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ABSTRACT
We present a set of quark and gluon distribution functions obtained
by fitting their n = 2, 4, 6 moments as determined from the corresponding
measured Nachtmann moments from &eep inelastic electron and muon scattering.
A comparison of the calculated and measured Fz values is given. These

Vv

distributions are used to calculate F\Z’ and xF3 for neutrino scattering and

compared to recent data.
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In the past few years the theory of quantum chromodynamics (QCD) has
been shown to give a plausible account of a number of phenomena in high
energy physics.[‘] We refer, in particular, to the good account it gives
of: 1) scale breaking in ep and up deep inelastic scattering;{z'sl
A p+p~ u+ +y” + x, the DrellsYan process;[]’6’7] 3) high p, hadron-
hadron scattering;[8'9] and 4) v,v inelastic scattering.[Io] While none
of these are conclusive enough to constitute a "proof" &f QCD, they do
provide an incentive to pursue possible applications of QCD more extensively
and in greater detail. To this end it is important to have the quark and
7lusn romentur density functions; i.e., qj(x) = xoi(x), where p; is the
guark density as a function of x.{6] The purpose of this note is to report
an elerertary determination of these density functions based on a knowledge
of their n = 2, 4, 6 moments.

In a recent paper,[zl hereafter referred to as I, we showed how
several of the moments of the structure functions Fz(x,Qz) = vwz(x,oz) could
be evaluated by combining the existing electron and muon deep inelastic
scattering data.[l]’]zl The corresponding quark and gluon moments were
extracted through the use of the theory of asympiotic freedom.[]31 This
provided us with three moments for each constituent with which three parameters
of a suitable momentum distribution function could be determined. We chose
momentum densities in the form qi(x) = (ai +byx)(1 - x)ri, where x is
the momentum of the constituent expressed as a fraction of the nucleon mass.
We worked with a four-flavor, three~tolor model but considered that the
contribution of the charmed quarks was negligible. Thus, the index {1 runs

through four values, up, down, and strange quarks, and gluons. Our functional
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form is similar to that used by previous author-s.[""”J However, because it is
soméwhat arbitrary and does not have a sound theoretical basis, it cannot

be expected to give reliable results outside the range of the data used

to extract the moments.

The quark and gluon moments are defined, for up quarks, by
1 o -
W@, = K 2ulng?) + Tx,0%) lox (M
0

where u and U are the momentum densities of the quarks and anti-quarks,
respectively, per unit momentum interval, in units of the nuclear mass; and
similarly for the d, s, and ¢ duarks; for gluons

cale), =f1 X2 lx,0%)dx (2)

°

where 02 js the square of the four—homentum transfer and x = QZIZMv with v
the energy transferred to the nucleon in the laboratory system and M 1t
rest mass.

In I we obtained the values of the quark and gluon moments at

ﬁ = 10 Gevz. given in Table I. the 02 variation of the moments is given
p

NS

Q
in terms of four coefficients, M, and M_ for the singlet terms and M

and Mﬁs for the non-sinhglet terms as follows:

() + 6@, = 3 M, (0,02 + M (0,0D)] + 3 (n, D) (3a)
@) + c(@®, = 3 (00D + ¥ (DT + (0, ()

¢s(0?) = (@), = <30 (n,02) + MY (n,02)] (3c)

(6(e%), = oM, (n,0%) + aM_(n,0)) : (30)

‘( -




4
with
-20s
My(n,%) = M(n.0%)e ! (3e)
-Als
M_(n,0%) = H_(n,Q0)e " (3¢)
Als
Mistn, @) = Mig(n.gP)e S (3g)
Wl 02y 2 N (o g2 -Mis®
NS(H,O ) = MNS(H.Oo)e {3h)
and
s = anan(@?/a8)/an(QZ/A)] . (31)

The A's and a's are given explicitly by the theory of asymptotic freedom.
In I we used the values for a three-color, four-flavor model. In Table II
we give the values of the M's for n = 2, 4, 6 as determined in I for
¢ = 10 e’

Using Egs. (3), the quark and gluon moments for any value of Qz can
be computed. However, the results become suspect outside the range
3.0 < Q2 < 50.0 Gev2 of the data used in the analysis. Moreover, the
approximations of the theory leave additional doubts about the results for
values of Q2 near the lower end of the range.

In evaluating the distribution functions from these moments we tried
various functions. These gave rather similar results, except in the regions

of small x, below the range of the data. We checked our solutions by using

them to calculate Fz(x,Qz) according to the simple parton model,

FERMILAB-CON F—7g—1 29-E 5

Fyn=%[§u)+mm+%£du)+aun

$ 30500+ 500 (42)
i) = g Lulx) + 01+ g Ld(x) + T(x)]

cE0s+ 3001 . (4b)

for the proton and neutron, respectively. The 02 dependence of these functions
is not shown explicitly but is implied. Here, and in what follows, we take the
contribution of the ¢ quarks to be negligible.

Among the functional forms we studied, the ones that gave the best fit

to the proton and deuteron data are,

v
[u(x) + T(x)] = (a, + b1 =x) ¥ (52)
[4(x) + Fx)] = (ag + bg)(1 = x) )
r
[s(x) +5(x)] = a1 = x) ® (5¢)
r
g(x) = ag(] -x) 9 . (5d)

Note that we restricted the usual polynomial form in (1 — x) to one term
only, but left the value of the exponent as a free parameter. In future
work we intend to introduce more terms by utilizing the n = 3 and 5 moments
as well.

Values of the coefficients at different values of 02 are shown in
Table III. In Figs. 1, 2 and 3 we show the distribution of quarks and
gluons at 02 = 3.25, 7.0, and 20.0 GeVz, respectively. Although the functions

-~



u(x), etc. are well behaved as x + 0, the functions u(x)/x, etc. are
divergent and we have not extended our plots belon x = 0.05.

Our results are consistent with the conditions

1
. [[u(x)—ﬁ(x)]de=2
1
and f [d(x) = Ax) 1L = 1
]

as required in parton theory to give the electric charge of the proton and
nedtron correctly. To evaluate these integrals we set U(x) = d(x) = s(x) =
s(x), in accordance with the usual assumption about the production of the
sea of quark, anti-quark pairs. The contribution to these integrals from
0.05 < x < 1.0 is 1.10 and 0.32, respectively (for Q% = 20 GeV?). Thus, a
iarge contribution from the region x < 0.05 is called for and an appropriate
function would have to be chosen to satisfy these integral conditions as
well as the condition[7] u{x) + d(x) as x = 0. In this report we make no
proposals for the region x < 0.05.

In Figs. 4 and 5 we show the up quark and gluon momentum distributions
u(x} and g(x), respectively, as a function of Qz. The progressive peaking
of these distributions at low x as Q2 increases is clearly shown. This is
the expected behavior in the theory of asymptotic freedom that gives rise to
the scale breaking.

In Figs. 6-10 we show the fit of the hydrogen data to Fp(x,q%) for
QZ = 3,25, 9, 12.5, and 22.5 Gev2 respectively, and for the deuteron data
) %{Fg(x,qz) + Fg(x,QZ)]for Qz = 12,5 Gevz. Here the values of F, have

been evaluated assuming R = 0.25, constant throughout the full range of x.

Lt
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This may not be a good assumption in general, and in the resonance region
in particular. Moreover, in the resonance region we cannot expect a good
fit unless we include higher moments than n = 6. 0On the whole, however, the
fits are remarkably good considering that systematic errors of ~ 7% are not
iﬁc]uded in the error bars.

We show the fit in another‘way by plotting, in Figs. 11-15, szz(x)
to show the wefghting used in obtaining the n = 4 moment. The deviations
in the resonance region at large x are made more evident here. They become
even mord evident in Figs. 16-20 in the plots of xan(x) corresponding to
the n = 6 weighting. We think these plots give a fair picture of how well
our quark distributions ¢an be relied upon.

As a further check of our quark distribution functions, we used them
to calculate the structure funqtions obtained from the neutrino scattering
data.tlo] Again we assume c(x) % ©(x) = 0 and write the structure function

(14]

for the nucleon following Karliner and Sullivan,

v

F

(x,0%) = (1+R%) ({ru(x.oz)w(x.o’)+a<x,oz>+a<x.ozn
+ Zn'CG(yE-We)S(CC.QZ)}cosz(ec)
+{(Rx&%+3u&5+zﬁx&%1

+NB(yE-N,) W@(e, 0 + u(&doz} stn? “’c)) . (8

and




T T T T A W M A v it v

#3000 = o) + 0,00 = Td?) ~ Exed)
+ 2008 = ) L 56, cos?ley)
C

- T(x,0%) = F(x,0%) + 25{x,0%)

+

+eue-%{%dwv¥)»%uwvfﬂﬁuﬁmg.(n
C

where 3, is the Cabbibo angle (sin’e = 0.05) and y = E/E is the fraction

of the incoming neutrino energy delivered to the nucleon., We take the charm

threshold to be W. = 3 GeV and . = Xng, n. = 1+ mCZ/Qz) with m. = 1.5 GeV.

C

The last four parameters determine the threshold of charm production. We make

the usual assumptions:

1) Rv =0
2) ulx) = d(x) = $(x) = s{x)
Nelx) =0

and compare our calculated FY v

obtained from the CERN bubble chamber data.[mJ In the region Q2 > 4 GeV

the majority of the data was taken from BEBC with an incident neutrino energy

in the range 20 - 200 GeV. Some Gargamelle data with 2 < E\’ < 20 GeV was
included for x > 0.3 at Q% = 4 GevZ and x > 0.4 at Q° = 7 GeV2.

2 and xF3 with their experimental values recently
2
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Figures 21-24 show the CERN bubble chamber data and our calculated
structure functions. Two curves are shown on each plot. The dashed curve
is the calculation without charm production, i.e. with 8(yE - Nc) = Q.

The solid curve includes the effect of charm production. Most of the data
in the small x region are above threshold and therefore should follow the
upper curve. It should be noted that there is a 7% uncertainty in the
normalization which is not included in the error bars.

In conclusion, we have shown that the quark and gliuon momentum
density é&stributions in the nucleon can be obtained using QCD and simple
parton ideas. These quark momentum density distribution functions were
used to calculate the form factor Fz(x) for muon and electron scattering
and FZ(x) and ng(x) for neutrino scattering. Reasonably good agreement
with the data is shown.

We wish to thank the U. S. Department of Energy and the National
Science Foundation grant #PHY77-20610 for support of this research. We

would also like to thank T. Goldman for some very useful discussions.
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FIGURE CAPTIONS

Quark and gluon momentum density distritutions at Q2 = 3.25 GeVzk
Quark and gluon momentum density distributions at Q2 =7 GeVz.
Quark and gluon momentum density distributions at Q2 = 20 Gevz.

Up qusrk distributions at various va%ues of Qz. The values plotted
are Q¢ = 4, 12.5, 20, 40, and 60 GeVt. The curve with the largest
value at small x has the largest Q<.

Gluon momentum density distributions. The order is the same as
Figure 3. '

FH(x) for Q% = 3.25, 9, 12.5, 2.5 GeV? and JLFH(x) + FY(x)] for
2 2

Q= = 11.5 GeV". Squares, fermilab; crosses and triangles, MIT-SLAC.
szg(x) for Q2 = 3.25, 9, 12.5, 22.5 Gev? and %{F;(x) + Fg(x)] for

@2 =125 Gevz. Squares, Fermilab; crosses and triangles, MIT-SLAC.

x*FB(x) for Q% = 3.25, 9, 12.5, 22.5 Gev? and 3{FH(x) + F)(x)] for
02 = 12.5 Gevz. Squares, Fermilab; crosses and triangles, MIT-SLAC.
The structure_functions Fg(x) and ng(x) for neutrino data are shown
at G2 = 4 Ge¥%. The data are from Ref. 10. The dashed curve shows

the calculation of the structure function without charm production.
The solid curve shows the effect of charm production,

a) Fplx) b)  xF3(x)

Same as Figure 21 except Q2 =7 Gevz.
Same as Figure 21 except 02 = 20 GeVZ.
Same as Figure 21 except Qz = 60 Gevz.

Distribuvion
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