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Abstract

Stress-energy correlation functions in a general Conformal Field Theory (CFT) in four dimensions are 
described in a fully covariant approach, as metric variations of the quantum effective action in an arbitrary 
curved space background field. All Conservation, Trace and Conformal Ward Identities (CWIs), including 
contact terms, are completely fixed in this covariant approach. The Trace and CWIs are anomalous. Their 
anomalous contributions may be computed unambiguously by metric variation of the exact 1PI quantum 
effective action determined by the conformal anomaly of 〈T μν〉 in d = 4 curved space. This action implies 
the existence of massless propagator poles in three and higher point correlators of T μν . The metric vari-
ations of the anomaly effective action in its local form in terms of a scalar conformalon field are carried 
out explicitly for the case of the correlator of three CFT stress-energy tensors, and the result is shown to 
coincide with the algebraic reconstruction of 〈T T T 〉 from its transverse, tracefree parts, determined inde-
pendently by the solution of the CWIs in d dimensional flat space in the momentum representation. This 
demonstrates that the specific analytic structure and massless poles predicted by the general curved space 
anomaly effective action are in fact a necessary feature of the exact solution of the anomalous CWIs in any 
d = 4 CFT.
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1. Introduction

In the absence of a complete description of gravitation in four dimensions consistent with 
quantum theory, quantum effects in gravitational fields may be studied by means of the correla-
tion functions of the energy-momentum-stress tensor T μν , which couples to the curved spacetime 
metric gμν . The renormalized expectation value 〈T μν(x)〉g in metric backgrounds contains inter-
esting physical information about quantum effects in strong gravitational fields, such as those of 
black holes and cosmological spacetimes. If used as a source for Einstein’s equations, this one-
point function provides the basis for a mean field approach to semi-classical gravity, upon which 
most present knowledge of quantum effects and interactions in gravity, sparse as they are, are 
based [1]. The two-point function 〈T μ1ν1(x1)T

μ2ν2(x2)〉g contains additional information about 
vacuum polarization effects in gravitational fields, and enters directly into the linear response 
and stability of solutions of the semi-classical Einstein eqs. to small metric disturbances [2].

Higher point correlation functions of multiple stress tensors 〈T μ1ν1(x1)T
μ2ν2(x2)T

μ3ν3(x3)

...〉g , containing additional non-trivial information about quantum correlations in gravitational 
fields are less well studied. The three-point functions of T μν with two vector gauge currents 
〈T JJ 〉, very much analogous to the familiar chiral anomaly amplitude 〈AJJ 〉 of one axial and 
two vector currents, have been investigated in their exact [3,4] and broken phases [5] only rela-
tively recently. Such correlators may be relevant in classically conformal invariant field theories 
(CFTs), and in phenomenological scenarios envisioning possible conformal extensions of the 
Standard Model with a composite Higgs/dilaton scalar [5,6]. CFTs are of interest in their own 
right, both for the important role they play at critical points in renormalization group flows and 
possible application to a wide variety of many-body quantum systems, including the conformal 
bootstrap program, which has seen a recent resurgence of interest [7].

Even massless or classically conformal invariant theories generally break both scale and con-
formal invariance at the quantum level. This breaking of conformal invariance is manifest by the 
non-zero trace 〈T μ

μ(x)〉g of the energy-momentum tensor in a background gauge or gravitational 
field. The general form of the trace anomaly of the one-point function has been known for some
time [8], cf. Eq. (4.1). This conformal anomaly has been shown to lead to a full three-point corre-
lator 〈T μνJ αJ β〉 in massless QED that possesses a massless scalar pole in momentum space [3]. 
The three-point correlation function of stress tensors in QCD exhibits such a massless pole as 
well [4]. In the Standard Model the same massless scalar pole is inherited by the dilation current 
correlator [5,9], which appears also in supersymmetric theories [10]. These results naturally raise 
the question if the presence of a massless scalar pole in the three-point 〈T T T 〉 correlator are a 
general necessary and inevitable consequence of the anomalous conformal Ward Identities of any 
CFT in d = 4 dimensions. This is the main question we address and answer in the affirmative in 
this paper.

Three-point T μν CFT correlators were analyzed in position space with Euclidean flat met-
ric in Ref. [11]. However the presence or absence of massless poles is associated with behavior 
on the light cone, which is most clearly evident in a momentum space representation with a 
Lorentzian metric. The technical tools for solving Conformal Ward Identities (CWIs) in the mo-
mentum representation have been developed in the past few years [12]. The three-point function 
〈T μ1ν1T μ2ν2T μ3ν3〉 has been found by solving the CWIs in d-dimensional flat Minkowski space 
in the momentum representation [13]. In this approach the CWIs are treated as non-anomalous in 
general d-dimensions, but when solved for general d , exhibit 1/(d − 4) divergences in the limit 
d → 4. These divergences require counterterm subtractions and a somewhat involved reconstruc-
tion of the trace parts from the transverse, tracefree parts, which amounts to reconstructing the 
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anomaly and anomalous contributions to 〈T T T 〉 a posteriori. The momentum space massless 
scalar 1/k2 pole in the final renormalized correlator is somewhat concealed by the technicalities 
of this method.

In this paper we take a quite different approach, focusing specifically on the contributions 
to the CWIs directly required by the conformal anomaly, and directly in four dimensions, by 
making use of the known form of the conformal anomaly and its one-particle irreducible (1PI) 
effective action in d = 4 curved spacetime. This starting point already incorporates the neces-
sary regularization and renormalization of 〈T μν(x)〉g consistent with general covariance. Hence 
no further regularization, dimensional or otherwise is required, and the momentum space pole 
structure associated with the anomaly may be examined directly.

The form of the conformal anomaly determines the 1PI quantum effective action for a CFT in 
a general curved space background [14,15], up to conformally invariant and purely local terms. 
Any effects of the anomaly are determined by this anomalous effective action by successive 
variation with respect to the arbitrary background metric gμν , after which the metric may be set 
to the flat Minkowski metric ημν . In particular, the presence of the massless scalar pole in the 
third metric variation of this effective action shows conclusively that the massless 1/k2 pole is 
necessarily associated with the conformal anomaly, directly in d = 4.

We compare this direct calculation from the anomaly effective action with the method devel-
oped in Refs. [13] for reconstructing the trace contributions from the transverse, tracefree parts of 
〈T μ1ν1T μ2ν2T μ3ν3〉 by dimensional regularization of d-dimensional flat space amplitudes, and 
show that these two quite different methods yield precisely the same result for the anomalous 
trace contributions in the momentum representation. Thus, the massless scalar 1/k2 pole is nec-
essarily present in general CFT three-point CFT correlator, exactly as predicted by the anomaly 
effective action, and as a direct consequence of the anomalous CWIs it obeys.

The outline of the paper is as follows. The covariant quantum action in curved space is defined 
in Sec. 2, and the method of derivation from it of all the relevant Ward Identities for the n-point 
correlators 〈T μ1ν1(x1)T

μ2ν2(x2) . . . T μnνn(xn)〉g given in Secs. 3-5, with explicit results for the 
CWIs n = 2, 3. In Sec. 6 the approach of [13] for reconstructing the trace parts of 〈T T T 〉 from 
its transverse, traceless parts is reviewed. The effective action for a general CFT decomposed 
into its Weyl invariant, anomalous and local parts, and the anomaly effective action in d = 4, in 
both its non-local and local form, as well as the Wess-Zumino consistency condition it satisfies 
is summarized in Sec. 7. In Sec. 8 this curved space anomaly 1PI effective action is developed 
in a Taylor series to third order around flat space in Sec. 9, and its contribution to 〈T T T 〉 is 
explicitly computed in momentum space and shown to be identical to the reconstruction method 
of [13]. Both methods are shown to yield precisely the same 1/k2 massless scalar pole and 
tensor structure required by the conformal anomaly. We conclude in Sec. 10 with a Summary 
and Discussion of the implications of the existence of a massless scalar pole as indicative of an 
effective scalar degree of freedom in low energy macroscopic gravity not contained in classical 
General Relativity, and sketch some directions for future work.

2. 1PI action in curved space and 〈T T T . . . 〉 correlators

The symmetric energy-momentum-stress tensor T μν(x) coupling to the gravitational metric 
field gμν(x) is defined by the metric variation

T μν(x) ≡ 2√ δScl[�,g]
(2.1)
−g(x) δgμν(x)
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where Scl[�, g] is the classical action of the fields, denoted generically by � = {�i}. Here 
Scl[�, g] is viewed as a functional also of the general curved spacetime background metric, 
denoted symbolically by g, and 

√−g(x) ≡√−detgμν(x).
When the matter/radiation fields � in Scl are quantized, T μν becomes an operator and the 

fundamental quantities of interest are the n-point quantum correlation or vertex functions

Sμ1ν1...μnνn
n (x1, . . . , xn;g) = in−1〈T ∗{T μ1ν1(x1) . . . T μnνn(xn)

}〉
g
, xi �= xj ∀ i �= j

(2.2)

of the covariant T ∗{. . . } time-ordered product of operators T μiνi (xi) at distinct spacetime points 
xi in the general background metric gμν(x). These correlation functions (2.2) are well-defined 
when no two of the spacetime points coincide. When any of the spacetime points in (2.2) do 
coincide, the correlation functions acquire contact terms which must be treated with some care.

The contact terms are most conveniently handled by defining the correlators in (2.2) in a 
generally covariant way as variations of the one-particle irreducible (1PI) exact quantum effective 
action S[g], defined formally by the functional integral

exp
{
i S[g]}≡

∫
[d�] exp

{
i Scl[�,g]} (2.3)

over all the matter/radiation fields (at all scales) in the fixed but arbitrary background metric. By 
expanding this 1PI quantum action functional in a Taylor series

S[g + h] = S[g] +
∞∑

n=1

1

2n n!
∫

d4x1 . . . d4xn

√−g(x1) . . .
√−g(xn)

× Sμ1ν1...μnνn
n (x1, . . . , xn;g)hμ1ν1(x1) . . . hμnνn(xn) (2.4)

around a given background metric, it becomes clear that the coefficients of this Taylor series Sn, 
defined by the multiple functional variations

Sμ1ν1...μnνn
n (x1, . . . , xn;g) ≡ 2n

√−g(x1) . . .
√−g(xn)

δnS[g]
δgμ1ν1(x1) . . . δgμnνn(xn)

(2.5)

generate precisely the correlation functions (2.2) in the case that none of the spacetime points 
coincide. Moreover this fully covariant definition of the T μν correlation functions also deter-
mines all the contact terms through the covariant Ward Identities they satisfy, as we shall show 
presently. If Feynman boundary conditions are specified on the functional integral (2.3), then 
S[g] is the in-out effective action, which is the generating functional of the covariant T ∗ time 
ordered in-out connected correlation functions (2.2). Other boundary conditions (such as in-in) 
may also be imposed on (2.3) to obtain the corresponding correlation functions.

Let us remark that it is important to distinguish the 1PI full quantum effective action S[g] in 
(2.3), defined in the gravitational sector by integrating out all non-gravitational matter/radiation 
fields at all scales, from the Wilsonian effective action in common use in high energy, nuclear 
and condensed matter physics applications. The Wilson effective action is defined by integrating 
out only heavy degrees of freedom above some mass scale M , and expressing the result in a local 
derivative expansion up to some finite order in 1/M . Unlike this approximate Wilson effective 
action, the exact 1PI action S[g], defined formally by (2.3), is generally quite non-local, as 
it contains the full effects of the quantum fluctuations of light or massless fields, and is thus 
applicable to Conformal Field Theories that are the subject of this paper.
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3. Conservation ward identities

3.1. Position space

For n = 1 the covariant definition of the one-point function

Sμν
1 (x;g) ≡ 〈

T μν(x)
〉
g

= 2√−g(x)

δS[g]
δgμν(x)

(3.1)

is the renormalized expectation value of T μν(x), where we assume that renormalization coun-
terterms have already been taken account of, and S[g] is the finite renormalized 1PI effective 
action. If the renormalization procedure respects general coordinate invariance, then the expec-
tation value (3.1) will satisfy the fundamental Ward Identity of covariant conservation

(g)∇μ

〈
T μν(x)

〉
g

= 0 (3.2)

with (g)∇μ the covariant derivative in the general background metric gμν(x).
The conservation Ward Identity (3.2) may be rewritten in the form

√−g (g)∇ν

〈
T μν(x)

〉
g

= ∂ν

(√−gSμν
1

)+ 	
μ
λν

(√−gSλν
1

)
= 2

∂

∂xν

(
δS[g]

δgμν(x)

)
+ 2	

μ
λν(x)

(
δS[g]

δgλν(x)

)
= 0 (3.3)

by making use of the Christoffel connection

	
μ
λν(x) = 1

2

[
gμα

(
− ∂αgλν + ∂λgνα + ∂νgαλ

)]
x

(3.4)

for the general background metric gμν(x), with the subscript x indicating the spacetime point 
at which the expression within brackets is to be evaluated. The last form of (3.3) is the most 
convenient one for additional successive variations with respect to gμν(x), by which conservation 
Ward Identities for the higher point correlation functions may be derived.

For the two-point function, we take one additional variation of the fundamental relation (3.3), 
and note that in flat space in the absence of boundaries (and in Cartesian coordinates), we may 
set both the expectation value 

〈
T μν(x)

〉
η

and 	μ
λν(x) = 0, thus obtaining

∂ν1 S
μ1ν1μ2ν2
2 (x1, x2;η) = 0 (3.5)

for n = 2. Likewise for the three-point function we take two metric variations of (3.3), and make 
use of the first variation of the Christoffel symbol

2
δ	

μ1
λ1ν1

(x1)

δgμ2ν2(x2)

∣∣∣∣
g=η

= ημ1α1
{

− δλ1
(μ2δν2)

ν1
∂α1 + δ (μ2

ν1
δν2)

α1
∂λ1 + δ (μ2

α1
δν2)

λ1∂ν1

}
δ4(x1 − x2)

(3.6)

where the derivatives of the δ-functions in (3.5), (3.6) and (3.7) below are with respect to x1, and 
parentheses around indices denotes symmetrization with respect to those indices. Then taking 
account of the normalization in (2.5) we obtain

∂ν1 S
μ1ν1μ2ν2μ3ν3
3 (x1, x2, x3;η) ={(

δλ1
(μ2δν2)

ν1
ημ1α1∂α1 − 2ημ1(μ2δν2)

(λ1∂ν1)

)
δ4(x1 − x2)

}
Sλ1ν1μ3ν3

2 (x1, x3;η)

+
{(

δλ1
(μ3δν3)

ν ημ1α1∂α1 − 2ημ1(μ3δν3)
(λ1∂ν1)

)
δ4(x1 − x3)

}
Sλ1ν1μ2ν2(x1, x2;η) (3.7)
1 2
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for the conservation Ward Identity of the three-point function of stress tensors in position space, 
and in the flat space limit, setting gμν(x) = ημν after the variations.

This variational procedure could be continued indefinitely to obtain the conservation Ward 
Identities of any n-point function of T μν(x), with the conservation identities of the n-point 
functions of T μν(x) involving δ-function contact terms multiplying the n − 1 and lower point 
functions. This procedure shows that the symmetric and covariant definition (2.5) of the n-point 
functions, where all the 

√−g factors are placed to the left of the metric variation of the effective 
action, yields conservation Ward Identities where all the contact terms involving derivatives of 
δ-functions at coincident points are determined in a completely general, geometric and theory-
independent way from the variations of the 	μ

λν(x) symbol in the basic covariant conservation 
identity for the one-point function (3.3). Thus with the definition (2.5) one never encounters ex-
plicit variations of T μν(x) itself at coincident spacetime points (‘seagulls’), whose form may 
depend upon the specific underlying field theory being considered, and which may introduce 
non-covariant contact terms that would complicate the analysis considerably. This is a significant 
technical and conceptual advantage of a fully covariant approach, in a curved space background.

3.2. Momentum space

The n-point functions of T μiνi (xi) in flat spacetime may be Fourier transformed by∫
d4x1 . . . d4xn eip1·x1+···+ipn·xnSμ1ν1...μnνn

n (x1, . . . , xn;η)

≡ (2π)4δ4(p1 + · · · + pn) S̃μ1ν1...μnνn
n (p1, . . . , pn) (3.8)

where the reduced correlation functions S̃n are defined only on the subspace of (p1 + · · · +
pn)

μ = 0 determined by the δ-function of four-momentum conservation. Then the conservation 
Ward Identities (3.5) and (3.7) for the reduced correlation functions become in momentum space

(p1)ν1 S̃
μ1ν1μ2ν2
2 (p1, p̄2) = 0 (3.9)

evaluated at p̄μ
2 = −p

μ
1 , and

(p1)ν1 S̃
μ1ν1μ2ν2μ3ν3
3 (p1,p2, p̄3) = −(p2)

μ1 S̃μ2ν2μ3ν3
2 (p1 + p2, p̄3)

− (p̄3)
μ1 S̃μ2ν2μ3ν3

2 (p2,p1 + p̄3) + 2 (p2)α ημ1(ν2 S̃μ2)αμ3ν3
2 (p1 + p2, p̄3)

+ 2 (p̄3)α S̃μ2ν2α(ν3
2 (p2,p1 + p̄3) ημ3)μ1 (3.10)

evaluated at p̄μ
3 = −(p1 + p2)

μ, for the n = 2 and n = 3 point functions respectively.
The conservation Ward Identities for the four-point and higher n-point correlation functions 

may be derived in a similar way by repeated variations of the fundamental covariant conservation 
identity (3.3) with respect to the metric, setting the metric gμν(x) to the flat one ημν , and then 
Fourier transforming the result, evaluating on the condition of momentum conservation (p1 +
· · · + pn)

μ = 0. Remembering this condition, particularly in differentiating later with respect to 
the pi , so that there are in fact only n − 1 independent momenta in S̃n, we shall drop the overbar 
notation henceforth. Eq. (3.9) shows that the two-point function is purely transverse, whereas 
the three-point and higher n-point functions contain both transverse and longitudinal terms, the 
latter non-vanishing upon contraction with one of the pj , as in (3.10).
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4. Trace ward identities for CFTs

4.1. Position space

As already remarked, in order to be completely well-defined, the functional integral in (2.3)
must be regularized and renormalized, and local covariant counterterms up to dimension four (in 
d = 4 spacetime dimensions) must be added to the quantum effective action in order to remove 
its ultraviolet divergences. If general covariance is respected by this procedure the conserva-
tion Ward Identities of the previous section remain valid for the renormalized effective action 
and its variations. However, as is well-known, any renormalization procedure respecting coordi-
nate invariance, such as the Schwinger-deWitt heat kernel method or dimensional regularization, 
necessarily introduces a scale, leading to anomalous contributions to the trace identities of the 
correlation functions (2.2).

These scale violations are determined by the general form of the conformal trace anomaly in 
curved space. The fundamental identity is again that of the one-point function, which takes the 
general form〈

T μ
μ(x)

〉
g

≡ gμν

〈
T μν(x)

〉
g

= Tcl + bC2 + b′(E − 2
3 R

)+ b′′ R +
∑

i

βi Li (4.1)

in a general curved background. Here Tcl is the trace expected from the non-invariance of the 
classical action itself

Tcl = 2gμν(x)√−g(x)

〈
δScl[�,g]
δgμν(x)

〉
g

(4.2)

absent any anomalies, and the additional finite terms in (4.1) are the quantum anomalous contri-
butions. These are given in terms of the dimension-four curvature invariants

E ≡ ∗Rμανβ
∗Rμανβ = RμανβRμανβ − 4RμνR

μν + R2 (4.3a)

C2 ≡ CμανβCμανβ = RμανβRμανβ − 2RμνR
μν + 1

3R2 (4.3b)

which are the Euler-Gauss-Bonnet invariant and square of the Weyl conformal tensor respectively 
(with Rμανβ the Riemann curvature tensor, ∗Rμανβ its dual, Rμν = gαβRμανβ and R = gμνRμν

the Ricci tensor and Ricci scalar respectively).
Additional dimension-four local invariants denoted by Li in (4.1) may also appear in the gen-

eral form of the trace anomaly, if there are couplings to additional background fields. For example 
in the case of massless fermions coupled to a gauge field, there are contributions from the scalar 
invariants LF = FμνF

μν of electromagnetism or from the strong or electroweak non-abelian 
gauge fields LG = Tr(GμνG

μν), with coefficients βF or βG determined by the β-function of the 
corresponding gauge coupling. The anomalous contributions must take the form of this sum of 
local dimension-four invariants in (4.1) for any local and covariant quantum field theory in d = 4
spacetime dimensions, the only dependence upon the particular theory residing in the values of 
b, b′, b′′, βi , which are dimensionless coefficients in units of h̄.

For a general discussion of CFTs in the flat spacetime limit, with no background gauge fields, 
we require only the minimal coupling to the spacetime metric, necessary to obtain the covariant 
definition of the three-point correlator Sμ1ν1μ2ν2μ3ν3

3 (x1, x2, x3; η) by metric variations, as in 
(2.5). Hence for this application to CFT we set the explicit trace term of (4.1) and (4.2) Tcl = 0, 
and also drop the possible Li anomalous terms in (4.1) depending upon background fields other 
than the metric.
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We note also that the R term in (4.1) corresponds to a local action, since

2gμν(x)
δ

δgμν(x)

∫
dx

√−g R2 = −12 R (4.4)

and hence may be removed by such a local counterterm in the action with finite b′′ coefficient. 
Thus it is not part of the true anomaly in (4.1) which cannot be so expressed as the variation of 
a local covariant action functional of the metric alone, and we may take b′′ to be zero, restoring 
an arbitrary local 

∫
R2 term to the action at the end of the analysis. This leaves only the Weyl 

squared b and Euler-Gauss-Bonnet b′ terms in (4.1), the coefficients of which are also sometimes 
relabelled as c and a respectively in the recent literature.

As in the case of the conservation Ward Identities, the trace identities for the n-point func-
tions may be derived by successive variation of the fundamental trace identity of the one-point 
function. Retaining then only the b and b′ terms, and rewriting (4.1) in the form

2gμν(x)
δS[g]

δgμν(x)
=A≡ √−g

{
bC2 + b′(E − 2

3 R
)}

, (4.5)

we vary once again with respect to the metric to obtain

ημ1ν1S
μ1ν1μ2ν2
2 (x1, x2) = 2

δA(x1)

δgμ2ν2(x2)

∣∣∣∣
f lat

(4.6)

for the two-point function, and

ημ1ν1S
μ1ν1μ2ν2μ3ν3
3 (x1, x2, x3) = −2

{
δ4(x1 − x2) + δ4(x1 − x3)

}
Sμ2ν2μ3ν3

2 (x2, x3)

+4
δ2A(x1)

δgμ2ν2(x2)δgμ3ν3(x3)

∣∣∣∣
f lat

(4.7)

for the three-point function, evaluating both at the flat space Minkowski metric ημν .

4.2. Momentum space

Fourier transforming the results above gives the trace identity for the two-point function

ηα1β1 S̃
α1β1μ2ν2
2 (p1,p2) = 2 Ãμ2ν2

1 (p2) (4.8)

in the momentum representation (again evaluated at pμ
2 = −p

μ
1 ), and for the trace identity of the 

three-point function

ηα1β1 S̃
α1β1μ2ν2μ3ν3
3 (p1,p2,p3)

= −2 S̃μ2ν2μ3ν3
2 (p1 + p2,p3) − 2 S̃μ2ν2μ3ν3

2 (p2,p1 + p3) + 4 Ãμ2ν2μ3ν3
2 (p2,p3) (4.9)

where

(2π)4 δ4(p1 + · · · + pn+1) Ãμ2ν2...μn+1νn+1
n (p2, . . . , pn+1)

≡
∫

d4x1 . . . d4xn+1 eip1·x1+···+ipn+1·xn+1
δnA(x1)

δgμ2ν2(x2) . . . δgμn+1νn+1(xn+1)

∣∣∣
f lat

(4.10)

is the Fourier transform of the nth variation of the anomaly in the flat space limit. The locality of 
A(x1) implies that Ãμ2ν2...μn+1νn+1

n is a polynomial with only positive powers of the pj , contain-
ing no 1/p2

j pole terms or logarithms. We note also that if b′′ �= 0, the b′′ R term may easily be 

included in A, giving an additional local contribution to Ãn.
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The trace identity (4.9) for the three-point function contains two terms involving S̃2 which 
would usually be considered ‘non-anomalous,’ despite the fact that S̃2 itself implicitly depends 
upon the first variation of Ã1 through (4.8). In addition (4.9) contains the explicitly anomalous 
last term involving the second variation Ã2. Clearly one may take additional variations of the 
fundamental trace identity (4.5) with respect to the metric in order to obtain trace identities for 
higher (n + 1)-point functions, and this pattern will continue with a hierarchy of trace identi-
ties, each implicitly dependent upon the (n − 1)th and lower variations of the anomaly through 
the n-point and lower point functions in the apparently ‘non-anomalous’ part of its trace Ward 
Identities, while at each order a new explicitly anomalous term involving the nth variation of the 
trace anomaly enters.

5. Conformal ward identities

5.1. Position space

When the underlying QFT is classically conformally invariant, the n-point functions of the 
stress tensor satisfy additional Ward Identities, namely Conformal Ward Identities (CWIs). In a 
covariant geometric approach these are generated by the (partial) conservation of the conformal 
currents

J
μ

(K)(x) ≡ Kν(x)T μν(x) (5.1)

where Kμ(x) are Conformal Killing Vectors (CKVs), defined by solutions of the Conformal 
Killing equation

∂(μKν) ≡ 1

2

(
∂μKν + ∂νKμ

)= 1

d
ημν (∂ · K) (5.2)

for d dimensional Minkowski space. The conservation of Jμ

(K) then follows from the conservation 
of T μν , provided that the trace ημνT

μν = 0. This traceless condition is satisfied for a CFT, at the 
classical level, absent the anomaly. Otherwise there are violations of the conservation of Jμ

(K), 
resulting from the conformal anomaly, which one can calculate by inserting the current (5.1) into 
the n-point stress tensor correlator. Thus we are led to consider total divergences of the form

∂

∂xν

{
Kμ(x)Sμνμ1ν1...μnνn

n+1 (x, x1, . . . , xn)
}

= Kμ(x)
∂

∂xν
Sμνμ1ν1...μnνn

n+1 (x, x1, . . . , xn) + 1

d
(∂ · K) ημν Sμνμ1ν1...μnνn

n+1 (x, x1, . . . , xn)

(5.3)

where (5.2) has been used, in order to derive the CWIs for the n-point functions of the stress 
tensor. If this identity is integrated over x, the left hand side gives a surface term which vanishes, 
provided the correlation functions fall off fast enough at infinity, an assumption that may be 
checked a posteriori. On the right hand side one may use the previously derived conservation 
and anomalous trace Ward Identities for the (n + 1)-point function Sn+1, which are given in 
terms of the n-point function Sn by relations of the form (3.5)-(3.7) and (4.8)-(4.9). By inserting 
the various CKV solutions of (5.2) into these relations, all the CWIs may be derived for arbitrary 
n-point functions of T μν in the covariant geometric approach.

The Dilation CWIs correspond to the one Dilational Conformal Killing vector

K(D)(x) ≡ xμ , ∂ · K(D) = d (5.4)
μ
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whereas the Special CWIs correspond to the d Special Conformal Killing vectors in flat space

K(C) κ
μ (x) ≡ K(C) κ

μ (x) ≡ 2xκxμ − x2δκ
μ , ∂ · K(C) κ(x) = (2d)xκ , κ = 1, . . . , d

(5.5)

each of which satisfy (5.2), each of which give CWIs when substituted into (5.3).

5.2. Momentum space

When the relations above are expressed in momentum space by Fourier transforming, the 
results are the CWIs for the reduced n-point correlation functions defined in (3.8). The resulting 
general form of the CWIs in momentum space is [12,13]⎡

⎣ n∑
j=1

wj − (
n − 1

)
d −

n−1∑
j=1

pj · ∂

∂pj

⎤
⎦ S̃μ1ν1...μnνn

n (p1, . . . , pn) = Xμ1ν1...μnνn
n (p1, . . . , pn)

(5.6)

and

n−1∑
j=1

[
2
(
wj − d

) ∂

∂pκ
j

− 2pα
j

∂2

∂pα
j ∂pκ

j

+ pjκ

∂2

∂pα
j ∂pjα

]
S̃μ1ν1...μnνn

n (p1, . . . , pn)

+ 2
n−1∑
j=1

[
δ
μj
κ

∂

∂p
αj

j

− ηκαj

∂

∂pj μj

]
S̃μ1ν1...αj νj ...μnνn

n (p1, . . . , pn)

+ 2
n−1∑
j=1

⎡
⎣δ

νj
κ

∂

∂p
βj

j

− ηκβj

∂

∂pj νj

⎤
⎦ S̃μ1ν1...μj βj ...μnνn

n (p1, . . . , pn)

= Yμ1ν1...μnνn
n κ (p1, . . . , pn) (5.7)

where (p1 + · · · + pn)
μ = 0, wj = d is the conformal weight of T μν in d dimensions, and 

X
μ1ν1...μnνn
n and Yμ1ν1...μnνn

n κ are terms involving lower n-point functions, obtained by use of the 
conservation and trace Ward Identities, such as (3.5)-(3.7) and (4.8)-(4.9). In precisely d = 4
dimensions, wj = 4, and (5.6) and (5.7) take the explicit forms[

4 − p · ∂

∂p

]
Sμ1ν1μ2ν2

2 (p,−p) = 4 Ãμ1ν1μ2ν2
2 (p,−p) (5.8a)

[
−2pα

∂2

∂pα∂pκ

+ pκ ∂2

∂pα∂pα

]
S̃μ1ν1μ2ν2

2 (p,−p)

+2

(
ηκμ1

∂

∂pα1
− δκ

α1

∂

∂pμ1

)
S̃α1ν1μ2ν2

2 (p,−p)

+2

(
ηκν1

∂

∂pβ1
− δκ

β1

∂

∂pν1

)
S̃μ1β1μ2ν2

2 (p,−p) = −8
∂

∂p2κ

Ãμ1ν1μ2ν2
2 (p,p2)

∣∣∣
p2=−p

(5.8b)

for n = 2, while
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[
4 − p1 · ∂

∂p1
− p2 · ∂

∂p2

]
S̃μ1ν1μ2ν2μ3ν3

3 (p1,p2,−p1 − p2)

= 8 Ãμ1ν1μ2ν2μ3ν3
3 (p1,p2,−p1 − p2) (5.9)

is the anomalous Dilational CWI, and

2∑
j=1

[
−2pjα

∂2

∂pjα∂pjκ

+ pκ
j

∂2

∂pjα∂pα
j

]
S̃μ1ν1μ2ν2μ3ν3

3 (p1,p2,−p1 − p2)

+ 2

(
ηκμ1

∂

∂p
α1
1

− δκ
α1

∂

∂p1μ1

)
S̃α1ν1μ2ν2μ3ν3

3 (p1,p2,−p1 − p2)

+ 2

(
ηκν1

∂

∂p
β1
1

− δκ
β1

∂

∂p1ν1

)
S̃μ1β1μ2ν2μ3ν3

3 (p1,p2,−p1 − p2)

+ 2

(
ηκμ2

∂

∂p
α2
2

− δκ
α2

∂

∂p2μ2

)
S̃μ1ν1α2ν2μ3ν3

3 (p1,p2,−p1 − p2)

+ 2

(
ηκν2

∂

∂p
β2
2

− δκ
ν2

∂

∂p2ν2

)
S̃μ1ν1μ2β2μ3ν3

3 (p1,p2,−p1 − p2)

= −16
∂

∂p3κ

Ãμ1ν1μ2ν2μ3ν3
3 (p1,p2,p3)

∣∣∣
p3=−p1−p2

(5.10)

is the anomalous Special CWI satisfied by the n = 3 vertex function.
The explicit anomalous terms on the right sides of (5.9) and (5.10) are new results, the full 

derivations of which are straightforward but somewhat lengthy and will be presented elsewhere, 
as they are not needed for the main analysis of the trace identities and conformal anomaly con-
tribution to 〈T T T 〉 in this paper. We note only that all these CWIs are finite directly in d = 4
dimensions and the right sides of (5.9)-(5.10) are completely determined by the conservation and 
trace identities in the covariant approach, including all contact terms, and that in deriving (5.9)
and (5.10) the symmetry properties of S̃3 such as

S̃ν1μ1μ2ν2μ3ν3
3 (p1,p2,p3) = S̃μ2ν2μ3ν3μ1ν1

3 (p2,p3,p1) = S̃μ3ν3μ1ν1μ2ν2
3 (p3,p1,p2)

(5.11)

have been used freely.

6. Tensor decomposition and reconstruction of 〈T T T 〉

In this section we briefly summarize the approach of [13], who work in general d dimensions 
in the momentum representation and project the Fourier transformed CWIs (5.6)-(5.7) onto their 
transverse, traceless parts only, assuming no anomalous contributions. In this approach the inho-
mogeneous Xn and Yn terms of the CWIs may be neglected since the terms on the right sides of 
(5.6) and (5.7) involve only longitudinal and trace parts, which drop out of the transverse, trace-
less projection. The number of transverse, traceless tensors with independent form factors is also 
much fewer than the general Sn (being only five for n = 3). The CWIs for these 5 scalar form 
factors may be solved explicitly in the momentum representation in general d �= 4 dimensions in 
terms of ‘triple-K’ integrals, which however contain (d − 4)−1 pole singularities, so that coun-
terterms are needed to obtain a finite d → 4 limit. After their subtraction the anomalous trace 
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(4.5) results. This amounts to rederiving the conformal anomaly (4.1) once again. Finally the full 
solution for 〈T μ1ν1T μ2ν2T μ3ν3(x3)〉g can be reconstructed in principle by use of the conservation 
and trace Ward Identities and the limit d → 4 taken.

In order to apply this method to tensor operators, it is necessary to introduce the projection 
operators

πμ
ν(p) ≡ δμ

ν − pμpν

p2 (6.1a)



μν

αβ(p) ≡ π(μ
α(p)πν)

β(p) − 1

d − 1
πμν(p)παβ(p) (6.1b)

onto transverse vectors and transverse, traceless tensors respectively, in d dimensions. One de-
fines further the longitudinal and trace projectors

�
μν

αβ(p) ≡ 1

p2

{
p(μδν)

α pβ + p(μδν)
β pα − pαpβ

d − 1

(
ημν + (d − 2)

pμpν

p2

)}
(6.2a)

�
μν

αβ(p) ≡ πμν(p)

d − 1
ηαβ (6.2b)

such that 
 + � + � = 1 is the identity. Thus given any symmetric second rank tensor T μν(p), 
one may decompose it as

T μν(p) = tμν(p) + �μν(p) + �μν(p) (6.3)

where the first term is its transverse, traceless part

tμν(p) ≡ 

μν

αβ(p)T αβ(p) (6.4)

while the �μν ≡ �
μν

αβT αβ and �μν ≡ �
μν

αβT ab terms in (6.3) depend only upon its longitu-

dinal and trace contractions pβT αβ and ηαβT αβ respectively. The latter terms are called ‘semi-
local’ and denoted tμν

loc by the authors of [13], so that T μν = tμν + �μν + �μν = tμν + t
μν
loc .

The transverse, tracefree projected correlation functions

(
)S̃μ1ν1...μnνn
n (p1, . . . , pn) ≡ 


μ1ν1
α1β1

(p1) . . .

μnνn

αnβn
(pn) S̃α1β1...αnβn

n (p1, . . . , pn)

(6.5)

obey sourcefree homogeneous Special CWIs in d �= 4 dimensions with no Xn or Yn terms on the 
right side of (5.7) [13]. In order to reconstruct the full three-point correlator use is then made of 
the basic identity

T2T3 = t2t3 + (� + �)2t3 + t2(� + �)3 + (� + �)2(� + �)3

= t2t3 + (� + �)2T3 + T2(� + �)3 − (� + �)2(� + �)3 (6.6)

following from (6.3) for the product of two full stress tensors, suppressing indices in a symbolic 
notation. Applying this identity again, it follows that the product of three full stress tensors can 
be expressed

T1T2T3 = t1t2t3 + (� + �)1T2T3 + T1(� + �)2T3 + T1T2(� + �)3

−T1(� + �)2(� + �)3 − (� + �)1T2(� + �)3 − (� + �)1(� + �)2T3

+(� + �)1(� + �)2(� + �)3 (6.7)
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or more explicitly, the full three-point correlator in momentum space is given by

S̃μ1ν1μ2ν2μ3ν3
3 = (
)S̃μ1ν1μ2ν2μ3ν3

3 + (� + �)
μ1ν1

α1β1
(p1) S̃α1β1μ2ν2μ3ν3

3

+ (� + �)
μ2ν2

α2β2
(p2) S̃μ1ν1α2β2μ3ν3

3 + (� + �)
μ3ν3

α3β3
(p3) S̃μ1ν1μ2ν2α3β3

3

− (� + �)
μ2ν2

α2β2
(p2) (� + �)

μ3ν3
α3β3

(p3) S̃μ1ν1α2β2α3β3
3

− (� + �)
μ1ν1

α1β1
(p1) (� + �)

μ3ν3
α3β3

(p3) S̃α1β1μ2ν2α3β3
3

− (� + �)
μ1ν1

α1β1
(p1) (� + �)

μ2ν2
α2β2

(p2) S̃α1β1α2β2μ3ν3
3

+ (� + �)
μ1ν1

α1β1
(p1) (� + �)

μ2ν2
α2β2

(p2) (� + �)
μ3ν3

α3β3
(p3) S̃α1β1α2β2α3β3

3 (6.8)

where we write out the indices but continue to suppress the dependence on the momenta 
(p1, p2, p3) for brevity. When all the � + � longitudinal and trace terms are expanded out, 
one gets from the 26 terms above (excluding (
)S̃3 itself), finally 7 terms containing only the 
trace over one, two or three pair of indices, viz.

(�)S̃μ1ν1μ2ν2μ3ν3
3 ≡ �

μ1ν1
α1β1

(p1) S̃α1β1μ2ν2μ3ν3
3 + �

μ2ν2
α2β2

(p2) S̃μ1ν1α2β2μ3ν3
3

+ �
μ3ν3

α3β3
(p3) S̃μ1ν1μ2ν2α3β3

3 − �
μ2ν2

α2β2
(p2)�

μ3ν3
α3β3

(p3) S̃μ1ν1α2β2α3β3
3

−�
μ1ν1

α1β1
(p1)�

μ3ν3
α3β3

(p3) S̃α1β1μ2ν2α3β3
3 − �

μ1ν1
α1β1

(p1)�
μ2ν2

α2β2
(p2) S̃α1β1α2β2μ3ν3

3

+ �
μ1ν1

α1β1
(p1)�

μ2ν2
α2β2

(p2)�
μ3ν3

α3β3
(p3) S̃α1β1α2β2α3β3

3 , (6.9)

an analogous 7 terms with longitudinal parts only, � replacing � everywhere in the expression 
(6.9) above, and 12 mixed terms involving both the � and � projectors in various combinations.

The 7 longitudinal terms involving only � may be obtained from the conservation Ward 
Identity because they involve contractions with one or more of the pj , and are thus given in 
terms of the two-point function by (3.10), which does not involve any traces of S̃3. The 12 mixed 
terms involve both at least one trace and one longitudinal projector. Thus from (4.9) a typical 
mixed term involves

ηα1β1(p2)μ2 S̃
α1β1μ2ν2μ3ν3
3 (p1,p2,p3) = −2 (p2)μ2 S̃

μ2ν2μ3ν3
2 (p1 + p2,p3)

−2 (p2)μ2 S̃
μ2ν2μ3ν3
2 (p2,p1 + p3) + 4 (p2)μ2 Ã

μ2ν2μ3ν3
2 (p2,p3). (6.10)

Since as we show below in Sec. 9, the second variation of the anomaly Ã2 is transverse, the 
last term in (6.10) vanishes upon contraction with (p2)μ2 . For this reason all 12 mixed longi-
tudinal/trace terms in the expansion of (6.8) are also independent of the second trace anomaly 
variation Ã2, and determined solely by the conservation Ward Identities plus the trace identities 
in terms of the two-point function S̃2. This leaves only the 7 trace terms in (6.9) which do depend 
upon the trace anomaly second variation Ã2, upon which we focus here.

Substituting the definition of � projector (6.2b) for d = 4 enables us to write the 7 terms in 
(6.9) in the form

(�)S̃μ1ν1μ2ν2μ3ν3
3 = 1

3
πμ1ν1(p1) ηα1β1 S̃

α1β1μ2ν2μ3ν3
3 + 1

3
πμ2ν2(p2) ηα2β2 S̃

μ1ν1α2β2μ3ν3
3

+ 1

3
πμ3ν3(p3) ηα3β3 S̃

μ1ν1μ2ν2α3β3
3 − 1

9
πμ2ν2(p2)π

μ3ν3(p3) ηα2β2 ηα3β3 S̃
μ1ν1α2β2α3β3
3

−1
πμ1ν1(p1)πμ3ν3(p3) ηα1β1 ηα3β3 S̃

α1β1μ2ν2α3β3
3
9
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−1

9
πμ1ν1(p1)πμ2ν2(p2) ηα1β1 ηα2β2 S̃

α1β1α2β2μ3ν3
3

+ 1

27
πμ1ν1(p1)πμ2ν2(p2)πμ3ν3(p3) ηα1β1 ηα2β2 ηα3β3 S̃

α1β1α2β2α3β3
3 (6.11)

containing one, two and three trace terms. Rather than explicitly adding counterterms in the di-
mensional regularization procedure of [13], in effect rederiving the conformal anomaly, we may 
more directly make use of the trace Ward Identity (4.9) for the three-point function derived from 
the known form of the local anomaly (4.1). From this one observes that (6.11) contains terms that 
may be expressed in terms of the two-point function S̃2, and which for present purposes may be 
considered non-anomalous, and in addition, the last term of (4.9), with an explicit dependence 
upon the second variation of the anomaly Ã2. Separating out these terms in (6.11) explicitly 
dependent upon Ã2 we have

(�)S̃μ1ν1μ2ν2μ3ν3
3 (p1,p2,p3)

∣∣∣
A2

= 4

3
πμ1ν1(p1) Ãμ2ν2μ3ν3

2 (p2,p3)

+ 4

3
πμ2ν2(p2) Ãμ1ν1μ3ν3

2 (p1,p3)

+ 4

3
πμ3ν3(p3) Ãμ1ν1μ2ν2

2 (p1,p2) − 4

9
πμ2ν2(p2)π

μ3ν3(p3) ηα3β3 Ã
μ1ν1α3β3
2 (p1,p3)

−4

9
πμ1ν1(p1)πμ3ν3(p3) ηα1β1 Ã

α1β1μ2ν2
2 (p1,p2)

−4

9
πμ1ν1(p1)πμ2ν2(p2) ηα2β2 Ã

α2β2μ3ν3
2 (p2,p3)

+ 4

27
πμ1ν1(p1)πμ2ν2(p2)πμ3ν3(p3) ηα1β1 ηα2β2 Ã

α1β1α2β2
2 (p1,p2) (6.12)

which we shall show presently is identical to the contribution to S̃3 determined from the non-local 
anomaly effective action of [14,15] directly.

7. Anomaly action and total effective action for CFTs

The general form of the anomalous trace (4.1) is a consequence of locality of the underlying 
QFT, and the Wess-Zumino consistency condition, which amounts to the requirement that a 
covariant action functional Sanom[g] of the full metric gμν must exist such that

Sanom[e2σ ḡ] = Sanom[ḡ] + 	WZ[ḡ;σ ] (7.1)

for arbitrary gμν(x) = e2σ(x) ḡμν(x), whose conformal variation

2gμν(x)
δSanom[g]
δgμν(x)

= δSanom[e2σ ḡ]
δσ (x)

∣∣∣
g=e2σ ḡ

= δ	WZ[ḡ;σ ]
δσ (x)

=A≡ √−g
{
bC2 + b′(E − 2

3 R
)}∣∣∣

g=e2σ ḡ
(7.2)

is the anomaly. The admixture of the R term with specific coefficient − 2
3 in (7.2) is chosen so 

that both invariants in (7.2) have simple dependences upon σ
√−g C2 =√−g C

2
(7.3a)√−g

(
E − 2

3 R
)=√−g

(
E − 2

3 R̄
)+ 4

√−g �̄4 σ (7.3b)

in the local conformal parametrization gμν = e2σ ḡμν .
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The fourth order differential operator

�4 ≡ ∇μ

(∇μ∇ν + 2Rμν − 2
3Rgμν

)∇ν = 2 + 2Rμν∇μ∇ν − 2
3R + 1

3 (∇μR)∇μ (7.4)

is the unique fourth order scalar kinetic operator that is conformally covariant
√−g �4 =√−ḡ �̄4 (7.5)

for arbitrary σ(x) [14–18]. Because of the simple dependences (7.3), the Wess-Zumino func-
tional in (7.1) quadratic in σ is easily found to be

	WZ[ḡ;σ ] = 2b′
∫

d4x
√−ḡ σ �̄4 σ +

∫
dxAσ

= b′
∫

d4x
√−ḡ

[
2σ �̄4 σ + (

Ē − 2
3 R̄

)
σ
]
+ b

∫
d4x

√−ḡ C̄2 σ (7.6)

by inspection, up to terms which are σ independent, i.e. conformally invariant, and hence do not 
contribute to the variation in (7.2). Moreover, solving (7.3b) for σ by inverting the differential 
operator (7.4) in favor of its Green’s function D4(x, x′) = (�−1

4 )xx′ we find

	WZ[ḡ;σ ] = SNL
anom[g = e2σ ḡ] − SNL

anom[ḡ], (7.7)

with

SNL
anom[g] = 1

4

∫
d4x

√−gx

(
E − 2

3 R
)
x

×
∫

d4x′√−gx′ D4(x, x′)
[

b′
2

(
E − 2

3 R
)+ bC2

]
x′

(7.8)

which is a non-local form of the exact quantum 1PI effective action of the anomaly. This non-
locality in terms only of curvature invariants and arising from the Green’s function inverse of 
�4 cannot be removed by any addition of local terms to the anomaly action, such as the 

∫
R2

associated with b′′ term in (4.1) by (4.4).
It is possible to add to SNL

anom arbitrary Weyl invariant terms (local or not) which drop out 
of the difference in (7.7), but these also cannot remove the non-locality in the essential Weyl 
non-invariant part of the anomaly action (7.8). In particular, if the non-local Weyl invariant term

b2

8b′
∫

d4x
√−gx

(
C2)

x

∫
d4x′√−gx′ D4(x, x′)

(
C2)

x′ (7.9)

is added to (7.8) to complete the square, we obtain

SNL
anom[g] → b′

8

∫
d4x

√−gx

∫
d4x′ √−gx′

[(
E − 2

3 R
)+ b

b′ C2
]

x

× D4(x, x′)
[(

E − 2
3 R

)+ b

b′ C2
]

x′

= 1

8b′
∫

d4x

∫
d4x′ A(x)D4(x, x′)A(x′) (7.10)

and it becomes possible to recast the generally covariant non-local effective action (7.10) in local 
form by the introduction of only a single new scalar field ϕ, called the conformalon field [19]. 
Because the minimal non-local action (7.8) without the addition Weyl invariant term (7.9) is 
asymmetrical in the invariants E and C2, two scalar fields would be necessary to render (7.8)
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into a local form [20,21]. Since the anomalous effective action is determined only up to such 
Weyl invariant terms in any case, adding the Weyl invariant term (7.9) does not affect the trace 
anomaly or otherwise affect our conclusions on the trace terms in 〈T T T 〉.

Thus, if the anomaly effective action is recast in local form

Sanom[g;ϕ] ≡ −b′
2

∫
d4x

√−g
[
( ϕ)2 − 2

(
Rμν − 1

3Rgμν
)
(∇μϕ)(∇νϕ)

]
+ 1

2

∫
d4x

√−g
[
b′(E − 2

3 R
)+ bC2

]
ϕ (7.11)

by the introduction of a scalar conformalon ϕ, and varied with respect to ϕ, the linear eq. of 
motion

√−g �4 ϕ = √−g

[
E

2
− R

3
+ b

2b′ C2
]

= 1

2b′ A (7.12)

results. Multiplication by 
√−g in (7.12) is convenient because of the property (7.5). If (7.12)

is solved for ϕ by formally inverting �4 and substituting the result into (7.11) the non-local 
effective action SNL

anom[g] (7.10) is reproduced up to surface terms. The non-locality of (7.10), or 
(7.8) is thus associated with the �4 propagator of the scalar conformalon, a conformal collective 
mode not present in the classical Einstein-Hilbert gravitational action.

It is clear that linear shifts in the scalar conformalon ϕ are related to conformal transforma-
tions of the spacetime metric, and indeed the Wess-Zumino consistency condition implies the 
non-trivial relation

Sanom[g;ϕ + 2σ ] = Sanom[e−2σ g;ϕ] + Sanom[g;2σ ] (7.13)

for Sanom[g; ϕ]. The identity (7.13) exposes the relationship of ϕ to variations of the conformal 
frame of the metric, motivates the term conformalon field, and also serves to distinguish ϕ from 
dilatons and dilaton-like fields that arise in other contexts. Note that although ϕ is closely related 
to and couples to the conformal part of the metric tensor, ϕ is an independent spacetime scalar 
field and the local action (7.11) is fully coordinate invariant, unlike 	WZ in (7.6) which depends 
separately upon ḡμν and σ , and is therefore conformal frame dependent. Because of the fourth 
order kinetic term the scalar conformalon ϕ has canonical mass dimension zero, which also 
distinguishes it from other dilaton-like fields. It is the local form of the anomaly action (7.11)
in terms of the scalar conformalon field ϕ that we shall vary in order to obtain the anomalous 
contributions to the Ward Identities of a CFT directly in four dimensions.

The exact 1PI quantum effective action for a CFT includes arbitrary Weyl invariant terms, 
which are also generally non-local, as well as possible local terms. Thus the full effective action 
can be written

S = Slocal[g] + Sinv[g] + Sanom[g;ϕ] (7.14)

where Slocal[g] contains the local term 
∫

R2 term, whose conformal variation (4.4) is associated 
with the b′′ R term in (4.1) (as well as the local 

∫
R2 and 

∫
C2 counterterms up to dimension 

four needed to renormalize the Einstein-Hilbert 
∫

R action of classical General Relativity). The 
arbitrary Weyl invariant term

Sinv[e2σ g] = Sinv[g] (7.15)

an example of which is (7.9), is responsible for the non-anomalous CWIs (5.6) and (5.7), absent 
any anomalous trace terms, whereas Sanom[g; ϕ] given by (7.11) is responsible for the anomalous 
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trace (4.5). The form (7.14) of the decomposition of the quantum effective action was arrived at 
in [17] by consideration of the abelian group of local Weyl shifts, and its cohomology. The local 
and Weyl invariant terms are elements of the trivial cohomology of the local Weyl group, while 
(7.8) or Sanom[g; ϕ] are elements of the non-trivial cocycles of this cohomology. There are two 
such cocycles in d = 4, uniquely specified by the b and b′ anomaly coefficients [15,17,22–24].

Since each term in (7.14) is invariant under general coordinate transformations, each sepa-
rately obeys the conservation Ward Identities of Sec. 3. The local and Weyl invariant terms each 
separately satisfy Trace Ward Identities, with no anomalous A terms. The Weyl invariant term 
likewise satisfies all the Conformal Ward Identities of Sec. 5 with no anomalous contribution. 
All contributions to the Ward Identities that are anomalous can only come from Sanom, whose 
anomalous contributions therefore may be considered separately from the other local and Weyl 
invariant terms in (7.14).

A non-trivial test of the decomposition (7.14), the reasoning leading to it, and the correctness 
of the anomaly action (7.11) is afforded by the reconstruction algorithm of [13] for 〈T T T 〉 in 
CFTs in flat spacetime, in that the anomalous trace Ward Identities obeyed by 〈T T T 〉, encoded 
in the trace dependent contributions to its full reconstruction (�)S̃3 of (6.8) and (6.12), must come 
entirely from variations of Sanom[g; ϕ]. This is verified explicitly in the next several sections.

8. Variation of the anomaly effective action

In order to obtain the contributions of the anomaly effective action (7.11) to the three-point 
function Sμ1ν1μ2ν2μ3ν3

3 we require the expansion of Sanom[g; ϕ] to third order in deviations from 
flat space. The consistent expansion of Sanom[g; ϕ] around flat space is defined by the simulta-
neous expansion of the metric gμν and conformalon scalar ϕ

gμν = g(0)
μν + g(1)

μν + g(2)
μν + · · · ≡ ημν + hμν + h(2)

μν + . . . (8.1a)

ϕ = ϕ(0) + ϕ(1) + ϕ(2) + . . . (8.1b)

substitution of these expansions into (7.12) and identification of terms of the same order. Thus to 
the lowest three orders of the expansion we have

2ϕ(0) = 0 (8.2a)

(
√−g�4)

(1)ϕ(0) + 2ϕ(1) =
[√−g

(
E

2
− R

3
+ b

2b′ C2
)](1)

= −1

3
R(1) (8.2b)

(
√−g�4)

(2)ϕ(0) + (
√−g�4)

(1)ϕ(1) + 2ϕ(2) =
[√−g

(
E

2
− R

3
+ b

2b′ C2
)](2)

= 1

2
E(2) − 1

3
[√−g R](2) + b

2b′ [C2](2) (8.2c)

where is the d’Alembert wave operator in flat Minkowski spacetime, and we have used the 
fact that E and C2 are second order in curvature invariants while the Ricci scalar R starts at first 
order.

Clearly the eq. of motion (8.2a) possesses the trivial solution ϕ(0) = 0 in flat spacetime g(0)
μν =

ημν , which corresponds to choosing boundary conditions appropriate for the standard Minkowski 
space vacuum, or equivalently defining the quantum effective action such that its first variation 
and the one-point function 〈T μν〉η = 0 vanishes in flat spacetime with no boundaries. With this 
condition we may immediately solve the next order eq. (8.2b) to obtain
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ϕ(1) = − 1

3
R(1) (8.3)

and hence the solution of (8.2c) is

ϕ(2) = 1
2

{
(
√−g�4)

(1) 1

3
R(1) + 1

2
E(2) − 1

3
[√−g R](2) + b

2b′ [C2](2)

}
(8.4)

the latter of which contains a coincident double −2 pole in the momentum representation to 
second order in the expansion around flat space.

Next we substitute these solutions into the anomaly action (7.11), also retaining terms up to 
third order in the expansion. In this way we obtain the quadratic term

S(2)
anom = −b′

2

∫
d4x ϕ(1) 2ϕ(1) + b′

2

∫
d4x

(
−2

3
R(1)

)
ϕ(1) = b′

18

∫
d4x

(
R(1)

)2

(8.5)

which is purely local, since all propagators cancel. Thus the two-point correlation function of 
stress tensors will contain no poles in momentum space due to the conformal anomaly, consistent 
with explicit calculations [2].

The third order terms in the expansion of the anomaly action are

S(3)
anom = −b′

2

∫
d4x

{
2ϕ(1) 2ϕ(2) + ϕ(1)

(√−g�4
)(1)

ϕ(1)
}

+b′
2

∫
d4x

{(
−2

3
R(1)

)
ϕ(2) +

(
E(2) − 2

3

√−g R
)(2)

ϕ(1)

}
+ b

2

∫
d4x (C2)(2) ϕ(1)

(8.6)

from which we observe that the two terms involving ϕ(2) cancel, upon making use of (8.3). 
Thus there are no coincident −2 propagator terms in the anomaly action to third order in the 
expansion. The remaining terms in (8.6) yield

S(3)
anom = − b′

18

∫
d4x

{
R(1) 1 (√−g�4

)(1) 1
R(1)

}

− b′
6

∫
d4x

(
E − 2

3

√−g R
)(2) 1

R(1) − b

6

∫
d4x [C2](2) 1

R(1) (8.7)

the first term of which involves

(√−g�4
)(1) = (√−g 2)(1) + 2 ∂μ

(
Rμν − 1

3
ημνR

)(1)

∂ν (8.8)

where (7.4) has been used. With the latter term one may integrate by parts and obtain

S(3)
anom = − b′

18

∫
d4x

{
R(1) 1 (√−g 2)(1) 1

R(1)

}

+ b′
9

∫
d4x

{
∂μR(1) 1 (

R(1)μν − 1

3
ημνR(1)

) 1
∂νR

(1)

}

− 1

6

∫
d4x

(
b′ E(2) + b [C2](2)

) 1
R(1) + b′

9

∫
d4x R(1) 1 (√−g

)(1)
R(1)

+ b′ ∫
d4x R(2)R(1) (8.9)
9
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which contains only single propagator poles. Finally making use of the chain rule relation

(√−g 2)(1) =
[
(
√−g )2

√−g

](1)

= 2
(√−g

)(1) − (√−g
)(1) 2 (8.10)

we find that the first and next-to-last terms of (8.9) combine and partly cancel, obtaining finally

S(3)
anom = b′

9

∫
d4x

∫
d4x′

∫
d4x′′

×
{(

∂μR(1)
)
x

(
1
)

xx′

(
R(1)μν − 1

3
ημνR(1)

)
x′

(
1
)

x′x′′

(
∂νR

(1)
)
x′′

}

− 1

6

∫
d4x

∫
d4x′(b′ E(2) + b [C2](2)

)
x

(
1
)

xx′
R

(1)

x′

+ b′
18

∫
d4x R(1)

(
2R(2) + (

√−g)(1)R(1)
)

(8.11)

where the last term is purely local. In fact, this last local third order term together with the second 
order term (8.5) may be recognized as the expansion up to the third order of the covariant local 
action

b′
18

∫
d4x

√−g R2 (8.12)

which if subtracted from Sanom in (7.11) and upon using (4.4), would cancel the − 2b′
3 R con-

tribution to the conformal anomaly in (4.5) resulting from Sanom, leaving just b′ E + bC2 for the 
trace.

The result (8.11) for the anomaly action expanded to third order around flat space may be 
derived equally well from the non-local form of the action (7.10) by variation of the Green’s 
function D4(x, x′). We have used the local conformalon representation of the anomaly action 
(7.11) both because of its technical advantages and to illustrate the conceptual equivalence to the 
non-local form. See also [25] for comparison to the total variation of the effective action up to 
third order from flat space.

We comment in passing that because the local 
∫

R2 term has the conformal σ dependence∫
d4x

√−gR2
∣∣
g=ḡe2σ =

∫
d4x

[
R̄ − 6 σ − 6 ḡμν∂μσ∂νσ

]2
(8.13)

=
∫

d4x
√−ḡ

{
R̄2 + 36 ( σ )2 + 36 (ḡμν∂μσ∂νσ )2 − 12 R̄ σ

− 12 R̄ ḡμν∂μσ∂νσ + 72 ( σ )(ḡμν∂μσ∂νσ )
}

,

the subtraction of the particular local term (8.12) from the Wess-Zumino action (7.6) gives

	WZ[ḡ;σ ] − b′
18

∫
d4x

√−gR2
∣∣
g=ḡe2σ = b

∫
d4x

√−ḡ C̄2 σ − b′
18

∫
d4x

√−ḡR̄2

+b′
∫

d4x
√−ḡ

{
Ēσ − 4

(
R̄μν − 1

2
R̄ḡμν

)
(∂μσ )(∂νσ ) − 4 (∂σ )2( σ ) − 2

[
(∂σ )2

]2
}

(8.14)

which essentially reproduces (up to some algebraic errors) the form of Wloc of the dilaton ef-
fective action reported in [26], after identification of σ → −τ , ḡ → g, b → c, b′ → −a, and 
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dropping the 
∫

R̄2 term. In this particular combination the fourth order kinetic term for σ in 
	WZ[ḡ; σ ] is cancelled. However the Wess-Zumino functional 	WZ[ḡ; σ ] is not a covariant 
functional of the full physical metric gμν = e2σ ḡμν , since it was obtained from (7.3) by treating 
σ as a field independent of the fiducial fixed base metric ḡμν . The W-Z functional is more prop-
erly regarded as non-trivial cocycle of the cohomology of the local Weyl group, which is closed 
but not exact [15,17,22–24]. Thus it is only a Weyl variation of some fully covariant solution 
of the Wess-Zumino consistency, of which (7.8) is one representative, and which is necessarily 
non-local if expressed purely in terms of the full physical metric gμν . The addition of a local 
term, i.e. a trivial element of the cohomology, with any coefficient does not change the non-local 
pole structure of (7.8), and (8.14) is not an acceptable frame invariant anomaly effective action, 
unless one assumes that σ → −τ is to be regarded as a completely independent dilaton field, with 
its own specified transformation under local Weyl transformations, and not the conformal factor 
piece of the physical spacetime metric [26]. This is quite different than the present treatment 
where one straightforwardly evaluates the 1PI effective action of the conformal anomaly and its 
variations in either its non-local (7.8) or local representation (7.11), and no assumptions about 
any additional dilaton field(s), their interaction, or spontaneous symmetry breaking are made.

The action functional (8.11), and in particular dropping its last local term is the expression we 
need in order to obtain the non-local trace anomaly pole contribution to the three-point function. 
It shows that single pole terms (appearing twice, but no coincident double pole −2 terms) are 
expected for the trace anomaly contribution (�)S

μ1ν1μ2ν2μ3ν3
3 to the three-point function.

9. The anomaly action contribution to 〈T T T 〉

Since by (4.3), both E and C2 are second order in curvature tensors, it suffices in (8.11) to 
compute the Riemann tensor to first order

R
(1)
μανβ = 1

2

{
− ∂α∂βhμν − ∂μ∂νhαβ + ∂α∂νhβμ + ∂β∂μhαν

}
(9.1)

in the metric variation hμν . All contractions may then be carried out with the use of the lowest 
order flat space Minkowski metric ημν . In momentum space∫

d4x eip·x R
(1)
μανβ(x) ≡ [

R
(1)
μανβ

]μ1ν1(p) h̃μ1ν1(p) (9.2)

serves to define the tensor polynomial[
R

(1)
μανβ

]μ1ν1(p) = 1

2

{
δ(μ1
α δ

ν1)
β pμ pν + δ(μ1

μ δν1)
ν pα pβ − δ

(μ1
β δν1)

μ pα pν

− δ(μ1
α δν1)

ν pβ pμ

}
(9.3)

which has the contractions[
R(1)

μν

]μ1ν1(p) = ηαβ
[
R

(1)
μανβ

]μ1ν1(p) = 1

2

{
ημ1ν1 pμ pν + δ(μ1

μ δν1)
ν p2 − p(μ1 δν1)

μ pν

− p(μ1δν1)
ν pμ

}
(9.4)

and [
R(1)

]μ1ν1(p) = ημν
[
R(1)

μν

]μ1ν1(p) = p2ημ1ν1 − pμ1pν1 = p2 πμ1ν1(p) (9.5)

defined in an analogous fashion to (9.2).
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We also require the squared contractions[
R

(1)
μανβR(1)μανβ

]μ1ν1μ2ν2(p1,p2) ≡ [
R

(1)
μανβ

]μ1ν1(p1)
[
R(1)μανβ

]μ2ν2(p2)

= (p1 · p2)
2 ημ1(μ2ην2)ν1 − 2 (p1 · p2)p1

(μ2ην2)(ν1p2
μ1) + p

μ2
1 p

ν2
1 p

μ1
2 p

ν1
2 (9.6)

and [
R(1)

μν R(1)μν
]μ1ν1μ2ν2(p1,p2) ≡ [

R(1)
μν

]μ1ν1(p1)
[
R(1)μν

]μ2ν2(p2)

= 1

4
p2

1

(
p

μ1
2 p

ν1
2 ημ2ν2 − 2p2

(μ1ην1)(ν2p2
μ2)
)

+1

4
p2

2

(
p

μ2
1 p

ν2
1 ημ1ν1 − 2p1

(μ1ην1)(ν2p1
μ2)
)

+1

4
p2

1 p2
2 ημ1(μ2ην2)ν1 + 1

4
(p1 · p2)

2 ημ1ν1ημ2ν2 + 1

2
p

(μ1
1 p

ν1)
2 p

(μ2
1 p

ν2)
2

+1

2
(p1 · p2)

(
p1

(μ1 ην1)(ν2p2
μ2) − ημ1ν1 p

(μ2
1 p

ν2)
2 − ημ2ν2 p

(μ1
1 p

ν1)
2

)
. (9.7)

With these expressions in hand, together with the simpler

[
(R(1))2]μ1ν1μ2ν2(p1,p2) ≡ [

R(1)
]μ1ν1(p1)

[
R(1)

]μ2ν2(p2) = p2
1 p2

2 πμ1ν1(p1)πμ2ν2(p2)

(9.8)

we may express the third order anomaly action (8.11), and its variation and contribution (A)S3
to the three-point correlator in momentum space in the form

(A)Sμ1ν1μ2ν2μ3ν3
3 (p1,p2,p3)

= 8

3

{
πμ1ν1(p1)

[
b′E(2) + b(C2)(2)

]μ2ν2μ3ν3
(p2,p3) + (cyclic)

}
−16b′

9

{
πμ1ν1(p1)Qμ2ν2(p1,p2,p3)πμ3ν3(p3) + (cyclic)

}
+16b′

27
πμ1ν1(p1)πμ2ν2(p2)πμ3ν3(p3)

{
p2

3 p1 · p2 + (cyclic)
}

+ (local) (9.9)

after taking account of the 23 = 8 normalization factor in (2.4) for n = 3, and where the 3 cyclic 
permutations of the indices (1, 2, 3) are summed over. In Eq. (9.9)

Qμ2ν2(p1,p2,p3) ≡ p1μ [Rμν]μ2ν2(p2)p3ν

= 1

2

{
(p1 · p2)(p2 · p3) ημ2ν2 + p2

2 p
(μ2
1 p

ν2)
3 − (p2 · p3)p

(μ2
1 p

ν2)
2 − (p1 · p2)p

(μ2
2 p

ν2)
3

}
(9.10)

by (9.4), and[
E(2)

]μiνiμj νj = [
R

(1)
μανβR(1)μανβ

]μiνiμj νj − 4
[
R(1)

μν R(1)μν
]μiνiμj νj + [(

R(1)
)2]μiνiμj νj

(9.11a)[
(C2)(2)

]μiνiμj νj = [
R

(1)
μανβR(1)μανβ

]μiνiμj νj − 2
[
R(1)

μν R(1)μν
]μiνiμj νj

+1 [
(R(1))2]μiνiμj νj (9.11b)
3
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are given by (9.6)-(9.8), with the corresponding momentum dependences (pi, pj ) suppressed. 
The last contribution labelled ‘(local)’ at the end of (9.9) refers to the third variation of (8.12), 
the purely local last term in (8.11).

The explicit form of the contribution to the three-point vertex function 〈T T T 〉 from Sanom

in (7.14) is thus (9.9). We shall now verify that the contribution (9.9) of the anomaly effective 
action (7.11) to the three-point correlator S3 is precisely the same as (6.12), obtained by the 
general algebraic reconstruction method of Sec. 6.

We note first that (9.9) contains no coincident double pole terms of the form (p2
i )

−2, and it 
also contains no cubic single pole terms of the form (p2

1p
2
2p

2
3)

−1, since the polynomial of the last 
term in brackets of (9.9) contains at least one power of p2

1, p
2
2 or p2

3. However recalling (6.1a), 
(9.9) does contain both single pole and quadratic single pole terms of the form (p2

1p
2
3)

−1 etc.
from the product of πμ1ν1(p1)π

μ3ν3(p3). It is a straightforward exercise in tensor algebra using 
(9.4)-(9.8) to verify that all these pole terms cancel upon taking one trace of (9.9) so that

ηα1β1
(A)Sα1β1μ2ν2μ3ν3

3 (p1,p2,p3)

∣∣∣
p3=−(p1+p2)

=

8b
[
(C2)(2)

]μ2ν2μ3ν3(p2,p3) + 8b′ [E(2)
]μ2ν2μ3ν3(p2,p3) = 4 Ãμ2ν2μ3ν3

2 (p2,p3) (9.12)

yields back the second variation of the trace anomaly, consistent with the explicitly anomalous 
contribution to the trace identity (4.9), provided again that the contribution from the local term 
(8.12) and R in the anomaly is neglected, and account is taken of the combinatoric factor from 
the two possible metric variations of the second order C2 and E terms in the trace anomaly. Since

p2μ2 Qμ2ν2(p1,p2,p3) = 0 (9.13a)

p2μ2

[
(C2)(2)

]μ2ν2μ3ν3(p2,p3) = 0 (9.13b)

p2μ2

[
E(2)

]μ2ν2μ3ν3(p2,p3) = 0 (9.13c)

both the second variation of the anomaly Ãμ2ν2μ3ν3
2 and the anomaly contribution to the three-

point function (A)Sμ1ν1μ2ν2μ3ν3
3 are transverse, and hence make no contribution to the longitudi-

nal terms in any of the Ward Identities, as claimed in Sec. 6 and needed for the vanishing of the 
last term in (6.10).

Taking an additional trace of (9.12), we find that the b term has zero trace and there remains 
only

ηα1β1ηα3β3
(A)Sα1β1μ2ν2α3β3

3 (p1,p2,p3)
∣∣
p3=−(p1+p2)

= 8b′ ηα3β3

[
E(2)

]μ2ν2α3β3(p2,p3)

= 16b′ Qμ2ν2(p1,p2,p3)
∣∣
p3=−(p1+p2)

+ 8b′ p2
2

(
p2

1 + p1 · p2

)
πμ2ν2(p2) (9.14)

in the double trace. Thus in the first line of (9.9) we may substitute (9.12), and in the second line 
use (9.14) to eliminate the Qμ2ν2 terms and its three cyclic permutations. Lastly computing the 
triple trace

ηα1β1ηα2β2ηα3β3
(A)Sα1β1α2β2α3β3

3 (p1,p2,p3)
∣∣
p3=−(p1+p2)

= 16b′ [p2
1 p2

2 − (p1 · p2)
2
]

(9.15)

we find that we can write (9.9) in the form
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(A)S
μ1ν1μ2ν2μ3ν3
3 = 1

3
πμ1ν1(p1) ηα1β1

(A)S
α1β1μ2ν2μ3ν3
3

+1

3
πμ2ν2(p2) ηα2β2

(A)S
μ1ν1α2β2μ3ν3
3 + 1

3
πμ3ν3(p3) ηα3β3

(A)S
μ1ν1μ2ν2α3β3
3

−1

9
πμ1ν1(p1)πμ3ν3(p3) ηα1β1ηα3β3

(A)S
α1β1μ2ν2α3β3
3

−1

9
πμ2ν2(p2)π

μ3ν3(p3) ηα2β2ηα3β3
(A)S

μ1ν1α2β2α3β3
3

−1

9
πμ1ν1(p1)π

μ2ν2(p2)ηα1β1 ηα2β2
(A)S

α1β1α2β2μ3ν3
3

+ 1

27
πμ1ν1(p1)π

μ2ν2
2 (p2)π

μ3ν3(p3) ηα1β1ηα2β2ηα3β3
(A)S

α1β1α2β2α3β3
3 . (9.16)

Using (9.12) once more to express all traces in terms of Ã2 and comparing the result with (6.12), 
we see that they coincide, and thus we have proven that

(�)S
μ1ν1μ2ν2μ3ν3
3 (p1,p2,p3)

∣∣∣
A2

= (A)S
μ1ν1μ2ν2μ3ν3
3 (p1,p2,p3) (9.17)

since each is determined completely by the same single trace anomaly A2 terms.
The contribution from the R term in the trace anomaly and variation of the local term (8.12)

with arbitrary coefficient is easily included in A2 if desired, which being local does not in any 
way affect the non-local 1/p2

j poles in (9.16) or (9.17). Thus the curved space anomaly effective 
action (7.11) expanded to third order in variations around flat space (8.11) yields precisely the 
same anomalous trace parts and non-local propagator pole structure of the three-point 〈T T T 〉
correlation function of stress tensors for a CFT in d = 4, obtained by the anomalous trace Ward 
Identities and general algebraic reconstruction algorithm of [13] in flat space.

10. Summary and Discussion

The principle results of this paper are Eqs. (5.8), (5.9), (5.10) for the covariant renormalized 
CWIs in d = 4; Eq. (9.16) with (9.12), (9.14) and (9.15) for the specifically anomalous con-
tributions to 〈T T T 〉; and its complete equilvalence (9.17) with (6.12) which was obtained by 
application of the quite different methods of Refs. [13]. In particular, exactly the same anomaly 
massless scalar pole is obtained from solution of the CWIs in d = 4 in either approach. We 
have emphasized that variation of the covariant action functional in a general curved space back-
ground makes possible the most compact and geometrically transparent derivation of the CWIs 
(5.8)-(5.10), including all contact terms for any CFT in d = 4. The general form of the exact 1PI 
quantum effective action (7.14) for a CFT in d = 4 in the geometric approach also allows a clean 
separation between the contribution to the action specifically due to the conformal anomaly, 
Sanom in any of its forms (7.8), (7.10) or (7.11), distinct from the Weyl invariant Sinv or local 
terms Slocal. As a non-trivial cocycle of the local Weyl group of conformal transformations of 
the spacetime metric, one may always add Weyl invariant terms such as (7.9) to Sanom, but such 
additions cannot change its conformal dependence in 	WZ of (7.6), nor its pole structure in 
momentum space, required by solving (7.3b) for σ , incorporating the Wess-Zumino consistency 
condition on the covariant effective action (7.13). It is clear that adding covariant local terms such 
as (8.12) also cannot change the pole structure of the anomaly action. The presence of the scalar 
D4(x, x′) propagator in (7.8) and (7.10), and the single ( )−1

xx′ propagator pole in (8.11) are ir-
reducible necessary consequences of general covariance, the CWIs, and the conformal anomaly.
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Conversely, the derivation of (7.11) and the decomposition (7.14) also show that the anomaly 
action Sanom certainly does not determine the Weyl invariant terms. This is a significant dif-
ference from the d = 2 case, where all metrics are locally conformally flat, and there are no 
undetermined Weyl invariant terms. In the special case of d = 2 CFT, the non-local anomaly 
effective action is of the form 

∫
dx
∫

dy R(x) ( −1)xyR(y) [27], with R the d = 2 scalar cur-
vature and −1 the Green’s function inverse of the covariant wave operator, showing that the 
effect of the conformal anomaly involves an intermediate massless scalar exchange, or isolated 
pole in momentum space. This pole may be interpreted as that of a propagating scalar field ϕ
which we have termed the conformalon field, introduced to cast the anomaly action in an equiva-
lent local form. Its propagator gives rise to a massless pole in all the higher point vertex functions 
〈T μ1ν1(x1)T

μ2ν2(x2)T
μ3ν3(x3)...〉g of multiple energy momentum tensors, obtained by varying 

the effective action in d = 2 with respect to the metric multiple times [28]. This massless scalar 
exchange may be seen as an effective correlated two-particle 0+ state of the underlying quan-
tum theory, similar to a Cooper pair of electrons in superconductivity, but appearing here in the 
Lorentz invariant vacuum state. The presence of a massless scalar pole in the three-point function 
(9.9) shows that this occurs in d = 4 as well.

What the anomaly effective action does determine are all the anomalous contributions to the 
higher point stress tensor correlation functions, since the exact 1PI quantum action (7.14) is 
precisely the generating function for these connected correlation functions in an arbitrary fixed 
background, and Sanom is the only term responsible for anomalous contributions in the trace Ward 
Identities. In this paper we have calculated the contribution of Sanom to the three-point function, 
given explicitly by (9.9), by three variations of the general curved space anomaly action. The 
equality (9.17) shows that this is precisely the same result as that obtained for the anomalous trace 
parts by the method of [13] of solving first the exact CWIs for the projected transverse, traceless 
parts of the correlator directly in d-dimensional flat space, then reconstructing the full 〈T T T 〉
by restoring the longitudinal and trace parts by use of the conservation and anomalous trace 
Ward Identities in the d → 4 limit. This is an explicit verification of Sanom for the anomalous 
trace parts of the full 〈T T T 〉 in any d = 4 CFT, including the presence of multiple pole terms 
in all the external invariants, predicted by the anomaly action. In the approach of [13] these 
multiple pole contributions are just a consequence of the transverse projection operators (6.1)
in the reconstruction formula (6.11) for the trace parts of the three-point function. These trace 
contributions, in complete agreement with the variation of the anomaly action, have the correct 
analytic structure to satisfy the anomalous CWIs of a CFT in the physical d = 4 dimensions.

It is clear from this derivation and the equivalence (9.17) that the massless pole contributions 
are unambiguously fixed and determined by the anomaly effective action, as a necessary con-
sequence of the anomalous Trace and Conformal Ward Identities. That anomalies are generally 
associated with massless poles in d = 4 has taken some time to recognize, although the prototype 
example was already provided by the d = 2 Schwinger model and Polyakov action decades ago 
[28]. Massless poles in 〈T T T 〉 imply that there are long range effects of stress tensor correlations 
on lightlike separated spacetime points [3,4], similar to those already noted in the case of the chi-
ral anomaly [3,29,30]. In the supersymmetric case this behavior is present in all the components 
of a superconformal anomaly multiplet [10]. This light cone behavior is most clearly seen in a 
Lorentzian momentum space representation.

Because of the coupling to T μν , massless poles on the light cone lead to novel scalar gravita-
tional effects on macroscopic scales, not described by Einstein’s classical theory [2,19,20,31]. In 
particular, the appearance of a propagating effective massless scalar degree of freedom in d = 4, 
explicitly represented by the local conformalon field ϕ in (7.11) has implications for gravity at 
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low energies and at macroscopic scales [20], including the existence and propagation of scalar 
gravitational waves not present in classical General Relativity [19]. Further implications of this 
effective light scalar in the Effective Field Theory of four dimensional gravity and propagator 
poles in higher point stress tensor correlation functions are under investigation.
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