosonic. This is crucial because the
mod 8 property of the formula relied on the Eg phase being the simplest phase with chiral edge
states and no anyonic excitations. Once we add microscopic fermions, there are simpler chiral
states. The simplest is the p + ip state of fermions with c_ = 1/2. Hence while the minimal
chiral central charge, c_ = 4, of the all-fermion gauge theory could not be cancelled with only
bosonic short-range entangled states (which can only shift c_ by 8), the minimal central charge of
the all-fermion gauge theory can be cancelled by fermionic short-range entangled states (which
can shift c_ by 1/2).

In both cases adding microscopic fermions saves everything, in the sense that all spectra

of excitations are adiabatically connected.
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Fermion number anomaly. Since the structure of our coupled-layer construction is so
similar to that of the D = 3 + 1 beyond-cohomology boson SPT in [1], the same logic applies
to that model (removing daggers where necessary since charges are binary). That is, in a slab
geometry, a state with a fermion on the top surface can tunnel to a state with a fermion on the
bottom surface, because the quasiparticle sectors are related by bosonic operators (some of which

are condensed):

to ---UN/2 — -«-MN Jbottom -
Sropb1b3...b /2 = Momy...m N

We therefore expect that this bosonic state can transport fermion number between edges.

In this case, the bulk state is protected by time-reversal invariance. Breaking time reversal
only at the surface produces a state which is still not edgeable. We give two examples of time-
reversal broken surface states momentarily. It will help to see the connection between the fermion
number anomaly and the preservation of 7 to ask: What happens to the edge if we adiabatically
continue the bulk through a 7 -breaking path to a product state? It is not necessary to have a
surface phase transition: Without 7, one way to deform the bulk (on a torus, say) to a product
state is to open up an array of gapped trivial surfaces (possible because 7 is broken) and then
expand the intervening vacuum regions to consume the system, following [90]. On a system with
boundary, this can be done everywhere except at topologically ordered boundaries which are
independently stable. On a slab of finite but large thickness, therefore, in the absence of 7, one
can disconnect the top from the bottom by cutting open a middle (trivial, gapped) surface, hence
ending the fermion tunneling without destroying the surface topological order.

A model with the same spectrum of quasiparticles and braiding statistics can be realized
intrinsically in D = 2+ 1. For example, it can be obtained from the Kitaev honeycomb model
with v = 8 (see Table 2 of [12]). That model does not preserve time reversal symmetry: the
violations of time-reversal symmetry occur at boundaries, where there is a chiral edge spectrum
(with ¢, — cg = 4). The model at the surface of the boson SPT cannot be put on a space with

boundary (since the boundary of a boundary is empty) and is time-reversal invariant. The price
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for this extra symmetry is that the fermion number is not conserved!

To connect the various phenomena, it is useful to explicitly realize various 7 broken
surface states starting from the 7 invariant all-fermion surface toric code. The basic observation
follows from the previous paragraph: given Z, charged fermionic matter we may shift the vortex
from bosonic to fermionic and vice versa by adding v = +£8 copies of a p + ip state for the
charged fermions. Normally in 2+1 dimensions the time-reversal point has an absolute chiral
central charge c_ = 0 and a bosonic vortex. We can obtain a fermionic vortex and c_ =4 by
adding v = 8 copies of charged fermions in p 4 ip states. However, on the surface of the 7
invariant bosonic SPT, there is a shift in the spectrum so that the 7" invariant point has a fermionic
vortex. Then we may construct a pair of 7 broken surface states which are still topologically
ordered by adding v = 48 copies charged fermions in p 4 ip states. The system now explicitly
breaks time reversal and has a bosonic vortex.

Given a bosonic vortex, we may condense the vortex to destroy the surface topological
order. At a domain wall between the two distinct ways to break 7 to obtain a bosonic vortex we
have v = 16 Majorana edge modes before condensing the vortex. After condensing the vortex we
obtain the edge of Eg state of bosons [13]. Thus we obtain the same edge physics as the Eg BF
theory discussed in [68]. This analysis provides another route to connect the layer construction to
a topological bulk theory via the non-trivial surface, in this case in 3 41 dimensions. When the
surface preserves 7 we may interpret the bulk F'F term in 3 + 1 dimensions as providing a T
invariant regulator for the surface all-fermion toric code.

Again the presence of neutral bulk fermions renders everything trivial. In the presence of
microscopic neutral fermions, the bosonic SPT can be deformed into 16 copies of the free fermion
topological superconductor, and this in turn is equivalent to nothing [70, 119]. So adding fermions
explicitly makes the bulk trivial (in addition to the edge). This picture nicely complements the
edge analysis above where we argued that adding fermions effectively changes the minimal chiral

central charge one can have without topological order (from ¢ =8 to c_ = 1/2).

63



Reality of this phenomenon. We have to ask: Are there real physical systems made just
of bosons, with a gap, which can transport fermion number? The D = 3 + 1 boson SPT protected
by time-reversal should do so. This makes it even more interesting to try to realize this state in
the world.

Finally, we note the following consequence of our claim, given that elementary gauge-
neutral fermions have not been observed in nature?’. Were we to discover a fermionic magnetic

monopole in our world, it would imply either?':

1. There are microscopic, gauge-neutral fermions. The opposite is conjectured to be true in

e.g. Ref. [6].

2. We live on the boundary of some higher dimensional space. Boundary theories of 4+1D
SPT phases have been suggested in attempts to understand the matter content (and flavor

structure) of the standard model [29, 120, 121, 122].

3.8 Lattice bosons for duality-symmetric surface QED

This is a model of bosons. The two-form gauge theory studied in this paper is a model of
bosons. Low-energy evidence for this statement is the fact that we did not have to choose a spin
structure to put it on an arbitrary 4-manifold. This is in contradistinction to U(1)z—; CS theory in
D =2+ 1. We note in passing that on a manifold that admits spinors, the intersection form is
even (I(v,v) € 2Z) [53]. (This means that to describe an effective field theory for a fermionic
SPT state, we should consider the level k € Z/2.)

High-energy (i.e. condensed-matter) evidence for the claim that this is a model of bosons

is the following conjecture for a lattice model of bosons which produces this EFT. The Hilbert

20Here we mean ‘neutral under gauge groups which are unbroken at low energies’; absent discrete gauge
symmetries, a right-handed neutrino would falsify this claim.
2'We must note some uncertainty involving the role of gravity.
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space is as follows and is similar to lattice boson constructions of electrodynamics in other
dimensions [123, 124, 58, 125].

e Put rotors ¢’ on the plaguettes p of a 4d spatial lattice. (Actually, the model is defined
for any 4d simplicial complex. Translation invariance will not play a significant role.) These act
as

é’rlny) = [np+1)

on states with definite excitation number n,,; we will interpret n,, as a number of (oriented) ‘sheets’
covering the plaquette.

e Put charge-k bosons &, = o ; on the links (. These satisfy [y, CIDZ] = 1. We will say
that CIDE creates a string segment, and CIDECIJZ is the number of (oriented) strings covering the link.

The Hamiltonian is

H= — Y (Y n,—kdj®)*- Y [ +he

links, (€A pes(f) volumes, vEA3 p€dv
~~ ~ -~ -
H textgausslaw.hap pywhensheetsclose, H3 NB27 makes sheets hOp
b or end on strings
- r Z n%, - t Z b H q)z—l—h.c.—i—V (|<I>]2)
PEN, PEN, leadp
N—— N - v
H,~ E2. discourages sheets. Hitrings, hopping term for matter strings

The subscripts indicate the dimension of the simplices to which the terms are associated.
When I' =0,V =0, these terms all commute. The groundstate for # > 0 is described by a soup of
oriented closed 2d sheets, groups of k can end on strings.

Now take V (|®[?) = (|®|> — v?). This causes to condense ®; = vel?, which leads to a

2-form higgs mechanism:

4
p leadp

65



On the low-energy manifold of this Hamiltonian, we have

ib k
(e' P) =1, |np) >~ |ny,+k).

This leaves behind k species of (unoriented) sheets.

The groundstates are then described by equal-superposition sheet soup. If the intersection
form on the spatial 4-manifold which is triangulated by the simplicial complex has I = 1, there
are k”2 groundstate sectors. These groundstates represent the algebra of ‘tube operators’: for any

closed union of 2-simplices ®

fwzneib/’ T(,)EH H np

PE® VEA; pedVNno
FoTy = ool T Fo

Continuum limit. The higgs mechanism described above leads to U(1) higgs 2y 2-form

gauge theory:
4
t 1
L= —; (dQ; + kB>) Ax (d@; +kB;) + g_2de A*dB

k 1
~ —BAdC+ dC ANxdC + —dB AxdB
2T gmrvt g°

with dC ~ 2mt x (d@ + kB). This equivalence is described in [49, 52].

3.9 More details on monopole strings and vortex sheets in 5d
abelian gauge theory

Consider a 5d U(1) 1-form gauge field a, with field strength f = da. A magnetic excitation
with respect to this gauge field has fzz f =2mng, where ¥, is a closed 2-surface surrounding the

object. Such an object is therefore codimension three, and is a string in 4+1 dimensions. The
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quantity which is localized on the monopole strings is therefore a three-form:
* jm = 8% (monopole strings) = «d f = dC

where C is a two-form.
Suppose we higgs the U (1) gauge field by condensing a charged order parameter field
b ~ ve®. This adds
SH = m*(a+do)?,

so that a eats the phase ¢, and m ~ tv. Topological defects in ¢, i.e. zeros of b around which ¢
winds by 27, occur at codimension two (since b is a complex function) and in 5d are therefore
2+1-dimensional vortex sheets.

These vortex sheets can end on the monopole strings. This is the same fact as the fact that
vortex strings can end on magnetic monopoles in 3+1 dimensions. In the higgs phase of a 3+1
dimensional abelian gauge theory, the vortex string provides a means to collimate the magnetic
flux coming out of the monopole. The result is the confinement of the magnetic charges; this is a
manifestation of the Meissner effect. It is the same in D =4 4 1, except now it is magnetically
charged strings which are connected by vortex sheets. In the higgs phase, it is energetically
favorable for the monopole strings to be connected by such vortex sheets.

The final ingredient in the coupled-layer construction is the fact that the condensate is not

purely electric with respect to any individual layer.
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Chapter 4

Non-Relativistic Conformal Field Theories

in the Large Charge Sector

4.1 Abstract

We study Schrodinger invariant field theories (nonrelativistic conformal field theories)
in the large charge (particle number) sector. We do so by constructing the effective field theory
(EFT) for a Goldstone boson of the associated U (1) symmetry in a harmonic potential. This EFT
can be studied semi-classically in a large charge expansion. We calculate the dimensions of the
lowest lying operators, as well as correlation functions of charged operators. We find universal
behavior of three point function in large charge sector. We comment on potential applications to

fermions at unitarity and critical anyon systems.

4.2 Introduction and Summary

Symmetry has always been a guiding principle in characterizing physical systems. While

weakly coupled field theories are known to be tractable in terms of perturbation theory in coupling,
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often the strongly coupled ones can only be constrained by symmetry arguments. For example,
the physics of low-energy quantum chromo dynamics (QCD) is captured by an effective theory
of pions, whose low-energy interactions are fixed by the broken chiral symmetry.

Conformal field theories (CFTs) are especially beautiful examples of how one can leverage
the symmetry group. While generically strongly coupled, conformal symmetry almost completely
fixes the behavior of correlation functions and gives non-trivial insights into the structure of their
Hilbert spaces. In some cases, the conformal bootstrap [126] can provide us with rich physics
of such theories entirely based on symmetry principles. However, we are still lacking many
concrete calculational tools for these theories. In CFTs with an additional global U(1), recent
progress has been made by constructing effective field theories for their large charge (Q) sector.
Generically, the large charge sector can be horribly complicated in terms of elementary fields and
their interactions, but one can set up a systematic 1/Q expansion to probe this strongly coupled
regime. This has been useful in finding the scaling of operator dimensions, and many other
meaningful physical quantities [127, 128, 129, 130, 131, 132].

In this work, we will be dealing with systems with non relativistic scale and conformal
invariance 1.e. systems invariant under Schrodinger symmetry. While in CFT, one needs to have a
external global symmetry to talk about large charge expansion, the nonrelativistic conformal field
theories (NRCFTs) come with a “natural” U (1), the particle number symmetry. The Schodinger
symmetry group and its physical consequences have been studied in [133, 134, ?, 135, 136, 137].
The physical importance of Schrodinger symmetry lies in varied realisation of the symmetry
group, starting from fermions at unitarity[138, 139] to examples including spin chain models
[140], systems consisting of deuterons [141, 142], 133Cs[143], ¥ Rb [144],°K [145].

Such theories, similar to CFTs, admit a state-operator correspondence[146, 135] in
which the dimensions of operators correspond to energy of a state in a harmonic potential'.

Specifically, the scaling generator D, which scales ¥ — Ax and ¢ — A%t for A € R gets mapped to

I'This state-operator map is different from the one discussed in [137] to explore the neutral sector. In [137], the
map is more akin to the (0+ 1) dimensional CFT.
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the Hamiltonian (Hy,) in the harmonic trap i.e. Hy = H + ®*C where C = 1 [ d¥x x’n(x) is the
special conformal generator and n(x) is the number density and H is the time translation generator
of the Schrodinger group. The parameter @ determines the strength of the potential and plays an
analogous role to the radius of the sphere in the relativistic state-operator correspondence.”.

Given this set up, we consider an operator ¢ with large number charge Q. For example, one
can think of & for 0(x) = :\ﬂ (x)\yj (x): in the case of fermions at unitarity in d = 3 dimensions.
By the state-operator correspondence, the operator is related to a state |®) with finite density
of charge (n) in the harmonic trap. There’s an energy scale set by the density Ayy ~ u ~ n%
u being the chemical potential which fixes the total charge to Q. There is also a scale set by
the trap Ajg ~ ® which controls the level spacing of H,. The limit of large charge Q >> 1 then
implies a parametric separation of these scales. This allows us to set up a perturbatively controlled
expansion in 1/Q and probe the large charge sector of a theory invariant under Schrédinger
symmetry.

In this limit it becomes appropriate to ask, what state of matter describes the large charge
sector? Such a state with finite density of charge necessarily breaks some of the space-time
symmetries e.g. scale transformations, (Galilean) boosts, special-conformal transformations. That
these symmetries are spontaneously broken also implies that they must be realized non-linearly
in the effective field theory (EFT) describing the large charge sector. We expect the low-energy
degrees of freedom to be Goldstones.

One possibility is that the U (1) symmetry remains unbroken. This is the case for a system
with a Fermi surface. There the low-energy degrees of freedom would also include fermionic
matter in addition to any Goldstones. The simplest candidate EFT, Landau Fermi-Liquid theory,
is incompatible with the non-linearly realized Schrodinger symmetry[147] and therefore this is a
fairly exotic possibility.

Another possibility is that the U (1) symmetry is also spontaneously broken, leading to

2Here and also subsequently, we will be working in non-relativistic “natural” units of m = i = 1
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superfluid behavior. This has been the case most studied in the literature and seems like the
most obvious possibility for a bosonic NRCFT. Additionally, both unitary fermions and the
scale invariant anyon gas at large density are suspected to be superfluids. Therefore we focus

exclusively on this symmetry breaking pattern.

Summary of Results

We compute the properties of the ground state |®) with finite density of charge, under
the assumption it describes a rotationally invariant superfluid, via an explicit path integral

representation:

(@le 1T |) = [ Dy e St et @

where y is a Goldstone boson describing excitations above the ground state, u is the chemical
potential and n(x) is the number density which is canonically conjugate to x. This integral can
then be computed by saddle point in the large u limit. The chemical potential u can then be fixed
semi-classically in terms of the charge Q. Thus self-consistently, we are obtaining a large Q
expansion. We employ the coset construction to write down the most general effective action for

the Goldstone which is consistent with the non-linearly realized Schrodinger symmetry.

e For the case with magnetic vector potential A = 0 (the one that is relevant for the NRCFT

in harmonic trap), we find the effective Lagrangian given by

d d d d
a,-XalX ) X3 (aiAO)Z +c3 X2 aialAO +cy X2

(9:9'%)°
(4.2)

— x4t X
Lepr = coX +c1 X3
where X = d;) — Ao — %aixaix. However this is not the full set of constraints. It can be
shown that imposing ‘general coordinate invariance’ will reduce the number of independent
Wilson coefficients even further[148]. In particular there are the additional constraints:

c2 = 0 and ¢3 = —d?c4. Additionally, in d = 2, one can have parity violating operator at
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this order:

1 ..
Cs)—(Sl](a,'A(ﬁ(an) (4.3)
The details can be found in Section 4.5.

e The dispersion relation of low energy excitation above the ground state is found out to be:

1

4 4 4 2
e(n,f) =+m (Enz +4n+ Efn — c_ln +€) 4.4)

where / is the angular momentum and # is a non-negative integer and €(n, ¢) is the excitation
energy. The dispersion determines the low-lying operator dimensions explicitly. Since,
en=0,/=1)=+wand e(n =1, =0) = 12, they can be identified with two different
kinds of descendant operators appearing in the Schrodinger algebra. The details can be

found in Section 4.7.2.

e In the leading order in Q, we find the ground state energy i.e. dimension Ap of the

corresponding operator ®:

N 14l 1 T(4+2), ., 4
AQ = (m) &Q d, where C_O = F(d——|—1)<2n§ )2 . 4.5)

where cq is UV parameter of the theory, appearing in the Lagrangian (4.2).

Specifically, we have

Ap = % (éQ3/2> +c143—7t§ (Q% log Q) +0 (Q%) ford =2. (4.6)
Ap = (z) £0*" — (o1 + %3) (3vV2r)E2Q* +0(0%°) ford=3.  @47)

The details can be found in Section 4.7.1.

e We find the structure function F' appearing in three point function of two operators with
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large charge Q and Q + ¢ and one operator ¢, with small charge g goes as follows:

A

A, 2 -
F(v= io)yz) o< Q% (1 — %Q—l/d> o b0y’ 45

where y is the insertion point of ¢, in the oscillator co-ordinate and Ay is the dimension ¢,.

The details can be found in Section 4.8.2.

4.3 Lightning Review of Schrodinger Algebra

The Schrodinger algebra has been extensively explored in [133, 134, 146, 135, 136, 137].
Here we take the readers through a quick tour of the essential features of Schrodinger algebra, that
we are going to use through out this paper. The most important subgroup of Schrédinger group is
the Galilean group, generated by time translation generator H, spatial translation generators P;,
rotation generators J;; and boost generators K;. One can centrally extend this group by appending
another U(1) generator N, which generates the particle number symmetry. As a whole, these

generators constitute what we call Galilean algebra and they satisfy:

Vij,N| = [P;,N] = [Ki,N] = [H,N] =0
Vijs P] = i(8xPj — 8¢ Fi)
[Jij, K] = 1(0iKj — 8jxK;)
ijsJkt) = 1(8id j — S judit + OitJij — S j1Jii) »
[P,',Pj] = [Ki,Kj] =0, [K,',Pj] = iSijN, 4.9)

[H,N]=[H,P]=[H,J;] =0, [H,K]=—iP:.

The Galilean group is enhanced to Schrodinger group by appending a scaling generator D
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and a special conformal generator C such that they satisfy the following commutator relations:

D,P]=iP;, [D,Ki]=—iKi, (4.10)
ID,H] =2iH, [D,C]=—2iC,[H,C]=—iD, 4.11)

The state-operator correspondence for an NRCFT is based on the following definition
[135]:
10) = e~ 607(0)]0) = OF <—é,0) 0) (4.13)

where O is a primary operator of number charge Qo+ = —0Qo > 0. By the Schrodinger algebra,
this state satisfies:

N|0O) =00:|0)  Ho|O) = ®A0|0) (4.14)

where Hy, = H + @*C is the Hamiltonian with the trapping potential.
It is natural to define a transformation from Galilean coordinates x = (¢, X) to the “oscillator
frame” y = (7,y) where the time translation T — T+ a is generated by Hy,. Explicitly this is given

by

X

V14 0%?

and allows us to map primary operators and their correlation functions in the oscillator frame to

—

T = arctan ¢ , y= (4.15)

the Galilean frame via the map[135]:

- %0 o?|%|*t
O@y) = (1+’?) exp{ Qo1 o2 H)th} O(x) (4.16)
O(x) = [cos(or)]*?exp [—%roomztan((o’c)} o(y) 4.17)
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In this paper, we will be interested in matrix elements of the form:

(@l01(y1) -~ 0n(yn)|®) (4.18)

where ® is a primary of charge Q > 1 and ¢; are also charged > primaries with ¢; < Q.#

In the Galilean frame, the general form of a two point function is fixed to be

bl

exp [in 7]

—_ 4.19
CEL (4.19)

(O1(x1) O2(x2)) = €da,,4,00,,-0,

where c is a numerical constant, A; is the dimension of the operator O;, Q; is the charge of O;. The
symmetry algebra constrains the general form of a three-point function upto a arbitrary function

of a cross-ratio v; j defined below:

0173 .02 X5 8_A—A;
= Fris)exp | —im 22— [ 14 (4.20)

where A=Y, A; , x;j = x; —x; , and F(v;j;) is a function of the cross-ratio v; jx defined:

1 (X5, X5 X5
pigo= = | ik T 4.21)
2 Lk tik tij

We note that the three point function becomes zero unless ) Q; = 0.

3The state-operator correspondence breaks down for neutral operators as they actually trivially on the vacuum
and their representation theory is not well understood. [137] explores how to circumvent this issue.

“Here we point out that if an operator is explicitly written as a function of oscillator co-ordinate, it is to be
understood that we have already employed the mapping (4.16). Thus ¢;(y1) in (4.18) should technically be written
as §;(y1), albeit we omit “tilde” sign for notational simplicity.
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4.4 Lightning Review of Coset Construction

A symmetry is said to be spontaneously broken if the lowest energy state, the ground
state, is not an eigenstate of the associated charge. The low-energy effective action, describing
the physics above the ground state, is still invariant under the full global symmetry group but
the broken subgroup is realized non-linearly. Typically this means the effective action describes
some number of Goldstones.

The coset construction gives a general method for constructing effective actions with
appropriate non-linearly realized symmetry actions. It was developed for internal symmetries by
CCZW [149, 150] and later generalized to space-time symmetries[151]. Here we give a nimble
review of the method and its application to the superfluid. We refer to the original literature and
the recent review [152] for more details. The primary objective of the coset construction is to
write down the most general action, invariant under a global symmetry group G but where only
the subgroup Gy is linearly realized. Let us consider a symmetry group which contains the group
of translations, generated by P,. Let us denote the broken generators as X, corresponding to
associated Goldstones 7, (x). We denote unbroken generators as 7.

We can define the exponential map from space-time to the coset space G/Gy
U = eifa JXm’ () (4.22)

With this map we can define the 1-form, known as the Maurer-Cartan (henceforth we call it MC)

form, on the coset space. Under a G-transformation (4.22) transforms as
g U(x) — eifal) giXom b(xl)h(n(x),g) (4.23)

where h(m(x),g) is some element in Gy, determined by the Goldstones and g € G, that “com-

pensates” to bring U (x) back to the form in (4.22). This determines how the Goldstone fields
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transform?.

Expanded in a basis of generators the MC form looks like:
= —iU19,U = E}(Pa+ (Van’) X, + AST,) (4.24)

where each of the tensors {E[j, v, mb , T. } is a function of the Goldstone fields &,. Here E;f s a
vierbein, V,m are the covariant Goldstone derivatives and A transforms like a connection.
Several remarks are in order. Once space-time symmetries are broken the quantity d%x is
no longer necessarily a scalar under those transformations. However the quantity d?xdet E can be
used to define an invariant measure for the action. On the other hand, contractions of the objects
V,m?, in a way which manifestly preserves the Gy symmetry, also provides us with G invariants
and form the Goldstone part of the effective action. The connection, A, and the vierbein, can be

used to define the following “higher” covariant derivative
VH = (E-1)H9, +1AST, (4.25)

An object like VZ/V, 7€ also transforms covariantly and Go-invariant contractions with other
tensors should be included. The other primary use of (4.25) is for defining covariant derivatives
of “matter fields”. For example, suppose Y is a matter field transforming in a k-dimensional linear
representation r of Gy as y — ' = r(h)y. The coset construction provides multiple ways to
uplift G representations to full G representations. The one of importance to us is when r appears
in the decomposition of a K-dimensional representation R of G. Defining the field ¥ = (y, 0) in
the K-dimensional representation, one can show that the field ¥ = R(Q){ transforms linearly
under the full group G. If a subset of the symmetry is gauged then we just covariantly replace

Oy = Dy =09,+ iAsz in the above. The tensors will then depend on the gauge fields A but

SFor space-time symmetries there’s a translation piece even though P, are unbroken. This is because, on
coordinates, translations are always non-linearly realized as x — (x+a)
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otherwise everything goes through.

One last important aspect of space-time symmetry breaking is that not all the Goldstone
bosons are necessarily independent [153]. This occurs when the associated currents differ only
by functions of spacetime. A localized Goldstone particle is made by a current times a function
of spacetime, so we can not sharply distinguish the resulting particles. This redundancy also
appears in the coset construction. Suppose X and X’ are two different broken generators in
different Go-multiplets and we denote their associated Goldstone bosons 7t and 7. Let P, be an
unbroken translation generator. Let us also assume that there’s a non-trivial commutator of the
form [P,,X] D X'. One can see, from calculating the Maurer-Cartan form via the BCH identity,
that this implies an undifferentiated 7 in the covariant Goldstone derivative Vy7'. The quadratic
term is then (Vy&')? ~ ¢?n? ; this is an effective mass term for the T Goldstone. Thus we are
justified in integrating it out by imposing its equation of motion. A simpler, but equivalent up to
redefinitions, constraint is setting V7' = 0. This is a covariant constraint, completely consistent

with the symmetries. In the literature it is known as an “inverse Higgs constraint” .

4.5 Schrodinger Superfluid from Coset Construction

In this section, we will use the coset construction to construct the most general Goldstone
action consistent with the broken symmetries of a rotationally invariant Schrodinger superfluid.
For the purpose of determining local properties of the superfluid state in the trap we can first
work in the thermodynamic limit defined by Ajg ~ ® — 0. The symmetry generators are then
just those of the usual Schrodinger group.

The superfluid ground state |®) spontaneously breaks the number charge N. As mentioned
in the introduction, this state also breaks the conformal generators and boosts. It is simplest to
describe such states in the grand canonical ensemble. We remark that in the thermodynamic

limit, one can leverage the equivalence between canonical ensemble with fixed chrage and grand
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canonical ensemble®. Thus, in what follows, we define the operator H = H — uN such that

H|®) = 0. The parameter u plays the role of a chemical potential; it is a Lagrange multiplier to

be determined by the charge density. By assumption, |®) is not an eigenstate of N. It therefore

cannot be an eigenstate of H while satisfying H|®) = 0. The unbroken ‘time’ translations are

therefore generated by H[154]. The symmetry breaking pattern is then given by:
Unbroken: {H = H —uN ,P;,J;;} Broken: {N,K;,C,D}, (4.26)
for which we can parameterize the coset space as:

U= elHt€—1P~xem~Ke—l7»Ce—1(5DemN _ elHte—lP-xelT]-Ke—llce—lGDelXN‘ (4.27)

Here we use 4 distinct Goldstone fields:

7 is the ‘phonon’, the Goldstone for the charge. It defines the shifted field y = w4 ur

1 is the ‘framon’, the Goldstone for (Galilean) boosts. It transforms as a vector.

A is the ‘trapon’, the Goldstone for special conformal transformations.

G is the ‘dilaton’, the Goldstone for dilations.

To allow for a background field A,, we define the covariant derivative D,, = 9, +iA,N. From this

group element we can calculate the MC form:
—iU~'D,U = E)[Py + (Vy0)Ki — (VyA)C — (Vy0)D + (VyTr) Q] (4.28)

where P, = (—H ,ﬁ), and we’ve anticipated the absence of a gauge field for J;;. We remark that

the relativistic notation is just for ease of writing; because space and time are treated differently

6As a result, one can always view the large charge expansion as a large chemical potential expansion

79



we have to treat those components of the MC form separately. Explicitly we have the following:

E)=¢, Ej=-n'e®, E’=0, E/=8¢°, (4.29)

Von! = e/ +1i-on/),  Vin/ =2 (m’ —AF)), (4.30)

Voh = e (h+1-0A+A2), VA=, 4.31)

Voo = (6 +1-96 —A), Vo =e®d0, (4.32)

Vort = &2 (§ — Ag — e 2° +1 -§x+%nz), Vit =e®(Oix—Ai+M:), (4.33)

which can be used to construct the effective action.

There are 4 commutators that each imply a different constraint
[P,,K]] = —i5ijN — V=0, [I:I,D] = —2i([‘_l—|-,LlN) = Vo =0, 4.34)

[H,C]=—-iD = Vo6 =0, [P,C]=—iK;§; = Vm’/=0. (4.35)

Imposing them allows everything to be written in terms of a single Goldstone field . Upon

defining the gauge invariant derivatives:
Dy =0ix—Ao, Dix=9ix—Ai, (4.36)
the simplest pair can be solved as:

Vin=0 =— mn;=-Dix, 4.37)

1 .
Vor=0 = pue °=Dy— ED,-XD’X. (4.38)
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The other two involve the trapon A:

V' =0 = A/ =9m’/ = -aD’y, (4.39)
Veo=0 => A=6+1- 0o, (4.40)
which can be written together as:

190X 1Djxo'X
2 X 2 X

c+ﬁ-§c—$§-ﬁ: +$8iDisz. (4.41)

This is simply the leading order equation of motion for ) as we will show below.

The leading order action comes from the vierbein (4.29) which can be expressed with x as
1 N\ 5!
detE = ¢ (4120 (Dtx — EDixD’x) . (4.42)

Defining the variable X as

1 .
X =Dy — EDiXDl)b (4.43)

we can write the leading order effective action as
So= [ dra'x co Oy = [ dra’x coX51, (4.44)

where cq is a dimensionless constant. The leading order theory (4.44) is time reversal invariant as
it acts as:

T: t——t, T——n, Ag— —Aop. (4.45)

Higher derivative terms are constructable from contractions of the following objects:

Von', VoA, VA, Vc. (4.46)
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as well as contractions of the ‘higher covariants’

VHE — _e2°9)+¢n'0;, VI =¢%);, (4.47)
acting on the tensors (4.46). All of these objects can be expressed in terms of by the constraints
(4.34) and (4.35). Even though we are interested in large Q expansion eventually, to touch the
base with the EFT written in [148], we emphasize that the power counting is done with X, being
taken to be O(p”), which implies that objects like [(9;%)(9;%)]¥, 9: and Ay are also order one.
Additional derivatives then increase the dimension. In what follows, the field strengthsE; and F;;
are defined as

Ei = aoAl‘ — al'Ao E'j = a,-Aj — ain . (448)

At O(p?) we have following operators:

. g+l .
0, = detE V,6Vic o ;3 XX , (4.49)
) X
Oy =detE (Von; —2Vi6)" o« — 5= [E"+2E:F};(Dx) + FjFie(D %) (Dix)] (4.50)
. . x5+l 1
O3 =detE V,‘G(V()T]l - ZVIG) o< W[E),E’ + [H,Flj](Djx) — EFijF”] , 4.51)
g+
03 = detE Vol e = (9:D'x)?, (4.52)

where the second expression of (4.51) is obtained via integration-by-parts and the (4.52) is
obtained by a straight forward application of the identity (4.41) and integration-by-parts. These
operators were found in reference[148] for d = 3 by very different means. Additionally, in d = 2,
one can construct following parity violating operators at this order:

X%-H
X3

05 =detE Sij(VOT],')(VjG> o< Sij [Ei — ij(DkX)} (8]X) y (453)
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d
4+1

N X
Og = detE SZJV{-I(V()T]J' - 2Vj(5> o<

e €Y0:(Ej — Fi(Dix)) - (4.54)

Similarly in d = 3 we have £/ but that means the parity violating operators will be higher order

in the derivative expansion.

4.6 Superfluid Hydrodynamics

In this section, we study the superfluid hydrodynamics. As a warm up, we first consider
the fluid without the trap, thus there is no intrinsic length scale associated with such a system.

The leading order superfluid Lagrangian is known to take the form [148]:
L=P(X) (4.55)

where P stands for ‘pressure’ as function of the chemical potential u at zero temperature and X is
the same as defined in the previous section. Due to the absence of any internal scale, dimensional
analysis dictates that:

P=coutt!, (4.56)

which we get from (4.44) by evaluating on the groundstate solution %.; = ut. The number density

is conjugate to the Goldstone field % and at leading order is:

d
n= 0 P(X)=co (5 + 1) X2, 4.57)

One can then define the superfluid velocity in terms of the Goldstone as:

Vv = —Dl‘TC = —Dix ="M (458)
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where we have used the inverse Higgs constraint (4.37). This gives a simple interpretation of the
equation of motion:
oL

aHa(a—HX) = a,n + ai(nv ) = 0, (459)

which is the continuity equation of superfluid hydrodynamics. Using equations (4.37), we can

write:
Aun = cog (‘51 + 1) X7 1(9,X) = —dn(d,0) 9y = —a:Diy = 9-1i (4.60)

The equation of motion (4.59) thus comes out to be as follows:

- -

on+0;(m') = —dné —dn(fj-96) +nd -1 =0 (4.61)

and becomes equivalent to the constraint (4.41). Thus the superfluid EFT is consistent with the

symmetry breaking pattern we discussed in the previous section.

4.6.1 Superfluid in a Harmonic Trap

Now we turn on the harmonic trap and study this superfluid EFT in the trapping potential
by taking:
1
Ag = Emzrz, A=0. (4.62)

In the presence of a harmonic potential, the ground state density is no longer uniform. The

number density is given by the conjugacy relation (4.57) and to leading order is:

n(x) = co (g + 1) (u— %0)2;’2)g , (4.63)
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which is vanishing at the “cloud radius” R = % This defines an IR cutoff for the validity of

our EFT in the trap. Semi-classically, we can fix u in terms of the number charge Q by imposing”:

co(2m)*°T (§ +2) (§)°

. 1
0= (0IF10) = [ d'x{Oin(x)Q) = T p T = £=801 ded
The naive effective Lagrangian up to next-leading order is then:
d d d d
X2t . X2+ X2+ ) R
Lopp=coX T +¢ 7 OXIX o= (3iA0)? +c3 700 A0+ e (9:0%)? (4.65)

For d = 2 we have an additional parity violating operator at this order:

(0:40)(9;X)
X

Lepr 3 cse (4.66)

However, this is not the full set of constraints. It can be shown that imposing ‘general co-
ordinate invariance’ will reduce the number of independent Wilson coefficients even further[148].

In particular there are the additional constraints:
=0 c3=—dc (4.67)

Obtaining these from the coset construction would require additionally gauging the space-time
symmetries [155]. The requirement of gauging the space-time symmetries is expected as a
consequence of the number operator being part of the spacetime symmetry algebra and the fact
that the number symmetry has been gauged. We leave this refinement for future work. For reasons
that will become clear in the next section it is not necessary to work beyond this order in the

derivative expansion.

"This is equivalent to fixing Q by differentiating the free energy given by the action
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4.7 Operator Dimensions

4.7.1 Ground State Energy & Scaling of Operator Dimension

The ground state energy is readily computed by a Euclidean path integral, in the infinite
Euclidean time separation, the path integral projects out the ground state, from which one can read
off the ground state energy. A nice pedagogical example of this technique can be found in [129]
in context of fast spinning rigid rotor. On the other hand, from the state operator correspondence,
we know that the ground state energy translated to dimension of the corresponding operator.
Thus, equipped with the effective Lagrangian (4.65) obtained, the operator dimensions can be

calculated via the path integral (4.1):
Thm (Qle T | Q) ~ o SerflXal—ufdPx n(x) e B00T (4.68)
—>00

where to leading order we have

d
R 1 bR (2m)4/2T ($42) uyd+1
-S —coQuT | dr ' (u—-e??) = 22 (E) T or. 469
effXet] = c0Qu /0 rr (/1 SO O T@12) . (4.69)
Here, Qg is the volume factor. Combining the results of (4.69) and (4.64) then gives the leading
order operator dimension:

H Sefs d 1+
d. 4.70
Ag Q ( T ) p 1§Q (4.70)

This predicts Ag ~ Q% ind=2and Ag ~ Q% in d = 3, as in the relativistic case. That these
leading order results are finite implies we can trust the EFT prediction. In general, however, the
ground state energy in the trap is an infrared (IR) sensitive quantity. This becomes apparent at
higher orders in the derivative expansion.

For example, we consider the case of d = 2. The simplest operator at next leading order
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is (4.49). To analyze its contribution, define the distance from the cloud s as r = R —s. Its

contribution to the energy, and hence the operator dimension via (4.69), would go like:

0;X9'X R w*r? 1
/d3x ! N/ drrl—rw,u/ds—, 4.71)
X 0 p— 5072 s

which is log divergent for small s, close to the edge. For d = 3, noticed in reference [148], a

divergence first appears at next-next leading order associated with the operator:

(0,X9'X)?
T

detE(V;6V'6)? o (4.72)

[\SIEN]

This leads to a power-law divergence, implying an even greater sensitivity to IR physics compared
to d = 2. Ultimately these divergences originate from the breakdown of our EFT as the superfluid
gets less dense. This occurs in a small region before the edge of the cloud at radius R* = R— 6
where 9 is roughly the width of this region. Following [148], we can estimate the size of this
region as follows. One interpretation of (4.63) is that the chemical potential is now effectively

space dependent. At the cutoff radius R*, there is then an “effective chemical potential”
1 1
u(ry=u— szrz . Meff=pu(r=R")= §6<2R — 8o ~ Rw’3. (4.73)

There is a length scale set by u, s which controls the EFT expansion parameter in this region.
Once that length is comparable to the distance 9 itself we cannot claim to control the calculation

semi-classically. Using (4.73) this gives the estimate scaling:

1 1
:>8f\.l

o~ :
Heff (w?u)s

(4.74)

We can estimate the contribution of this region to the energy by cutting off the divergent
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integrals at R*. For d = 2 the effective action contains a term:

R w*r? 13 2
—Serr 2 c1(2m)T dr rl—r = 47T uc (— —log [ a ]) 4 (4.75)
0 u— 50)21’2 8 ,ueff
where the - - - terms vanish as 6 — 0
Substituting the relations (4.64) and (4.74) gives:
13 1 1 2
Ag 3 —4TEQ? ¢y <§ ~ 5log2— 1logQ — Tlog g) (4.76)

Changing the cutoff relation (4.74) by a factor can then change the O(Q%) contribution, but not
the logarithmic divergence which is universal. This translates to an uncertainty of order O(Q%)
in the operator dimension in d = 2. A similar analysis[148] for d = 3 and (4.72) translates to
uncertainty of order O(Qg).

Unlike d = 2, the operator (4.49) gives a finite correction to leading order scaling of

dimension of operator in d = 3. This can be found by figuring out the contibution to S,/ [see

Eq. (4.65)]
R ot 2
S 3 c / dif / dranr? | ———— | =c(3v2n?) (&) o1 4.77)
0 u— %0)21’2 Q)
Similar contribution® comes from (4.51):
R 1 3n2Y\ /2
—Seff D dtf / dr 4nr?(0?) (u—te?r?)2 =c3 [ — (—) ol 4.78
eff C3/ A r r()(uzr) C3\/§ © (4.78)

8Contribution should have come from (4.50) as well, but as we mentioned earlier, c; = 0 [148].

88



To summarize, using (4.70), we have

Ap = (§Q4/3> - (c1 + %3) (3v2r)E20*3 + 0(03) ford =3, (4.79)

W AW

Ap= (E_,Q3/2> + cl%na (Q% log Q> ) (Q%> ford =2. (4.80)

The Eq. (4.70), (4.79) and (4.80) constitute the main findings of this subsection.

4.7.2 Excited State Spectrum

We can also analyze the low energy excitations above the ground state. These correspond
to low lying operators in the spectrum at large charge. To compute their dimension, we expand
the leading action (4.44) to quadratic order in fluctuations 7 about the semi-classical saddle,
X, = ut + 1. The spectrum of 7 can then be found by linearizing the equation of motion (4.59):

2 1 2
= (,1— 50)21’2> O’ + w’F-on =0 (4.81)
Expanding 7t(¢,x) = €' f(r)Y; where ¥, is a spherical harmonic, one can show (4.81) reduces to
a hypergeometric equation. Details can be found in Appendix A. The dispersion relation is given
by:

4 4 4 2
e(n,l) =+m (En2 +4n+ Eﬁn — " +€) (4.82)

where £ is the angular momentum and 7 is a non-negative integer. In the NRCFT state-operator
correspondence, there are two different operators which generate descendants. In the Galilean
frame, these are the operators P and H. While P raises the dimension by 1 and carries angular
momentum, acting by H raises the dimension by 2 and carries no angular momentum. In the

oscillator frame, this corresponds to:

= 1 = . = 1 1 .
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which then satisfy

[Ho, Pi] = +0Py  [Hp,L:] = 2L, (4.84)

One can check by equation (4.82) that ¢(n = 0,/ = 1) = +® and €(n = 1,{ = 0) = 2.
This allows us to identify these Goldstone modes with the descendant operators in (4.83) as
T(n=0,¢=1) ~ P+ and T(,—1 y—o) ~ L+. The other modes generate distinct primaries and descen-
dants, including higher spin. We remark that in a strict sense, the above is the leading order result
for the difference in dimensions between low-lying operators in this sector and the dimension of
the ground state found in the previous section. It is also subject to corrections suppressed in 1/Q

from subleading operators and loop effects.

4.8 Correlation Functions

In a relativistic CFT, the form of two and three point correlators is entirely fixed by
symmetry. However, the four-point function depends on two conformally invariant cross ratios
of the coordinates. The Schrodinger symmetry is less constraining, as there exists an invariant
cross ratio even for a three-point function. This implies only the two-point functions of (number)

charged operators is completely determined by symmetry.

4.8.1 Two Point Function

Following [129], we start with analyzing two point function. In path integral approach,

when the in and out states are well separated in time, we have

(E) (E))

(E) __(E)
(g, To|le o(@ =1 )|dy, 1)) = ¢ 2o(m T (4.85)

where T(£) is the Euclideanized oscillator time. This is obtained from < by doing Wick rotation

i.e. T) = it. This is evidently consistent with (4.108) upon doing the Wick rotation and taking
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(’cgE) — T%E)) — co. One subtle remark is in order: the Hamiltonian H,, generates the time (T)

translation in oscillator frame. Thus the states prepared by path integration corresponds to

operators in oscillator frame.

4.8.2 Three Point Function

We consider the matrix element that defines the simplest charged® three-point function

(Po14104(y)|Po) (4.86)

where ¢, is a light charged scalar primary with charge ¢ and both of ®y and ®¢, has O(1)
dimension, given by Ap and Ag,,. By assumption, ¢, transforms in a linear representation R of
the unbroken rotation group. To enable calculation in our EFT, we can extend this to a linear
representation of the full Schroedinger group using the Goldstone fields. In what follows, we take

04 as the “dressed” operator[129]:

0,(y) =R [ KA ,—IAC ,—ioD eixN] b, (4.87)
where, by the assumption of ¢, being a scalar primary, is trivially acted on by K and C. This,

combined with (4.37) gives

A .
Og = cgX 7 o (4.88)

The additional charge of (®| is required for the correlator to be overall neutral and therefore non-vanishing.
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where ¢, is a constant, which depends on UV physics. Upon evaluating (4.86) semi-classically

about the saddle we found before, the leading order result for the correlator comes out to be:

%0

1 ol .
(@01a(52)0y(.7)p(e1)) = ¢, (11— gmos? ) ebls-wle-idaes )
2 =
A 2 (E) (E)

where we have used the following identity, which can be derived using the leading order operator

dimension (4.70) and (4.64):

M:%(H_é)@lwo(l)%%:

el=

4.90
q 0 (450)

as expected since u is a chemical potential and WA is the energy. We note that the operator
insertion should be away from the edge of the cloud |y — R| > 3, where 3 is the cut-off imposed
to keep the divergences coming from the y — R limit at bay.

Now we use (the details can be found in appendix [4.11.1])

lim ex (—(DA T(E)> — 2 Aoraiora/?
1§E>_>oo(1+(o2t§)AQ+q/2 P Ora™2
; ! (E) —Ap Ap/2
lim ———ex ((oA T >:2 ombe/ ,
T(IE)%—DO (1+ (x)zl‘lz)AQ/2 P 2n

to write down the correlator in terms of operators in Galilean frame (we repeat that the path
intergral in oscillator frame prepares a state corresponding to operator in oscillator frame):
20

A, 2 2
(Bg+q(i/)[0,(%,9)|Do(—i/0)) = cqu? (1‘%) ey g2 4 91)

This can be matched onto the three point function, which is constrained by Schrodinger
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algebra:

@osalou(x.9)I@0) = FO)exp (02) @ () e oloordens o)

The appendix [4.11.2] has the necessary details. Now, upon comparing (4.92) and (4.91), we

deduce the universal behavior of F(v) in the large charge sector:

A

A 2 2
Fv = ioy?) = 0 (1 -0 d) (4.93)

which can be rewritten as following, using (4.44):

A,
B 2 L\
e 2 2[d+T) OY" g1 4 =TT —Lawy?
F(V =10y ) o< AQ (1 - X(T&AQ) d+1) e 29% (494)
The (4.93) and (4.94) are the main results of this subsection. This shows the universal

scaling behavior of the structure function F in the large charge sector.

4.9 Conclusions and Future Directions

We have studied the large charge (Q) sector of theories invariant under Schrodinger group.
We have employed coset construction to write down an effecive field theory (EFT) describing the
large Q sector in any arbitrary dimension d > 2 assuming superfluidity and rotational invariance.

The effective Lagrangian is given by

d d d d
5+1 5+1 5+1 5+1

. X X - X
ajxa’X—{—Cz X3 (aiA0)2+C3 X2 aialA0+C4 X2

X .
Leff = C()X%—H +cC (aialX)z

X3

where X = 9, — Ao — 300y, and  is the Goldstone excitation of the superfluid ground state. We

emphasize that the general co-ordinate invariance, as discussed in [148] will put more constraints
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on the Wilson coefficients, we leave that as a future project. The EFT is then studied perturbatively
as an expansion in 1/Q. This is to be contrasted with the EFT written down in [148]. While
EFT in [148] is controlled by small momentum parameter, ours is controlled by 1/Q expansion,
which enables us to probe and derive universal results and scaling behaviors in large Q sector.
In particular, when Q is very large, we find the scaling behavior of operator dimension with
charge, consistent with that found very recently in [156]. We also find that in the large charge
sector, structure function of three point correlator has a universal behavior. Last but not the least
we derived the dispersion relation for the low energy excitation over this state with large Q and
identify the two different kind of descendents as two different modes of excitations. A summary
of the results can be found in the introduction.

The theory of conformal, and even superconformal, anyons has been studied before in
great detail [157, 158, 146, 159]. In these systems there exists a simple n-particle operator

O = (®")" whose dimension is given as
Ao=n+n(n—1)0 (4.95)

where 0 is the statistics parameter that arises from the Chern-Simons term of level k as 0 = ﬁ
for bosonic theories. For large & relative to n, close to the bosonic limit, this is known to be the
ground state in the trap. It is known as the “linear solution” in the literature due to the linear
dependence on 6. For the superconformal theories it is a BPS operator and the dimension (4.95)
is exact. A state corresponding to such an operator is not a superfluid and our theory cannot
capture the physics of the system in that regime. However, it is known there is a level crossing for
smaller k where the ground state corresponds to an operator whose dimension is not protected
by the BPS bound. For those operators the classical dimension scales as n%, in agreement with
our results. We are then led to believe the effective field theory we’ve constructed may apply to

anyon NRCFTs in that regime.

94



Another family of NRCFTs can be defined by the holographic constructions of McGreevy,
Balasubramanian[160] and Son[161]. It would be interesting to study these on the gravitational
side in the large charge limit, as there might exist a regime where both the EFT and gravity
descriptions are valid. The analog of this for the relativistic case was carried out recently[162].

One can envision to extend our results in several ways. One possible extension of these
results would be to study operators with large spin as well as charge. If the superfluid EFT
remains valid, for sufficiently large spin, one naively expects such operators correspond to vortex
configurations in the trap. This was studied in CF73, where multiple distinct scaling regimes
were shown to exist [163]. Moreover, one can generalize these results to NRCFTs with a larger
internal global symmetry group or study systems where the symmetry breaking pattern is different.
Potentially interesting examples include “chiral” superfluids [164], where the rotational symmetry
is additionally broken by the superfluid order parameter, or the vortex lattice [165] where the

translation symmetry is spontaneously broken.

4.10 Appendix A: Phonons in the Trap

We are solving equation (4.81) in the range of r € [0, R| where R = % is the cloud radius.

Inserting T o< ¢! f(r)Y, and expanding in spherical coordinates:

2 _
—%(R2 — X[ f + d 1)a,f— %z(ud—z)f] +’rd, f =€ f (4.96)

r

Defining the dimensionless variables x = z and A = % and changing variables to z = x*

—é(l —2)[4202f +20.f +2(d — 1)0,f — %€(€+d—2)f] +220.f = A*f (4.97)
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Equation (4.97) is a hypergeometric equation with two independent solutions
L L@—d-0 I R!
f(Z) ~ 122 2F (0(‘*7a+7%z) + 222 2F ((X 7B 7V,Z) (4.93)

Our solution should be valid on the interval z € [0, 1] where it should be regular and finite at both
z=0and z = 1. Regularity at the origin kills the second solution immediately.

Therefore we have:

£(2) ~ 122 oFi (0, 0y, Y,2) (4.99)

where Y=+ 4 o = L(+d—1)+x, and k = L(1 = 2d +d? — 20+ bd + 2+ d)\2)?

The function »Fj (a—, a1, 7,z) is finite at z = 1 under one of the following possibilities:
1. The values oy 4+ 0 < yfor any value of the arguments
2. If either o1 is equal to a non-positive integer

To see this, we use the following identity and regularity of ,F; around (1 —z) = 0:

F(I(y—os—a-)

I(y—a_)I'(y—ay)

r(yr(og+o-—v)
I ) (o)

ZFl(a—aa-H'YvZ): ZFl(a—aa+7a‘—+(x++l_’Y?1_Z)

(1-2)* "% R(y—0o_,y—ay,1+y—0_—or,1—z) (4.100)

Fpriy—or—o) T +o— =y . va o
Ty—eT—oy) | M) (9 (4.101)

2F1(O('—70(‘+7%ZN 1) ~

We can check explicitly that o +0o_ = ¢ +d —1 > yfor d > 2, where the superfluid groundstate
is possible. Therefore option (1) is ruled out.

Define o._ = —n where n is a non-negative integer.

The relation above implies a = ({+d—1)—o_ =(+d+n—1

Consider the explicit product:

0c+0c:%(€+d—1+2k)(€+d—1—21<):%(E—kz) (4.102)
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Substituting the integer relations for o turns equation (4.102) into a quadratic equation which
can be solved for A as:

1
A2 = 3(4;12 +4dn+ 40n — 4n +dY) (4.103)

which yields the dispersion (4.82)

4.11 Appendix B: Correlation Functions in Oscillator Frame

4.11.1 Two point function

In Galilean frame the two point function is given by

<O(t=—i/0))OT(t:i/0))> :c(—zai) e (4.104)
Now we know
(0 = ~i/@)0' (1 = i/0)) = t(}}mgm (0(=1)0" (= ~m))

1 1 Ap/2
=c¢ lim
to—ieo (1 + (,Ozt(%)AO (Sin2 (20)’50))
— (20 lim — —ex (—20)A ’C(E)) 4105
( ) T(()E)Hoo(l‘l‘(l)ztg)Ao p (@] 0 ( )

where oty = tan(®tp). Comparing (4.104) and (4.105), we obtain an identity:

lim o exp (
tosio (1 +w2)ho/2 exp
(E)

k)

Aoty ) =2 R0l (4.106)

—o0

where we have @¢ = tan(®t) and 7(E) = it. We note that 1 = i% corresponds to Oscillator frame

97



Euclidean time Tz = Foo, this follows from

of = tan (—i0TE) (4.107)

Thus the operators are inserted at infinitely past and future Euclidean time.

In the oscillator frame, we have

A0 A0
2 2

(0(11) 0" (12)) = ¢ [1 +tan*(w1)] ? [ +tan*(012)] * (tan(o1)) — tan(wtz)) 20,
which can be simplied into
(0(11)0'(12)) = c[sin(w(t1 —12))] 27, (4.108)
using the identity
[14tan?(wt;)][1 + tan?(01;)] B 1 (4.109)
tan(01)) —tan(0n)]2  sin(o(t — 1)) '
4.11.2 Three point function
In the Galilean frame, the general form of a three-point function is fixed to be:
01%; 0255, A—A-A,
<Ol (xl)Oz(xZ)O3(X3)> = G(xl;xz;X3) = F(V123)6Xp {—i—— —i——} Hl‘i; v
2 13 2 03]
(4.110)

where A=Y, A;, x;j = x; —x; , and F(v;j;) is a function of the cross-ratio v;jx defined:

U (X X i
A - 4.111
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The matrix element (4.86) defines a 3-point function in this frame via (4.16) and (4.13)

: 202 . .
. B 2.0 % I X0t i i
(@014/04(%.7)|P0) = (1 + ) F exp [quwtz] 6 (g0t 6,o)
. 2.2
i x*ot ,
—FO)(1+ 0% exp | 5 —] |5y [T
2 1+m2t2 D)1
_ 5 -
q Ox
=F = (1 o’t t
(v)exp _21+602t2 + g
(g ox® ] 1o
— q_O L(=Agsgtho—Ag) (1 d (L1
=F - 1 (2)2 0+¢T20720) (1) 2
Wexp |5 1oz | ) (io) <1+imt>
A
= F(v) exp (gwyZ) (2)A¢ <l;'0> e_l(D(AQ_AQ+q)T
where
1 X2 X2 iwx?
== - - = 4.112
Y 2(;_&)+_0L)_;> 1+ w2 ( )
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Chapter 5

The Spinful Large Charge Sector of
Non-Relativistic CFTs: From Phonons to

Vortex Crystals

5.1 Abstract

We study operators in Schrodinger invariant field theories (non-relativistic conformal
field theories or NRCFTs) with large charge (particle number) and spin. Via the state-operator
correspondence for NRCFTs, such operators correspond to states of a superfluid in a harmonic
trap with phonons or vortices. Using the effective field theory of the Goldstone mode, we compute
the dimensions of operators to leading order in the angular momentum L and charge Q. We
find a diverse set of scaling behaviors for NRCFTs in both d = 2 and d = 3 spatial dimensions.
These results apply to theories with a superfluid phase, such as unitary fermions or critical anyon

systems.
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5.2 Introduction and Summary

Superfluid states of matter are one of most fundamental examples of spontaneous symme-
try breaking and appear in countless systems from Helium-4 [166, 167, 168, 169] to neutron stars
[170]. Superfluidity is also a possibility for finite density states of scale invariant critical systems
[171]. Recently this observation has been used to perform explicit calculations of relativistic
conformal field theory (CFT) data, despite strong coupling[127, 128, 129, 130, 131, 172]. The
key idea behind this is the fact that the large charge operators of the CFT correspond to finite
density states on the sphere, which spontaneously break the conformal invariance and U (1) corre-
sponding to the charge. Superfluid phenomenology then becomes relevant for describing the large
charge sectors of these CFTs. For example, another hallmark of superfluidity is the formation
of vortices upon insertion of angular momentum. Therefore states with vortices correspond to
large charge operators with spin, and calculating the energy of these vortices reveal the spinning
operator spectrum in CFT [163].

However, many interesting critical systems do not possess Lorentz symmetry. This
includes ultracold fermi gases at “unitarity”, where observation of vortex lattices is perhaps the
most dramatic evidence for a superfluid ground-state in a system which exhibits an emergent
scale invariance[173]. At this critical point the system has a non-relativistic conformal symmetry,
or Schrodinger symmetry. This symmetry algebra plays a pivotal role in understanding numerous
physical systems'. Examples include the aforementioned “fermions at unitarity”’[138, 139], as
well as systems comprised of deuterons [141, 142], 133C5[143], 2 Rb [144],3°K [145], and various
spin chain models [140]. There has been significant progress in understanding the consequences
of Schrodinger symmetry and its realization in field theory[133, 134, 146, 135, 136, 137, 176].
These non-relativistic conformal field theories (NRCFTs) admit a state-operator correspondence

akin to their relativistic cousins. Operators with “particle number” charge are related to states in a

Tt is important to mention that Schrodinger symmetry is not simply the non-relativistic limit of the conformal
symmetry but rather an entirely distinct algebra [174, 175].
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harmonic potential.[146] This has been exploited to calculate the energies of few-body quantum
mechanics systems in a harmonic trap. This correspondence also implies a way that the spectrum
of NRCFTs can be determined. The operators with large charge correspond to finite density states
in the trap. These states of matter sometimes admit a simple effective field theory description,
enabling semi-classical calculations controlled in the large charge limit [177, 156].

The simplest and most physically relevant possibility is that of a superfluid ground-state,
which is the situation we will explore here.? Extending upon the results of [163, 177], we study
NRCEFT operators which have both large charge and spin. Such operators correspond to either
phonon or vortex excitations of the superfluid. We then compute the leading order scaling of
their dimensions Ag ;, as functions of their angular momentum L and number charge Q and find a

diverse range of behaviors in d =2 and d = 3.3

Trailer of the Results:

We compute the leading scaling dimension Ag ;. of spinning operators of a non-relativistic
conformal field theory as a function of U(1) charge Q and angular momentum L in the large
charge limit. The answers are determined up to a single Wilson coefficient ¢y in the EFT
description. We leverage the state operator correspondence to arrive at the result that depending
on the range of angular momentum, the spinning operators correspond to different excitation
modes of the superfluid. For a smaller range of angular momentum, we find that they correspond
to phonon with angular momentum L. As we increase the angular momentum, we pass through a
regime where a single vortex becomes energetically favorable. If we further increase the angular
momentum, multiple vortices develop and the superfluid exhibits an effective “rigid body motion”

where we can neglect the discrete nature of the vortices.

%It should be emphasized that this is not the only possibility. Ultimately the question “Given this NRCFT, what
state of matter describes its large charge sector?” depends on the NRCFT, which we treat as UV physics. However
we expect our results to be valid for a wide set of NRCFTs, including some of physical relevance such as unitary
fermions [173].

3We note that d refers to the spatial dimension and we reserve spacetime dimension as D = d + 1.
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In d = 2, the leading behavior has 3 regimes and is given as follows:

)
VL+Ag 0<L<Q'3
d=2 Agr=1 /9LlogL+Ay QP <L<Q (5.1)

902()7'C(QLTZ/2)+AQ Q<L<Q3/2

\

where Ag = % ( \/21757() 03/2 is the contribution from ground state energy in d = 2.

In d = 3 dimensions, we have 4 regimes, given by:

VL+Ag 0<L<Q¥
o(ghs) 10 <12
d=3 Ay = (5.2)
steo ) V3 1 2/3 13
(m) L*31logL+Ag 03 <L<Q
1024 (323\ /0 1 2 4/3
B Gt (gn)ta0 o<L<ob

1/3
where Ag = %\/Lz*n (ﬁ) 0*/3 is the contribution from ground state energy ind = 3 and o

is an undetermined O(1) coefficient. We make two remarks at this point. The first one is that
while for d = 2, the transition happens from a single phonon regime to vortex regime at L ~ Q'/3,
for d = 3, there is a regime Q2/ ‘<< Q3/ 9 where neither vortex nor the single phonon solution

gives the lowest energy. It is a cross-over describing the physics of a vortex string forming near
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the boundary of the trap where our EFT is strongly coupled. The only well defined configuration
in this angular momentum regime contains multiple phonons, and we determine the scaling from
that. The second remark is that the EFT description breaks down whenever Ag; —Ap ~ Ag , s0
we can not probe operators with larger angular momentum with this method.

The rest of the paper is organized as follows. We briefly review the superfluid hydro-
dynamics and large charge NRCFT in section 5.3. The section 5.4 details out the contribution
coming from phonons and derives the regime where it is energetically favorable to have them.
Subsequently, we discuss the single vortex in d =2 and d = 3 in section 5.5. The multi-vortex
and rigid body motion is elucidated in section 5.6 followed by a brief conclusion and future
avenues to explore in section 5.7. Some of our results and validity regimes are more apparent in
dual frame using particle-vortex duality which we elaborate on in appendix 5.8. The appendix 5.9

contains a contour integral useful for calculating interaction energy of multiple vortices in d = 3.

5.3 The set up: Superfluid Hydrodynamics and Large Charge

NRCFT

In this section we briefly review the superfluid hydrodynamics in the Hamiltonian formal-
ism, specialized to the case of a Schrodinger invariant system in a harmonic potential Ag = %0)2 .
All of our results will be to leading order in the derivative expansion. For a more in-depth review
of the formalism, we refer to [148, 177, 156].

The low-energy physics of a superfluid is determined by a single Goldstone field %. The

leading order Lagrangian determines the pressure of the system:

d+2

L= X =P(X) X =d0x—Ao— %(a,x)z (5.3)
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The number density and superfluid velocity are defined respectively as:

oL d
n:&:Co (§—|—1>X£21 v,:—a,-x (5.4)

The action (5.3) has a U(1) symmetry of )y — % + ¢ whose current can be written as:
j= (n,nv") (5.5)

The Hamiltonian density comes out to be:

H=n}—L=n (X+A0+%v2) —P(X) (5.6)

Now, using the thermodynamic relation nX — P(X) = €(n): we can simplify (5.6) and express the
Hamiltonian as:

H= /ddx}[ H = %nv2+8(n) +nAy (5.7)

Note that the presence of the harmonic trap implies the density is non-uniform and

vanishes at radius Ryp = \/%. For most values of r the density is large and varies slowly
4
VH

at R* = Rrr — 6 where 6 ~ 21 -[177, 148]. There is a boundary layer of thickness 6 where
(@) 6
the superfluid effective field theory (EFT) cannot be trusted as it is no longer weakly coupled.

compared to the UV length scale —=. However, the large charge expansion begins to break down

At leading order in the derivative expansion this does not affect the observables but leads to
divergences at higher orders.*

Given this set up, the ground-state at finite density corresponds to the classical solution of

“These are UV divergences which can be canceled by counter-terms localized at this edge, as suggested by
Simeon Hellerman in a private communication.
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X1 = ut. The number charge of this configuration is determined from u by:

d 1 d
Qz/ddx ne(x) = co (§+1> /ddx (1—Ag)? = : (g) (5.8)
42 d
where % = ﬁ@n&z) 2. We can then compute the ground-state energy as function of Q using
(5.7):
d d d+1
Eg = /d X [8(7101) +nclA0] = (D& d+1 Q d (5.9

Via the state-operator correspondence of NRCFTs, this semi-classical calculation deter-
. . . . . _Ep .
mines the dimension of a charged scalar operator to leading order in Q as Ag = —*. In particular,

we have obtained [177]:

280%% for d=2
Ap = (5.10)

3EQY3 for d=3

In this work, we’ll be interested in excited state configurations which carry some angular
momentum. These will correspond to spinful operators in the large charge sector of the NRCFTs
which the superfluid EFT describes. The simplest of these excitations are phonons; smooth
solutions of the equation of motion with ), = ur + 7. Expanding T in modes 7, ¢, the Hamiltonian

can be written to leading order in the derivative expansion as:

H = Hy+ Y o(n, )1} o+ (5.11)
nt

where ®(n, ) is the dispersion relation for phonons:

1
(4, 4 4 2
co(n,ﬁ)—(o(dn —i—<4 d)n+dn€+€) (5.12)

for n is a positive integer and / is the total angular momentum. The phonon wavefunctions are
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given as f, o ~ (#)%an(r)Yg where G, ¢ is a hypergeometric function® and ¥, is a spherical
harmonic. A state with M phonon modes of {n = 0,/ = 1} can be identified as the descendant
operator oM Op with dimension Ap + M. Additionally, NRCFTs have another generator of
descendants d; which corresponds to the phonon with {n = 1,¢ = 0}. States that can be created
by adding phonons with other values of n and ¢ correspond to distinct primaries [177].%

The other configuration of a superfluid that can support angular momentum is a vortex,
which gives rise to a singular velocity field of the condensate. This is a distinct semi-classical
saddle point which is not simply related to the ground state. It must therefore correspond to a
unique set of spinful charged operators present in all NRCFTs whose scalar large charge sector is
described by the superfluid EFT.

These two excitations, phonons and vortices, are the configurations of the superfluid we
know support angular momentum. In the rest of the paper we answer the question, what is the
lowest energy configuration of the superfluid for a given angular momentum? By answering
this and using the superfluid EFT defined above we compute the scaling behavior of operators

carrying charge and angular momentum.

5.4 Phonons

The simplest excited state(s) with angular momentum are phonons. From the dispersion
(5.12), we can see that the lowest energy configuration with angular momentum L is a single

phonon with n =0 and ¢ = L. This is known as a “surface mode” as the wavefunction is nodeless

SIn particular G (r) =2F (a_, 04,7, ﬁ) where y=/{+ % and oy are defined in Appendix A of [177]
They are primary as they are by construction annihilated by the lower operators K and C which correspond to
Tp—0,0=1 and T,— y—o respectively.
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and supported mostly at the end of the trap. The energy cost of this single phonon is given by’:
AE = L2 . (5.13)

However the validity of (5.12) rests on the assumption that the phonon modes do not carry large
amounts of momentum. In particular, the surface mode wavefunction has f, ~ (I%)%Yg which
for large ¢ is increasingly concentrated at the edge of the trap. Once the support of the phonon
wavefunction is mostly within the boundary region of thickness 8, we can no longer trust the
solution or the dispersion (5.12). This occurs when 1% becomes comparable to 6 [178]. This
yields a maximum angular momentum for phonons: £, ~ Q%.

Thus we have the following scalings for operator dimensions:
d=2 Agr=L'+Ay 0<L<Q3 (5.14)

d=3 Agr=L1+Ay 0<L<Q’ (5.15)

where A is the operator dimension determined from (5.9).

We can also consider multi-phonon configurations and ask ourselves whether it is ener-
getically favorable to have a single phonon rather than multi phonon configuration, given total
angular momentum. In order to answer this, we assume that phonon interactions are negligible,
suppressed to leading order in the Q-expansion, so the energy and angular momentum of mul-
tiple phonons add linearly. In particular, suppose we have Ny phonons, each carrying angular

momentum ¢. The energy and angular momentum to leading order is:

AE = 0Nyl L=Nyl (5.16)

"Note this is parametrically lower in energy than in the relativistic case studied in [163], as the phonon spectrum

on the sphere is (¢) = y/$£((+1).
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This tells us that for a given angular momentum L, it is energetically favourable to have a
single phonon carrying the entire angular momentum rather than multiple phonons carrying it
altogether.®

As we’ll see below, naively a single phonon of ¢/ = L would always be the most energeti-
cally favorable configuration per angular momentum. However the cutoff of ¢,,,, ~ Q% means
we cannot trust this conclusion beyond L = ¢,,,,. Multi-phonon configurations are in principle
valid for larger values of L. The most energetically favorable of which has Ny phonons with

¢ = a5, Which gives the scaling:

AE = OLUpsl>  lay ~ Q¥ (5.19)
where we cannot determine the dimensionless coefficient from ¢, as it depends on how we
regulate the cutoff region of size 8. Nevertheless, the linear scaling in L means we can compare to
other configurations such as vortices. In particular, we will arrive at the conclusion that whenever
L> Q'/3, the minimum energy configuration with a given angular momentum starts to be attained
by vortex solutions.

For d = 2, the transition happens from a single phonon regime to vortex regime at L ~ 0'/3,

while for d = 3, there is a regime Qz/ I<L< Ql/ 3 which is inaccessible by both the vortex string

80ne can also arrive at the same conclusion by considering Ny phonons, each carrying angular momentum ZI
The energy and angular momentum to leading order is then given by:

AE=oY [} L= (5.17)

Yi

We have

AE = oY |G = m\/ZIZ- + Y181 = w\/\)jé} + Y1817 > VL (5.18)

Hence, the minimum value is obtained when all the /; = 0 except one i.e. we land up with single phonon case.
On the other hand, if all the #;’s are along same direction, then using Cauchy-Schwartz inequality, one can obtain
AE < 0(Ny) 1/2\/L, which implies that the energy would be maximized if each phonon carries angular momentum of
L/Ny.

9Ny cannot be made arbitrarily large as the assumption that phonon interactions are suppressed breaks down.
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and the single-phonon configurations. The most energetically favorable configuration, consistent
within the leading order EFT analysis, is therefore the multi-phonon configuration above with a
macroscopic number of phonons Ny ~ Qé at the upper bound L ~ Q%.

This would imply the following scaling for the operator dimension:
d=3 Agr=0lQ 1Ay 0¥ <L<Q'? (5.20)

where o is an unknown order one coefficient.

However the exact nature of this state appears to be related to UV physics of how a vortex
string configuration forms from surface mode phonons in the boundary region of the condensate,
which is inaccessible within our formalism. We therefore cannot give a full accounting of
this regime of angular momentum. Beyond L > Q% we can be confident the lowest energy

configuration is a vortex, as we’ll now discuss.

5.5 Single Vortex in the Trap

A vortex is a configuration of the superfluid with a singular velocity field carrying angular
momentum. The singular nature arises because of the relation (5.4) implying that v; is necessarily
irrotational except due to defects in the field x; configurations where f-dy = 27s for some integer
s. In d = 2 these are particle like excitations while in d = 3 they correspond to strings, these
will be the dimensions we focus on in this work. In fact this language can be made precise
via particle-vortex duality, where vortices are “charged” objects under some dual gauge field.
Adapting this duality to the Schrodinger invariant superfluid has been done in Appendix 5.8 but it
is inessential for describing the leading order results.

The simplest configuration in the trap is a single static vortex for which the condensate

order parameter changes by only 27.!% The approximate velocity profile v; of such a configuration

10This is in contrast to the CFT case where a minimum of two vortices are needed on the sphere to ensure
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is:
Vi = M (5.21)
(F—R)?
where r is the radial coordinate in d = 2 or the axial coordinate in d = 3, and R is the location of
the vortex and we assume that the vortex is stretched along the z axis.

The presence of the vortex changes the semi-classical number density, making it singular
at r = R. Before that point the density vanishes, implying a short distance cutoff for the superfluid
EFT. This is the ‘vortex core size’ a whose scaling dimension we can determine as follows.

One interpretation of the non-uniform density (5.8) is that the effective chemical potential
is distance dependent. In the presence of a vortex at 7 = R it is given as:

1 ,, 1 1

perf(F) =pu— -0

SO e (5.22)

This determines a locally varying UV length scale H%ff The EFT, which is controlled in the

N
limit of large density, becomes strongly coupled at the length a when a ~ \/#;7 Solving this

equation for a gives the scaling relations!!

1 1 1 1
d=2 a~——7———= d=3 a~— (5.23)
2 2 2
VH 1_RRT VH _RRT_RZT
TF TF TF

Near the center of the trap, a is on order the UV length scale \/Lp However as the vortex

approaches the boundary of the trap, either in its placement Ror along the length of the vortex
string in d = 3, the fact the density is depleted due to the trap implies the cutoff near the vortex
string must happen sooner [179]. As mentioned previously, the EFT is already strongly coupled in
the boundary region of size 8. Therefore the largest placements of the vortex we can confidently

study have R = Rrr — & where the core size scales as a ~

. which is still parametrically
(uer*)3

compatibility with the Gauss law.
"'This is an equivalent condition to cutting off the theory when the velocity field sourced by the vortex becomes
comparable to the local speed of sound in the superfluid c% ~ % ~X.
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suppressed in .

Regulating this divergence as described above, the correction to the semi-classical number
density due to the vortex is subleading in y and therefore negligible for leading order results. This
implies the dominant contribution to the energy of a vortex configuration comes from the kinetic
energy of the velocity field.

The velocity field (5.21) does not define a stationary flow in the sense that 9;(nv') # 0
because of the inhomogeneity of the density. This inhomogeneity will cause the vortex to
precess in a circle [180]. However since the density varies slowly, as previously discussed, the
correction to the velocity field due to this is suppressed in the large-charge expansion. Using
particle-vortex duality, this is equivalent to the assumption that particle sourcing the gauge field
in dual description has suppressed velocity, hence we are effectively dealing with an electrostatic
scenario. The details are relegated to the appendix 5.8, in particular, the discussion after (5.66).

We remark that in dual frame, the cloud boundary is like a conductor, hence the tangential
electric field should be vanishing. This means the velocity field of the vortex should be such
that there is no radial outflow of particles out of the trap. Given this condition, one might worry
that the velocity field above does not vanish at the boundary Rrr. However, since we require
the normal component of the flow to vanish at the boundary i.e. N - (n7) = 0 where N is a vector
normal to the trap at boundary, the inhomogeneity of the superfluid comes to rescue and the
condition is trivially met by the vanishing of the density n(x) at Ry [181]. 12

In what follows, we will be evaluating the energy and angular momentum of vortex

configurations in d = 2 and d = 3 spatial dimensions.

12This is generically known as a “soft boundary”. Had we been dealing with homogenous fluid with non vanishing
density at boundary, we ought to consider a mirror vortex configuration to ensure the imposition of N - (n?) = 0,
this is just like considering the mirror charge while solving for electric in the presence of a conductor. Regardless,
such modifications to the velocity field in the boundary region of the inhomogeneous condensate give suppressed
corrections to our leading order results below.
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5.5.1 Single vortexind =2

Let’s first work in d = 2 with the velocity field given by (5.21). The difference in energy
between the vortex state and the ground state can then be computed from the kinetic energy of

Hamiltonian (5.7) as:

1 r? 1
AE = / d’x —mv? = cou / d’x <1 — ) _ (5.24)
2 Rip) (F—R)?

As mentioned, there is a divergence at r = R which we will regulate by assuming a vortex core

size of a(R) ~ —L_ where g, ff =M <1 — RRTQ). Evaluating the integral (5.24) gives:
TF

VHMeff
R? Rrp 1 R?
AE =2 1—— | 1 —log(1———)—1 o0 5.25
coma R;F)[Og(zc,(m)wg( R%F) Famit 0@ (525

We can also compute the angular momentum via the integral:
I / &2 n¥ X 7 (5.26)

For our configuration the angular momentum is entirely in the Z direction with magnitude:

2

L:4nco,u/RTFdrr(1—rTz) :2ch0’“—22 <1—RTZ> (5.27)
R R7F “) R7F

where we’ve used §, V- dl = 2 for a circle centered at the origin of radius r > R, and otherwise

vanishes.

As one can see, it is energetically favorable for the vortex to appear at the edge of the
cloud R ~ Rrr. However we cannot trust the solution in the regime of low density near there for
reasons previously discussed. Therefore the largest distance the vortex can be where we have
confidence in the validity of the semi-classical approximation is R* = Ryr — 8. This gives a

. . 1
minimum angular momentum, of the vortex configuration L,,;, ~ Q3. The largest value of the

113



angular momentum occurs when the vortex is in the center at R = 0 with L, ~ Q.
Combining these results gives the leading order expressions for the operator dimensions

in terms of L and Q as:

1
d=2 Bgr=/TVilogLl+dg Q3 <LZQ (5.28)

5.5.2 Single vortexind =3

Let’s consider the case of d = 3 now. The minimal energy excitation is a single vortex
string. The string must necessarily break the spherical symmetry of the trap. We will consider the
string being streched along the z-axis, ensuring that all the angular momentum is L = L."3

The energy of the vortex string again comes from the kinetic energy and can be evaluated
as:

s 1, Z(R)
AE = /d X —nv :/ dz T(z,R) (5.29)
2 —~Z(R)
where T'(z,R) is the tension of the string and Z(R) = Rrr <1 — RT) defines the integration
TF
bound along the length of the string.

The tension can be computed via a similar integral in d = 2 as:

/ drr qu)n
=1n(R,2) [log (ai ) )} T (5.30)

where - - - refer to the non logarlthmlc pieces. Here n(r,z) = 3cou? (1 - —( +z )> ® is the
T

number density, 7(z) = Ryp,/1 — 1s the radial (radius in cylindrical co-ordinate) size of the

trap at a height z and r(z,R) = RrF / 1— ZZI;—RZ. Integrating the leading logarithmic piece along
TF

3A curved string will generically have to be longer in order to carry the same angular momentum, as parts of
the velocity field it sources will cancel against each other. The longer strings will be energetically more expensive,
making the straight line configuration energetically favorable to leading order.
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the string length gives the energy:

Z(R)
AE = / dz mn(R,z)log <r(z,R) )
—Z(R)

a(z,R)
15 R\’ R
= “mco’?Rrp (1——— ) |log (1 —— | +log(Rrry/n) (5.31)

Evaluating the angular momentum of this configuration is similar to d = 2 and yields:

3
Z(R) r(2) 2, .2\ 2 3 R2\°
L:/ dz/ dr r | 2ot (1—#) :ﬂ@) <1—T> (5.32)
-Z(R)  JR 2 R7F 8v2 \o Rrr

Again the lowest allowed value of the angular momentum occurs for a vortex at R* =
1 . . .
Rrr — 0 and scales as L,,;,, ~ O3 while the maximum occurs at R = 0 with L, ~ O.

Together these results imply the scaling:

5m 1/3 i
d=3 Apj = L*Plog L+ A I<L< 533
O,L <8\/§) g 0] Q _Q ( )

This determines the leading order dimension for the operator which creates the vortex
string but we can also study the spectrum of operators above it. For example, the presence of a
vortex string along the Z-direction should split the phonon m degeneracy in (5.12). Treating this
perturbatively, such a splitting is suppressed in the charge'* Q [179].

Besides phonons, there are unique excitations of the vortex string related to displacements
of position. These are known as “Kelvin modes” and they define another set of low-lying
operators above the one which created the vortex string. These modes are basically the radial
displacement of the vortex core from the original axis. For long wavelength modes ka(z,R) < 1

and in the regime where z < Ryr, we can effectively assume that density is uniform!>. Under

14One could also consider the energy of a vortex-phonon configuration. The “interaction energy” between the two
is given as [ d9x ¥yortex - 0T which is also suppressed in the Q expansion.
SFor work going beyond this approximation in non-uniform condensates, see [182].
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this assumption, followed by considering a situation where the amplitude of the displacement is

small, we have the standard result quoted in superfluid literature i.e. (k) ~ %kz log m, where
a(R) = \/Lﬁ L — is the vortex core size via (5.23). We remark that the boundary conditions on
1—R=

R2
TF
the string should quantize k ~ #, so there is an approximate continuum of such operators above

the gap to create a single vortex string. The spacing of these modes and exact dimensions are

only visible at higher orders in the Q expansion.

5.6 Multi-Vortex Profile

Consider a collection of N, vortices at locations R; with winding numbers s;. The velocity

field of such a contribution is additive and described by:
Z X _’_ -
szv,-:ZsiZ(r—EP — Vxv¥=) 58(F—R;) (5.34)
i i i

Because the angular momentum is linear in the velocity field, this implies the total angular

momentum of the system is given by the sum of the individual ones:

L:ZL,-: 3" 3 (5.35)
B e -5 M

For vortices far from the boundary, where 1% ~ O(1) (as opposed to Q suppressed number),
we have that L; ~ s;0.

We can compute the energy of a generic multi-vortex configuration explicitly from
this velocity field (5.34). The energy breaks up into single-vortex contributions and pair-wise

interaction energies:

1
AE =3 [alxm? =Y E+ Y Y E; (5.36)

T i
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where the single vortex energy is already computed as

1 o,/ Fs?/Lilogl; d=2
Ei=5 / d%x mv? = (5.37)

1/3
o(Fa) "2 0gli d=3

and E;; is the interaction energy given by:
Ej= /ddx ;- v, (5.38)

In d = 2 this integral evaluates to:

E; R;-R; R} +R?R> —2R%.R;-R;
—L = mcou [ 1 ——5— | log == (5.39)
1
RTF
+2m ! IR; x R j| arct R xRy
CoU—F=— i ilarctan | ——m————
Mgz, R:, —R: R,

where R; and R j are the positions of the vortex pair with R; > R; assumed without loss of

generality. To leading order in the charge and small vortex separation this simplifies to:

R
e L (5.40)

E;j ~ sisjulog |I_é R
i — R

This piece is the result of the singular nature of the vortices and describes their interaction. The
analogous result of (5.39) for d = 3 is not analytically tractable, but the leading interaction piece

in the charge and small vortex separation is given by:
3
Eistisj,quTFlogT—i_'” (541)

One can extract several physical features of the multivortex profile using the expressions
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above for the energy. First of all, the minimum energy configurations per angular momentum
will have s; = 1 for every vortex as the energy scales quadratically in the charge but the angular
momentum only scales linearly. The angular momentum for the entire configuration then scales
as L ~ N, Q assuming 1% ~ O(1). Secondly, we remark that the logarithmic terms (5.40)
and (5.41) imply that the minimal energy configuration will generically be a triangular array of
vortices[183, 184]. Empirically this structure persists as the number of vortices is made large,
even in the presence of a harmonic trap[173].

In principle the energy, and therefore the operator dimension, should be found by fixing the
angular momentum and varying over the positions R; to find the minimum energy configuration.
However, for N, ~ O(1) the interaction is negligible and the energy will scale as E ~ N, E, where
E, is the energy of a single vortex placed in the center of the trap. To consider L parametrically
larger than Q we must consider N, > 1. While we cannot exactly analyze (5.36) in this limit, we
are justified in approximating the vortex density as a continuous quantity, corroborated by the fact
that in this limit the interaction energy dominates and has terms which go as sz,u%R‘%;Z ~ /I,

where [ is the moment of inertia, given later by Eq. (5.47).

Continuum Approximation: We can take advantage of the fact the vortices are dense to coarse

grain (5.34) and replace it with a continuous velocity field which satisfies:
ja{ ¥.d7 = 27N, (C) (5.42)
C

where N, (C) is the number of vortices in the area enclosed by the curve C. Let L be the angular
momentum (to be precise the z component of the angular momentum) of the configuration. We

take a variational approach, minimizing the energy over smooth v with fixed L. To this end,
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define:

1
EQ:E/ddxnvz—Q(/ddxn(?xﬁ)é—L) (5.43)

1 Q?
= 5/ddxn(v—£22><?)2—T/ddxmg%—QL (5.44)

where Q is a Lagrange multiplier to fix the angular momentum. From (5.43), we can see that the

minimum energy velocity field is that of a rotating rigid body with uniform vortex density:

Q2 Q2
Vfox?:>AE:7/ddxnr2:71 (5.45)

where [ is the moment of inertia of the condensate, computed from the density as:
I = /ddx n(r)r. (5.46)
and € can be determined via its relation to L as Q = % Now the moment of inertia / evaluates to

3 3
#2121 93 4—
b =5 (3am00) d=2

I= (5.47)

1/6
se2 o pt 1 25 (257 4 _
a0 —w (T (Bz) @) d=3

TCo

Wl

Ve

Using (5.42) and (5.45) we can also determine that the angular momentum of the configuration
scales as L ~ N,,Q as expected from (5.35). Consequently, the energy is that of a rigid body with

angular momentum L and is given by:

AE == (5.48)
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Notice that this leading order result is independent of the trap and the inhomogeneity of the
density. Corrections will arise from the inhomogeneity of the trap and the discreteness of the
vortices, but they are subleading in N, and suppressed in Rrr [180]. Indeed, that there are terms
in the energy which scale as NV, being neglected is visible in (5.36).

We remark that there are constraints of the vortex density of the system. The vortex

1
VHeff "

expect interactions to be strong and the EFT description to break down [185]. Now, in a scenario

spacing A should be larger than the vortex core size i.e. A > a ~ Beyond this limit we

where we have multiple vortices, a rough estimation yields that

R%‘FN VOl d=2

(e0'3  d=3

where / is the typical angular momentum of a vortex in the multivortex configuration. Thus in
d =2, the maximum angular momentum configuration that one can reach within the validity
of the EFT corresponds to a maximum density of N, ~ Q. Physically this means most of the
vortices are near the center and ¢ ~ Q and the total angular momentum L ~ Q* Ford=3
this corresponds to N, ~ 02/3 which is less than Q because the vortices are extended objects
and the total angular momentum amounts to L ~ Q°/3. But our EFT breaks down before this.
Using particle vortex duality as in 5.8, one can see that the EFT breaks down when the electric
field becomes comparable to magnetic field. This means that the EFT breaks down when the
contribution coming from rigid body rotation becomes comparable to Ap. Hence, the maximum
angular momentum that can be attained within the validity of our EFT is L ~ 03/%ind =2 and
L~0*3ind=3.

These determine the absolute limits on the angular momentum accessible within our EFT

and together with (5.48) and (5.47) imply the following operator dimension scaling:
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9com [ L?
d=2 AQ,L:W/CTO(W) Ap Q<L<Q? (5.50)

1024 322\ "%/ 12
-3 Apy — ——" 0 — | +A L 4/3 Sl

The above constitute the main results of this section.

5.7 Conclusions and Future Directions

To summarize, we have calculated how the dimensions of operators in NRCFTs scale with
number charge Q and spin L in the limit of Q >> 1 via the state-operator correspondence. The
NRCFTs under consideration exist in d = 2 and d = 3 and by assumption are described by the
superfluid EFT. This allows for explicit calculations by studying phonon and vortex configurations
of the superfluid. We expect applicability of our result to “fermions at unitarity” and certain
conformal anyon theories, as well any other NRCFT with this symmetry breaking behavior in
its large charge sector[146, 158, 157, 159]. In fact the superfluid state of unitary fermions in a
harmonic trap has been experimentally observed, including the formation of vortices [173]. It
may be possible to verify these scalings in specific models such as those described in [158, 157]
from the quantum mechanics of anyons in a harmonic trap.[186]

The most direct extension of these results would be to go to beyond the leading order
scaling. To do so would require reasoning about the divergences associated with the vortex core,
the size and structure of which is entirely determined by UV physics. It should be possible to
regulate such divergences by considering operators localized on the vortex. Such a procedure in
the relativistic effective string theory was worked out in [187, 188] and the effective string theory
of vortex lines in superfluids was explored in [189]. A similar analysis has also been applied to

divergences of the superfluid EFT near Ry f, associated with the dilute regime of size 6 [190].
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It would be especially interesting to study other possible symmetry breaking patterns,
such as those relevant for chiral superfluids [164]. As mentioned in this large angular momentum
regime the vortices are arranged as a triangular lattice. Deformations of this vortex lattice are
a novel excitation in this limit, known as ‘Tkachenko modes’ [191]. Presumably these excited
states would correspond to a tower of low-lying operators above the operator which creates the
vortex-lattice. However, treatment these modes and corrections to the results (5.50) and (5.51)
would require us to think about a new EFT which captures the spontaneous breaking of spatial
symmetry by the vortex lattice. This EFT has been worked out by [165] and may be adaptable to
the Schrodinger invariant case in a trap. Especially interesting would be systems with a Fermi
surface, however such a critical state must necessarily be a non-fermi liquid following the results
of [147].

While our EFT is not valid at larger angular momentum!®, it is interesting to ask if there is
an analog of the large spin expansion when L ~ A for NRCFTs [192]. The techniques for NRCFT
bootstrap are not well developed, but see ref [135]. It is interesting to note that unlike in CFT,
there is no unitary bound restricting L < A as spin can be treated as an internal degree of freedom.

Another interesting direction would be to consider correlation functions of charged
spinning operators in these NRCFTs. The universal scaling of the 3-point function and higher are
all explicitly calculable within this EFT, as was done for scalar charged operators in [177]. In
relativistic CFTs this was worked out in [163, 129] for certain operators. We leave this and other

questions for future work.

5.8 Appendix A: Particle-Vortex Duality

Here we briefly review the particle vortex duality in nonrelativistic set up. The aim of the

appendix is to cast the vortex dynamics in terms of an electrostatic (in d = 3 the gauge field is 2

16 A similar issue occurs in this approach to CFTs [163]
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form field, hence we coin the term “gaugostatic”) problem, leveraging the duality. The idea is to
solve the gaugostatic problem to figure out the field strength, which in turn gives us the velocity
profile of the vortex, again using the dictionary of duality.

We consider the leading order superfluid Lagrangian in the presence of a potential Ay =
%cozrz, A =0

d+2

L=cX P =P(X) X=a0—Ao— %(a,-x)z (5.52)

The number density and superfluid velocity are defined respectively as:

oL d d
n=gy = (§+1)X‘5 Vi = —dix (5.53)

The action (5.52) has a U(1) symmetry of )y — X + ¢ whose current can be written as:
j= (n,n) (5.54)

For simplicity and physical relevance, we’ll focus on the cases of d =2 and d = 3. Ind =2, we
can define:

1
J=e"Poyap = Ee“fovp (5.55)

for a one-form gauge field a, and field strength f,,y = dyay — dya,. This relates the superfluid

variables (5.53) to the dual electric and magnetic fields as:

n:Sijaiaij V== = > (5.56)
Similarly, in d = 3 we’ll define the current in terms of a dual two-form gauge field B,y
1
j'u - S'UVpGava(y - §E'WPGGVp(5 (5.57)
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where G,vp = 9uByp + dyBp, + 0pByy is the three-form field strength. The superfluid variables

are then expressible as:

n=¢eMBp=yY V= §Tj (5.58)
Vortices act as sources for the gauge fields and couple minimally as:
1
—_n. \4 1. V puv
d=2: J,ad" d=3: ZJHVB# (5.59)

To implement the duality transformation, we note that internal energy €(n) is given by nX — P(X)

and so we can rewrite the (5.52) as

1 .
L=nX—¢(n)=n (X —Ap— E(aix) (alx)) —&(n) (5.60)
1 .
= 5nv2 —&(n)+n(x+v'ix) (5.61)
where we have used v; = —d;x and n is understood as a function of ¥ and its derivatives.

The internal energy is given by:

1 3/ 2 \3 s
d=2: = —n’ d=3: = (=) n? 5.62
g(n) 4Con g(n) 3 (5c0> n (5.62)
Using the relation (5.56) we can express the Lagrangian in d = 2 as:

L=-———b>—bA (5.63)

This equation describes a kind of non-linear electrodynamics with a modified Gauss law:

5 (%) _ (5.64)
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Similarly the Lagrangian in d = 3 is given via (5.58) as:

.. 2
1Gy;iGoY 3/ 2 \3
L= 6%_5 (5_60) Y3 — YA, (5.65)
with a “Gauss law” of:
- Goi i
J (%) =J% (5.66)

Now consider a motion of charged particle under the gauge field, sourced by J" . In
what follows, we will show that to leading order we can treat this as a “gaugostatic” problem
and the velocity V; of the charged particle is negligible. If V; is negligible, one can potentially
drop the kinetic term in the Lagrangian. As a result, the equation of motion for the particle turns
out to be the one where there is no Lorentz force acting on the particle. This implies that V; is
of the same order as |e|/b (in d = 3, this is —VGO{,’GOU) For self consistency, we need to ensure
V; is very small i.e. the ratio |e|/b is very small. This helps us to render the problem of vortex
dynamics into a problem of “gaugostatics”. In order to do that, we linearize (5.63) and (5.65)
around parametrically large magnetic field b and Y and we see that the coupling goes as b in
d =2 and in d = 3, this goes like Y. Hence the electric field strength |e| in d = 2 and /Gy, jGoij
in d = 3 goes like v/b and /Y respectively and we have

lef 1

ViVieo 1~ —— ind =2 (5.67)
b VO

- /GoiGol 1
Vi~ OYJ 0 N\/Q,md:S (5.68)

Thus it is self consistent to assume that the charged particle is just drifting without any Lorentz

force acting on it.
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5.9 Appendix B: A Contour integral

This appendix contains the evaluation of contour integrals, needed to figure out the vortex

interaction energy in the multivortex scenario. In d = 2, the vortex interaction energy goes like

/ dr rn(r) / a6 77, (5.69)

where as for d = 3, we have an extra integral along the z axis and r becomes the radius in
cylindrical coordinate. In both cases, the 6 integral can be done using contour integral and

expressing V; in terms of complex variables given by

V= —— (5.70)

Hence the integral evaluates to

I—/dev, Vj=Re (/dz — ViV ) (5.71)
 Re (/dz_ ] —Z_Z])) (5.72)

Now we note that z7 = 7 and z;Z; = R? to rewrite the integral in following manner:

: Zi —1 Zi
I:Re(/dz—t >=Re /dz (5.73)
(P R 2) S T Y-

2 . . . .
The poles are located at z = z;,z = 1z; i.e. they lie on the circle of radius |z;| = R; and

Without loss of generality, we consider R; < R;. Now there can be three scenarios:
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D2 S .
1. r <R; <Rjimplies %i < r <Rj, hence the pole at z = %zi is picked, answer is

1 ) B 2n
rP—zizi) 4 +R3R} —2r2R;R jcos(9)

I=Re (—Zn (r* —RiRjcos(9))  (5.74)

o 2 o .
2. R; <Rj <rimplies R; < r < %, hence the pole at z = z; is picked. and the answer is

27
I= i 2 (
r* +R5R; —2r*RiR jcos(9)

r* —RiRjcos(¢)) (5.75)

o 2 . .
3. Ri<r<Rjimplies r <Rjand r < %i, so none of the poles is picked, the answer is 0.
Summing up we can write

T (r? —RiRjcos(0))
4+ R3R? —2r2R;Rcos(0)

[sgn(r—R;) + sgn(r— R;)] (5.76)
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