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Abstract

In this paper, by constructing equivalent transformations (ETs) of the generalized cylindrical KdV 
(cKdV) types of equations, we transform the variable-coefficient partial differential equations (vc-PDEs) 
into constant-coefficient PDEs (cc-PDEs) under some conditions. Particularly, the classical cKdV equation 
is transformed into the classical KdV equation accordingly, then the exact solutions to the vc-PDEs are 
provided in terms of the ETs. Thus, an effective approach to getting exact solutions to vc-PDEs is presented 
based on the solutions to cc-PDEs.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The cylindrical Korteweg-de Vries (cKdV) equation arises in plasma physics and water waves, 
they are of great importance in mathematical physics, fluid mechanics and nonlinear wave theory, 
etc. In practice, many physical, mechanical and engineering models can be depicted by such 
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variable-coefficient KdV (vc-KdV) types of equations [1–4]. In the present paper, we investigate 
the generalized cKdV type of equation as follows:

ut + a(t)u + βuux + γ uxxx = 0, (1.1)

where u = u(x, t) denotes the unknown function of x and time t , a = a(t) �= 0 is a given analytic 
function, β and γ are arbitrary nonzero constants.

A rough description of this paper is as follows:
First, by using the following Clarkson-Kruskal (CK) type of transformation

u ≡ u(x, t) = A(x, t) + B(x, t)U(X,T ), (1.2)

we transform the variable-coefficient partial differential equation (vc-PDE) (1.1) into the nonlin-
ear constant-coefficient partial differential equation (cc-PDE) as follows

ut + αu + λuux + μuxxx = 0, (1.3)

where α, λ and μ are all constants, while A = A(x, t), B = B(x, t), X = X(x, t) and T = T (x, t)
are functions of x and t to be determined in (1.2). Such a non-degenerate transformation (1.2) of 
variables from (x, t, u) to (X, T , U) is called equivalent transformation (ET) [5–9]. In particular, 
if α = 0, then the nonlinear cc-PDE (1.3) becomes the following classical KdV equation

ut + λuux + μuxxx = 0. (1.4)

Second, we consider the exact solutions to the cc-PDEs (1.3) and (1.4). If the exact solutions 
to these cc-PDEs are obtained, then the exact solutions to vc-PDE (1.1) are provided through ET 
(1.2).

For providing more information to understand the physical process in applications, the ex-
act solutions to the governing equations are required. As a matter of fact, many properties of 
nonlinear PDEs (NLPDEs) can be effectively studied by using their exact solutions [10–12]. 
For example, the exact traveling wave solutions [10] can depict the dynamic behavior of a non-
linear system. W. Hu et al. [12] studied the axial dynamic buckling properties of the nanotube 
by the structure-preserving method and numerical approach, these are all effective methods for 
studying NLPDEs in mathematical physics and physical applications. In addition, P. Clarkson 
and M. Kruskal [5] proposed a direct method for similarity reductions and exact solutions of 
NLPDEs, it is called the CK direct method sometimes. The main feature of this method is that it 
does not involve the group theory, and this method has been greatly extended in recent decades 
[1,5–9]. Moreover, it is known that the Lie group analysis is a systematic method for dealing with 
symmetries, similarity reductions and exact solutions to the NLPDEs [8,9,11,13–23]. Recently, 
we studied some vc-PDEs by Lie group analysis and CK direct method, the symmetries, exact 
solutions and other properties of the equations are provided [9,11,13,16,21–23]. In general, it is 
very difficult to tackle exact solutions to vc-PDEs. In [13], we give all of the point symmetries 
of the generalized cKdV type of equation by the complete group classification method, the ex-
act solutions and conservation laws are considered, but the results are relatively few due to the 
complexity of the matter. While if the equivalent transformations can be given, then we have a 
new approach to getting exact solutions to the vc-PDEs, i.e., we can obtain the exact solutions 
to vc-PDEs in terms of the exact solutions to the corresponding cc-PDEs. This ET method has 
at least one obvious advantage: it can get more exact solutions to the vc-NLPDEs, because the 
exact solutions to cc-PDEs are more richer. Now, we summarize the contribution and novelty of 
the current paper as follows:
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• We construct the ETs to transform the vc-PDEs into cc-PDEs.
• Through the ETs, the exact solutions to the vc-PDEs are provided based on the exact solu-

tions to cc-PDEs.
The main purpose of this paper is to construct the ETs of the form (1.2) for the cKdV types of 

equations and tackle the exact solutions to the vc-PDEs in terms of the ET method. The rest of the 
paper is organized as follows: In Sect. 2, we construct the equivalent transformation of the gener-
alized cKdV equation (1.1), and transform this vc-PDE into cc-PDE (1.3) under some constraint 
condition. As an important example, the classical cKdV equation is transformed into classical 
KdV equation through the ET accordingly, so the exact solutions to the classical cKdV equation 
can be obtained based on the exact solutions to the classical cc-KdV equation. Considering that 
the solutions to cc-KdV equation are given, so the solutions to the cKdV equation are provided 
by the ET given in the present paper. To our best knowledge, this is the first systematic work 
that applies solutions of the classical KdV equation to construct solutions of the cKdV equation 
completely. In Sect. 3, we give all of the point symmetries of cc-NLPDE (1.3), and the symmetry 
reductions and exact solutions to this equation are investigated, thus the exact solutions to the 
generalized cKdV equation (1.1) are presented. Finally, we will conclude our paper in Sect. 4.

2. Equivalent transformations of Eq. (1.1)

In this section, we develop the improved CK direct reduction method for investigating the 
relationship between the variable-coefficient equation (1.1) and its corresponding constant-
coefficient counterpart (1.3).

Firstly, substituting (1.2) into Eq. (1.1), and requiring that U = U(X, T ) satisfies the same 
type of equation as u = u(x, t) with the transformation {u, x, t} → {U, X, T }. That is, requiring 
that {U, X, T } satisfy Eq. (1.3) also, i.e.,

UT + αU + λUUX + μUXXX = 0, (2.1)

where α, λ and μ are all constants.
Then, through the CK reduction method, we get the following result:

Theorem 2.1. For the arbitrary analytic function a′(t) �= 0, that is, a = a(t) is not a constant, in 
view of (1.2), we have

A = x

eF(t)(βG(t) + c1)
+ c2e

−F(t)−βH(t), B = γ λ

βμ
c2

3e
−2βH(t),

X = c3e
−βH(t)x − βc2c3

∫
e−F(t)−2βH(t)dt + c4, T = γ

μ
c3

∫
e−3βH(t)dt + c5, (2.2)

where F = F(t) = ∫
a(t)dt , G = G(t) = ∫

e−F(t)dt and H = H(t) = ∫
dt

eF(t)(βG(t)+c1)
, while ci

(i = 1, 2, ..., 5) are arbitrary constants, and c3 �= 0. �
Thus, if we obtain the exact solution to Eq. (2.1), then the exact solution to Eq. (1.1) can be 

given through the transformation as follows

u(x, t) = x

eF(t)(βG(t) + c1)
+ c2e

−F(t)−βH(t) + γ λ

βμ
c2

3e
−2βH(t)

×U
(
c3e

−βH(t)x − βc2c3

∫
e−F(t)−2βH(t)dt + c4,

γ
c3

∫
e−3βH(t)dt + c5

)
, (2.3)
μ
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under the following condition

αγ c3
3e

F (βG + c1) + βμe3βH − μaeF+3βH (βG + c1) = 0, (2.4)

where F = F(t), G = G(t) and H = H(t) are given by (2.2), c1 and c3 �= 0 are arbitrary 
constants. In other words, under the condition (2.4), Eq. (1.1) can be transformed into the 
constant-coefficient equation (2.1) through the transformation (1.2) with the functions A, B , 
X and T given by (2.2).

Summering the above discussion, we have

Theorem 2.2. If U = U(X, T ) is a solution to Eq. (2.1), then u = A + BU(X, T ) is a solution 
to Eq. (1.1) under the condition (2.4), where A, B , X and T are given by (2.2). �

Furthermore, in view of (2.2), it is easy to see that the parameters λ and μ are nonzero con-
stants, while the other parameter α is arbitrary. In particular, if α = 0, then Eq. (1.1) can be 
transformed into the following classical KdV equation

UT + λUUX + μUXXX = 0, (2.5)

through the equivalent transformation (1.2) with the coefficients given by (2.2). In this case, the 
compatibility condition (2.4) becomes

aeF (βG + c1) = β, (2.6)

where F = F(t) and G = G(t) are given by (2.2), c1 is an arbitrary constant. That is, under the 
condition (2.6), Eq. (1.1) can be transformed into the constant-coefficient KdV equation (2.5)
through the transformation (1.2).

In view of the forms of Eqs. (2.1) and (2.5) are the same as Eqs. (1.3) and (1.4), respectively, 
we have the conclusion: If the exact solutions to cc-NLPDEs (1.3) and (1.4) are obtained, then 
the exact solutions to vc-NLPDE (1.1) are presented immediately through the equivalent trans-
formation (1.2), under the conditions (2.4) and (2.6). In what follows, we only consider the exact 
solutions to cc-NLPDE (1.3).

Now, we make some further discussion on the compatibility condition (2.6). Substituting F =∫
a(t)dt and G = ∫

e−F(t)dt into (2.6) and differentiating this equation, we get

a′ + 2a2 = 0. (2.7)

Solving Eq. (2.7), we get the general solution to this equation as follows

a(t) = 1

2t + k
, (2.8)

where k is an arbitrary constant. In view of (2.8), we can see that Eq. (1.1) becomes the classical 
cylindrical KdV (cKdV) equation under the condition. Summarizing, we obtain the following 
results:

Theorem 2.3. For the classical cKdV equation of the form

ut + 1

2t + k
u + λuux + μuxxx = 0, (2.9)

it can be transformed into the classical KdV equation (2.5) through the equivalent transformation 
(1.2) with the coefficients given by (2.2), where k, λ and μ are constants, and λμ �= 0. �
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Corollary 2.4. In general, if a(t) �= 1
2t+k

, then the generalized cKdV type of equation (1.1) can be 
transformed into cc-NLPDE (2.1) rather than the classical KdV equation (2.5) by the equivalent 
transformation (1.2). �

In other words, if a(t) �= 1
2t+k

, then the equivalent transformation (1.2) cannot transform 
Eq. (1.1) into classical KdV equation (2.5) directly.

Remark 2.1. Generally, it is not easy to get exact solutions to the classical cKdV equation (2.9). 
However, through the CK-type equivalent transformation (1.2), this equation can be transformed 
into the classical KdV equation (2.5), i.e. Eq. (1.4), so the exact solutions to the cKdV equation 
are presented based on the solutions to Eq. (1.4). Considering there are lots of results on the 
solutions to Eq. (1.4), such as traveling wave solutions, solition solutions, and so on, thus the 
exact solutions to Eq. (2.9) are given in terms of the solutions to classical KdV equation, the 
details are omitted here.

3. Exact solutions to vc-NLPDEs

3.1. Exact solutions to cKdV equation (2.9)

First of all, considering the cKdV equation can be transformed into classical cc-KdV equation, 
so the exact solutions to the cKdV equation (2.9) are obtained based on the solutions to the 
cc-KdV equation (1.4). In other words, if the exact solutions to classical KdV equation (1.4)
are given, then the exact solutions to classical cKdV equation (2.9) are provided through the 
equivalent transformation given in Sect. 2. Summarizing, we have

Corollary 3.1. If the exact solutions to classical KdV equation (1.4) are given, then the exact 
solutions to cKdV equation (2.9) are provided through the ET (2.3), where a = a(t) is given by 
(2.8), F = F(t), G = G(t) and H = H(t) are defined in (2.2). �

To our best knowledge, this is the first time to get exact solutions of the cKdV equation based 
on the exact solutions of the KdV equation by the ET method.

3.2. Exact solutions to generalized cKdV equation (1.1)

In this subsection, we only consider the exact solutions to the generalized cylindrical equation 
(1.1). By the Lie group analysis method, we give all of the point symmetries of Eq. (1.3) as 
follows

V1 = ∂x, V2 = ∂t , V3 = λe−αt ∂x − αe−αt ∂u, (3.1)

where α and λ are nonzero constants.
Now, we consider the symmetry reductions and exact solutions to the generalized cylindrical 

equation (1.1) based on the symmetries (3.1) and equivalent transformation between Eqs. (1.1)
and (2.1).

(i) For V1, we have

u = f (ξ), (3.2)
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where ξ = t . Substituting (3.2) into Eq. (1.3), we reduce the equation to the following ordinary 
differential equation (ODE):

f ′ + αf = 0, (3.3)

where f ′ = df/dξ . Solving this equation, we have f = ce−αξ . So the exact solution to Eq. (1.3)
is u(x, t) = ce−αt . Thus, we obtain the exact solution to Eq. (1.1) as follows

u(x, t) = x

eF(t)(βG(t) + c1)
+ c2e

−F(t)−βH(t) + γ λ

βμ
cc2

3e
−2βH(t)

× exp
{

− αγ

μ
c3

∫
e−3βH(t)dt − αc5

}
, (3.4)

where F = F(t), G = G(t) and H = H(t) are given by (2.2), c and ci (i = 1, 2, 3, 5) are arbitrary 
constants.

(ii) For V3, we have

u = f (ξ) − α

λ
x, (3.5)

where ξ = t . Substituting (3.5) into Eq. (1.3), we reduce the equation to the following ODE:

f ′ = 0, (3.6)

where f ′ = df/dξ . Solving this equation, we have f = c. So the exact solution to Eq. (1.3) is 
u(x, t) = c − α

λ
x. Thus, we obtain the exact solution to Eq. (1.1) as follows

u(x, t) = x

eF(t)(βG(t) + c1)
+ c2e

−F(t)−βH(t)

+ γ λ

βμ
c2

3e
−2βH(t)

(
c − α

λ
c3e

−βH(t)x − αβ

λ
c2c3

∫
e−F(t)−2βH(t)dt − α

λ
c4

)
, (3.7)

where F = F(t), G = G(t) and H = H(t) are given by (2.2), c and ci (i = 1, 2, 3, 4) are arbitrary 
constants.

(iii) For V = vV1 + V2, we have

u = f (ξ), (3.8)

where ξ = x −vt . Substituting (3.8) into Eq. (1.3), we reduce the equation to the following ODE:

μf ′′′ + λff ′ − vf ′ + αf = 0, (3.9)

where f ′ = df/dξ , v is a constant denotes the wave speed in wave motion.
(iv) For V = V2 + vV3 (v is a constant), we have

u = f (ξ) − α

λ
x, (3.10)

where ξ = x + vλ
α

e−αt . Substituting (3.10) into Eq. (1.3), we reduce the equation to the following 
ODE:

αμf ′′′ + αλff ′ − ξf ′ = 0, (3.11)

where f ′ = df/dξ .
Thus we reduce NLPDE (1.3) to ODEs (3.9) and (3.11), respectively. If the exact solutions to 

the two ODEs are obtained, then the solutions to Eq. (1.3), and so the solutions to vc-PDE (1.1)
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are given accordingly through the equivalent transformation. However, Eqs. (3.9) and (3.11) are 
nonlinear ODEs, they cannot be solved by the integration generally. Now we give the exact power 
series solution to Eq. (3.11).

Suppose that Eq. (3.11) has a solution in the power series form

f (ξ) =
∞∑

n=0

cnξ
n = c0 +

∞∑
n=1

cnξ
n, (3.12)

where the coefficients cn (n = 0, 1, 2, ...) are constants to be determined.
Clearly, f (0) = c0 is a constant solution to Eq. (3.11). Substituting (3.12) into Eq. (3.11), we 

have

cn+3 = 1

αμ(n + 1)(n + 2)(n + 3)

(
ncn − αλ

n∑
k=0

ckcn+1−k

)
, n = 0,1,2, .... (3.13)

Thus, for arbitrarily chosen constants c0, c1 and c2, in terms of the recursion formula (3.13), 
we get all of the coefficients of (3.12). For example, c3 = − λ

6μ
c0c1, c4 = 1

24αμ
(c1 − 2αλc0c2 −

αλc2
1), c5 = 1

60αμ
(2c2 − 3αλc0c3 − 3αλc1c2), and so on.

Hence, the general solution to Eq. (3.11) in power series form is

f (ξ) = c0 + c1ξ + c2ξ
2 +

∞∑
n=0

cn+3ξ
n+3, (3.14)

where c0, c1 and c2 are arbitrary constants, the other coefficients cn+3 (n = 0, 1, 2, ...) are given 
by (3.13). Accordingly, the power series solution to Eq. (1.3) is

u(x, t) = c0 + c1(x + vλ

α
e−αt ) + c2(x + vλ

α
e−αt )2 +

∞∑
n=0

cn+3(x + vλ

α
e−αt )n+3 − α

λ
x.

(3.15)

Thus, through the ET (2.3), we obtain the exact power series solution to vc-PDE (1.1) as follows

u(x, t) = c0 +c1(X+ vλ

α
e−αT )+c2(X+ vλ

α
e−αT )2 +

∞∑
n=0

cn+3(X+ vλ

α
e−αT )n+3 − α

λ
X,

(3.16)

where A = A(x, t), B = B(t), X = X(x, t) and T = T (t) are given by (2.2), the coefficients 
cn+3 (n = 0, 1, 2, ...) are given by (3.13), c0, c1 and c2 are arbitrary constants.

Similarly, the exact traveling wave solution in power series form of Eq. (3.9) can be given, so 
the exact solution to vc-PDE (1.1) in power series form are obtained, the details are omitted.

4. Conclusions and remarks

In the present paper, by constructing equivalent transformation, the generalized cKdV type of 
equation is transformed into a nonlinear cc-PDE. Correspondingly, the classical cKdV equation 
be transformed into classical KdV equation, so the exact solutions to classical cKdV equation 
can be obtained by the solutions to the latter. In this case, we can say that the solutions to the 
classical cKdV equation are given completely for the first time. As far as we know, this is the 
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first systematic work to get exact solutions of the cKdV equation from the solutions of the KdV 
equation through ET. In addition, based on the symmetry reductions and exact solutions to the 
cc-NLPDE, the exact solutions to the generalized cKdV equation are presented. From the above 
discussion, we can see that the equivalent transformation is a systematic and effective method 
for dealing with exact solutions to vc-PDEs based on the cc-PDEs. However, there are a lot of 
problems to study further, for example, are there other types of equivalent transformations, and 
they can transform a vc-PDE into the other types of cc-PDEs? We hope to investigate it in the 
future.
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