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Abstract

We investigate the possibility to construct a generalization of the Standard
Model which we call the Maximal Mass Model because it contains a limiting
mass M for its fundamental constituents. The parameter M is considered as a
new universal physical constant of Nature and, therefore, is called the funda-
mental mass. It is introduced in a purely geometric way, like the velocity of light
as a maximal velocity in the special relativity. If one chooses the Euclidean for-
mulation of quantum field theory, the adequate realization of the limiting mass
hypothesis is reduced to the choice of the de Sitter geometry as the geometry of
the 4-momentum space. All fields defined in de Sitter p-space in configurational
space obey five dimensional Klein-Gordon type equation with the fundamental
mass M as a mass parameter. The role of dynamical field variables is played
by the Cauchy initial conditions given at x5 = 0, guaranteeing the locality and
gauge invariance principles. The formulation of the theory of scalar and spinor
fields corresponding to the geometrical requirements is considered in some de-
tail. By a simple example it is demonstrated that the spontaneous symmetry
breaking mechanism leads to renormalization of the fundamental mass M . A
new geometric concept of the chirality of the fermion fields is introduced. It
would be responsible for new measurable effects at high energies E ≥ M . Inter-
action terms of a new type are revealed due to the existence of the Higgs boson.
The most intriguing prediction of the new approach is the possible existence
of exotic fermions with no analogues in the SM, which may be a candidate for
dark matter constituents.
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1 Introductory remarks

For decades we have witnessed the impressive success of the Standard Model
(SM) in explaining properties and regularities observed in experiments with
elementary particles. The mathematical basis of the SM is local Lagrangian
quantum field theory (QFT). The very concept of an elementary particle as-
sumes that it does not have a composite structure. In agreement with the
contemporary experimental, data this structure has not been disclosed for any
fundamental particles of the SM, up to distances of the order of 10−16 − 10−17

cm. The adequate mathematical images of point like particles are the local
quantized fields - boson and spinor. Particles are the quanta of the corre-
sponding fields. In the framework of the SM these are leptons, quarks, vector
bosons and the Higgs scalar, all characterized by certain values of mass, spin,
electric charge, colour, isotopic spin, hypercharge, etc.

Intuitively it is clear that an elementary particle should carry small enough
portions of different ”charges” and ”spins”. In the theory this is guaranteed
by assigning the local fields to the lowest representations of the corresponding
groups.

As for the mass of the particle m, this quantity is the Casimir operator
of the noncompact Poincaré group and in the unitary representations of this
group, used in QFT, they may have arbitrary values in the interval 0 ≤ m < ∞.
In the SM one observes a great variety in the mass values. For example, t-
quark is more than 300000 times heavier than the electron. In this situation
the question naturally arises: up to what values of mass one may apply the
concept of a local quantum field? Formally, the contemporary QFT remains
a logically perfect scheme and its mathematical structure does not change at
all up to arbitrarily large values of masses of quanta. For instance, the free
Klein-Gordon equation for the one component real scalar field ϕ(x) has always
the form

(� + m2)ϕ(x) = 0. (1)

Hence, after standard Fourier transform

ϕ(x) =
1

(2π)3/2

∫
e−ipμxμ

ϕ(p) d 4p (pμxμ = p0x0 − p.x) (2)

we find the equation of motion in the Minkowski momentum 4-space:

(m2 − p2)ϕ(p) = 0, p2 = p2
0 − p2. (3)

From a geometric point of view m is the radius of the ”mass shell” hyperboloid

m2 = p2
0 − p2, (4)



where the field ϕ(p) is defined and in the Minkowski momentum space one may
embed hyperboloids of type (4) of an arbitrary radius.

In 1965 M. A. Markov 1) pioneered the hypothesis according to which
the mass spectrum of the elementary particles should be cut off at the Planck
mass mPlanck = 1019GeV :

m ≤ mPlanck. (5)

The particles with the limiting mass m = mPlanck, named by the author ”max-
imons”, should play a special role in the world of elementary particles. How-
ever, Markov’s original condition (5) was purely phenomenological and he used
standard field theoretical techniques even for describing the maximon.

In 2) - 8) a more radical approach was developed. Markov’ s idea
of the existence of a maximal value for the masses of elementary particles
was understood as a new fundamental principle of Nature, which similarly
to the relativistic and quantum postulates should underlie QFT. Doing this
the condition of finiteness of the mass spectrum should be introduced by the
relation:

m ≤ M, (6)

where the maximal mass parameter M called the ”fundamental mass” is a
new universal physical constant.

A new concept of a local quantum field has been developed on the
basis of (6) and on simple geometric arguments the corresponding Lagrangians
were constructed and an adequate formulation of the principle of local gauge
invariance was found. It was also demonstrated that the fundamental mass M
in the new approach plays the role of an independent universal scale in the
region of ultrahigh energies E ≥ M .

It is worth emphasizing that here, due to eq(6), the Compton wave length
of a particle λC = �/mc cannot be smaller than the ”fundamental length”

l = �/Mc. According to Newton and Wigner 15), the parameter λC character-
izes the dimensions of the region of space in which a relativistic particle of mass
m can be localized. Therefore, the fundamental length l introduces into the
theory a universal limit on the accuracy of localization in space of elementary
particles.

The objective of the present work, in few words, is to include the principle
of maximal mass (6) into the basic principles of the Standard Model. The new
scheme appearing in this way, which we called the Maximal Mass Model, from
our point of view is interesting already because in it the trusted methods of the
local gauge QFT are organically bound to the elegant, though not as popular,
geometric ideas.

Mateev Matey 597



598 Mateev Matey 

2 Boson fields in de Sitter momentum space

Let us go back to the free one component real scalar field we considered above
(1 - 3). We shall suppose that its mass m satisfies the condition (6). How
should one modify the equations of motion in order that the existence of the
bound (6) should become as evident as it is the limitation v ≤ c in the special
theory of relativity? In the latter case everything is explained in a simple
way: the relativization of the 3-dimensional velocity space is equivalent to
transition in this space from Euclidean to Lobachevsky geometry realized on
the 4-dimensional hyperboloid 1(4). Let us act in a similar way and substitute
the 4-dimensional Minkowski momentum space, which is used in the standard
QFT, by the anti de Sitter momentum space realized on the 5-hyperboloid:

p2
0 − p2 + p2

5 = M2. (7)

We shall suppose that in the p-representation our scalar field is defined just
on the surface (7), i.e., it is a function of five variables (p0,p, p5), which are
connected by the relation (7):

δ(p2
0 − p2 + p2

5 − M2)ϕ(p0,p, p5). (8)

The energy p0 and the 3-momentum p here preserve their usual meaning and
the mass shell relation (4) is satisfied as well. Therefore, for the field considered
ϕ(p0,p, p5) the condition (6) is always fulfilled.

Clearly in eq. (8) the specification of a single function ϕ(p0,p, p5) of five
variables (pμ, p5) is equivalent to the definition of two independent functions
ϕ1(p) and ϕ2(p) of the 4-momentum pμ:

ϕ(p0,p, p5) ≡ ϕ(p, p5) =

(
ϕ(p, |p5|)

ϕ(p,−|p5|)
)

=

(
ϕ1(p)
ϕ2(p)

)
, |p5| =

√
M2 − p2.

(9)
The appearance of the new discrete degree of freedom p5/|p5| and the

associated doubling of the number of field variables is important feature of the
new approach. It must be taken into account in the search for the equation of
motion for the free field in de Sitter momentum space. Due to the mass shell
relation (4) the Klein - Gordon equation (3) should also be satisfied by the field
ϕ(p0,p, p5) :

(m2 − p2
0 + p2)ϕ(p0,p, p5) = 0. (10)

From our point of view this relation is unsatisfactory for two reasons:
1. It does not reflect the bounded mass condition (6).

1To be exact on the upper sheet of this hyperboloid.



2. It can not be used to determine the dependence of the field on the
new quantum number p5/|p5| in order to distinguish between the components
ϕ1(p) and ϕ2(p).

Here we notice that, because of (7), eq.(10) can be written as:

(p5 + M cosμ)(p5 − M cosμ)ϕ(p, p5) = 0, cosμ =

√
1 − m2

M2
. (11)

Now, following the Dirac trick we postulate the equation of motion under ques-
tion in the form:

2M(p5 − M cosμ)ϕ(p, p5) = 0. (12)

Clearly, eq. (12) has none of the enumerated defects of the standard Klein-
Gordon equation (3). However, equation (3) is still satisfied by the field
ϕ(p, p5).

From eqs. (12) and (9) it follows that

2M(|p5| − M cosμ)ϕ1(p) = 0,

2M(|p5| + M cosμ)ϕ2(p) = 0,
(13)

and we obtain:
ϕ1(p) = δ(p2 − m2)ϕ̃1(p)

ϕ2(p) = 0
(14)

Therefore, the free field ϕ(p, p5) defined in the anti de Sitter momentum space
(7) describes the same free scalar particles of mass m as the field ϕ(p) in
the Minkowski p-space, with the only difference that now we necessarily have
m ≤ M . The two-component structure (9) of the new field does not manifest
itself on the mass shell, owing to (14). However, it will play an important role
when the fields interact, i.e., off the mass shell.

Now we face the problem of constructing the action corresponding to eq.
(12) and transforming it to the configuration representation.

Due to mainly technical reasons 2 in the following we shall use the Eu-
clidean formulation of the theory, which appears as an analytical continuation
to purely imaginary energies:

p0 → ip4. (15)

In this case, instead of the anti de Sitter p-space (7), we shall work with de
Sitter p-space

−p2
n + p2

5 = M2, n = 1, 2, 3, 4. (16)

2The corresponding comments on the topic will be given a bit later.

Mateev Matey 599



600 Mateev Matey 

Obviously,

p5 = ±
√

M2 + p2. (17)

If one uses eq. (16), the Euclidean Klein-Gordon operator m2 + p2 may be
written, similarly to (11), in the following factorized form:

m2 + p2 = (p5 + M cosμ)(p5 − M cosμ). (18)

Clearly, the nonnegative functional

S0(M) = πM×
∫

d4p
|p5|

[
ϕ+

1 (p)2M(|p5| − M cosμ)ϕ1(p) + ϕ+

2 (p)2M(|p5| + M cosμ)ϕ2(p)
]
,

(19)
ϕ1,2(p) ≡ ϕ(p,±|p5|), (20)

plays the role of the action integral of the free Euclidean field ϕ(p, p5). The
action may be written also as a 5 - integral:

S0(M) = 2πM×
∫

ε(p5)δ(pLpL − M2)d5p [ϕ+(p, p5)2M(p5 − M cosμ)ϕ(p, p5)] ,

L = 1, 2, 3, 4, 5,

(21)

where
ε(p5) =

p5

|p5| . (22)

The Fourier transform and the configuration representation have a special role
in this approach. First, we note that in the basic equation (16) which defines de
Sitter p-space, all the components of the 5-momentum enter on equal footing.
Therefore, the expression δ(pLpL − M2)ϕ(p, p5), which now replaces (8), may
be Fourier transformed

2M

(2π)3/2

∫
e−ipKxK

δ(pLpL − M2)ϕ(p, p5)d
5 p = ϕ(x, x5), K, L = 1, 2, 3, 4, 5.

(23)
This function obviously satisfies the following differential equation in the 5-

dimensional configuration space:

(
∂2

∂x2
5

− � + M2

)
ϕ(x, x5) = 0. (24)



Integration over p5 in (23) gives:

ϕ(x, x5) = M
(2π)3/2

∫
eipnxn d4p

|p5|

[
e−i|p5|x

5

ϕ1(p) + ei|p5|x
5

ϕ2(p)
]
,

ϕ+(x, x5) = ϕ(x,−x5),

(25)

from which we get:

i

M

∂ϕ(x, x5)

∂x5

=
1

(2π)3/2

∫
eipnxn

d4p
[
e−i|p5|x

5

ϕ1(p) − ei|p5|x
5

ϕ2(p)
]
, (26)

The four dimensional integrals (25) and (26) transform the fields ϕ1(p)
and ϕ2(p) to the configuration representation. The inverse transforms have the
form:

ϕ1(p) = −i
2M(2π)5/2

∫
e−ipnxn

d4x
[
ϕ(x, x5)

∂ei|p5|x
5

∂x5

− ei|p5|x
5 ∂ϕ(x,x5)

∂x5

]
,

ϕ2(p) = i
2M(2π)5/2

∫
e−ipnxn

d4x
[
ϕ(x, x5)

∂e−i|p5|x
5

∂x5

− e−i|p5|x
5 ∂ϕ(x,x5)

∂x5

]
.

(27)
We note that the independent field variables

ϕ(x, 0) ≡ ϕ(x) =
M

(2π)3/2

∫
eipnxn

d4 p
ϕ1(p) + ϕ2(p)

|p5| (28)

and
i

M

∂ϕ(x, 0)

∂x5

≡ χ(x) =
1

(2π)3/2

∫
eipnxn

d4p [ϕ1(p) − ϕ2(p)] (29)

can be treated as initial Cauchy data on the surface x5 = 0 for the hyperbolic-
type equation (24).

Now substituting eq.(27) into the action (19) we obtain

S0(M) = 1

2

∫
d4 x

[∣∣∣∂ϕ(x,x5)

∂xn

∣∣∣2 + m2|ϕ(x, x5)|2 +
∣∣∣i∂ϕ(x,x5)

∂x5
− M cosμϕ(x, x5)

∣∣∣2
]

≡ ∫
L0(x, x5)d

4 x.
(30)

It is easily verified that due to eq. (24) the action (30) is independent of x5:

∂S0(M)

∂x5

= 0. (31)

Therefore the variable x5 may be arbitrarily fixed and S0(M) may be viewed
as a functional of the corresponding initial Cauchy data for the equation (24).
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For example, for x5 = 0 we have:

S0(M) = 1

2

∫
d4 x

[(
∂ϕ(x)

∂xn

)2

+ m2(ϕ(x))2 + M2 (χ(x) − cosμϕ(x))
2

]
≡

≡ ∫
L0(x, M)d4 x.

(32)
We have thus shown that in the developed approach the property of locality
of the theory does not disappear, moreover it becomes even deeper, as it is
extended to dependence on the extra fifth dimension x5.

The new Lagrangian density L0(x, x5) [see (30)] is a Hermitian form
constructed from ϕ(x, x5) and the components of the 5-component gradient
∂ϕ(x)

∂xL
, (L = 1, 2, 3, 4, 5). It is clear that although L0(x, x5) depends explicitly

on x5, the theory essentially remains four-dimensional [see eq. (31) and
(32)].

As may be seen from the transformations which have been made, the
dependence of the action (32) on the two functional arguments ϕ(x) and χ(x)
is a direct consequence of the fact that in momentum space the field has a

doublet structure

(
ϕ1(p)
ϕ2(p)

)
due to the two possible values of p5. However,

the Lagrangian L0(x, M) does not contain a kinetic term corresponding to the
field χ(x). Therefore, this variable is just auxiliary.

The special role of the 5-dimensional configuration space in the new for-
malism is determined by the fact that the gauge symmetry transformations are
localized now in it. The initial data for the equation (24)

⎛
⎝ ϕ(x, x5)

i
M

∂ϕ(x,x5)

∂x5

⎞
⎠

x5=fixed value

(33)

are subject to these transformations.
Let us now discuss this point in more detail, supposing that the field

ϕ(x, x5) is not Hermitian and some internal symmetry group is associated with
it:

ϕ′ = Uϕ. (34)

Upon localization of the group in the 5-dimensional x-space:

U → U(x, x5), (35)

the following gauge transformation law arises for the initial data (33) on the



plane x5 = 0:
ϕ′(x) = U(x, 0)ϕ(x),

χ′(x) = i
M

∂U(x,0)

∂x5
ϕ(x) + U(x, 0)χ(x).

(36)

The group character of the transformations (36) is obvious. The specific form
of the matrix U(x, x5) can be determined in the new theory of vector fields,
which is a generalization of the standard theory in the spirit of our approach (

see 5)).
It is clear that the equation (24) may be represented as a system of two

equations of first order in the derivative ∂
∂x5

10):

{
i

M

∂

∂x5

−
[
σ3

(
1 − �

2M2

)
− iσ2

�

2M2

]}
φ(x.x5) = 0, (37)

where

φ(x, x5) =

⎛
⎜⎜⎝

1

2

[
ϕ(x, x5) + i

M

∂ϕ(x,x5)

∂x5

]

1

2

[
ϕ(x, x5) − i

M

∂ϕ(x,x5)

∂x5

]

⎞
⎟⎟⎠ ≡

⎛
⎝ φI(x, x5)

φII(x, x5)

⎞
⎠ , (38)

(σi, i = 1, 2, 3 are the Pauli matrices). If we compare (38) with (28) and (29)
we find relations between the initial Cauchy data for the equation (24) and the
system (37):

φ(x, 0) =

⎛
⎝ φI(x, 0)

φII(x, 0)

⎞
⎠ =

⎛
⎝

1

2
(ϕ(x) + χ(x))

1

2
(ϕ(x) − χ(x))

⎞
⎠ ≡ φ(x). (39)

It easy to show that in the basis (39) the Lagrangian L0(x, M) from (32) looks
like

L0(x, M) =
∂φ(x)

∂xn

(1 + σ1)
∂φ(x)

∂xn

+ 2M2φ(x)(1 − cosμ σ3)φ(x). (40)

Let us discuss now the question about the conditions for the transition of
the new scheme into the standard Euclidean QFT (the so called ”correspon-
dence principle”). The Euclidean momentum 4-space is the ”flat limit” of the
de Sitter p-space and may be associated with the approximation

|pn| � M
p5 � M

(41)
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In the same limit, in the configuration space we have

ϕ(x, x5) = e−iMx5ϕ(x)
χ(x) = ϕ(x)

(42)

or

φ(x) =

(
ϕ(x)

0

)
(43)

With the help of (37) it is not difficult to obtain 11, 12) the corrections of the
order of O( 1

M2 ) to the zero approximation (43)

φ(x) =

⎛
⎝

(
1 − �

4M2

)
ϕ(x)

�

4M2 ϕ(x)

⎞
⎠ (44)

from which ( see eq. (39)) we have

ϕ(x) − χ(x) =
�ϕ(x)

2M2
(45)

Taking into account (45) and (11) one may conclude that in the ”flat limit”
(formally when M → ∞) the Lagrangian L0(x, M) from (32) coincides with
its Euclidean counterpart.

A key role in the SM belongs to the scalar Higgs field, the interactions
with which allow the other fields to get masses. As far as in our model the
masses of all particles, including the mass of the Higgs boson itself, should
obey the condition (6), one would presume that there exists a deep internal
connection between the Higgs field and the fundamental mass M . As a matter
of fact, before the Higgs mechanism is switched on, all fields by definition are
massless 3 and because of that the bound (6) at this stage has no physical
meaning. Only, together with the appearance of the mass spectrum of the
particles the condition (6) makes sense and, therefore, the magnitude of M
should be essentially fixed by the same Higgs mechanism.

In order to get some orientation in this situation, let us consider in the
framework of our approach the example of the simplest mechanism, connected
with the spontaneous breaking of a discrete symmetry. At the beginning, in
order to describe the scalar field, let us use the doublet (39). The total La-
grangian Ltot(x), in analogy with the traditional approach, will include a free
part (40) at μ = 0 and the well known interaction Lagrangian:

Lint(x) =
λ2

4
(φ2 − v2)2. (46)

3Higgs boson, as it is known, at this stage is with mass of a tachyon.



Therefore, we have:

Ltot(x) =
∂φ(x)

∂xn

(1 + σ1)
∂φ(x)

∂xn

+ 2M2φ(x)(1 − cosμ σ3)φ(x) +
λ2

4
(φ2 − v2)2.

(47)
Here we used the field φ(x) only to write the interaction (46) in the known
symmetric form. Now in (47) we may go back to the variables ϕ(x) and χ(x)
(see (39)):

Ltot(x) =
1

2

(
∂ϕ(x)

∂xn

)2

+
M2

2
(ϕ(x) − χ(x))

2
+

λ2

4

(
ϕ2(x) + χ2(x)

2
− v2

)2

(48)
The Lagrangian (48) remains invariant under the transformation

ϕ(x) → −ϕ(x)
χ(x) → −χ(x)

(49)

However, this symmetry is spontaneously broken. The transition to a stable
”vacuum” is realized by the transformations

ϕ(x) = ϕ′(x) + v
χ(x) = χ′(x) + v

(50)

In the new variables ϕ′(x) and χ′(x) the part of the Lagrangian (48) quadratic
in the fields takes the form:

1

2

(
∂ϕ′(x)

∂xn

)2

+
1

2
(M2+

λ2v2

2
)
(
ϕ′2(x) + χ′2(x)

)−(M2−λ2v2

2
)ϕ′(x)χ′(x). (51)

Comparing (51) and (32) we may conclude that
1. As a result of the spontaneous breaking of the symmetry (49) the

fundamental mass M experiences renormalization:

M2 → M2 +
λ2v2

2
(52)

2. The considered scalar particle acquires mass:

m =
√

2λv
1√

1 + λ2v2

2M2

, (53)

which satisfies the condition 4:

m ≤
√

M2 +
λ2v2

2
. (54)

4Let us note that (54) is equivalent to the inequality
(
1 − λv

√

2M

)2

≥ 0.
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Therefore, if we, in advance, take into account the renormalization (52) due to
the Higgs mechanism we may write the Lagrangian (48) in the form 5:

Ltot(x) = 1

2

(
∂ϕ(x)

∂xn

)2

+ 1

2
(M2 − λ2v2

2
) (ϕ(x) − χ(x))

2
+

+λ2

4
(ϕ2

(x)+χ2
(x)

2
− v2)2.

(55)

In this way instead of (53)we have

m =
√

2λv

√
1 − λ2v2

2M2
≡ m0

√
1 − m2

0

4M2
(56)

The quantity m0 =
√

2λv is the maximal value of the mass of the considered
scalar particle. It may be reached only in the ”flat limit” M → ∞, when the
Lagrangian (55) because of (42) and (45) takes the usual form:

Ltot(x) =
1

2

(
∂ϕ(x)

∂xn

)2

+
λ2

4

(
ϕ2(x) − v2

)2
. (57)

At the end of this section, we would like to explain why we prefer to develop
our approach in Euclidean terms and pass from the anti de Sitter p-space (7)
to the the de Sitter p-space (16).

Let us apply to (8) the 5-dimensional Fourier transform (compare with
(23))

ϕ(x, x5) ≡ 2M

(2π)3/2

∫
e−ip0x0+px−ip5x5δ(p2

0 −p2 + p2
5 −M2)ϕ(p, p5)d

5 p. (58)

From here we find (compare with (28) and (29))

ϕ(x, 0) ≡ ϕ(x) = M
(2π)3/2

∫
p2

≤M2 e−ipxd4pϕ(p,|p5|)+ϕ(p,−|p5|)

|p5|

i
M

∂ϕ(x,0)

∂x5
≡ χ(x) = 1

(2π)3/2

∫
p2

≤M2 e−ipxd4p [ϕ(p, |p5|) − ϕ(p,−|p5|)] .
(59)

The principal difference of these expressions in comparison with (28) and (29) is
that in (59) there is a limitation on the integration region: p2

0−p2 ≤ M2. This
fact sharply restricts the class of functions ϕ(x) and χ(x) and does not allow,
in particular, to construct from them local Lagrangians or to apply to them
local gauge transformations. Rigorously speaking eqs. (59) can not be treated

5In order the Lagrangian (47) remains positively definite, it is natural to

suppose that M2 > λ2v2

2
.



( without special reservations ) as Cauchy data for the ”ultra-hyperbolic” equa-
tion: (

∂2

∂x2
0

+
∂2

∂x2
5

− ∂2

∂x2
+ M2

)
ϕ(x, x5) = 0, (60)

which is satisfied by the field (58). In mathematical physics there are developed
methods which allow one to use partial differential equations of ultra-hyperbolic
type with Cauchy initial data. From a technical point of view we consider this
a more complicated procedure, than to work in the framework of Euclidean
QFT. Moreover, thanks to the locality of the Euclidean formulation, coming
back to the relativistic description is not a problem.

3 De Sitter fermion fields

As far as the new QFT is elaborated on the basis of the de Sitter momentum
space (16) it is natural to suppose that in the developed approach the fermion
fields ψα(p, p5) have to be de Sitter spinors, i.e., to transform under the four
dimensional representation of the group SO(4, 1). Further on we shall use the
following γ - matrix basis (γ4 = iγ0):

γL = (γ1, γ2, γ3, γ4, γ5)

{
γL, γM

}
= 2gLM ,

gLM =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

(61)

Obviously we have:

M2 − pLpL = M2 + p2
n − p2

5 = (M − pLγL)(M + pLγL) =

= (M + pnγn − p5γ5)(M − pnγn + p5γ5).
(62)

In the ”flat limit” M → ∞ the quantities ψα(p, p5) become Euclidean spinor
fields which are used in the construction of different versions of the Euclidean
QFT for fermions.

It is clear that the relations (23) - (29) , which we considered in the
theory of boson fields, exist also in its fermion version. Let us write some of
them without comments

ψ(x, x5) =
2M

(2π)3/2

∫
e−ipKxK

δ(pLpL − M2)ψ(p, p5)d
5 p, (63)
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(
∂2

∂x2
5

− � + M2

)
ψ(x, x5) = 0, (64)

ψ(x, 0) ≡ ψ(x) = M
(2π)3/2

∫
eipnxn

d4 pψ1(p)+ψ2(p)

|p5|
=

= 1

(2π)3/2

∫
eipnxn

ψ(p)d4 p

(65)

i
M

∂ψ(x,0)

∂x5

≡ χ(x) = 1

(2π)3/2

∫
eipnxn

d4p [ψ1(p) − ψ2(p)] =

= 1

(2π)3/2

∫
eipnxn

χ(p)d4 p.

(66)

The next step is the construction of the action integral for the fermion field

ψα(p, p5). Here we will not follow our work 6), where this problem was solved

in the spirit of the Schwinger’s approach 13) with the use of 8-component
real spinors and preserving the reality of the action. Now we shall follow the

formulation of Osterwalder and Schrader 14) and write the Euclidean fermion
Lagrangian in the form:

LE(x) = ζE(x)
(−iγn

∂
∂xn + m

)
ψE(x),

{γn, γm} = −2δnm (m, n = 1, 2, 3, 4).
(67)

Here the spinor fields ζE(x) = ζ+

E (x)γ4 and ψE(x) are independent Grass-
mann variables, which are not connected between themselves by Hermitian or
complex conjugation. Correspondingly, the action is not Hermitian. The Os-
terwalder and Schrader approach has been widely discussed in the literature
14)6 and here we shall not go into details. It is easy to convince oneself that the
expression 2M(p5 − M cosμ), which in our approach substitutes (see eq.(32))
the Euclidean Klein-Gordon operator p2

n + m2, may be represented as

2M(p5 − M cosμ) =

=
[
pnγn − (p5 − M)γ5 + 2M sin μ

2

] [−pnγn + (p5 − M)γ5 + 2M sin μ
2

]
(68)

In the Euclidean approximation (41) the relation (68) takes the form:

p2
n + m2 = (pnγn + m) (−pnγn + m) . (69)

6By the way, in the paper 15) the so called Wick rotation is interpreted in
terms of the 5-dimensional space.



Therefore, we may use the expression

D(p, p5) ≡ pnγn − (p5 − M)γ5 + 2M sin
μ

2
(70)

like the new Dirac operator.
As a result, we come to an expression for the action of the Fermion field

in the de Sitter momentum space

S0(M) = 2πM
∫

ε(p5)δ(pLpL − M2)d5p×

× [
ζ(p, p5)(pnγn − (p5 − M)γ5 + 2M sin μ

2
)ψ(p, p5)

]
,

(71)

In the integral (71) it is possible to pass to the field variables

ψ(p) = M
|p5|

(ψ(p, |p5|) + ψ(p,−|p5|)) ≡ M ψ1(p)+ψ2(p)

|p5|

χ(p) = ψ1(p) − ψ2(p)

ζ(p) = M ζ
1
(p)+ζ

2
(p)

|p5|

ξ(p) = ζ1(p) − ζ2(p),

(72)

which are the Fourier amplitudes of the local fields ψ(x), χ(x), ζ(x) and ξ (x)
(compare with (65) and (66)). As a result, we get:

SD

0 = −π
∫

d4p
(
M +

p2

n

M

)
ζ(p)γ5ψ(p)+

+π
∫

d4pζ(p)
(
/p + Mγ5 + 2Msinμ

2

)
χ(p)+

+π
∫

d4pξ(p)
(
/p + Mγ5 + 2Msinμ

2

)
ψ(p)−

−π
∫

d4pMξ(p)γ5χ(p)

(73)
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In the configuration space we have, correspondingly,

SD

0 =
∫

LD

0 (x, M)d4x =

= 1

2

∫
d4xζ(x)

(
�

M2 − 1
)
γ5ψ(x)+

+ 1

2

∫
d4xζ(x)

(
iγn ∂

∂xn + Mγ5 + 2M sin μ
2

)
χ(x)+

+ 1

2

∫
d4xξ(x)

(
iγn ∂

∂xn + Mγ5 + 2M sin μ
2

)
ψ(x)−

− 1

2

∫
d4xξ(x)γ5χ(x).

(74)

Hence, the modified Dirac Lagrangian LD

0 (x, M) is a local function of the spinor
field variables ψ(x), χ(x), ζ(x) and ξ (x). Here there is an obvious analogy with
the boson case (compare with (32) and (??)).

However, the fermion Lagrangian LD

0 (x, M) may be represented in a dif-
ferent form, if one uses the relations (62). Indeed, let us put

1

2M
(M − pKγK)ψ(p, p5) ≡ ΠLψ(p, p5) ≡ ψL(p, p5)

1

2M
(M + pKγK)ψ(p, p5) ≡ ΠRψ(p, p5) ≡ ψR(p, p5)

(75)

Due to (16) the operators ΠL and ΠR are projectors:

ΠL + ΠR = 1,

Π2
L = ΠL Π2

R = ΠR,

ΠLΠR = ΠRΠL = 0.

(76)

On the other hand they are the 5- analogue of the Dirac operator, and the
fields ψL(p, p5) and ψR(p, p5) obviously satisfy the corresponding 5-dimensional
Dirac equations

(M + pKγK)ψL(p, p5) = 0,

(M − pKγK)ψR(p, p5) = 0.
(77)

Therefore, in this way the fermion field ψ(p, p5), given in the de Sitter mo-
mentum space (16), may be presented as a sum of two fields ψL(p, p5) and
ψR(p, p5)

ψ(p, p5) = ψL(p, p5) + ψR(p, p5), (78)

which obey the 5-dimensional Dirac equations (77). Obviously, the decompo-
sition (78) is de Sitter invariant procedure.



It is easy to verify that in the flat limit (41)

ΠL,R =
1 ∓ γ5

2
, (79)

This is the reason that we consider the fields ψL(p, p5) and ψR(p, p5) as the

”chiral” components in the developed approach 12). The new operator of

chirality pLγL

M
, similarly to its ”flat counterpart”, has eigenvalues equal to

±1, but depends on the energy and momentum. The last circumstance,
as we hope, should be revealed experimentally (see section 4).

It is worthwhile to pass in (77) to the configurational representation.
Applying (63) we get :

ψL(x, x5) = 1

2

(
1 − iγn

M
∂

∂xn − iγ5

M
∂

∂x5

)
ψ(x, x5)

ψR(x, x5) = 1

2

(
1 + iγn

M
∂

∂xn + iγ5

M
∂

∂x5

)
ψ(x, x5)

(80)

Setting in (80) x5 = 0 and taking into account (65) and (66) we shall have:

ψL(x, 0) ≡ ψ(L)(x) = 1

2

(
1 − iγn

M
∂

∂xn

)
ψ(x) − γ5

2
χ(x),

ψR(x, 0) ≡ ψ(R)(x) = 1

2

(
1 + iγn

M
∂

∂xn

)
ψ(x) + γ5

2
χ(x).

(81)

As far as the field ψ(x, x5) obeys equation (24), the relations, we obtained
for the scalar field in the ”flat” approximation and in particular (45), may be
applied to it. Taking this into account, we find that in this approximation the
equalities (81) become

ψ(L)(x) = 1

2
(1 − γ5)ψ(x) − iγn

2M
∂

∂xn ψ(x) + γ5

2
(ψ(x) − χ(x)) �

� 1

2
(1 − γ5)ψ(x) − iγn

2M
∂

∂xn ψ(x) + γ5

4M2 �ψ(x),

ψ(R)(x) � 1

2
(1 + γ5)ψ(x) + iγn

2M
∂

∂xn ψ(x) − γ5

4M2 �ψ(x).

(82)

Representation, analogous to (78), may be introduced for the field ζ(p, p5)
appearing in (71)

ζ(p, p5) = ζL(p, p5) + ζR(p, p5), (83)

where
ζL(p, p5) = ζ(p, p5)ΠR,

ζR(p, p5) = ζ(p, p5)ΠL.
(84)
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Further it is not difficult to obtain relations similar to (80) - (82) for the fields
ζL(x) and ζR(x):

ζ(L)(x) = 1

2
ζ(x) + i

2M

∂ζ(x)

∂xn γn + ξ(x)γ5

2
,

ζ(R)(x) = 1

2
ζ(x) − i

2M

∂ζ(x)

∂xn γn − ξ(x)γ5

2
,

(85)

ζ(L) � ζ(x)1

2
(1 + γ5) + i

2M
∂

∂xn ζ(x)γn − �

4M2 ζ(x)γ5,

ζ(R) � ζ(x)1

2
(1 − γ5) − i

2M
∂

∂xn ζ(x)γn + �

4M2 ζ(x)γ5.

(86)

Now substituting (81) and (85) in the action integral (74) we may pass to new
variables ψ(L)(x), ψ(R)(x), ζL(x) and ζR(x):

SD

0 =
∫

LD

0 (x, M)d4x =

=
∫

d4x
[
ζ(L)(x)iγn ∂

∂xn ψ(L)(x) + ζ(R)(x)iγn ∂
∂xn ψ(R)(x)

]
+

+
∫

d4xζ(L)(x)
[
iγn ∂

∂xn + M(1 − γ5)
]
ψ(R)(x)+

+
∫

d4xζ(R)(x)
[
iγn ∂

∂xn − M(1 + γ5)
]
ψ(L)(x)+

+2M sin μ
2

∫
d4x

[
ζ(L)(x)γ5ψ(R)(x) − ζ(R)(x)γ5ψ(L)(x)

]

(87)

The obtained expression is the basis for constructing a gauge theory of inter-
acting fermion field. This topic will shortly be discussed in the next section.

Concluding this part we would like to make one important remark 6).
The point is that for the quantity 2M(p5 − M cosμ), which substituted

in our approach the Euclidean Klein-Gordon operator together with (68) there
exists one more decomposition to matrix factors:

2M(p5 − M cosμ) =

= (pnγn − γ5(p5 + M) + 2M cos μ
2
)(pnγn − γ5(p5 + M) − 2M cos μ

2
)

(88)

Therefore, if our approach is considered to be realistic, it may be assumed that
in Nature there exists some exotic fermion field whose free action integral has
the form

S
(exotic)
0 (M) = 2πM

∫
ε(p5)δ(pLpL − M2)d5p ×

×{
ξexotic(p, p5)

[
pnγn − (p5 + M)γ5 + 2M cos μ

2

]
ψexotic(p, p5)

} (89)



Applying the above developed procedure it is easy to obtain S
(exotic)
0 (M)

in a form analogous to (87). However, in contrast to SD

0 this quantity does not
have a limit as M → ∞, which justifies the name chosen by us for this field.
The polarization properties of the exotic field, evidently, differ sharply from
standard ones.

We would like to conjecture that the quanta of the exotic fermion field
have a direct relation to the structure of the ”dark matter.”

4 The new geometrical approach to the Standard Model

To the complete formulation of the Standard Model, consistent with the prin-
ciple of maximal mass (6) and its geometrical realization in terms of de Sitter
momentum space 7 (16) we shall devote a separate paper. Now we intend
to make only several remarks important for the understanding of our general
strategy.

1. SUL(2)
⊗

UY (1) - symmetry

The gauge SUL(2)
⊗

UY (1) - symmetry is one of the most important
elements of the SM which guaranteed its success. This is why it should be
assumed as necessary to apply it also in our approach, taking into account our
new definition of the chiral fields. However, in the new fermion Lagrangian LD

0

(see (87)) even for m = 0 there are crossed terms:

ζ(L)

[
iγn ∂

∂xn + M(1 − γ5)
]
ψ(R)(x)+

+ζ(R)

[
iγn ∂

∂xn − M(1 + γ5)
]
ψ(L)(x)

(90)

which, at first glance, are a insurmountable obstacle for the use of the group
SUL(2)

⊗
UY (1). The solution of this difficulty is to make the expression (90)

invariant form with the help of the Higgs field. In this way, considering as before
the Higgs boson to be a SUL(2)-doublet, introducing the doublet structure for
the L-component of the fermion field and passing to covariant derivatives with
the rules of the SM, we may write (90) in the form:

1

v

(
ζ(L).H(x)

) [
iγnDR

n + M(1 − γ5)
]
ψ(R)(x)+

+ 1

v
ζ(R)

{
H+(x).

[
iγnDL

n − M(1 + γ5)
]
ψ(L)(x)

}
+ conj.,

(91)

where H(x) is the SM Higgs doublet and DR and DL are the SM covariant
derivatives. After the Higgs mechanism is switched on from (91) separate our

7Let us recall that namely this geometrized SM is called in advance the
Maximal Mass Model.
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cross terms (90) and appear terms with interactions which are not present in
the SM. Together with the corrections, caused by the difference between the
new and old definitions of chirality (see (82) and (86)) they may be the ground
for predictions which may be verified experimentally.

2. Chirality In the SM it is prescribed that the boson fields transform as repre-
sentations of the group SUL(2), which for the vector fields is three-dimensional
and two-dimensional for the Higgs scalar. Naively reasoning one may ask him-
self how the mentioned bosons should know about the existence of the 4 × 4
matrix γ5 one of the eigenvalues of which corresponds to the index L ? In our
approach all fields, boson and fermion, are given in the de Sitter p-space on
equal footing, with the only difference that the boson fields obey the 5-equation
of Klein-Gordon (see (24)), and the fermion 5-equations of Dirac (77). There
is nothing strange that the field ψ(L)(x) and the Higgs scalar ϕ(x) simulta-
neously have a doublet structure with respect to the SUL(2)-symmetry. This
has already happened in the old isospin symmetry. Let us recall the nucleon
doublet and the K-meson doublet.

The new geometrical concept of chirality allows us to think that the par-
ity violation in weak interactions discovered fifty years ago was a manifestation
of the de Sitter nature of momentum 4-space.

3. Higgs mechanism

This important element of the SM, as we can see already now, is conserved
in the generalized SM without considerable changes. The role of the sponta-
neous symmetry breaking mechanism in the formation of the fundamental mass
M has been studied by a simple example in section 2.

5 Concluding remarks

Concluding this article, we would like to pay attention to one peculiarity of
the developed here approach. All fields, independently of their spins, charges,
masses etc. satisfy the free 5-equation of hyperbolic type, and the role of ”time”
is played by the coordinate ”x5”. The interaction between the fields is real-
ized at the level of the Cauchy data given on the plane x5 = 0, i.e., in the
four-dimensional (Euclidean) world. Only the elementary particles, described
by local fields and with masses, obeying the limitation m ≤ M have the right
of such a ”free gliding” in the 5-space.
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