Disclaimer

This note has not been internally reviewed by the D@
Collaboration. Results or plots contained in this note were only
intended for internal documentation by the authors of the note
and they are not approved as scientific results by either the
authors or the D@ Collaboration. All approved scientific results
of the D@ Collaboration have been published as internally
reviewed Conference Notes or in peer reviewed journals.

D@ NOTE: #652

Running a Large Monte Carlo Program in a Farm of
MicroVAX-II Computers under VAXELN

David Cutts and Jan S. Hoftun
Brown University, Providence, RI 02912

Abstract

This paper describes the operation of a loosely coupled “farm” of MicroVAX—
II computers running in the VAXELN environment. Our application used the
GEANT Monte Carlo package to simulate 2 TeV proton-antiproton collisions as
seen by the D@ detector at Fermilab. The layout of the farm, the control software,
and specific (small) changes to the program which were needed for operation in
the farm, will be explained.

Introduction:

The event-based nature of data in high—energy physics lends itself naturally to
parallel processing of individual events which may be done in a “farm” of computers
coupled together via some loose network to a host computer. This parallel event-
processing scheme can bé used as part of data acquisition; for example, one may use
such a farm for fast online filtering of events, with the nodes capable of running filter
programs which are written in high level languages. Such an arrangement is the basis for
the D@ data acquisition system which has been described elsewhere [1]. The combined
hardware/software solution chosen for D@ is based on Digital Equipment Corporation’s
MicroVAX processors and VAXELN software package. In order to gain experience with
running large FORTRAN programs in this environment, a first try at operating such
a farm for Monte Carlo simulations was made in late 1984. The program used then
was ISAJET, a Monte Carlo program which generates high—energy physics collsions.
This work provided experience in assembling the control programs and other utilities
needed for such an operation.

In the summer of 1986, the D@ experiment had an urgent need for a large number
of simulated events to finalize the detailed design of the detector and to investigate
triggering schemes based on this design. A Monte Carlo program to generate the events

as seen by the D@ detector had been developed based on the GEANT package from
CERN |[2]. But there was great difficulty finding enough resources to run such a very
CPU-intensive program (about 1 hour of CPU-time per event on a VAX~-780). None
of the institutions within D@ (including three national labs) could dedicate sufficient
conventional computing capacity to dedicate to the generation of the required 10,000
events on a short timescale, and because of code incompatibility and other problems
neither the Fermilab ACP multiprocessor system nor an outside supercomputer could
be used. The collaboration turned to the option of running the program on MicroVAXes
under VAXELN. This special version of DOGEANT which was to run under VAXELN
turned out to be easily put together; beginning with the VMS version of GEANT we
added various control features and with a few weeks of effort had a production version
running. Most of the time was spent developing general aspects which are useful for
setting up any application to run in the farm.

Hardware Layout:

The basic hardware used in this farm consists of MicroVAX-II CPU’s (in either
the KA-630 as used in VAXstation-II’s or the KA-620 real-time version which may
only run VAXELN), external memory (most nodes used in this run had 4MB added
to the 1IMB on the processor board), and DEQNA ethernet interfaces. In addition to
the farm nodes, we used as the host a MicroVAX-II system with 2 RA81 420MB disks
and a TU81+ 6250 bpi tape drive. Data transfers between the host and the nodes
utilized Ethernet, whose support is automatically included with VAXELN systems. -
Since data was actually transferred only at the beginning and at the end of each of
the very CPU-intensive events, the restriction of the Ethernet bandwidth did not pose
any limitations. The farm nodes were housed in various backplane configurations: in
custom setups used for data acquisition test work, in rack mounted BA-23 chassis and
even in a fully configured VAXstation-II. The basic hardware setup for the GEANT
run is shown in Figure 1. For the run described the farm consisted of up to 16 VAXELN
nodes.

At present, several innovations are affecting the basic hardware described above. A
new custom backplane has been developed commercially 3] for the D@ data acquisition
farm and will also be used in a slightly modified version for an offline farm. High speed
communication channels are also being developed for use in the host-to-node data
transfers. This path (40 MB/second per channel) is based on the dual-ported Q-Bus
memory boards [3] devloped for the D@ data acquisition system.

VAXELN:

VAXELN is a “software product for the development of dedicated and/or real-
time systems for VAX processors”. It is not an operating system, but allows the
user to have full control of all services on a target processor. The development of

these application systems takes place under VAX/VMS, using the same compilers, the
same linker and all the other facilities for ease of program development found in VMS.
The programs may be written in any high level language and linked together to form
separate programs. VAXELN comes with its own “dialect” of Pascal, called EPASCAL,
which is a superset of standard Pascal with extensions for interfacing to the VAXELN
services for multitasking, network services, and real-time resource management and
device control. VAXELN also provides such an interface for VAX-C, using the standard
VAX-C compiler. FORTRAN is supported with a Run-Time Library which makes
essentially all VAX-FORTRAN extensions available under VAXELN, although there
are a few restrictions as to some types of I/O operations (use of indexed files), and
logical file names are in general not supported.

To run a program in a VAXELN target node, the code is first compiled under
VMS, and then linked with the VAXELN libraries. Next, a system file is built with
the small, menu-driven facility, EBUILD, included in the VAXELN tool-kit. Such a
system file may then be used to download to a target node, and will become the only
system running there. Particular consideration has to be given to the system size, as
VAXELN does not swap pages in and out of memory (no local disk); the whole image
therefore has to fit in memory at once.

The programmer has full control over which services like drivers etc. are included
in the system. This makes for a very efficient run-time environment with little system
overhead. The VAXELN tool-kit also includes a remote debugging facility, EDEBUG,
which runs under VAX/VMS but connects to the remote node and allows the program-
mer to debug his/her code directly as it is running there. EDEBUG is similar to the
VAX/VMS debugger and is fully symbolic, with all variables for example available to.
the programmer for interactive inspection and possible modification.

Changes Needed to Make a FORTRAN Program Run under VAXELN:

Very few changes have to made in the FORTRAN code to make a FORTRAN
program run under VAXELN. Most of the changes have to do with OPEN statements:
making sure OPENSs have explicit host node and disk specifications. Also, any refrences
to system service (SYS$, LIB$ etc.) routines should be removed and/or replaced by
calls to VAXELN equivalent routines.

Control Program for Farm Operation, FARMRUN:

The program FARMRUN was devloped to control the running of this farm. Prin-
cipally, FARMRUN provides server functions for the input and output event streams.
These servers run separately as batch jobs, and command files are used to start them
and keep track of which files to use etc. An operator controls the farm by running
FARMRUN interactively and may then give START, STOP, PAUSE and CONTINUE

commands. The program is also able to interrogate each node and obtain a status mes-
sage describing the current state of the node. This program uses two other program
packages to perform its task. For interfacing with the operator, FARMRUN employs the
command/menu package COMPACK developed for general use in the Df—experiment.
COMPACK is a general purpose command/menu interface package which has both a
“line”-mode and a full-screen “menu”-mode of operation. The user may switch be-
tween the two modes at any time. COMPACK also has a command file mode and
may be run in batch mode without modifications. It is written in FORTRAN with a
subset in FORTRAN-77 for ease in transport to other machines. The full-screen part
of COMPACK uses the SMGS$ set of routines to perform screen I/0. To send com-
mands to each of the nodes in the farm and retrieve status messages, FARMRUN uses
a small package of FORTRAN-callable routines, ELNCON. ELNCON simplifies the
system programming needed to perform DECNET I/O under VAX/VMS and provides
a Fortran interface to the VAXELN services for network I/0.

Programs in each Farm Node:

The programs running in each farm node are shown schematically in Figure 2. The
main program itself, via the call to the initialization routine, starts a few subprocesses
used for control and for message passage. These processes go into wait states and hi-
bernate until signaled by software flags. This technique avoids polling-type statements
in the main code. The subprocesses take care of control/status messages to and from
the host, and may stop the main program if such a command is passed to the node.

The first program which gets control when a node is booted, is JOB__START,
a small control program using the VAXELN feature which lets one program control
how and when another program is running. JOB__START is set up to start the main
program with certain input parameters and then go to sleep until the main program dis-
appears for some reason (ends naturally or is aborted by operator intervention). When
the main program goes away, a new copy is immediately started by JOB__START. This
action, which does not involve any downloading of the image (the code was already in
memory), cuts down on network traffic when many nodes are stopped to be restarted
again with new parameters or for other reasons.

Various utilities were also developed to make the computers in the farm work to-
gether and make the operator intervention easy. For control and downloading of pa-
rameters etc., a call to a special initialization routine is put into the main program. It
returns the DECNET-number of the host node and other program-specific parameters
used at startup. The name and the number of the node itself which are useful for set-
ting up file specifications for OPEN statements or setting seeds etc., are also available.
In DOIGEANT, input and output event files were opened via calls to a special control
routine which could access status variables in a common block.

Operation of the Farm:

Figure 3 shows schematically how the farm operation occurs. While several compo-
nents of FARMRUN (Input Server, Output Server) may be running in batch mode at
the same time, only the Input Server is really needed for the farm to operate. The in-
put and output records in DAGEANT operation are simply files on the host containing
one input or one output event. A node opens and reads an event when it is ready for
another and then deletes the single input event file. The Input Server wakes up every
so often to check if the input event file has disappeared in the meantime. If so, it reads
the next event off the file of input events and writes a new single event file. When a
node is done processing an event, it opens a new file on the host disk and writes the
event to it. The Output Server also wakes up every so often to see if any new events
have been written in the meantime. If so, it reads in the event, checking that its format
is in order and writes it out to a file of collected output events. When a certain size of
the output file is reached, the Output Server closes it, and restarts itself using a new
file for the next set of output events. Thus collected output events can be copied to
tape at any time thereby freeing up valuable disk space. The FARMRUN component
which interactively controls the run and provides status messages is started only when
such an operation is needed.

Conclusions:

While fulfilling a vital need for the D@ Experiment, we have demonstrated that
MicroVAX-II computers running under VAXELN are very well suited for event—based
data processing tasks in high—energy physics. The amount of system programming
involved to operate such a farm is small and easily managed, even for massive software
packages like GEANT. Much of the convenience of our system derives from utilities
built for the D@ data acquisition system. Ethernet communications, included in the
VAXELN nodes, provides a very natural medium for data transfers. Ethernet band-
width has proved acceptable for CPU-intensive jobs like GEANT, but larger farms
or jobs with less computation per event may rather employ hardware developed for
the D@ data acquisition farm. Our experience in using the MicroVAX farm to provide
Monte Carlo events for D@ has been highly successful and should be a model for similiar
applications elsewhere. ‘

Acknowledgements

We wish to acknowledge Ray Zeller and Chris Johnson of ZRL for their vital con-
tributions to the D@ data acquisition hardware and software and to the operation of
the system described here. We also wish to thank Digital Equipment Corporation
for their interest and support of our application of MicroVAX-based VAXELN farms.
This work was suported in part by the U.S. Department of Energy under contract
DE-AC02-76 ER03130.A022-TC.

References

[1] “The MicroVAX Based Data Acquisition System for D§”, D. Cutts et al. Pro-
ceedings of the Fifth Conference on Real-Time Applications in Nuclear, Particle
and Plasma Physics, IEEE Transactions on Nuclear Science, Vol. NS—34 (August
1987). , "

[2] “Simulating D@ and Hermiticity Studies”, A.M. Jonckheere, Presented at the ANL-
Monte Carlo Workshop, August 1987 (to be published).

[3] Zeller Research Ltd., 8 Rushton Drive, Cranston, RI 02905

Hardware Layout of Farm

Host (VMS)

D200

PZomo
> ZOomy

SO RER
a0

<WORMZ
armn

P20Oomo
THOoORXmZ
Qo0

VAXELN nodes.
"Infinite' number may be added.

ETHERNET/DEQNA communication may be replaced by
high speed I/0 bus as in D@ data aquisition system.

Figure 1: The basic hardware setup for the GEANT run.

150

'WoJdj/0]

$59204d

SNLY 1S
1J0daYy

$s592%04d
Qoﬁc_me
dOlS

leubls dojlg

sJdjaWeded

Ss9204d
puewuwlod

199

\\\\\1

10JIU0D-qO

qof
|0J]U0D
1L¥v1s—gor

SOPON WJEJ Ul SWeJgoig

wedbodd
bulssaosodd

ojut qor

uleld]

1so0y

wodJdj/01 eleq

\

Figure 2: Schematic diagram of the programs running in each farm node.

idVvV 1

(U Jo |)
9PON
XY AT

o

pJ023Y 1IndinQ

eled inding
A

SEVNETS
1ndiInQ

wedbodd
[0JIU0D
1SOH

pJ029Yy 1ndu|

A

JOAJDG
1ndu|

9ll) puBwWwWoOd/J0orRIadQ

.mymu Indu|

UoneJad) wiey

Schematic diagram of how the farm operation occurs.

Figure 3:

