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The applicability of self-organizing neural networks in order to distinguish between the dominat-
ing decay modes of the ϒ(5S) resonance has been examined. Variables that are characteristic for
each decay mode have been identified and are used as input parameters for the network. The net-
work has been trained with data collected by the BELLE detector at the KEKB energy-asymmetric
e+e− collider.
The initial conditions of the neural network were fixed using a statistical method. Regions which
correspond to different ϒ(5S) decay modes have been defined on the final map after training. The
optimal rates concerning the largest product of detection efficiency Peff. and correct identification
efficiency Pcor. have been calculated.
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1. Introduction

The Belle experiment (described elsewhere [1]) recorded≈ 120 fb−1 at a center of mass energy
corresponding to the mass of the ϒ(5S) resonance. In contrast to the ϒ(4S) resonance which decays
dominantly into BB pairs [2] it can decay due to the higher mass into various final states, as, for
example, in excited B mesons (e.g. B∗) or B mesons containing an s-quark (e.g. B∗s ) instead of an
u- or d-quark [2]. By analyzing this data sample one should be able to explore a lot of new aspects
of beauty dynamics.
When performing an analysis it is crucial to know, which type of B mesons (Bd, BU, BS, B∗u,d,s) the
resonance was decaying into. The B mesons have to be reconstructed exclusively by combining all
their decay products, which is a non trivial task.
Here a different approach is investigated: An attempt was made to classify the decay pattern of
the ϒ(5S) resonance with a self-organizing neural network. This type of artificial neural network
was first described by Kohonen and is referred to as Kohonen map [3]. Using these maps to cause
different parts of the network to respond in a similar way to certain input patterns is the main goal
[3].
Neural networks are able to recognize the main feature of high-dimensional input patterns and to
project them into a lower dimensional space whereby the topological properties of the input space
are preserved.
Thus, maps can be used for extracting and ordering features of (high-dimensional) data samples.
The major benefit of a Kohonen map is the unsupervised learning process: There is no need for
simulated data with a priori known structures and dynamics.

2. The ϒ(5S) Resonance

The ϒ(5S) state is composed of a b and a b quark and has the quantum numbers JPC=1−−.
Hence, it can be produced directly via a virtual photon arising from annihilation of an electron and
an positron.
The mass difference to the next less radially excited state ϒ(4S) is about 270 MeV. The ϒ(5S) mass’
is mϒ(5S)=(10.865 ± 0.008) GeV [2]. For example, it can decay into excited B meson pairs (B∗B∗

or B∗B) or even into excited B mesons containing a strange quark (BsBs, B∗s Bs and B∗s Bs
∗) instead

of a d- or u quark.
Three-body decays (BB̄π), four-body decays (BB̄ππ) and decays into less radially excited ϒ states
have been seen, too [2]. The branching fraction of some individual decay modes can be found in
table 1, more detailed information are available elsewhere [2] [4] [5].
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ϒ(5S) decay modes Fraction (Γi/Γ) CL p (MeV/c)

BBX (59 ± 14) % -
BB (5.5+1.0

−0.9±0,4) % 1280
B∗B+ c.c. (13.7 ± 1.3 ± 1.1 ) % -
B∗B∗ (37.5 +2.1

−1.9± 3.0 ) % -
B(∗)B(∗)π < 19.7 % 90 % -
BBππ < 8.9 % 90 % 441

B(∗)
s B(∗)

s (19.3 ± 2.9) % -
ϒ(1S)π+π− (5.3 ± 0.6) × 10−3 1288
ϒ(2S)π+π− (7.8 ± 1.3) × 10−3 763
ϒ(3S)π+π− (4.8+1.9

−1.7) × 10−3 416
ϒ(1S)K+K− (6.1 ± 1.8) × 10−4 933

Table 1: Selected ϒ(5S) decay modes ([2] [4]). P is the maximum momentum of the decay products,
CL the confidence level. The sum over the branching fraction does not have to be equal to one
because decay modes are submodes of others. The excited states decay into their ground states via
emission of a γ . Here B denotes a B+ or B0 meson and B a B− or B0 meson. A π stands for π+,
π− or π0.

3. Self-Organizing Neural Networks

A self-organizing map (SOM) is an artificial neural network (ANN) which learns in an unsu-
pervised mode[3]. Using so-called neighborhood functions it preserves topological properties of
the input space. This characteristic predestines the networks to visualize low-dimensional views of
high-dimensional data.
It operates like most ANN in two modes: training and mapping (of identified target regions). Train-
ing (or learning) builds the map using input examples; mapping automatically classifies an input
vector.

3.1 The Basic SOM Algorithm

Let x = [ξ1,ξ2, . . . ,ξn]∈Rn be an arbitrary vector. This vector x may be compared with all the
mi in any metric and the best-matching node (i.e. the smallest distance of both vectors), signified
by the subscript w, is determined:

w = argmin
i
||x−mi|| ⇔

||x−mw||= min
i
||x−mi|| . (3.1)

Nodes which are topographically close to the winner node mw in the node-space (up to certain
geometric distance) will activate each other to learn from the same input x. This will lead to a local
relaxation effect on the weight vectors of the neurons in this neighborhood. The learning process
of the standard SOM algorithm can be formulated as follows:

mi(t +1) = mi(t)+hwi(t)[x(t)−mi(t)] ,
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where t = 0,1,2, . . . is integer and a discrete time coordinate. The initial values mi(0) may be
arbitrary. The function hwi(t) plays a crucial role in the relaxation process, acting as the so-called
neighborhood function.
The behavior of this function is crucial for global convergence of the map. It is necessary that

hwi(t)→ 0 when t→ ∞ .

Usually the neighborhood function depends also on the distance between node w and node i, i.e
hwi(t) = hwi(||rw− ri||, t) , where rw and ri are the position vectors of nodes in node space, respec-
tively.
Two simple choices of neighborhood functions appear frequently in literature [3]. The simpler one
refers to a neighborhood set of array points around the winner node w. The second widely applied
kernel is a much smoother one: hwi = α(t) ·exp

(
− ||rw−ri||2

2σ2(t)

)
, with α(t) the so-called learning rate

and σ(t) the width of the kernel. Either α(t) or σ(t) has to be decreasing in time.

3.2 Quality Assessment

Considering a perfect training (learning) process, each node i will represent a certain volume
of the input space. If data out of this volume is presented to the network the corresponding node
will be the winner. For the ideal case each node should respond equal times (concerning the input
data) [6].
Plotting the winner rate as a function of each node i the distribution should be flat.
χ2 = ∑i

(Hi−H)2

H2 is a gauge for the derivation of this uniform distribution. Hi is the winner rate of

node i and H is the average value of all Hi. The smaller χ2, the better the quality of convergence.

4. Variables for the Identification of Different ϒ(5S) Decay Modes

It is crucial to find variables which may be appropriate to characterize and so be able to sepa-
rate the different dominating ϒ(5S) decay modes. These variables will be later used as input data
for the self-organizing neural network.
A large part of the data are continuum events, e.g. QED events (Bhabha scattering and Bhabha
radiative processes) which should be rejected.
The data used for this analysis is already preselected by a skimming criteria sensitive to more than
99% of all produced hadrons. After skimming the expected ratio of ϒ(5S) events to continuum
events is 1

3.5 [7]. Hence, variables for the separation of continuum events and ϒ(5S) events are
important.
A number of variables have been developed for the means of continuum suppression. They all take
advantage of the differences in event shapes of continuum and BB events. Resonant BB events
release only little energy and tend to be spherical. In contrast a large energy release indicates a
continuum event. The q and q̄ jets of continuum events tend also to emerge collimated back to
back [8].This analysis uses two variables for event shape characterization: R2 and thrust.

R2 is the ratio of the second and the zeroth Fox-Wolfram moment. The Fox-Wolfram moments
Hl are defined by Hl = ∑i, j

|~pi||~p j|
E2

vis
Pl(cos(θi j)) [9], where θi j is the opening angle between hadrons
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i and j, and ~p the corresponding momentum. Pl are the Legendre polynomials and Evis is the total
visible energy of an event. A value of R2 closer to zero indicates more spherical events, whereas
lager values of R2 indicate continuum events (compare to figure 1).
The so-called thrust measures the alignment of particles in an event along a common axis. It is
defined by T = max

|~n|=1

∑i |~n·~pi|
∑i |~pi| [10], where ~p is the momentum and~n is the normalized vector in which

the maximum alignment is found. The higher the thrust, the more jet-like the event is (compare to
figure 1).

(a) R2 for simulated BB events (b) R2 for continuum events

(c) Thrust for simulated BB events (d) Thrust for continuum events

Figure 1: The distributions of R2 in (a) and (b) and the thrust in (c) and (d) show that these variables
are useful for the separation of continuum and BB events.

The visible energy Evis. (the sum of the energy of all particles measured by the detector in
one collision) is appropriate to differentiate between continuum and BB events [11], and is used as
input parameter, too.
The number of charged pions in restricted momentum intervals proves as a good indicator for the
many-body decays ϒ(5S)→ BBπ or ϒ(5S)→ BBππ respectively. The number of pions is en-
hanced compared to ϒ(5S) decays which decay only into two B mesons.
The optimal range for the momentum interval for π± arising from the 4-body mode is
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0.03 GeV < |~pcms| < 0.1 GeV
and the interval for the 3-body decay mode is

0.1 GeV < |~pcms| < 0.25 GeV;
compare to [11].
The pions emerging directly from ϒ(5S) decays have another feature which allows to distinguish
them from π± coming from B decays. Their production vertex is the decay vertex of the ϒ(5S)
resonance which is in a distance of less than 100µm from the interaction point and thus can be
approximated by z=0.
Thus, the number of pions around the interaction point (-0.1 cm < IPz < 0.125 cm, -0.05 cm
<IPx,y<0.05 cm) is chosen as input parameter for the neural network (compare also to [11]).
The excited B mesons (B∗, B∗s ) decay dominantly into Bγ or Bsγ . Hence, the photons may be
useful to identify ϒ(5S) decays into excited B mesons. Again, the number of photons in a certain
energy interval is used to identify ϒ(5S) decays involving excited B mesons. In [11] is shown that
the number of photons in the energy range 0.03 GeV < Eγ < 0.07 GeV differ for decays involving
excited B mesons and such decays which do not (compare also to figure 2). More revealing vari-
ables for the mean of identification of excited B mesons have not been found.

(a) B0B0 (b) 0.5 B0∗B0 + 0.5 B0B0∗ (c) B0∗B0∗

(d) B0
s B0

s (e) 0.5 B0∗
s B0

s + 0.5 B0
s B0∗

s (f) B0∗
s B0∗

s

Figure 2: Black curves: Simulated energy distribution of the photons for different ϒ(5S) decay
modes in GeV. The red curves shows the energy distributions of the photons coming directly from
the respective excited B mesons.

The underlying idea for the identification of Bs mesons was to use the strangeness which is
in contrast to Bu,d mesons already available in the initial state. The first feasible idea was just to
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count the number of Kaons in the final state — they are the “carrier” of the strangeness. However
a detailed analysis showed, that this number is not really useful (compare to [11]).
As a variable which is sensitive to the strangeness the number of Φ(1020) decaying into K+K− has
been used finally — the amount of Φ(1020) differs significantly in B and Bs decays [2] [11].
More “basic” variables sutiable for the purpose of separation of ϒ(5S) decays have not been found
(compare to [11]).

5. Trainings Data, Self-Organizing Map and Parameter Optimization

1.4 million events (corresponding to 0.34 % of the total ϒ(5S) data set) collected by the Belle
detector at a center of mass energy of 10.871 GeV have been used for training.
The map consist of 10 000 units arranged in a 100×100 grid; an 8-dimensional vector is associated
to each unit. Each component of the nodes’ weight vectors has been initialized with random num-
bers.
Following functions have been chosen for the time dependent learning rate α and width σ of the
neighborhood: α(t) = αin(1− (αin−α f ) · t

tmax
) and σ(t) = σin(1− (σin−σ f ) · t

tmax
). The initial

parameters have been determined optimal by the χ2 method (compare to 3.2).
Weighting of the components of the input vectors is done by multiplying each component by a
certain factor. This might have a positive impact on the final results [6]. The optimal weights have
again been determined by the χ2 method. Eventually, the number of pions in the momentum inter-
val from 0.03 till 0.1 GeV is weighted by a factor of 2, whereas all other input parameters have the
weight 1. The optimal values for the learning rate and the width of the neighborhood function have
been determined to be αin = 1, α f =0.1, σin=4 and σ f =3.
Figure 3 shows a measure of the nodes’ weightvectors before and after training: The smoother map
behaviour after training is obvious.

(a) (b)

Figure 3: (a) shows the contour plot of the initial and (b) of the trained map. The x- and y-
coordinates refer to the position of the nodes in node space. The color indicates the euclidean norm
of the corresponding weight vectors. The smoother map behaviour of (b) is evident.
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6. Results

To evaluate the map after training, Monte-Carlo data with a priori known decay processes
of the ϒ(5S) resonance are required. Therefore Monte-Carlo data was produced using EvtGen (a
Monte-Carlo generator for B-physics) and a full detector simulation. The map has been calibrated
with this data and decays containing B mesons yield to responses in spatially limited regions (com-
pare to figure 4 and [11]). The calibration is essentially to count how often a unit matches best to
input vectors from the Monte-Carlo samples.
Eventually, regions which can be assigned to certain decay channels have been restricted by linear
functions (splines). An event within the restricted area will be counted as the dedicated decay pro-
cess. Within the first step the functions which limit the regions were set manually, but an additional
parameter b is introduced which allows to vary the different functions and as a consequence the
area of the regions.
The parameter b is optimized relying on the quality parameter Pcor., the probability that an event
is identified correctly and Peff., the detection efficiency of a certain decay channel of each decay
mode.
The optimal rates concerning the largest product of Pcor. and Peff. for the different decay modes are:

BBππ : Peff. = (31.7±0.1)% Pcor. = (8.26±0.03)%

B(∗)
s B(∗)

s : Peff. = (35±18)% Pcor. = (5.4±2.8)%

B(∗)B(∗) : Peff. = (80.78±0.74)% Pcor. = (25.7±0.23)%

B(∗)B(∗) inclusive : Peff. = (83.30±0.69)% Pcor. = (27.72±0.23)%

B(∗)
(s)B(∗)

(s) inclusive : Peff. = (81.6±1.1)% Pcor. = (35.61±0.49)%

Here B denotes Bu,d mesons with charge +,- or 0. π stands for the charged as well as for the
uncharged π mesons. The errors of these quantities are given as standard deviations.
Plots, information and details about the relationship of all the different parameters and functions
are available in [11].

(a) ϒ(5S)→B0B0
π+π− (b) ϒ(5S)→B0B0

Figure 4: The x- and the y-axes indicate the position of the neurons in node space. The color
indicates the winner rate of each neuron. Events which contain pions coming directly from the
ϒ(5S) decays tend to show up with an increased rate in the left bottom corner.
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7. Summary and Conclusion

The applicability of self-organizing neural networks in order to classify the decay patterns of
the ϒ(5S) resonance has been examined. The dominating decay channels, in particular BBππ ,
BBπ , BB, BsBs as well as the respective excited modes (e.g. B∗B) should be distinguished.
Variables which characterize the respective decay processes are determined and optimal initial
parameters of the neural network were calculated. Regions which are typical for the particular
decay modes have been worked out and optimized.
A clear identification of the individual decay modes is not possible (using self-organizing neural
networks). The decays are too similar to be distinguished by “basic” variables only.
However, it is possible to enrich the fraction of certain decay channels. As an example may hold
the decay mode “B(∗)

(s)B(∗)
(s) inclusive”: In (3.20 ± 0.03) of 9 events B mesons can be found now,

while originally only 2 of 9 events contained ϒ(5S) decays (compare to [7]). Thus, the number of
B mesons could be increased by a factor of 1.6.
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