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Abstract 

The s tab i l i t y  of rotating solitons is analyzed. I t  is found that both the l inear 

~-model and the chiral Skyrme Lagrangian (Skyrmion) yield unstable solutions with 

respect to pion emission. Introducing a symmetry breaking pion mass term stable 

solutions for the nucleon and the a(1232) are obtained in the Skyrme model. Fur- 

thermore with spherical symmetry, no parameter set is found which yields stable 

rotating solutions for both the nucleon and the delta, with correct masses. When 

parameters from ear l ier  l i terature are used, the nucleon is stable but not the 

delta. To describe baryon excited states small amplitude fluctuations around the 

rotating solution are considered. The calculated P11 phase sh i f t  to the "breathing 

mode" excitation of the nucleon is compared to ear l ier results neglecting rota- 

tions and i t  is found that rotation-vibration coupling leads to sizable changes. 

I. Introduction 

Except for a very short time period after the "big bang" the world of strong in- 

teractions is in the "confined phase" in which quarks and gluons are clustered in- 

to colorless hadrons. There is strong evidence that strong interactions can be de- 

scribed by quantum chromodynamics (QCD), the quantum f ie ld  theory of colored 

quarks and gluons. The mere possibi l i ty  of phase transit ions in QCD demands for 

non-perturbative treatment of the theory. This is part icular ly important for the 

calculation of the hadron mass spectrum. Such a treatment is provided by the la t -  

t ice simulations of QCD which have progressed quite far over the last few years. 

However such simulations, even though leading to exact results in pr inciple, are 

very time consuming and often do not provide a simple description of low-energy 

hadron and nuclear physics. 

However i t  was noted by 't Hooft already in 19741) and later on substantiated by 

Witten 2) that in the l im i t  of a large number of colors (N c + ~) QCD turns into an 

effective f ie ld  theory of meson f ields only in which baryons emerge as sol i tary 

waves. Solitary waves are defined as waves for which the energy density is local-  

ized at al l  times. 
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There are several advantages to describe confined strong interaction physics with 

effective meson f ie ld Lagrangians. First of all they may be derivable from QCD as 

conjectured by 't Hooft and Witten. In fact there are recent efforts to construct 

renormalizable meson f ie ld theories 3) which, when put on a la t t ice,  can be com- 

pared direct ly with QCD simulations. In that way the parameters of the effective 

theory could be determined. Secondly a unified description of meson and baryon dy- 

namics is provided, i .e .  expl ic i t  introduction of fermion f ields is avoided. 

Thirdly there is obviously a great simplicity to the description because the num- 

ber of parameters can be kept fa i r l y  l imited, as we shall discuss. Last not least 

such theories are potentially useful in low and medium energy nuclear physics 

where new insights into the two-nucleon 4) and many nucleon problem may be ob- 

tainedS). 

I I .  The Linear o-Model 

a) The o-model Lagrangian 

A possible candidate for an effective meson f ie ld  theory is the linear o-model of 

Gell-Mann and Levi 6), I t  is an SU(2)xSU(2) chiral model which describes the low 

energy behaviour of pions as Goldstone bosons of spontaneous chiral-symmetry 

breaking. The Lagrange density can be written in a compact way by introducing a 
÷ 

unitary SU(2) f ie ld  U(r,t) as 

O~o(X ) = ~ Tr(auUB~U+ ) ( I )  

The model is specified by a single parameter F the pion decay constant which pro- 

vides a length scale. U can be reexpressed by a vector f ie ld in isospin ~ space as 

U(x) = e i ~ ( x )  = cos¢ + i ~  sine (2) 

where ~ are Pauli matrices which form the generators of the SU(2) group. The con- 

nection to the sigma and pion f ie ld representation of the model is made by the 

identif ication 

o(x) = cos¢(x) (3.a) 

= ~ sin¢(x) (3.b) ;(x) 

characterizes an isotr ip let  of massless pions. In this representation ~o takes 

the familiar form 
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~o(X ) : . ~  {(~o)2 + (~)2} (4) 

The uni tar i ty  condition U+U = 1 leads to a normalization condition for o and 

~2 + 32 = 1 (5 )  

which introduces interactions among the f ie lds, 

A f ie ld configuration of f i n i te  energy must satisfy the boundary condition 

U(r,t)  + I I~ I+ ~ (6) 

Such configurations fa l l  into classes of solutions of the f ie ld  equations which 

are characterized by an integer valued index 

B = I c i jk  f d~ Tr(U+BiUBjU+~KU ) (7) 
24~ 2 

This index has been identif ied by Skyrme as the baryon number which has later on 

been proven to be the correct interpretation. I t  is a constant of the motion. B=I 

corresponds to a single baryon, B=2 to two baryons etc. B=O describes mesons, 

b) Static f ie ld configurations 

To study the solutions to the f ie ld  equations of the l inear o-model i t  is conve- 

nient to start with stat ic classical configurations. The lowest classical energy 

in the B#0 sector is attained by the "hedgehog" form of the U-field 
A 

i~°rFo(r) A + 
Uo(~) = A e (8) 

in which the isospin points in the radial direction and A is any constant SU(2) 

matrix, These solutions are "spherically symmetric" in the sense that a coordinate 

space rotation is equivalent to an isospin rotation of the matrix A, This configu- 

ration corresponds to a mapping of the internal symmetry group SU(2) onto F~3. 

Since for f i n i te  energy the "chiral angle" Fo(r ) has to vanish asymptotically, al l  

points at i n f i n i t y  are equivalent. Therefore the mapping reduces to a mapping of 

SU(2) onto the unit sphere S 3 embedded in /R 3. The topological index n which char- 

acterizes the number of times SU(2) is wrapped around the sphere S 3 (winding num- 

ber) is identical to the baryon number B. 

The function Fo(r) is subject to a second boundary condition. At r=O i t  has to be 

an integer multiple of ~: F (0) = B~. The f ie ld  equations in the stat ic case are 
o 
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easily obtained from eq. (1) via the principle of least action and reduce to a 

second order dif ferential  equation for F o (F = F r) 

d2Fo 2 dFo sin2Fo 
......... + - - -  0 (g) 
d~ 2 F d; 2 72 

This equation is nonlinear and therefore in principle has sol i tary wave solutions. 

However i f  one tr ies to solve the equation numerically, for instance via relaxa- 

t ion, one finds that for any BfO F o shrinks to a point. This can be understood 

from the behaviour of the classical energy functional 

Mo[F o] : - I d~o(X)  (10) 

under dilatation transformations Fo(r ) ÷ Fo(~r). One veri f ies that M o scales as 

I /x  tending to collapse the soliton. 

c) Rotating f ie ld configurations 

Baryons are fermions with half integer spin and isospin. These properties have to 

be constructed from the time dependence of the U-field. According to eq. (8) the 

stat ic hedgehog configuration is deformed in the intr insic SU(2) space, since the 
^ 

scalar product ~.r fixes a direction. In other words, there is a f in i te  moment of 

inert ia associated with rotations in this space. Since the a-f ield transforms l ike 

a scalar under SU(2) rotations i t  cannot contribute to the moment of inert ia.  Ro- 

tations however add a time dependence to the pion f ie ld  given by the "cranking" 

expression 

= ~ x ~ (11) 

Here ~ denotes the angular velocity of the rotation. Inserting this time depen- 

dence into the Lagrange density (1) or (4) one obtains the expected form for the 

Lagrangian 

L = -M ° + 1/2 u i l i  mj J (12) 

where the second term is just the rotational kinetic energy. Introducing the angu- 

lar moment ~ in the usual way 

Ti _ BL (13) 

the Lagrange densitY~T for the rotating f ields is given as a sum of the static 
part ~o and the rotational kinetic energy density 
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(14) 

This expression is given in the rotating frame in which the moment of inertia ten- 

sor I i j  becomes diagonal: I i j  = 16ij. The constant I is a functional of the rotat- 

ing solutions characterized by F T and is calculated as 

27 I[F T] =~j~ i d~2sin2FT(~) • (15) 

As noted earlier there is an intimate connection between isospin rotations and co- 

ordinate space rotations. In fact the rotating field is represented in analogy to 

eq. (8) by 
.÷A 
ITrFT(r) 

UT(~,t ) = A(t) e A+(t) (16) 

where now A is a time dependent SU(2) matrix. Any isospin rotation is equivalent 

to a coordinate rotation. On the basis of this one can show that the spatial angu- 

lar momentum ~ and the isospin angular momentum ~ have to be equal and opposite. 

The quantum mechanical treatment of the spin and isospin is straightforward and 

proceeds in analogy to the quantization of the rigid rotor7). The wave function is 

composed of products of two~-functions 

~ ) j ( : , B , y ) ~ ) T ( m ' , B ' , y '  ) = <~ByIJMjIj><~'B'y'ITMTIT> (17) 

where :,B,y and : ' ,B ' ,y '  denote sets of Euler angles in coordinate and isospin 

space and I j  and I T are projections of J and T onto the body axis. From the rela- 

tion ~=-~ one has I j=-IT:I.  The total spin-isospin wave function I JMjTM T > of the 

rotating solution is now obtained as a linear superposition of the a-functions 

with different I and weights determined by Clebsch-Gordon coefficients. One has 

IJMjTMT> = Z (JIT-IIOO~JMjI>ITMT-I> (18) 
I 

Because of the "spherical symmetry" of the ansatz (16) only rotational states with 

J=T, for instance the nucleon and the A can be obtained. To generate J~T states 

also spatially deformed fields have to be allo~ed 8). 

As discussed above the static solutions of the linear a-model collapse to zero 

size. Rotations add a centrifugal term to the energy which could prevent the time 

dependent solution from collapsing. To see whether stabi l i ty with B#O can be 

reached one has to solve the equations of motion for U T. They reduce to a di f fer-  

ential equation for the "rotating chiral angle" F T 
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d2FT dFT sin2FT(l~-P) = 0 ~ +  2 --~-- - 
d~ 2 dr " r 2 

(19) 

p ......... T(T+I)  (20) 
3F~I2[F T] 

Except for the P term this form is identical to eq. (9). Also the expression for 

the moment of inertia is the same as eq. (15). Eq. (19) has to be solved numeri- 

cally. Starting with some ini t ia l  guess for F T in P the differential equation is 

iterated until P becomes selfconsistent. One finds however that the selfconsisten- 

cy requirement cannot be obtained. The reason becomes clear from the asymptotic 

form of F T • This has to be of the form 

c e-/~2"P~ r FT(r) + T (21) 
r+~ 

which, since P>O, is oscillatory at inf ini ty. Therefore the moment of inertia di- 

verges! Another way of looking at the problem is the behaviour of the energy func- 

t i  onal 

MT[FT] : Mo[FT] + ~  (22) 

under the scale transformation FT(r ) + FT(~r). While M o goes like 1/~ the kinetic 
energy scales as k 3. Thus the rotations can prevent collapse, introduce however 

another instabil ity due to emission of pions. This phenomenon is similar to the 

electromagnetic case of a rotating classical charge which radiates off photons, 

We conclude that the a-model, even though the equations of motion are nonlinear, 

does not support soliton solutions in 3+I dimensions. 

I I I .  The Sk~rme Model 

a) Nonrotating stable solitons 

In order to prevent the collapse of classical solutions in the o-model higher de- 

rivatives t o ~  o have to be added. A minimal extension involves at least four deri- 

vatives. A particular choice of such fourth order terms has been introduced by 

Skyrme g). The Lagrange density in the Skyrme model takes the form 

~sK(x) =~o(X) + I-~--Tr([(B U)U+,(BvU)U+]) 2 (23) 
32e 2 

One additional parameter e is needed to specify the dynamics. Of course~sK is not 

the only possible choice consistent with chiral symmetry, 
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In analogy to the a-model the lowest energy classical solution in the B~O sector 

is obtained by the "hedgehog" (eq, (8)). Due to the fourth order term the field 

equations are somewhat more complicated 

dF 
° { i +  

dr 2 

dFo)2 4 sin2F 8 sin2Fo.} + 2--~dFo + ( o 

e 2 ~2 r dr dr e 2 F2 

sin2F° {I + 4--sin2F°} 0 

F2 e 2 F2 

(24) 

but nevertheless this equation is easily solved numerically, Eq, (9) is recovered 

in the limit e+=, The solution is spatially extended and is indicated in Fig, $ 

for the single baryon case (B=I), Choosing the parameter set of Adkins et al, I0) 

given as F = 129 MeV and e = 5.45 the energy of the hedgehog is 864 MeV, 

3 

Fo 

1 I ! I I I ! I I I I I I 1 | I I I I | I I I 1 | I I I ~ 
,5 4 4.5 2 2.5 3 

Rodiol Distonce r (fermi) 

FiQ, I: Static B=I solution for the chiral angle Fo(r ) in the Skyrme model, 

b) Rotating Skyrmions 

To project out the proper spln-isospin states rotated fields according to eq, (16) 

have to be obtained, Adkins et al. 10) proceed by replacing the rotating chiral an- 

gle FT(r ) by the static angle Fo(r), This choice yields a f ini te moment of inertia 

for the Skyrmion given by 

4 [(dFo)2 + sin2Fo 
I[F o] :~ -  i d~2sin2Fo{1 * ~  d~ F2 }} (251 
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and a nonzero A-N mass spl i t t ing is obtained. The experimental spl i t t ing energy of 
293,1 MeV is used to adjust F and e. This adjustment yields the parameter values 
quoted above. Many static properties of the nucleon and the isobar like rms radii,  

magnetic moments gA etc. can be c~Iculated. Some results are listed in Table 1. 
The agreement with experiment is quite remarkable particularly in view of the fact 

that only two parameters are involved. 

Quantity Prediction Experiment 

M N 938.9 MeV (input) 938.9 MeV 

M a 1232 MeV (input) 1232 MeV 

(r2) I /2  0.59 fm 0.72 fm 
( isoscalar)  

pp 1,87 2.79 

Pn -1,24 -1.91 

Pp/Pn 1.43 1.46 

gA 0.61 1.23 

g~NN 8.g 13.5 

g~NA 13.2 20.3 

PNA 2.3 3.3 

Table I: Static properties of nucleon and isobar in the Skyrme model as calculated 
3-R'IF6-~T-IO. 

In the procedure of Adkins et al. I0), replacing F T by Fo, the resulting U-field 

does, however, not satisfy the Euler-Lagrange equations. The function Fo(r ) only 
minimizes Mo[F ] but not the ful l  functional MT[FT] (eq. (22)). Although for 

FT(r) - Fo(r), Mo(FT) and MT(FT) may not differ too much for low values of T, the 
extrema of these two functionals may be quite different. Keeping the rotational 
part in extremizing the energy the Skyrme equation of motion is modified to give 

d2FT {1 +8--sin2F T 
d~ e 2 

dFT {~ 16P sin2F} P)} + . . . .  

dF r eZF 

, (d_~F)2dr {4_._e 2 sin2 F (I_..F2 " P)} - sin2F {1~_2_ p + e 24 sin2F~2 [~1 . 2P]} 

(26) 

= 0 



114 

where P is defined as in eq. (20). As in the rotating a-model this equation does 

not have a solution which yields a localized energy density. The asymptotic form 

of F T is in fact identical in both cases. This desease of the rotating Skyrmion 

has been noted by Bander and Hayot 11) and independently by Braaten and Ralston 12). 

The reason for the ins tab i l i t y  is again easily understood from the behaviour of 

the Skyrmion energy under scale transformations. The fourth order term adds a con- 

tr ibut ion proportional to x which is suff ic ient to stabi l ize the classical solu- 

t ion, but there is no term to offset the x 3 ins tab i l i t y  from the rotational kinet- 

ic energy. Therefore there is no stable rotating Skyrmion. 

c) Skyrmions with f i n i t e  pion mass 

In the real world chiral SU(2)xSU(2) is only an approximate symmetry good at the 

10 % level. We are therefore allowed to exp l i c i t l y  break the symmetry by adding a 

pion mass term to the Skyrme Lagrange density 

 K(x) + [TrU-2] (27) 

In the energy this mass term adds a 1/~ 3 contribution which can offset the x 3 In- 

s tab i l i t y  from the rotations. In the presence of a f i n i t e  pion mass an extra term 

-m 2~/F 2~ sinF T is added to the Euler-Lagrange equation (eq. (26)). This modifies the 

large distance behaviour of F T to give 

F z 
c ~ (Z8) FT(;) * : e  

r+® r 

Without rotations (P=O) one therefore obtains the correct asymptotic Yukawa form 

of the pion field. In the presence of rotations the stability however is con- 

t ro l led by the n~gnitude of P. Only for P < mZ/2F z one obtains a stable sol i ton. 
I I  IT 

This condition clearly depends on the choice of parameters and has to be explored 

by solving the Euler-Lagrange equations exp l i c i t l y  13). I t  turns out that the solu- 

tions only depend on two independent quantities mIT/F and e such that a two param- 

eter space has to be explored. The numerical s tab i l i t y  l imi ts are summarized in 

Fig. 2. We observe that the parameter space is divided into two regions: a stable 

z 2F ~ region of localized solitons (P<m~/2F~)and an unstable region (P> m./ IT)in 
which the moment of inert ia diverges, The boundary, obtained numerically, shows 

polynomial behaviour up to large values of m /FIT. Since P depends on the value of 

the isospin the stable A-region is naturally smaller than the nucleon region. One 

may ask i f  i t  is possible to f i t  the A-N mass sp l i t  with a combination m /F and e 

for which beth the nucleon and the A is stable. The answer is no. As seen from 

Fig. 2 the lines of constant m a and m N do not cross in the allowed region for the 
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delta. Using the quantization procedure in Ref. 10 such a crossing can be found 

(dotted lines in Fig. 2) for the values quoted by Adkins and Nappi 14) 

(m /F = 1.277 and e = 4.84). The crossing point is however in the unstable region 

for the delta. This result is not necessarily a bad feature of the model since we 

know that the delta is not a stable part icle. 
m 

rn~r 

i ............ 

I 2 3 4 5 6 7 8 • 

Gig. 2: Stabi l i ty l imits of the broken SU(2)xSU(2) parameter space including rota- 
tions. The lines of constant nuclear mass m Nand delta mass m A in the presence of 
rotations are also indicated (solid l ines). The results of the quantization proce- 
dure used in Ref. 10 are indicated by dotted lines. 

IV. Excited States of the Nucleon and the Delta in the Sk~rme Model 

Excited states of the nucleon and the delta are observed for instance as reso- 

nances in the ~N- and ~A-system. To describe the scattering problem within the 

Skyrme model we have to go back to the general expression of the unitary f ie ld U 

(eq. (2)). The Y-field is expanded around the stable rotating B=I soliton as 

= FT(r)r + ~(~.t) . $(~,t) (29) 

characterizes fluctuations around the soliton which represent the pion-soliton 

scattering states and carry baryon number B=O. We consider here the simplified 

case in which the amplitude is small, such that n2>>n 4. Substituting the expansion 

of ~ into the broken SU(2) Skyrme Lagrange density (eq. (27)) retaining only terms 

quadratic in n one readily obtains 

L = - MSK + ~ T  T+I + 1/2 f d~ [~iBijnj - nlAljn j ]  + Trot.vi b (30) 

I t  can be shown that all terms linear in ~ and n vanish using the equation of mo- 

tion for F T given in the last section, MSK denotes the classical rotating Skyrmion 
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mass and Io[FT] is the moment of inertia in the absence of fluctuations. The vi-  

brational part is contained in the third term of the Lagrangian and has the famil- 

iar form. The restoring force tensor is a second order differential operator act- 

ing on the three components n i and Bij denotes the inertial mass. Both Aij and Bij 

are complicated functions of F T. Their calculation, though tedious, is straight- 

forward. It should be noted that in a spherical basis Bij and Aij become diagonal. 

In addition there is a kinetic energy contribution from the rotation-vibration 

coupling Trot.vi b which will be analyzed below for monopole vibrations. 

Expanding the fluctuations into normal modes 

= Z Cn(r)~(n)(~) (31) ~(t) 
n 

the vibrations are quantized as harmonic oscillators in the usual way to give 

L : - MSK + ~ 1  n T  T+I + Z (Nn+l/2~l~ n + Trot.vi b • (32) 

Here N n denotes the phonon number operator. To order ~ the phonon zero-point ener- 
gies contribute to the baryon energies. Summing over all modes this contribution 

becomes inf inite. In the absence of renormalizability of the Skyrme Lagrangian 

zero point corrections to the mass are ignored I0,14), as will be done here also. 

In order to avoid complicated angular momentum algebra we shall limit the discus- 

sion to radial oscillations only. They carry phonon angular momentum zero. Such 

"breathing modes" are observed in p-wave pion scattering as the P11(1440)-reso- 

nance in the ~N-system and the P33(1600)-resonance in the ~6-system. The partial 

wave expansion of the nth normal mode is in general given by 

= Z fI~M(r)YI~M(~) (33) 
I~M 

where ~ is the pion orbital angular momentum. For p-wave scattering to the breath- 
^ 

ing^mode 6=1 and I=O, i.e. the vector spherical harmonic YI~M(r) is proportional 

to r. In this case the expression for the S-field given in eq. (29) simplifies to 

give 

S(~,t) = (FT(r)+~(r)ei~t)r (34) 

i .e. the vector ~ only points in the radial direction. {(r) is the radial part of 

the scattered wave which determines the phase shifts. In the monopole case 

Trot.vi b is easily obtained. Physically i t  comes from a change 11 in the moment of 
inertia 
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i[~] : Io[FT) + II[FT,~] 

as the Skyrmion oscillates. To second order in ~ one finds 15) 

TIT+I ) 
Trot vib= 

where 

II[FT,{] =~-~7 d r { ~  r2sin2F T 
o 

(35) 

(36) 

+1___ aFT 2 dFT d2FT 
e 2 [r2sin(2FT)(~-F- ) - 4rsin2FT r-a-F-- 2r2sin2F T - d r  2 (37) 

+ 2sin(2FT)sin2FT]}~(r) 

The wave equation for { is determined from the least action principle which leads 

to the equation of motion 

~---~- ~ :  0 (38) 
a~ at a~ 

As a result one obtains an integro-differential equation of the following struc- 

ture 

dZ{ + B(r) d{ c(r,mz)~ + ~-F+ D(r,{)  = 0 (39) 
dr 2 

where the coefficients B,C,D are complicated functions of F T not listed here and D 

involves an integral over ~. The integral emerges from the rotation-vibration cou- 

pling. To obtain the phase shifts we have to impose two boundary conditions on C. 

Near the origin the regular solution of eq. (39) behaves as 

{(r) - r (40a) 
r÷O 

and the asymptotic form 

C(r) ~ j1(~r)cos61.n1(~r)sin61 (40b) 
r-w~ 

is a linear combination of regular and irregular spherical Bessel functions with 

orbital angular momentum ~1. Numerically 61 is obtained by integrating the wave 
equation (39) out to some radius R where the solution is matched to the asymptotic 

form. 
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The preliminary results 15) given in Fig. 3 are compared to ear l ier  calculations by 

Walliser and Eckart 16) in which rotations and f i n i te  plan mass have been neglect- 

ed. We conclude that the inclusion of rotations leads to sizable changes in the 

Pll phase shif t  and, therefore, cannot be ignored. 

&- 

..r 
m S O  

L y ..... 
< l 
-r" / 

a. . . /  i , , ,  m I 
EOO I000 1500 

~N~RGY (HcV) 

Fi~. 3:P11 phase shif t  for ~N scattering including rotations and f i n i te  plan mass 
as compared to results from Ref. 16, 

V~ Summary 

In summary, the discussion given above, suggests the following conclusions: 

(1) The linear a-model of Gell-Mann and Levy, a possible candidate for an effec- 

t ive meson f ie ld  theory in the large N c l im i t ,  does not support stable solutions 

of the f ie ld equation. The solitons collapse to zero size. Including a kinetic en- 

ergy due to rotations the collapse is offset but a new ins tab i l i ty  with respect to 

pion emission is introduced. 

(2) Adding higher derivatives to the a-model Lagrangian as in the Skyrme model 

stable classical solutions are obtained but in the presence of rotations the same 

ins tab i l i ty  as in the o-model is found in the chiral l im i t  (m = 0). 

(3) To offset this ins tab i l i ty  chiral SU(2)xSU(2) has to be broken exp l i c i t l y  by 

introducing a f in i te  pion mass. Whether s tab i l i t y  is obtained depends on the para- 

meter set m /F and e. The parameter space is divided into stable and unstable re- 

gions separated by a boundary which depend@ on spin and isospin and shrinks as S 

and T increase. 

(4) In the allowed region rotational energies are quite small. The maximum value 

for the A is 167.8 MeV and for the nucleon 47.96 MeV. No parameter set can be 

found which yields stable Solutions as well as the correct masses for both the nu- 
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cleon and the delta. With the parameters of Adkins and Nappi 14) the nucleon is 

stable but the delta is unstable. 

(5) Baryon excited states can be described as fluctuations of baryon number zero 

around the rotating f ield configuration. A rotation-vibratlon coupling term in the 

kinetic energy is introduced which has been analyzed for breathing mode excita- 

tions of the nucleon 15). The predicted P11-phase shift is quite different with and 

without rotations. 
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