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Motivation and Goals

Isn’t everyone amazed when staring at the sky during a starry night?

Doesn’t everyone wonder why all those stars, galaxies and planets are there?
What forces sustain them? Will they be there forever? Have they been there
forever? When did forever start?

I believe these are questions that every human being must have wondered about
at some point, no matter their education, social class or temporal locus. It seems to
me that this puzzlement about the cosmos, is one of the most important chapters
in the book of the interaction between men and Nature. It is inherent to us to
wonder about everything that surrounds us. The sky is therefore a natural place to
begin looking. That is why this is a science that, under different names and tints
has existed since men are men. Definitely, times and methods have changed. In
particular, Cosmology is going through an epoch of unprecedented success. The
steady progress of observations allows us to check our model of the Universe up
to the point where we are able to describe what was the nature of matter at the
beginning of our cosmological era and how it has evolved to the present day. It
seems amazing that something as insignificant as a few people inside the Universe
are able to disentangle such a mystery. Nevertheless not only are we doing it, but
the future outlook is very promising.

The Universe as we know it, is about 13700 million years old. The theory of
the Hot Big Bang describes its evolution since all the matter contained reached
thermodynamic equilibrium, even before the Universe was one second old. This
thermodynamical description together with particle physics, allows us to study all
the particles present after the quark-hadron transition (tq−h ∼ 10−4s) from a theo-
retical point of view. These were neutrinos, electrons, nucleons, photons and other
transmitters of the Electroweak force, and possibly dark matter. Specifically one of
the greatest success was the description in 1950 of the Primordial Nucleosynthesis
(the creation of all the light nuclei of H and He less than two minutes after the
Universe was born) that lead to the accurate prediction of the abundances of light
elements in the Universe.

Generally speaking, it could be said that the thermodynamical homogeneous evo-
lution of the Universe is known and controlled since then. A number of experiments
have confirmed our knowledge.
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Also, thanks to the theory of General Relativity and Perturbation theory, we are
able to describe the evolution of the inhomogeneities until these reach a non-linear
regime1. All these developments unveil for us the process of structure formation in
the Universe which along with the description of the homogeneous evolution allow
us to talk about a Standard Cosmological Model for the first time in history.

In fact, there still remain a number of questions to be solved, and so this picture
should be taken with a grain of salt. However, we can say that we nearly have a
model that describes the evolution of the Universe. This description is unique when
the values of the most important parameters, namely the total density of matter,
Ω0, the Hubble parameter H0 and the amplitude of the primordial perturbations are
specified.

This chain of successes currently lacks an essential ingredient which is the pri-
mordial origin of the universe. Perhaps, one can always go back in time to ask
about the origin of the origin, and never settle for a given beginning of time, but it
is important to explain the origin of the primordial inhomogeneities that seed the
observed structures. We need to find a mechanism which is able to produce them
with the appropriate amplitude and spatial distribution to agree with current ob-
servations. Also, this mechanism should explain the homogeneity and flatness that,
as we will see during this thesis, hold in the Universe.

During the last thirty years there have been a great number of attempts to
solve all these enigmas. Cosmic strings were a good candidate as seeders of inho-
mogeneities, however the spatial correlation in the temperature anisotropies in the
Cosmic Microwave Background radiation they would generate does not agree with
that observed by COBE in 19922 [1]. Besides, this theory did not solve the flatness
and horizon problems. Also, the theory of the varying speed of light could clar-
ify the problem of the homogeneity in the temperature but does not explain how
homogeneities were formed.

So this was the situation when in 1980, the Inflationary paradigm arose. It was
put forward by Alan Guth and promptly developed by Andrei Linde [2, 3]. In it,
an effective scalar field induces an de Sitter phase in the Universe that drives it
through a period of exponential expansion. This makes the picture change because
the starting point of the the Hot Big Bang is a stretched piece of the space that
existed before inflation, with all the consequences it implies.

This way, Inflation solves several of the problems that used to concern cosmol-
ogists. Inflation inevitably predicts a flat an homogeneous Universe. On the other
hand, and according to quantum field theory, a nearly massless field fluctuates quan-
tum mechanically, perturbing its own energy density in a scale invariant way giving

1Even after they enter the non-linear regime, their evolution can be traced thanks to the nu-
merical simulations to which many supercomputers around the globe are devoted.

2As a matter of fact, the observation of the anisotropies in the CMB awarded G. F. Smoot and
J. C. Mather the 2006 Nobel Prize in Physics as the PIs of the project.
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the power spectrum that may be inferred from the galaxy distribution in the Uni-
verse.

Almost without asking for it, three very important questions, namely flatness,
homogeneity and anisotropies, were solved. Since then many theoretical and obser-
vational efforts were aimed at refining the original inflationary paradigm.

It is now time to remark on the essential role played by experiments. The mea-
surement of the anisotropies in the CMB, which are microscopically small, is one of
the main pillars upon which this unprecedented step forward is based. If in 1992,
the COBE satellite confirmed their existence and correlation, in 2003 the Wilkinson
Microwave Anisotropy Probe, WMAP [4], measured their magnitude with an accu-
racy that allowed us to bound the values for the main cosmological parameters with
errors smaller than 10% of their value. In 2006 a second data release of WMAP [5]
allowed for a tighter constraint of the parameters with the additional measurement
of the anisotropies in the CMB polarization.

Apart from other, ground based experiments that measure the CMB anisotropies,
it has also been crucial the contribution of two other kinds of experiments: the
supernovae of type Ia and the elaboration of accurate maps of large scale structures
in the Universe (see, for example, [6] y [7]).

All this experimental progress, together with the Hot Big Bang Model and In-
flation, allows us to observe a Universe which, according to what was expected the-
oretically, shows a gaussian and scale invariant spectrum of primordial anisotropies.
Also, we observe that the nature of the anisotropies is adiabatic. That is, the per-
turbations in the energy density have a direct correspondence with perturbations in
the number density of particles. This means that the fluid may be wholly described
just by knowing its temperature.

However, this is by no means the end of the story. The inflationary paradigm
still allows for many extensions and the implications of some of them are tightly
related to physics beyond the standard model (of particle physics). For example,
the possible presence of cosmic defects and their effect on the observations, the
observation of a tensor component in the CMB spectrum or the nature of Dark
Energy are issues of different relevance for cosmology but all of them still need to
be solved.

At a different epistemological level, and probably more easily accessible, there
is the problem of knowing the exact nature of the primordial anisotropies. There is
no direct proof of the existence of anisotropies of nature other than adiabatic, but
observations do not rule out that a small fraction of them were seeded by isocurvature
primordial seeds. If more than two fields were present during inflation, there is the
possibility that some of the primordial perturbations were seeded by perturbations
in the entropy of the fluid and not in its energy density.

This thesis is devoted to the study of the possible signatures of isocurvature
anisotropies. From a theoretical point of view, their existence would open up a whole
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spectrum of possibilities since it would be necessary to find another scalar field that
could exist during inflation. Such is the case of the axion in Quantum Chromody-
namics, which, under a number of circumstances, would generate an isocurvature
spectrum observable today. This is only an example of the power of the coopera-
tion of Cosmology and particle physics. We believe it should be investigated and
exploited and more so today that there are so many new born experimental projects.

The Planck satellite, which will be launched into space during the next few
months, and international collaborations such as DES are remarkable examples of
all the machinery which will be put to work in a very promising future. We should
be ready to digest the new volume of data theoretically as well as experimentally.

This thesis mainly compares the phenomenology expected from theory to exper-
iments, thus it is needed to develop the appropriate tools. The relatively short time
that experiments have been accessible has not allowed Cosmology to prepare power-
ful and unique techniques for data analysis. We also deal with this problem during
the thesis by studying which are the optimal parameters one should constrain given
a set of data. This is an information inference problem which has been tackled for
a long time by expert statisticians but had never been applied to Model Selection
in Cosmology. We believe that parameter extraction from data should deal equally
with Model selection and parameter determination. In order to do that, we develop
new computational techniques that allow us to classify a model according to their
ability to fit a set of data.

The thesis is organised as follows: in the first chapter, we summarize some major
aspects of the Hot Big Bang model and Cosmological perturbation theory. This will
be used as a frame for chapter 2 in which a review of single-field inflation is given,
describing its successes and predictions. In Chapter 3 the theory of isocurvature
perturbations in cosmology is discussed, presenting some of the parametrizations
for parameter constraining. In the next chapter we describe some of the major
experiments from which cosmological information is extracted and in chapter 5 we
present the basic theory of Bayesian Model Selection, and our particular tools de-
veloped to attack the problem. Finally, before concluding we present all our results
on isocurvature parameter determination, giving all the bounds found after using
different assumptions and different sets of data.



Chapter 1

Introduction

The natural evolution of Cosmology as a science, has driven it towards the study
the physics of higher and higher energies. Lately, and thanks to the amazing im-
provement of observations, cosmology has opened a new and very productive line of
research in cooperation with particle physics.

One of the products of this synergy between particle physics and Cosmology
has been the birth of an extremely successful paradigm: the Inflationary Cosmol-
ogy. Still a paradigm, the phenomenology associated to the dynamics of an effective
primordial scalar field, existing after the Planck time tP ∼ 10−43, agrees rather
accurately with observations. The nature of the inflaton field is not fixed by
the inflationary paradigm. Some models of physics beyond the standard model do
propose some some theoretical candidates, nevertheless none of them have been au-
thenticated observationally. We must study the field by its effects on the background
evolution of the universe and the formation of structure.

Let us review the status of cosmology before inflation was proposed. The Hot
Big Bang model describes an expanding universe that was born sometime before
primordial nucleosynthesis (tnucl ≃ 1s) [8]. This allows for an accurate and successful
prediction of the abundances of the light elements. The universe was then a radiation
dominated hot plasma in expansion that progressively cooled down. Since radiation
is a relativistic fluid it loses energy faster than the cold dust fluid while the Universe
is expanding. Thus, the matter energy density grew with respect to radiation until it
became dominant. When the temperature cooled to about 0.2eV photons decoupled
from matter and travelled (almost1) freely ever since. Now we observe them as a
background radiation with a blackbody spectrum with temperature TCMB = 2.728K.

The Hot Big Bang model has been successful on explaining all this phenomenol-
ogy. However, there exist some small (of O(10−5)) fluctuations in the magnitude of
the temperature. They carry a vast amount of information about the distribution

1When the first stars formed (t ∼ 109yr ), the intergalactic medium became highly ionized
(with a very low optical depth) and the photons of the CMB were partially reescattered.
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of matter at the time of decoupling. These small inhomogeneities would give rise
to large scale structure (LSS) later on. Before the inflationary paradigm was estab-
lished there were only vague ideas about how these were seeded. Topological defects
was the preferred solution but nowadays we know that this possibility is ruled out
by data. Even though their existence is not completely ruled out, their role as main
seeders of primordial anisotropies is discarded.

As we shall see, inflation does make an unavoidable prediction about the primor-
dial seeds of LSS. And this is another of its great successes. Although it is expected
to gather more and more experimental evidence in favour of Inflation, predicting
the primordial power spectrum for anisotropies and fixing the horizon and flatness
problems make this paradigm the ideal candidate.

The basic inflationary idea can be extended in many ways. One of them is by
allowing more than one scalar field to be present during inflation [9, 10]. In some
cases this would induce anisotropies in the entropy of the fluid in addition to those
in the energy density expected in one-field models. The inclusion of new fields arises
as a natural possibility, why not having more than one field? moreover, there exist
models of particle physics beyond the Standard Model, such as the QCD axion,
that also suggest the idea [11, 12]. Thus, its study opens a wide window for new
physics. The phenomenology associated with this kind of models is much richer,
and although they have not been discarded by experiments [13, 14, 15], they are not
strictly required to explain the data. The upper bound on this models allows for a
contribution of up to 40% (95% c. l.) of the power of the anisotropies at a scales
of k = 0.05h−1Mpc−1. Hopefully,future analyses and experiments will allow us to
discriminate between models.

In this chapter, we perform a quick review of the tools used for studying the
Standard Model in Cosmology, and set the basis and notation for further extensions
such as isocurvature perturbations. We discuss General Relativity and Cosmological
perturbation theory, the two basic ingredients to explore both the homogeneous and
inhomogeneous evolution of the Universe. We prepare the road for the discussions
held in chapters 2 and 3 in which we present the simplest Single-field inflationary
model and the Isocurvature model extension respectively. As we will see, we then
explore the phenomenology of experiments in chapter 4 and the debate and prob-
lematics of statistic and Model Selection in Cosmology in chapter 5. Finally, we
present our results in chapter 6.

1.1 Background evolution of the universe

The mathematical structure for cosmology, the theory of General Relativity (GR),
was put forward by Albert Einstein in 1916. Further, cosmologically aimed, de-
velopments of the theory were implemented by Alexander Friedmann and Georges
Lemaitre.
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Since then, there have been some new theoretical proposals to modify GR, how-
ever observations so far have not been able to discriminate between models. Many
theoretical and experimental progresses are studying the problem; for the time being,
the simplest, original GR theory remains in force.

The observational side of cosmology has suffered a very different evolution. New
technologies have made possible a dramatic development and we are currently able of
discussing a Standard Model of Cosmology with a fixed, set of parameters bounded
to at least a few percent accuracy in their values.

Now we can make use of all the old and new knowledge to describe the back-
ground evolution of the universe, or “Hot Big Bang Cosmology”. This section will
only cover the basics about the the hot big bang model that will be needed for the
rest of the review.

Working inside a general relativistic framework, we need to define a metric ten-
sor, gµν , in order to characterize the evolution and properties of spacetime. Once
specified, we measure the spacetime interval between two points as:

ds2 = gµνdx
µdxν (1.1)

In general gµν is coordinate dependent, and it must be so in such a way that the
interval ds2 is invariant under a change of coordinates or a change of gauge.

Supported by the Copernican principle and observations, we impose homogene-
ity and isotropy at sufficiently large scales to arrive at the dynamic Friedmann-
Robertson-Walker (FRW) form [8] of the metric (throughout the whole text we will
stick to this signature convention):

ds2 = −dt2 + a2(t)[
dr2

1 −Kr2
+ r2(dθ2 + sin2 θdφ2)] (1.2)

where t is the physical cosmic time, a(t) is the scale factor, and the rest of the
coordinates are comoving or time independent. A comoving observer is that who
measures zero momentum at its own location or that who sees an isotropic universe
around. It is useful to keep in mind the relationship between physical, r(t), and
comoving coordinates x, which applies to any cosmic distance:

r(t) = a(t)x (1.3)

The value of the constant K determines the spatial curvature of the universe. The
Ricci scalar for the spatial part of the metric is:

(3)R =
6K

a2(t)
(1.4)

As we will see in the next sections, present experiments point towards a zero or
almost zero value for this parameter.
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Using the conformal time τ , defined as dτ = dt/a we arrive at a form of the
metric which is conformal to a static metric:

ds2 = a2(τ)[−dτ 2 + γijdx
idxj ] (1.5)

(we have conveniently expressed the spatial part of the metric by the three dimen-
sional tensor γij). This form of the metric is often useful in theoretical cosmology.

The matter content of the universe at large scales can be described as a perfect
fluid. A perfect fluid is one that is isotropic in the local rest frame and in an
arbitrary frame, its energy momentum tensor takes the form:

T µν = (ρ+ P )uµuν + Pgµν (1.6)

where uµ is the four-velocity (uµ = dxµ

ds
) of the fluid, which in the local rest frame

takes the form uµ = (1, 0, 0, 0). The factor P is the pressure of the fluid, and ρ is
its energy density.

The conservation of the energy-momentum tensor, and in particular, conserva-
tion of energy, is ensured as long as the continuity equation holds:

3
ȧ

a
(ρ+ P ) + ρ̇ = 0 (1.7)

This ensures the conservation of energy inside a comoving volume V ∝ a3 during
the adiabatic expansion of the universe.
Equation (1.7) is easily solvable if the equation of state of the fluid is specified.
We know the universe went through at least two successive epochs of radiation and
matter domination. We can compute the evolution of the energy density of the
universe as a function of the scale factor during these two epochs:

Prad =
1

3
ρrad ⇒ ρrad ∝ a−4

Pmat = 0 ⇒ ρmat ∝ a−3 (1.8)

As we will see later, the energy density of an oscillating scalar field evolves as that of
a presureless dust fluid. When the field is away from its minimum and its potential
energy is much bigger than its kinetic energy its energy density is a constant and
its equation of state is w = −1, i. e. Pfield = −ρfield, as shown in Chapter 2.

Understanding the different rates at which the different fluids evolve is necessary
to study the dynamics of the universe as a multi-component fluid.

In cosmology time and distances are measured in terms of the redshift. It is
defined by:

1 + z =
λobs
λ

=
a(t0)

a(t)
(1.9)

When we use it referred to time, it means the time when the scale factor of the
universe was (z + 1) times smaller than it is today. The value of the scale factor
today is conveniently taken to be a(t0) ≡ a0 = 1.
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Once the metric and the energy content of the universe have been specified, we
can study the dynamics by solving Einstein’s field equations2:

Gµν ≡ Rµν −
1

2
gµνR+ Λgµν = 8πGTµν (1.10)

where R is the Ricci scalar:

R = 6

(
ä

a
+
ȧ2

a2
+
K

a2

)

(1.11)

and Rµν is the Ricci tensor, with components [18]3:

R00 = −3
ä

a
; R0i = 0; (1.12)

Rij =

(
ä

a
+ 2

ȧ2

a2
+ 2

K

a2

)

gij

Λ is the cosmological constant term, originally proposed by Einstein in 1917 in an
attempt to balance the forces and preserve the previously accepted picture of a static
universe. If we move it to the rhs of (1.10) we can see that the equation is equivalent
to one with no cosmological constant but with an energy-momentum tensor for the
vacuum energy of the form:

Tµν = − Λ

8πG
gµν (1.13)

that has a form of perfect fluid with: P = wρ and w = −1. We can associate this
energy momentum tensor to that of the vacuum because it contains all the possible
symmetries, as the vacuum does. Current analyses try to constrain the equation
of state of the dark energy, or w. We have seen that a pure cosmological constant
would have a value of w = −1 whereas some other more exotic4 form of dark en-
ergy would have a different value. Current observations are in good agreement with
w = −1 (see [17]).

Inserting Eqns. (1.2) and (1.6) into (1.10) we arrive at the Friedmann equations:

ȧ2

a2
=

8πG

3
ρ− K

a2
+

Λ

3
(1.14)

ä

a
= − 4πG

3
(ρ+ 3P ) +

Λ

3
(1.15)

2We are using the convention c=1 throughout the text unless otherwise specified.
The index convention will also be fixed: 0 refers to the temporal coordinate whereas i, j = 1, 2, 3
refer to the spatial coordinates.

3Note that a sign convention different from the one in the reference has been used. That is the
only departure from it.

4We believe that the cosmological constant term is rather exotic by itself, in the sense that it
could be the hint for a modified general relativity in which one could not measure energy absolutely.
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The rate of expansion of the universe, given by ȧ
a

is called the Hubble parameter,
H. It can also be written as:

H2(z) = H2
0 [(1 + z)3ΩM + (1 + z)4ΩR + (1 + z)2ΩK + (1 + z)3(1+w)ΩX ] (1.16)

where w is the equation of state of the dark energy, ΩX , assuming it is constant in
time.

The quantity cH−1 is called the Hubble distance and it gives an estimate of the
distance that light has travelled since the beginning of the universe5. More precisely,
we can compute the comoving radial distance travelled by a light ray (ds2

light = 0)
or particle horizon xh(t):

dxh(t) =
dt

a(t)
⇒ xh(t) =

∫ t

0

dt′

a(t′)
(1.17)

The particle horizon gives the size of the largest causally connected region at time t.

There are two other cosmological distances that will turn out to be useful in
the forthcoming chapters: the angular diameter distance, DA and the luminosity
distance dL.

Both of them depend on the redshift at which they are measured and the under-
lying cosmological model as follows.

The angular diameter distance is the quotient between the angle subtended by
an object in the sky and its physical size, and it can be computed from:

DA(z) =
1

(1 + z)H0

∫ z

0

dz′
√

(1 + z)3ΩM + (1 + z)4ΩR + (1 + z)2ΩK

(1.18)

The luminosity distance is related to DA as:

dL = (1 + z)2DA (1.19)

The two (1 + z) factors in the previous equation come from the energy redshift and
the time delay suffered by the photons [18]. It is defined by the relationship between
the flux S and intrinsic luminosity L of an object:

dL =

√

L
4πS (1.20)

Intuitively, dL measures the distance a photon would “think” it has travelled from
the source with luminosity L to us. We need to calculate its value to compute the
physical distance that separates us from a Supernova, which we will eventually use
to measure the expansion rate of the universe, as we will see in chapter 4.

5When computing distances and times using the value of the Hubble parameter at the
present time (H0) it is sometimes useful to parametrize its uncertainty by h, such that H0 =
100 h km/s Mpc−1.
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Solving for equations (1.7), (1.14) and (1.15) we find the expression for the
evolution of the scale factor with time. The solution for these equations is generally
dependent on K, the spatial curvature. As said before, experiments point towards
a zero value of this constant. Thus we only solve them for the K = 0 case.

For a radiation filled universe we find:

a(t) ∝ t
1
2 (1.21)

For a cold dust (conventional matter) filled universe:

a(t) ∝ t
2
3 (1.22)

We clearly see how the equation of state of the content of the universe does affect
its evolution.

It is useful to define the critical density of the universe. This is the energy
density the universe would have if it was completely flat (K = 0). Using equation
(1.14) and including the cosmological constant as a part of the total energy density,
we find:

ρcrit =
3H2

8πG
(1.23)

with the current measurements of the hubble parameter, this density corresponds
to about 5.8 ± 0.3 protons per cubic meter.

The total energy density of the universe is made of all the energy densities of
the different species present at the different epochs: photons, baryons, dark matter,
dark energy, neutrinos and so on. Thus we can write the total energy density as a
sum:

ρ = ρB + ρDM + ρν + ργ + ρΛ... (1.24)

The individual energy densities are better expressed as a fraction of the critical
density:

Ωi =
ρi
ρcrit

(1.25)

These are also called density parameters. We see then that if the universe is flat,
we can write equation (1.24) as:

ρ

ρcrit
= ΩB + ΩDM + Ων + Ωγ + ΩΛ... ≡ Ω (1.26)

The parameter Ω is the value of the total energy density. When we refer to its
value at the present epoch, we write Ω0. Inserting (1.26) into (1.14), we obtain its
simplified version:

Ω − 1 =
K

a2H2
(1.27)

For a closed universe Ω > 1 (K > 0) whereas for an open infinite universe Ω0 < 1
(K < 0).
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Quick history of the universe

It will be useful to bear in mind the energy and time scales we are dealing with at
the different cosmological epochs. The following table will help us on that [8]:

t T-Energy Event

10−43 s 1019GeV? Planck Scale, Inflation Begins?
... ... Inflation ends, Physics beyond SM???

10−10 s 102 GeV EW symmetry breaking
10−2 s 10 MeV γ, ν, e, ē and p in thermal equilibrium
10 s 1 MeV ν decoupling, e ē annihilation.
100 s 0.1 MeV Nucleosynthesis

104 yrs 1 eV Matter-radiation equality
105 yrs 0.1 eV Photon decoupling

∼ 109 yrs 10−3 eV First bound structures form
∼ 8.2 · 109 yrs ∼ 3.8 K Vacuum-matter equality
13.6 · 109 yrs 2.728 K Today

With this summary, we get a quick idea of some of the parameters needed to have
a satisfying description of the background evolution of the universe. As we will see
in the following chapters, current cosmological analyses are focused on determining
the values of parameters such as ΩB , ΩDM , H0 and H(z) as accurately as possible.

Nevertheless, a complete theory describing the universe must, somehow explain
the existence of the observed inhomogeneities in the universe. Clusters of galaxies,
galaxies, stars, and ultimately... us. If the universe were completely homogeneous
none of these would be present. We need to slightly drop the assumption of ho-
mogeneity and allow for small perturbations in the distribution of the primordial
energy density of the universe. That way we will be able to explain the formation
of LSS as well as the observed anisotropies int the CMB. We cover this topic in the
next section.

1.2 Theory of Cosmological Perturbations

Cosmologists use a perturbative approach to solve the problem of structure forma-
tion in the universe. Current LSS is the product of the gravitational evolution of
what once were small perturbations in the primordial universe.
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This hypothesis is well founded upon one of the most fruitful pieces of data
we can count on, the anisotropies on the CMBR. The CMB is a probe for the
homogeneity of the universe during the radiation and matter domination epochs, as
well as a smoking gun for the presence of some small perturbations (of order 10−5)
in the distribution of the matter during that time. We can follow them forward in
time until now when they have evolved to conform the observed structures.

We will review this evolution in Chapter 4, but for the moment, let us set the basis
of the cosmological perturbation theory and develop a formalism to follow the linear
evolution of these perturbations (up to first order). Inside the general relativistic
frame we see that the form of the metric determines the behaviour and distribution
of matter but the reverse mechanism is also true. The matter distribution also
back-reacts on the metric:

METRIC TENSOR ⇐⇒ MATTER DISTRIBUTION

In order to rigorously track the evolution of the perturbations we will take into
account the perturbations on the metric tensor as well as the perturbations on the
distribution of the energy density.

A given tensor can be perturbed with tensors of rank equal or smaller than its
own. Since the metric gµν is a tensor of rank two, its perturbations can be sorted as
scalar, vectorial and tensorial under the Lorentz subgroup of 3D rotations6 [19]:

gµν = (0)gµν + δgµν = (0)gµν + δ(s)gµν + δ(v)gµν + δ(t)gµν (1.28)

Now we see the explicit expressions for each of the perturbative terms for the metric
tensor (1.5).

Scalar perturbation In order to perturb the metric in the most general way, we
need to define the four scalar quantities φ, ψ, B, E which in general are dependent
on (x, t). Then, this term of the perturbation takes the form:

δ(s)gµν = a2(τ)

(
−2φ B|i
B|i 2(−ψγij + E|ij)

)

(1.29)

where |i denotes a covariant derivative with respect to the coordinate i.

As we see later, in the simplest inflationary scenario the quantum fluctuations of
the scalar inflaton field induce this kind of perturbations in the metric. These will
eventually seed the potential wells into which matter falls to create the observed
structures.

6The reason why this transformations are picked is because of the time-like foliation of the FRW
universe.
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Vector perturbation The vector perturbation takes the form:

δ(v)gµν = a2(τ)

(
0 −Si

−Si Fi|j + Fj|i

)

(1.30)

where Si and Fi are two divergenceless three-vectors. If they were not divergenceless
it would be possible to write them as the rotational of another vector plus the gradi-
ent of a scalar. Then we would not completely separate the scalar and the vectorial
contributions to the global perturbation.

In the basic inflationary scenario vector perturbations are not created. If present,
they must have been generated by some other more exotic primordial mechanism
such as primordial magnetic fields or topological defects. They would seed vortical
fluid perturbations which would survive up to now only under some special (though
not impossible) conditions imposed on the streaming of the different fluids in the
universe [20].

There is currently no observational strong evidence for the existence of primordial
vector perturbations. Therefore we will not pursue their study further in this work.
This does not mean that they were not there and any progress in this field could
provide us with a very powerful insights about high energy particle physics.

Tensor perturbations They are constructed using the symmetric three-tensor
hij satisfying the constraints:

hii = 0; hij
|i = 0 (1.31)

Again, conditions (1.31) are imposed so that nothing inside hij is transformed as a
three vector or a scalar. The tensor perturbation takes the form:

δ(t)gµν = a2(τ)

(
0 0
0 hij

)

(1.32)

Tensorial perturbations are generically predicted by inflation. The intensity of
the gravitational waves that would be generated could be so low that they would
not be directly detected by interferometers. However, depending on the energy scale
at which inflation took place, their effects could be observable in the B-mode polar-
ization on the CMB spectrum of anisotropies [21].

The four dimensional metric tensor gµν has 10 different components (gµν = gνµ).
Due to the freedom of choice of coordinates, it turns out that 4 out of these com-
ponents are non physical. We are thus left with 6 independent components of gµν .



1.2 Theory of Cosmological Perturbations 15

Six degrees of freedom which are evenly distributed so that two physical quantities
of each nature can be defined (2 scalar, 2 vectors and 2 tensors).

The three different parts in which we splitted the metric perturbations are com-
pletely decoupled to linear order. Thus we can safely take care of the scalar per-
turbations alone which are the ones required for the rest of the work. The next
section is devoted to them and their transformation properties under a change of
coordinates.

1.2.1 Gauge invariant scalar perturbations

Perturbative methods are known to have a wide variety of applications inside the
physical and mathematical sciences. In General Relativity we encounter two major
obstacles when using them.

The first one comes one one encounters the complexity of its equations but this
can be solved by using the appropriate numerical methods, and does not repre-
sent an insurmountable problem. The second, more subtle one, stems on the co-
variance requirement that must be imposed on every equation. Spacetime itself is
perturbed as well as the quantities defined on it. The unperturbed quantity, (0)Q
and the perturbed quantity Q, live in different manifolds, and thus the perturbation
δQ = Q− (0)Q is ill-defined under a general change of coordinates7.

As a matter of fact, it can be showed [22] that the general change of coordinates:

τ → τ̃ = τ + ξ0(τ,x)

xi → x̃i = xi + γijξ|j(τ,x) (1.33)

induces a change in the perturbation δQ of:

∆Q = ˜δQ− δQ = LξQ (1.34)

Where LξQ is the Lie derivative in the direction of the vector ξ.

Now, applying (1.34) to the scalarly perturbed line element:

ds2 = a2(τ)[−(1 + 2φ)dτ 2 + 2B|idx
idτ + [(1 − 2ψ)γij + 2E|ij]dx

idxj] (1.35)

we get the transformation under gauge change of each of the scalar quantities.
As an example, we will explicitly write the change for φ, up to linear order:

˜δg00 = δg00 + ∆g00 = δg00 + Lξ(0)g00

Lξ(0)g00 = ξλ(0)g00|λ + 2ξλ|0
(0)gλ0 = −2a2(

a′

a
ξ0 + ξ0′)

=⇒ φ̃ = φ− a′

a
ξ0 − ξ0′ (1.36)

7The manifold in which the perturbed quantity is defined, changes as the coordinates change
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where the prime denotes differentiation with respect to the conformal time τ .
Using the same procedure, we can compute the changes for ψ, B and E:

ψ̃ = ψ +
a′

a
ξ0 (1.37)

B̃ = B + ξ0 − ξ′ (1.38)

Ẽ = E − ξ (1.39)

These transformation laws can also be derived by directly transforming the line
element and expanding up to first order in the perturbations of the coordinates:

ds2(τ̃ , η̃) = ds2(ψ̃, φ̃, B̃, Ẽ) ≃ ds2(τ, η) + δds2(τ, η)

As we see, in the presence of cosmological perturbations, we are free to choose
any gauge. This means that there is no way in which observers sitting in different
causally disconnected regions could agree in the magnitude of a perturbation.
In cosmology, we deal with regions which are bigger than the Hubble radius so this
ambiguity, intrinsic to the theory, is actually annoying.

However, it was shown by Bardeen in [23] that it is possible to define two gauge
invariant scalar quantities which are enough to completely describe the scalar cos-
mological perturbations (as we saw before, only two physical degrees of freedom
correspond to the scalar perturbations). The scalar potentials:

Φ = φ+
1

a
[(B −E ′)a]′ (1.40)

Ψ = ψ +
a′

a
(B − E ′) (1.41)

are invariant under a change of coordinates such as (1.33). Due to their role inside
the perturbed FRW metric, Φ is referred to as the Newtonian potential and Ψ
is the Intrinsic Curvature perturbation. Also called the Bardeen potentials,
they are extremely useful for cosmological perturbation theory since they allow us
to track perturbations in the gravitational potential in a unique way. We shall see,
through this thesis, the substantial role played by them as the center of the theory
of cosmological perturbations.

As a matter of fact, we can write any perturbation of a scalar quantity in a gauge
invariant way (gi). Take Q(τ,x) that can be decomposed into its background value
and a perturbation:

Q(τ,x) = (0)Q(τ) + δQ(τ,x) (1.42)

it is always possible to construct a combination of δQ(τ,x) and metric perturbations
that is gi:

δQ(τ,x)(gi) = δQ(τ,x) + (0)Q(τ)′(B −E ′) (1.43)



1.2 Theory of Cosmological Perturbations 17

We will be using the formalism of gi perturbations for studying the cosmological
perturbations and will be now applied to the field equations (1.10). We can split
each of the tensors into their background and perturbation parts:

Gµν → (0)Gµν + δGµν ; T µν → (0)T µν + δT µν (1.44)

The perturbed Einstein equations are then:

δGµν = 8πGδTµν (1.45)

Their is calculation quite a dull task, nevertheless no sophisticated mathematics
are needed and we can get them straightforwardly if we are patient enough. We
write them now in a gauge invariant form and in conformal time, making use of the
Bardeen potentials:

−3H(HΦ + Ψ′) + ∇2Ψ = 4πGa2δT
0(gi)
0

(HΦ + Ψ′),i = 4πGa2δT
0(gi)
i

[(2H′ + H2)Φ + HΦ′ + Ψ′′ + 2HΨ′ +
1

2
∇2D]δij − γikD|kj = −4πGa2δT

i(gi)
j

(1.46)

where D = Φ−Ψ. The prime denotes a derivative with respect to the conformal time
and H = a′

a
= 1

a
H is the hubble factor in conformal time. This set of equations will

be completed once we state what kind of matter fills the universe. In particular, for
hydrodynamical matter treated as a perfect fluid, the perturbations on the energy-
momentum tensor:

δT
0(gi)
0 = δρ(gi), δT

0(gi)
i = (ρ0 + P0)a

−1δu
(gi)
i , δT

i(gi)
j = −δP 0(gi)δij (1.47)

where δρ, δP and δui are the perturbations on the energy density, the pressure and
the three velocity of the fluid respectively.
The pressure fluctuation can be expressed in terms of δρ and the entropy perturba-
tion δS:

δP = c2sδρ+ ǫδS (1.48)

where:

c2s =
1

3
(1 +

3

4
ρm/ρr)

−1; ǫ = c2sρm/S (1.49)

As we see from (1.48), c2s = ∂P
∂ρ

is the velocity of sound for hydrodynamical matter.

Inserting (1.47) into (1.46) and taking into account (1.48), we can combine the
00 and ij parts of the perturbed field equations to give:

Φ′′ + 3H(1 + c2s)Φ
′ − c2s∇2Φ + [2H′ − (1 + c2s)H2]Φ = 4πGa2ǫδS (1.50)
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(in the absence of anisotropic stress, we have Φ = Ψ). If we consider scales much
larger than the Hubble radius, and pure adiabatic perturbations in which δS = 0,
equation (1.50) can be written as a neat gauge invariant conservation law:

ζ̇ = 0; with ζ =
2

3
(H−1Φ̇ + Φ)/(1 + w) + Φ (1.51)

This last equation is rather significant. Our goal is to track the amplitude of the
perturbations from the time they leave the horizon and become classical until they
become causally connected. If the perturbation on the entropy is negligible, as long
as we know the value of ζ at horizon exit, its value will be know at all times. On
the comoving gauge ζ takes on the physical meaning of a curvature perturbation.
We will be using this variable and will refer to it as R. For future convenience, we
will also define the curvature perturbation on uniform total density slices. In this
gauge the spatial line element is written as:

dl2 = a2(t)(1 − 2ζ)δijdx
idxj (1.52)

with:

ζ = H
δρ

ρ̇
= Hδρ

ρ′
(1.53)

In [24] the authors prove that the curvature perturbation defined on uniform den-
sity spatial hyper-surfaces is conserved on super hubble scales if the non adiabatic
pressure is negligible and as long as the energy-momentum tensor is covariantly
conserved. That is, the conservation of ζ is a direct consequence of the general
coordinate invariance of the gravity theory, and not of the gravity theory itself.
It was shown in [25] that this quantity might not be conserved if more than one
field was present during inflation. We will see in Chapters 2 and 3 how useful this
quantity becomes for inflationary phenomenology.



Chapter 2

Single field inflation

In 1980 Alan Guth was the first to propose a new mechanism that seemed to solve
some of the achings of cosmology at the time [2]. It was based on the idea that
the universe underwent some supercooled phase transition at its very first stages.
This would lead to a huge increase of the entropy of the universe which would solve
the homogeneity and flatness problems However, this model had some unavoidable
drawbacks (as a matter of fact, some of them were outlined on [2]).

Nevertheless the idea of a very early accelerated expansion of the universe ap-
pears quite plausible. Matter in the form of a scalar field would have this effect
on the early universe. Many different models of inflation have been built since
then [29, 30]. Most of them are of phenomenological nature. As pointed out in
the introduction, the energy scale for inflation as well as the nature of the inflaton
field are still unknown to cosmologists and particle physicists therefore, it is via the
phenomenology that we approach the problem of accepting or discarding models.

Now, let us review two serious problems that could not be solved inside the Hot
Big Bang scenario.

The Horizon Problem

From equations (1.8) and (1.25) we can derive:

ΩM(z)(1 + z)−3H(z)2 = const = ΩM,0H0 (2.1)

to estimate the magnitude of the Hubble parameter at time t < t0 during an
epoch of matter domination. Knowing that zrec ≃ 1100 i. e. arec ≃ 1100−1, we can
get a rough estimate of the particle horizon at the time of recombination. From Eq.
(1.17):

x(arec) =

∫ arec

0

da

a2H(a)
(2.2)
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from Eq.(1.16), for flat universes and taking into account that at that epoch the
vacuum energy was negligible, we arrive at:

x(arec) =
c h−1 Mpc

100
√

ΩM,0

∫ arec

0

da√
aeq + a

(2.3)

where c = 299792 km s−1 is the speed of light and aeq ≃ (24000ΩMh
−2)−1 is the

scale factor at the equality of matter and radiation. Solving the previous equation,
we find x(arec) ≃ 200h−1 Mpc.

The angular diameter distance to the last scattering surface is around 26100h−1Mpc
for a flat universe thus, this region subtends an angle of about δθ = x(arec)/DA(arec) ∼
0.8 degree on the sky. And here comes the horizon puzzle: we observe equal tem-
peratures on the cosmic background microwaves that come from everywhere in the
sky. In particular, regions that were not in causal contact during recombination had
the exact same temperature. How come two causally disconnected regions commu-
nicated their temperature to each other?

The Flatness Problem

Using the definition of the density parameter (1.25), and absorbing the cosmological
constant inside the global density (Ω = Ωmatter +ΩΛ, with ΩΛ = Λ

3H2
0
, ), we can write

(1.14) as:

|Ω − 1| =
|K|
a2H2

(2.4)

Knowing evolution of the scale factor during both matter and radiation domi-
nation, and it is easy to see that the product a2H2 decreases with time, and the
density parameter moves away from 1.
In order to satisfy the current observational bounds on Ω, (Ω0 − 1) ∼ 0.02, it must
have been equal to one to very high accuracy at earlier times, eg, at nucleosynthesis
(t ∼ 1s) its value should have been 1 up to a precision of O(10−17)!
Since there is no reason why the density of the universe should be precisely the
critical, the value of Ω at early times implies a clear problem of fine tuning.

When attempting to solve the flatness problem, we magically encounter the
basic idea for inflation. Let us find a way in which the comoving hubble scale, 1/aH
decreases with time:

d

dt
(1/aH) = − ä

ȧ2
therefore,

d

dt
(1/aH) < 0 ⇐⇒ ä > 0 (2.5)
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In order to achieve a decrease in the comoving hubble scale, all we need is acceler-
ated expansion. There still remains the issue of making the value of |Ω−1| so small
that the subsequent increase due to Hot Big Bang expansion is not enough to move
Ω significantly away from 1 at the present epoch. We will deal with this in the next
section.

Assuming no cosmological constant 1 Λ = 0, we see from equation (1.15) that:

P < −1

3
ρ⇐⇒ ä > 0 (2.6)

Inside a GR framework, a negative pressure of the matter is needed in order to
generate an accelerated expansion of the scale factor.

As we will see in the following subsection, energy in the form of a scalar field
does exhibit this odd property as long as a few requirements are fulfilled. This very
simple idea, for which we have to give the credit to Andrei Linde, has become an
incredibly solid milestone for the new cosmology.
It turns out that working under this hypothesis not only solves many of the problems
of the Hot Big Bang, but also enables us to make new predictions. In addition to
gracefully solving these problems, inflation provides a mechanism to generate the
primordial perturbations that later on will give rise to the observed structures.
Current experiments fit the inflationary paradigm quite accurately.

2.1 Scalar Field Dynamics

The requirement P < −ρ/3 is naturally obtained in scalar field theories.

We define φ as an effective scalar field we call inflaton. We assume a lagrangian
density described by:

L =
R

16πG
− 1

2
DµφD

µφ− V (φ) (2.7)

Dµ is the covariant derivative. R is the Ricci scalar of the generic FRW metric
with physical time coordinate. The gravity part of the lagrangian density becomes
negligible after a few e-folds so we can safely ignore this part.

Applying the covariant Euler-Lagrange equations:

Dµ
δL

δ(Dνφ)
− δL
δφ

= 0 (2.8)

1Even if current observations indicate Λ 6= 0 we can safely ignore it during inflation because its
effects only become important at very recent epochs z < 0.5 (see [6]).
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We can compute the scalar field equation:

gµνDµ(∂νφ) = V,φ;

gµνDµ(∂νφ) =
1√−g∂µ(

√
−ggµν∂νφ) =

=
1√−g [−3a2ȧφ̇

√
γ − a3√γφ̈+ ∂i(

√
−ggij∂jφ)];

⇒ φ̈+ 3Hφ̇− 1

a2
D2
γφ = −V,φ (2.9)

where we have used
√−g = a3√γ where γ is the determinant of the spatial part of

the metric, and Dγ stands for the covariant derivative with respect to the spatial
part of the metric.

Knowing that the action generated by the scalar field part of (2.7) is:

S =

∫

dx4
√
−gLφ (2.10)

we can compute the energy momentum tensor by:

Tµν =
−2√−g

δSφ
δgµν

(2.11)

and comparing to (1.6) we get the pressure and energy density of the inflaton field:

ρφ = −T 0
0 =

1

2
φ̇+ V +

1

2a2
(∇φ)2 (2.12)

Pφ =
1

3
T ii =

1

2
φ̇− V +

1

6a2
(∇φ)2 (2.13)

if we neglect the gradient terms and assume a weakly dependence on time (we will
systematically enumerate the requirements imposed on the field), we get:

Pφ ≃ −ρφ ≃ −V (φ) (2.14)

Since the energy density of the scalar field is positive, we have obtained a fluid that
fulfills (2.6).

... Bonus!! Solving the Horizon Problem

We now compute the time evolution of the scale factor, assuming that ρφ is approx-
imately constant during some inflationary epoch ∆t = tend − ti. The Friedmann
equation is (1.14):

H2 +
K

a2
=

8πG

3
ρφ (2.15)
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and has the solutions:

a(t) ·Hφ =







cosh(Hφt) for K = 1
exp(Hφt) for K = 0
sinh(Hφt) for K = −1

(2.16)

with:

Hφ =

√

8πG

3
ρφ

(as expected, for every solution, ä(t) > 0).

All of the solutions behave exponentially after a reasonable amount of time, so
we study the behaviour of the case K = 0: a(t) = a(ti)e

(t−ti)Hφ.

The particle horizon at the end of inflation:

rh(tend) ≃ a0

∫ tend

ti

dt

a(t)
≃ a0

a(ti)Hφ

(2.17)

If rh(tend) is bigger than the distance to the last scattering surface (∼ H−1
0 ), the

horizon problem fades away. Let us see how this is attained:

rh(tend) > H−1
0 ⇐⇒ a(ti)Hφ < a0H0;

ai
aend

<
aendHφ

a0H0
⇐⇒ e∆tHφ >

aendHφ

aeqHeq
· aeqHeq

a0H0

Making the approximation that the universe is completely radiation dominated from
tend to teq and matter dominated from teq to t0, we get:

e∆tHφ > (1 + zeq)
Tend

Teq

= (1 + zeq)
−1/2TPlanck

T0

Tend

TPlanck

(2.18)

With (1 + zeq) ≃ 3600 and the current temperature of the CMBR, we get:

∆tHφ > 70 + ln(
Tend

TPlanck

) (2.19)

The energy at the end of inflation is still unknown. For example, for Tend ∼ 1014GeV
we get the condition that inflation must last for N = ∆tHφ > 60 e-folds.

It is easy to see that N ∼ 60 is also enough to solve the flatness problem. If we
include a 60 e-fold inflationary epoch in (2.4) we get |Ω0 − 1| ∼ O(10−4) .
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2.2 Slow Roll approximation and background equa-

tions

We have just seen how, imposing some constraints on equations (2.12) and (2.13),
two of the main problems of the Hot Big Bang model have vanished2.

The initial cause to all these consequences is (2.14). This condition is achieved
if the potential energy of the homogeneous scalar field dominates over the kinetic
term, φ̇2 < V (φ). And this is possible if the potential is flat enough so that the field
slowly rolls towards the minimum of its potential.

There exists an attractor to the solution of the equations of motion of the field.
Within this attractor, some of the terms of the equations of the dynamics of the
scalar field can be dropped and they simplify to:

H2 =
8πG

3
V (φ) (2.20)

3Hφ̇ = −V ′(φ) (2.21)

where a prime denotes the derivative with respect to the field.
When we work in the vicinity of this solution, we say we are working under the slow
roll approximation (SRA).

If we define the slow roll parameters [8]:

ǫ(φ) =
1

16πG

(
V ′

V

)2

; η(φ) =
1

8πG

V ′′

V
(2.22)

It can be shown that the SRA holds as long as:

ǫ≪ 1; |η| ≪ 1 (2.23)

Under the SRA we can compute the amount of inflation, or the number of e-folds.
In the previous section, we assumed H ∼ const. We drop this assumption now:

N = ln
a(tend)

a(ti)
=

∫ tend

ti

H(t)dt =

∫ φend

φi

V

V ′dφ (2.24)

Eqns. (2.20) and (2.21) where used for the last equality.

2Inflationary expansion also predicts a negligible density of unwanted relics predicted by physics
beyond the standard model such as monopoles or other topological defects
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Now, we shall work under the chaotic inflation [26] framework. One of the
potentials we can use is V (φ) = 1

2
m2φ2. The slow roll parameters are:

ǫ = η =
1

4πG
· 1

φ2
(2.25)

So inflation will carry on until the field rolls down to |φend| & 1/
√

4πG. The
slow roll equations are:

H2 =
4πG

3
m2φ2; 3Hφ̇+m2φ = 0 (2.26)

And the solutions are:

φ(t) = φi −
m√
12πG

t (2.27)

a(t) = ai exp[

√

4πG

3
m(φi −

m√
48πG

t2)] (2.28)

For a general potential, the solution to the background equations is not so
straight forward. It can be ensured that if the potential is such that the SR con-
ditions are fulfilled then inflation will take place. However, bear in mind that the
reverse is not true and even though we will not discuss them in this thesis, there are
models in which one could could have inflation without SR conditions.

2.3 Perturbation equations

Apart from solving the problems we have already described, the inflationary paradigm
gets its strength from a very powerful (and unavoidable) prediction about the for-
mation of structure in the universe. Quantum fluctuations of the inflaton field are
stretched out of the horizon and squeezed to classical perturbations during inflation.
When they reenter the horizon they seed the potential wells in which matter falls
to form the observed structures.
As we will see, the power spectrum predicted by inflation is almost scale invariant.
This means that no scale is preferred among the others. The argument to arrive
at this conclusion goes as follows: the amplitude of the curvature perturbation, ζ
is proportional to the amplitude of the quantum fluctuation of the scalar field δφ.
Its expected value goes as δφk ∼ Hk

2
√

2k3/2 . Apparently, this magnitude is not scale
invariant, however, during inflation the Hubble factor is basically constant and so
are the amplitudes of the different wavelength modes. But we will see this in more
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detail in what follows.

We now consider small deviations from the ideal Friedmann behaviour:

φ = φ0 + δφ =⇒ ρφ = ρ0 + δρ... and so on. (2.29)

we have dropped the 0 subindex for convenience.
Note that using (1.43), we can construct a gauge invariant field perturbation:

δφ(gi) = δφ− φ′(B −E ′) (2.30)

To first order in the perturbations of the metric and the scalar fields, the energy
momentum tensor is:

T µν =

(0)Tµ
ν

︷ ︸︸ ︷

(0)gµαφ0,αφ0,ν − [
1

2
(0)gαβφ0,αφ0,β − V (φ0)] +

(0)gµα2φ0,αδφ0,ν + δgµαφ0,αφ0,ν +

[
1

2
(0)gµα2φ0,αδφ0,β + δgαβφ0,αφ0,β + δφV (φ),φ] =

= (0)T µν + δT µν (2.31)

From this equation, we can read the different components of the perturbation of
the energy-momentum tensor. In physical time:

δρ = φ̇(δφ̇− φ̇A) + δφV,φ (2.32)

δq,i = −φ̇δφ,i = −δT 0
i (2.33)

δP = φ′δφ′ − φ′2A− V,φδφ (2.34)

(to avoid confusion we adopted a new notation for the scalar gravitational potential
perturbation δg00 = −2φ→ −2A).
The quantities (2.32) and (2.33) can be combined to form a gauge invariant quantity,
the comoving density perturbation:

ǫm ≡ δρ− 3Hδq (2.35)

(it is called like that because an observer who measures zero momentum, would
measure ǫm ≡ δρcomoving).

We can now compute the perturbed Einstein equation for a scalar field using
(2.32), (2.33), (2.32) and (1.46). We note that the perturbations on the field do
not generate anisotropic stress, therefore we can use again Ψ = Φ. We will now
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write the equations in conformal time and comoving gauge as that parametrization
becomes more convenient for solving the system:

Φ′′ + 3HΦ′ + (H + 2H2)Φ = 4πG[φ′δφ′ − a2Vφ(φ)δφ] (2.36)

−∇2Φ + 3HΦ′ + (H + 2H2)Φ = −4πG[φ′δφ′ + a2Vφ(φ)δφ] (2.37)

Φ′ + HΦ = 4πGφ′δφ′ (2.38)

δφ′′ + 2Hδφ′ −∇2δφ = 4φ′Φ′ − 2a2Vφ(φ)Φ − a2Vφφ(φ)δφ (2.39)

It will be useful for later discussion to write equation (2.39) in the spatially flat
gauge and physical time:

δ̈φ+ 3H ˙δφ+

(
k2

a2
+ Vφφ

)

δφ

= −2VφA+ φ̇

[

Ȧ+ 3ψ̇ +
k2

a2
(a2Ė − aB)

]

, (2.40)

where we have used A instead of φ for the perturbation We can express these last
equations in a more solvable way by using the variables:

u = −zR; z =
aφ′

H (2.41)

where:

R = ψ − H
φ′ δφ (2.42)

is curvature perturbation defined on comoving surfaces. That way, we arrive at a
very simple equation for the amplitude of the curvature perturbation, u:

u′′ − ∆u− z′′

z
u = 0 (2.43)

which is the same as a harmonic oscillator with a time dependent mass. We discuss
the solutions of this equation in the following section.

2.4 Quantum fluctuations of the inflaton

Equation (2.43) is the equation of motion of a lagrangian density:

L =
1

2
[(u′)2 − (∇u)2 +

z′′

z
u2] (2.44)

which is that of a free theory with a time varying mass: mu = −z′′/z. The problem
of quantizing the fluctuations of the inflaton, and its back-reactions on the metric
adds up to quantizing the variable u.
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We will canonically quantize the field following the usual steps. First we write
it in terms of its Fourier components:

û(η,x) =
1

(2π)3/2

∫

d3k[ukâke
ikx + u∗

k
â†
k
e−ikx] (2.45)

âk and â†
k

are the creation and annihilation operators, which follow the commutation
relations:

[âk, âk′ ] = [â†
k
, â†

k′] = 0; [âk, â
†
k′ ] = δ(3)(k − k′) (2.46)

And the vacuum state of the theory is annihilated by âk:

âk|0〉 = 0

The field equation in Fourier space becomes:

u′′
k

+ (k2 − z′′

z
)u = 0 (2.47)

We can distinguish two wavelength regimes:

uk ∝
{
eikx for k/aH ≫ 1
z for k/aH ≪ 1

(2.48)

The short wavelenght regime, are plane waves, as expected for a harmonic oscillator.
For the long wavelength regime, the amplitude u is proportional to z. By equation
(2.41), we can immediately see that for single field inflation, the amplitude of the
comoving curvature perturbation is conserved at large scales.
For R we have:

R(τ,x) = (2π)−3/2

∫

Rk(τ)e
ik·xd3k, (2.49)

with

Rk(τ) =

[
uk(τ)

z
âk +

u∗k(τ)

z
â†−k

]

. (2.50)

The power spectrum is defined by:

〈0|RkR†
k′ |0〉 =

2π2

k3
PR(k)δ(3)(k − k′). (2.51)

From (2.50) we obtain

PR(k) =
k3

2π2

|uk(τ)|2
z2

(2.52)

The power spectrum for the anisotropies is the function we can observe in the uni-
verse. Thus, in order to compare data with the predictions of the theory, we need
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to solve (2.43) to find uk(τ). And we will do so under the slow roll approximation.

We rewrite the SR parameters (2.22) as a function of the new variables:

ǫ = 4πG
z2

a2
; δ = 1 + ǫ− z′

Hφ′ (2.53)

where δ ≃ η − ǫ. For approximately constant SR parameters (they are constant up
to O(ǫ2)) one can find an expression for the mass term:

z′′

z
=

1

τ 2

(

ν2 − 1

4

)

, where ν =
1 + ǫ− δ

1 − ǫ
+

1

2
(2.54)

Then the solution for (2.43) can be found in terms of H
(1)
ν (z), the Hankel function

of first kind:

uk(τ) =

√
π

2
ei(ν+

1
2
)π/2(−τ)−1/2H(1)

ν (−kτ) (2.55)

(this solution fulfills (2.48) as expected). For the modes well outside the horizon (
(k/aH) ≪ 1):

iH(1)
ν (z) ∼ 1

π
Γ(ν)

(
1

2
z

)−ν
(z → 0) (2.56)

Inserting this into (2.52) we get the power spectrum for single field inflation and
slow roll approximation:

PR(k) =
G

π

H2

ǫ

(
k

aH

)3−2ν

(2.57)

which is usually parametrized in terms of an amplitude As and a tilt ns:

PR(k) = A2
s

(
k

aH

)ns−1

(2.58)

Under the slow-roll approximation:

ns − 1 ≡ d lnP
d lnk

= −6ǫ+ 2η (2.59)

That is, slow roll inflation predicts a scalar tilt ns very close to one. One conservative
analysis including many different data can be found in [17] with a value for the tilt
of:

ns = 0.966+0.025
−0.020 (2.60)

The latest WMAP data release, under a ΛCDM assumption finds [5]:

ns = 0.958 ± 0.016 (2.61)
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Extensions to the standard inflationary model

For single field inflation, we arrive at a simple expression for the predicted power
spectrum for the primordial anisotropies. In the most basic scenario this is an
adiabatic, gaussian and scale invariant power spectrum. And all these features do
agree with observations.

However, there exists the possibility that there exist some deviations from this
standard model. We describe some of them in what follows:

• Running tilt: some models of inflation predict a scale dependent tilt. This is
parametrized by nrun, the running of the spectral tilt, defined by:

nrun =
d lnns

d ln k
= −16ǫη + 24ǫ2 + ξ2 (2.62)

where:

ξ2 ≡ (8πG)−2V
′(d3V/dφ)

V 2

A positive running increases large scale power and a negative running has
the opposite effect. Deviation from scale invariance may arise due to more
complicated potentials for the inflation field. In in [17] they constrain its
value to:

nrun = −0.075+0.047
−0.055

though this result could be strongly model biased, as we discuss on Chapter
5.

• Deviations from gaussianity: These may arise from non linear interactions
during inflation. There are several reasons why this should occur and their
observation in the CMB anisotropies would open a window to new physics
during inflation such as magnetic fields. A small deviation from gaussianity
could be also generated in the curvaton model. The factor fNL generally
measures the non gaussian contribution to the Bardeen potential (1.40):

Φ = Φgauss + fNLΦ2
gauss (2.63)

Single field models predict [27, 28]:

|fNL| = |2ǫ− 2η| . 0.1 (2.64)

Which is lost in the noise from the second-order correction to cosmological
perturbation theory. This bound comes from the observational bound on the
spectral index in the inflaton scenario (2.59).

• Deviations from adiabaticity The whole next chapter is devoted to this exten-
sion of the standard model. As we will see, there may exist some perturbations
in the entropy of the fluid that would eventually seed their own curvature per-
turbations. Current analysis do not rule out the possibility of their existence
but again, they are definitely not needed to explain data.



Chapter 3

Isocurvature perturbations in
inflationary cosmology

In this chapter, we review the general scenario for isocurvature perturbations and
present some of the most important models proposed in literature.

We also present the parametrisation of the amplitudes that will be used all
throughout the thesis, and we study the signature that a particle such as the QCD
axion could imprint in the CMB as an isocurvature signal.

3.1 General remarks

In the previous chapters we have studied the most basic inflationary mechanism.
For single field inflation, the perturbation in the curvature is caused by quantum
oscillations of the inflaton field. Its amplitude is practically constant for super hubble
modes and remains so until the perturbations reenter the horizon. We will see the
phenomenology associated to this in chapter 4.

In a different scenario in which there exists an additional field which is not
necessarily coupled to the inflaton (only gravitationally coupled), the curvature per-
turbation might stop being conserved. Then, the observed anisotropies are not
anymore a direct map of the inflaton primordial power spectrum. Instead, they are
a mixture of curvature and entropy or isocurvature perturbations that may or may
not be correlated with each other.

But what are isocurvature or entropy perturbations? Remember that the cur-
vature perturbations are inhomogeneities in the distribution of the energy density.
These seem to be the dominant cause of structure, but they may not be the only
ones.

In general, if two or more fields are present during inflation, independently of
whether or not all of them take the role of the inflationary field, they may induce
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an additional perturbation mode. These isocurvature, or entropy perturbations are
those for which the energy density is spatially uniform while the ratio of the number
densities of two different species is not conserved throughout space. They are called
isocurvature because they are those present on slices of uniform total energy density,
or zero perturbation on the spatial curvature.

In the standard picture we assume the Universe to contain photons plus cold
dark matter (CDM), the baryons and three species of neutrinos. If all of these
different species are thermalized it will only be necessary to know the temperature
of the universe in order to describe it. Thus, the pressure is practically a unique
function of the energy density and the condition for adiabaticity:

δP

δρ
=
Ṗ

ρ̇
(3.1)

is satisfied. Alternatively, if the species are not thermalized (maybe because one of
the species is the decay product of a field that was always decoupled from the field
giving rise to the rest of the matter) the adiabaticity condition (3.1) migth not be
satisfied and an additional quantity is required in order to completely describe the
evolution of the universe. We call this quantity the entropy perturbation:

Siγ = 3H

(
δρi
ρ̇i

− δργ
ρ̇γ

)

(3.2)

Using (1.53) we get the curvature perturbations on uniform total density hyper-
surfaces for the different species (the perturbations δρ are defined in the comoving
gauge):

ζ = H
δρ

ρ̇
(3.3)

ζm = H
δρm

ρ̇m
=
δρm

3ρm
(3.4)

ζr = H
δργ
ρ̇γ

=
δργ
4ργ

(3.5)

The entropy perturbation can be now written as:

Siγ = 3(ζi − ζγ) (3.6)

The number of new degrees of freedom is the same as the number of species with
Si,γ 6= 0. One can grasp a very naive idea of the physical meaning of isocurvature
or entropy perturbations in figures 3.1.

This inhomogeneity in the composition of the fluid, does not generate a curvature
perturbation, but does indeed induce perturbations in the velocity of the fluid. These
will be ultimately responsible for the inhomogeneities observed. Note that, because
of this, the amplitude of the perturbations is naturally smaller than those generated
adiabatically. We will see the difference in the power spectra on chapter 4.
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Figure 3.1: Artistic photon and neutrino soup. On the left hand side, the background

energy density spatially fluctuates. However, the ratio nγ/nν has a constant value in space.

On the right hand side, we encounter the opposite scenario. Even though the background

energy density is constant,nγ/nν fluctuates throughout space.

The addition of new fields is well justified under the framework of particle physics
beyond the standard model. Particles such as the axion could have an observable
signature in the CMB anisotropies. However, in order to be able to detect isocur-
vature, two main conditions must be fulfilled:

• The two fields and their products must be totally decoupled from each other
during the whole history of the universe. Otherwise, their products would
thermalize and erase all the entropy perturbations [31].

• In some of the isocurvature generating models, the masses of the two fields
must be similar so that both fields have similar contributions to the CMB
anisotropies. There is no a priori reaso why this would happen. In the most
general scenario, fields need not have similar masses.

These two caveats do remark the difficult life of an isocurvature observer, but
the phenomenology hidden under them and the possibility of opening new windows
to new physics, make this subject an interesting field of research.

Depending on the nature of the particles and the perturbations, different isocur-
vature modes arise [32]. The evolution of each fluid is determined by two first order
differential equations, thus with four species present, we could expect eight pertur-
bation modes; one adiabatic and seven isocurvature. However, three of those modes
are pure gauge, and only four isocurvature modes are physical: Baryon, Cold Dark
Matter, and neutrino isocurvature (BI, CDI, NID) are two modes generated by the
spatial variations in the relative number densities of B or CDM with respect to
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photons. A fourth mode, the neutrino velocity mode (NIV), may arise because the
neutrinos do have a relativistic velocity, wich can be compared to that of the fotons.
Therefore, we can measure perturbations also in the relative velocities of neutrinos
and photons.

In order to observe as much as these five modes (one adiabatic and four isocur-
vature) five different fields (or more) must have been present during inflation and
must satisfy the requirements stated above. In principle, thus, it could be possible
to study the constraints on the existence of more than one mode at a time [33].
However, due to the a priori unlikeliness of all the conditions being fulfilled at the
same time, we find it more sensible to try to constrain only one of them at a time.
We stick to this conservative restriction throughout the whole analysis.

3.2 Multiple field models

A very convenient formalism for the study of multiple field models was developed
in [34]. We summarise it now to get their major conclusions and equations. We use
the lagrangian density:

L =
N∑

i=1

1

2
gµνφi,µφi,ν + V (φ1, φ2...φN) (3.7)

The background field equations for each of the fields are:

φ̈i + 3Hφ̇i + V,φi
= 0 (3.8)

where V,φi
= dV/dφi. Depending on the potential the two fields may or may not be

coupled at zero order.
With a perturbed line element such as (1.35) (in which again, we change notation
φ→ A in order to avoid confusion), we compute the perturbed field equation in the
spatially flat gauge (see eq. (2.40)). Now we work with the Fourier components of
the spatial perturbation. For the shake of clarity, will omit the subindex k.

δφ̈i + 3Hδφ̇i +
k2

a2
δφi +

N∑

j

V,φi,φj
δφj =

−2Vφi
A + φ̇i[Ȧ+ 3ψ +

k2

a2
(a2Ė − aB)] (3.9)

It is easy to extend equations (2.32) and (2.33) to the two field formalism, and we
get:

δρ =

N∑

j=1

φ̇j(δφ̇j − φ̇jA) + δφjV,φj
(3.10)

δq,i = −
N∑

j

φ̇ · δφ,i = −δT 0
i (3.11)
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For simplicity, we now restrain ourselves to the case N = 2. The formalism is easily
extensible to more than two scalar fields.

In order to clarify the role of adiabatic and entropy perturbations, [34] defined
two new fields, the adiabatic field σ and the entropy field, s. These fields come
from a different decomposition of the total perturbation in the field space. Instead
of using fields 1 and 2, one projects the perturbation along the field trajectory and
perpendicular to it. For clarity see figure 3.2.

δσ

Background trajectory

Perturbationδφ1

δs

δφ2θ

φ1

φ2

Figure 3.2: An illustration of the decomposition of an arbitrary perturbation into
an adiabatic (δσ) and entropy (δs) component. The angle of the tangent to the
background trajectory is denoted by θ. The usual perturbation decomposition,
along the φ1 and φ2 axes, was shown for the first time in [34].

If perturbations were only along the background trajectory, some particular com-
bination of the two fields φ1 and φ1 would not be distinguishable from a single field
trajectory. The existence of a second field allows for an additional degree of freedom
that needs to be tracked with an additional variable, the entropy perturbation S.
The perturbations on the new fields are the product of a rotation in the field space:

(
δσ
δs

)

=

(
sin θ cos θ
cos θ − sin θ

) (
δφ1

δφ2

)

(3.12)

We now proceed to get all the previous field equations for the δσ and δs fields.
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The perturbed field equations are:

δσ̈ + 3Hδσ̇ +

(
k2

a2
+ Vσσ − θ̇2

)

δσ

= −2VσA + σ̇

[

Ȧ+ 3ψ̇ +
k2

a2
(a2Ė − aB)

]

+ 2(θ̇δs)· − 2
Vσ
σ̇
θ̇δs , (3.13)

and

δ̈s+ 3Hδ̇s+

(
k2

a2
+ Vss − θ̇2

)

δs

= −2
θ̇

σ̇

[

σ̇( ˙δσ − σ̇A) − σ̈δσ
]

, (3.14)

where

Vσσ = (sin2 θ)Vχχ + (sin 2θ)Vφχ + (cos2 θ)Vφφ , (3.15)

Vss = (sin2 θ)Vφφ − (sin 2θ)Vφχ + (cos2 θ)Vχχ . (3.16)

Equation (3.11) becomes:

δq,i = −φ̇1δφ1,i − φ̇2δφ2,i = −σ̇δσ,i (3.17)

Comparing (3.13) and (3.14) to (2.40), one can see that if θ̇ = 0 the equation of
motion for δσ becomes the equation of motion for a scalar field in a perturbed
background whereas the field δs corresponds to a scalar field in an unperturbed
background.

The perturbation in the curvature on comoving hypersufaces (2.42) for two fields
becomes:

R = ψ −H
φ̇1δφ1 + φ̇2δφ2

φ̇2
1 + φ̇2

2

= ψ +
H

σ̇
δσ (3.18)

where the last equality comes from the definition of the adiabatic field. We see then
that the power spectrum of the quantum field σ is the direct responsible for the cur-
vature perturbations, and thus the power spectrum may be calculated analogously
to (2.58).

As a matter of fact, we show here the expression for the power spectra of both
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quantities R, and S and their correlation:

∆2
R(k) ≡ k3

2π2
〈R2

rad〉 =
k3

0

2π2
A2

(
k

k0

)nad−1

,

∆2
S(k) ≡ k3

2π2
〈S2

rad〉 =
k3

0

2π2
B2

(
k

k0

)niso−1

, (3.19)

∆2
RS(k) ≡ k3

2π2
〈RradSrad〉

=
k3

0

2π2
AB cos ∆k0

(
k

k0

)ncor+
1
2
(nad+niso)−1

.

Also, we get different contributions to the spectrum of the cosmic microwave back-
ground. We can compute three different anisotropy power spectra:

Cad
l ≡

∫
dk

k

[
Θad
l (k)

]2
(
k

k0

)nad−1

,

C iso
l ≡

∫
dk

k

[
Θiso
l (k)

]2
(
k

k0

)niso−1

,

Ccor
l ≡

∫
dk

k
Θad
l (k) Θiso

l (k)

(
k

k0

)ncor+
1
2
(nad+niso)−1

(3.20)

Then, the total angular power spectrum reads

Cl = A2Cad
l +B2C iso

l + 2AB cos ∆k0 C
cor
l

which can be conveniently parametrised as [13]:

Cℓ = (A2 +B2)
[

(1 − α)Cad
l + αC iso

l + 2β
√

α(1 − α)Ccor
l

]

(3.21)

where α = B2/(A2 + B2) represents the isocurvature fraction at the pivot scale k0

(typically, k0 = 0.05hMpc−1) and β defines the correlation coefficient at k0, thus
β = cos ∆k0 .

This parametrisation will be used throughout the whole work. We assume dif-
ferent conditions on the values of α and β and the tilts in Eqns. (3.19), but this will
be the basic isocurvature parameter space we will constrain in Chapter 6.

3.2.1 Double Inflation

This is a double field model in which the constraint of a quadratic potential is
imposed for both fields. In particular:

V (φ1, φ2) =
1

2
m2
hφ

2
h +

1

2
m2
l φ

2
l (3.22)



38 Isocurvature perturbations in inflationary cosmology

where mh > ml are the masses of the ligth and heavy field. The model was first
introduced in [35] to explain an apparent lack of power at small scales. This idea
was further developed in [36], but as soon as observations improved and massive
neutrinos were introduced in the analysis, it was realised that there was no need of
any exotic inflationary mechanism to explain them.
However, double inflation is still a simple, rich on phenomenology multiple infla-
tionary model that has been widely studied. Interest on this model raises due to
the fact that double inflation is the most plausible model inside the multiple infla-
tionary models. If more than two fields were present during inflation, it would be
very unlikely that we got to observe the effects of any field other than the two last
to decay. Thus, even if N fields are generically predicted during inflation, only two
of them have relevant observable effects on our universe.
Note though, that an observable isocurvature contribution to the spectrum of fluctu-
ations is not a generic prediction of these models. We will see under which conditions
is isocurvature generated.

Background equations

We will work with the two unperturbed homogeneous scalar fields with masses mh >
ml.
They are only gravitationally coupled, therefore the phenomenological Lagrangian
is:

L =
R

16πG
− 1

2
(φh|µφ

|µ
h +m2

hφ
2
h) −

1

2
(φl|µφ

|µ
l +m2

l φ
2
l ) (3.23)

Using the equations developed in section 1.3 we find:

H2 =
4πG

3
(φ̇2

h + φ̇2
l +m2

hφ
2
h +m2

l φ
2
l ) (3.24)

Ḣ = −4πG(φ̇2
h + φ̇2

l ) (3.25)

And the field equations:

φ̈h + 3Hφ̇h +m2
hφh = 0; φ̈l + 3Hφ̇l +m2

l φl = 0 (3.26)

In order to undergo an inflationary epoch in which |Ḣ| ≪ H2 the following condi-
tions need to be fulfilled:

H ≫ mh (3.27)

φ2
h ≫

1

2πG
; φ2

l ≫
1

2πG
(3.28)

Now we impose the slow-roll regime and equations (3.24) and (3.26) become:

H2 =
4πG

3
(m2

hφ
2
h +m2

l φ
2
l ) (3.29)

3Hφ̇h +m2
hφh = 0; 3Hφ̇l +m2

l φl = 0 (3.30)
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Performing the change of variables, from t, the physical time variable to s =
− ln(a/af ), the number of e-folds to the end of inflation (af is the value of the
scale factor at the end of inflation) we can write:

d2φ2
h

ds2
=
m2
hφ

2
h

m2
l φ

2
l

· d
2φ2

l

ds2
(3.31)

and solve for s:
s = 2πG(φ2

h + φ2
l ) (3.32)

Using the parametrisation:

φ2
h =

s

2πG
sin2 θ; φ2

l =
s

2πG
cos2 θ (3.33)

we can solve for the number of e-folds till the end of inflation as a function of θ:

s(θ) = s0
(sin θ)2/(R2−1)

(cos θ)2R2/(R2−1)
(3.34)

where s0 is half of the number of e-folds left till the end of inflation, when both
scalar fields have the same value (θ = π/4). We have also defined the parameter
R ≡ mh

ml
as it will become useful for the calculations below.

We see that while s(θ) is not strongly dependent on s0, its evolution is mainly
determined by R.
Of fig.3.3 we have plotted the trajectories on the field space for a fixed s0 = 62 value
and different values for the ratio of the masses, and fixed R value and varying s0.
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Figure 3.3: Trajectories on field space from θ = 0 to θ = π
2
.The plot on the left

shows the different trajectories for different values of R. The plot on the right does
so for different values of s0

Substituting (3.33) into (3.29) we find the temporal evolution of the scale factor:
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H2(θ) =
2

3
m2
l s[1 + (R2 − 1) sin2 θ] (3.35)

So with equations (3.33), (3.34) and (3.35) we have the slow roll solution to the
background equations (3.24) and (3.26).

Perturbation Equations

Now we take into account the non-homogeneous component of the fields and compute
its evolution throughout inflation. We assume the fields can be decomposed into its
homogeneous and a small inhomogeneous perturbation:

φh(t,x) = φh(t) + δφh(t,x) (3.36)

φl(t,x) = φl(t) + δφl(t,x) (3.37)

(for convenience, from now on the dependence on the coordinates will be omitted).
The gauge fixing used during this whole section is the longitudinal gauge
(a2Ėl − aBl = 0) even though we will not use the corresponding subindex.
With the perturbed line element:

ds2 = −(1 + 2Φ)dt2 + a2(1 − 2Ψ)δijdx
idxj (3.38)

and (3.36), we can compute the perturbed Einstein and field equations:

Φ = Ψ (3.39)

Φ̇ +HΦ = 4πG(φ̇hδφh + φ̇lδφl) (3.40)

δφ̈i + 3Hδφ̇i + (
k2

a2
+m2

i )δφi = 4φ̇iΦ̇ − 2m2
iφiΦ (3.41)

i = h, l in Eq. (3.41).
We are only interested on the behaviour of perturbations outside the horizon. There-
fore, we only track the evolution of the long wavelength modes taking the limit
k → 0. It is shown in [36] that the solutions are weakly time dependent. Therefore,
we can neglect the terms Φ̇ and ¨δφi. Working under the slow roll assumption the
equations take the form:

HΦ = 4πG(φ̇hδφh + φ̇lδφl) (3.42)

3Hδφ̇i +m2
i δφi = −2m2

iφiΦ (3.43)

The resolution of these equations is a bit involved so we will just write down the
solutions:

Φ = −C1(k)Ḣ

H2
+ C3(k)

2(R2 − 1)m2
hφ

2
hm

2
l φ

2
l

3(R2φ2
h + φ2

l )
(3.44)

δφh

φ̇h
=

C1(k)

H
+ C3(k)

2φ2
lH

R2φ2
h + φ2

l

(3.45)

δφl

φ̇l
=

C1(k)

H
− C3(k)

2R2φ2
hH

R2φ2
h + φ2

l

(3.46)
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Since φ1 and φ2 are independent uncoupled scalar fields and essentially massless
during inflation, we can use the general formalism of Chapter 2, and write, in the
slow-roll approximation,

C1(k) = −κ
2

2

Hk√
2k3

(

φ1 e1(k) + φ2 e2(k)
)

, (3.47)

C3(k) = − 3Hk

2
√

2k3

(
e1(k)

m2
1φ1

− e2(k)

m2
2φ2

)

, (3.48)

where Hk is the rate of expansion when the perturbation of wavenumber

k ≃ kH e
sH−sk , (3.49)

left the horizon during inflation, where the scale of our present horizon is k−1
H =

3000 h−1 Mpc.

We will now assume that the ligth scalar field decays at the end of inflation into
the ordinary particles, giving rise to photons, neutrinos, electrons and baryons, while
the cold dark matter (CDM) arises from the decay of the heavy field. In principle,
part of the CDM could also be produced by the light field or the heavy field could
also decay into ordinary particles, but we will ignore these possibilities here. Then,
the perturbations in the comoving gauge take the form

δ(c)nγ
nγ

=
δ(c)nν
nν

=
δ(c)nB
nB

,

and there is only one isocurvature mode, the CDI mode,

S ≡ δ(c) ln
ncdm

nγ
= δ

(c)
cdm − 3

4
δ(c)
γ ,

all of which are gauge invariant quantities. During the radiation era, the initial
conditions of all these modes are described in terms of only two k-dependent quan-
tities, Φk and Sk. The pure adiabatic initial conditions are given by the gravitational
potential during the radiation era,

Φrad(k) =
2

3
Rrad(k) =

2

3
C1(k) ,

with C1(k) the amplitude of the growing adiabatic mode during inflation. On the
other hand, the isocurvature initial conditions in the radiation era arise from the
perturbations in the heavy field φ1 at the end of inflation. In the long wavelength
limit, the perturbations of this field during reheating follow closely the field itself,
so that its energy density perturbations satisfy, in the comoving gauge,

δρ(c)

ρ
= 2

δφ1

φ1

= −4

3
C3(k)m

2
1
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which is constant during inflation, across reheating and into the radiation era. The
entropy perturbation is dominated by the CDM density perturbation during the
radiation era, Srad ≃ δ

(c)
cdm. Using the values of C1(k) and C3(k) during inflation, we

can finally write:

Rrad(k) = −
√

4πG

k3
Hks

1/2
k

(

sin θk eh(k) + cos θk el(k)
)

Srad(k) =

√

4πG

k3
Hks

−1/2
k

(
eh(k)

sin θk
− R2 el(k)

cos θk

)

(3.50)

where ei(k) are gaussian random fields associated with the quantum fluctuations of
the fields and the subindex k implies the value at horizon crossing. One typically
expects sk ≃ 60 for our present hubble radius.

Inserting (3.50) into (3.19), we find the expression for the adiabatic and isocur-
vature amplitudes in this model. We see that a double inflation model predicts no
scale dependence for the correlation spectrum, or ncor = 0.

In particular, we get:

α =
R4 tan2 θ + 1

s2
k sin2 θ +R4 tan2 θ + 1

, (3.51)

β =
(R2 − 1) sin θ√
R4 tan2 θ + 1

. (3.52)

whose values are plotted in Fig. 3.4 as a function of the angle θ and for sk ≃ 60.
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Figure 3.4: The values of parameters α and β as a function of the angle θ, for
different values of the ratio R = m1/m2 in double inflation.
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For the tilt, we get:

nad = 1 − 2

sk
+

(R2 − 1) tan2 θ

2sk(1 +R2 tan2 θ)2
, (3.53)

niso = 1 − (R2 − 1)(R2 tan4 θ − 1)(1 + tan2 θ)

sk(1 +R2 tan2 θ)2(1 +R4 tan2 θ)
, (3.54)

whose values, for sk = 60, are typically nad = 0.97 and niso in the range [0.97, 0.90]

From Eqns. (3.51) and (3.52), one can get the relationship [14]:

2β
√

α(1 − α) =
2(R2 − 1)

sk
(1 − α) . (3.55)

and easily impose bounds on this double field model, as we show in Chapter 6.

3.3 Curvaton Model

The models revised so far share a common mechanism for the generation of the
primordial curvature perturbation. The quantum fluctuations of the field driving
inflation, the inflaton, are converted to classical gaussian perturbations with an
almost flat spectrum. The power spectrum of the observed anisotropies constrains
the models by corresponding to a particular shape of the potential of the field.
It was noted in refs. [37, 38, 39] that the primordial curvature perturbation may
have a completely different origin, namely, the quantum fluctuations of a light field
other than the inflaton. This field is called the curvaton and its energy density is
subdominant during inflation. After inflation ends the energy density of the curvaton
field becomes dominant and the isocurvature perturbations convert to adiabatic even
on super-horizon scales, through a mechanism studied in [37]. Then, the curvaton
field decays and the product particles inherit the spectrum of anisotropies. The
model does not generically predict isocurvature perturbations. As we shall see, the
existence of isocurvature modes depends, on the nature of the curvaton field as well
as the time of decay and its decay products. If entropy perturbations do exist, they
must be totally correlated to the adiabatic ones because both are sourced by the
same field. We see how the curvaton field perturbations are transferred to matter
and radiation perturbations as the number of e-folds grows in figure 3.5 [40]. The
precise evolution of these curves is strongly dependent on the initial densities of the
components as well as on the decay rate of the curvaton field to the other species.
Getting a particular value for any of the perturbations at a particular time requires
strong fine tunning of the initial conditions.

The curvaton model suggests a rather different inflationary scenario, therefore
we not only describe the mechanisms that give rise to isocurvature perturbations,
but also we must summarise the curvature perturbation generation.
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Figure 3.5: The evolution of the density perturbations on uniform-curvature hy-
persurfaces δσ,δγ and δm against the number of e-foldings. The initial value of the
curvaton energy density is Ωσ,rm = 10−4.6 [40].

In a very simple scenario, the two fields coexist uncoupled:

L =
1

2
φ,µφ

,µ + V (φ) +
1

2
σ,µσ

,µ + V (σ) (3.56)

where φ is the inflaton field and σ is the curvaton. The properties and behaviour of
φ are those described in Chapter 2, and the only requirement imposed is that the
curvature perturbation generated by it is negligible compared to the one generated
by the curvaton. In order to achieve this, the scale of inflation needs to be low
enough, in particular [39]:

|V (φ)|1/4 ≤ 10−2−Ḣ
H2

MP

where MP =
√

8πG = 2 · 1018Gev. This allows a maximum scale for inflation of
V 1/4 < 2 × 1015Gev which would imply negligible gravity waves generation. The
observation of gravity waves in the CMBR anisotropies would automatically rule
out the curvaton model.

The curvaton field

The curvaton field lives in an unperturbed FRW spacetime (its energy density is so
low that the back-reactions on the metric are negligible) and its lagrangian is defined
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in (3.56). We are interested on the Fourier components of its quantum fluctuations,
which follow equation (3.9) on the spatially flat gauge. Assuming we can ignore the
fluctuations of the other field(s) present and taking the long wavelength limit, we
get:

δ̈σk + 3Hδ̇σk + Vσσδσk = 0 (3.57)

If the potential is sufficiently flat (|Vσσ| ≪ H2) the perturbation is gaussian and its
spectrum is given by

Pδσ =
H2

∗
4π2

(3.58)

where the star denotes the epoch of horizon exit k = a∗H∗. Assuming V ≃ 1
2
m2σ2,

the energy density of the curvaton field is:

ρσ =
1

2
m2(σ + δσ)2 =

ρ0
︷ ︸︸ ︷

1

2
m2σ2 +

1

2
m2(2σδσ + (δσ)2)

︸ ︷︷ ︸

δρ

(3.59)

(even if the potential is not quadratic, one can make this approximation after a
few Hubble times). It is shown in [39] that non-gaussianity in the primordial power
spectrum would arise if δσ ≫ σ. Since the observed spectrum is basically gaussian,
we assume δσ ≪ σ and the density contrast δσ is1:

δσ ≡ δρσ
〈ρσ〉

≃ 2
δσ

σ
(3.60)

and its power spectrum is therefore:

P
1
2
δ =

H∗
σ∗π

(3.61)

After inflation ends, the universe is dominated by decay products of the inflaton,
mainly radiation. The Hubble factor starts decreasing until H ∼ |Vσσ| or in the case
of a quadratic potential H ∼ mσ. Then the curvaton field starts oscillating around
its minimum behaving as a cold dust fluid with energy density ρσ ∝ a−3. During
the oscillation both the field equation for σ and Eq. (3.57) continue to be valid, and
the quantity δσ ≡ δσ

σ
remains constant. Since ρrad ∝ a−4, even though the energy

density of the curvaton started being subdominant, it can grow with respect to the
radiation and become the dominant component of the universe.

Generation of the curvature perturbation.

As outlined in the previous paragraphs the curvature perturbation is generated by
the existence of a non adiabatic pressure (δPnad) because of the curvaton field. It is

1It is also shown in [39] that δσ ≪ σ ⇐⇒ H∗ ≪ σ∗
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shown in [24, 25] that the time evolution of the curvature perturbation on uniform
density hypersurfaces is proportional to δPnad:

ζ̇ = − H

ρ+ P
δPnad (3.62)

(ζ is related to the curvature perturbation in the comoving gauge by ζ = −R). As
the curvaton energy density starts becoming comparable to ρrad, δPnad stops being
negligible and ζ starts growing. When the curvaton energy density becomes domi-
nant or it decays (whichever is earlier) the anisotropic pressure becomes zero again
and the curvature perturbation is constant.
The total curvature perturbation at the end of inflation is composed by the contri-
bution of the radiation and the curvaton:

ζ = H
δρ

ρ̇
= H

δρr + δρσ
ρ̇r + ρ̇σ

=
4ρrζr + 3ρσζσ

4ρr + 3ρσ
(3.63)

We imposed the condition that the curvature perturbation generated by the inflaton
field is negligible. It follows that:

ζ =
ρσδσ

4ρr + 3ρσ
(3.64)

If the curvaton dominates the energy density before decay, the final value of ζ :

ζ =
1

3
δ (3.65)

On the opposite case, if ρσ = rρr with r ≪ 1 when it decays then (and assuming
the decay is instantaneous):

ζ =
1

4
rδ (3.66)

On either case, the spectrum of the resulting curvature perturbations is a fraction
of the spectrum of the curvaton field perturbation. Using (3.61):

P
1
2
ζ ≃ rP

1
2
δ = r

H∗
σ∗π

(3.67)

In the next section, we describe the generation of isocurvature perturbations and its
phenomenological signature.

Generation of the isocurvature perturbation

As outlined in the introduction of this chapter, non-thermalized species are needed
in order to have Siγ 6= 0.
Non-thermalization can be achieved by decoupling species from each other. And this
naturally occurs within the Hot Big Bang model due to the cooling of the expanding
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universe. The particular time at which species decouple as well as the time at which
the curvaton decays, determine the chances of existence of an observable isocurvature
contribution.

At the end of inflation, and before the curvaton decays, from (3.2) the entropy
perturbation is:

Sσγ = 3(ζσ − ζγ) (3.68)

In the scenario described above for the curvature perturbations, the isocurvature
perturbation reduces to Sσγ = 3ζσ. As we see now, the way and time in which the
curvaton field decays determines whether or not this isocurvature perturbation is
inherited by the products.
Conceptually simpler, we will now focus on the Cold Dark Matter (CDM) entropy
perturbations. Since all the perturbation previous to curvaton decay is equal to that
on the radiation fluid, we can write:

Scdmγ = 3(ζcdm − ζγ) = 3(ζcdm − ζ) (3.69)

We define CMD creation as the time from which the number density of CDM matter
particles starts being conserved. We assume that the CDM generating mechanism
does not involve any quantity with an isocurvature perturbation. Therefore, the ini-
tial CDM perturbation must be zero. In the possible scenario that some isocurvature
perturbation was intrinsic to the CDM creation mechanism, it could be completely
unrelated to the curvaton-induced perturbation and thus, their amplitudes are not
related either. Therefore, even in this case, it is safe to assume that Scdm is basically
induced by the curvaton field.
We can differentiate two regimes based on the time when the curvaton field decays
[28].

1. The curvaton field decays before the CDM is created.

After decaying, the products of the field will naturally thermalize along with
the rest of the constituents. In particular, with the field giving rise to CDM.
Therefore the adiabaticity condition will be fulfilled before the CDM is created
and no entropy perturbation will be generated.
This case is observationally indistinguishable from a single field adiabatic
model without gravitational waves, such as hybrid inflation or inverted hy-
brid inflation [12].

2. The curvaton field decays after the CDM is created, but its energy density is
very subdominant. Then, equation (3.69) becomes:

Scdm = −3ζ = 3R (3.70)

The spectrum of the isocurvature perturbation has an amplitude three times
bigger than the adiabatic curvature perturbation. Also, the spectra are totally
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correlated. This corresponds to the amplitudes: α = 32/(1 + 32) = 0.9 and
β = +1 with niso = nad. Such a large correlated perturbation was first ruled
out by [41], which required:

|Scdm

ζ
| < 1.5 at 95% c.l.

(more recent analysis impose an even more stringent bound on this ratio at
two sigma [15]).

3. The curvaton field decays after the CDM is created, but its energy density is
important.

4. The curvaton field decays after the CDM is created, but its energy density is
important but does not dominate.

On the other scenario, the CDM is created when the energy density of the
curvaton field starts becoming dominant. Then, the CDM will inherit a cur-
vature perturbation ζcdm = ζσ. By the definition of the density contrast we
see that ζσ ∝ δσ. We now parametrise (3.66) with:

ζ = qζσ (3.71)

and equation (3.69) becomes:

Scdm = 3

(
1 − q

q

)

ζ (3.72)

The q factor is approximated [40] by:

q(p) ≃ 1 −
(

1 +
0.924

µ
p

)−µ
(3.73)

where p ≡ [Ωσ

√
H

Γγσ
]in. Γγσ is the rate at which the curvaton decays into

radiation. Fitting to a numerical simulation gives µ = 1.24.

We see that requiring a small Ωσ,in implies a big decay rate for the curvaton into
radiation. This is not a priori theoretically motivated, and thus the fine tunning
becomes necessary. This is something not desirable and makes the allowed regime
for the curvaton not very likely.

Caveats in the generation of observable isocurvature perturbations

It is worth a note on the subject of the possible elimination of the non-adiabatic
perturbations, pointed out by S. Weinberg in [31]. As a matter of fact, there are no
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flaws in his analysis, and one should take this as an indication of the rareness of an
eventual isocurvature signal in the observations.

However, every argumentation is based on the assumption that the universe
undergoes a phase in which all of the species present there are in local thermal
equilibrium2. In particular it assumes that after inflation, whatever remnant of
additional fields present (that could give rise to non-adiabatic modes) decays or
annihilates approaching the number density at equilibrium thermally, with a rate of
change:

Y  −K(T )(n− neq(T )) (3.74)

where K is a positive rate and n and neq are the number densities of the extra species
in and out of equilibrium [31]. This way, the original nature of the perturbation in
the number density, gets erased and all the perturbations are adiabatic.

This thermalization process is the one usually undergone by many of the known
species in the universe. However, there are particles beyond the standard model
which may be generated by other mechanisms. In particular the QCD axion, may
not be thermally generated, but by a displacement of the phase from the equilibrium
point when the particle theoretically acquires its mass via non perturbative effects
when the QCD symmetry is broken. In what follows, we concentrate directly on
this specific particle physics model.

As mentioned in Chapter 1, one of the goals of this work, is to serve as a link be-
tween particle physics and cosmology which we believe, will provide mutual support
for future advances in both fields.

The fact that the strong sector of the Standard Model conserves the discrete
symmetries P and CP while the electroweak sector does not, also known as the
strong CP problem, is considered a serious puzzle for modern particle physics [42].
In one of the most elegant solutions to the problem, a new particle arises, the
axion. Its existence at very high energies, even during inflation, would have strong
cosmological implications.

We believe this particular model represents a beautiful example of how con-
straints on the isocurvature fraction, may help discerning among different axionic
scenarios. As we will see, also the CDM energy density measured in the universe
provides a tight bound to the model.

3.4 The Axion as a candidate for CDM.

In 1977 R. D. Peccei and H. Quinn [11] proposed a compelling solution to the
strong CP problem, in which they introduced a new U(1)PQ global symmetry at

2The author clearly states in the article the extent to which his claims are valid. With this
note we wish to remark which are the conditions that must be fulfilled in order to allow for the
generation and subsequent observation of the isocurvature modes.
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high energies. The symmetry is spontaneously broken in the early universe and the
resulting Nambu-Goldstone boson is known as the axion [43]. Non perturbative
effects at the QCD scale give a potential to the axion, whose minimum eliminates
the CP-violating terms, thus agreeing with the observed electric dipole moment of
the neutron [44]. Even though the existence of the axion was postulated soon after
the Peccei-Quinn proposal this particle has never been detected by any direct or
indirect searches, see e.g. [45].

The axion mass and couplings to the rest of the matter are inversely proportional
to the scale, fa, at which the U(1)PQ symmetry is broken [46, 45]. Indeed, the mass
is found to be

ma =

√
z

1 + z

fπmπ

fa
= 6.2µeV

(
1012 GeV

fa

)

, (3.75)

where z = mu/md ≃ 0.56 is the mass ratio of up to down quarks, and mπ, fπ are
respectively the pion mass and decay constant. The generic tree-level coupling to
photons γ and fermions f reads

Lint = gγ
α

π

a(x)

fa
~E · ~B + i gf

mf

fa
a(x) f̄ γ5 f , (3.76)

where ~E and ~B are the electric and magnetic fields, α is the electromagnetic coupling
constant, and for each species gi is a model-dependent coefficient of order one. The
different ways in which the symmetry is accomplished, and then broken, give rise
to different axion models that forecast similar axion properties. Nevertheless, there
exists one remarkable distinction between them, which is the predicted coupling to
electrons; for the “hadronic” models, such as the KSVZ model [47], one has ge = 0,
while the tree-level coupling does not vanish for the non-hadronic DFSZ models [48].
The other couplings are of the same order. For example, gγ = −0.36 in the DFSZ
model, while gγ = 0.97 in the KSVZ model.

In the original axion model a physical meaning was given to the symmetry break-
ing scale by fixing it to the electroweak scale, i.e. fa ∼ 100 GeV, which was soon
ruled out by direct searches (see, for example [42, 45]). In the currently accepted in-
visible axion model, the scale fa is in principle arbitrary, well above the electroweak
scale so that the axion coupling to matter is weak enough to pass undetected, for
the moment. There are at present several experiments searching for the axion in the
laboratory, like ADMX [49] and CAST [50], which have recently reported bounds
on the axion coupling to matter [51].

Since in the small coupling (large fa) limit the axion remains effectively de-
coupled from the rest of the particle species, its fluctuations during inflation could
induce isocurvature perturbations in the CMB anisotropies spectrum which would
in principle be observable today. We will take into account these two facts, together
with a detailed study of the quantum diffusion of the field during inflation, to put
strong constraints on its relic density and its mass today.



3.4 The Axion as a candidate for CDM. 51

The paper is organised as follows: in Section 3.4.1 we review the different pro-
duction mechanisms, focusing on the misalignment angle and the consequences of
the De Sitter stage during inflation; in Section 3.4.2 we study the induced isocur-
vature component. Later on, in Chapter 6, in Section 6.3 we present the additional
constraints bounding the axionic window along with our results and conclusions.

3.4.1 Production mechanisms

As pointed out in the introduction, the Peccei-Quinn global U(1)PQ symmetry is
spontaneously broken by some scalar symmetry breaking field ψ = r/

√
2 eiΘ. The

symmetry breaking potential is

V (ψ) =
λ

4

(

r2 − f 2
a

N2

)2

= VPQ − 1

2
m2
ψr

2 +
λ

4
r4 , (3.77)

where N is the number of degenerate QCD vacua associated with the colour anomaly
of the PQ symmetry and λ is an unknown energy scale.

Spontaneous symmetry breaking (SSB) occurs when the energy density of the
universe falls below VPQ and the field acquires a vacuum expectation value (vev),
r = fa/N . Note, however, that SSB is effective only when the typical fluctuations
on δr are smaller than fa/N . If either T or Hinf are of order fa/N at reheating
or during inflation, thermal or quantum fluctuations (respectively), will modify the
effective potential and restore the PQ symmetry.

Let us focus now on the case where no symmetry restoration occurs, and the
radial part of the field oscillates perturbatively around the value fa/N after the
symmetry is broken (we will come back to the case with symmetry restoration in
later sections). The phase of the field, Θ, moves along the flat direction of the
potential and remains massless. This is the Goldstone boson of the PQ symmetry
breaking associated to a residual global U(1) symmetry of the theory [42, 43]. The
axion is related to the phase of the PQ field by

a(~x) =
fa
N

Θ(~x) . (3.78)

As the universe expands, and its energy decreases to about ΛQCD, the non-perturbative
instanton effects tilt the previously flat potential and the phase symmetry is explic-
itly broken [44]. The new induced potential is

V (a) ≃ m2
a

f 2
a

N2
(1 − cos Θ) (3.79)

which is obviously no longer flat. The axion field acquires a mass about the minimum
of the potential that depends on the temperature in the vicinity of T ∼ ΛQCD

as [52, 53]

ma(T ) ≃ maC

(
ΛQCD

200MeV

) 1
2
(

ΛQCD

T

)4

, (3.80)
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where ma is the zero temperature axion mass (3.75) and C is a model-dependent
factor calculated in Refs. [52, 53] to be of the order of C ≃ 0.018. The field equation
of motion is

ä+ 3Hȧ+ V ′(a) +
1

R2
∇2a = 0 , (3.81)

where V ′(a) = ∂V/∂a, with ∇2 the comoving laplacian, and R is the scale factor
of the universe. If the axion field is initially sufficiently close to the minimum of
the potential when it acquires its mass, then V ′(a) ≃ m2

aa. Otherwise, anharmonic
effects should be taken into account by inserting in (3.81) the actual instanton
contribution to the mass of the axion. In either case, the mass and the potential
term are time-dependent.

Axions are produced in the early Universe by various mechanisms. A priori, any
combination of them could be the one responsible for the present axion abundance.
We will briefly describe here the different scenarios and production mechanisms. For
detailed reviews see Refs. [42, 45].

Thermal production

If the coupling of axions to other species is strong enough (i.e. fa low enough), then
axions may be produced from the plasma in the early universe and it is possible
that an axionic thermal population existed at high energy. If this is the case, a
relic density of thermally generated axions would be present nowadays and could
significantly contribute to the current cold dark matter component of the universe.

The two main processes that dominate the thermal production of axions are
photo- and gluon-production and pion-axion conversion (the axion and the pion
share the same quantum numbers and thus they can oscillate into each other).
Since nucleons and mesons only exist after the quark-hadron transition, the second
mechanism is only possible after T ∼ ΛQCD ≃ 200 MeV. During the thermal equilib-
rium stage, the axion density normalized to the entropy of the universe (Y ≡ na/s)
acquires an equilibrium value Yeq. Since it is assumed that the axion is relativistic
during the epoch of interest, we have

Yeq =
ζ(3)T 3/π2

(2π2/45) g∗,eqT 3
≃ 0.27

g∗,eq
, (3.82)

where g∗,eq is the number of relativistic degrees of freedom at the temperature where
the axions reach their equilibrium distribution. The decoupling of axions from ther-
mal equilibrium is described by the Boltzmann equation [54]:

Y ′ =

(
Γabs

xH

)

(Yeq − Y ) , (3.83)

where x−1 ≡ T/m represents the temperature normalized to a convenient energy
scale m ∼ ΛQCD, H is the Hubble expansion rate, and Γabs is the thermal-averaged
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interaction rate for the process a+ i↔ 1 + 2, see Ref. [55]. Since Γabs/H decreases
and acquires values < 1 for T < ΛQCD, the axions cease to be in thermal equilibrium
with the rest of the species and they freeze out when the rate of the interactions
cannot keep up with the expansion of the universe. More precisely, it is shown in
Ref. [54] that Γabs/H presents a peak at the QCD scale and then decays exponen-
tially. So, it is possible to find the relic abundance of thermal axions by integrating
forward in time from T ≃ 200 MeV till today the solution to (3.83),

Y (x) = Yeq

(

1 − exp
[

−
∫ x

0

Γabs

x′H
dx′

])

. (3.84)

Finally, the relic abundance of axions can be written as

Y∞ =
0.278

g∗,F

(

1 − exp
[

−
( ma

10−4 eV

)2

x
−5/2
qh e−xqh

)])

, (3.85)

which depends on the number of relativistic degrees of freedom at the freeze-out
temperature g∗,F (and not at the equilibrium temperature) and on xqh = m/ΛQCD.
We can thus extract the number density of thermal axions and their contribution
to the matter density of the universe,

Ωth
a h

2 =
ma

130 eV

(
10

g∗,F

)

, (3.86)

with Ωa ≡ ρa/ρc = 8πGρa/3H
2
0 . This result applies only when ma > 10−3 eV:

otherwise, the peak value of Γabs/H at the QCD scale is smaller than one, and the
axions never reach thermal equilibrium. On the other hand, the current WMAP
bound on the cold dark matter density [5]

Ωcdmh
2 = 0.112+0.003

−0.006 ,

together with Eq. (3.86), imposes a bound on the axion mass ma < 14.5 eV. As we
will see in Section 6.3.1, this bound is overseeded by astrophysical data which forbid
a mass range of 0.01 eV < ma < 200 keV for the DFSZ axion [42, 45].

Hadronic axions are not so tightly constrained by astrophysical data because
they do not take part (at tree level) in the processes that cause the anomalous
energy loses in stars such as γ + e− → e− + a or the Primakoff effect [42]. Thus,
a narrow mass window remained open until recently for thermal hadronic axions of
ma ≃ several eV. However, a more detailed look at the freeze out temperature and a
combination of cosmological data from CMB and LSS has allowed Ref. [56] to shut
the window on the axion mass, ma < 1.05 eV, in a model independent way. We will
therefore ignore from now on the thermal axion contribution to cold dark matter.

Axion production via cosmic strings

We already mentioned that the PQ symmetry could be restored at high energy,
e.g. by large quantum fluctuations during inflation, or large thermal fluctuations
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after reheating. After each symmetry restoration phase, the spontaneous symmetry
breaking (SSB) will produce a population of axionic cosmic strings. Let us review
the three cases in which axionic strings are produced after, during or before inflation:

• after inflation: if the scale fa/N is below the reheating temperature of the
universe, the PQ symmetry is restored at reheating. Then, axionic cosmic
strings will be produced when the temperature of the Universe falls below
fa/N . These strings typically decay into axion particles before dominating
the energy density of the universe. The axions produced this way are rel-
ativistic until the QCD transition, where they acquire a mass and become
non-relativistic. Eventually these axions may come to dominate the energy
density after equality, in the form of cold dark matter. Estimates of their
present energy density vary depending on the fraction of axions radiated by
long strings versus string loops. Three groups have studied this issue and
found agreement within an order of magnitude [57, 58, 59],

Ωstr
a h2 ≃ 4∆QCD

(
1µeV

ma

)1.18

(3.87)

where ∆QCD = 3±1 is a “fudge factor” which takes into account all the uncer-
tainties in the QCD phase transition. Similar constraints are found in [60] in
a global string decay model independent way.

• at the end of inflation: the PQ symmetry is restored during inflation whenever
the typical amplitude of quantum fluctuations Hinf/2π exceeds the symmetry
breaking scale fa/N . If the inequality

Hinf

2π
>
fa
N

(3.88)

holds throughout inflation, comic strings will be produced at the very end of
this stage. The mechanism by which cosmic strings are produced at the end
of inflation is very different from that of a thermal phase transition and could
affect the number of infinite strings, and thus the approach to the scaling limit,
with the subsequent estimate of the relic density of axions. If, after all, the
scaling limit is approached, then the present energy density of axion will be
approximately given by Eq. (3.87).

• during inflation: the PQ SSB could occur during inflation, when Hinf/2π falls
below fa. In this case, one expects axionic strings to be diluted during the
remaining inflationary stage, and the relic density will be suppressed by an
additional factor, exp(NSSB), where NSSB is the number of e-folds between
PQ symmetry breaking and the end of inflation. As a consequence, this den-
sity should be negligible today, unless NSSB is fine-tuned to small values by
assuming that fa/N is very close to the Hubble rate at the end of inflation.
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• before inflation: if, for instance, the PQ symmetry is restored at very high
energy and breaks before inflation is turned on e.g. at low scales, the axionic
strings produced in that way, as well as the possible axions into which they
may have decayed, will be diluted by inflation and can be safely neglected.

Note, however, that, apart from axionic strings, there are also axionic domain
walls bounded by axionic strings. In the case that the PQ color anomaly corresponds
to N = 1, the network of domain walls and strings decay away. However, for N > 1,
the domain walls end up dominating the energy density of the universe, contrary
to observations [61]. Solving this problem requires breaking the N degeneracy, by
slightly lowering the energy of one of the N vacua and thus inducing the decay of the
domain walls. However, this possibility seems far fetched from the point of view of
model building, and we will ignore it here. A detailed discussion is given in Ref. [62].
From now on, we will assume that N = 1. We will also assume that the reheating
temperature after inflation is not high enough to restore the PQ symmetry and thus
reproduce the mesh of axionic strings. Thus we are left with only one production
mechanism, misalignment.

Generation via misalignment angle

This production mechanism takes place at very early stages in the universe. When
the PQ symmetry is explicitly broken, the phase of the field Θ may or may not
be at the minimum of its potential. As explained above, a (or Θ) is a massless
field during inflation and thus it fluctuates quantum-mechanically. If the typical
amplitude of quantum fluctuations is large enough, Θ could take different values
in different points of our observable universe after inflation, with a flat probability
distribution in the range [−π, π]; otherwise, it could remain nearly homogeneous.
In both cases, at the time of the QCD transition, the (local or global) value of the
misalignment angle Θ1 can differ from zero, leading to the sudden appearance of a
potential energy term,

ρa =
1

2
ȧ2 +

(~∇a)2

2R2
+

new term
︷ ︸︸ ︷

m2
af

2
a (1 − cos Θ) ,

≃ 1

2
f 2
a

(

Θ̇2 +
(~∇Θ)2

R2
+m2

aΘ
2
)

for small Θ. (3.89)

Actually, the gradient energy can be safely neglected in Eq. (3.89). Indeed, even
in the case in which the axion is maximally inhomogeneous, i.e. when the phase Θ
is equally distributed in the range [−π, π] in our observable universe at the end of
inflation, it is straightforward to show that at any later time the coherence length
(the physical size of the “homogeneity patches” for a) is always of the order of the
Hubble radius. This can be checked e.g. by solving the equation of motion (3.81)
in Fourier space. As a consequence, and recalling that a is defined in the range
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[−πfa, πfa], the typical size of the gradient ~∇a is given by faH . So, the gradient
energy scales as H2 ∝ R−4 during radiation domination, and at the time of the
QCD transition it is at most of the order of (faHQCD)2. A quick estimate gives
HQCD ∼ 10−11eV, while in the following we will always consider values of the axion
mass much larger than this. So, when the axion mass is “switched on”, the gradient
energy is negligible with respect to the potential energy V ∼ (fama)

2.

Since ma(T ) grows suddenly to values much bigger than HQCD, one can also
deduce from Eq. (3.81) that after acquiring its mass the field quickly rolls down
towards the minimum of the potential, since the condition for rolling isma(T ) ≫ 3H .
After a lapse of time that depends on the initial value of the misalignment angle,
Θ1, the field will reach the lowest energy point and start oscillating. For the latest
stages of the oscillation we have ma(T ) ≫ 3H (and also ma(T ) ≃ ma) so that the
expression

ρa =

〈
1

2
f 2
a

(

Θ̇2 +m2
aΘ

2
)〉

=
1

2
f 2
am

2
a

〈
Θ2

1

〉
(
RQCD

R

)3

(3.90)

becomes a good approximation for the spatial average of the axion density over our
observable Universe.

However, for a precise estimate, it is necessary to take into account the time
dependence of the mass when solving Eq. (3.81). In Ref. [63] the evolution equation
is numerically solved for the case ma(T ) ∝ T−p, and it is found that (3.90) is
corrected by a factor fc(p) ≃ 0.44+0.25p, that we will take into account in the final
computation of the energy density. After the QCD transition, the axionic energy
density evolves with time as

ρa
R3

ma(T )
= const. , (3.91)

where R is the scale factor of the universe. While the energy density varies with the
temperature, the number density na = ρa/ma(T ) is conserved in a comoving volume,
which simply reflects axion number conservation. Thus, the current energy density
of axions is related to the number density na,1 at the time t1 where oscillations start
by

ρtoday
a = γ

s0

s1
ma na,1 , (3.92)

where s = (2π2/45)g∗T
3 is the entropy density, g∗ counts the relativistic degrees

of freedom present in the universe at a given temperature, and γ accounts for a
possible entropy release after the axion starts oscillating [64]. Solving for T1 from
the condition ma(T1) ≃ 3H(T1), we find a relic axion density

Ωah
2 ≃ 7.24 g

−5/12
∗,1 〈Θ2

1〉
(

200MeV

ΛQCD

) 3
4
(

1µeV

ma

) 7
6

. (3.93)

If the axion begins oscillating roughly at the time when it acquires a mass, i.e. when
the temperature of the universe is slightly larger than ΛQCD, then g∗,1 = 61.75. In
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Eq. (3.93), the spatial average 〈Θ2
1〉 of the initial misalignment squared angle is not

given by any field theoretical reasoning; but by considerations about the stochastic
behavior of the field during inflation, as explained below.

Quantum diffusion of the axion during inflation

Let us assume that the Peccei-Quinn symmetry was spontaneously broken above the
energy scale of inflation, corresponding to the length scales that we observe in the
CMB today. Thus we need to take into account the effect of the de Sitter quantum
fluctuations [65] that induce a stochastic diffusion of the axion away from the initial
value Θi.

The probability P(Θ, Ne) of finding a certain value Θ at a time given by the
number of e-folds Ne satisfies a Fokker-Planck equation with diffusion coefficient
D = Hinf/(2πfa),

∂P
∂Ne

=
1

2
D2 ∂

2P
∂Θ2

, (3.94)

whose solution is

P(Θ, Ne) =
1√

2πD2Ne

exp

[

−(Θ − Θi)
2

2D2Ne

]

. (3.95)

Thus, as was also pointed out in [66, 67], a given inflationary domain that starts at
a particular initial value Θi will be dispersed, after Ne e-folds of inflation, by

〈(Θ − Θi)
2〉1/2 =

Hinf

2πfa
×

√

Ne . (3.96)

That is, the field will have randomly walked a distance proportional to the square
root of the number of jumps, in this case given by the number of e-folds.

The Fokker-Planck equation provides a good description of the stochastic evo-
lution of the phase at a given point in real space; however, it does not give any
hint on the spatial structure and on the coherence length of the axion field. A
straightforward analysis based on Fourier space reveals that the coherence length
(or “scale of homogeneity”) of any light or massless field during inflation at a given
time is given by the Hubble radius at that time. Since the comoving Hubble ra-
dius 1/(aH) decreases with time during inflation, the stochastic evolution caused
by quantum fluctuations can be seen as a process of fragmentation of an initially
nearly homogeneous domain into several smaller nearly homogeneous patches.

In the present context, this remark is crucial, because it allows to identify the
number of e-folds Ne which is really relevant in equation (3.96). When the scale
corresponding to the observable universe crosses the Hubble length during inflation
(i.e., typically, between 30 and 70 e-folds before the end of inflation), the axion field
is nearly homogeneous over a length comparable to the size of the whole observable



58 Isocurvature perturbations in inflationary cosmology

universe. Therefore, we should start counting the number of jumps starting from
that moment (there might be many e-folds of inflation before that time, but they
are only relevant for comparing the axion field value in our observable universe with
that in other inaccessible, disconnected universes). Let us call this number of e-
folds Nobs, and from now on, let us define Θi as the average value of Θ inside the
observable universe Nobs e-folds before inflation ending.

At the end of inflation, the coherence length of the axion field is smaller than the
size of the observable universe by approximately a factor exp[Nobs]. In other words,
the initial domain of average value Θi has fragmented into many domains of average
value Θ, with a dispersion 〈(Θ − Θi)

2〉1/2 given by equation (3.96) with Ne = Nobs.

Later on, causal diffusion tends to smooth the axion field over the Hubble length.
Since after inflation, the comoving Hubble radius 1/(aH) increases with time, the
number of homogeneity patches inside the observable universe decreases (after reach-
ing its maximum at the end of inflation). In the next section, we will evaluate the
dispersion of the phase Θ at the time of the QCD transition. By that time, fluc-
tuations on scales smaller than the Hubble radius H−1

QCD have been washed out.

Therefore, the relevant dispersion 〈(Θ − Θi)
2〉1/2 is given by the number of jumps

during inflation between Nobs and NQCD, the time of Hubble exit for the comoving
scale kQCD which re-enters the horizon when H = HQCD. The number of e-folds
between Nobs and NQCD is given roughly by

∆N = ln
aQCDHQCD

a0H0
∼ ln

ΛQCD

Λ0
∼ 30. (3.97)

So, the dispersion of the PQ phase at QCD transition and inside the observable
universe is given by

〈(Θ − Θi)
2〉1/2 ∼ Hinf

2πfa
×
√

30 . (3.98)

At this point, we see that two situations can occur. First, if fa ≫ Hinf , the right-
hand-side in equation (3.96) can be much smaller than one at the end of inflation;
then, the axion field is essentially homogeneous, and the background value Θ1 in
our universe is random but unique. Second, if fa ≤ Hinf , the right-hand-side can
be of order one or larger, which means that the Brownian diffusion of the axion
is complete, and the misalignment angle at the QCD scale is randomly distributed
with a flat probability distribution in the range [−π, π]. Note that in this case,
the quantum perturbations of the radial part of the PQ field are also large enough
for restoring the symmetry. In both cases, the mean energy density of the axion is
proportional to

〈Θ2
1〉 =

1

2π

∫ π

−π
α2dα =

π2

3
, (3.99)

where the average should be understood as holding over many realizations of the
universe in the case of a nearly homogeneous Θ1, or over our present Hubble radius
in the case of complete diffusion.
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Up until this point we have ignored the anharmonic corrections that could arise
from the possibly large value of Θ1. The calculations have been made using the
approximation (1 − cos Θ) ≃ 1

2
Θ2, which is obviously not valid for large angles. To

take into account this uncertainty, we will use 〈Θ2
1f(Θ1)〉 instead of the plain rms

value of Θ1. When included, one finds 〈Θ2
1f(Θ1)〉 ≃ 1.2 π2/3.

3.4.2 Isocurvature perturbations from axion fluctuations

If the PQ symmetry is spontaneously broken during inflation, while the scale of
inflation is much higher than that of the quark-hadron transition, the flat direction
associated with the massless Nambu-Goldstone boson will be sensitive to de Sit-
ter quantum fluctuations. Indeed, quantum fluctuations are imprinted into every
massless scalar field present during inflation, with a nearly scale invariant spectrum,

〈|δa(k)|2〉 =

(
Hinf

2π

)2
1

k3/2π2
. (3.100)

If the scale of inflation is high enough, Hinf/2π > fa, it is possible that quan-
tum fluctuations of the radial part of the PQ field restores the symmetry [67]. This
symmetry restoration could have very different implications for cosmological pertur-
bations than a possible thermal symmetry restoration taking place after inflation.
Indeed, the effective mass-squared V ′′(ρ) at the false vacuum ρ = 0 is much smaller
than the Hubble rate, V ′′(ρ) = H2

inf/48π2 ≪ H2
inf . So, the PQ field behaves like a

light complex field during inflation. The symmetry is restored in the sense that an
average over a scale much larger than the coherence length λψ(t) of the field would
give 〈ψ〉 = 0. However, λψ(t) is of the same order as the Hubble radius c/H(t) at a
given time. In comoving space, the coherence length decreases by a huge factor e∆N

during inflation, and the evolution of the field can be seen as a stochastic process
of fragmentation into smaller and smaller homogeneity patches. But at the time
when our observable universe crosses the Hubble scale, the PQ field is still nearly
homogeneous inside our patch. Its quantum fluctuations become frozen beyond the
horizon, and could thus leave a long wave perturbation which would still be de-
scribed by Eq. (3.100). A detailed proof of this highly non-linear process requires
a lattice simulation, whose analysis we leave for a future publication. In this pa-
per, we will conservatively assume that isocurvature perturbations are erased when
Hinf/2π > fa, as has been assumed so far in the rest of the literature [67].

The axion field perturbations δa do not perturb the total energy density, first
because the potential energy is exactly zero, and second because as explained before,
the gradient energy of the axion cannot exceed ∼ (faHinf)

2; for fa ≪ MP this is
much smaller than the total energy density (3/8π)M2

PH
2
inf . Since the total energy

density, and thus the curvature, are unperturbed by these perturbations during
inflation, they are of isocurvature type, and manifest themselves as fluctuations in
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the number density of axions [68, 69, 12, 70, 71],

δ
(na
s

)

6= 0 . (3.101)

In the absence of thermal symmetry restoration after inflation, i.e. if the tem-
perature of the plasma does not reach fa, the axion does not couple significantly
to ordinary matter. Thus the fluctuations imprinted during inflation still do not
change the total curvature/density of the universe on super-Hubble scales during
radiation domination, but they may contribute to the temperature anisotropies of
the CMB [72, 73, 74, 75].

Once the axions acquire a mass, it is in principle possible that their interactions
with other particles could drive them into thermal equilibrium, thus converting
their isocurvature perturbations into curvature or density perturbations. However,
the axion coupling is so tiny that it effectively remains decoupled from the rest of
the plasma throughout the history of the universe, even after acquiring a mass at
the QCD transition. It cannot thermalize and this means that whatever fluctuations
the axion has imprinted from inflation are truly isocurvature [31].

We will study here a scenario in which the observable power spectra of CMB
anisotropypies and large scale structures are given by the sum of two contributions:
an adiabatic mode seeded by the inflaton perturbation, and an isocurvature mode
seeded by the axion perturbations. Since these two fields have independent quan-
tum fluctuations during inflation, the adiabatic and isocurvature modes are totally
uncorrelated.

Let us assume that the Universe contains photons (γ), approximately massless
neutrinos (ν), baryons (b), axions (a), ordinary CDM such as neutralinos (x) and
a cosmological constant. In the following, the subscript cdm will denote the total
cold dark matter component, so that Ωcdm = Ωa + Ωx.

• For the mode seeded by the inflaton, the perturbation evolution starts from the
initial condition (during radiation domination and on super-Hubble modes)
3
4
δγ = 3

4
δν = δb = δx, while δa = 0. The perturbations in the relativistic

components δγ = δν are themselves related to the curvature perturbation R.
Since below the QCD scale the two types of cold dark matter share the same
equation of state, they are equivalent to a single fluid obeying to the initial
condition δcdm = Raδa + (1 − Ra)δx, with Ra ≡ Ωa/Ωcdm. For the mode
under consideration, δa = 0 and δx = δb, so that δcdm = (1 − Ra)δb. This
initial condition is different from the standard adiabatic initial condition in a
model without axions, δcdm = δb. However, this initial condition for δcdm is
irrelevant in practise, because cold dark matter perturbations do not leave a
direct signature in the CMB anisotropies, while the observable matter power
spectrum today is sensitive to the initial value of R but not of δcdm. This
can be explicitly checked by running a Boltzmann code with the standard
adiabatic initial condition replaced by δcdm = (1 − Ra)δb: one finds that for
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fixed curvature spectrum and fixed Ωcdm, the CMB and LSS power spectra do
not depend on Ra. Therefore, the mode seeded by the inflaton is equivalent
to the usual adiabatic mode.

• For the isocurvature mode, the perturbation evolution starts from the initial
condition 3

4
δγ = 3

4
δν = δb = δx ≃ 0 and δa = Sa, where Sa is the gauge

invariant entropy perturbation

Sa =
δ(na/s)

(na/s)
=
δna

na

− 3
δT

T
(3.102)

(indeed, after the QCD transition, the axion fluid is non-relativistic with ρa =
mana, so δa = (δna)/na; furthermore, the fact that δa ≫ δγ implies (δna)/na ≫
4(δT )/T and Sa = (δna)/na = δa). Again, it is equivalent to consider the
perturbations of a single cold dark matter fluid, obeying now to the initial
condition δcdm = Raδa + (1 − Ra)δx = RaSa. If we compare with the initial
condition for a usual “Cold Dark matter Isocurvature” (CDI) model, given by
δcdm = Scdm, we see that the axionic isocurvature solution is equivalent to the
CDI solution with Scdm = RaSa.

In summary, an axionic model with axionic fraction Ra = Ωa/Ωcdm, initial curvature
spectrum 〈R2〉 and initial entropy spectrum 〈S2

a 〉 is strictly equivalent to a mixed
adiabatic+CDI model with the same curvature spectrum and 〈S2

cdm〉 = R2
a〈S2

a 〉.
Let us now relate the curvature and entropy power spectrum to the quantum

fluctuations of the inflaton and axion field during inflation. For the adiabatic mode,
it is well-known that the curvature power spectrum reads

〈|R(k)|2〉 =
2πH2

k

k3M2
P ǫk

(3.103)

where ǫ is the first inflationary slow-roll parameter [8] and the subscript k indicates
that quantities are evaluated during inflation, when k = aH . In first approximation
this spectrum is a power-law with a tilt nad depending also on the second slow-roll
parameter η [8],

nad = 1 − 6ǫk + 2ηk . (3.104)

For the isocurvature mode, using the axion perturbation spectrum of Eq. (3.100),
we obtain

〈|Sa(k)|2〉 =

〈∣
∣
∣
∣

δna

na

∣
∣
∣
∣

2
〉

= 4

〈∣
∣
∣
∣

δa

a

∣
∣
∣
∣

2
〉

=
2H2

k

k3f 2
a 〈Θ2

1〉
. (3.105)

This power spectrum can be approximated by a power-law with a tilt

niso = 1 − 2ǫk , (3.106)

which is related to the tilt nt of tensor perturbations.
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The relative amplitude of isocurvature perturbations at a given pivot scale in
adiabatic+CDI models is often parametrized as [14, 76, 15]

α =
〈|Scdm(k)|2〉

〈|Scdm(k)|2〉 + 〈|R(k)|2〉 . (3.107)

Since the axionic model is equivalent to an adiabatic+CDI model, we can still use
the same parametrization. The parameter α is related to fundamental parameters
by

α =
R2

a〈|Sa(k)|2〉
R2

a〈|Sa(k)|2〉 + 〈|R(k)|2〉 ≃ R2
aM

2
P ǫk

πf 2
a 〈Θ2

1〉
(3.108)

where in the last equality we assumed α≪ 1.

We have finally arrived at an expression directly comparable to data. Eq. (3.108)
will serve on Chapter 6 as our discriminator inside the parameter space spanned by
the scale of inflation and the symmetry breaking scale.

As we mentioned at the beginning of this section, we have shown how a purely
theoretical, particle physics model, gives rise to an observable isocurvature signal
providing us with tools to test the theory, or at least, to put some important con-
straints.

Of course, this applies to the first two isocurvature models presented as examples,
only that these are not so precisely predicted from a particle physics model.

Once we have laid the grounds for the theoretical part, we need to develop the
phenomenological part, i. e. the experiments. It is not straightforward to go from
observations to parameters such as α. We take care of this issue in the following
chapter.



Chapter 4

Cosmological Probes

As has been stated many times before, Cosmology has entered a new era in which
many different observations can validate or falsify the different theories for the his-
tory of the Universe. It is very important to control the extent to which these probes
can help us, their potential and their limitations.

In this chapter, we review the main standardly used cosmological probes and
focus on their implications for cosmology, paying special attention to what can be
learnt from them about the nature of the primordial seeds.

4.1 CMB anisotropies

Up until the universe was about 3 · 105 years old, its energy budget is saturated by
three species: photons, baryons and dark matter. The temperature then, T ∼ 1 −
0.1eV, is high enough to keep a very effective Thomson scattering rate that holds the
photons and the baryons tightly coupled. Due to the very high sound speed (eq.1.49)
in the photon-baryon plasma, perturbations in it propagate efficiently causing the
baryons to vibrate in a harmonic way with a principal mode that has the size of the
sound horizon at that epoch. The dark matter, a fluid with zero equation of state
and no acoustic propagation of the perturbations, absorbs part of the shocks in the
plasma and makes this photon-baryon-dark matter fluid a damped oscillator. Of
course, many subtleties need to be taken into account but this is the main picture
of what was going on during the first stages of the universe.

At the recombination epoch (zrec ∼ 1100) the universe has expanded and cooled
so much that the power of the Thomson scattering is not enough to keep the baryons
and the photons oscillating together. The latter decouple from the rest of the species
and travel freely ever after because the gravitational interaction with the matter is
too weak to modify their trajectories. The baryonic fluid from which the photons
decouple is not homogeneously distributed in space and these footprints are recorded
in the energy distribution of the photons. They permeate the universe now and reach
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us from all directions, containing valuable information about the spatial distribution
of matter at the recombination epoch.

But this is not the only piece of information one can get from the anisotropies
in the CMB radiation. In spaces that are expanding with time, the ratio of physical
distances measured at different epochs, provides us with clues about the expansion
history, the amount of energy contained and its nature.

The location of the peaks in the CMB anisotropies power spectrum is approxi-
mately proportional to the inverse of the angular separation θs ≡ rs

DA(zrec)
[79].

4.1.1 Theory and experiments

The goal of the theory of the CMB anisotropies is to relate the perturbations in
the gravitational potential to the fluctuations in the CMB temperature observed by
satellites or ground based experiments. Cosmologists measure the temperature of the
background radiation in different patches and directions in the sky. It is extremely
homogeneous1, its tiny variations being of order δT

TCMB
∼ 10−6 where δT = T −TCMB

and TCMB = 2.728K. Since the sky is a sphere, this map of temperatures may be
decomposed into the spherical harmonics:

δT (e)

T
≡ Θ(e) =

∑

ℓm

aℓmYℓm(e) (4.1)

where e is the vector on the direction of observation. If the initial conditions are
gaussian, we have:

〈aℓma∗ℓ′m′〉 = Cℓ δℓℓ′δmm′ (4.2)

and all of the off-diagonal terms (l 6= l′; m 6= m′) of the correlation matrix vanish
because of isotropy. We assume gaussian initial conditions all throughout this work,
and in this case, the angular power spectrum of the anisotropies, the Cℓ’s, is enough
to describe the whole sky map. Since their values are uncorrelated to each other for
a given realization they are the quantities generally used for comparing experiments
to theory.

Using equations (4.1) and (4.2), and the theorem of the sum of spherical harmon-
ics, we find an expression for the angular correlation function in the anisotropies. If
α is the angle between directions e and e′, then:

C(α) ≡ 〈δT (e)

T

δT (e′)

T
〉 =

∑

ℓ

Cℓ

(
2ℓ+ 1

4π

)

Pℓ(cosα) (4.3)

is the correlation function for the anisotropies.

1This is once the dipole contribution due to our motion with respect to the galaxy has been
removed.
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Note that each possible value of m corresponds to the different direction of
observation in which lay each patch of the sky from which temperature is being
measured. The total number for each ℓ is (2ℓ+ 1) thus, for a low multipole number
ℓ, very few samples of the sky can be taken and we are left with not enough data to
perform statistics. In particular, for each amplitude [78]:

∆Cℓ =

√

2

(2ℓ+ 1)
(4.4)

This is known as the problem of cosmic variance which limits the accuracy to which
low multipoles may be measured.

The anisotropies observed today must be also a function of the present time η0

and position x0, thus:
Θ(e) → Θ(x0, η0, e) (4.5)

which can be expressed in its Fourier series and in terms of the Legendre polynomials:

Θ(x0, η0, e) =

∫
d3k

(2π)3
eikx0

∑

ℓ

(−i)ℓ(2ℓ+ 1)aℓ(k, η0)Pℓ(k̂ · e) (4.6)

Thus, the power spectrum is:

C(α) =
∑

ℓ

2

π

∫
dk

k
k3〈|aℓ(k, η0)|2〉

2ℓ+ 1

4π
Pℓ(cosα) (4.7)

Comparing this expression to (4.3), we arrive at a relation for the Cℓ’s and the aℓ
coefficients.

Cℓ =
2

π

∫
dk

k
k3〈|aℓ(k, η0)|2〉 (4.8)

Now that we know how experimentalists report their data, we need to relate the
primordial potential that describes initial inhomogeneities according to Eq.(1.50) to
the aℓ coefficients and to the Cℓ’s themselves via Eq.(4.8).

There are many subtleties to this calculations and since it is not our main point
to describe the physics of the CMB anisotropies but rather its implications for
cosmology, we will follow [77] and [8] closely but will use some of the beautiful, hand
waving simplifications presented in [78]. All the illustrations of the anisotropies are
done using the camb fortran code [80].

To study the “primordial soup” present before recombination, we need to bear
in mind that this is a fluid in which many species coexist. Each one of them with
a different equation of state and holding different interactions with the rest. Fortu-
nately, there are a few (not too simple) equations that fully describe the behavior
of each of the fluids. These are the Continuity and Euler equations for the non
relativistic fluids and the Boltzmann equation for the relativistic gases. In the most
general scenario, the non-relativistic species are the cold dark matter (cdm), that
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interacts with the rest of the species only gravitationally, and the baryons (b). As
relativistic species, we count the neutrinos (ν) and the photons (γ).

All of the subsequent equations, are written using the gauge invariant formalism
described on 1.2.1 where the gravitational backreaction of the matter in the metric
is expressed in terms of Φ, the Newtonian potential, and Ψ the intrinsic curvature
perturbation.

Relativistic fluid: photons

Under the gas dynamics formalism, there is one fundamental function that describes
the whole state of a gas, and this is the distribution function f(t, r,p) where r,p are
the position and momentum of the particle respectively. The number of particles,
N, in a given section of the volume in the phase space is:

dN =
1

2π
gif(t, r,p)drdp

where gi is the number of spin states of the particle.

If the fluid is collisionless, and therefore there is no momentum exchange with
other particle species, the Liouville equation or the conservation of the volume in
the phase space applies, and we have:

df

dt
= 0 (4.9)

We can write the Liouville equation in an explicitly covariant form:

δf

δt
+
δf

δxi
dxi

dt
+
δf

δt

dp

dt
= 0 (4.10)

where we have ignored variations in the direction of propagation of the photon, γi

because we assume flat space times for simplicity2. The effects of gravity on equation
(4.10) are taken into account via the geodesic equation computed up to order one
in the perturbations[81].

Assuming thermalization, a not so straight forward calculation [81], probes that,
to zero order, the distribution function f(t, r,p) is, as a matter of fact, that of a
blackbody:

f(r,p) =
1

exp[E/T ] − 1
(4.11)

where E is the energy (E = p) and the slight dependence on the spatial coordinates
comes through T. The perturbation in the photon density, δργ, is directly translated

2In any case, the term generated in the equation is of second order in the perturbations, and it
could be dropped even for non flat spacetimes.
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as a perturbation in the temperature, δργ

δργ
= 4 δT

T
because nγ ∝ T 3.Therefore, the

function f gets a shift:
f(p, T + Θ) = f(p, T ) + δf (4.12)

with Θ ≡ δT
T

. More explicitly:

f(p) =
1

exp[p/T (1 + Θ)] − 1
≃ 1

exp[p/T ] − 1 − Θp
T

exp[p/T ]

≃ 1

exp[p/T ] − 1
+

Θp

T
exp[p/T ]

1

(exp[p/T ] − 1)2
(4.13)

Thus, to first order [8] :

δf = −pΘdf(p)

dp
(4.14)

Using the perturbed geodesic equation, equation (4.10) and the relation (4.14), we
can write the collisionless perturbed liouville equation in terms of Θ [81]:

Θ̇ + γi
δ

δxi
(Θ + Φ) + γ̇i

δ

δγi
Θ + Ψ̇ = 0 (4.15)

Not that in this case, we are studying the perturbations as they where happening
at time η, thus:

Θ → Θ(x, η, e)

If we go to Fourier space, and writing the dependence explicitly:

Θ(x, η, e) =
1

(2π3)

∫

dk3eikxΘk(η, e) (4.16)

We can still decompose each Fourier component into the Legendre polynomials:

Θk(η, e) =
∞∑

ℓ=0

(−i)ℓ(2ℓ+ 1)Θℓ(k, η)Pℓ(µ) (4.17)

where µ is the cosine of the angle formed by the vectors k and e, i. e. µ = k

k
· n.

Also, we drop the explicit temporal dependence.

Pℓ(cos θ) are the Legendre polynomials:

P0(cos θ) = 1

P1(cos θ) = cos θ

P2(cos θ) =
1

4
(1 + 3 cos 2θ)

...

This way, the component Θ0 picks up a constant component, and Θ1 and Θ2 pick
up the linear and quadratic term respectively, also known as the monopole, dipole
and quadrupole.
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With all of the above considerations, Eq. (4.15) becomes, for each of the Fourier
modes:

Θ̇k + ikµ(Θk + Φk) + Ψ̇k = 0 (4.18)

From now on, we work on Fourier space but drop the k in the notation.

Fortunately, Nature is not that simple, and photons and baryons do interact via
Thomson scattering. Then, one must include a collision term, C[f ] in Eq. (4.9) to
get:

df

dt
= C[f ] (4.19)

the Boltzmann equation for the distribution. The particular form of the collision
factor depends on the intervening species and the interactions among them.

It is out of the reach of this thesis to explain in great detail the origin of the
collision term. Under some general assumptions such as the thermalization of the
electronic fluid and working in the non relativistic Thomson limit, i.e. δp

p
≪ 1, we

finally, we arrive at the equation for the evolution of Θ [77]:

Θ̇ + ikµ(Θ + Ψ) = −Ψ̇ + τ̇ [Θ0 − Θ − 1

10
Θ2P2(µ) − iµvb] (4.20)

where we drop once again, the explicit dependence on the k mode and the subindices
denote the coefficient in the Legendre expansion. The factor τ is the optical depth
which is mainly determined by the number of free electrons ne(t) present in the
fluid. During the very early stages, at z ≪ 1100, ne(t) ∼constant but its value falls
abruptly at recombination. Fortunately, we can use approximations that capture the
main effects of this behaviour, but it is important to keep in mind that corrections
to the current antsazts could add up to be important and many efforts are focused
on determining to what extent this could be so. So far cumulative results add up to
∼ 0.3% in xe, the free electron fraction [82].

Even though we have not explicitly mentioned the influence of the polarization in
the fluid, it does matter. Thomson scattering is proportional to the scalar product
of the initial and final polarization vector, therefore polarization must be included in
this analysis. This is reflected in the fact that the dipole and quadrupole do appear
explicitly in equation (4.20)

Now we take care of the other two components of the primordial Universe: the
cold dark matter and the baryons.

Cold Dark Matter

To first order in the perturbations, the conservation of the energy-momentum tensor,
DµT

µ
ν = 0, gives the continuity and Euler equations:

δ̇b = −k(vb − Θ1) +
3

4
δ̇γ (4.21)
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Since they only interact with the rest of the species gravitationally, its effects are
only reflected through the gravitational potentials in the final equations, and never
show up explicitly.

Baryons

In the total matter rest frame, the continuity and Euler equations are:

δ̇b = −k(vb − Θ1) +
3

4
δ̇γ

v̇b = − ȧ
a
vb + kΦ + τ̇(Θ1 − vb)/R (4.22)

Now, we have the three sets of equations that along with the Poisson and the
anisotropic stress equations, describe the dynamics in the early Universe.

The general picture is that of a tightly coupled fluid oscillating on top of a
gravitational potential field. In the tight coupling limit, the Compton scattering
time, τ̇−1, is much smaller than the expansion of the Universe or the gravitational
infall and equations (4.20) through (4.22) can be expanded in powers of it [83, 77].
In this limit, Θℓ = 0 for all the ℓ ≥ 2.

We finally arrive at a single differential equation of second order for the monopole:

Θ̈0 +
ȧ

a

R

1 +R
Θ̇0 + k2c2sΘ0 = F (Φ,Ψ, η) (4.23)

with:

F (Φ,Ψ, η) = −Ψ̈ − ȧ

a

R

1 +R
Ψ̇ − k2

3
Φ (4.24)

an “external force” term that arises from the gravitational potential field [77]. R
is the momentum density ratio R ≡ pb+ρb

pγ+ργ
= 3ρb

4ργ
. The lhs of the equation is a

damped harmonic oscillator with time dependent coefficients - we see that thanks
to the isotropy, the linear nature of the modes, and in the tight coupling limit the
complicated dynamics of a fluid such as our primordial soup, can be described as a
damped oscillator! Isn’t the Universe beautiful?!

Solving (4.23) and initial conditions, is all we need for the simplest prediction
of the CMB anisotropies. Note that since the CDM and the other two species do
not interact thermodynamically, its effects only enter the final equation through the
effect they have on the Bardeen potentials.

In the absence of any anisotropic stress, we have Ψ = Φ, so we will unify the two
potentials. Rearranging (4.23), we arrive at:

(Θ̈0 + Ψ̈) +
ȧ

a

R

1 +R
(Θ̇0 + Ψ̇) + k2c2s(Θ0 + Ψ) = −Ψ(k2c2s +

k2

3
) (4.25)
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The solution to this equation can be derived with the WKB approximation [77]:

[1 +R(η)]1/4Θtc
0 (η) = Θ0(0) cos(krs(η)) +

√
3

k
[Θ̇(0) +

1

4
Ṙ(0)Θ(0)] sin(krs(η))

+

√
3

k

∫ η

0

dη′[1 +R(η′)]3/4 sin[krs(η) − krs(η
′)]F (Ψ, η′)

(4.26)

If we now drop the tight coupling assumption and take into account one more order
in the expansion of powers in τ̇−1, we arrive at a solution where the damping due
to photon diffusion is reflected:

(Θ0(η) + Ψ(η)) = (Θtc
0 (η) + Ψ(η))e−[k/kD(η)]2 (4.27)

where kD(η) is the diffusion scale or the distance a photon can random walk by the
time η.

We should be ready to compute now the Cℓ via Eq.(4.3). Comparing Eq.(4.3)
to Eq.(4.17), it could be thougth that this step is straight forward. However, we
need to take into account that in reality, we are observing the anisotropies that free
streamed towards us from a finite spherical shell of radius D∗ = η0 − η. This makes
the relation not exact.

A plane wave can be decomposed in terms of the Bessel spherical functions jℓ(kx)
and the spherical harmonics:

eikx = 4π

∞∑

ℓ=0

iℓjℓ(kx)

m=−ℓ∑

m=ℓ

Yℓm(Ωx)Y
∗
ℓm(Ωk) (4.28)

where Ωx and Ωk define the directions of the position and momentum vectors re-
spectively. Inserting (4.28) in (4.16):

Θ(x) =
∑

ℓm

Yℓm(Ωx)

∫
d3k

(2π)3
iℓjℓ(kD∗)ΘkY

∗
ℓm(Ωk)

︸ ︷︷ ︸

aℓm(k)

(4.29)

because the radial component of the position vector is indeed D∗. The relationship
to aℓm comes from comparing to Eq. (4.1). Finally, using Eq.(4.2), we arrive at the
expression for the coefficients of the correlation function [78]:

Cℓ =
2

π

∫

dkk2a2
ℓm(k) (4.30)

It must also be noted that other effects apart from the anisotropies due to grav-
itational perturbations should be taken into account.

In order to derive some of the implications for cosmology, and to get a physical
taste of equation 4.25, we follow the simplifications done in [78].
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Figure 4.1: Variation of the equilibrium point of the oscillations with Ωcdm. In
red (solid line) we plot the power spectrum for the values of the parameters in the
currently accepted concordance model.

4.1.2 Implications for cosmology.

We know now that the baryon fraction in the Universe is very low, Ωb ∼ 0.045.
Even though they play a primordial role in the theory of CMB anisotropies, it is an
instructive exercise to study the solutions to the oscillations equation (4.25) when
the fraction of baryons is completely negligible- in this way, we study the main
effects of the rest of the factors in the oscillations.

If there were no baryons in the primordial Universe, R = 0 and (4.25) would be:

(Θ̈0 + Ψ̈) + k2c2s(Θ0 + Ψ) = 0 (4.31)

because for radiation, c2s = 1/3. The equation then, has a very simple solution:

(Θ0 + Ψ)(η) = (Θ0 + Ψ)(η0) cos(kcsη) + (Θ̇0 + Ψ̇)(η0) sin(kcsη) (4.32)

As we see, the initial conditions determine the phase of the solution as well as its
amplitude. It is impossible to separate the contribution coming from the intrinsic
temperature anisotropy from the one coming from the potential field. We see from
Poisson’s equation that the potential field in momentum space is directly propor-
tional to the energy density. So this solution illustrates that the amount of CDM
directly shifts the amplitude of the oscillations. The dark matter acts then as a
spring in a harmonic oscillator. The recovering constant of the spring would be
proportional to the amount of dark matter. We see this in Fig. 4.1. Note that the
Cℓ’s illustrated have been calculated solving the full set of equations and thus the
effect we want to show, although clear, it is not as extreme.

The frequency in the momentum space of the oscillations is csη, i.e. the acoustic
horizon at time η. Since the photons were frozen at recombination, the position of
the peaks in k-space tells us about the size of the acoustic horizon at recombination.
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This characteristic scale which can be computed theoretically [77]:

rs(η) =

∫ η

0

csdη
′ ⇒

rs(arec) =
1

H0

√
ΩM

∫ arec

0

cs
√
aeq + a′

da′ (4.33)

is observed at present with a different size that depends both on the expansion
history of the Universe and the curvature through the angular diameter distance,
DA(z) (eq. (1.18)). The multipole number is inversely proportional to the ratio3:

ℓ ≃ mπ

2

DA

rs
(4.34)

where m depends on the initial conditions and could be m = 1, 3, 5... for (Θ0 +
Ψ)(η0) = 0 or m = 2, 4, 6... for (Θ̇0 + Ψ̇)(η0) = 0.

So we see that from the position of the peaks we can get information about the
geometry of the Universe and the initial conditions for the gravitational potential
and the intrinsic temperature anisotropy.

On figure 4.2 we plot the anisotropies angular spectra for models with different
values for the curvature and the Hubble parameters and see how this shifts the
position of the peaks.

Variations in the hubble parameter imply variations in age of the Universe. In
a younger Universe (higher h) we see things closer thus bigger, and the peaks shift
to the left. The opposite occurs for older Universes, as it is illustrated in the figure.
For models with an open geometry (ΩK > 0, by Eq. (1.26)), the objects appear to
be further away than they are, so we see them smaller. The peaks shift to the right
then. The opposite occurs for open Universes. We see this in the top panel of Fig.
4.2.

Of course, life is not that easy, and one can easily see how the appropriate shift
in the hubble parameter may cancel the effects of a small isocurvature contribution.
This is called degeneracy problem and we will come back to it later during this
thesis. Nevertheless, at this point we must note that this is one of the intrinsic
problems of parameter estimation in cosmology. The effect of the variation of the
cosmological parameters are similar in some cases, and this leads to an increase in
the uncertainties beyond statistical and systematic errors.

Now, we come back to the phase of the oscillations in Eq.(4.34), i. e. to the value
of the integer m. If the rest of the parameters were fixed, we could learn which was
the nature of the primordial conditions for the potentials from the position of the
peaks. If they where isocurvature, i.e. the primordial potentials are not perturbed

3This proportionality is not exact due to the decay of the gravitational potential during the ra-
diation domination epoch. It can be quantified in terms of some shifts which are weakly dependent
on the cosmological parameters, and have been calculated in [79].
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Figure 4.2: Variation of the position of the peaks with ΩK and h .

initially, then (Θ0 + Ψ)(η0) = 0 and the sinusoidal mode is excited initially. If the
velocity perturbations are the ones which are negligible, i.e. they are adiabatic, then
the oscillations are proportional to a cosine oscillation. We show the difference in
the oscillations of the phases in Fig. 4.3 where the shift of π/2 in the phase can be
clearly appreciated.

Note also that for the usual value of the cosmological parameters, the amplitude
of the isocurvature modes is two or three orders of magnitude smaller than the
adiabatic amplitude, as expected from what was explained in chapter 3. This makes
it very easy to “hide” an isocurvature signal inside an adiabatic spectra. This indeed
is one of the main reasons why the isocurvature modes are so difficult to rule out
given the current observations. Also, as it is the case for the parameters ΩK and h,
a small shift in the position of the peaks due to the contribution of an isocurvature
spectrum, could be easily compensated with a variation of h such that its value
remains inside allowed current ranges. We study this effect deeper in the upcoming
sections and show a way to break the degeneracy.

Now, let us go back to a Universe with a small fraction of baryonic matter, i.e.
the equation of the primordial oscillator is (4.25) again. We see that the baryons
act as a mass therm- this makes the compression peaks more pronounced and thus
the first, third, and other odd numbered peaks grow in power.

We illustrate this effect on figure 4.4. Note that the damping caused by the
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Figure 4.3: Variation of the position of the peaks with the initial conditions. We
show adiabatic (red) versus CDI (green) or NID (blue) initial conditions. Note that
the isocurvature spectra have been increased in order to be compared to the others.
Also, the tilt for the isocurvature spectra has been increased to make visualization
easier.

optical depth acts as an exponential envelope for the whole CMB spectrum. Thus
the third peak is naturally damped for every model. Still we can see that the third
peak in the the model containing Ωb = 0.06 is as high as the third peak in the
concordance model, even with the damping. Then, comparing the heights of the
second peaks, one understands our point that only the first and third peaks are
enhanced.

This has been a very brief review of the basic physics taking part in the CMB
spectrum. With it, we just want to give a hand waving physical insight. By no
means this is all we need for our analysis, and in practice, it is necessary to use the
available boltzmann code camb [80]. With it, one computes the theoretical values of
the Cℓ’s and they can be subsequently compared to the observed values. We will see
the statistical machinery used for the computation of the probabilities in chapter 5
and the results obtained are presented in chapter 6.

Now, we carry on studying experiments and describe the basics of the large scale
structure formation in an expanding Universe.

4.2 Large Scale Structure

The perturbations in the metric which seed the anisotropies in the CMB, affect
all the fluids present in the Universe at the primordial epoch. In particular, they
generate perturbations in the energy density of the non-relativistic matter. These
grow via gravitational instability originating ultimately the structures we observe
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Figure 4.4: Variation of the height of the 1st and the 3rd peaks with Ωb.

today: galaxies, clusters and superclusters.

They start off as tiny perturbations that grow linearly inside the expanding
Universe. It is useful to define the density contrast :

δ(x, t) ≡ ρ(x, t) − 〈ρ〉
〈ρ〉 (4.35)

Since ρcdm ∝ T 3 for usual cold dark matter, we have δ(x, tdec) ∝ Θ(x); where Θ
has been defined in Eqn. (4.1). Given the observed values for the temperature
contrast in the CMB, we get that the density contrast at decoupling should be of
order O ∼ 10−5. This allows us to deal with the contrasts as small perturbations in
a homogeneous energy density background.

Perturbation theory, is thus a powerful tool to study the evolution of δ inside a
FRW Universe that undergoes different thermal states (i. e. radiation, matter and,
eventually, cosmological constant domination).

In this section of the thesis, we review the basics of the temporal evolution of
the energy density perturbations and the currently used tools for their study.

For the moment, we neglect the distinction between cold dark matter and baryons,
and assume that all non-relativistic matter only interacts gravitationally with the
radiation fluid.

We will pay attention to the effects of baryons on the growth structure in the
next section of this chapter, where we describe the theory underlying the baryon
acoustic oscillations. For the time being we assume the simplest model of a Universe
filled by photons and cold non relativistic matter.

As we will see, there are no quadratic evolution equations at least while the
evolution is linear. Therefore, the Fourier modes of each perturbation evolve de-
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coupled from each other. It is useful thus to define the Fourier components of the
perturbation, δk:

δ(x) =
1

(2π)3

∫

d3kδke
−ikx ⇒ δk =

∫

d3xδ(x)eikx (4.36)

We have dropped the explicit time dependence. It should also be noted that the
1/(2π)3 normalization for the Fourier transforms is not universal and varies from
author to author.

In order to represent data, astrophysicists use the matter density perturbation
power spectrum. It is defined as:

P (k) ≡ 〈|δk|2〉 (4.37)

where the brackets denote the ensemble average over the whole Universe (ideally, of
course). Using relation (4.36) one can see that the power spectrum is proportional
to the Fourier transform of the two point correlation function, i. e. the probability
of finding two objects separated by a given distance.

The power spectrum of the fluctuations in the potential is defined by the quantity
|uk|2 from Chapter 2. Eqns. (2.58) and (2.59) along with (2.52) imply |uk|2 ∝ k−3.
This fact, together with Poisson equation (shown below), imply that the primordial
power spectrum for the matter density fluctuations is:

P (k) ∝ k4〈|uk|2〉 ∝ k (4.38)

and we recover the Harrison-Zel’dovich scale invariant power spectrum.

As stated above we will study the linear evolution of perturbations. The effects
of the cosmological parameters on the non-linear evolution of structures are not
simple to disentangle. The equations are no longer easily solved and simulations
are needed in order to predict the behaviour of perturbations when δ & 1. Thus,
we generally smooth out density perturbations that occur on scales smaller than
∼ 10− 20kpc. To do this, the power spectrum is convolved with a window function
that varies for different analyses and should be taken into account when comparing
data to theoretical predictions. The effect of the window function and subtraction
of non-linearities from the power spectrum deserves a great deal of literature, and
it is not the goal of this thesis to discuss this matter. Thus, we merely point it out
and refer the reader to [54], for example, and references therein.

We will focus on the linear equations and derivate the overall behaviour of the
power spectrum trying to remark the effects of the cosmological parameters involved
on the evolution of the perturbations.

4.2.1 Theory and experiments

When we work in Fourier space, each mode is characterized by a length scale, λ =
2π/k. When this scale is larger than the causal horizon or the sound horizon,
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pressure cannot compensate for the effects of gravitational collapse. Evolution then
occurs in a different manner from what happens when the perturbations are smaller
than the horizon and usual Newtonian fluid dynamics (inside an expanding Universe)
can be applied.

Let us start with the former kind. Even though we have used them through out
the thesis, we rewrite now all the non-relativistic fluid dynamics equations that we
need; Euler, continuitity and Poisson equations:

D~v

Dt
= −1

ρ
∇p−∇Φ (4.39)

Dρ

Dt
= −ρ∇ · ~v (4.40)

∇2Φ = 4πGρ (4.41)

where, Φ is the Newtonian gravitational potential and ~v is the velocity of the fluid.
D
Dt

is the convective derivative [87]:

D

Dt
=

∂

∂t
+ ~v · ∇ (4.42)

As stated above, we approach the problem of clustering by studying the be-
haviour of small perturbations in the energy density, δρ, which in turn, induce
perturbations on the rest of the relevant quantities: δp, δ~v and δΦ. Replacing
all the quantities by the sum of their background value plus a perturbation (e.g.
ρ→ ρ0 + δρ). To first order, the equations for the perturbations are:

dδ~v

dt
= − 1

ρ0
∇δp−∇δΦ −Hδ~v (4.43)

dδ

dt
= −ρ∇ · δ~v (4.44)

∇2δΦ = 4πGδ (4.45)

where we have used Eqn. (4.35) for the definition of δ and d
dt

= ∂
∂t

+ ~v0 ·∇. When we
change to comoving coordinates (see Eqn.(1.3)) and take into account that pressure
and energy density are related through the speed of sound speed (see Eqn. (1.49))
we arrive at a compact equation for the evolution of the density perturbation:

δ̈ + 2Hδ̇ = 4πGρ0δ − c2s∇2δ (4.46)

Switching to Fourier space we finally arrive at:

δ̈k + 2Hδ̇k = δk[4πGρ0 − c2s
k2

a2
] (4.47)

If we ignore the effects of the expansion of the Universe (i.e. a = 1, ȧ = 0), then
(4.47) is easily solved and has the solution:

δ ∝ exp[±t
√

4πGρ0 − c2sk
2] (4.48)
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From (4.48) we see that there exists a critical scale, λJ , defined by:

λJ = cs

√
π

Gρ0

(4.49)

which separates two evolutionary regimes. If the scale of the perturbation is such
that k < 2π/λJ its dimension is so large that the gravitational infall time is shorter
than the time it takes a soundwave to cover the whole perturbation. Therefore, there
is no pressure response and the gravitational growth is unavoidable and exponential.
On the other hand, for smaller scales, k > 2π/λJ , the balance between attractive
gravitational forces and the repulsion from pressure makes the amplitude of the
perturbation oscillate harmonically without collapsing. The distance λJ is known
as the Jeans length, after Sir James Jeans who first came up with this result during
the first half of the 20th century.

Qualitatively, the effects of a dynamical background are to change the energy
density and thus, the value of the Jeans lenght with time in such a way that the
amplitude of the perturbations may grow or remain constant during different ther-
modynamical epochs.

Evolution of super-horizon modes

The basic assumption for this modes is that we can ignore the effects of spatial
gradients on the perturbations. Therefore we can drop the gradient term in Eqn.
(4.47), and the equation for the evolution of the perturbations becomes:

δ̈ + 2Hδ̇ = 4fπGρ0δ; with f =

{
1 during matter domination
8
3

during radiation domination
(4.50)

where the relativistic corrections included during the radiation dominated era, are
easily derived in [87].

These equations are easily solved under the assumption of a flat Universe. Taking
into account the evolution of the densities with redshift (see relations (1.8)) and the
Friedmann equation (in (1.14) ignoring the cosmological constant). The growing
mode solutions are:

δ ∝ t2/3 ∝ η2 ∝ a during matter domination

δ ∝ t ∝ η2 ∝ a2 during radiation domination (4.51)

Evolution of sub-horizon modes

During the era of matter domination, the evoultion computed above, applies too: the
gradient term may be dropped as well, not because the dimension of the perturbation
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is much bigger than the Hubble radious, but because the pressure for non-relativistic
matter is practically null.

For the evolution of non-relativisitic matter perturbations during radiation dom-
ination, we need to approach the solution in a different way. Even though the evolu-
tion equation is (4.47) where the gradient term may be dropped, the bottom solution
in (4.2.1) does not apply because δ → δm and the background is made of radiation
and matter, thus ρ→ (ρm + ρr).

We can find an analytical solution with the change of variable:

y ≡ ρm

ρrad

=
a

aeq

⇒ dy

dt
= H · y (4.52)

Then, Eqn.(4.47) becomes:

δ′′ +
2 + 3y

2y(1 + y)
δ′ − 3

2y(1 + y)
δ = 0 (4.53)

where the prime denotes a derivative with respect to y. The solution to this equation
is:

δ(y) = (y +
2

3
)δ′i +

3

2
[3

√

1 + y − 2 tanh−1
√

1 + y − 3y tanh−1
√

1 + y]δ′′i

which has a physical meaning and a very simple interpretation of its growing mode
if δ′′i = 0:

δ(y) ∝ y +
2

3
(4.54)

From this solution we see that, the amplitude of a perturbation that enters the
horizon at early times, when ρrad ≫ ρm, is frozen because radiation drives such
a fast expansion that there is no time for gravitational collapse. Later on, when
matter starts being relevant the amplitude δ ∝ a and smoothly matches with the
behaviour derived on the previous section [87].

4.2.2 Implications for cosmology.

Putting together all the solutions derived in the previous sections, we can track the
evolution of the amplitude of the perturbation during the history of the Universe.

As predicted by the inflationary paradigm, fluctuations are stretched out beyond
the horizon, thus, they start off as super-horizon inside a radiation background.
Since the comoving horizon during radiation domination grows as ∝

√
t and the

amplitude of the perturbation goes as δ ∝ a2 ∝ t, perturbations with wavelength
λ < dH(aeq), enter the horizon before the matter starts to dominate the background
energy density. From (4.54) we see that these perturbations are frozen as soon as
they cross the horizon. The supression with respect to the modes that were too big
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to cross the horizon before the equality epoch is f = (aentry/aeq)
2 ∝ 1/k2. We show

this evolution schematically on the left pannel of Fig. 4.5.

On the right panel, we show the qualitative behaviour of the power spectrum.
We know from inflation that (4.38) must hold for large scales, and that is what we
observe to the left of the “knee” of the power spectrum. On the other hand, P (k) is
related to the amplitude of the perturbations through (4.37), therefore, the factor
f previously defined, implies that the supression in power must be ∝ k−4 and thus,
P (k) ∝ k−3 on the right side of the “knee”.

As one may imagine by now, the wavenumber at which the behaviour of the power
spectrum changes, is related to the acoustic horizon at matter-radiation equation,
ds(aeq) by [85]:

kknee = 1/dH(aeq) = (2ΩMH
2
0aeq)

1
2 (4.55)

where the second equality comes from the definition of Hubble distance in chapter
1. Inserting zeq ≃ 2.5 · 104ΩMh

2 and using conventional values for the cosmological
values, one gets kknee ∼ 0.007hMpc−1, as we observe on the righ pannel of Fig.4.5
in a power spectrum that has been calculated using the camb code [80].

With this, we show how the shape, and more specifically the position of the bend
in the power spectrum, constrains at least two very important cosmological param-
eters: ΩM and h and that is assuming flatness and practically massless neutrinos.
These are indeed conservative assumptions, nevertheless it is necessary and worth
stating them explicitely.

The specific impact on isocurvature data, stems on the fact that LSS probe scales
larger than the maximum probed by CMB experiments. As we saw above, a isocur-
vature contribution may not show in the CMB observations if the tilt is high enough.
But this means that the isocurvature spectrum will have a high power on smaller
scales. This could imply a strong difficulty on the model to fit the LSS data. We
will see how CMB plus LSS experiments constrained several possible isocurvature
models on forthcoming chapters.

4.3 Baryon Acoustic Oscillations

In the previous section we intentionally neglected the effect of baryons in the power
spectrum of the matter density fluctuations for two main reasons: 1) baryons sup-
press power in small and intermediate scales through the Silk damping effect [84, 85].
This is an interesting physical effect but for models with ωcdm >> ωB it is of lim-
ited importance because baryons can fall into the potential wells generated by the
DM that has not been Silk damped since much before recombination [87]. 2) The
acoustic wiggles or Baryonic Acoustic Oscillations (BAO) have only been detected
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Figure 4.5: (Left) Schematic illustration of a wavelength scale that enters de horizon
at aentry, during the radiation domination era, freezes out to start growing later, when
the matter energy density dominates the Universe. (Right) Matter power spectrum
for a ΛCDM Universe. We can see how perturbations with wavelength smaller than
dH(aeq) (k > keq ) are supressed with respect to the rest of the spectrum. Due to
non linearities, the supressed part of the spectrum is not exactly proportional to k−3

but this example server us to illustrate the lack of growth on small scales. In figure
4.6 we show the best fit theoretical spectrum to the experimental points, however,
we save this plot for the following section because baryons are indeed visible and
necessary to explain the whole observed spectrum.

very recently. Phenomenology previous to 2005 was subject to a precision too low to
observe them. Thus a treatment that did not take into account the baryonic effects
used to be enough for analysing galaxy surveys data.

Fortunately the picture regarding point 2) has changed since BAO were detected
in the Luminous Red Galaxies (LRG) two point correlation function in 2005 [88].
Also, forecasts about the future precision for their detection [89] predict high quality
and a sharp detection of the peak in the correlation function that may translate into
a definition of up to the third peak in the power spectrum. As well as the peak in
the correlation function, shown in Fig. 4.7, we also show the whole power spectrum,
as a sample of “real data” we work with on figure 4.6 These are the points, taken
from reference [86].

The reason why this piece of information had been hiding for so long after they
were predicted is because in order to observe any features in the correlation function
one needs to probe distances comparable to the correlation distance. As we will see,
this distance is of the order of ∼ 100h−1Mpc which represented a challenge for
observers both in the volume that needed to be probed as well as the kind of objects
that were to trace the density. One needs to distinguish clearly evolution from the
distance effects.

In this section we review the effects of baryons in the transfer function and study
the phenomenology associated to the correlation function or the power spectrum,
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Figure 4.6: This figure, extracted directly from [86] represents the datapoints for
the power spectrum observed in by the SDSS telescope collaboration, released in
2006. As we mentioned above, the baryonic wiggles can be clearly seen. In order to
explain the current observations, one needs to include indeed, the effects of baryons.

its Fourier transform.

4.3.1 Theory and experiments

On the first section of this chapter we saw that primordial cosmological perturba-
tions excite sound waves in the coupled photon-baryon plasma of the early Universe
with a principal harmonic which is the size of the acoustic horizon at the time of
recombination (Eq. (4.33)).

This length scale is imprinted on the photons last scattered by the baryons,
right before recombination and we can infer its value by studying the temperature
distribution of the photons of the CMB, as explained above. However, since the
waves were propagated in the baryon-photon plasma and the baryons stop oscillating
after recombination, the acoustic waves should also be observable in the baryonic
distribution in the Universe. Indeed the BAO have been detected for the first time
in the power spectrum of the Luminous Red Galaxies distribution from SDSS DR4
[90]. Thanks to technological advances they will soon be as accessible to us as the
anisotropies in the CMB.

Because we know the nature of the BAO, we can predict their characteristic
length theoretically. Posterior comparison to observation, provides us with an addi-
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Figure 4.7: (Left ) This figure has been directly extracted from [88] and shows
the experimental points in the correlation function of the SDSS-LRG sample. It
is plotted along three theoretical predictions corresponding to ΩMh

2 = 0.12 (top,
green), 0.13 (red), and 0.14 (bottom with peak, blue), all with ωB = 0.024 and
n = 0.98. The magenta line shows a pure CDM model (ΩMh

2 = 0.105), which
lacks the acoustic peak (see [88] for a detailed explanation). (Right) This figure has
been directly extracted from [91] and illustrates how the BAO measurement helps
breaking the degeneracy in the ΩM−h plane present in any CMB-only analysis (See
[91] and text for details).

tional measurement of the sound horizon ’standard ruler’ 4 at a redshifts other than
z ∼ 1100.

Inserting cs ≃ 0.9c/
√

3, for a Universe with a baryon density ΩBh
2 = 0.02,

arec = 1
1100

, aeq = (23900ΩMh
2)−1 and ΩM = 0.27 into Eq.(4.33), we find this

scale is of the order of rs(arec) ∼ 100h−1Mpc. It was expected to find a peak in
the correlation function of luminous matter at this scale, a prediction which was
confirmed in [88], as shown in Fig. 4.7.

Sometimes and depending on the methodology, it is more convenient to work with
the power spectrum instead of the correlation function. These two approaches are
exactly equivalent with the smearing in the correlation function due to non-linearities
or other uncertainties being equivalent to a failure to detect higher and higher order

4Let us remind Eq. (1.18) in which we can see how the ratio of the physical size of a given
scale to its angular size observed at a different epoch is a measurement of cosmological contents
and expansion history.
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peaks (typical experiments predict a detection of 3 to 5 peaks, depending on the
redshift and volume of the survey). One advantage of the use of the power spectrum
is the fact that errors are, at least theoretically, uncorrelated for different k values.

This is the approach chosen by [91] in which SDSS-LRG data analysed along
with the third year of WMAP release [5] finds tighter constrains on ΩM, lowering
its error bars by ∼ 30% of the former value of WMAP alone; as well as on ΩK and,
a very striking decrease on the upper bound for the mass of the neutrinos that goes
from

∑
mν ≤ 1.8 eV at (95%) c. l. to

∑
mν ≤ 1.8 at the same c. l. for WMAP

plus SDSS-LRG dataset. It is not our goal to give an exhaustive description of the
BAO theory or phenomenology (see [85] for a very illuminating discussion and useful
analytical formulae) but to explain its main power in terms of degeneracy breaking.
We will stress the effect on the possible discrimination between purely adiabatic and
isocurvature models.

4.3.2 Implications for cosmology.

Interpreting the observed angular separation of acoustic peaks in the temperature
power spectrum or the galaxy power spectrum requires knowledge of the sound
horizon at last scattering (eq. (4.33)) and of the angular diameter distance to the
last scattering surface or the mean redshift of the galaxy survey. The expression for
the angular diameter distance is:

DA(z) =
1

(1 + z)

∫ z

0

dz′

H(z′)
(4.56)

and, even though the general solution strongly depends on the cosmological pa-
rameters, it can be fitted to relatively simple polynomials under some different
assumptions and different epochs. They are usually a function of a combination of
parameters, rather than of a single one of them, and this leads to important de-
generacies. In the context of flat ΛCDM cosmologies, models with the same Ω0.29

M h
have the same angular separation between the peaks [92]. This degeneracy induces
the familiar ’banana shape’ 2-dimensional likelihood contours in the plane spanned
by these parameters [91]. It can be partially lifted by measuring the value of the
physical matter density, ωm through the peaks height. However, observation of the
baryonic wiggles at a redshifts more recent than 1000 softens the degeneracy more
effectively because its direction of degeneracy in the ΩM−h plane is h ∝ Ω0.36

M which
is relatively orthogonal to the contours determined by CMB only [91].

We will focus now on how a precise measurement of the position of the peaks in
the BAO might help constraining the isocurvature fraction. In particular, we use
the curvaton model to illustrate the effects. This time, we measure the isocurva-
ture contribution with the parameter fiso defined as fiso ≡ B2

A2 = α
1−α following the

notation used in chapter 3. In section 4.1 we have seen how the effects of a small
isocurvature component could be hidden in a shift in the hubble parameter. To
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show this, we plot in figure 4.8 the one-dimensional probability function distribu-
tion that we extract from the third year WMAP data [5] and the SDSS DR4 galaxy
redshift survey [90]. Comparing the distributions for the two models, we see that

 64  66  68  70  72  74  76

H0

Adiabatic
Corr-Curvaton
Anti-Curvaton

Figure 4.8: One dimensional distributions for the Hubble parameter in three different
models: in red (solid) the adiabatic model, in light blue (dot-dashed) the curvaton
assuming total anticorrelation, and in green (dashed) the curvaton assuming total
correlation.

the inclusion of fiso induces a shift in the position of the peaks that is compensated
by a change in H0 which, in turn, induces a shift on the spectral tilt ns. All of these
adaptation of parameters is small enough to still fit the data used without changing
the χ2/DOF sensibly5. It is this feature of the isocurvature models that we would
like to test under the inclusion of new pieces of data from BAO.

In order to show how more accurate BAO measurements would add constraints
to the isocurvature sector, we compute the Cℓ’s and matter power spectrum for the
models described on table 4.1.

Parameter Ad-ΛCDM Isocurvature
ωB 0.022 0.023
ωcdm 0.12 0.11
τ 0.089 0.089
H0 70.6 68.0
As 3.06 3.06
ns 0.967 0.935
fiso − −0.1

Table 4.1: Value of the parameters for the models shown on Fig.s 4.9. We used a
value of fiso outside the 95% c. l. bound to make our point clearer.

5The χ2/DOF for the three models is practically the same. Despite the fact that this is not a
good statistic to compare these three models [93], it serves us as an indicator of the problem we
want to illustrate.
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In Fig. 4.9 we plotted several different power spectra of the two models. On
the top panel, along with the WMAP-III data we see how the Cℓ’s are practically
indistinguishable. Also, because the spectral tilts are properly fitted, the TE and
EE polarization spectra are also the same.

However, we see on the bottom panel how the two models can be discriminated
by the position of the peaks in the matter transfer function at redshift 0. We
used the prescription given in [91] to plot the baryonic wiggles. The real matter
transfer function is normalized to the “non-wiggle” one computed from the analytical
formulae given in [85].

The difference in the position of the peaks is was expected because, as pointed
out in [91], the degeneracy directions are orthogonal.

This degeneracy rupture would occur for two adiabatic models that fulfilled
only one of the proportionality rules described at the beginning of this section, and
the fact that isocurvature is introduced neither strengthens nor weakens the effect.
Indeed, the amount of isocurvature does not affect the evolution of the perturbations.
It is only relevant as a part of the primordial setting of inhomogeneities.

But the rupture does help selecting the value of H0 and this would in turn select
a more precise value of fiso. In Fig. 4.10 we show the 2-dimensional likelihood
distribution of fiso −H0 marginalized over the other parameters.

It is clear the correlation existing between the isocurvature fraction and the value
of the Hubble factor today 6, and we will show how the decrease on the Hubble
factor error bars shrinks the volume of the allowed parameter space. We quantify
the performance of three different projected surveys in the following section.

4.4 Error bars forecast

We use the universal fitting formulae described in [89] to determine the accuracy
with which different planned surveys will measure the acoustic wiggles. In particular,
we study the following surveys: ADEPT [94] and WFMOS [95] where redshifts are
measured spectroscopically7

6In order to make this plot, we have analysed together both the totally correlated and anti-
correlated sampling. However the MC Markov chains were computed independently from each
other, obeying theoretical priors on the possible curvaton models.

7We use the following values for the survey parameters. For ADEPT:1 < z < 2; Area: 28000
sq degrees; Number of galaxies: 108 galaxies; Volume=100.573 (h/Gpc)−3; Growth Factor: D(z =
1.5) = 0.50. For WFMOS-1 we use: 0.5 < z < 1.3; Area:2000 sq deg; Number of galaxies: 2.1 · 106

galaxies; Number density: n̄ = 5 · 10−4 (h/Mpc)3; Volume=3.912 (h/Gpc)−3; Growth Factor:
D(z = 0.9) = 0.64- and for the second version: 2.3 < z < 3.3; Area:300 sq deg; Number of
galaxies: 5.5 · 105 galaxies; Number density: n̄ = 4 · 10−4 (h/Mpc)3; Volume=1.226 (h/Gpc)−3;
Growth Factor: D(z = 2.8) = 0.34
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Figure 4.9: Different power spectra for the models described on Table 4.1. In the
bottom panel, the amplitude of the isocurvature spectrum has been increased by
3.5% to show more clearly the shifts on the peaks.
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Figure 4.10: Degeneracy on the H-fiso plane for both the correlated and anti-
correlated case.

Following [89], we compute the accuracy that will achieved for the measurements
of the correlation distance on the radial and tangential directions at a redshift z:

x = x0

√

V0

V

√
σr
σr,0

(

1 +
neff

n

D(z0)
2

b20D(z)2

)

fnl(z) (4.57)

where:

fnl(z) =
(zm
z

)γ

z < zm

= 1 z > zm

accounts for the fact that nonlinearities start smearing the acoustic peak when
z goes below a redshift zm. In [89] they find the values of (x0, n0, b,γ, zm) by
fitting the accuracies with which the acoustic scale was recovered from different
realizations created from an underlying linear power spectrum. The values they
found are reported on table 1. of [89].

The rest of the parameters are: V , the volume of the survey, n the number
density of galaxies in units of (h/Gpc)−3, b0 is a sort of bias parameter all of them
dependent on the survey and the underlying cosmology. D(z) is the growth factor
calculated following [97]. σr is the redshift error applicable only for photometric
surveys. The maximum redshift used for their simulations was zmax = 3.4 so we are
confident that the formulae are valid for the range of redshifts we are studying.

We follow the recipe for calculating the accuracies for the measurements of H(z),
the hubble factor at redshift z and DA(z) the angular diameter distance. We use a
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flat ΛCDM fiducial model with ΩΛ = 0.7. We find the following prediction for the
error bars:

SURVEY TANGENTIAL RADIAL
(Error in DA) (Error in H(z))

ADEPT-z̄ = 1.2 0.26 0.45
ADEPT-z̄ = 1.5 0.31 0.54
ADEPT-z̄ = 1.75 0.28 0.48
WFMOS 1 -z̄ = 0.9 1.75 3.03
WFMOS 2 -z̄ = 2.8 9.03 15.72

For the best fit value of the parameters, found for the three different models
described above, we find the theoretical values for the angular diameter distance
written in table 4.2. We also write the percentage difference of the theoretical value
from the fiducial adiabatic model. We see that we would be able to distinguish the
two models we would be able to rule out the isocurvature models with more than a
3 sigma confidence level with the ADEPT survey.

Adiabatic Curvaton-Corr Curvaton-Anticorr
Redshift DA(z) DA(z) DA(z)
z= 1.2 1710.5 1686.4 (∼ 2%) 1735.3 (∼ 2%)
z=1.27 1744.1 1719.5 (∼ 1%) 1769.3 (∼ 2%)
z= 2.8 1919.8 1597.0 (∼ 20%) 1643.2 (∼ 16%)

Table 4.2: Angular diameter distances (in Mpc) and Hubble factors for the adia-
batic (Hbest = 70kms−1Mpc−1), curvaton correlated (Hbest = 71kms−1Mpc−1) and
curvaton anticorrelated (Hbest = 69kms−1Mpc−1).

Those are good news indeed, however the ADEPT survey has not even been
aproved yet and we cannot hope to get such a good precision in less than 10 years.

On the other hand, the other, less ambitious, WFMOS proyect, would be on the
verge of distinguishing between the iso and adiabatic models. Again, this is still an
unborn proyect, but it is indeed more economic and somehow more plausible in the
near future.

So far, we will not be making use of this piece of data. This section is indeed
work in progress, carried out in collaboration with L. Verde and will be published
when finished. Nevertheless, it is important to show how this piece of data can
imply more tightly constrained errors and should also open (or close) new windows
for cosmology.
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4.5 Supernovae Type Ia

Supernovae explosions are relatively frequent events in the Universe (the Hubble
telescope detects and follows about 10-15 SNae per year at z ∼ 1 [98]). In partic-
ular, in a type IA kind, a white dwarf star, coming from a light weigh binary star
progenitor, accretes matter from its companion until it reaches the critical mass su-
perseeding the Chandrasekar limit and a thermonuclear explosion is triggered. This
is such a violent event that all previous information about the original star, except
maybe for the mass which is very similar in all the cases, is erased and the pattern
shown is basically identical in all the cases. The light curves of this kind of super-
novae are easily recognizable because they do not show any hydrogen lines in their
spectra, but have a broad Si-II absorption line at about 400 nm. Their intrinsic
luminosity can be worked out and thus, they are excellent “standard candles” in our
Universe and definitely useful to study the expansion history and the energy budget
of the Universe.

4.5.1 Theoretical grounds

The observed flux or the number of photons that reach the detector from an event
with intrinsic luminosity L and located at a distance dL is:

F =
L

4πd2
L

(4.58)

where dL is just the luminosity distance defined in eq. (1.19).

As mentioned above, the intrinsic luminosity is well known for a supernovae
therefore, once observed is easy to derive their luminosity distance. More precisely,
one derives the extinction-corrected distance modulus:

µ0 = 5 log dL + 25

with [dL] =Mpc [6]. The plot of the supernovae events in the µ0 − z plane describes
a curve that depends greatly on the expansion history of the Universe. As we know
it can be characterized by many different models, and this kind of assumptions do
affect the inferred values of the parameters.

A relatively empirical information extraction can be made through the the de-
celeration parameter, q(z):

q(z) = − ä
a

1

H(z)
(4.59)

In [6] they perform a two parameter expansion of q(z) in terms of its current value
and its derivative measured today:

q(z) = q0 + zdq/dz|z=0 (4.60)
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and they get the 1, 2 and 3 sigma contours shown in the left panel of Fig. 4.11.

For parameter estimation, we compute the value of dL numerically at the redshift
of the corresponding supernovae and compare this theoretical value to the observed
one to compute the χ2 of the particular model.

4.5.2 Experiments and implications for cosmology.

There are two main experiments intensively exploited for parameter estimation.
These are the Super Nova Search Team Collaboration, carried out by the Hubble
telescope [6, 98] and the Supernova Legacy Survey (SNLS) [99], taking place at the
CFH Telescope, in Hawaii. All together they add up to about 300 supernovae (which
will add up to about 800 by the end of the SNLS project) measured with different
precisions (gold and silver sets in the Hubble Telescope Collaboration articles) that
constrain the matter and dark energy densities with error bars of the order of ∼ 10%
although the amplitudes of the error bars depend crucially on prior assumptions
about the rest of the parameters. In particular, the SNLS team finds [100]:

ΩM = 0.271 ± 0.022

w = −1.02 ± 0.11

at the 68% confidence limit for a joint analysis of their supernovae data plus the
BAO from [88] (assuming a flat Universe and a constant equation of state for Dark
Energy).

Future surveys, promise to measure about a hundred times more supernovae.
The Supernova Acceleration Probe project (SNAP), an planned satellite experiment,
aims at observing about 2000 supernovae over the full redshift range to z=1.7 in
about three years [101].

The main goal of these projected experiments is to reduce the statistical errors
by adding more and more supernovae both in the low and high redshift regime.
Allegedly, this would allow for an accuracy in the determination of the values of the
constrained parameters of about 1% (again, this value is model dependent).

In Fig.4.11 we show the forecasted errors for the SNAP project as presented on
the group homepage. We see how a reduction in the determination of ΩM and ΩΛ

would shrink the allowed volume inside the space of parameters.

In the first approximation the main power of a supernovae experiment is to break
the degeneracy along the line ΩM +ΩΛ = 1 in the ΩM−ΩΛ plane. Only the precision
of existing supernovae experiments [6] is enough to lift it and select a value for H0

making it unnecessary to apply the “Hubble prior” where H0 had to be set by hand.



92 Cosmological Probes

Figure 4.11: Predicted contour likelihood for the SNAP experiment (grey) compared
to the rest of the constrains in the ΩM − ΩΛ parameter space [101].

More precise experiments will make it possible to study the temporal evolution
of the Hubble factor thus providing us with a test for the variation of dark energy,
the holy grail of cosmology.

In particular, the effect on isocurvature constraints boils down to precisely select-
ing H0 and break the degeneracy in the plane fiso −H0, as we will see on following
chapters.

Systematic uncertainties

It is important to note that, with the precision of planned supernovae surveys, it is
very likely that they become limited by systematics. These errors are inherent to
supernovae measurements, thus, more supernovae will not ease the problem. One
must also account for the systematic biases which will not increase the errorbars of
the inferred values for the parameters, but will shift their values leading us to biased
conclusions. Probably, this second kind are the most dangerous and one should be
very careful about them.

Examples of sources to the systematics are the host galaxy dust extinction, the
flux calibration, gravitational lensing and supernovae evolution [100, 102].

Dust extinction may lead to important dimming in the light of a supernovae.
Naturally, the absorption is not uniform in the wavelength and therefore, this effect
may be eased by measuring the light at two or more different bands.

The flux calibration is a delicate process by which all the filters must be nor-
malized. This is achieved by the use of laboratory ligth sources or known stars. Of
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course, the above the final effect of these sources depends greatly on the specific
design of the survey. Studies such as the one performed in [102] show that they
could be as important as ∼ 10%.

Gravitational lensing effects should be null for a large enough sample of super-
novae. However, for regular sizes of redshift bins of about 50 supernovae per bin,
this effect could shift the results up to 2%.

In [102] the authors study the effects on the final measurements of different
kind of systematics to show that for surveys with specifically designated equipment,
where the irreducible error in the magnitudes can below as δm ≃ 0.02 mag, the
relevant quantities can be bounded with cosmologically significant precision with
errors ranging from 1% to 10%.

4.6 Lyman-α forest absorption spectrum

Quasars or the quasi-stellar objects are the most powerful astronomical sources of
radiation known and are the object of many studies regarding their origin and evolu-
tion. These extremely bright objects are believed to correspond to regions of intense
activity in the center of active galaxies [87].

In its path to our detectors, the light emitted by the quasar ionizes the clouds of
warm (∼ 104 K) neutral hydrogen, generating characteristic absorption lines on its
spectra. Since the main absorber is neutral H, the preferred absorption wavelenght
is that of the energy levels of the hydrogen atom, the Lyman series. In particular,
the Lyman-α line, corresponding to the excitation of the fundamental level to n = 1
shows at a wavelength λα = 121.6 nm. Thus, we should see a lack of light in this
wavelenght in the spectrum of a quasar.

Figure 4.12: Illustration to show how the spectrum of the quasar determines the
position and densities of the absorbers encountered in the way.

However, when the light reaches the absorption systems its wavelenght may have
been redshifted (according to (1.9)), and more so, the further away the absorber is
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from the quasar. We see the lines at wavelengths redshifted from the position of the
absorbers, where they were just λα.

In this way, the absorption spectra of a quasar is a useful tool cosmologists use to
probe the inter galactic medium (IGM), invisible otherwise. We show one of these
spectra on Fig. 4.13 downloaded from the SDSS data product web page. We see
the strong Lyman-α emission at λ ≃ 580 nm which means that the quasar is at
zemmiter ≃ λ

λα
− 1 ≃ 3.8 and the wavelengths and depth of the rest of the absorption

lines at λ < 580 nm determine the position and densities of the hydrogen clouds
encountered by light.

Figure 4.13: Absorption spectrum of a quasar observed by the SDSS telescope,
published on the third release. The quasar is at z=3.81. Also plotted, the continuum
spectra and the relevant absorption lines [90].

Under some appropriate assumptions, it is possible to extract the power spectrum
of the matter probed by the quasar via analytical calculation and hydrodynamical
simulations. The Lyman-α forest complements measurements of the dark matter
power spectrum8 via galaxy catalogues at small scales and it has been used exten-
sively as a probe of the matter power spectrum on comoving scales of (1−40) h−1Mpc
[103, 104, 105, 106].

In what follows, we describe how this is done, and in particular, how it is appli-
cable to the study of isocurvature perturbations in the spectra.

8The opacity fluctuations in the spectra arise from fluctuations in the matter density and trace
the gravitational clustering of the matter distribution in the quasi-linear regime [103].
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The Lyman-α optical depth in velocity space u (km/s) is related to the neutral
hydrogen distribution in real space as (see e.g. Ref. [107]):

τ(u) =
σ0,α c

H(z)

∫ ∞

−∞
dy nHI(y) V

[
u− y − v‖(y), b(y)

]
dy , (4.61)

where σ0,α = 4.45× 10−18 cm2 is the hydrogen Lyα cross-section, y is the real-space
coordinate (in km s−1), V is the standard Voigt profile normalized in real-space,
b = (2kBT/mc

2)1/2 is the velocity dispersion in units of c, nHI is the local density of
neutral hydrogen and v‖ is the peculiar velocity along the line-of-sight. The density
of neutral hydrogen can be obtained by solving the photoionization equilibrium
equation (see e.g. [108]). The neutral hydrogen in the IGM responsible for the
Lyman-α forest absorptions is highly ionized due to the metagalactic ultraviolet
(UV) background radiation produced by stars and QSOs at high redshift. This
optically thin gas in photoionization equilibrium produces a Lyman-α optical depth
of order unity.

The balance between the photoionization heating by the UV background and
adiabatic cooling by the expansion of the Universe drives most of the gas with
δb < 10, which dominates the Lyman-α opacity, onto a power-law density relation
T = T0 (1 + δb)

γ−1, where the parameters T0 and γ depend on the reionization
history and spectral shape of the UV background and δb is the local gas overdensity
(1 + δb = ρb/ρ̄b).

The relevant physical processes can be readily modelled in hydrodynamical sim-
ulations. The physics of a photoionized IGM that traces the dark matter distri-
bution is, however, sufficiently simple that considerable insight can be gained from
analytical modeling of the IGM opacity based on the so called Fluctuating Gunn
Peterson Approximation neglecting the effect of peculiar velocities and the thermal
broadening [109]. The Fluctuating Gunn Peterson Approximation makes use of the
power-law temperature density relation and describes the relation between Lyman-α
opacity and gas density (see [110, 104]) along a given line of sight as follows,

τ(z) ∝ (1 + δb(z))
2 T−0.7(z) = A(z) (1 + δb(z))

β , (4.62)

A(z) = 0.433

(
1 + z

3.5

)6 (
Ωbh

2

0.02

)2 (
T0

6000 K

)−0.7

×
(

h

0.65

)−1 (
H(z)/H0

3.68

)−1 (
ΓHI

1.5 × 10−12 s−1

)−1

,

where β ≡ 2 − 0.7 (γ − 1) in the range 1.6 − 1.8, ΓHI the HI photoionization rate,
H0 = h 100 km/s/Mpc the Hubble parameter at redshift zero. For a quantitative
analysis, however, full hydrodynamical simulations, which properly simulate the
non-linear evolution of the IGM and its thermal state, are needed.

Equations (4.61) and (4.62) show how the observed flux F = exp (−τ) depends
on the underlying local gas density ρb, which in turn is simply related to the dark
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matter density, at least at large scales where the baryonic pressure can be neglected
[111]. Statistical properties of the flux distribution, such as the flux power spectrum,
are thus closely related to the statistical properties of the underlying matter density
field.

The power spectrum of the observed flux in high-resolution Lyman-α forest data
provides meaningful constraints on the dark matter power spectrum on scales of
0.003 s/km < k < 0.03 s/km, roughly corresponding to scales of (1 − 40) h−1Mpc
(somewhat dependent on the cosmological model). At larger scales the errors due
to uncertainties in fitting a continuum (i.e. in removing the long wavelength depen-
dence of the spectrum emitted by each QSO) become very large while at smaller
scales the contribution of metal absorption systems becomes dominant (see e.g.
[112, 113]).

There are different approaches to solve this problem and we now describe the
particular one we used in [15] to asses the use of the Lyman-α flux spectra for
constraining isocurvature parameter.

4.6.1 Lyman-α forest data and Isocurvature parameters

Viel, Haehnelt & Springel [105] (VHS) have used numerical simulation to calibrate
the relation between flux power spectrum and linear dark matter power spectrum
with a method proposed by Croft et al. [104] (C02) and improved by [114] and VHS.
A set of hydrodynamical simulations for a coarse grid of the relevant parameters is
used to find a model that provides a reasonable but not exact fit to the observed flux
power spectrum. Then, it is assumed that the differences between the model and
the observed linear power spectrum depend linearly on the matter power spectrum.

Then, hydrodynamical simulations are used to determine a bias function be-
tween flux and matter power spectrum: PF (k) = b2F (k) P (k), on the range of scales
of interest. In this way the linear matter power spectrum can be recovered with
reasonable computational resources.9 This method has been found to be robust
provided the systematic uncertainties are properly taken into account [105, 114].
Running hydrodynamical simulations for a fine grid of all the relevant parameters
is unfortunately computationally prohibitive (see discussion in [123] on a possible
attempt to overcome this problem).

The isocurvature mode contribution can create distortions in the small-scale
linear matter power spectrum. Of course, this extra freedom was not taken into
account in the definition of the grid of models in VHS. In principle, we should run
simulations for a new grid with extra parameters (α, β, niso, ncor). Alternatively,
we can carry a tentative analysis with the same function bF (k) and the same error
bars as in the pure adiabatic case, and check the validity of our results a posteriori.

9Note that this bias is different from the usual bias between light and matter, and can be
strongly scale-dependent.
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The idea is simply to select a marginally excluded model with the largest possible
deviation from adiabaticity in the matter power spectrum. For this model, we run
a new hydrodynamical simulation and we compare PF (k)/P (k) with the function
b2F (k) used in the analysis. In case of good agreement, the results will be validated.
We expect this agreement to be fairly good on large scales, but deviations should
appear on small scales, because of the different non-linear evolution.

4.6.2 Systematics Errors

There is a number of systematic uncertainties and statistical errors which affect the
inferred power spectrum and an extensive discussion can be found in [104, 114, 105,
123]. VHS estimated the uncertainty of the overall rms fluctuation amplitude of
matter fluctuation to be 14.5 % with a wide range of different factors contributing.

We present here a brief summary. The effective optical depth, τeff = − ln〈F 〉
which is essential for the calibration procedure has to be determined separately
from the absorption spectra. As discussed in VHS, there is a considerable spread
in the measurement of the effective optical depth in the literature. Determinations
from low-resolution low S/N spectra give systematically higher values than high-
resolution high S/N spectra. However, there is little doubt that the lower values
from high-resolution high S/N spectra are appropriate and the range suggested in
VHS leads to a 8% uncertainty in the rms fluctuation amplitude of the matter density
field (see Table 5 in VHS). Other uncertainties are the slope and normalization of
the temperature-density relation of the absorbing gas which is usually parametrised
as T = T0 (1 + δb)

γ−1. T0 and γ together contribute up to 5% to the error of the
inferred fluctuation amplitude. VHS further estimated that uncertainties due to the
C02 method (due to fitting the observed flux power spectrum with a bias function
which is extracted at a slightly different redshift than the observations) contribute
about 5%. They further assigned a 5 % uncertainty to the somewhat uncertain effect
of galactic winds and finally an 8% uncertainty due the numerical simulations (codes
used by different groups give somewhat different results). Summed in quadrature,
all these errors led to the estimate of the overall uncertainty of 14.5% in the rms
fluctuation amplitude of the matter density field.

For our analysis we use the inferred DM power spectrum in the range 0.003 s/km <
k < 0.03 s/km as given in Table 4 of VHS. (Note that, as in [115] we have reduced
the power spectrum values by 7% to mimick a temperature-density relation with
γ = 1.3, the middle of the plausible range for γ [116]).

Unfortunately at smaller scales the systematic errors become prohibitively large
mainly due to the large contribution of metal absorption lines to the flux power
spectrum (see Fig. 3 of Ref. [105]) and due to the much larger sensitivity of the flux
power spectrum to the thermal state of the gas at these scales.
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In this Chapter, we have briefly reviewed the most relevant experiments used
for our analyses. We have done so stressing the phenomenology associated with
cosmological parameters. Maybe, these are the most widely used probes, but by no
means these are all one can rely on.

In particular, no review of cosmological probes would be complete without refer-
ences to the galaxy weak lensing. The light rays coming from distant galaxies gets
lensed by the clumps of matter it encounters in our way to us. This induces a cor-
relation in the ellipticity of the galaxies where one would expect a zero correlation.
The effect is measured in what is called the shear power spectrum [117].

Large optical galaxy surveys measure the shear power spectrum [118] which is
then compared to theory and used to impose bounds mainly on the Dark Energy
equation of state via the growth structure [119]. The great advantage of this probe
is that it is not dependent on the bias between luminous and dark matter since light
gets bended by both equally.

Even though it is a rather new tool, its potential seems very promising and
current projects such as DES [120] or DUNE [121] are concentrating efforts on
measuring the shear power spectrum.

As pointed out by the different sections of this chapter, cosmologists count on a
large number of probes and experiments to compare with theory.

It is important to keep in mind that the final observation is the result of a very
entangled combination of all the cosmological parameters. This leads to degeneracies
in the space of parameters which prevent us from extracting “clean” information
about the cosmological model.

Also, we must stress that systematic errors should be carefully considered as
they may not only lead to imprecise inferences, but also to erroneous ones as they
may bias the results unnoticeably.

Nevertheless, the prospects for the future are very promising with many up-
coming experiments and statistical developments that will ease both of the issues
numbered above.

In the next chapter, we review the statistical tools necessary to accomplish our
goal of determining the cosmological parameters.



Chapter 5

Model selection and Technicalities
of Parameter Determination

The volume of cosmological data is continuously increasing, and has been doing so
for the past 15 years.

Just for a taste of this development, let us mention that in 1992 the COBE
satellite [1] measured the first hints of anisotropies in the CMB. This represented
a huge step towards understanding cosmology which was indeed awarded with the
Physics Nobel Prize in 2006.

Only 11 years after that, the WMAP team [5], using one of the next generation
CMB exploring satellites, measured the same anisotropies with unprecedented pre-
cision in such large scales. This allowed for an actual parameter inference from the
anisotropies in the CMB with a precision of around 10%. Three years later, more
gathered data and a better understanding of the foreground contamination, shrank
the error bars to 50% of their previous value.

Ground based interferometers such as VSA [128] or DASI (the first probe that
measured CMB polarization) [164] or balloon borne experiments such as Boomerang
[165] constrain smaller scale anisotropies with very high precision as well, giving us
an elaborate map of the temperature anisotropies on scales that range from the arc
minute to tens of degrees 1.

This is an example the impressive revolution in cosmological data collection
which, along with measurements in Supernovae of Type Ia or galaxy catalogues,
give us the most detailed picture of the cosmos scientists could have hoped for only
two decades ago.

Nevertheless, this steep increase in the progress of building measuring devices
does not leave us much time to digest and understand data from a statistical point
of view- are we ready for mixing all different pieces of data? How do the systematics

1For the lowest multipoles, ℓ . 40, the precision is always limited by cosmic variance.
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affect our inferences? Which parameters are we ready to constrain? And, which is
the best way to do that?

These very fundamental questions have been addressed by a considerable number
of authors (see, for example [169]) and many advances have been made towards
building a specific language for cosmological statistics. The lack of data or the
fact that an experiment cannot be repeated in any laboratory definitely renders
Cosmology a science worth of that effort.

In this chapter we pay special attention to two of the questions posed above,
namely, the problem of Model Selection and how to constrain the cosmological
parameters.

In section 5.2 we describe the methodology used for parameter estimation, widely
used among cosmologists at present. It constitutes a basic pillar upon which this
research is founded and this thesis would not be complete without it.

In section 5.3 we formally pose the problem of selecting a number of parameters
to be constrained in cosmology and describe some of the tools developed targeting
this goal. We also report here our results contributing to this field.

Finally, we present our conclusions in section 5.4.

5.1 Bayesian Probability Theory

The first account of the calculation of a probability as such is found in Jakob
Bernoulli’s “Ars Conjectandi” in 1713. In what could seem a pedestrian compila-
tions of rules and axioms related to game theory, the first definition of a probability
is given to be “a degree of certainty, which is to the certainty as a part to the
whole”. It was specified that if the probability of a particular outcome is p, then,
the frequency of occurrence of that event in a series of experiments will be p.

No solution was proposed to solve the problem posed the other way around, i.e.,
if the frequency of occurrence of a given event is p, what is its probability?

In 1763 Laplace published the posthumous Bayes’ Theorem which shed some light
to the long standing problem. Using it, one can calculate what is the probability of
a hypothesis, H, given some data, D and some prior knowledge about it π(H):

P(H|D) =
P (D|H)π(H)

P (D)
(5.1)

where P (D) =
∑

H P (D|H)π(H) can be seen as a normalization factor or the prob-
ability of the data given all possible hypothesis. In this context, the hypothesis H
can be almost anything, a value for a given parameter or vector or parameters, a
model or the statement “I will win the lottery next month”. The data, D, is the
external piece of information with which we want to update our current knowledge
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encoded in π. With the aid of (5.1) one can predict any probability in light of some
data and any prior knowledge.

Despite the naturalness of the probability theory built around Bayes’ Theorem,
it lacked of some mathematical rigour in its axioms and the apparent arbitrariness
of the assignation of the prior probabilities. In the 19th century, the problem was
drastically solved by assigning probability a new definition:

p(A) = lim
N→∞

Experiments with outcome A

N
(5.2)

where N is the total number of experiments. Now, the probability is the relative
frequency of occurrence of an event in an ensemble of identically prepared systems.
All the ambiguity aching the previous definition is removed.

Frequentist statistics have lingered around since then. The apparent objectivity
of its methods designates it as a true mathematical science, while the Bayesian
approach may seem a more ethereal subjective one. Nevertheless, in the confines of
Physics and the openings of Philosophy arises the question of whether inference can
ever be a totally subjective operation, free from prejudices or effects coming from the
“inferencer”. Can the statement “my conclusions are completely independent of my
prejudices” ever be true? For a beautiful discussion about the concealed ambiguity
of a frequentist analysis see [169].

This is indeed a discussion verging on metaphysics and we are not aiming at
providing an exhaustive comparison between the frequentist and the Bayesian ap-
proaches. But, given the numerous discussions of frequentists vs bayesianists, we
believe it is important to be clear about the fact that many of the discomforts
brought up by a Bayesian analysis are simply hidden under the rug for a frequentist
approach.

The controversy above remains an open issue but we believe that it is fair to
state that one of the approaches could suit different problems better. That is the
case for parameter estimation and model selection2 in cosmology. BPT appears to
be the most appealing theory for several reasons:

• Experiments cannot be repeated using an identically prepared system. By
assuming ergodicity, cosmological observations are promoted to experiments,
but by no means can we assure that these happen under identical settings. In
this sense we are violating one of the frequentist assumptions under which, an
observable is exactly a random variable.

• Bayesian Probability Theory appears to be the ideal framework to deal with
small volumes of data. It even allows one to update current state of knowledge
with one single data point. Frequentist set ups generally require a very large
number of events in order to draw accurate conclusions from their analyses.

2As a matter of fact, only under the Bayesian scope is it possible to assign a probability to a
model. A model can never be a random variable with a frequency of occurrence.
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• Experiments cannot be chosen specifically to measure a given quantity in the
universe. Rather, we are bounded to measure algebraic combinations of them.
This difficulty is directly translated into degeneracies in the space of parame-
ters. In order to get a physical insight into the effects of each of the parameters
it is appropriate to study the effects of different prior assumptions and the
Bayesian tools are optimal for these kind of variations.

• Generally, a set of cosmological parameters is determined by merging large
amounts of data coming from different observations and which are the result of
very different physical processes. The systematics associated with each of these
experiments have very diverse origins. Again, BPT provides an unbeatable
framework inside which one can be very specific about the statistical weight
assigned to each dataset.

• Which estimator to use in a Likelihood Ratio Test, or the threshold one uses
to accept or reject a given hypothesis are indeed subjective choices the experi-
menter has to take. They will be invariably (and probably unawarely) affected
by the experimenter’s prior knowledge. In this sense, BPT supplies a more
structured frame in which to clearly separate ones previous beliefs from data
information.

Partly for the reasons above, Cosmology has used a Bayesian framework for the
determination of parameters for some time now, and also for Model Selecting.

In what follows, we describe the basics of the statistics tools used for the partic-
ular problem of cosmological parameter determination.

5.2 Parameter Determination: Monte Carlo Markov

Chains

As we see in Chapter 4 the particular shape of the angular power spectrum is the
final result of an accumulation of effects caused by the different parameters, θ. The
different effects are quite hard to disentangle from each other. We can arrange the
values of the Cℓ’s in a vector data, D, and inquiry about the probability distribution
of the parameters given the data, P(θ|D). We can compute it with the aid of Bayes’
theorem in equation (5.1):

P(θ|D) =
L (D|θ)π(θ)

∫
L (D|θ′)π(θ′)dθ′

(5.3)

where L (D|θ) is the likelihood function, i. e., the joint pdf for the data given a
certain value of θ, evaluated with the data actually obtained in the experiment [171].

Equation (5.3) is the usual way of obtaining the pdf for the parameters in cos-
mology. In general, the data vector D comprises more than information in the
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temperature anisotropies. Current analyses are done with all kinds of data, some
of which were presented on the previous chapter. The denominator of the equation,
which is just the normalization or the volume in the space of parameters of the
likelihood function, will turn out to be a very relevant quantity for model selection,
as we will see later. However for parameter estimation this quantity is useless, and
typically it is not even calculated.

The only pending task now is to figure out the shape of L (D|θ). This is not a
trivial problem because the way we sample the function can bias the result. In other
words, we start off from a completely unknown function and the points we pick to
study its shape, may or may not be a fair sample of the whole thing. It is indeed a
complicated affair that has brought up much attention from statisticians.

For our purposes, we find most useful the Metropolis-Hastings algorithm [159].
We review now its basic functioning.

5.2.1 The Metropolis-Hastings Algorithm

This is a very efficient algorithm to sample from an unknown probability distribution
function. Also one can easily incorporate the prior knowledge about the parameters
being constrained. In what follows we may use the likelihood L or the pdf P
indistinctly.

A sequence of points {x1, x2..xN} is generated according to the following proce-
dure:

1. An initial point, x0 is picked randomly from all the possible positions in the
space of parameters.

2. xtrial is drawn from a proposal density distribution, qtrial(x0, xtrial), in the
vicinity of x0 . This proposal density is arbitrarily set to control the direction
as well as the length of the steps in the parameter space. Once fixed, the
proposal density should remain fixed during the rest of the sampling.

3. The likelihood of xtrial is computed and compared to the likelihood of xi. If:

L (xtrial)

L (x0)
≥ 1

xtrial will be accepted. Then, xtrial is set equal to x1 and the algorithm is
repeated using this one as the starting point. If

L (xtrial)

L (x0)
= P ≤ 1

the point is accepted as the next sample with probability P. If the point is
not accepted the algorithm is repeated all over using x0 again as the stating
point.
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4. The process is repeated to get a sequence of points xi+1 from xi on each loop.

This way, the chain walks quasi randomly along the whole volume in the parameter
space, but spends more time sampling the peaks of the distributions than the tails.
Generally, in Cosmology, we do not expect bimodal distributions or any interesting
features on the tails, thus the Metropolis-Hastings algorithm is a very useful tool
for us.

In order to optimize the computation time, it is best to sample from several
chains simultaneously. With this, we make sure the whole distribution is properly
explored. Also, in case the peaks of the distributions are very poorly known (which
is not usually the case for Cosmology) one can sample from a heated likelihood
distribution L λ where λ = 1/T . For high temperatures, the likelihood is flattened
and although the peaks are less prominent, they are located more rapidly.

The set of points generated using this technique is called a Montecarlo Markov
Chain (MCMC).

The more similar the proposal distribution to the unknown probability distribu-
tion function (or pdf in short), the more efficient this algorithm becomes. We can
use previous and independent knowledge of the pdf to tailor the proposal density to
the unknown pdf. There is where the actual power of this method relies, and that
is the key point in using this algorithm.

Generally, the first accepted samples of the chain are strongly correlated, thus,
a burn in phase must be allowed from which no samples are used for computing the
pdf for parameter estimation.

The sampling finishes when the chain has converged, which is an ambiguous
term since there is not a single rule to define convergence. We used the Gelman and
Rubin diagnosis, in which convergence is said to be achieved when the variance of
the means of the chains approaches the mean of the variances of the chains [172].

We finally arrive at a total number of MCMC picked samples which ranges from
3 · 104 to 105. It is the easiest to organise data as a M-dimensional vector in which,
along with the coordinates in the parameter space, we also store the likelihood of
the point in particular and the multiplicity of the sample or how many tries took to
jump to that point to the following one.

The marginalized pdf of a parameter, is simply a histogram of the number of
samples versus the value of the parameter. For two dimensional contours, the den-
sity of points in the plane spanned by the two parameters determines the different
confidence levels. Returning to the Bayesian perspective of the probability, the
height of the pdf at each particular value of a parameter turns into the plausibility
of that value being the true value of the underlying law we are testing.

The Metropolis-Hastings algorithm has been very conveniently adapted for cos-
mological purposes by A. Lewis in a fortran based code, cosmoMC [127]. The code
implements the algorithm for sampling a different number of underlying likelihood
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distributions and parameter combinations. In particular, it uses the camb [80] code
to compute the theoretical power spectra generated by the different parameter com-
binations and compares it to data. After fitting the code to our own necessities,
we have used it intensely for all our parameter estimations. Among many other
conveniences it allows for a faster likelihood computation by classifying parameters
under two categories: “fast” and “slow”. The fast ones are those whose values do
not affect the evolution of the perturbations, thus the transfer functions do not need
to be re-calculated when they are varied This way the new power spectra are quickly
retrieved saving time that would be lost in a naive approach where everything is
computed on every step.

5.3 Model Selection

It could seem that all we need to go from data to theory is a way to compute the pdf
of each of the parameters one wants to constrain, i.e., a parameter fitting method.
Based on this wrong believe many parameters are determined to a different degrees
of accuracy and very little attention is directed at the higher-level inference problem
of allowing the data to decide the set of parameters to be used, known as model
comparison or model selection [158, 159]. Such techniques have been widely deployed
outside of astrophysics and are playing a relevant role in cosmology [174, 175] only
recently.

During the rest of the chapter we give a detailed explanation of what model
selection is and present our developments and results addressing this conundrum.

A very simple example

Let us start with a very simple, innocent problem: how well can one fit a sample
of N datapoints. We will determine the precision with which the underlying true
model of the data points can be recovered.

We obtain a sample of N points, {di}i=1..N , generated randomly from a gaussian
distribution with mean µ(x) = Â + xt̂; where Â and t̂ take different values and we
will refer to them as the amplitude and the tilt respectively. That is, we simulate
data gathered on the points {xi} to probe an underlying physical law m(x) = A+xt.
The dispersion is normalized to σ = 1.

We want to recover the values of A and t, but hypothetically, we do not know
which is the shape of the underlying law, so we calculate the likelihood functions
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for models that differ in the number of parameters:

LI(A, {di}) = exp[−1

2

i=N∑

i=1

(A− di)
2] (5.4)

LII(A, t, {di}) = exp[−1

2

i=N∑

i=1

((A+ txi) − di)
2] (5.5)

LIII(A, t, b, {di}) = exp[−1

2

i=N∑

i=1

((A+ txi + bx2
i ) − di)

2] (5.6)

and find the best fit value of the parameters A, t and b, the later being a hypotheti-
cally plausible quadratic component of the law. For model I, parameters t and b are
fixed to zero, and for model II, b = 0 as well.

Firstly, we do the experiment for a sample of 100 and 50 data points and a
fiducial model of (Â, t̂) = (25, 0.5). We compute the χ2/DOF for each and also the
Bayesian Information Criterion razor, the BIC [170, 160]:

BIC = −2 ln L (θ̃) + k lnN (5.7)

where θ̃ are the values of the parameters in the best fit point and k is the number of
parameters of the model. Under the likelihood ratio test (LRT), the best model is
that for which the quantity χ2/DOF is minimized whereas the under the Bayesian
information criterion (BIC) we are bounded to choose the model with the lowest
value of a quantity that is commonly referred to as BIC. In this way, the BI criterion
incorporates a natural Occam’s razor since models with more parameters will have
a bigger BIC in case the χ2/DOF are similar.

We report the results on table 5.1. In the second column we write the best
fit values for the models and in the third and fourth column we calculate the two
quantities relevant for model selection.

Model Ã t̃ b̃ χ2/DOF BIC
I100 37.5 - - 55.225 5471.85
II100 24.7 0.508 - 1.008 108.064
III100 24.7 0.513 −10−4 1.018 112.632

I50 38.0 - - 52.073 2555.5
II50 25.4 0.492 - 0.624 37.807
III50 25.4 0.498 −10−4 0.637 41.696

Table 5.1: Relevant quantities calculated for the three models for data generated
from fiducial values (Â, t̂) = (25, 0.5). The first three rows correspond to a sampling
of N = 100, and the following three are for models with N = 50.

We compare the numbers in column three in order to perform a likelihood ratio
test. Based on it, it can be safely said that model I is ruled out by data and model II
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and III compete with a slight difference between the experiments. For the N = 100
experiment, ∆χ2 = 0.01 whereas for the 50 point one, ∆χ2 = −0.013. So, just
looking at this column, not much could be said about the preferred model. If we
instead apply the BIC, we can definitely select model II as the preferred one and
that is good news because model II is precisely the true underlying one.

To show a bit more of the power of the BIC criterion, we perform the same
experiment with: a) fewer datapoints (N = 25); and b) less steep tilt (t̂ = 0.1) and
write the results on table 5.2 on the first and second 3-row sets, respectively.

Model Ã t̃ b̃ χ2/DOF BIC
I25 37.9 - - 56.469 1358.47
II25 24.8 0.506 - 1.067 30.97
III25 24.6 0.525 3·10−4 1.110 34.08

I50 27.5 - - 3.004 151.11
II50 25.1 0.095 - 1.120 61.57
III50 25.3 0.074 4·10−7 1.137 65.20

Table 5.2: Second part experiments. On the top three columns we show the results
for 25 datapoints and on the bottom three, we show the results for a experiments
where the data were simulated from a t̂ = 0.1 underlying model.

We see again how, even in these other, not so ideal experiments, the BIC correctly
chooses the right model whereas the likelihood ratio test still does not throw much
light to the problem.

With this over simplistic example, we get a hint of the power of Bayesian Anal-
ysis. In a way, it does make more sense to use a Bayesian approach to address the
problem of model selection because it is only inside this scope that one can assign
to the probability its most intuitive meaning. For Bayesian, probability means the
plausibility of a hypothesis or the degree of belief on a hypothesis to be true. For
frequentists, the probability is the frequency of occurrence of an event. A model
is not an event that happens thus we cannot assign it a probability in a frequen-
tist fashion. By these two simple definitions, it is easy to see that the appropriate
framework or at least, the most coherent one, for model selection would be Bayesian
Probability Theory (BPT).

The quantity we have called the BIC, is indeed the asymptotic limit for the
Bayesian Evidence [158, 159] as N → ∞. While we devote subsection 5.3.1 to the
description of this quantity, let us just say, for the moment that this is the quantity
that quantifies the goodness of a model inside the BPT.

Also, it must be noted that although the use of the LRT is widely spread among
non-specialists, it must be handled with care. Its effectiveness is based upon the fact
that we know the distribution towards which the likelihood ratio estimator tends
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asymptotically, namely a χ2 distribution. However this may or may not be the case
for each particular problem [146].

It is usually taken for granted that the LRT test will work, but only if the follow-
ing two conditions are satisfied can the appropriate use of this test be guaranteed
[147]:

• Models must be nested.

• The null values of the additional parameters may not be on the boundary of
the set of possible parameter values.

The second condition is not fulfilled by models II and III, because we are in principle
testing for the possibility that parameters t and b are indeed zero. So, strictly
speaking, the LRT has been applied in a misleading manner in this model selection
exercise.

Generally, finding evidence for a minor feature in a physical law, is an intricate
problem. Detecting a signal on top of a noisy background is, by no means, a trivial
problem for statistics3 and of course cosmological data analysis is not an exception.

Whenever one tries to decide whether or not a particular parameter p should
be fixed (for example at p = 0), one should use model selection techniques. If
one carries out only a parameter-fitting exercise and then examines the likelihood
level at which p = 0 is excluded, such a comparison fails to account for the model
dimensionality being reduced by one at the point p = 0, and hence draws conclusions
inconsistent with Bayesian inference. This typically overestimates the significance
at which the parameter p is needed.

Also for the cases of small amounts of data, regular frequentist approach may not
be the most appropriate one. In our toy problem, we tried to ease this ache by using
the Bayesian Information Criterion, which evidently falls inside the Bayesian theory
for data analysis however this is not a full implementation of Bayesian inference,
which appears to be the most appropriate framework for interpreting cosmological
data. The correct model selection tool to use in that context is the Bayesian evidence
, which is the probability of the model in light of the data (i.e the average likelihood
over the prior distribution).4 It has been deployed in cosmological contexts by several
authors [162]. The Bayesian evidence can be combined with prior probabilities for
different models if desired, but even if the prior probabilities are assumed equal, the
evidence still automatically encodes a preference for simpler models, implementing
Occam’s razor in a quantitative manner.

3see for example, [93] where a and possible solution is presented.
4The Bayesian Information Criterion can be used as a crude approximation to the ratio of the

evidences of two models, also known as the Bayes factor [161], but the existence of parameter
degeneracies in cosmological data fitting are likely to violate the conditions for the validity of the
approximation.
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An example in literature for model selection in data analysis is the level at which
is spectral index ns is needed. Parameter fitting for the first data release of WMAP
[4] favoured at a modest (albeit unconvincing) confidence level but its inclusion
inside the set of parameters was disfavoured by model selection statistics [160]. As
new data came up [5], new analyses reported a mild necessity of the addition of ns
as a parameter: 8 to 1 if other datasets were taken into the analysis and weaker if
they were not [178].

In [160] two model selection statistics, known as the Akaike and Bayesian In-
formation Criteria, are applied to some simple cosmological models and it is shown
that the simplest model considered was the one favoured by the data. These criteria
have recently been applied to models with isocurvature perturbations by Parkinson
et al. [154], who concluded that the purely adiabatic model was favoured.

In what follows, we describe our work in [76] where we use the Bayesian evidence
to compare isocurvature and adiabatic models in light of current data.

5.3.1 Bayesian Model Selection: The Evidence

The Bayesian evidence is the average likelihood of a model over its prior parameter
space, namely

E =

∫

L (θ) π(θ) dθ , (5.8)

where θ is the parameter vector defining the model, pr(θ) the normalized priors on
those parameters (typically taken to be top-hat distributions over some range), and
L (θ) is the likelihood. If we compare (5.8) to (5.1), we see that the evidence is just
the normalization factor generally obviated during parameter estimation.

In essence, it asks the question: ‘If I consider the possible model parameters I was
allowing before I knew about this data, on average how well did they fit the data?’.
Generally speaking, models with fewer parameters tend to be more predictive, and
provided that for some parameter choices they fit the data well, then the average
likelihood can be expected to be higher. On the other hand, a simple model which
cannot fit the data for any parameter choices will not generate a good likelihood.
The Bayesian evidence therefore sets up the desired tension between model simplicity
and ability to explain the data.

Models are ranked in order of their Bayesian evidence, usually using its logarithm.
The overall normalization is irrelevant. As the evidence is the (unnormalized) prob-
ability of the model, if two models are being compared, the odds of the one with
the lower evidence is 1/(1 + exp(∆ lnE)). What constitutes a significant difference
is to some extent a matter of personal taste. Jeffrey’s [158] rates the importance ac-
cording to the following table, the decision being against the model with the smaller
evidence:

Note that a difference ∆ lnE of 2.5 corresponds to odds of 1 in about 13, and
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∆ lnE Significance
< 1 ‘not worth more than a bare mention’

1 − 2.5 ‘substantial’
2.5 − 5 ‘very strong’
> 5 ’decisive’

∆ lnE of 5 to odds of 1 in 150.

A significant, but unavoidable, disadvantage of the use of the evidence is that it
depends on the prior ranges chosen for the parameters. For instance, if one doubles
the range of one parameter by allowing it to vary in a region where the likelihood
is negligibly small, then the evidence will half. Indeed, one can make any model
disfavoured simply by extending its prior range indefinitely in a direction where there
is no hope of fitting the data. From a Bayesian point of view this is unsurprising; of
course your belief in a model should be influenced by what you thought of it before
the data came along, and the Bayesian analysis has the virtue of forcing you to make
your assumptions explicit.

However, the prior width is not as crucial as one might näıvely expect. The main
reason is that the likelihood is typically falling off exponentially away from the best
fit, while the parameter volume is growing only as a polynomial function. Coming
back to toy examples, consider a one-dimensional model for which the likelihood is
given by

L (x) = L0 exp

(

−(x− µ)2

2

)

, (5.9)

and consider two models: model A is x = 0 and model B is x 6= 0 with a top-hat
prior 0 < x < a. In the case µ = 1, a conventional 1-σ non-detection, the evidence
would be unable to strongly distinguish between the models (|∆ lnE| < 2.5) for up
to a ∼ 50. In the case µ = 5, a conventional 5-σ detection, the evidence would
prefer model B for all ranges the evidence will robustly pick up the correct model.
Its main advantage is that it is a quantitative measure with clear interpretation
within Bayesian statistics, and can be applied in cases where the usual frequentist
arguments do not provide us with definite answers. Typically, Bayesian analysis
contradicts the frequentist results whenever the latter accepts a parameter in light
of a marginally better χ2 value. If this improvement is not significant, the increase
of the volume of the parameter space will clearly penalize the addition of the new
parameter and thus decrease the evidence of the extended model.

Generally the evidence is not reparametrization invariant, in the sense that the
choice of a flat prior in one parametrization will probably not correspond to a flat
prior under another parametrization. The choice of parametrization is a matter of
personal preference, though obviously truly robust model selection results should be
preserved under reasonable changes in parametrization. In the case of isocurvature
perturbations there are different, equally plausible, choices of parametrizations, in
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particular geared to dealing with the problem of the cross-correlation angle becoming
unconstrained as the isocurvature mode amplitude becomes small. For illustration
we will compare the results obtained under two different parametrization choices.

5.3.2 Numerical Implementation: Thermodynamical Inte-

gration

The evidence for a given model can be computed by a Markov Chain Monte Carlo
method. However it cannot be directly calculated from chains used in parameter
estimation (for instance from the program CosmoMC [127]), because those chains are
sampled from the posterior distribution, which is peaked around the maximum like-
lihood, and do not carry the necessary information on the likelihood far from the
maximum. Equally, one cannot simply sample from the prior distribution, because
the dominant contribution from the high-likelihood regions will not be properly
sampled. Consequently, a hybrid technique is required, a useful method being ther-
modynamic integration. [163, 157].

Thermodynamic integration alters the sampling of a Markov chain by introducing
a parameter λ, thought of as an inverse temperature, with the acceptance rate
governed by the likelihood raised to the power λ. As λ is varied from zero to one,
this interpolates between sampling from the prior and the posterior distributions.
Defining

E(λ) =

∫

L
λ(θ) pr(θ) dθ , (5.10)

it can be shown that

lnE = ln
E(1)

E(0)
=

∫ 1

0

d lnE

dλ
dλ =

∫ 1

0

〈ln L 〉λ dλ , (5.11)

where

〈ln L 〉λ ≡
∫

ln L L λ π(θ) dθ
∫

L λ π(θ) dθ
(5.12)

is the average log likelihood over the distribution at temperature 1/λ. The term
lnE(0) equals zero if the prior is normalized, otherwise it acts as a normalization
factor since in Eq. (5.8) the priors must be normalized.

Previous work in cosmology has typically evaluated the evidence during the
burn-in phase of a chain to be used for parameter estimation. In this process, the
temperature is slowly cooled from λ = 0 to λ = 1 to facilitate the relaxation of the
chain into its stationary distribution and those chain elements are used for evidence
computation; they are then discarded and the remaining elements, all sampled at
λ = 1, are used for parameter estimation. This method is ideal for complex inference
problems with dimensionality d≫ 1 and multimodal likelihood distributions, where
a slow burn-in phase is necessary to explore the posterior in an unbiased manner and
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thus the evidence calculation comes ‘for free’. However, in a typical cosmological
problem the likelihood surface is considerably simpler, arguably unimodal, and the
number of samples required for a reliable burn-in is much smaller than the number of
samples needed for an accurate evidence estimation. Therefore, we choose a different
approach in which we heat the chain, using the endpoint of a parameter estimation
run as the starting point. Since the volume of parameter space is larger at higher
temperatures it should be much easier to ensure that the chain is stationary at each
temperature step during heating rather than cooling. We implemented two different
heating schedules:

• Continuous temperature change. We let the inverse sampling temperature
change continuously at each step as

λ(n) = (1 − ξ)n, (5.13)

where n is the step number. The single sample taken at that temperature
can be viewed as an unbiased (although noisy) estimate of 〈lnL 〉λ. This
continuous approach obviates the problem of deciding the number of steps per
position, transferring it to the step size. When the algorithm decides to stop,
the integral is closed to λ = 0 in the last step. The stopping criterion is that
the closure of the integral by the last step would change lnE by less than
a certain threshold, ǫstop, even for the most extreme likelihood encountered.
The choices of ξ and ǫstop determine the accuracy and speed of the evidence
calculator, and optimum values must be determined empirically. After trying
various possibilities we settled for ξ = 5 × 10−5 and ǫstop = 0.001. We have
tested that decreasing either ξ or ǫstop further does not affect our results.

• Stepwise temperature change. The integrand of Eq. (5.11) is first estimated at
λ = 1 and 0, then at intermediate temperatures given by

λn =
1

qn
, (5.14)

(q is typically 1.5 – 2 and n an increasing integer). The thermodynamic in-
tegral is calculated by the trapezoid rule after each additional point is added.
The points are added until the integral converges to a user-specified stop-
ping accuracy ǫstop. At each temperature the integral is calculated by making
a short burn-in at that temperature (typically 400 samples, since the chain
must already be roughly burned in from the previous step) and then calcu-
lating 〈lnL 〉λ from a further number (typically 1000) of accepted samples.
This approach has the disadvantage that extra samples are needed for burn-
in at each temperature and that there might be systematics associated with
stepwise temperature change. However, it is less sensitive to the quality of co-
variance matrix as a poorer covariance matrix simply results in more samples
being taken to get enough accepted samples (note that we cannot do the same
for the continuous scheme without biasing the result, unless one is willing to
burn-in at each ‘continuous’ temperature change step).
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Additionally, we modify the proposal function so that its width scales with λ−1 (up
to a certain width), which ensures that at high temperatures the chain is sampling
randomly from the prior, rather than random-walking with the step-size correspond-
ing to the λ = 1 posterior.

These two methods have been extensively tested to give results that are consistent
and accurate to within a unit of lnE for a single run. The final numbers for all models
were calculated using the continuous temperature change method. Additionally we
have performed a comparison with an analytic approximation to the posterior and
got results that are also consistent to better than one unit of lnE in the adiabatic
case, though slightly worse in the isocurvature case.

In all cases we find that the number of samples required to accurately estimate the
evidence and avoid systematics associated with covariance matrices, proposal widths
and similar is unexpectedly large; an order of magnitude larger than what is required
for a simple parameter estimation. This makes the computation a challenging task
as it is limited by the speed of the likelihood evaluations which require generation
of the model power spectra. This also suggests that the uncertainties on evidence
values already found in the literature may be underestimated, though we note that
the high quality of the WMAP data makes this task considerably more difficult
than it was in the pre-WMAP era. Further investigation into evidence estimation
methods is clearly warranted and will be a focus of a forthcoming paper.

Other Evidence estimators

Due to the large computational demand of the thermodynamical integration, and
its lack of accuracy in some cases, other methods for estimating the evidence of
cosmological models have been explored [173, 174, 175, 176].

Most recently, the Nested sampling algorithm has been applied to determine a
number of evidences and also for accuracy forecasts such as the ones that will be
achieved by Planck on measuring the spectral index [177]. This algorithm reduces
the problem of computing a multidimensional integral (see Eq. (5.8)) to that of
a unidimensional integral in which the variable of integration X is the mass in
the prior space: π(θ)dθ = dX. Although it has been proved to be more accurate
than the thermodynamical integration, it is also computationally intensive, and the
computing time does not outperform the former one significantly.

The Savage-Dickey method is another simple exact calculator only useful for
comparing nested models. It was introduced in [173], in 1971, and has been most
recently applied in [175] to study the significance of ΩK, ns and fiso. For nested
models the likelihood of the “null model”, L0 is just a slice of the bigger model
likelihood at a particular value of the extra parameter, ω. Thus,

L1(θ, ω)|ω=ω0 = L0(θ, ω0)

One computes the Bayes factor as the ratio of the height of the posterior pdf for
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Parameter Prior Range Model
ωb (0.018,0.032) AD-HZ,AD-ns,ISO
ωdm (0.04,0.16) AD-HZ,AD-ns,ISO
θ (0.98,1.10) AD-HZ,AD-ns,ISO
τ (0,0.5) AD-HZ,AD-ns,ISO

ln[1010Rrad] (2.6,4.2) AD-HZ,AD-ns,ISO
ns (0.8,1.2) AD-ns,ISO
niso (0,3) ISO
δcor (−0.14,0.4) ISO√
α (−1,1) ISO
β (−1,1) ISO

Table 5.3: The parameters used in the models. The sound horizon θ was used in
place of the Hubble parameter. For the AD-HZ model ns was fixed to 1 and niso,
δcor, α and β were fixed to 0. In the AD-ns model, ns also varies. Every isocurvature
model holds the same priors for the whole set of parameters.

model 1 to the prior distributions at ω0. More precisely:

B01 =
P(ω1)

πω1
(5.15)

As we said, this is an exact calculator with the handicap that it can only be used
for nested models.

In [76] we use thermodynamical integration to asses the addition of isocurva-
ture parameters in cosmology in light of the following datasets: cosmic microwave
anisotropy data from the 1st year release of the WMAP satellite including temperature–
polarization cross-correlation [4], VSA [128], CBI [129] and ACBAR [130], matter
power spectrum data from the two-degree field galaxy redshift survey (2dFGRS)
power spectrum [131] and from the Sloan Digital Sky Survey [7], and the super-
novae apparent magnitude–redshift relation [6].

We devote the rest of the chapter to the presentation of our results.

5.3.3 Model Selection for isocurvature parameters

Our principal aim is to compare the evidence of isocurvature models (three different
modes — cold dark matter isocurvature (CDI), neutrino isocurvature density (NID),
and neutrino isocurvature velocity (NIV) — ) with purely adiabatic ones. These
modes can exist in any combination, and with correlations both amongst themselves
and with the adiabatic modes. We will only allow a single type of isocurvature mode
in any model, though we will allow a general spectral index both for the isocurvature
modes and for their correlation with the adiabatic ones.
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Model ln(Evidence)
AD-HZ 0.0 ± 0.1
AD-ns 0.0 ± 0.1
CDI −1.0 ± 0.2
NID −1.0 ± 0.2
NIV −1.0 ± 0.3

Table 5.4: Evidences for the four different models studied, normalized to the AD-HZ
evidence. The absolute value for that model was lnE = −854.1.

The flat prior ranges for all parameters are given in Table 5.3. We consider two
adiabatic models. AD-HZ is the simplest model giving a good fit to the data, with a
Harrison–Zel’dovich spectrum and five variable parameters. We also computed the
evidence for an extended adiabatic model AD-ns in which we let ns vary.

For each isocurvature model there are four extra parameters. We parametrize
the contribution to the temperature and polarization angular power spectra from
the adiabatic, isocurvature and correlation amplitudes at the pivot scale (k0 = 0.05
Mpc−1) by α and β as they are defined in Chapter 3 in Eq. (3.21). We also use
the parameter δcor is related to the spectral tilt of the correlation mode, ncor, and
its boundaries are fixed by the pivot scale and the kmin = 4 × 10−5 Mpc−1 and
kmax = 0.5 Mpc−1 scales used for the analysis. It is defined as (see Chapter 6):

δcor ≡ ncor/ ln |β|−1 . (5.16)

Thus the priors on the first seven parameters are theoretically motivated, whereas
the priors on the last three are automatically set by the model. Throughout the
analysis the equation of state parameter of the dark energy was set to −1.

We ran 32 independent computations of the evidence for each model. In all of
them the stopping criterion was satisfied after about 2.5 × 105 steps, so the total
number of likelihood evaluations was approximately 107 per model. The results,
given as the logarithm of the evidence, are described in Table 5.4. We have expressed
all the calculated evidence values relative to the AD-HZ model, as the absolute value
is just a particular of the likelihood code. We see from the table that the evidences
are calculated to sufficient accuracy to draw conclusions, but that the comparison
is rather inconclusive. Firstly, the two adiabatic models happen to produce the
same evidence; as a further consistency check, we also looked at an adiabatic model
with the prior range on ns doubled, and found that lnE fell by 0.4, to be compared
with the expected drop of ln 2 that would appear if the likelihood were insignificant
throughout the extended range. Secondly, by coincidence all three isocurvature
models have the same evidence, with ∆ lnE being 1.0 relative to AD-HZ in each
case. According to the Jeffreys’ scale this is just at the edge of being worthy of
attention.
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Variation under reparametrization

The issue of the non-invariance of the evidence under a transformation in the space
of parameters has been studied in some other works [175, 15] and has been addressed
as one serious flaw of Bayesian model selection. However, this non invariance should
be expected to some extent because changing the basis of parameters typically leads
to a different choice of priors. Thus, we see this just as another effect of prior beliefs
on posterior inferences. It would be surprising indeed if models in Nature cared
about how they were measured but it is a fact that our previous beliefs about the
underlying physical reality may alter our inference. A convenient way of dealing
with this, is to explicitly cite all the prior assumptions, including parametrization
in every information inference analysis.

Various parametrizations have been used in the literature. For instance, a change
of pivot scale leads to an (ns − niso)–dependent rescaling of α, and to an ncor–
dependent rescaling of β. Even if the pivot scale is fixed, various definitions of the
amplitude parameters can be introduced. The normalization of the isocurvature
mode can be parametrized by the ratio of isocurvature to adiabatic primordial fluc-
tuations fiso ∈ [0,∞] [149] instead of the fraction of isocurvature contribution to
the total primordial spectrum α ∈ [0, 1] [13]. In this work, as in the parameter esti-
mation one, we chose to vary

√
α ∈ [−1, 1] in order to avoid dealing with boundary

effects and to have a posterior distribution falling down to zero on the two ends of
the prior range. We could nevertheless instead have chosen a flat prior for α. Simi-
larly, the cross-correlation amplitude can be parametrized either by the correlation
angle β ∈ [−1, 1], as in Refs. [149, 14], or by the amplitude of the cross-correlation
power spectrum 2β

√

α(1 − α) [151]. The advantage of the latter is that the total
power spectrum depends linearly on it, and so it is well constrained by the data,
while starting from a flat prior on β we can get a flat posterior distribution if the
preferred model is purely adiabatic, so that the value of β does not matter (this
point is discussed in detail in Ref. [156] where a third choice is also introduced).
Finally, we defined the parameter δcor in order to deal with a simple top-hat prior,
but we could decide to use instead to impose a flat β–dependent prior directly on
ncor.

To get a hint of the effect of reparametrization, we recomputed the evidences
using a second parameter basis: instead of (

√
α, β) we vary (α, 2β

√

α(1 − α)) with
a flat prior inside the two-dimensional ellipse in which these parameters are defined,
and instead of δcor we vary ncor within the range [−0.14 ln(|β|−1), 0.4 ln(|β|−1)]. Since
the prior on ncor is too loose when β is close to zero, we imposed the additional prior
over ncor ∈ [−1, 1].

The results are quoted in Table 5.5, and show differences from the ones that
use the original parametrization. Even though the difference is still not big enough
to exclude any isocurvature model, we conclude that, as mentioned in Section II,
parametrization does matter for the evidence calculation.
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Model ln(Evidence)
AD-HZ 0.0 ± 0.1

CDI −1.0 ± 0.2
NID −2.0 ± 0.2
NIV −2.3 ± 0.2

Table 5.5: Evidences for the four models using the second parametrization, again
normalized to the AD-HZ evidence.

Fortunately for this case, we showed in the previous chapter that this apparent
mismatch between different parametrizations is asymptotically nonexistent due to
the jacobian of the transformation being flat in that limit.

5.4 Conclusions

In this chapter we have briefly reviewed the status of statistics for cosmological
purposes. After providing a short insight into Bayesian Probability Theory in the
first section, we describe the methods employed for parameter estimation and Model
Selection.

Section 5.2 is just a quick review of current computational methods used in
cosmology to compute the MonteCarlo Markov Chains. Nothing in this section
is original work, but as mentioned above, these computational techniques are an
essential part of the methodology followed during this thesis and their presence in
this chapter is very well deserved.

On Section 5.3.1, we justify the necessity of model selection in Cosmology and
describe our work in this field.

We have carefully calculated the evidence for two adiabatic models and three
physically-distinguishable isocurvature models using recent cosmic microwave back-
ground, supernovae and large-scale structure data. We find very similar evidences
for all the models. For the first parametrization used, the odds of the isocurvature
models compared to the adiabatic ones are 1 in about 4. Using a second parametriza-
tion of the isocurvature parameters we find the odds for the neutrino cases drop to
1 in 10. Therefore, we conclude that present data are unable to offer a clear verdict
for or against the inclusion of isocurvature degrees of freedom. This conclusion is
similar to that found by Parkinson et al. [154] using the information criteria. Al-
though the extra parameters introduce extra complexity, these models are still able
to satisfactorily fit the present data for a wide range of their parameters and thus
the evidence quantifies the common sense that one should allow these models to
be considered. We also showed the relevance of the parametrization for evidence
computation.
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While the present comparison is inconclusive, a key question for future data
will be to select between the adiabatic and isocurvature paradigms. Parameter
estimation analyses cannot do this, as even if the adiabatic model is correct they
can only impose limits on the isocurvature parameters.

For the reasons explained above, we believe that the Bayesian model selection
approach, and more generally Bayesian statistics, are the ideal tool to carry out such
a selection.



Chapter 6

Results: Constraints on
Isocurvature Parameters

During this thesis, we have developed the necessary tools for attacking the problem
of isocurvature parameter determination both from a theoretical and a statistical
point of view.

Hopefully, we have shown that both are equally important and failing to address
any of these issues correctly may lead to erroneous conclusions.

In what follows, we present our work on parameter determination using different
pieces of data and different optiques. On the first two analyses, we have adopted
a completely phenomenological approach in which we first search for the possible
isocurvature signal, and then we concentrate on particular models. Then, we adopt a
different angle and first study the problem from a theoretical point of view, i. e. we
study the possible signature of an axionic density (carrying forward the theoretical
analysis from section 3.4 from Chapter 3), and then we specifically investigate its
presence.

These two approaches should be equally valid as long as all the prior assumptions
are clearly posed. Perhaps, from a model selection point of view, the last approach
is better, in which less parameters are fitted obeying strong theoretical priors about
the axionic signature. Nevertheless, it is useful to have a first order estimation of
how strongly the isocurvature fraction could contribute, taking into account the
effects of correlation and different tilts.

As has been mentioned above, on section 6.1, we bound the most general possible
isocurvature model using three different pieces of data. On section 6.2, we add a
new piece of data, namely the Lyman-α forest spectra and show the impact on the
CDI model parameter posteriors. On section 6.3, we put experimental bounds on
the model presented in section 3.4 in using, once again several pieces of data.

We will use different combinations of the following datasets: WMAP first and
third year releases[4, 5] (WMAP-I, WMAP-III respectively); VSA, CBI and ACBAR
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[128, 129, 130] for CMB data at small scales; The 2degree Field GRS [131] (2dF) and
the Sloan Digital Sky Survey data releases 2004 [7]; two Supernovae compilations,
the Hubble Space Telescope compilation [6] (SnH) and the Supernova Cosmology
Project [179] (SnSCS). For the Lyman-α forest data, we use flux power spectra of the
Croft et al. [104] (C02) sample and the LUQAS sample of high-resolution Lyman-α
forest data [122]. We will usually refer to them by the names assigned above.

In all of the analyses, we assume that neutrinos are massless [183]. The sim-
plest model dealt with consists of the adiabatic model 6 “vanilla” parameters [17]
extended in some cases to a constant w 6= −1. Then, we also add the amplitude
and spectral index of the primordial isocurvature perturbation; the amplitude and
spectral index of the cross-correlation angle between the adiabatic and isocurva-
ture modes. In addition, we will treat conservatively the matter-to-light bias of the
2dF and SDSS redshift surveys as two extra free parameters. These will be our
assumptions throughout the whole chapter unless otherwise stated.

In general, we follow the procedure described in section 5.2.1 to obtain the prob-
ability distribution function for the parameters we want to constrain. The number
of chains run varies from analysis to analysis according to our computation capabil-
ities and particular requirements of the situation. In general, the total number of
samples gathered is of order ∼ 3 − 8 · 104 and we eliminate about 40% of them in
the burn in phase.

6.1 General constraints on isocurvature models

from CMB, LSS and SNae data.

In this work (published in [14]) we study the bounds on the three different isocurva-
ture modes described in Chapter 3. We allow for an arbitrary correlation between
the adiabatic and isocurvature component with a free tilt for each of the three con-
tributions. We will not assume any specific model of inflation, nor any particular
mechanism to generate the perturbations (late decays, phase transitions, cosmic de-
fects, etc.), and thus will allow all five modes — adiabatic (AD), baryon isocurvature
(BI), CDM isocurvature (CDI), neutrino isocurvature density (NID) and neutrino
isocurvature velocity (NIV) — to be correlated (or not) with each other , and to
have arbitrary tilts.

We describe in more detail the analysis performed in Ref [13], constraining the
various isocurvature components. We also extend it by including additional obser-
vational constraints, and extra free parameters in the model.

In terms of model building, the simplest situation beyond the paradigm of adia-
baticity is that of a single isocurvature mode mixed with the adiabatic one. There-
fore, we shall not consider more than one isocurvature mode at a time, and our
primordial perturbations will be described by three amplitudes and three spectral
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indices, associated respectively with the adiabatic, isocurvature and cross-correlated
components. This choice is somewhat different from that of Refs. [148, 32, 33], who
introduce several modes at a time, but a single tilt for each power spectrum of
primordial perturbations. The assumption that all the modes have comparable am-
plitudes and a common tilt are both difficult to motivate theoretically and, to our
knowledge, all proposed mechanisms based on inflation stand far from this case. For
instance, double inflation leads to at most one isocurvature mode, always with a tilt
differing from the adiabatic one; on the other hand, the curvaton scenario predicts a
single tilt, but only one isocurvature mode, fully correlated or anti-correlated with
the adiabatic mode. There is also the case of isocurvature perturbations generated
by an axionic field during inflation. As we have seen on section 3.4, these are totally
uncorrelated from the adiabatic perturbations and scale invariant. Nevertheless in
the absence of any theoretical prior, we believe the approach of Refs. [148, 32, 33]
is interesting and complementary to ours.

We slightly modified the interface between CAMB and CosmoMC in order to
include the cross-correlated power spectra, as well as three independent tilts − in
the CosmoMC jargon, the three tilts and the three amplitudes were implemented
into the code as “fast parameters” , in order to save a considerable amount of
time (see section 5.2.1). The likelihood of each model was then computed using
the following data compilation: WMAP-I temperature and polarization data, VSA,
CBI, ACBAR, LSS and SDSS and SnH1, which adds up to 1627 data points.

As described above, and using the general notation of the thesis, the parameter
space is: p = {ωcdm, ωb, τ, θ, w, nad, ln[1010Rrad], α, β, niso, ncor}. We need to impose
the following condition onto the correlation contribution (see section 3.2):

|cos ∆| = |β|
(
k

k0

)ncor

≤ 1 (6.1)

With this in mind, we choose to define a new parameter:

δcor ≡ ncor/ ln(|β|−1), (6.2)

whose boundaries are fixed once and for all by the values of the pivot scale (kpivot =
0.05) and the scales (kmin, kmax) =(4 · 10−4hMpc−1, 0.15hMpc−1) defined by the
extent of the dataset used. We will define our results in terms of this new parameter
onto with we impose the flat prior −0.14 ≤ δcorr ≤ 0.4.

We did not devote a specific analysis to the case of the baryon isocurvature
modes, which is qualitatively similar to that of CDI modes, since the spectra are
simply rescaled by a factor Ω2

B/Ω
2
cdm (ΩB/Ωcdm for the cross-correlation): thus, com-

pared to the AD + CDI case, significantly larger values of α will be allowed in the

1We have checked that the inclusion of the HST [144] and BBN priors are irrelevant for the
determination of the Hubble parameter and the baryon density; that is, the data from CMB, LSS
and SNIa is enough in order to determine these parameters, and therefore we ignored the priors in
the final analysis.
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Figure 6.1: The one-dimensional likelihood functions for our basis of eleven indepen-
dent cosmological parameters (not including the tilts of the two redshift surveys), for
the adiabatic mode alone (AD) or mixed with the three different types of isocurva-
ture modes (AD+CDI, AD+NID, AD+NIV). The first seven parameters are those
of the standard ΛCDM model, extended to dark energy with a constant equation
of state. The last four parameters (α, β, niso, δcor) describe the isocurvature initial
conditions. (δcor is define in Eq. (6.2.))
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Figure 6.2: Continuation of figure 6.1, showing the 1D likelihood of some derived
cosmological parameters, for the same cases. These likelihoods should be considered
with care, because the parameters shown here do not belong to the basis used by
the Markov chain algorithm. Therefore, the shape of the above likelihoods depends
not only on the likelihood of the underlying parameters, but also on the properties
of the functions relating them to the parameters of the basis. This explains for
instance why ncor = δcor ln(|β|−1) seems to be well-constrained, while δcor and β are
not.

AD + BI case. Like in other recent analyses, we find that the inclusion of isocur-
vature modes does not improve significantly the goodness-of-fit of the cosmological
model, since in the AD+CDI, AD+NID and AD+NIV cases the minimum χ2 is
always between 1672 and 1674 for 1614 degrees of freedom, to be compared with
1674 for 1618 degrees of freedom in the pure adiabatic case. Therefore, the ques-
tion is just to study how much departure from the standard picture is allowed, by
computing the Bayesian confidence limit on the isocurvature parameters. A more
detailed analysis of model comparison with Bayesian Information Criteria [160] was
described in Chapter 5 and published in [76].

On Fig. 6.1 we plot the marginalised likelihood for our basis of eleven cosmologi-
cal parameters, in the cases AD+CDI, AD+NID and AD+NIV, compared with the
pure adiabatic case. Figure 6.2 shows the likelihood of some derived parameters.
It appears that most parameters are robust against the inclusion of isocurvature
perturbations (this is in agreement with the conclusion of Ref. [33] that with only
one isocurvature mode present, no significant parameter degeneracy emerges). Our
95% C.L. on α in the three cases is given in Table 6.1.

Note that in the limit α = 0, the three parameters β, niso, δcor become irrelevant.
So, the fact that pure adiabatic models are very good fits implies that these param-
eters are loosely constrained. This explains why the corresponding likelihoods on
Fig. 6.1 are not well-peaked like for other parameters. In addition, these likelihoods
should be considered with great care, because it is difficult for the Markov Chains
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Figure 6.3: The 2-σ contours of α and the cross-correlated mode coefficient
2β

√

α(1 − α), for a) the CDI isocurvature mode; b) the NID mode; c) the NIV
mode; d) the CDI mode, with the constraint ncor = 0 and the contours of equal
2(R2 − 1)/sk = 0,±0.5,±1,±2 from double inflation.

to explore in detail the tails of the multi-dimensional likelihood corresponding to
tiny values of α, where basically any value of (β, niso, δcor) are allowed. Therefore,
increasing the number of samples would tend to flatten these likelihoods, while the
other ones would remain stable (as we checked explicitly). However, it is clear that
all models prefer a large isocurvature tilt and saturate the bound niso < 3 that we
fixed in the present analysis. This feature is important for understanding our re-
sults and comparing with other analyses, as explained in the last paragraph of this
section.

On Fig. 6.3, we plot the two-dimensional confidence levels directly for the isocur-
vature and cross-correlation coefficients (α, 2β

√

α(1 − α)) in the three cases AD+CDI,
AD+NID and AD+NIV. The last plot corresponds to the AD+CDI case with a prior
ncor = 0 which is relevant for the bounds on double inflation, but the results are not
substantially different from the general AD+CDI case. We see that the AD+CDI
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model α 2β [α(1 − α)]1/2

AD+CDI < 0.6 −0.7 to 0.3
AD+NID < 0.4 −0.2 to 0.8
AD+NIV < 0.3 −0.4 to 0.6

Table 6.1: The one-dimensional 2-σ ranges on the isocurvature mode coefficients for
the various models.

model slightly prefers anti-correlated cases (note that β < 0 means a positive contri-
bution from the cross-correlated component), while AD+NID and AD+NIV models
clearly prefer correlated ones.

On Figure 6.4, we plot the CMB and LSS power spectra for two particular CDI
and NID models. In order to get a better understanding of our bounds, we chose
models with large values of α, still allowed at the 2-σ level: respectively, α = 0.53
and α = 0.41. The detailed values of other cosmological parameters are given on
Table 6.2.

Parameter CDI model NID model

ωB 0.0217 0.0196
ωcdm 0.112 0.131
θ 1.06 (1.01)
τ 0.068 0.131
w −0.88 −1.44

ln[1010Rrad] 3.73 3.98
nad 0.96 1.02
α 0.53 0.41
niso 2.93 2.95
ncor 0.05 0.03
β −0.62 0.88

Table 6.2: Values for the parameters generating the plots in Fig. 6.4. The χ2 of the
two models is 1675 for the CDI model and 1674 for the NID.

In the CDI example, one can see that the non-adiabatic contributions to all
spectra remain tiny, except for the matter power spectrum on scales k > 0.2hMpc−1,
due to the large isocurvature tilt niso = 2.93 of the model. This is an indication that
our α bound in the CDI case depends very much on constraints on the small-scale
matter power spectrum, while future improvements in the determination of CMB
spectra would not reduce it dramatically. We show this in the following section in
which we include the Lyman-α forest data to cure this lack of data on small scales
[15]. Note that a precise experimental determination of the amplitude parameter σ8

(which is mainly sensitive to scales around k = 0.2 h Mpc−1) would probably not
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Figure 6.4: Temperature, E-polarization and matter power spectra for two partic-
ular CDI and NID models shown on table 6.2. From top to bottom, we show the
CTT
l , CTE

l and P (k) power spectra, as well as the contribution of each component:
adiabatic, isocurvature, cross-correlated, total. The CDI isocurvature and cross-
correlated components have been rescaled by a factor indicated in each figure. We
also show the data points that we use throughout the analysis, from WMAP (black),
ACBAR (grey), CBI (blue), VSA (yellow), 2dF (black) and SDSS (blue).

change things either, since our CDI models have roughly the same σ8 values as purely
adiabatic well-fitting models (see Figure 6.2); on the other hand, any constraint on
smaller wavelengths could improve the bounds. This means in particular that our
choice not to include the Lyman-α data plays a crucial role in our results.

The same conclusions apply to the NID model of Fig. 6.4. In addition, in the NID
case, we see that the non-adiabatic contribution is significant also for small-scale (l >
200) temperature and polarization spectra. Indeed, it is well-known that the NID
isocurvature and cross-correlated modes can mimic the adiabatic CMB spectra to a
better extent than CDI modes (essentially because the amplitude of the secondary
peaks is not strongly suppressed). So, in the NID case, future improvement in the
CMB data should help to improve the bounds on the isocurvature fraction.
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Our bounds are difficult to compare with those of Ref. [33], because of our
different parameter space, observational data set and conventions of normalization.
In the AD+CDI case, our analysis is closer to the one of the WMAP team [4],
although we have more free cosmological parameters (ncor, w), more data (SDSS,
CBI, VSA) and less constraints on the matter–to–light bias. The 95% limit B <
0.33 obtained by WMAP would correspond to α < 0.1 in our notations, which is
significantly smaller than our results. Also, The WMAP 1σ bounds on niso are
1.26 ± 0.5, while we find that the likelihood peaks at our maximum allowed value
niso = 3. The most likely explanation is that the use of the Lyman-α data in the
WMAP analysis eliminates all our well-fitting models with niso > 2 and large α
values. Similar conclusions apply to our previous results [13], in which we did not
use any Lyman-α information, but adopted a flat prior 0.6 < niso < 1.5 (this was the
interval in which our grid of models was computed). Then, most of the well-fitting
models of [13] had slightly negative values of nad − niso. Therefore, translating our
previous results in terms of a pivot scale k0 = 0.05 Mpc−1 would lead to a small
decrease in the α bounds, making them comparable with the WMAP bound in the
CDI case, and smaller than the conservative bounds of this work. We now apply
the estimated bounds to two specific, theoretically motivated inflationary models:
Double inflation and a massive complex scalar field as the inflaton.

6.1.1 Specific isocurvature models: Double Inflation

We continue the theoretical model development from section 3.2.1 and impose
bounds on the double inflationary given the data. Note that in this model it is
assumed that the heavy field decays into cold dark matter, and therefore we only
have one isocurvature component, CDI. The bounds from CDI will be used to con-
strain this particular model. We will leave for the future a detailed analysis of other
two-field models of inflation.

In order to derive specific constraints, it will be useful to remind the relation
between α and β, see Eqns. (3.51) and (3.52):

2β
√

α(1 − α) =
R2 − 1

sk/2
(1 − α) , (6.3)

which corresponds to a straight line in the contour plot of Fig. 3. This way, one
can evaluate the likelihood at which a given value of R is ruled out. We present our
results on the bottom right panel of Fig. 6.3 where the green lines fulfill relation
(6.3) for different values of R, the ratio between the masses.

For the dataset used, we are able to impose a mild constraint onto R:

R < 5 a 2σ (6.4)

Even if the model passes this constraint for a given R, it is possible that the
prediction on nad and niso from Eqns. (3.2.1) do not agree with the bounds on these
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parameters. In our case, the bounds are so loose that any tilt is allowed. Perhaps
in the future, with better observational constraints, we may use the information on
the tilts to restrict more tightly double inflation models.

6.1.2 Specific isocurvature models: Massive complex field

Another model worth exploring is the particular one in which the two fields have
equal masses, corresponding to a massive complex field Φ = 1√

2
(φ1 + i φ2). If we

rewrite Φ = 1√
2
σ exp(iϕ), with modulus σ and phase ϕ, the lagrangian can be

written as

L =
1

2
(∂µσ)2 +

1

2
σ2(∂µϕ)2 − 1

2
m2σ2

Note that there is no potential for the phase, so it will be free to fluctuate, which
will induce a large isocurvature component, as we will see, and which can be used
to rule this model out.

In this case, the curvature and entropy perturbations are

Rrad(k) = − κHk√
2k3

√
sk eσ(k) , (6.5)

Srad(k) = − κHk√
2k3

1√
sk
es(k) , (6.6)

with eσ and es orthonormal. Therefore,

α =
1

s2
k + 1

, β = 0 . (6.7)

The curvature perturbation has a tilt nad = 1−2/s = 0.97, but the isocurvature
perturbation has no tilt, niso = 1, and the two modes are uncorrelated, β = 0. For
the moment, this model is not ruled out.

As mentioned above and shown on Fig. 6.4, we believe that the addition of
data on scales smaller than those probed by galaxy surveys should be crucial for
constraining isocurvature models with a free tilt. Therefore, we include the Lyman-α
forest data to our analysis and study new bounds on the CDI model.

6.2 Squeezing the window on isocurvature modes

with the Lyman-α forest.

We will use the dark matter power spectrum that Viel, Haehnelt & Springel [105]
(VHS) inferred from the flux power spectra C02 sample and the LUQAS sample.
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The C02 sample consists of 30 Keck high resolution HIRES spectra and 23 Keck low
resolution LRIS spectra and has a median redshift of z = 2.72. The LUQAS sample
contains 27 spectra taken with the UVES spectrograph and has a median redshift
of z = 2.125. The resolution of the spectra is 6 km/s, 8 km/s and 130 km/s for
the UVES, HIRES and LRIS spectra, respectively. The S/N per resolution element
is typically 30-50. Damped and sub-damped Lyman-α systems have been removed
from the LUQAS sample and their impact on the flux power spectrum has been
quantified by [104]. Estimates for the errors introduced by continuum fitting, the
presence of metal lines in the forest region and strong absorptions systems have also
been made [113, 104, 180, 112].

The use of state-of-the-art hydrodynamical simulations is a significant improve-
ment compared to previous studies which used numerical simulation of dark matter
only [104]. We use the parallel TreeSPH code GADGET-II [182] in its TreePM mode
which speeds up the calculation of long-range gravitational forces considerably. The
simulations are performed with periodic boundary conditions with an equal num-
ber of dark matter and gas particles. Radiative cooling and heating processes are
followed using an implementation similar to [108] for a primordial mix of hydrogen
and helium. The UV background is given by [124]. To maximise the speed of the
simulation a simplified criterion of star formation has been applied: all the gas at
overdensities larger than 1000 times the mean overdensity is turned into stars [105].
The simulations were run on cosmos, a 152 Gb shared memory Altix 3700 with 152
CPUs hosted at the Department of Applied Mathematics and Theoretical Physics
(Cambridge).

Parameter basis and priors

We used the same parameter basis as in the previous section. Again, we define the
amplitudes parameters at the pivot scale k0 = 0.05 Mpc−1. This time, we study
a broader set of models. Later on, we show results for different parametrizations
for the isocurvature fraction. We could decide to impose a flat prior on fiso, or
α, or any function of them; different choices are not equivalent, in general. We
will come back to the dependence of the final result on the choice of priors in
section 6.2.2. Meanwhile, we chose a specific set of parameters which appear linearly
in the expression of the observable power spectra, α and 2β

√

α(1 − α), and that
we believe are physically relevant. As already mentioned, these two parameter are
defined within an ellipse, in which we assume a flat prior. Taking into account
the enlarged reach in the k space we now must adopt a different prior on δcor (see
Eq. 6.1). Since kmin = 4 × 10−5Mpc−1 and kmax = 2 Mpc−1 we must impose:
−0.14 < δcor < 0.27.

In summary, our basis parameters with flat priors remains the same as in Section
6.1 with three exceptions:

• The bounds on δcor are now extended.
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• We use 2β
√

α(1 − α) instead of β alone to parametrize the correlation ampli-
tude.

• We fix w = −1.

• Due to the addition of the new Lyman-α data, we must include the Lyman-α
calibration parameter ALy−α defined in [125], on which we impose the same
Gaussian prior ALy−α = 1.0 ± 0.29.

Our full parameter space is therefore 13-dimensional. Following the usual proce-
dure, we compute their marginalized Bayesian likelihood. The results are displayed
in Fig. 6.5 and Table 6.3 (after marginalization over the 2dF and SDSS bias param-
eters).
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Figure 6.5: Likelihood for the AD+CDI model, using all our data set. The first
eleven parameters are independent, while the last four are related parameters (with
non-flat priors).

We see that the addition to new data favors purely adiabatic models, but remains
compatible with an isocurvature fraction α < 0.40 at the 2σ (95%) confidence level
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parameter 1σ C.L.

Ωbh
2 0.0235 ± 0.0011

Ωch
2 0.125 ± 0.005

θ 1.045 ± 0.008
τ 0.11 ± 0.05
nad 0.97 ± 0.02
niso 1.9 ± 0.5
δcor within prior range

log[1010(A2 +B2)] 3.3 ± 0.2
α < 0.20

2β[α(1 − α)]1/2 0.1 ± 0.2
ALy−α 0.8 ± 0.2

ΩΛ 0.68 ± 0.03
σ8 0.88 ± 0.06
zre 13 ± 4
H0 69 ± 3

Table 6.3: 1σ confidence limits for the AD+CDI model, using all our data set, for
the eleven basis parameters with flat priors, and below, for related parameters.

(CL), with a tilt niso = 1.9 ± 1.0 (2σ CL). The one-dimensional likelihoods for α,
2β

√

α(1 − α) must be interpreted with care: the fact that these parameters are
defined within an ellipse implies that there is more parameter space available near
α = 0.5 and 2β

√

α(1 − α) = 0.

More interesting are the two-dimensional likelihood contours for (α, 2β
√

α(1 − α))
displayed in Fig. 6.6, since in this representation the prior is really flat inside the
ellipse. From this figure, it is clear that the data prefers an uncorrelated isocurva-
ture contribution. The flatness of the δcor likelihood shows that the data give no
indication on the tilt of the cross-correlation angle.

6.2.1 Specific impact of the Ly-α data

The Lyman-α forest provides a powerful indication on both the amplitude and the
shape of the matter power spectrum for k > 0.01 s/km, i.e. roughly larger than
1h/Mpc. In order to illustrate the importance of this data set in our results, we
repeat the same analysis without Lyman-α data. In this case, there are two options:
we can either use the 2dF and SDSS galaxy power spectrum data as a constraint
only on the shape of the matter power spectrum, as already done in the previously;
or introduce a bias prior derived e.g. from the third and fourth-order galaxy corre-
lation function of the 2dF catalogue [131, 4], in order to keep an information on the
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Figure 6.6: Two-dimensional likelihood for the amplitude of the isocurvature mode
and of the cross-correlation component, near the pivot scale. We adopted a flat
prior within the ellipse (which appears here as a circle) in which these parameters
are defined.
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Figure 6.7: Likelihood of the isocurvature-related parameters, for the three combi-
nations of data sets described in section 6.2.1: “Lyman-α” (red), “2dF bias prior”
(green) and “none” (blue). (Left) Marginalized 1σ and 2σ confidence levels in the
(α, 2β[α(1− α)]1/2) space. (Right) Marginalized probability distribution for niso.
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Figure 6.8: Favored ranges for the matter power spectrum P (k) in the three runs
“Lyman-α” (dark), “2dF bias prior” (medium) and “none” (light), compared with
our Lyman-α data, from the LUQAS quasar spectra (left) and from the re-analyzed
Croft et al. spectra (right). The bands represent the envelope of all the matter power
spectra in the Markov chains (after eliminating models with the worse likelihood).
Each power spectrum has been computed at the median redshift of the data and
re-expressed in units of km/s. In addition to the statistical errors, the data points
share an overall effective calibration error, whose standard deviation is displayed in
the top right corners. For the run including the Lyman-α data, each power spectrum
has been divided by the value of the calibration parameter. The red dashed curves
show the particular power spectrum discussed in section 6.2.1.
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amplitude of the matter power spectrum2.

For these three cases, that we call “Lyman-α”, “2dFbias prior” and “none”, the
2σ upper bound on α are respectively equal to 0.4, 0.5 and 0.5. The likelihoods for
the most interesting parameters are displayed in Fig. 6.7. As expected, the Lyman-
α data set is significantly more powerful than the 2dF bias prior for cutting out
models with large α, and even more clearly, with large niso or large anti-correlation,
as can be seen in Fig. 4. It is important to note that without these data, all results
depend on our arbitrary prior niso < 4: values far beyond this upper bound could
still be compatible with the data, as also found in Ref. [156] when using the same
pivot scale. In the presence of the Lyman-α data, we get a robust upper bound on
niso, and none of our priors play a role in the final results, with the exception of the
well-motivated δcor prior.

The impact of the Lyman-α data can be understood visually from Fig. 6.8.
After running each case, we consider the collection of all matter power spectra in
our Markov chains (except models with a bad posterior likelihood L < Lmax/5).
The gray bands in Fig. 6.8 correspond to the envelope of all these P (k)’s, compared
to the Lyman-α data points. As expected, when the Lyman-α is not used, the
band gets very wide above the wavenumber k ∼ 0.2 h/Mpc ∼ 2 × 10−3 s/km (note
that for models with niso = 4, the small-scale power spectrum is asymptotically
flat). The role of the bias prior is marginal: it simply favors models with the
lowest global normalization, but without affecting the isocurvature fraction and tilt.
Using the Lyman-α data, we can exclude any break in the power spectrum on scales
k ≤ 3 h/Mpc ∼ 3 × 10−2 s/km. This results in much stronger constraints for the
parameters (α, β, niso), as can be seen from Fig. 4.

Checking the validity of the Ly-α data fitting procedure

We apply the strategy described in section 4.6 of Chapter 4 in order to check the
validity of our Lyman-α data fitting procedure. We take the large number of samples
contained in our Markov chains, and eliminate all models with a likelihood smaller
than Lmax/10 (in terms of effective χ2, this corresponds to ∆χ2 = χ2 − χ2

min >
20). We then select the model with the largest value of α, which represents the
strongest deviation from the purely adiabatic model. The corresponding matter
power spectrum is plotted in Fig. 6.8 and has a break around k ∼ 5 h/Mpc ∼
5 × 10−2 s/km. Above this wavenumber, the slope of the power spectrum is given
by niso = 2.7. For this “extreme” model, we perform a hydrodynamical simulation
as described in section 4.6, and compare the bias function bF (k) with that assumed
throughout the analysis. As shown in Fig.6.9, in the range 0.003 < k < 0.3 km/s
probed by the data, the difference between the two functions is very small with
respect to the statistical errors on the data. We conclude that in the present context,

2Technically, our bias prior is implemented in the same way as in Ref.[181]: see Eq. (27) and
following lines in this reference.
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Figure 6.9: (Left) The ratio bF (k)2 ≡ Pflux(k)/Pmatter(k) at z = 2.75, computed from
the hydrodynamical simulations as the ratio of the flux power spectrum (averaged
over 1000 line-of-sights) over the input linear matter power spectrum. The solid blue
curve shows the result for an adiabatic ΛCDM close to the best-fit model, while the
dashed red curve was obtained from the “most extreme AD+CDI mixed model”
defined in section 6.2.1 and here labelled as ΛCDI. The green band shows the region
in which the Lyman-α data is used in the present analysis.(Right) Likelihood for
fiso in the curvaton model.

our Lyman-α data fitting procedure is robust, and does not introduce an error in
the 1σ or 2σ bounds derived for each parameter of the AD+CDI mixed model.

6.2.2 The role of parametrization and priors

The fact of choosing a top-hat prior in the (α, 2β
√

α(1 − α)) parameter space is
rather arbitrary. Other groups prefer to take top-hat priors on fiso, defined in
Chapter 3, and cos ∆ = β. Due to the non-linear transformation between the two
basis, they are clearly not equivalent in terms of priors.

We checked this issue explicitly with an independent run based on the (fiso, cos ∆)
basis. The results are summarized in Fig. 6.10. As expected from the Jacobian, the
(fiso, cos ∆) option gives more weight to models with a small isocurvature fraction.
For instance, the run with a flat prior on fiso gives a 1σ bound fiso < 0.26, while that
with a flat prior on α gives fiso < 0.66. However, at the 2σ level, the relative differ-
ence is small (fiso < 0.75 versus fiso < 0.87) because the Jacobian is asymptotically
flat.

There is no absolute optimal choice of parameter basis and priors. This intrinsic
ambiguity of Bayesian analyses should always be kept in mind, especially when
quoting bounds on models which are not strictly needed by the data, which is the
case here. However, it is reassuring that the 2σ contours obtained from the the two
runs and compared in Fig. 6.10 are roughly in agreement.
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Figure 6.10: Two-dimensional 68% and 95% confidence limits for the CDI mode
amplitude and cross-correlation angle (evaluated at the pivot scale). The two plots
show the results of two independent runs with different parameter basis and priors.
On the left (solid red curves), the parameters are (α, 2β

√

α(1 − α)), with a flat prior
within the ellipse. On the right (solid black lines), the parameters are (fiso, cos ∆),
related to the previous parameters through Eqns.(3.21), with a flat prior within the
square. The dashed curves show for comparison the likelihood contours obtained
for one parameter set, assuming a flat prior on the other parameter set.
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6.2.3 Specific isocurvature models: The curvaton

The curvaton hypothesis is an ingenuous way to generate the observed curvature
perturbation from a field (the curvaton) different from that which drives inflation
(the inflaton) [167]. In practice there is not much difference in the phenomeno-
logical signatures left in the CMB and LSS compared to an ordinary inflationary
model. However, there are a few cases in which it is possible to leave a “residual”
isocurvature component, together with the dominant curvature contribution. More
specifically, in the curvaton models in which the curvaton field is responsible for the
CDM component of matter, there are various possibilities depending on the time of
creation of CDM versus the decay of the curvaton field.

In this section we derive bounds on this specific model. We developed the theo-
retical part in section 3.3 where the different scenarios were enumerated.

Since case 2) is already excluded at many sigma, and case 3) is essentially iden-
tical (except for niso = nad) to our generic analysis, we will concentrate on case 4)
of a maximally anti-correlated mixture of isocurvature and adiabatic modes with
equal tilts and δcor = 0. Our results are summarized on the right panel of Fig. 6.9,
which shows the likelihood distribution for the generic curvaton model. We have
used nad = niso, δcor = 0, and β = ±1, which is equivalent to β = 1 and fiso positive
or negative: fiso > 0 corresponds to β = 1, or positive correlation between Rrad

and Srad, i.e. suppression of power in P (k) and in the large-scale CMB temperature
spectrum; while fiso < 0 corresponds to the opposite anti-correlated case.

We find fiso = 0.04 ± 0.09 at the pivot scale at the 2σ-level, which implies
r > 0.98 at the same CL (see section 3.3 for the definition of r). In our opinion,
such a stringent constraint on the fraction of energy density in the curvaton at decay
calls for a tremendous fine tuning (there is no physical reason to expect that the
curvaton should decay precisely when it is starting to dominate the total energy
density of the universe, within 2%), which makes the curvaton hypothesis in its
most attractive scenario very unlikely.

6.2.4 Specific isocurvature models: Double inflation

Another chance to generate an observable isocurvature signature is through the
possible presence of two scalar fields driving inflation [35, 36, 72, 73]. The simplest
case at hand is that of two massive fields coupled only gravitationally:

L =
1

2
(φh;µφ

;µ
h −m2

hφ
2
h) +

1

2
(φl;µφ

;µ
l −m2

l φ
2
l ) , (6.8)

where mh and ml are the masses of the heavy and light fields respectively.

We assume slow-roll conditions during inflation, and use the number of e-folds
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till the end of inflation s = − ln(a/aend) to parametrize the fields as:

φ2
h =

s

2πG
sin2 θ; φ2

l =
s

2πG
cos2 θ , (6.9)

Using the field and Friedmann equations, we can solve for the rate of expansion
during inflation:

H2(s) ≃ 2

3
s ·m2

l [1 + (R2 − 1) sin2 θ] , (6.10)

where R = mh/ml, and find the number of e-folds as a function of θ:

s(θ) = s0
(sin θ)2/(R2−1)

(cos θ)2R2/(R2−1)
. (6.11)

The perturbed Einstein equations can be solved for long wavelength modes in
the longitudinal gauge. Assuming that the heavy field decays into CDM whereas
the ligth field produces other species, we find the magnitudes of the curvature and
entropy perturbation at horizon crossing. During radiation domination and for
super-Hubble modes, this gives:

Rrad(k) = −
√

4πG

k3
Hks

1/2
k

(

sin θk eh(k) + cos θk el(k)
)

Srad(k) =

√

4πG

k3
Hks

−1/2
k

(
eh(k)

sin θk
− R2 el(k)

cos θk

)

(6.12)

where ei(k) are gaussian random fields associated with the quantum fluctuations of
the fields, and the subindex k implies the value of the corresponding quantity at
horizon crossing during inflation. One typically expects sk ≃ 60. It can be seen
from (3.19) that the correlation power spectrum has no scale dependence, and thus,
for this model ncor = 0, while the adiabatic and isocurvature tilts are described on
Eqns. (3.2.1)). Their values, for sk = 60, are typically nad = 0.97 and niso in the
range [0.97, 0.90] for R ∈ [1, 4]. Since niso > 0.93 at 95% c.l., models with large
values of R are ruled out.

It was shown in [14] that a relationship between α and β can be found. It can
be simply expressed as a straight line in our parameter space:

2β
√

α(1 − α) =
2(R2 − 1)

sk
(1 − α) . (6.13)

On the other hand, for these models, the parameters α and β have minimum and
maximum values respectively, which only depend on the ratio R and the number of



6.3 Bounds on the axionic window 139

e-folds sk,

αmin =
(R2 + 1)2

s2
k + (R2 + 1)2

, (6.14)

βmax =
R2 − 1

R2 + 1
, (6.15)

2β
√

α(1 − α)
∣
∣
∣
max

=
2sk(R

2 − 1)

s2
k + (R2 + 1)2

. (6.16)

Applying the results of our data analysis, we find that the inclusion of the Lyman-
α data significantly improves the previous bound on R to R < 3 at 95% c.l. This
bound comes mainly from a combination of bounds on 2β

√

α(1 − α) and niso.

We did not find necessary to generate a ncor = 0 sampling for this model. In
our results, the parameter δcor has a flat distribution and thus is unconstrained. We
therefore expect similar results when fixing it to zero.

6.3 Bounds on the axionic window

As explained above and in Chapter 3, the existence of an axionic field during inflation
(i. e. axions generated via the misalignment angle mechanism) could lead to an
isocurvature perturbation on large scales with a strenght that would depend on the
particular model and the value of the initial misalignment angle.

In this section we continue the theoretical analysis from section 3.4 and challenge
the presence of this isocurvature signal in light of the available data. We also consider
possible scenarios in which our conclusions would not hold. We must be clear about
the fact that we are considering a particular set of hypothesis and if these fail to
occur we cannot ensure the validity of our results.

We not only take into account purely cosmological considerations but we also
apply constraints on fa coming also from astrophysical constraints.

6.3.1 Non-Isocurvature bounds on the axionic scale

We now describe bounds on the axionic parameters coming from sources other than
the isocurvature component in the CMB. Note that some of the following bounds are
generic and apply to every production mechanism or inflationary scenario while some
others are rather model dependent. More precisely, we will enumerate the different
bounds on the axion parameter space (Minf , fa) associated with the misalignment
mechanism of axion production during inflation, Minf being the energy scale during
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inflation

Minf =

√

MPHinf
√

8π/3
,

and MP ≡ G−1/2 is the Planck mass. The explicit implications of these bounds are
presented on Figs. 6.12.

The scale of inflation

The non-detection of tensor modes [5] imposes a constraint on the inflationary scale.
The current bound on the tensor to scalar ratio is:

r ∼
(

4 × 104Hinf

MP

)2

< 0.3 at 95% c.l. , (6.17)

which sets an upper bound on the inflationary scale:

Minf < 3 × 1016 GeV . (6.18)

In Figs. 6.12, this constraint corresponds to the hatched forbidden region.

Supernova 1987A bounds

The observed neutrino luminosity from supernova 1987A imposes a bound on the
axion luminosity that is saturated for 10−2 eV < ma < 2 eV [45]. Other astrophysical
and laboratory searches rule out an axion heavier than 1 eV (see [42, 45] for a detailed
discussion). Therefore, we have:

ma < 10−2 − 10−3 eV , (6.19)

or equivalently, fa > 109 − 1010 GeV. The forbidden region is (blue-)shaded in
Figs. 6.12.

Axionic cosmic strings production

As mentioned before, in the case of symmetry restoration at high energy, axions can
be produced from the decay of cosmic strings, and we should impose a bound on
their relic density

ωstr
a ≤ ωcdm , (6.20)

where ωi stands for Ωih
2 and Ωstr

a is taken from Eq. (3.87). Taking Ωcdm h
2 < 0.123

(see Eq.(6.33)) we get

fa < 1.25 × 1011GeV . (6.21)
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This inequality must be imposed in two cases: fa > (Hinf/2π), corresponding to
symmetry restoration during inflation3 [67], and fa > Trh, corresponding to symme-
try restoration after reheating [58]. Actually, it is worth mentioning that thermal
corrections induce a positive mass-squared term m2

eff = T 2
rh/12, so the precise con-

dition for symmetry restoration is

T 2
rh/12 ≫ λf 2

a . (6.22)

Therefore, the usual statement that symmetry is restored whenever fa > Trh as-
sumes that the self-coupling constant λ is of the order of 0.1. We will proceed with
this assumption, but one should keep in mind that the exact condition is model-
dependent.

The actual reheating temperature Trh is still unknown. This is the temperature
at which the inflaton decays, once its half life has been exceeded by the age of the
universe, that is, when H ∼ Γ. Most of the thermal energy comes from perturbative
decays of the inflaton and, assuming that the decay products are strongly interacting
at high energies, we can estimate the reheating temperature as

Trh ≃ 0.1
√

ΓMP ≃ 0.02 heff

√

mMP ≤ 2 × 1011 GeV , (6.23)

where Γ = h2
effm/8π is the inflaton decay rate, which is typically proportional to the

inflaton mass, m, with heff ≤ 10−3, in order to prevent radiative corrections from
spoiling the required flatness of the inflaton potential [65]. This estimate shows the
generic inefficiency of reheating after inflation, where the scale of inflation could be of
order 1015 GeV and the reheating temperature ends being many orders of magnitude
lower. For instance, for Starobinsky type inflation, the weak gravitational couplings
give a reheating temperature of order Trh ∼ 109 GeV, while in chaotic inflation
models, typical values are of order 1010 − 1011 GeV. We can parametrize the effect
on the rate of expansion by introducing an efficiency parameter, ǫeff , such that
Hrh = ǫeff Hend. Values of ǫ range from 10−13 for Starobinsky inflation, to order one
for very low scale inflation.

Within certain low scale inflationary models, such as hybrid inflation, the effi-
ciency of reheating can be significant because the rate of expansion at the end of
inflation is much smaller than any other mass scale and the inflaton decays before the
universe has time to expand, therefore all the inflaton energy density gets converted
into radiation.

We can parametrize the effect on the rate of expansion by introducing an ef-
ficiency parameter, ǫeff , such that Hrh = ǫeff Hend. Values of ǫ range from 10−13

for Starobinsky inflation, to order one for very low scale inflation. If the reheating
temperature is higher than fa it could eventually lead to a restoration of the PQ

3Note that for simplicity, we impose this condition as if Hinf was constant at least during the
observable e-folds of inflation (typically, the last sixty e-folds). In principle, the amplitude of
quantum fluctuations (Hinf/2π) could fall below fa precisely during the observable e-folds, see e.g.
[69], but we will ignore this possibility here.
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symmetry. The subsequent spontaneous symmetry breaking would generate axionic
cosmic strings that would not be diluted away by inflation.

In summary, if the PQ symmetry is restored by thermal fluctuations after re-
heating, i.e.

Trh = 0.1
√

HrhMP = 0.1
√

ǫeffHinfMP > fa , (6.24)

then we must impose the condition (6.20). In Figs. 6.12, we have distinguished
two cases: one in which the process of reheating the universe is very inefficient
(ǫeff ≤ 10−12), and there is no thermal restoration of the PQ symmetry after inflation,
and another one in which ǫeff = 10−4 so that the symmetry might be restored. In
both cases the constraint coming from string production and decay corresponds to
the triangular (red-)shaded exclusion region.

Cold Dark Matter produced by misalignment

As for axions produced by string decay, the relic density of axions produced by
misalignment should not exceed the total cold dark matter density:

ωa ≡ Ωa h
2 ≃ 1.3〈Θ2

1f(Θ1)〉
(

1µeV

ma

)7/6

= 2.8 × 107〈Θ2
1f(Θ1)〉

(
fa
MP

)7/6

. ωcdm .

(6.25)
The bounds on ωcdm from our analysis and considerations about the particular in-
flationary model put severe constrains on the axion window. First, the inequality
(6.25) provides a stringent upper limit on fa if 〈Θ2

1f(Θ1)〉 is of order one. In partic-
ular, in the case of complete quantum diffusion during inflation, we have seen that
〈Θ2

1f(Θ1)〉 = 1.2 π2/3 and

fa ≤ 2.5 × 1011GeV
(ωcdm

0.12

)6/7

. (6.26)

This constraint is shown in Figs. 6.12 as a dotted line, excluding the light green
region.

In the absence of efficient quantum diffusion, Θ1 could take any nearly homoge-
neous value in our Universe: so, it is possible in principle to assume that 〈Θ2

1f(Θ1)〉
is extremely small (this coincidence can be justified by anthropic considerations4),

4There has been plausible speculations that our presence in the universe may not be uncorrelated
with the values of the fundamental parameters in our theories. Such anthropic arguments normally
arise in terms of conditional probability distributions of particular observables. In particular,
the axion abundance is a natural parameter that could be bounded by those arguments, see e.g.
Refs. [69, 139] where it is suggested that the initial misalignment angle should be such that the main
CDM component be axionic. In this case, one has a concrete prediction for Ra = Ωa/Ωcdm = 1,
and therefore the initial misalignment angle is directly related to the axion mass, see Eq. (6.25),

ma = 9 µeV 〈Θ2

1f(Θ1)〉6/7 . (6.27)

Having full diffusion, 〈Θ2
1f(Θ1)〉 ∼ 1.2π2/3, implies ma ∼ 30 µeV, just within reach of present
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and to relax the bound on fa. However, the mean square cannot be fine-tuned to be
smaller than the amplitude of quantum fluctuations at the end of inflation. Using
Eq. (3.96), we see that 〈Θ2

1〉 can only vary within the range
(
Hinf

2πfa

)2

∆N < 〈Θ2
1〉 <

π2

3
, (6.28)

with ∆N ∼ 30 is the number of inflationary e-folds associated with scales that
reentered the Hubble radius when the QCD transition took place, see Eq. (3.97).
This gives a model-independent constraint

Minf ≤ 2.5 × 1015GeV
(ωcdm

0.12

)1/4
(

30

∆N

)1/4 (
fa

1012GeV

)5/24

(6.29)

which holds only in the region where
(
Hinf

2πfa

)2

∆N <
π2

3
, (6.30)

otherwise it should be replaced by (6.26). This bound excludes the dark green region
in Figs. 6.12.

6.3.2 Isocurvature bounds on the axionic scale

As mentioned before, the axionic field induces an isocurvature component in the
CMB anisotropies that must be considered when constraining the model. In this
work, we assume that axions are the only source of isocurvature modes. Taking
expression (3.108) for the isocurvature fraction α, replacing Ra by ωa/ωcdm and
using Eq. (6.25), we obtain

α =
0.9 × 107ǫk

ω2
cdm

(
MP

fa

)5/6

. (6.31)

The analysis of the next section will provide bounds on α and ωcdm. Also, it will give
constraints on the curvature power spectrum 〈|R(k)|2〉, from which one can derive
a relation between ǫk and Minf , using equation (3.103). Therefore, the amplitude of
isocurvature modes provides some independent constraints in the (Minf , fa) plane,
corresponding to the (yellow-)dashed forbidden region in Figs. 6.12.

We should distinguish here between two cases:

• Quantum de Sitter fluctuations induce PQ symmetry restoration
during inflation. We have already seen that in this case, the real and imag-
inary parts of the PQ behave like light fields during inflation, thus leaving a
long wave isocurvature perturbation on the axion field. In this case, the above
constraint from CMB anisotropies is applicable.

axion dark matter experiments. On the other hand, we might happen to live in an unusual region
of the universe with an extremely low value of 〈Θ2

1〉, a large value of fa and still Ra = 1.
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Parameter Prior probability range

ωB (0.016,0.030)
ωcdm (0.08,0.16)
θ (1.0,1.1)
τ (0.01,0.2)
nad (0.85,1.1)
As (2.7,4.5)
|α| (−1,1)

Table 6.4: Prior probability ranges of the sampled parameters (we sampled from |α|
instead to avoid boundary effects near the maximum likelihood region).We set our
pivot scale at k = 0.002 Mpc−1.

• Thermal fluctuations induce PQ symmetry restoration after reheat-
ing. If the reheating temperature is much higher than fa then one expects
thermal fluctuations to modify the effective PQ potential and induce a pos-
itive mass-squared term, m2

eff = T 2/12 ≫ λf 2
a . In this case, the radial part

is quickly driven to zero everywhere in the universe. All previous axion fluc-
tuations are erased and we are left with no bounds from axion isocurvature
temperature anisotropies. So, for sufficiently large ǫeff , the isocurvature con-
straint does not apply above a given line in the (Minf , fa) plane , and the
allowed region is split in two parts (as in the right panel of Fig. 6.12).

6.3.3 Axionic window and the Inflationary Model

Under the assumptions stated on section 6.1 (and w fixed to −1) plus the general
considerations mentioned above, we want to tighten the current allowed range for
fa. Thus, we need to compute the allowed cold dark matter and isocurvature con-
tribution given several sets of data, namely WMAP-III (TT, TE and EE), VSA,
CBI, and ACBAR; large scale structure data from SDSS and 2dF, and the SnSCS
experiment.

Our parameter space and the top hat prior probability distribution that was
assigned to each parameter are described in table 6.4 where α is measured at a
pivot scale k = 0.002 Mpc−1. Note that previous studies [14] indicated a very weak
sensitivity of this data to niso, while in our model niso = 1 − 2ǫk is very close to
one. So, we safely fix niso to exactly one without modifying the results. We used the
Metropolis-Hastings algorithm implemented by the publicly available code CosmoMC

[127] to obtain 32 Monte Carlo Markov chains, getting a total of 1.1× 105 samples.
We find a χ2/DOF = 1.01 and the worst variance of chain means over the mean of
chain variances value is 1.04 (See Chapter 5 and [172]).

The one dimensional posterior probability distributions for sampled and derived
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Figure 6.11: The one dimensional distributions of the sampled parameters.

parameters are depicted in Fig. 6.11. In particular, the best-fit value for α is α =
8 × 10−4, and the 2σ bound for the marginalized distribution is:

α < 0.08 at 95% c.l (6.32)

while for Ωcdm h
2 we get:

Ωcdm h
2 = 0.123 ± 0.008 at 95% c.l. (6.33)

Due to the entanglement existing for the axionic scale and the inflationary scale,
it is very hard to make a model independent analysis to predict the allowed range
inside the parameter of space. As a matter of fact, we do need to consider which in-
flationary model we assume is taking place to be able to consistently impose bounds
on the axionic model. Therefore, we first analyze our results under the least pos-
sible assumptions and then we explicitly choose one inflationary model and impose
particular bounds under that assumption.

A (nearly) model-independent analysis

At least two bounds in the (fa,Minf) plane are completely model-independent: the
upper bound Minf < 3×1016 GeV, coming from the non-observation of gravitational
waves in the CMB and the lower bound fa > 1010 GeV from astrophysical constraints
(see Sec. 6.3.1).

When the PQ symmetry is restored at high energy, we must impose ωstr
a < 0.123,

where ωstr
a is taken from Eq. (3.87): this gives fa < 1.25 × 1011GeV. As explained

in Secs. 6.3.1 and 6.3.2, this constraint applies when (Hinf/2π) > fa during inflation
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and also when Trh > fa after reheating (the latter bound depends on ǫeff in each
particular model).

Even if there is no significant axion relic density from string decay, there is one
associated with the misalignment angle mechanism. As explained in Sec. 6.3.1, the
constraint ωa < 0.123 gives fa < 2.5 × 1011GeV, unless the misalignment angle
is fine-tuned to very small values. In the latter case, there is still a much weaker
model-independent bound

Minf ≤ 2.5 × 1015GeV

(
fa

1012GeV

)5/24

. (6.34)

All these bounds are summarized on Figs. 6.12, with thick solid lines for model-
independent constraints, and dotted lines for model-dependent ones.

Let us finally discuss the impact of the isocurvature mode limit α < 0.08, which
applies as long as the PQ symmetry is not restored by thermal corrections, Trh < fa.
Our results for the amplitude of the primordial curvature spectrum gives a relation

ǫk ∼ 3 × 108

(
Minf

MP

)4

. (6.35)

Substituting in Eq. (6.31), we see that the constraint α < 0.08 finally gives

Minf ≤ 1013GeV

(
fa

1012GeV

)5/24

. (6.36)

So, the isocurvature mode limit excludes a large region in parameter space, and
preserves only two regions The first one is present only if reheating is efficient enough,
ǫeff ≥ 4 × 10−12, and obeys to

1010GeV < fa < 1.2× 1011GeV ,
6 × 1010GeV√

ǫeff
< Minf < 3× 1016GeV . (6.37)

The second one, for which the PQ symmetry is broken during inflation but the
isocurvature mode is too small to be excluded by current cosmological data, corre-
sponds to

1010GeV < fa < 2.5 × 1011GeV , Minf < 8 × 1012GeV , (6.38)

where we assumed that the average misalignment angle in the observable universe is
of order one: otherwise, the upper bound on fa could be relaxed significantly, while
that on Minf would only increase slightly, as fa to the power 5/24, see Eq. (6.36).

Bounds for chaotic inflation with a quadratic potential

Inflation with a monomial potential V (φ) ∝ φα is usually called chaotic inflation.
The latest WMAP results combined with other data sets essentially rule out cases
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with α > 4, while the quartic case α = 4 is only in marginal agreement with the
data. Therefore, in this section we only consider the case of a quadratic potential
V (φ) = 1

2
m2φ2, still favored by observational bounds.

Using the COBE normalization, it is possible to prove that the mass should be
of order m ∼ 5 × 10−8MP, and to show that N∗ e-folds before the end of inflation,

φ2
∗ =

N∗
2π
M2

P . (6.39)

In particular, between Nobs and NQCD the scale of inflation should be in the range

3×1015GeV < Minf < 4×1015GeV , 3×1012GeV < Minf < 4×1012GeV . (6.40)

So, if fa is close to 1010 or 1011GeV, one has Hinf/2π ≥ fa and the PQ symme-
try is broken by quantum fluctuations during inflation. Still, the constraint from
isocurvature modes applies, unless the symmetry is restored by thermal fluctua-
tions. Reheating after chaotic inflation is expected to lead to a temperature Trh of
the order of 1010 or 1011GeV, which is precisely the allowed range for fa. So, if fa
is pushed down to 1010GeV while Trh is pushed up to 1011GeV, a very brief stage of
thermal restoration could occur, and could be sufficient for erasing isocurvature per-
turbations. In fact, the thermal corrections induce a temperature dependent mass
meff = T 2/12, which should larger than λf 2

a in order for symmetry restoration by
thermal fluctuations to occur. If λ is not too small (say of order 0.1) then indeed
the condition is T > fa, otherwise one has to consider the extra factors.

Note that fa cannot be much bigger than 1011GeV: if it was the case, thermal
symmetry restoration after inflation would be impossible, and given the value of Minf

the isocurvature constraint of equation (6.36) would give fa ≥ 8 × 1023GeV ≫MP.
So, the only possibility for reconciling the PQ axion with chaotic inflation is to lay
within a small region with fa ∼ Trh ∼ 1010−11GeV.

Bounds for low scale inflation

We have seen that unless 〈Θ2
1〉 is tuned to very small values, which sounds unnatural,

a very stringent bound Minf < 1013GeV can be derived on the energy scale of
inflation. So, we should study the viability of the axion model in the context of
low scale inflation. This was essentially the original motivation in Ref. [12] for
introducing hybrid inflation. Nowadays, many low scale inflation models can be
built in the generic framework of hybrid inflation, see Ref. [30].

For low-scale hybrid inflation, the sign of the tilt nad − 1 is given by that of the
second derivative of the potential with respect to the inflaton. The latest bounds
on the adiabatic tilt nad = 0.987+0.019

−0.037 [5], and our own analysis nad = 0.966± 0.033
(at two sigma) place low-scale hybrid inflationary models with a convex potential
in a vulnerable position. This includes the most conventional hybrid inflationary
models, with a quadratic mass term for the inflaton. Low-scale hybrid inflation with
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Figure 6.12: On the left panel, we show the bounds in the (Minf , fa) plane, assuming
that reheating is very inefficient and the PQ symmetry can never be thermally
restored (ǫeff ≤ 4 × 10−12). On the right, we show the same parameter space by
assuming that reheating is very efficient (ǫeff = 10−4) so that the the PQ symmetry
is thermally restored above the dotted line. Details are explained in the text.

a concave potential is more favored by the data. One example of such low-scale
models is provided by supersymetric inflation with a flat direction and logarithmic
loop corrections [135, 30], see also [136]. Here, instead, we chose to study an inverted
hybrid inflationary model [137] as a low scale, negative tilt model of inflation.

Our model assumes no particular value for v, the vacuum expectation value of σ,
the field whose symmetry breaking is responsible for the end of inflation. Its value
is left free and its variation is accounted for as the inflationary energy scale varies.
The potential, in terms of the symmetry breaking field σ and the inflaton φ, is given
by

V (φ, σ) = V0 +
1

2
M2σ2 − 1

2
m2φ2 − 1

2
g2φ2σ2 +

λ

4
φ4 +

λ′

4
σ4 (6.41)

where λ, λ′ and g are coupling constants. Although their value is arbitrary in
principle, radiative corrections must be under control and this imposes constraints
on the coupling constants. The expansion rate during inflation is

H2(φ) =
8π

3M2
P

V0

(

1 − 1

2

m2φ2

V0

)

(6.42)

With the definition above, freedom of choice is achieved for M and/or λ and there
exist a wide range of models that allow for a much lower expansion rate during
inflation compared to that assumed for chaotic models. So, even if we assume that
inflation is long enough for the quantum diffusion to be complete, a case in which
all the bounds of subsection 6.3.3 apply, we can build a successful model of inflation
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with Minf < 1013GeV. Then, the axion scenario with 1010GeV < fa < 1012GeV is
viable.

Note that the bounds of subsection 6.3.3 included all the constraints on the
axionic window, excepted those related to the reheating mechanism. Reheating can
be efficient for the (inverted) hybrid inflation scenario. So, if we want to avoid the
generation of cosmic strings, we should impose the bound of Eq. (6.24)

Minf < 10
1√
ǫeff

(
3

8π

)1/4

fa . (6.43)

For various possible values of ǫeff , the regions forbidden by this constraint are shaded
on the right plot in Fig. 6.12. This last constraint can cut a part of the allowed
window in (Minf , fa) space, and further reduce the upper bound on Minf .

Once all the bounds have been imposed, we are left with a range

1010GeV . fa . 1012GeV =⇒ 6µeV . ma . 600µeV (6.44)

for the PQ symmetry breaking scale and the mass of the QCD axion.

6.3.4 Possible loopholes

In this subsection we will explore those loopholes we have left open for the axion to
be the dominant component of cold dark matter.

Production of cosmic strings during reheating

Even if the reheating temperature of the universe is too low for a thermal phase
transition at the Peccei-Quinn scale, it is possible that axionic cosmic strings be
formed during preheating if the field responsible for symmetry breaking at the end
of inflation is the Peccei-Quinn field. Then, the residual global U(1) symmetry of
the vacuum gives rise to axionic cosmic strings. At present there is no prediction for
what is the scaling limit of such a mesh of strings produced during preheating. A
crucial quantity that requires evaluation is the fraction of energy density in infinite
strings produced at preheating, since they are the ones that will give the largest
contribution to the axion energy density. It could then be that axionic strings
produced at preheating may be responsible for the present axion abundance. We
leave for the future the investigation of this interesting possibility.

Axion dilution by late inflation

When imposing bounds on the axion mass from its present abundance, it is assumed
that no there is no significant late entropy production or dilution from a secondary
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stage of inflation. We truly don’t know. It has been speculated that a short period
of inflation may be required for electroweak baryogenesis to proceed [138]. In such
a case, a few e-folds (N ∼ 5) of late inflation may dilute the actual axion energy
density by a factor γ = e−3N ∼ 10−7, easily evading the bounds.

6.4 Conclusions

Using the measurements of temperature and polarization anisotropies in the CMB
by WMAP-I, together with recent data from VSA, CBI, and ACBAR; the matter
power spectra from the 2dF galaxy redshift survey and the Sloan Digital Sky Survey,
as well as the recent supernovae data from the SN Search Team, one can obtain
stringent bounds on the various possible isocurvature components in the primordial
spectrum of density and velocity fluctuations.

In section 6.1 we have considered correlated adiabatic and isocurvature modes,
and find no significant improvement in the likelihood of a cosmological model by
the inclusion of an isocurvature component, see Table 1 and Fig. 3. So, the pure
adiabatic scenario remains the most economic and attractive scenario.

In contrast with the WMAP-I analysis, we decided not to include any data from
Lyman-α forests initially because constraints on the linear power spectrum coming
from these experiments are derived under the assumption of a plain adiabatic ΛCDM
scenario. We did not include either strong priors on the isocurvature spectral index,
unlike previous analyses [13], and allowed this parameter to vary up to niso = 3. This
conservative approach leads to a preference for models with a very blue isocurvature
primordial spectrum, and to upper bounds on the isocurvature fraction significantly
larger than in other recent analyses: on a pivot scale k = 0.05 hMpc−1 the amplitude
of the correlated isocurvature component can be as large as about 60% for the cold
dark matter mode, 40% for the neutrino density mode, and 30% for the neutrino
velocity mode, at 2σ. This leaves quite a lot of freedom, for instance, for double
inflation models with two uncoupled massive fields. Assuming that one of these
fields decay into Cold Dark Matter, our results simply imply that the mass of the
heavy field cannot exceed five times that of the light field at the 2σ confidence level.

Realising of the lack of data at small scales, we decided to add the Lyman-α data.
In section 6.2.1 we assess the inclusion of the power spectrum coming from Lyman-α
data and we study the impact caused in the results. We find that the systematics
induced − in particular, those associated with the recovery of the linear dark matter
power spectrum from the flux power spectrum − are greatly compensated by the
valuable information on the small-scale matter power spectrum provided by the
Lyman-α data.

We see that for the same prior assumptions and space of parameters, we tighten
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the constrain on α for the CDI model:

α < 0.6 at 95% c.l. to

α < 0.4 at 95% c.l. (6.45)

when adding the Lyman-α data. Focusing on a particular isocurvature model, we
lower the bound on R, the ratio of the masses of the fields for the double inflationary
scenario:

from R < 5 at 95% c.l. =⇒ R < 3 at 95% c.l. (6.46)

by adding the Lyman-α forest data.

The specific impact of the Lyman-α forest data may be most clearly seen on the
constraint on the isocurvature tilt which goes from being practically unconstrained
to niso = 1.9 ± 1.0 where the data is added (see Fig. 6.7). A tilt redder than ∼ 3
does not allow for a such a high isocurvature component at the pivot scale, that is
why we get the reduction shown in (6.45).

In the case of a curvaton scenario where CDM-creation occurs at the decay of the
curvaton – a case in which the adiabatic and isocurvature modes are maximally anti-
correlated, β = −1, and nad = niso – we find fiso < 0.05, still at the 95% confidence
level. This requires that the fraction r of the total density in the curvaton field at
that time be fine-tuned between 0.98 and one.

It is also worth mentioning that when we omit the Lyman-α forest data our
bounds agree very well with those of Ref. [156]. The authors of [156] work with a
pivot scale k0 = 0.02 Mpc−1, but they also show how their results are modified when
they take k0 = 0.05 Mpc−1 like in the present paper: in that case the agreement with
us is particularly good. This is a nice crosscheck useful in many cases to compare
prior hypothesis and statistical methods.

We also used all the deployed machinery to assemble a bridge between particle
physics and observations in cosmology by studying cosmological constraints on the
axionic allowed space of parameters.

On the last section of this chapter, we reviewed various bounds on the cosmolog-
ical scenario in which the cold dark matter is composed of axions plus some other
component (like e.g. neutralinos), and the energy density of axions is produced
by the misalignment mechanism at the time of the QCD transition. In the model,
developed on Chapter 2, a fraction of the cosmological perturbations consists of
isocurvature modes related to the quantum perturbations of the axion during in-
flation. We use this possible signature plus the contribution to dark matter energy
density as a tracer of axions in the universe. In that sense, this work is similar to
that presented in [140]. However, we make a stronger statement about the gener-
ation of isocurvature modes in the case in which the PQ symmetry is restored by
quantum fluctuations during inflation, and we significantly improve previous bounds
coming from the non-observation of isocurvature modes in the CMB, in particular,
given the recent WMAP 3-year data.
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A narrow window for the PQ scale 1010 GeV < fa < 1012 GeV still remains open,
but we show that the main consequence of recent data on cosmological perturbations
is to limit the possible energy scale of inflation in this context, in order not to
have an excessively large contribution of isocurvature perturbations to the CMB
anisotropies. In particular, we show that in the axion scenario, the energy scale of
inflation cannot be in the range 8 × 1012 < Minf < 5 × 1014 GeV, unless one of
the two situations occurs: either reheating leads to a temperature Trh > fa, with
an efficiency parameter ǫeff ≥ 4 × 10−12, and there is another allowed region with
6×1010ǫ

−1/2
eff GeV < Minf < 3×1016 GeV; or the misalignment angle is fine-tuned to

very small values (this coincidence can be motivated by anthropic considerations)
and the upper bound Minf < 1013 GeV can be slightly weakened (by at most one
order of magnitude).

These bounds may be of interest taking into account particle physics experi-
ments searching for the axion, which may help to put very stringent constraints on
inflationary models. Detecting the QCD axion could shed some light on the scale of
inflation and possibly into the mechanism responsible for inflation.

In this respect, there is an intriguing possibility that the PVLAS experiment [141]
may have observed a pseudo-scalar particle coupled to photons. The nature of this
particle is yet to be decided, since its properties seem in conflict with present bounds
on the axion coupling to matter [49, 50], see however [142].

This chapter represents the main body of our results in isocurvature parameter
constraints, and along with Chapter 5 on Model Selection represents the original
work in this thesis.

Both subjects are complementary to each other and are two essential ingredients
on any inference problem.

We have also shown the extremely valuable connection between raw data and
particle physics models such as the possible detection of the axion on cosmological
experiments. Hopefully, this bridge will be more and more firmly established and can
ultimately lead to powerful insight on physics beyond the standard model (another
significant example being the masses of the neutrinos [183]).

As for the future perspective, it is expected [153] that in the near future, with
better data from Planck and other CMB experiments, we will be able to reduce
further a possible isocurvature fraction, or perhaps even discover it. The present
results also suggest that constraining the linear matter power spectrum on scales
which are mildly non-linear today will also be crucial in this respect.
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Over the development of this thesis, we have tried to address two main issues in
contemporary Cosmology. As stated in the title, these are the isocurvature pertur-
bations in Inflationary Cosmology and the problem of Model Selection.

Even though the cosmological paradigm is pretty well settled and it is very
successful on explaining the observed phenomenology, many extensions are still pos-
sible. To name a few of them, the existence of non-gaussianities in the distribution
of the perturbations, the possibility that the spectral tilt depends of the scale, cos-
mic deffects or the observation of a tensor component in the anisotropies spectrum
are broadenings to the most conservative paradigm, challenging to test. Among
these, we chose focusing on constraining the reach of yet another extension, the
isocurvature perturbations.

We believe this was a necessary analysis that has come in the right time as far as
the experimental scenario goes. We are experiencing a time of extreme advances in
observational cosmology. Observations are reaching accuracies that were completely
new to this science- it is indeed the time to start thinking about how to put bounds
on the possible stretches of the model.

To achieve our goals, we initially develop our theoretical tools, underlying models
and parametrizations. We study the phenomenology of the isocurvature models.
We do so using two different approaches. Firstly, we gather a data compilation and
study the possible presence of an isocurvature signal on a model independent way.
We put stringent bounds on the contribution at a given scale using a variety of data
comprising CMB, LSS and SNae Ia data. One of our main results of this analysis
led us to realise of the necessity of the inclusion of data coming from experiments
at scales smaller than what we were using [14].

This way, we set our goal on using the latest data on the Lyman-α forest quasar
absortion spectra. As expected our results turned out to be much more restringent
than what had been obtained previously [15].

We also approached the isocurvature perturbations as a tool for constraining a
given particle physics model, namely the axion. That is, isocurvature is not our goal
by itself but as an indicator of the existence of this axionic field during inflation.
We extend the work of previous analysis and find an allowed window inside the
parameter space spanned by the axionic mass and the energy scale of inflation [184].
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The other very important problem we tackled in this thesis is one less specific
of inflation and more general to data analysis in Cosmology. During the past two
or three years cosmologists had grown more and more concerned about the issue of
determining how many parameters one should use to describe the Universe given a
set of data. We developed a computational tool, the thermodynamical integration to
calculate the Bayesian Evidence, in order to let the data “speak for themselves” and
choose a particular model [76]. All our results and developments on Model Selection
are described on chapter 5.

The perspective for future work seems colossal. The research windows that
remain open in this field are so many and so interesting that it is indeed difficult to
choose only a few. But time is finite for human cosmologists and one needs to focus.

As has been many times stated, cosmology is entering a precision era where a
huge variety of data is becoming accessible. I believe it is a fundamental priority to
interrelate these very different pieces of data with each other in a such a way that
the maximum amount of information possible is exposed.

There is also a great potential in the alliance between observational and theoret-
ical cosmology and particle physics. High precision experiments such as PLANCK
enable us to dig out deeper layers in the cosmic puzzle. In my opinion, some of these
layers would be directly related to physics beyond the standard model.

Issues that remain an enigma for both cosmology and particle physics such as
the nature of dark matter and dark energy or the origin and subsequent evolution
(linear and non-linear) of the primordial perturbations, may start to be unveiled
with the aid of, for example the study of correlation between LSS and CMB by the
ISW effect [185] or the detection of primoridal non-gaussianities in the CMB and
LSS anisotropies [186, 187].

In general, it would be interesting to perform a joint analysis of CMB and other
datasets to shed some light into the following issues:

The nature of dark energy.

One of the most fascinating enigmas of cosmology is the nature of Dark Energy. Soon
we may be able to start discerning between the different models of Dark Energy and
explore its nature.

It is crucial to study the different stages and evolution of the universe. Thus,
the information contained in the CMB data is necessary, albeit insufficient. It is
necessary in order to enable us to fix the underlying background cosmology, ie.
parameters that do not directly influence the growth of structure and only affect the
universe as a homogeneous fluid, in the most precise possible way.

But in addition to this, we need probes that measure the rate of growth of
structures and its power spectrum, in a more recent epoch which is when the DE is
believed to start being relevant.
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Appart from the Supernovae of type Ia, probes such as weak lensing cosmic-shear
data or the Sunyaev-Zeldovich (SZ) galaxy cluster catalogues are excellent tools for
accurate parameter estimation. Both of them provide an independent measurement
of parameters such as Ωm and thus a way of breaking the degeneracies.

I propose a joint analysis of these pieces of data along with a bayesian model
selection of the different parametrizations of the equation of state, w, to study their
relevance. With this examination of the data and the model one could determine
which is the effective model for w that allows us to extract the most information.
In the best case scenario, this could even help design the next generation of exper-
iments. Once we know what the data is willing to show, it will be easier to see it.

Baryon Acoustic Oscillation

We discussed in chapter 4 the nature and importance of the BAO in the galaxy
distributions. In [88] the mean redshift of the spectroscopic sample is zm = 0.35,
but larger catalogues and, apparently, even photometric catalogues, [188], can mea-
sure the sound horizon at recombination at higher redshifts with acceptable error
bars [89].

The potential of such a variety of rulers is readily understood as a way to impose
tighter constraints on the parameters governing the geometry of the universe and
the evolution of the equation of state of the Dark Energy. Nevertheless, even if
the true underlying model is a cosmological constant, the way in which the allowed
region for the standard parameters is squeezed fixes the background cosmology so
that extensions to the conventional inflationary model can be tested.

In this sense, precise baryon acoustic oscillation data will be very useful to con-
strain certain isocurvature models such as the curvaton model or a double infla-
tionary scenario in which both fields have the same mass and behave as one single
massive complex scalar field. It is very interesting the capacity of this new piece of
information and its usefulness for parameter determination.

Cosmological model selection and information content of data.

As more and more data arrives, we will need to address statistical issues more
precisely and uniquely. More precise questions such as the running of the spectral
index or even a departure from a scale-invariant spectrum, may get a deceiving
answer if not enough data is available [160].

It would be extremely interesting to study the model selection problem and
determine whether or not a piece of data is suitable and informative enough so that
a certain number and kind of parameters may be extracted from them. It is also
very interesting the way in which starting assumptions about our model affect the
final results.

Condensing all that was said above, this thesis has served us to address two
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different issues.

The first reading should help us understanding the nature of the isocurvature
perturbations and how they have indeed been constrained quite tightly using differ-
ent pieces of data.

On a broader sense, this thesis tries to point out the recent successes of observa-
tional cosmology, and the importance of linking experiments and data to theory, in
an adequate way, which should be a very fruitful task but by no means trivial. We
need to pay special attention to disentangling physics from statistical artifacts and
perhaps, come up with new techniques better tailored for cosmology.

This should help our task in this era of progress, spectacular advances and en-
thralling excitement about which are the mysteries that lay ahead. Only the Uni-
verse knows...
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Me acuerdo de la primera vez que miré al cielo, a las estrellas. Una noche verano
de los ochenta en El Espinar mi abuelo Joaquin, posiblemente el primer cient́ıfico
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hicisteis de mi estancia en UPenn, dos meses geniales. Gracias a todos por todo-
estas visitas han resultado super enriquecedoras en todos los sentidos.

Agradecimientos a todos y todas los no-profesores que han estado conmigo du-
rante estos años. Jose y Enrique, mis compañeros “permanentes” del 514. No tengo
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514, Fouad, Iñaki, Javi- también me han aguantado lo suyo. Nico, Ernesto y Sergio,
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