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Abstract. In this paper we have studied the Kantowski-Sachs (KS) space time filled with
generalized ghost dark energy (GGDE) and dark matter in the Saez-Ballester theory of
gravitation. The equation of state (EoS) parameter of dark energy (ωλ) has been formulated
as a function of cosmic time and shows quintom like behavior. The properties of density of
dark energy (ρλ) and the density of dark matter (ρm) indicate the accelerated expansion of the
universe. The pressure of the dark energy is negative at present and late time evolution of the
universe indicating the accelerated expansion of our universe during these periods. The physical
and geometrical aspects of the statefinder parameters (r, s), squared speed of sound (v2s) and
ωλ − ω′λ plane are also discussed.

1. Introduction
The acceleration of the cosmic expansion is among the most important discoveries in existing

day cosmology [1–6]. This acceleration requires that nearly 75 % of the energy of the universe is
a component with a negative pressure, namely dark energy (DE). Survey of cosmic microwave
background radiation [7] and investigation of large-scale structures [8] have proved this discovery.
Several models were introduced to study the accurate nature and evolution of DE which
include cosmological constant model [9], quintessence models [10, 11], phantom dark energy
models [12, 13], holographic dark energy models [14, 15], ghost dark energy model [16]. The
cosmological constant model is unable to explain the cosmic coincidence of dark matter and dark
energy densities and also faces the problem of fine tuning. The ghost field has no contribution
to vacuum energy density in Minkowski space time, but in curved space time, it contributes to
vacuum energy density ∼ (103eV )4 with Hubble parameter (H) ∼ 10−33 eV and ΛQCD (QCD
mass scale) ∼ 100eV [17–19]. These numerical values indicate ghost dark energy has no fine-
tuning problem. Modfied ghost density proposed of the form ρλ ∼= αH + βH2 [20] , where H
is the Hubble parameter, α and β are constant parameters. The constraints on α and β were
developed using the recent observational data from Type Ia Supernovae (SNeIa), the Cosmic
Microwave Background (CMB), Baryon Acoustic Oscillation (BAO), Bayesian Neural Networks
(BNN) and the Hubble parameter data. GGDE has attained significant attention and various
aspects have been discussed such as interacting GGDE models. Some works on ghost dark
energy can be found in [21–25].

The KS cosmologies have two symmetry properties, the spherical symmetry and the
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invariance under spatial translations. The vacuum solution for this line element is equivalent
to the inner Schwarzschild space time. KS class of metric represents homogeneous but
anisotropically expanding (contracting) cosmologies and provides models where the effect of
anisotropy can be estimated and compared with FRW class of cosmologies [26]. Some works on
KS cosmological model can be found in [27–30].

The equation of state (EoS) parameter ωλ is important quantity in dark energy investigation,
which relates pressure and density through an equation of state of the form pλ = ωλρλ. Due to
lack of observational evidence in making a distinction between constant and variable, usually
the equation of state parameter is considered as a constant [31, 32] with values 0, 1

3 , -1 and 1
for dust, radiation, vacuum fluid and stiff fluid dominated universe respectively. But in general,
ωλ is a function of time or redshift [33, 34]. Some of quintessence models involving scalar fields
give rise to time-dependent ωλ are found in [35–37]. Hence, there is sufficient background for
considering ωλ as time-dependent for a better understanding of the cosmic evolution.

Alternative theories [38–41] become crucial in the field of cosmology, this is because of the
fact that general relativity does not fully comprise Machs principle. There are two categories of
alternative gravitational theories which involves a scalar field φ. The first category comprises of
that in which the scalar field φ has the dimension as inverse of G, in which Brans-Dicke holds a
place of prominence. The importance of Brans-Dicke is underlined by the fact that it introduces
an additional scalar field φ besides metric tensor gij and ω as a dimensionless coupling constant.
The second category comprises of a dimensionless scalar field. The theory which has the coupling
of dimensionless scalar field was proposed by Saez and Ballester, which in addition describes
the weak fields. This theory has an answer to the question of missing matter in FRW universe
(non-flat). The importance of scalar tensor theories is underlined by the fact that it solves the
problem of the smooth exit in inflation era [42].

Saez-Ballester theory of gravitation with Bianchi type cosmological models can be found in
[27,43–47]. Motivated by the above works in the present paper we have studied KS cosmological
model filled with ghost dark energy and dark matter in Saez-Ballester theory of gravitation.
The plots of some of the cosmological parameters versus redshift are presented to study their
physical properties.

The paper is organized as follows. In section 2, we discuss about the basic formulation of field
equations followed by the solution of the field equations in section 3. In section 4, we discuss
about some important properties of the model and we summarize the results in the last section.

2. Basic Formalism
The field equations of Saez and Ballester scalar-tensor theory (8πG = 1 and c = 1) [41] are

Rij −
1

2
Rgij = −Tij + ωφn

(
φ,iφ,j −

1

2
gijφ,βφ

,β

)
, (1)

and the scalar field φ satisfies the equation

2φnφi;i + nφn−1φ,βφ
,β = 0, (2)

where Rij is the Ricci tensor, R is the scalar curvature, φ is a dimensionless scalar field which is
a function of cosmic time t alone, ω and n are constants. Comma and semicolon denote partial
and covariant differentiation, respectively the energy-momentum tensor of the ghost dark energy
is given by

Tij = T λij + Tmij , (3)

where,
T λij = diag[1,−ωλ,−(ωλ + δ),−(ωλ + γ)]ρλ, (4)
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is the stress energy tensor of ghost dark energy. Here ωλ = pλ
ρλ

, ρλ, pλ, δ, γ are equation

of state(EoS) parameter, density of the ghost dark energy, pressure of the ghost dark energy,
skewness parameters in the direction of y-axis, z-axis, respectively and

Tmij = diag(ρm, 0, 0, 0), (5)

is the stress energy tensor of the matter, ρm is the density of dark matter. Also, we have energy
conservation equation as

T ij;j = 0. (6)

We consider the spatially homogeneous and anisotropic Kantowski-Sachs space-time given by [48]
in the form

ds2 = dt2 −D2(t)dr2 − E2(t)
[
dθ2 + sin2θdψ2

]
, (7)

where D and E are the functions of cosmic time t only.
For the metric given by equation (7) using equations (3) - (5) the field equations (1) and (2)
takes the form

Ė2

E2
+ 2

Ë

E
+

1

E2
− 1

2
ωφnφ̇2 = −ωλρλ, (8)

D̈

D
+
Ë

E
+
ḊĖ

DE
− 1

2
ωφnφ̇2 = −(ωλ + δ)ρλ, (9)

D̈

D
+
Ë

E
+
ḊĖ

DE
− 1

2
ωφnφ̇2 = −(ωλ + γ)ρλ, (10)

2
ḊĖ

DE
+
Ė2

E2
+

1

E2
+

1

2
ωφnφ̇2 = ρm + ρλ, (11)

φ̈+ φ̇

(
Ḋ

D
+ 2

Ė

E

)
+
n

2

φ̇2

φ
= 0. (12)

The energy conservation equation (6), yields

ρ̇λ + ρ̇m + 3(ρλ + ρm + pλ)H = 0, (13)

where H is Hubbles parameter and overdot(.) represents derivative with respect to cosmic time
t.

We assume that the matter and holographic dark energy donot interact with each other hence
both the components conserve separately, so that the continuity equation of ghost dark energy
is

ρ̇λ + 3(ρλ + ωλρλ)H = 0, (14)

and the continuity equation of matter is

ρ̇m + 3ρmH = 0. (15)

3. Solutions of the field equations
From equations (9) and (10) we get,

δ = γ, (16)

As the result of equation (16) the field equations (8) to (12) reduced to four independent
equations with seven unknowns D, E, φ, ρλ, ρm, ωλ, δ. In order to find a deterministic solution
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we take the following three physically valid conditions,
(i) We take the scale factor as given by hybrid expansion law [49],

a(t) = (tbet)
1
l , (17)

where b and l are positive constants.
(ii) We take the shear scalar σ in the model to be proportional to the expansion scalar θ, this
condition leads to [26,50]

D = Ek, (18)

where k > 0 and k 6= 1 is a constant.
(iii) We define the generalized ghost dark energy as [20]

ρλ = αH + βH2. (19)

The Hubble parameter H is given by,

H =
ȧ

a
, (20)

Using equations (17) and (20) the Hubble parameter H is obtained as

H =
1

l

(
b

t
+ 1

)
. (21)

Using equation (18) we get,

Ḋ

D
= k

Ė

E
, (22)

The directional Hubble parameters are,

H1 =
Ḋ

D
, H2 = H3 =

Ė

E
, (23)

The mean Hubble parameter is,

H =
1

3
(H1 + 2H2). (24)

Then from equations (22)- (24) it follows that

H1 =
3k

k + 2
H, H2 = H3 =

3

k + 2
H. (25)

From equations (20), (23) and (24) we get,

D = (tbet)
3k

l(k+2) , (26)

E = (tbet)
3

l(k+2) . (27)

Now the metric (7) with the help of equations (26) and (27) can be written as

ds2 = dt2 − (tbet)
6k

l(k+2)dr2 − (tbet)
6

l(k+2)
[
dθ2 + sin2θdψ2

]
. (28)

From equations (12), (17), (20), (23) and (24) we find Sez-Ballester scalar field as

φ =

[
n+ 2

2

∫
(ctbet)

−3
l dt+ φ0

] 2
n+2

, (29)
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where c and φ0 are constants of integration.

From equations (19) and (21) the density of ghost dark energy(ρλ) is obtained as

ρλ =
α

l

(
b

t
+ 1

)
+
β

l2

(
b

t
+ 1

)2

. (30)

From equations (15), (17) and (20) the dark matter (ρm) is obtained as,

ρm = c1(t
bet)

−3
l , (31)

where c1 is constant of integration.
Using equations (8), (9), (12), (16), (26) and (27) the skewness parameters obtained as

δ = γ =

9(1−k)
l2(k+2)

( bt + 1)2 + 3b(k−1)
lt2(k+2)

+ 1

(tbet)
6
k+2

α
l

(
b
t + 1

)
+ β

l2

(
b
t + 1

)2 , (32)

Using equations (8)-(10), (12), (16), (26), (27) and (30), the EoS parameter (ωλ) for the Ghost
dark energy is obtained as

ωλ =

54
l2(k+2)2

(
b
t + 1

)2 − 12b
lt2(k+2)

+ 2

(tbet)
6
k+2
− ω

(tbet)
6
l

−2α
l

(
b
t + 1

)
− 2β

l2

(
b
t + 1

)2 , (33)

From equations (30) and (33) the pressure of ghost dark energy (pλ) is obtained as

pλ = ωλρλ = − 27

l2(k + 2)2

(
b

t
+ 1

)2

+
6b

lt2(k + 2)
− 1

(tbet)
6
k+2

+
ω

2(tbet)
6
l

. (34)

4. Some other important properties of the model
The spatial volume of the model (28) is given by

V = a3 = (tbet)
3
l . (35)

The expansion scalar θ for the model is,

θ = ui;i = 3H =
3

l

(
b

t
+ 1

)
. (36)

From equation (36) we observe that when t → 0, θ → ∞ and this indicates the inflationary
scenario at early stages of the universe.
The shear scalar σ for the model is,

σ2 =
1

2
σijσij =

1

2
σijσij =

1

2
σijσij =

1

2

(
Ḋ2

D2
+ 2

Ė2

E2

)
− 1

6
θ2 = 3

(
k2 − 2k + 1

l2(k + 2)2

)(
1 +

b

t

)2

.

(37)
The average anisotropic parameter A for the model is given by

A =
1

3

3∑
i=1

(Hi −H)2

H2
=

2(k − 1)2

l2(k + 2)2
. (38)
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The value of the average anisotropic parameter A is positive constant for k 6= 1 which shows
that our model is anisotropic through out the evolution of the universe.

In graphical representations of physical parameters we constraint the constants as: α = 2 ,
β = 0.3 , k = 4 , ω = 100, c1 = 0.6, b = 5, l = 18.6 : b = 7, 17.6 : b = 8, 20.6 and the cosmic
time t in billion years. Here we plotted graphs by taking three different combinations of b and
l other parameters being the same. We observed that the first combination is best.
From figure 1 we observed that the volume of the model is decreasing function of resdshift and
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Figure 1. Plot of the volume V of
the model versus redshift(z).
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hence it shows the expansion of the universe.
The deceleration parameter (DP) q which measure the rate of slowing down of the expansion

factor, for the model is given by

q = −1 +
d

dt

(
1

H

)
= −1 +

bl

(b+ t)2
. (39)

Redshift(z)
0 0.5 1 1.5 2 2.5 3

ρ
λ
. ρ

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ρ
λ

ρ
m

Figure 3. Plot of ρλ, ρm versus
redshift(z).
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Figure 4. Plot of ωλ versusredshift(z).

The universe decelerates for positive value of deceleration parameter whereas it accelerates
for negative one [1,51]. From figure 2 we observed that the values of the deceleration parameter
q < 0 for z < 1.2 indicating that the universe appears to be expanding in accelerating rate at
present epoch and late time and q > 0 for z > 1.2 indicating that the model was decelerating
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at early time. From figure 2 we can also observe that q = 0 when z ≈ 1.2, therefore transition
from early deceleration to late time inflation of the universe in our models occurs at z ≈ 1.2. In
our model the present value of deceleration parameter q0 ≈ −0.73, which match the observed
value [52].
From figure 3 we observed that the density of dark energy (ρλ), the dark matter (ρm) are
increasing functions of the red shift and remains positive throughout the evolution of the universe
which shows that the universe is accelerating. From figure 3 we also observed that the ghost
dark energy dominates the corresponding dark matter throughout the evolution of the universe.
From equations (33), it is clear that the equation of state parameter of dark energy ωλ is a
function of time and from figure 4 we have observed that the equation of state of dark energy
(ωλ) is plotted as function of redshift and it crosses the phontom divide line (ωλ = −1). Thus
ωλ transits from quintessence to phantom so it has quintom like behavior and can explain the
acceleration of the universe. From figure 5 we observed that at present and late time the dark
energy pressure (pde) is negative, which is the cause of the accelerated expansion of the universe.
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Figure 5. Plot of p versus
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4.1. Squared Speed of the Sound
We now consider and study an important quantity considered in cosmology in order to check

the stability of any DE model and it is known as squared speed of sound, it is denoted with
v2s . The models with v2s > 0 are stable where as models with v2s < 0 are unstable. The squared
speed of the sound is defined as follows [53]:

v2s =
ṗλ
ρ̇λ
, (40)

where ṗλ and ρ̇λ are cosmic time derivatives of pressure and density of dark energy, respectively.
Using equations (30) and (34) v2s for model (28) is given by,

v2s =

54b
(lt(k+2))2

( bt + 1)− 12b
lt3(k+2)

+ 6

(k+2)(tbet)
6
k+2

−αb
lt2
− 2βb

l2t2
( bt + 1)

. (41)

The plot of squared speed of sound for the model with equations (28), is displayed against
redshift in figures 6 and we have observed that the squared speed of sound is positive througout
the evolution of evolution of the universe and, hence the model is stable at all time evolution of
the universe. Moreover the model satisfies the inequality 0 ≤ v2s < 1 at late time evolution of
the universe.
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4.2. State Finder Parameters
The statefinder pair is a geometrical diagnostic in the sense that it is constructed from a
spacetime metric directly; it is more universal than physical variables that depend on the
properties of physical fields describing DE, because physical variables are model dependent.
Usually one can plot the trajectories corresponding to different DE models in the {r, s} plane
to see the qualitatively different behaviors. For flat the ΛCDM scenario the statefinder pair is
{r, s} = {1, 0}. Taking a third order of derivatives with respect to the cosmic time t of the scale
factor a , the state finder parameters are defined as [54,55]

r =

...
a

aH3
, s =

r − 1

3(q − 1
2)
. (42)

Using equations (17) and (21) in (42) we get,

r = 1− 3lb

(t+ b)2
+

2l2b

(t+ b)3
. (43)

From equations (39), (42) and (43) we get,

s =
2(2bl2 − 3lb(t+ b)

3(t+ b)(2lb− 3(t+ b)2)
. (44)

From figure 7 we have observed that the values of state finder pair becomes r = 1, s = 0 at
late time and consistent with standard ΛCDM model.

4.3. ωλ − ω′λ Plane Analysis
To differentiate different DE models through trajectories on its plane, the ωλ − ω′λ was

proposed by [58]. This plane analysis which is very useful tool in our modern days cosmological
analysis. At the start, this method has been applied on quintessence DE model which leads to
two classes of its plane the one with ωλ < 0 and ω′λ < 0 is called freezing region and the other
with the property ωλ < 0 and ω′λ > 0 is known as thawing region. Differentiating EoS parameter
ωλ = pλ

ρλ
with respect to (lna) we get,

ω′λ =
ṗλρλ − pλρ̇λ

Hρ2λ
(45)

For model (28)

ṗλ =
54b

(lt(k + 2))2

(
b

t
+ 1

)
− 12b

lt3(k + 2)
+

6

(k + 2)(tbet)
6
k+2

− 6 ω

(tbet)
6
l

(46)
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ρ̇λ = −αb
lt2
− 2βn

l2t2

(
b

t
+ 1

)
, (47)

and ρλ and pλ is given by equation (30) and (34).
From figure 8 we have observed that our model lies in freezing region.

5. Conclusion
In this paper we have presented a spatially homogeneous anisotropic Kantowski-Sachs space

time filled with ghost dark energy and dark matter in framework of Saez-Ballester theory of
gravitation. The spatial volume V is decreasing function of redshift, indicating the accelerated
expansion of the universe. The time dependent DP (q) is positive at early age of the universe
and becomes negative at present and late time, showing that our models evolves from early
decelerating phase to late time accelerating phase. We have found the present value (z = 0)
of deceleration parameter as q0 ≈ −0.73, which match the observed value. We have also
observed that the ghost dark energy density (ρλ) and the dark matter (ρm) are increasing with
respect to redshift, representing accelerating universe. Moreover the ghost dark energy density
dominates the corresponding dark matter throughout the evolution of the universe. The EoS
parameter (ωλ) for our model crosses the phantom divide line ωde = -1, thus it has quintom-like
behavior. Since the squared speed of sound v2s is positive for all z we observed the model is
stable throughout the evolution of the universe . Moreover the model satisfies the inequality
0 ≤ v2s < 1 at late time evolution of the universe so that the model do not admit superluminal
fluctuations during late time. We have observed that the values of state finder pair becomes r
= 1, s = 0 at late time and consistent with standard ΛCDM model. We have observed that
our model lies in freezing region. We also observed that for present and late times the dark
energy pressure (pλ) is negative, which is the cause of the accelerated expansion of the universe.
The model obtained and presented here represents an accelerating and expanding cosmological
model of the universe. Thus our model is accord with present cosmological observations.
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