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Abstract

The stability of rotating solitons is analyzed. It is found that both the linear
o-model and the chiral Skyrme Lagrangian (Skyrmion) yield unstable solutions with
respect to pion emission. Introducing a symmetry breaking pion mass term stable
solutions for the nucleon and the 4{1232) are obtained in the Skyrme model. Fure
thermore with spherical symmetry, no parameter set is found which yields stable
rotating solutions for both the nucleon and the delta, with correct masses. When
parameters from earlier literature are used, the nucleon is stable but not the
delta. To describe baryon excited states small amplitude fluctuations around the
rotating solution are considered. The calculated Pyy phase shift to the "breathing
mode" excitation of the nucleon is compared to earlier results neglecting rota-
tions and it is found that rotation-vibration coupling Teads to sizable changes.

1. Introduction

Except for a very short time period after the “"big bang" the worid of strong in-
teractions is in the “confined phase" in which quarks and gluons are clustered in-
to colorless hadrons. There is strong evidence that strong interactions can be de-
scribed by quantum chromodynamics (QCD), the quantum field theory of colored
quarks and gluons. The mere possibility of phase transitions in QCD demands for
non-perturbative treatment of the theory. This is particularly important for the
calculation of the hadron mass spectrum. Such a treatment is provided by the lat-
tice simulations of QCD which have progressed quite far over the last few years.
However such simulations, even though leading to exact results in principle, are
very time consuming and often do not provide a simple description of low-energy
hadron and nuclear physics.

However it was noted by 't Hooft already in 19741) and later on substantiated by
Witten2) that in the limit of a large number of colors (NC + =) QCD turns into an
effective field theory of meson fields only in which baryons emerge as solitary
waves. Solitary waves are defined as waves for which the energy density is local-
ized at all times.
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There are several advantages to describe confined strong interaction physics with
effective meson field Lagrangians. First of all they may be derivable from QCD as
conjectured by 't Hooft and Witten. In fact there are recent efforts to construct
renormalizable meson field theories3) which, when put on a lattice, can be com-
pared directly with QCD simulations. In that way the parameters of the effective
theory could be determined. Secondly a unified description of meson and baryon dy-
namics is provided, i.e. explicit introduction of fermion fields is avoided.
Thirdly there is obviously a great simplicity to the description because the num-
ber of parameters can be kept fairly limited, as we shall discuss. Last not least
such theories are potentially useful in low and medium energy nuclear physics
where new insights into the two-nucleon4) and many nucleon problem may be ob-
tained5),

II. The Linear o-Model

a) The o-model Lagrangian

A possible candidate for an effective meson field theory is the linear o-model of
Gell-Mann and Levi®). It is an SU{2)xSU{2} chiral model which describes the low
energy behaviour of pions as Goldstone bosons of spontaneous chiral-symmetry
breaking. The Lagrange density can be written in a compact way by introducing a
unitary SU(2) field U(F,t) as

FZ
& (x) = ¢ Tr(auua“u+) (1)

The model is specified by a single parameter F“ the pion decay constant which pro-
vides a length scale. U can be reexpressed by a vector field in isospin § space as

¥ *
Uex) = e cosg 1 1t Esing @

where T are Pauli matrices which form the generators of the SU(2) group. The con-
nection to the sigma and pion field representation of the model is made by the

identification
o(x) = cos¢(x) (3.2)
7(x) =-glsin¢(x) (3.b)

T characterizes an isotriplet of massless pions. In this representation &B takes
the familiar form
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F2
" 2 2
B(x) = - g {0,0)° + (3,57 (4)
The unitarity condition U™ = 1 leads to a normalization condition for o and 4
a? + 72 =) (5)

which introduces interactions among the fields.

A field configuration of finite energy must satisfy the boundary condition
U(F,t) » 1 [Fl+= (6)

Such configurations fall into classes of solutions of the field equations which
are characterized by an integer valued index

1 ijk " + +

B=——e dr Tr(U 3.U3.U 3, U 7

preridiE R ORI (7

This index has been identified by Skyrme as the baryon number which has later on
been proven to be the correct interpretation. It is a constant of the motion. B=1

corresponds t0 a single baryon, B=2 to two baryons etc. B=0 describes mesons.

b) Static field configurations

To study the solutions to the field equations of the linear o-model it is conve-
nient to start with static classical configurations. The Tlowest classical enerqy
in the B#0 sector is attained by the "hedgehog" form of the U-field

>t
. irerF (r)
U, (F) =Ae 0" T at (8)

in which the isospin points in the radial direction and A is any constant SU(2)
matrix. These solutions are "spherically symmetric" in the sense that a coordinate
space rotation is equivalent to an isospin rotation of the matrix A. This configu-
ration corresponds to a mapping of the internal symmetry group SU(2) onto k3,
Since for finite energy the “chiral angle" F,(r) has to vanish asymptotically, all
points at infinity are equivalent. Therefore the mapping reduces to a mapping of
SU(2) onto the unit sphere S3 embedded in R3. The topological index n which char-
acterfzes the number of times SU(2} is wrapped around the sphere Sy (winding num-
ber} is identical to the baryon number B,

The function Fo(r) is subject to a second boundary condition. At r=0 it has to be
an integer multiple of =: FO(O) = Bn, The field equations in the static case are
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easily obtained from eq. (1) via the principle of least action and reduce to a
second order differential equation for F0 (F = F"r)
d2F dF _ sin?F
- *'% 2. —2-0 (9}
dr? r dr? r2

This equation is nonlinear and therefore in principle has solitary wave solutions.
However if one tries to solve the equation numerically, for instance via relaxa-
tion, one finds that for any B#0 F, shrinks to a point. This can be understood
from the behaviour of the classical energy functional

MIF,] = - [ dF o (x) (10)

under dilatation transformations F (r) » Fo(ar). One verifies that M, scales as
1/2 tending to collapse the soliton.

¢} Rotating field configurations

Baryons are fermions with half integer spin and isospin. These properties have to
be constructed from the time dependence of the U-field. According to eq. (8) the
static hedgehog conf1gurat1on is deformed in the intrinsic SU{2) space, since the
scalar product I-r fixes a direction. In other words, there is a finite moment of
inertia associated with rotations in this space. Since the o-field transforms like
a scalar under SU{2) rotations it cannot contribute to the moment of inertia. Ro-
tations however add a time dependence to the pion field given by the “cranking”
expression

>

=@ ox T (11)

EXY)

Here & denotes the angular velocity of the rotation. Inserting this time depen-
dence into the Lagrange density (1) or (4) one obtains the expected form for the
Lagrangian

L= M+ 12wl (12)

where the second term is just the rotational kinetic energy. Introducing the angu-
lar moment T in the usual way

_ 8L
Ti = ar (13)

the Lagrange density aGT for the rotating fields is given as a sum of the static
partiﬂo and the rotational kinetic energy density
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&y (x) =& (x) +-;§ (14)

This expression is given in the rotating frame in which the moment of inertia ten-
sor Iij becomes diagonal: Iij = Isij' The constant I is a functional of the rotat-
ing solutions characterized by Fy and is calculated as

1[F,] = 8- | dfF2sin2F (F) . (15)
"

As noted earlier there is an intimate connection between isospin rotations and co-
ordinate space rotations. In fact the rotating field is represented in analogy to
eq. (8) by

i TrF
U (F,t) = At) e 7(") A () (16)

where now A is a time dependent SU(2) matrix. Any isospin rotation is equivalent
to a coordinate rotation. On the basis of this one can show that the spatial angu-
lar momentum J and the isospin angular momentum T have to be equal and opposite.

The gquantum mechanical treatment of the spin and isospin is straightforward and
proceeds in analogy to the guantization of the rigid rotor7). The wave function is
composed of products of two & _functions

Jgéjgd(a,a,y)daé;%T(a‘,B‘,Y') = <a37(JMJIJ><a‘B‘y‘iTMTIT> (17
where o,B,vy and a',8',y' denote sets of Euler angles in coordinate and isospin
space and I; and Iy are projections of J and T onto the body axis. From the rela-
tion T=-J one has Iy=-Ir=I. The total spin-isospin wave function |JM;TMy > of the
rotating solution is now obtained as a linear superposition of the D -functions
with different I and weights determined by Clebsch-Gordon coefficients. One has

| M ™> = % (JIT-IJOOXJMJI>}TH - (18)

J T

Because of the "spherical symmetry" of the ansatz (16) only rotational states with
J=T, for instance the nucleon and the A can be obtained. To generate J#T states
also spatially deformed fields have to be a1lowed8).

As discussed above the static solutions of the linear o-model coliapse to zero
size. Rotations add a centrifugal term to the energy which could prevent the time
dependent solution from collapsing. To see whether stability with B#0 can be
reached one has to solve the equations of motion for Ur. They reduce to a differ-
ential equation for the "rotating chiral angle" Fy
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d2F dF
L2 Lo sinzr o p) =0 (19)
dr? dr r2

p=T(Tt) (20)

212
3F21 [FT}

Except for the P term this form is identical to eq. (9). Also the expression for
the moment of inertia is the same as eq. (15). Eg. (19) has to be solved numeri-
cally, Starting with some initial guess for Fy in P the differential equation is
iterated until P becomes selfconsistent. One finds however that the selfconsisten-
¢y requirement cannot be obtained, The reason becomes clear from the asymptotic
form of Fy. This has to be of the form
Fr(r) » S8 (21)
reo
which, since P>0, is oscillatory at infinity. Therefore the moment of inertia di-

verges! Another way of looking at the problem is the behaviour of the energy func-
tional

M(Fo] = M [Fo] + %{%;%% (22)

under the scale transformation Fr(r) + FT(Ar). While M, goes like 1/A the kinetic
energy scales as A3. Thus the rotations can prevent collapse, introduce however
another instability due to emissieq of pions. This phenomenon is similar to the
electromagnetic case of a rotating classical charge which radiates off photons.

We conclude that the o-model, even though the equations of motion are nonlinear,
does not support scliton solutions in 3+1 dimensions.

I11. The Skyrme Model

a) HNonrotating stable solitons

In order to prevent the collapse of classical solutions in the o-model higher de~
rivatives toiﬂb have to be added. A minimal extension involves at least four deri-
vatives. A particular choice of such fourth order terms has been introduced by
Skyrmeg). The Lagrange density in the Skyrme model takes the form

Lo (x) =& (x) + 3;62 Tr([(3, 000", (3 UIU*])? (23)

One additional parameter e is needed to specify the dynamics. Of course d%K is not
the only possible choice consistent with chiral symmetry.



112

In analogy to the o-model the lowest energy classical solution in the B#0 sector

is obtained by the "hedgehog" (egq. {8)). Due to the fourth order term the field
equations are somewhat more complicated

dF sin2F dF dF sin2F
2 &2 0, 2L o
dr? e? ¢t rdr dr e2 2
(24)
sin2f sin2fF
-— o+ 4 . =0 .,
r2 e? r?

but nevertheless this equation is easily solved numerically. Eq. (9) is recovered
in the 1imit e+=, The solution is spatially extended and is indicated in Fig. 1
for the single baryon case (B=1). Choosing the parameter set of Adkins et a1.10)
given as .Fﬂ = 129 MeV and e = 5.45 the enerqy of the hedgehog is 864 MeV.

| I S S S S S S U SRS S A HE U NN SR L O DN S B

| | U W O W 0 T 0 I I B A
o llll'ﬁllll‘ "5 2 2.5

Radial Distance r (fermi}

Fig. 1: Static B=1 solution for the chiral angle F,(r) in the Skyrme model.

b} Rotating Skyrmions

To project out the proper spin-isospin states rotated fields according to eq. (16)
have to be obtained. Adkins et a1.10) proceed by replacing the rotating chiral an-

gle Fr(r) by the static angle F,(r). This choice yields a finite moment of inertia
for the Skyrmion given by

in2
sin F0

2 s 4 dFo 2
g1 = dresin?f {1 + 2 [(—2)¢ + 25
7} = 5 1 RIRE ) (25)

r2
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and a nonzero A-N mass splitting is obtained. The experimental splitting enerqgy of
293,1 MeV is used to adjust F“ and e. This adjustment yields the parameter values
quoted above. Many static properties of the nucleon and the isobar like rms radii,
magnetic moments g etc. can be calculated. Some results are listed in Table 1.
The agreement with experiment is quite remarkable particularly in view of the fact
that only two parameters are involved.

Quantity Prediction Experiment
My 938.9 MeV (input) 938.9 MeVv
MA 1232 MeV (input) 1232 MeV

(r2y1/2 0.59 fm 0.72 fm

{isoscalar)
up 1.87 2.79
™ -1.24 -1.91
ppfun 1.43 1.46
9 0.61 1.23
9NN 8.9 13.5
SiNa 13.2 20.3
Na 2.3 3.3

Table 1: Static properties of nucleon and isobar in the Skyrme model as calculated
n Ref. 10,

In the procedure of Adkins et a1.10), replacing Fr by Fy, the resulting U-field
does, however, not satisfy the Euler-lLagrange equations. The function Fg(r) only
minimizes MO[F] but not the full functional MT{FT] {eq. (22)). Although for
Fr(r) ~ Fo(r), My(Fy) and My(Fy) may not differ too much for Tow values of T, the
extrema of these two functionals may be quite different. Keeping the rotational
part in extremizing the energy the Skyrme equation of motion is modified to give

d2F

dF
— L {1 + & sinzFT (%--- PY} +-;l {%-—1—6—% sin?F}
dr? e? r2 r r e?r

(26)

2
+ ()2 (A ginzF (%-2-- P} - sinzF (o p e ST L 5p1y o g

dar  e? r r2 e2 F2 p2
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where P is defined as in eq. {20). As in the rotating o-model this equation does
not have a solution which yields a Tocalized energy density. The asymptotic form
of Fp is in fact identical in both cases. This desease of the rotating Skyrmion
has been noted by Bander and Hayotll) and independently by Braaten and Ra%stonlz).
The reason for the instability is again easily understood from the behaviour of
the Skyrmion energy under scale transformations. The fourth order term adds a con-
tribution proportional to A which is sufficient to stabilize the classical solu-
tion, but there is no term to offset the A% instability from the rotational kinet-
ic energy. Therefore there is no stable rotating Skyrmion.

¢} Skyrmions with finite pion mass

In the real world chiral SU(2)xSU(2) is only an approximate symmetry good at the
10 % level. We are therefore allowed to explicitly break the symmetry by adding a
pion mass term to the Skyrme Lagrange density
méF2
B(x) =¥ (x) + gL [Tru-2] (27)

In the energy this mass term adds a 1/A3 contribution which can offset the A3 in-
stability from the rotations. In the presence of a finite pion mass an extra term
—mifFi sinfF, is added to the Euler-Lagrange equation (eq. {26)). This modifies the
large distance behaviour of Fr to give

2
m
SR
2

n

FT(F) » Lo . (28)

£
Pw p
Without rotations (P=0) one therefore obtains the correct asymptotic Yukawa form
of the pion field. In the presence of rotations the stability however is con-
trolled by the magnitude of P. Only for P« mi[?Fi one obtains a stable soliton.
This condition clearly depends on the choice of parameters and has to be explored
by solving the Euler-Lagrange equations exp?icit1y13). It turns out that the solu-
tions only depend on two independent quantities m“/F7r and e such that a two param-
eter space has to be explored. The numerical stability limits are summarized in
Fig. 2. We observe that the parameter space is divided into two regions: a stable
region of localized solitons (P< mﬁ/ZFi) and an unstable region (P> m%/ZFﬁ) in
which the moment of inertia diverges. The boundary, obtained numerically, shows
polynomial behaviour up to large values of m“/F“. Since P depends on the value of
the isospin the stable a-region is naturally smaller than the nucleon region. One
may ask if it is possible to fit the A-N mass split with a combination m“/F17 and e
for which both the nucleon and the a is stable. The answer is no. As seen from
Fig. 2 the Yines of constant m, and my do not cross in the allowed region for the
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delta. Using the quantization procedure in Ref. 10 such a crossing can be found
{dotted 1ines in Fig. 2) for the values quoted by Adkins and Nappil4)
(mﬂ/F" = 1.277 and e = 4,84). The crossing point is however in the unstable region
for the delta. This result is not necessarily a bad feature of the model since we
know that the delta is not a stable particle.

T T 1 I l

m, my = 938MeV
= -
A stable
m,, =1232 MeV
el -

l . EI ............. ]
exptl. Fr

ate—eeeee

| 2 3 4 5 6 7 8 e

Fig. 2: Stability limits of the broken Su{2)xSU(2) parameter space including rota-
tions. The lines of constant nuclear mass my and delta mass m, in the presence of
rotations are also indicated (solid lines). Whe results of the quantization proce-
dure used in Ref. 10 are indicated by dotted lines.

IV. Excited States of the Nuclecn and the Delta in the Skyrme Model

Excited states of the nucleon and the delta are observed for instance as reso-
nances in the wN- and wA-system. To describe the scattering problem within the
Skyrme model we have to go back to the general expression of the unitary field U
{eq. (2)). The $-field is expanded around the stable rotating B=1 soliton as

3k = FT(r)} +REL) (29)

™ characterizes fluctuations around the soliton which represent the pion-soliton
scattering states and carry baryon number B=0. We consider here the simplified
case in which the amplitude {is small, such that n2>>n", Substituting the expansion
of § into the broken SU(2) Skyrme Lagrange density (eq. (27)) retaining only terms
quadratic in n one readily obtains

} T(T+1 2o e
L == Mgy + 'i?T;l + 172 [ dF [“iBij"j n1A1jnj] + Trot-vib (30)

It can be shown that all terms linear in 0 and n vanish using the equation of mo-
tion for Fy given in the last section. Mgy denotes the classical rotating Skyrmion
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mass and IO[FT] is the moment of inertia in the absence of fluctuations. The vi-
brational part is contained in the third term of the Lagrangian and has the famil-
iar form. The restoring force tensor is a second order differential operator act-
ing on the three components n, and B;j denotes the inertial mass. Both A;; and By
are complicated functions of Fy. Their calculation, though tedious, is straight-
forward. It should be noted that in a spherical basis Bij and Aij become diagonal.
In addition there 1is a kinetic energy contribution from the rotation-vibration
coupling Tpoe.yip which will be analyzed below for monopole vibrations.

Expanding the fluctuations into normal modes
() = 1 e, (mAn#) (31)
n

the vibrations are quantized as harmonic oscillators in the usual way to give

. T(T+1
L= - Mg # 'éT;"l * E (Nn+1/2)ﬁwn * Trot—vib * (32)

Here N, denotes the phonon number operator. To order fi the phonon zero-point ener-
gies contribute to the baryon energies. Summing over all modes this contribution
becomes 1infinite. In the absence of renormalizability of the Skyrme Lagrangian
zero point corrections to the mass are ignoredlg,ld}, as will be done here also.

In order to aveid complicated angular momentum algebra we shall limit the discus-
sfon to radial oscillations only. They carry phonon angular momentum zero. Such
"breathing modes" are observed in p-wave pion scattering as the Py;(1440)-reso-
nance in the wN-system and the P33(1600)-resonance in the waA-system. The partial
wave expansion of the nth normal mode is in general given by

> -
AR = 5 Y (33)
1M
where & is the pion orbital angular momentum. For p-wave scattering to the breath-
ing mode 2=1 and I=0, i.e., the vector spherical harmonic YIzM(r) is proportional
to r. In this case the expression for the ¢-field given in eq. (29) simplifies to
give

§(E,t) = (Fr(ry+(r)e’ e (34)

i.e. the vector h only points in the radial direction. &{r) is the radial part of
the scattered wave which determines the phase shifts. In the monopole case

Trot-yib 15 easily obtained. Physically it comes from a change Ij in the moment of
inertia
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1[4’] = IO[FT] + Il[FTa‘E] (35)
as the Skyrmion oscillates. To second order in £ one findsls)
_ T!T+1! 9
Trotevib = ~ 513 1 (36)
o
where
g % o
II[FT,E] = 31 £ dr{zl rzsinZFT
oF dF d2F
1 : T2 : T .
+ EE.[rzstn(ZFT)(EF-} - 4rsin?Fy o— - 2r?sin?F, " (37)

+ ZSin(ZFT)sinzFT]}g(r)

The wave equation for £ is determined from the least action principle which leads
to the equation of motion

As a result one obtains an integro-differential equation of the following struc-

ture
dZE + B dg + C 2 . 0 . 39
2 ( ) a——l' (r’w )g + D(F,E) ( )

where the coefficients B,C,D are complicated functions of Fy not listed here and D
involves an integral over £. The integral emerges from the rotation-vibration cou-
pling, To obtain the phase shifts we have to impose two boundary conditions on &,
Near the origin the regular solution of eq. (39) behaves as

E(r) « r (40a)
r+0

and the asymptotic form

e{r) = j {wr)coss,-n,{wr)sing {40b)
e 1 171 1
is a linear combination of regular and irregular spherical Bessel functions with
orbital angular momentum £=1. Numerically 61 is obtained by integrating the wave
equation (39) out to some radius R where the solution is matched to the asymptotic
form.
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The preliminary resultsls) given in Fig. 3 are compared to earlier calculations by
Walliser and Eckart!6) in which rotations and finite pion mass have been neglect-
ed. We conclude that the inclusion of rotations leads to sizable changes in the
P11 phase shift and, therefore, cannot be ignored.

~ rotations

100 b=
‘g'q 00 My O
- MONOPOLE.
- Tl
u (“\
% sob -.-~-...,_~~_
' no rotrarions e
!‘g ; My=0
< '
X I3
0. / 1 1 1

500 1000 1500

ENERGY (Mev)

Fig. 3: Py phase shift for aN scattering including rotations and finite pion mass
as compared to results from Ref. 16.

V. Summary

In summary, the discussion given above, suggests the following conclusions:

{1} The linear o-model of Gell-Mann and Levy, a possible candidate for an effec-
tive meson field theory in the large N. 1imit, does not support stable solutions
of the field equation. The solitons collapse to zero size. Including a kinetic en-
erqy due to rotations the collapse is offset but a new instability with respect to
pion emission is introduced.

(2) Adding higher derivatives to the o-model Lagrangian as in the Skyrme model
stable classical solutions are obtained but in the presence of rotations the same
instability as in the o-model is found in the chiral limit (m" = 0).

(3) To offset this instability chiral SU(2)xSU(2) has to be broken explicitly by
introducing a finite pion mass. Whether stability is obtained depends on the para-
meter set mx/F“ and e. The parameter space is divided into stable and unstable re-
gions separated by a boundary which depends on spin and isospin and shrinks as §
and T increase.

(4) In the allowed region rotational energies are quite small. The maximum value
for the A is 167.8 MeV and for the nucleon 47.96 MeV. No parameter set can be
found which yields stable solutions as well as the correct masses for both the nu-
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cleon and the delta. With the parameters of Adkins and Napp114) the nucleon is
Stable but the delta is unstable.

{5) Baryon excited states can be described as fluctuations of baryon number zero
around the rotating field configuration. A rotation-vibration coupling term in the
kinetic energy is introduced which has been analyzed for breathing mode excita-
tions of the nucleonl®). The predicted Pyp-phase shift is quite different with and
without rotations.
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