
LHCb 2003-027

TRIG
28 April 2003

Velo tracking for the
High Level Trigger

Olivier Callot

Laboratoire de l’Accélérateur Linéaire – Orsay

and

CERN – Geneva

ABSTRACT

This note describes the new implementation of the Velo tracking, developed for the High Level
Trigger (HLT), for which speed is a serious concern. The input data is the DAQ event as defined
by the Velo group, the output is a HltTrack, which allows vertexing and further tracking. This
note describes the algorithm, and reports the performance in terms of speed and efficiency.

 Page 2 “Velo tracking for the High Level Trigger” LHCb 2003-027

1 Description of the problem

The High Level Trigger must reduce the number of accepted events from 40 kHz input to 200
Hz output, selecting the interesting B decays. The idea is to reconstruct the tracks with accurate
momentum measurement, perform vertexing and select the wanted topologies. A first step is
then to reconstruct the Velo tracks. This was already done in Level1, but for technical reasons
we can’t pass enough information from Level1 to HLT. Also, the input data can be somewhat
more verbose, giving a more precise Velo cluster position. The strategy is to perform the
complete tracking on all tracks, as we want all B-decay products. This differs from the Level1
requirement, where finding some good B-decay tracks is enough to keep the event. In short, we
want full efficiency and maximum speed…

2 The algorithm

After some data preparation, the algorithm proceeds in two phases: First the tracks are searched
in the R-Z projection, using only R sensors. For tracks coming from the beam line, centre of the
R sensor geometry, straight tracks are straight also in the R-Z plane. For tracks having a small
distance of approach to the beam line, this is almost true. We are looking for B-decay tracks, it
has been shown that their impact parameter is lower than 2 mm, this gives an order of magnitude
of the misalignment to be accepted. Note that the Velo sensors are sensitive between 8 and 42
mm in radius.

The second step is to find Phi coordinates along the R-Z track, such that the track is straight in
space. A final fit allows providing a fitted trajectory for the next stages in the HLT.

2.1 Preparing the VeloClusters

A first algorithm converts the VeloCluster objects to the DAQ format. This is not the role of
the HLT, but the official Velo software for simulating raw data is not yet available. The format
is made of 32-bits words containing packed fields as shown below:

ADC strip 0 First strip L1 pattern size

ADC strip 4 ADC strip 3 ADC strip 2 ADC strip 1

0 0 ADC strip n ADC strip n-1

In the frequent case the cluster has a single strip, a single 32 bits word describes the cluster. The
“L1 pattern” is intended to store the bit mask of strips over the Level1 readout threshold in the
cluster. ”size” is on 4 bits, “First strip” on 11 bits.

A dedicated algorithm named PrepareVeloClusters produces a buffer of 32-bits words
according to this format, each Velo sensor being prefixed by a word specifying the sensor
number (top 16-bits) and the number of clusters (lower 16-bits). No cut on the number of
clusters are performed. However a cut on the total signal in the cluster is performed, to remove
the noise hits that are not useful for tracking, and part of the spill-over clusters. The cut is at 10
ADC counts.

 LHCb 2003-027 “Velo tracking for the High Level Trigger” Page 3

In order to be able to access the truth information, one keeps also a list of VeloCluster
pointers, one per cluster in the buffer. One can then later have a reference to the original
VeloCluster, which can then be associated to the true particle(s) that created it.

It should also be noted that the clusters are sorted to allow fast search. The sorting is by
increasing measured coordinate, which is usually the same as the strip number, except for half
the phi sensors where the strips are numbered in the other direction. For those sensors, sorting is
by decreasing strip number.

2.2 Geometry preparation

The Velo geometry is described in a DetectorElement, able to answer several questions.
However, speed is our main concern here. One of the main handle to improve speed is to have
smart objects, able to cache locally frequently used information. Geometry is one example.

The R sensors are divided in 4 sectors covering
45.5° each, with 512 strips. The radius of the
centre of each strip is kept in a look-up table. This
is currently the same look-up table for all sensors,
but could easily be changed if alignment becomes
an issue.

The Phi sensors are divided in two zones, inner and
outer part. The difficulty with the Phi sensors is
that they don’t really measure Phi, but a tilted Phi.
The real Phi depends on the strip number AND of
the radius at which the strip is hit. One need to
know the phi of the first strip in a zone as function
of R, this is a formula of the form � = �0 +
arcsin(R0/R) where the two constants have
to be computed once. One needs the pitch, constant
in angle. One stores also the range in Phi covered
by each of the R sectors (numbered from 0 to 7) to
allow a fast reject of impossible R-Phi
combinations.

The object “VeloSector” holds these information, together with the hits in this sector, and
has methods to search the best hit in his list.

2.3 Data decoding

The first step in the processing of an event is to unpack the DAQ event into usable objects,
called VeloCoord. These are just functional representation of a hit, holding position, error,
radius, angle, cosine and sine (to avoid repeated trigonometric computations). In order to limit
the overhead of memory handling, a vector of such objects is created in one go (we know the
total number of cluster by a fast scan of the DAQ buffer), and we just set the properties of each
cluster in turn during decoding. One should be sure to not extend this vector, as all pointers
would become invalid. The VeloSector object only holds a list of pointers to VeloCoord.
The barycentre of each cluster is computed using the ADC content. It should be noted that too
wide clusters are ignored, namely cluster of size greater than 3, as they don’t add information on
the coordinate of the track, and are creating ghosts too easily.

 Page 4 “Velo tracking for the High Level Trigger” LHCb 2003-027

2.4 R-Z tracking

The basic step in the R-Z tracking is to find a triplet of aligned clusters in three consecutive R
sensors, on the same side of the beam line. We work in each of the 8 sectors independently, i.e.
we don’t look at tracks crossing a 45.5° boundary. The range of slope in the R-Z plane is
limited, we want the track to have a radius increasing with Z, and a maximal angle of 400 mrad.

2.4.1 Finding triplets
Let’s call S0, S1 and S2 the three sensors in the triplet. We start with the most downstream
sensor for S0, S1 is the previous one, S2 is just before S1. This means that we go opposite to the
track’s direction, starting from the sensor where the tracks are most separated. We iterate on the
clusters in S0, for each cluster we iterate on the clusters in S2. We loop on the possible pairs in
the angular range 0-400 mrad. The first valid cluster in S2 is memorized, and we restart from
that one for the next cluster in S0, as previous clusters will be outside the angular range. For
each pair, we predict the position in S1, and search for the closest cluster. Here also we keep
track of the first good cluster in the search range, to restart from it the next time, with automatic
detection when this assumption becomes invalid. Loops are stopped (break;) as soon as the
rest of the clusters can not satisfy the condition. The search window for the cluster in S1 has a
width of 0.90 times the pitch at this radius.

In order to avoid finding again the same piece of track when starting from the next sensor, we
ask the first cluster to be unused.

2.4.2 Track extension
Once we have a triplet, we try to extend it as much as possible, predicting the radius in the next
sensor and finding the closest cluster. The search window is now 3.5 times the pitch. This large
value is needed to accept non pointing tracks, for which the R-Z projection is not exactly a
straight line. The way to compute the predicted radius is also important. A simple linear fit of all
previously found R coordinates is used.

If the triplet is not extended, we ask all hits to be unused, as the probability to have a ghost in
this case is quite high. For longer tracks, we ask for at least 2 unused hits on the track. If the
track has 4 or more clusters, they are tagged as used.

As sensors can be inefficient, we search also triplets with a missing sensor, namely (S0, S1, S3)
and (S0, S2, S3) but only for clusters not used in a previously found track. This avoids finding
three times the same track. The cost in time is quite low, as long as the sensors are reasonably
efficient.

After having exhausted all combination, the starting sensor S0 is changed, going towards the
interaction point, until no track with the maximal slope can come from the luminous region. We
don’t perform a search for the tracks going backwards, i.e. not in the spectrometer acceptance.
They may be useful for vertexing, and this is easy to add if/when needed.

 LHCb 2003-027 “Velo tracking for the High Level Trigger” Page 5

2.4.3 Clones at vertical boundary
The two halves of the Velo have some overlap, about 3°. Tracks in this region are then measured
twice, on the right and on the left sensors. To decrease this number of clones (they are the same
track, but don’t share any cluster), we perform a dedicated search: When in one of the sectors in
this overlap region, we search for clusters in the corresponding zone of the other sensors, with a
search window of only 0.6 times the pitch. If we have 3 or more such clusters, they are added to
the track, and tagged as used. We can then obtain tracks which are on the two halves, which will
be useful for aligning the detector.

2.4.4 Event rejection of busy events
It is well known that the trigger tends to select very busy events, but the offline analysis doesn’t
like them. A cut is applied on the total number of R-Z tracks found. If higher than 250, the event
is not interesting and is rejected.

2.5 Space tracking

The space tracking is somewhat new compared to previous Velo tracking algorithms. The idea is
to collect hits in Phi sensors which, when associated to an R-Z track, make a straight line in
space. Of course, it is difficult to select immediately which Phi cluster to associate. The trick is
to build lists of compatible clusters, and once all clusters in all sensors have been processed, to
select the best list. Reducing the number of combinations is the issue. Fast decision is also
important. We process all R-Z tracks, one after the other. Tracks are sorted by length, i.e. by
number of R measurements. This allows to search first for the best tracks, and to remove their
clusters for future searches.

2.5.1 Select sensors
First, one defines the first and last Phi sensors that can be crossed by the track, simply by testing
the radius at the sensor’s position. We start again by the last sensor, the one at the highest Z. The
two halves are handled simultaneously, as tracks close to the vertical boundary between the two
halves will have part of their point on one side, part in the other, and until we have found them
we have no method to avoid searching on both sides. Except of course for tracks in the two
central quarters of each R sensor: The only possible Phi hits are in the sensor of the same side.

2.5.2 Building the list of Phi clusters
For each sensor, the coefficients to convert a Phi strip to a Phi coordinate (see 2.2) are
computed, and the range of Phi coordinates values is computed, from the boundary of the R
sector in which the track sits. A quick test on an empty range allow to skip Phi sensors without
overlap with the R sector.

For the first two sensors (one on each side), we just create a VeloPhiList for each Phi
cluster.

For the next sensors, we try to match each cluster with an existing list. If there is no match and
the cluster was never used, a new VeloPhiList is created, but only for the first 3 pairs of
sensors. After that, the track would have too many missed hits and it is not worth adding more
lists to test.

For each cluster, the operation is first to convert the strip number to its angle, which gives then a
point (x,y) in space. The matching with existing VeloPhiList is performed by comparing the
distance in space between the predicted trajectory and the point. Note that the radius of the point

 Page 6 “Velo tracking for the High Level Trigger” LHCb 2003-027

is taken from the R-Z projection of the track, using an interpolation of the R measurements, and
the matching is performed using the projected x-z and y-z straight line parameterization of the
VeloPhiList.

A difficulty is to allow multiple combinations: For each VeloPhiList, we keep only the best
cluster for a given sensor. The same coordinate can be used in several VeloPhiList, and we
want to create a new list if the coordinate is not used when in the first tested sensors. When a
new cluster is kept, the parameterization of the track is adjusted, using the (x,y) point
corresponding to the cluster. We use the R measurements only indirectly, because they are used
in converting Phi to (x,y).

When all Phi sensors have been scanned, the best VeloPhiList is selected. The one with
more clusters, and the one with the best χ2 if several candidates have the same number of
clusters. Of course a minimal length is requested, 70% of the tested Phi stations (35% of the
sensors) should have a cluster.

2.5.3 Final fit and storage
Once all the R and Phi hits are collected, the track is fitted using all clusters and the best
estimate of the errors, and eventually converted to the storage format of HltTrack and put on
the transient store.

2.6 Availability of the software

The software is available in cvs, as package Hlt/HltVelo in the cvs repository. It requires the
package Event/HltEvent for specifying the output track, Hlt/HltTools for time
measurement tools, and Hlt/HltChecker for efficiency measurement.

3 Performance

The efficiency should be measured on signal events, as we want the maximal efficiency on B-
decay tracks. The difficulty is to decide which B-decay tracks. It may be easier to find the two
pions of B→ππ, with large PT than the low momentum tracks of a larger multiplicity channel,
like B→J/ψ(→µµ) φ(→KK). The tracks one want to find are “long” tracks, meaning they must
have enough clusters in the Velo (3R,3Phi) and in the T stations (X and U/V hits in each
station). “Long B tracks” should have also a particle with a b quark in its ancestors. And if this
ancestor has all its final decay products either “long track” or photons over 1 GeV, this is a
“Good B track”.

 The events should also have passed the Level0 and Level1 triggers.

Type Ghost rate Long tracks Long B tracks Good B tracks

Minimum Bias 5.7 % 95.5±0.2 % 95.8±1.5 % -

B→ψ(µµ) φ(KK) 4.6 % 95.8±0.1 % 96.5±0.2 % 98.0±0.3 %

B→ππ 4.7 % 94.9±0.2 % 96.4±0.3 % 97.6±0.5 %

 LHCb 2003-027 “Velo tracking for the High Level Trigger” Page 7

The speed of the algorithm is relevant on Minimum Bias events passing Level0 and Level1
triggers, as this will be the input of the High Level triggers. It is difficult to measure accurately
very small time on a Linux computer. Either we use the “user time” which is known by 10 ms
steps, requiring a very large statistics to get a few percent resolution on a time close to 5 ms. Or
we use the “clock time”, which is accurate but sensitive to the load of the machine. Several
measurements are needed to avoid spikes and accidental long delays. The measurements are
done with about 1000 events on an Lxplus7 machine, with a Pentium III at 1.0 GHz, and
expressed in ms.

The last row indicates the time for minimum bias events having passed Level0, and is an
indication of the speed of this algorithm if used in Level1.

Type Decoding R-Z tracking Space tracking Storage Total

Minimum Bias 0.99 0.83 3.65 0.46 5.93

B→ψ(µµ) φ(KK) 0.82 0.66 2.73 0.37 4.58

B→ππ 0.80 0.74 2.67 0.36 4.57

Min.Bias. after L0 0.76 0.58 2.17 0.32 3.83

This speed is faster than the current Velo offline tracking by a factor about 40. The performance
for the use in Level1 are adequate for this application too.

Without the cut on the cluster charge, the rate of ghost tracks is multiplied by 3, the efficiency
decreased by 0.5 to 1 % and the time taken is increased by 0.8 ms. The ghost rate, and maybe
the efficiency, could be recovered by checking the average charge of a track, as part of the tracks
may come from spill-over particles, with a lower average charge.

4 Acknowledgements

I want to thank Mariusz Witek for useful suggestions, in particular for the setting of the
compiler flags. The Velo tracking was first developed by Frederic Teubert and Ivan Kisel, and I
clearly benefited from their work.

