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Abstract. In non-relativistic quantum mechanics of N particles in three spatial dimensions,
the wave function ψ(q1, . . . , qN , t) is a function of 3N position coordinates and one time
coordinate. It is an obvious idea that in a relativistic setting, such functions should be replaced
by φ((t1, q1), . . . , (tN , qN )), a function of N space-time points called a multi-time wave function
because it involves N time variables. Its evolution is determined by N Schrödinger equations,
one for each time variable; to ensure that simultaneous solutions to these N equations exist, the
N Hamiltonians need to satisfy a consistency condition. This condition is automatically satisfied
for non-interacting particles, but it is not obvious how to set up consistent multi-time equations
with interaction. For example, interaction potentials (such as the Coulomb potential) make the
equations inconsistent, except in very special cases. However, there have been recent successes
in setting up consistent multi-time equations involving interaction, in two ways: either involving
zero-range (δ potential) interaction or involving particle creation and annihilation. The latter
equations provide a multi-time formulation of a quantum field theory. The wave function in
these equations is a multi-time Fock function, i.e., a family of functions consisting of, for every
n = 0, 1, 2, . . ., an n-particle wave function with n time variables. These wave functions are
related to the Tomonaga–Schwinger approach and to quantum field operators, but, as we point
out, they have several advantages.

1. Introduction
Multi-time wave functions arise naturally when considering a particle-position representation of
a quantum state in a relativistic setting. They were first introduced by Dirac in 1932 [4] and
studied to some extent in the 1930s [5, 2], but not comprehensively. The basic idea is that, in a
relativistic space-time, ordinary N -particle wave functions

ψ
(
q1, q2, . . . , qN , t

)
(1)

with qj ∈ R3 require the choice of a reference frame because they refer to the positions of several
particles at the same time t. An alternative that does not require a choice of reference frame is
to consider a wave function

φ
(

(t1, q1), (t2, q2), . . . , (tN , qN )
)

(2)

that is a function of N space-time points xj = (tj , qj) and thus of N time variables, called a
multi-time wave function. We call an N -tuple of space-time points a space-time configuration,

http://creativecommons.org/licenses/by/3.0
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or simply a configuration. The function φ is a covariant object: It does not require the choice
of any coordinate system on space-time M if we regard it as a function φ : MN → S, with S a
suitable spin space (or S = C in the spinless case, or S a bundle of spin spaces if M is curved).
More precisely, φ will often be defined only on the spacelike configurations, that is, on the set
SN of those N -tuples (x1, . . . , xN ) of space-time points xj ∈M for which any two are spacelike
separated or equal; see Figure 1. Note that SN is also defined in a covariant way, and is also
4N -dimensional.

t

(a) (b)

q q

t

Figure 1. Example of (a) a spacelike configuration of 3 points (shown as bullets), (b) a non-
spacelike configuration. Both examples are shown in Minkowski space-time with light cones
(dashed) drawn at 45◦.

The relation between ψ and φ is simple: In the reference frame to which ψ refers, set all time
variables in φ equal to obtain ψ,

ψ
(
q1, q2, . . . , qN , t

)
= φ

(
(t, q1), (t, q2), . . . , (t, qN )

)
. (3)

Put differently, this means that ψ is the restriction of φ to the simultaneous configurations
relative to the chosen reference frame.

As we will explain in more detail below, φ is usually also directly related to detection
probabilities according to the curved Born rule: If we place detectors along a spacelike
hypersurface Σ, then the probability distribution on ΣN of the detected configuration has density
(relative to the volume defined by the 3-metric on Σ) given by

ρ(x1, . . . , xN ) =
∣∣φ(x1, . . . , xN )

∣∣2 (4)

for any x1, . . . , xN ∈ Σ and with | · |2 = | · |2Σ understood appropriately: for example, for Dirac
wave functions with spin space S = (C4)⊗N ,

|φ|2 = φ
[
γµ1nµ1(x1)⊗ · · · ⊗ γµNnµN (xN )

]
φ , (5)

where nµ(x) is the future unit normal vector to Σ at x ∈ Σ. In words, the inner product in spin
space (and thus the norm) depends on the Lorentz frame, and we need to use the local frame
tangent to Σ.

A time evolution law for φ is a law that determines φ on its entire domain from initial
data. The appropriate initial datum in a given reference frame specifies the values of φ at those
configurations for which all tj = 0 while the qj are arbitrary; in other words, the initial datum
is ψ(t = 0). The kind of evolution analogous to the Schrödinger equation (we set ~ = 1)

i
∂ψ

∂t
= Hψ (6)
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is a system of PDEs comprising one equation per time variable,

i
∂φ

∂tj
= Hjφ , (7)

called multi-time (Schrödinger) equations. The multi-time equations we are considering are
linear equations, so that linear combinations of solutions are solutions. The chain rule and (3)
then imply the single-time Schrödinger equation (6) with

H =
∑
j

Hj (8)

at space-time configurations with t1 = t2 = . . . = tN . A central issue about multi-time
equations that does not arise for the ordinary Schrödinger equation is that the Hj need to fulfill
a consistency condition, or else the equations (7) cannot be simultaneously satisfied, or can only
for special initial conditions. Therefore, whenever we propose a system of multi-time equations,
we need to prove their consistency. For non-interacting particles, the consistency condition
is automatically fulfilled, and in fact a unique solution φ exists, not only on the spacelike
configurations, but on all of MN [24]. In contrast, to set up consistent multi-time equations
with interaction is challenging. Apart from special examples [6, 7, 3, 30] (and early successes
with fields [2, 28, 25], more below), this was successfully done only recently [20, 21, 12, 15];
we will elucidate below how. In all of these examples, the multi-time equations are remarkably
simple, see Eqs. (27), (30), and (43) below.

In quantum field theory (QFT), the single-time wave function ψ can often be taken to be an
element of Fock space, and thus a function on Q =

⋃∞
N=0(R3)N (with the union understood as

a disjoint union), the configuration space of a variable number of particles. The corresponding
multi-time wave function φ is defined on a subset of

⋃∞
N=0 MN (with M the space-time, say

M = R4), viz., the set of spacelike configurations S =
⋃∞
N=0 SN . The multi-time equations are

then an infinite system of coupled partial differential equations of the type (7), with interaction
implemented via creation and annihilation terms in the Hj . Since the N -particle sector φ(N) of
φ (i.e., the part of φ on SN ) has N time variables, there are N equations for it; the creation and
annihilation terms involve φ(N+1) and φ(N−1). In Section 6 we provide an explicit example of
such a set of equations which has been shown to be consistent. There is also a simple connection
of the multi-time wave function to an expression involving the field operators in the Heisenberg
picture, and to the Tomonaga-Schwinger approach. In fact, under suitable conditions, all these
three approaches can be translated into each other.

While our motivation comes from the wish for a manifestly covariant particle-position
representation of the quantum state, we mention that Elze [9, 10, 11] has recently used multi-
time wave functions for a different purpose in connection with certain discrete action principles
called Hamiltonian cellular automata: Elze found that for an N -particle system with N > 1,
such action principles for a multi-time wave function can yield a physically more reasonable time
evolution (after setting all times equal) than for a single-time wave function.

Another application of multi-time wave functions finds particular use in multi-time
equations without interaction: it concerns detection probabilities on a timelike hypersurface Σ̃,
corresponding to detectors waiting for the particles to arrive. Since different particles can arrive
at the detectors at different times, the joint distribution ρ̃ of the space-time points of detection
naturally involves several time variables. While in the case with interaction, the computation
of ρ̃ involves collapses of the wave function for any (attempted) detection, ρ̃ can be computed
more easily in the case without interaction, in fact directly from the multi-time wave function
φ, also at non-spacelike (x1 . . . xN ), according to

ρ̃(x1 . . . xN ) = φ(x1 . . . xN )
[
γµ1 ñµ1(x1)⊗ · · · ⊗ γµN ñµN (xN )

]
φ(x1 . . . xN ) (9)
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with ñµ(x) the outward unit normal vector to Σ̃ at x, at least in the following two cases: (i) for

ideal hard detectors modeled by an absorbing boundary condition on Σ̃ [29]; and (ii) in the
scattering regime [8], where detectors are placed along a very distant surface in space and stay
there, so that the particles coming out of the scattering process do not interact because of the
great distance.

The remainder of this article is organized as follows. In Section 2, we explain how the
multi-time approach is related to a Hilbert space framework, and how the multi-time wave
function relates to detection probabilities. In Section 3, we elucidate the need for and form of
consistency conditions. In Section 4, we summarize results showing that interaction potentials
make multi-time equations inconsistent. In Section 5, we describe a consistent model with
zero-range interaction, and in Section 6 consistent models in QFT.

2. Hilbert spaces, unitarity, and detection probabilities
2.1. Hilbert spaces and unitarity
Unitarity plays a crucial role in the structure of quantum physics. Given a multi-time wave
function φ on its natural domain S , one cannot, however, insert N arbitrary time variables
and expect that the integral of |φ|2 over the space variables yields unity. The reason is that
φ(t1, q1, . . . , tN , qN ) is not defined for all configurations, but only for spacelike configurations.
Instead, the integral of |φ|2 over a spacelike Cauchy hypersurface Σ yields unity. More precisely,
let us define φΣ from φ through the appropriate “restriction to Σ,” i.e., by considering only
configurations on Σ:

φΣ(q) := φ(q), q ∈ ΣN . (10)

Here N can be either fixed, in the case of a fixed number of particles, or take several values
referring to different sectors of Fock space for a variable particle number. Now the integral of
|φΣ|2 over QΣ = ΣN (or QΣ =

⋃∞
N=0 ΣN ) equals 1, as it must for the curved Born rule (4) to

make sense. Thus, φΣ lies in the appropriate Hilbert space HΣ associated with Σ, e.g., for N
Dirac particles,

HΣ = HN,Σ = S±L
2
(
ΣN , (C4)⊗N

)
(11)

with S± the (anti-)symmetrizer assuming the particles are bosons (fermions);1 the inner product
is

〈f |g〉 =

∫
ΣN

d3x1 · · · d3xN f(x1 . . . xN )
[
γµ1nµ1(x1)⊗ · · · ⊗ γµNnµN (xN )

]
g(x1 . . . xN ) , (12)

so that ‖f‖2 = 〈f |f〉 equals the integral of the probability density (5).
Since we can take φΣ as an initial datum, have the multi-time equations determine φ on all

spacelike configurations, and then consider φΣ′ on any other spacelike Cauchy hypersurface Σ′,
we obtain a time evolution operator

UΣ′
Σ : HΣ →HΣ′ , φΣ 7→ φΣ′ (13)

that is unitary for the multi-time equations considered here. These unitaries satisfy the
composition laws UΣ′′

Σ′ U
Σ′
Σ = UΣ′′

Σ and UΣ
Σ = I. Furthermore, they provide the translation

between the multi-time wave function φ and the Tomonaga-Schwinger equation, as we will
discuss in Section 6.

1 According to the spin-statistics connection, Dirac particles must be fermions, but for toy models we may equally
well consider bosonic symmetry.
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This family of unitaries is largely equivalent to the multi-time evolution. More precisely, if
a family (φΣ)Σ consisting of one element in each HΣ is given, these functions fit together as a
single function φ on the set S of spacelike configurations according to (10) if and only if

φΣ(q) = φΣ′(q) whenever q ∈ ΣN ∩ (Σ′)N . (14)

This relation is satisfied for UΣ′
Σ obtained from the Tomonaga-Schwinger equation in relevant

examples.
In the case of a variable number of particles, the multi-time wave function becomes a function

on
⋃∞
N=0 SN ⊂

⋃∞
N=0 MN called a “multi-time Fock function” [20]. It can be represented as a

sequence of N -particle multi-time wave functions φ(N),

φ =
(
φ(0), φ(1), φ(2), . . .

)
, (15)

where φ(0) ∈ C. We write φ(q) = φ(N)(q) if q = (x1, . . . , xN ). φΣ then is an element of the Fock
space

HΣ =

∞⊕
N=0

HN,Σ (16)

with ∥∥φΣ

∥∥2
=
∞∑
N=0

∥∥φ(N)
Σ

∥∥2
= 1 . (17)

2.2. Detection probabilities and the curved Born rule
A full proof of the curved Born rule is the subject of work in progress [16]; here we briefly outline
what needs to be proved, as well as prior results.

The unitarity of UΣ′
Σ entails that |φΣ|2 integrates up to 1 and thus qualifies as a probability

distribution on QΣ = ΣN or QΣ =
⋃∞
N=0 ΣN—it is the natural candidate for a curved Born

rule. However, this rule cannot simply be postulated, because the usual Born rule in any one
fixed Lorentz frame, together with the appropriate collapse rule, already determines the joint
probability distribution of the detection events for detectors that we place at different times,
including detectors that we place along any Σ. Specifically, if we approximate Σ in the given
Lorentz frame by horizontal pieces of hypersurfaces as in Figure 2 with temporal discretization
ε, then the usual Born and collapse rules apply to the horizontal pieces as a kind of iterated
position measurements with repeated collapse, one after every attempted detection.

Σt

q

ε

Figure 2. Construction for computing the detection probability distribution on a curved
spacelike hypersurface Σ: Σ gets approximated by horizontal pieces with temporal distance
ε. The length of the pieces is chosen such that every timelike curve intersects at least one piece.

In the limit ε → 0 we obtain a distribution on QΣ, and the claim is that this distribution
coincides with |φΣ|2. Here it is relevant that wave functions do not propagate faster than light,
and that interaction terms in the Hamiltonian do not provide faster-than-light interaction.
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A preliminary result in this direction was already obtained by Bloch [2] (see also [14, Sec.
2.3] for a discussion in English): He derived the curved Born rule in the case that N particles
are confined to spacelike separated regions as in Figure 3 (so they cannot interact), and Σ is
horizontal within each region.

Σ

particle 1 particle 2 particle 3

Figure 3. Bloch’s [2] result concerns particles confined to spacelike separated regions (gray)
and hypersurfaces that are horizontal in each region.

3. Consistency of evolution equations
Multi-time evolution equations are not necessarily consistent. One needs to ensure that
the many simultaneous equations (7) do not contradict each other. Consider first the case
in which the number N of particles (and thus of time variables) is fixed, and the Hj are
time-independent self-adjoint operators on a Hilbert space H . Regarding φ as a function
RN →H , (t1, . . . , tN ) 7→ φ(t1, . . . , tN ), and for given initial data

φ
(
t1 = 0, . . . , tN = 0

)
= φ0 , (18)

the order of first time-evolving φ0 in tj and then in tk or the other way around must be irrelevant,
i.e., the following diagram has to commute:

φ(0, 0)
e−iHjtj−−−−−→ φ(tj , 0)

e−iHktk

y ye−iHktk
φ(0, tk)

e−iHjtj−−−−−→ φ(tj , tk).

(19)

In words, e−iHjtj and e−iHktk have to commute for all tj and tk, which happens if and only if
the Hj commute (in the spectral sense) [22, thm. VIII.13]:

[Hj , Hk] = 0 ∀j, k. (20)

In that case,
φ(t1, . . . , tN ) = e−iH1t1 · · · e−iHN tNφ(0, . . . , 0) . (21)

If the Hj depend on time, (20) has to be replaced by the following consistency condition [19]:[
i∂tj −Hj , i∂tk −Hk

]
= 0 ∀j, k. (22)

This condition has been shown to be both necessary and sufficient in the case of bounded
operators Hj on H [19] and some other cases [20]. To find a rigorous proof of necessity and
sufficiency in general remains a task for future work. We conjecture that (22) is the appropriate
consistency condition also when the operators Hj are general differential expressions, such that
the multi-time equations remain first-order partial differential equations in the times tj . This
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includes the cases of multi-time equations (7) (a) which are defined on a sub-domain of R4N ,
and (b) with a variable number of time coordinates. Case (a) occurs, e.g., as multi-time wave
functions are naturally only defined on S (see the examples [20, 12]). Case (b) is the typical
situation in quantum field theory when formulated in the particle-position representation [20].
Then, the expression for Hj is no longer an operator on Hilbert space; it still is a differential
expression, as we will discuss below.

Furthermore, we conjecture that a given single-time dynamics (6) with finite propagation
speed and local interactions can always be extended to yield a unique (consistent) multi-time
evolution. This is supported by the examples [19, proof of thm. 8] and [20, Sec. 5.4] and shall
be the subject of future work.

4. Inconsistency of interaction potentials
The consistency condition (22) is quite restrictive. Two of us obtained a no-go theorem about
interaction potentials in [19] which was further extended in [17]. Here, “interaction potentials”
are understood as arbitrary smooth matrix-valued functions Vj(x1, . . . , xN ) : R4N → (C4)⊗N in

Hj = H0
j + Vj(x1, . . . , xN ) , (23)

where

H0
j =

3∑
k=1

iγ0
j γ

k
j

∂

∂xkj
+mγ0

j (24)

is the free Dirac Hamiltonian (we set c = 1) acting on the coordinates and spin indices of the
j-th particle, and γµj denotes the Dirac gamma matrix γµ acting on the j-th tensor factor of

(C4)⊗N . (Note that the superscript 0 in γ0 means the timelike component of γµ, whereas in H0

it means something else: the free Hamiltonian.)
The combined results of [19, 17] then state that the only Poincaré invariant potentials Vj which

satisfy the consistency condition (22) are Vj ≡ 0. Similar theorems for the cases H0
j = −∆j

and H0
j given by arbitrary first-order differential operators can also be obtained [19]. If we drop

the requirement about Poincaré invariance, then potentials satisfying (22) can be found, but
these seem artificial and consequently only of mathematical interest [17]. Note that the proof
in [19] was carried out for smooth potentials only, but we expect the result to hold for singular
potentials as well, e.g., the Coulomb potential |q|−1.

This result raises the question: How can interaction be achieved in multi-time equations
other than via potentials? Two answers, based on zero-range interaction and on particle
creation/annihilation, will be provided in Sections 5 and 6. Other approaches have been
suggested in [6, 7, 3, 30] (see also [13]); another notable approach is based on integral equations
for multi-time wave functions [14, appendix A]; in fact, the well-known Bethe-Salpeter equation
[23] belongs to this class.

5. Relativistic zero-range interactions
While the above no-go theorem excludes interaction potentials that are functions, it does not
exclude δ potentials, also known as zero-range interactions. It is known [1] from non-relativistic
quantum mechanics that zero-range interactions can be implemented rigorously by means of a
boundary condition on the wave function at those configurations for which two particles meet.
This clearly avoids the use of interaction potentials.

We now describe an example [12, 14] of a consistent multi-time evolution with zero-range
interaction for two massless Dirac particles in 1+1 dimensions, M = R2. The reasons for
setting up the model in this way are the following. In the relativistic case, we need to choose a
relativistic Hamiltonian such as the Dirac Hamiltonian. For the latter, it is known [26], however,
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that zero-range interactions exist in 1+1 but not in higher dimensions. In the massless case, the
dynamics becomes particularly simple and even explicitly solvable such that new mathematical
techniques not relying on the time-less functional analytic Hilbert space picture become available.
These are needed for a manifestly covariant treatment of the model.

The multi-time wave function in this case is a map

φ : S ⊂ R2 × R2 → C2 ⊗ C2 ' C4, (t1, z1, t2, z2) 7→ φ(t1, z1, t2, z2) (25)

and the multi-time equations are given by the free 1+1-dimensional Dirac equations with a
boundary condition. The free equations read, with the notation xj = (tj , zj),

iγµj ∂j,µ φ(x1, x2) = 0, j = 1, 2 (26)

in covariant notation, or

i
∂

∂t1
φ(t1, z1, t2, z2) = −i σ3 ⊗ 12

∂

∂z1
φ(t1, z1, t2, z2),

i
∂

∂t2
φ(t1, z1, t2, z2) = −i 12 ⊗ σ3

∂

∂z2
φ(t1, z1, t2, z2). (27)

in Hamiltonian form. Here, 12 stands for the 2× 2 unit matrix,

γ0 = σ1 =

(
0 1
1 0

)
, γ1 = σ1σ3 =

(
0 −1
1 0

)
, (28)

and σi, i = 1, 2, 3 denote the Pauli matrices. The boundary conditions are prescribed (as limits)
on the set of collision configurations,

C := {(t1, z1, t2, z2) ∈ R2 × R2 : t1 = t2, z1 = z2}, (29)

and one particular example of a suitable boundary condition is given by (denoting the spin
components of φ as φi, i = 1, 2, 3, 4)

φ2(t, z − 0, t, z + 0) = e−iθφ3(t, z − 0, t, z + 0),

φ2(t, z + 0, t, z − 0) = e+iθφ3(t, z + 0, t, z − 0), (30)

where θ ∈ (−π, π] is a phase.
Initial data are given at equal times as in (18); they have to satisfy the boundary condition

as well. The main results are: the multi-time evolution is consistent and can be defined in a
rigorous way, the model is interacting in the sense that a generic initial product wave function
φ0 becomes entangled with time, both multi-time equations as well as boundary conditions
are Lorentz invariant, and the model is compatible with anti-symmetry for indistinguishable
particles. Heuristically, the boundary conditions (30) correspond to a spin-dependent δ-potential
(π − θ)diag(0, 1,−1, 0)δ(z1 − z2) at equal times [15]. Finally, the Dirac tensor current

jµνφ (x1, x2) = φ(x1, x2)γµ ⊗ γνφ(x1, x2) (31)

is conserved,
∂xµ1 j

µν(x1, x2) = ∂xν2 j
µν(x1, x2) = 0 , (32)

which, together with the boundary conditions (30), ensures the unitarity of UΣ′
Σ .

The model has also been extended to N particles in 1+1 dimensions in [15], and there are
strong indications that non-zero masses will not change the results. An extension to higher
dimensions, however, does not seem feasible as then the dimension of C is too low for boundary
conditions to have impact on the dynamics. In conclusion, the results show that interacting
dynamics for multi-time wave functions in one spatial dimension can be achieved in a rigorous
and manifestly Lorentz invariant way.
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6. Quantum field theory
Another way of implementing interaction in the multi-time framework is by particle creation
and annihilation, i.e., by considering models from quantum field theory. We report here mainly
about the results of [20, 21]. Interaction by particle creation naturally suggests itself when
we are looking for relativistic theories and expect that interaction should not take place faster
than light; besides, perhaps surprisingly, also the consistency condition of multi-time equations
(relativistic or not) pushes us, since it excludes interaction through potentials, to considering
particle creation. The formulation of models from QFT in terms of multi-time wave functions can
be regarded as a new representation of QFT, a multi-time Schrödinger picture particle position
representation. As such, it provides an alternative approach to fully relativistic formulations of
QFT such as the Tomonaga-Schwinger formalism and quantum fields in the Heisenberg picture.
We will later argue that these three pictures are in fact equivalent, in the sense that each can be
translated into the others under suitable conditions. (Some of the statements in this direction
we show in very general terms, while others we show for specific examples, but we conjecture to
hold also for more general models.)

Nevertheless, an advantage of the multi-time framework is that as a mathematical object
multi-time wave functions are simpler, since they are locally just functions of finitely many
variables, and their evolution is determined by a coupled system of PDEs. Furthermore, it is
possible to introduce a cut-off in the multi-time framework [18, 19], but not in the Tomonaga-
Schwinger picture. This is so because there is no analogue of spacelike hypersurfaces with a
cut-off, but there are versions of the set of all almost spacelike configurations that take into
account a finite range of the interaction. On the other hand, the multi-time approach as we
present it here has the limitation that it is tied to a particle-position representation of the
involved particles (using Fock space), and cannot be applied to a field representation (in which
ψ is a functional of a function on 3-space). In fact, Dirac, Fock, and Podolsky [5] considered
a model of quantum electrodynamics in a particle representation for the electrons and a field
representation for the radiation. As a multi-time formulation, they proposed one time variable
for each electron and one time variable for the field. That led them to considering the field on
a horizontal hyperplane, although it was a main motivation for multi-time wave functions to
avoid being tied to configurations on horizontal hyperplanes; that is why we do not follow their
suggestion here.

In the examples we consider here, we take all particles to be Dirac particles; photons could
be included by taking a photon wave function to be a complexified Maxwell field [18]. We
leave aside issues of the right choice of position observable and make no attempt to remove or
redefine the negative energy solutions. We also leave aside the ultraviolet divergence problem
and calculate in a non-rigorous way.

6.1. Multi-time equations with particle creation and annihilation
We describe in detail a simple toy model, the “emission-absorption model” [20]. It involves
fermionic x-particles that can emit and absorb bosonic y-particles, so that the x-particle number
is conserved and the y-particle number is not. We first define the single-time version of the model.
Its Hilbert space is given by the tensor product of two Fock spaces,

H = Hx ⊗Hy, with Hx/y =

∞⊕
N=0

Sx/yL
2(R3,C4)⊗N , (33)
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where Sx is the antisymmetrization operator, and Sy the symmetrization operator.2 In other
words, the wave function ψ in the (M,N)-particle sector takes values in the spinor space
(C4)⊗M ⊗ (C4)⊗N , i.e., it could be explicitly written as ψr1...rM ,s1...sN (x3M , y3N ), abbreviating
(x3M , y3N ) = (x1, . . . ,xM ,y1, . . . ,yN ) with xj ,yk ∈ R3 for all j, k. However, in a given
expression, we usually only indicate the indices that other operators than the identity act on.
The time evolution of the wave function ψt ∈H is given by the Schrödinger equation

i∂tψt = Hψt, with H = Hx +Hy +Hint. (34)

In order to write down the interaction, we introduce the usual (spinor valued) creation and
annihilation operators a†, a for the x-particles and b†, b for the y-particles. These satisfy the
(anti-)commutation relations

{ar(x), a†r′(x
′)} = δrr′δ(x− x′) and [bs(y), b†s′(y

′)] = δss′δ(y − y′), (35)

and all other combinations are zero (a and b operators commute). Explicitly written out in
position space, they read(

ar(x)ψ
)
(x3M , y3N ) =

√
M + 1 (−1)M ψrM+1=r

(
(x3M ,x), y3N

)
(36)(

a†r(x)ψ
)
(x3M , y3N ) =

1√
M

M∑
j=1

(−1)j+1 δrrj δ
3(xj − x)ψr̂j

(
x3M \ xj , y3N

)
, (37)

(
bs(x)ψ

)
(x3M , y3N ) =

√
N + 1 ψsN+1=s

(
x3M , (y3N ,x)

)
(38)(

b†s(x)ψ
)
(x3M , y3N ) =

1√
N

N∑
k=1

δssk δ
3(yk − x)ψŝk

(
x3M , y3N \ yk

)
, (39)

where ·̂ means that the variable is omitted and (x3M \xj) := (x1, . . . ,xj−1,xj+1, . . . ,xM ). Then
the contributions to the Hamiltonian are

Hx =

∫
d3x a†(x)H0a(x), Hy =

∫
d3x b†(x)H0b(x),

Hint =

∫
d3x a†(x)

(
g∗ · b(x) + g · b†(x)

)
a(x), (40)

where H0 is the free Dirac Hamiltonian as in (24), g ∈ C4 is a fixed spinor, and the summation
over the spinor indices is implicitly understood in the above expressions (· denotes the inner
product in spinor space). In order to compare better with the multi-time equation that we are
going to introduce next, we write down the Hamiltonian in the position representation:

(
Hψ

)
(x3M , y3N ) =

M∑
j=1

H0
xjψ(x3M , y3N ) +

N∑
k=1

H0
yk
ψ(x3M , y3N )

+
√
N + 1

M∑
j=1

4∑
sN+1=1

g∗sN+1
ψsN+1

(
x3M , (y3N ,xj)

)
+

1√
N

M∑
j=1

N∑
k=1

gskδ(yk − xj)ψŝk(x3M , y3N \ yk). (41)

2 This choice is again contrary to the spin-statistics connection, since we take both x- and y-particles to be spin- 1
2

Dirac particles. The spin-statistics theorem does not apply here, since our Hamiltonian (41) is unbounded from
below.
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In this setting, the multi-time wave function φ is a spinor-valued function on the set
of all spacelike configurations S =

⋃∞
M,N=0 SM,N , where SM,N is the set of all spacelike

configurations of M x- and N y-particles. Similar to before we write (x4M , y4N ) =
(x1, . . . , xM , y1, . . . , yN ) with xj , yk ∈ R4 for all j, k. Then the multi-time evolution equations
are given by

i
∂φ

∂x0
j

= Hxjφ, i
∂φ

∂y0
k

= Hykφ, (42)

with

Hxjφ(x4M , y4N ) = H0
xjφ(x4M , y4N ) +

√
N + 1

4∑
sN+1=1

g∗sN+1
φsN+1

(
x4M , (y4N , xj)

)
+

1√
N

N∑
k=1

Gsk(yk − xj)φŝk(x4M , y4N \ yk),

Hykφ(x4M , y4N ) = H0
yk
φ(x4M , y4N ), (43)

where G : R4 → C4 is a Green’s function, i.e., the solution to

i
∂G

∂y0
= H0

yG with G(0,y) = gδ(y) (44)

for the fixed spinor g ∈ C4. One could also rewrite the multi-time equations in a covariant
notation by multiplying by γ0 and bringing the free Hamiltonian to the left-hand side; then
they take the form

iγµxj∂xµj φ+myφ = . . . and iγµyk∂yµk
φ+myφ = 0 . (45)

Note that for equal times x0
j = y0

k = t for all j, k, the equations (42) indeed reduce to the
single-time Schrödinger equation (34) with Hamiltonian (41). In fact, the multi-time equations
are little more than the terms in the one-time H (41) grouped into terms associated with each
particle—remarkably simple. Furthermore, the solution φ to (42) has the same permutation
symmetry as the initial datum, but now as a permutation of space-time points:

φrσ(1)...rσ(M),s1...sN

(
xσ(1), . . . , xσ(M), y

4N
)

= (−1)σφr1...rM ,s1...sN
(
x1, . . . , xM , y

4N
)
,

φr1...rM ,sσ(1)...sσ(N)

(
x4M , yσ(1), . . . , yσ(N)

)
= φr1...rM ,s1...sN

(
x4M , y1, . . . , yN

)
(46)

for all permutations σ, with (−1)σ the sign of the permutation.
It was shown in [20] that also in this case with a variable number of time variables, the

commutator condition (22) is necessary and sufficient for the consistency of the multi-time
equations. It turns out that for the operators from (43) these commutators indeed vanish on
all spacelike configurations (including collision configurations where some xj or yk are equal).
Thus, on a non-rigorous level, the equations (42) possess a unique solution on S , given initial
conditions for equal times. In the two cases when my = 0 or g∗γ0g = 0, the commutators vanish
on all configurations (also non-spacelike ones), but we believe these to be exceptional cases due
to the simplicity of the model.

A few remarks about the multi-time model seem in order.
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• When setting up multi-time equations starting from a single-time model with Hamiltonians
such as (41), there is usually some freedom in how to distribute the different terms among
the different multi-time equations. In (41), since the creation term contains a sum over all
x- and y-particles, one can attribute its summands either to Hxj or to Hyk . That is, one
could also set up the multi-time equations (42) with

Hxjφ(x4M , y4N ) = H0
xjφ(x4M , y4N ) +

√
N + 1

4∑
sN+1=1

g∗sN+1
φsN+1

(
x4M , (y4N , xj)

)
,

Hykφ(x4M , y4N ) = H0
yk
φ(x4M , y4N ) +

1√
N

M∑
j=1

Gsk(yk − xj)φŝk(x4M , y4N \ yk). (47)

However, it turns out that the multi-time equations with (47) are equivalent to the ones
with (43) on the set S of spacelike configurations. This fact is rather surprising: How
can two sets of equations that give different, non-equivalent expressions for certain partial
derivatives of φ (viz., for ∂φ/∂x0

j ) be equivalent? This has to do with the set S of spacelike

configurations: If φ were defined on the set
⋃∞
M,N=0 MM+N of all configurations (spacelike

or not), then the equations (47) would not be equivalent to (43) because one could simply
compute ∂φ/∂x0

j and see whether it agrees with the right-hand side of the first equation in
(43) or that in (47). However, for φ defined on S there are certain configurations where
∂φ/∂x0

j cannot be computed: the configurations where an x-particle and a y-particle meet,

xj = yk. There, varying x0
j while keeping y0

k fixed would lead out of S , so ∂φ/∂x0
j is not

defined, whereas (∂/∂x0
j + ∂/∂y0

k)φ is. And the crucial term Gsk(yk − xj) vanishes in SN

except at precisely those configurations where xj = yk. At those configurations, the PDEs
(42) are understood as determining the derivatives of φ that are defined, and that is why
different choices of Hxj and Hyk can determine these derivatives in the same way, and thus
define the same time evolution of φ.

• The model would also be consistent on S if the wave function had been chosen symmetric
under exchange of x-particles, i.e., if the x-particles were bosonic. However, it is interesting
to note that the model would not be consistent on S if the wave function was antisymmetric
in the y-particles, i.e., if the y-particles were fermionic. (It would then not be consistent
in the special cases my = 0 or g∗γ0g = 0 either; in fact, the commutators (22) for xi 6= xj
would be non-zero at all configurations.) In other words, the model is only consistent if the
fermion number is conserved (which is believed to be one of the fundamental conservation
laws of the Standard Model).

• The operator Hxj from (43) or (47) is not an operator on a Hilbert space, because it involves

changing a time variable, viz., setting y0
N+1 = x0

j . It is a perfectly fine operator acting on
φ, but cannot be understood as an operator on a Hilbert space. That is not surprising
keeping in mind (i) that Hxjφ provides i∂φ/∂x0

j for a specific sector φ(M,N) but depends

on neighboring sectors φ(M,N±1); and (ii) that the functions φ with fixed time coordinates
and arbitrary space coordinates do not form a Hilbert space, as discussed in Section 2.1
above. The multi-time equations do define evolution operators UΣ′

Σ between Hilbert spaces
HΣ and HΣ′ , as elucidated in Section 6.3 below.

• Initial data that determine φ can, in fact, be specified on any spacelike hypersurface Σ by
specifying φ on QΣ =

⋃∞
M,N=0 ΣM+N , i.e., for all configurations on Σ.

• The multi-time equations (42) are not fully Lorentz invariant because they involve the choice
of a fixed spinor g and the only Lorentz invariant 4-spinor is the zero spinor (which would
make the model interaction-free). However, if the y-particles had integer spin, g could be
replaced by a Lorentz-invariant object, and the equations would be fully covariant.
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• As mentioned before, the equations (42) are actually not rigorously defined since they
contain δ distributions in the creation terms via the Green’s function G (which is a
distribution). This is an instance of the ultraviolet divergence in QFT. The equations (42)
could be defined in a rigorous sense by introducing an ultraviolet cut-off, i.e., replacing the δ
distribution in (44) with some localized function ϕ. This is described in more detail in [18],
where the evolution equations with such a cut-off are explicitly written down, and a proof
for the consistency and existence and uniqueness of solutions on a (not Lorentz invariant)
subset of the set of spacelike configurations is sketched. However, this obviously breaks
the Lorentz invariance of the equations. Since the multi-time formalism is about finding
a fundamentally relativistic invariant quantum theory, we chose to proceed with formal
calculations. (However, note that for those equations where a renormalization scheme
works, one could also apply this to the multi-time equations.) It will be of interest to
explore whether and how multi-time equations can be set up for Hamiltonians for which
creation and annihilation terms are defined by means of boundary conditions instead of δ
functions [27].

6.2. Relation to field operators in the Heisenberg picture
There is a simple relation between the multi-time wave function φ, i.e., the solution to (42), and
an expression involving creation and annihilation operators in the Heisenberg picture. In the
latter, the state vector Ψ is fixed and only the operators are subject to the dynamics, i.e., we
define for x = (t, q) that

a(x) = eiHta(q)e−iHt, b(x) = eiHtb(q)e−iHt (48)

with H as in (41). Then one can show that

φ
(
x4M , y4N

)
=

(−1)M(M−1)/2

√
M !N !

〈∅|a(x1) · · · a(xM )b(y1) · · · b(yN )|Ψ〉 (49)

on spacelike configurations, where |∅〉 is the Fock vacuum. Equivalently, one can write using the
field operators Φx = a+ a†, Φy = b+ b†,

φ
(
x4M , y4N

)
=

(−1)M(M−1)/2

√
M !N !

〈∅|Φx(x1) · · ·Φx(xM )Φy(y1) · · ·Φy(yN )|Ψ〉 (50)

on collision-free spacelike configurations, i.e., those where none of the xj ’s and yk’s are equal.
In fact, we could take (50) as the definition of φ on the collision-free spacelike configurations.

Note that (50) would define some multi-time function φ̃ also for configurations with collisions,
and even for non-spacelike configurations. In the absence of interaction, φ̃ agrees with φ, but
in the presence of interaction the two differ at collision configurations, and φ is not defined at
non-spacelike configurations; in that case, φ̃ has the disadvantages that it does not necessarily
satisfy any system of PDEs and that it is not related in a simple way to detection probabilities, as
the curved Born rule (4) holds only on spacelike configurations. (In addition, in the Heisenberg
picture the Hilbert space H and the state vector Ψ ∈ H refer to the initial time t = 0, and
thus to a particular spacelike hypersurface. In contrast, φ and the PDEs (42) governing it are
independent of any choice of hypersurface, so they provide a more fully covariant description.)

6.3. Relation to the Tomonaga-Schwinger picture
The Tomonaga-Schwinger approach associates a wave function ψ̃Σ with every spacelike
hypersurface Σ. We have pointed out in (10) and (13) how multi-time equations define φΣ,
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here

φΣ ∈HΣ =

∞⊕
M=0

SxL
2(Σ,C4)⊗M ⊗

∞⊕
N=0

SyL
2(Σ,C4)⊗N , (51)

and unitaries UΣ′
Σ . They are closely related to the Tomonaga-Schwinger approach, except that

the latter is formulated in the interaction picture, which arises if we would like to represent φΣ

by vectors ψ̃Σ in a fixed Hilbert space H̃ . Then, we need to identify each HΣ with H̃ . This
can be done via the free time evolution

FΣ→Σ′ =

( ∞⊕
M=0

F
(1,x)⊗M
Σ→Σ′

)
⊗

( ∞⊕
N=0

F
(1,y)⊗N
Σ→Σ′

)
, (52)

where F
(1,x/y)
Σ→Σ′ is the unitary operator obtained from solving the free Dirac equation with mass

mx/y. Then

ψ̃Σ = FΣ→Σ0φΣ (53)

is the wave function on Σ in the interaction picture, where Σ0 is some fixed spacelike hypersurface
connected to the choice of H̃ . The evolution of ψ̃Σ is given by the Tomonaga-Schwinger equation

i
(
ψ̃Σ′ − ψ̃Σ

)
=

(∫ Σ′

Σ
d4xHI(x)

)
ψ̃Σ, (54)

for infinitesimally neighboring spacelike hypersurfaces Σ,Σ′, where the integral is understood
to be over the 4-dimensional volume enclosed between Σ and Σ′, and where HI(x) is the
Hamiltonian density in the interaction picture. For the model (40), it is given by

HI(x) = ei(Hx+Hy)x0a†(x)
(
g∗ · b(x) + g · b†(x)

)
a(x)e−i(Hx+Hy)x0 . (55)

The Tomonaga-Schwinger equation (54) has a solution for every initial datum if and only if the
consistency condition [

HI(x), HI(y)
]

= 0 for all spacelike separated x, y (56)

holds. Furthermore, (54) is Lorentz invariant if HI(x) is a Lorentz scalar. Note that (55) is not
a Lorentz scalar due to the choice of a fixed spinor g.

For the model (42), one can show that the ψ̃Σ obtained from φ through (53) indeed solves the
Tomonaga-Schwinger equation (54) with interaction Hamiltonian density (55). Conversely, any
given solution ψ̃Σ to the Tomonaga-Schwinger equation (54) with Hamiltonian density (55) is
connected to a solution φ of the multi-time equations (42): (i) we can switch from the interaction
picture to HΣ by considering φΣ := FΣ0→Σψ̃Σ; (ii) as mentioned before, Eq. (14) is the condition
for the possibility of combining all the φΣ into a multi-time function φ; (iii) one can check [20]
that (14) is indeed satisfied; and (iv) the multi-time evolution of φ agrees with (42) [20]. An
analogous translation between Tomonaga-Schwinger equations for ψ̃Σ and multi-time equations
for φ persists under rather weak assumptions on HΣ and HI(x).

6.4. Other models
In [21], we set up a multi-time model involving three particle species x, y and z. In this model,
x- and y-particles can annihilate each other and create a z-particle, and, conversely, a z-particle
can decay into an x- and a y-particle. The interaction Hamiltonian is

Hint =

∫
d3x

(
ga†(x)b†(x)c(x) + g∗a(x)b(x)c†(x)

)
, (57)
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where a, b, c are spinor-valued annihilation operators, and g ∈ (C4)⊗3 (i.e., summation about
spinor indices is implicitly understood). This model is inspired by electrons (x), positrons (y)
and photons (z), but, as in the emission-absorption model, we take all three particles to be Dirac
particles. The multi-time equations can be set up similarly as in (42) and (43). It turns out this
model is consistent on spacelike configurations if and only if the fermion number is conserved,
i.e., either none or two of the x, y, z particles are fermions. It can be shown that this model is
related to quantum fields in the Heisenberg picture and the Tomonaga-Schwinger picture in the
same way as described above.

We conjecture that multi-time equations can be set up consistently for many kinds of QFTs
under some reasonable conditions, and that the equivalence to quantum fields in the Heisenberg
picture and the Tomonaga-Schwinger approach still holds.

7. Conclusions
In this paper, we have given an overview of the theory of multi-time wave functions and its recent
developments. It was elucidated that the consistency of the multi-time evolution is a restrictive
condition that excludes the most common mechanism of interaction in non-relativistic quantum
mechanics, i.e., potentials. We have described two alternative ways of constructing relativistic
interactions in the multi-time picture: zero-range (or δ-potential) interactions and interactions
via particle creation and annhilation in QFTs. We have also described the relations of the
multi-time wave function to detection probabilities along spacelike hypersurfaces, to the field
operators in the Heisenberg picture, and to the Tomonaga-Schwinger approach.

One striking trait of the multi-time approach lies in its parallels to non-relativistic quantum
mechanics: in that the quantum state is represented by a wave function, that its time evolution
is governed by PDEs, and that its modulus squared yields detection probabilities. And the
results reported here suggest that it may be possible to formulate also more serious relativistic
QFTs in terms of multi-time wave functions, which sets a goal for future research.
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