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Light Nonabelian Monopoles: Constructing Dual Nonabelian
Superconductor of More General Types
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In this talk we discuss a new class of N = 1 supersymmetric U(N) gauge theories, in
which the low-energy magnetic effective gauge group contains multiple nonabelian factors,Q

i SU(ri), supported by light monopoles carrying associated charges. These nontrivially
generalize the physics of r-vacua found in softly broken N = 2 supersymmetric QCD and
yield dual nonabelian superconductor of a more general type. The matching between classical
and quantum (r1, r2, . . .) vacua leads to nontrivial hints about the nonabelian duality.

§1. Why get interested in nonabelian monopoles?

Nonabelian monopoles can be the key for understanding confinement in QCD.
In spite of many papers on (semi-classical) monopoles their true properties still
elude us. The central fact is that the nonabelian monopoles,1) unlike their abelian
counterpart, is essentially quantum mechanical. Only a fully quantum mechanical
treatment can tell about their physical properties.2),3) Thanks to some exact results
in N = 1, 2, 4 supersymmetric gauge theories found in the last ten years or so,4)−12)

however, we now have certain solid knowledge about them. Here we discuss the
quantum mechanical behavior of nonabelian monopoles in general, and in the context
of a U(N) theory, systems with low-energy SU(r1) × SU(r2) × SU(r3) . . . magnetic
gauge symmetry.13)

§2. Bosonic SU(N) theory

First consider a bosonic SU(N) theory with

L =
1

4g2
(FA

µν)
2 +

1
g2

|(Dµφ)A|2 − V (φ),

〈φ〉 =

 v1 · 1r1×r1

v2 · 1r2×r2

. . .

 ,

SU(N) → SU(r1) × SU(r2) × U(1)N−r1−r2+1

Zr1 × Zr2

. (2.1)

The monopoles can be (semiclassically) constructed by embedding ’t Hooft-Polyakov
monopoles in various broken SU(2) subgroups, thus one finds r1 monopoles living
on (i, N + 1) subspaces, i = 1, 2, . . . , r1; r2 monopoles in (j, N + 1) subspaces, j =
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Light Nonabelian Monopoles 187

r1 + 1, r1 + 2, . . . , r1 + r2; r1 r2 monopoles living on (i, j) subspaces; and so on. In
softly broken N = 2 SQCD, with a small adjoint scalar mass, we do know that there
appear in the infrared only vacua with magnetic gauge group

SU(r) × U(1)Nc−r+1, r = 0, 1, 2, . . . ,
Nf

2
, Ñc = Nf − Nc.

The symmetry breaking pattern (2.1) cannot be realized quantum mechanically in
this system.10) The problem is thus highly a nontrivial one.

§3. Phases of softly broken N = 2 gauge theories

Let us now recall what happens in N = 2 gauge theories, softly broken by the
adjoint scalar mass µ Φ2. In the case of SU(nc) gauge theory, the vacua in confine-
ment phase is completely classified by an integer r, r = 0, 1, . . . ,

nf−1
2 . The effective

gauge group is SU(r) × U(1)nc−r. The “dual quarks” of the r vacua are identified
as the GNO monopoles, which have become massless by the quantum effects. The
special case is the r = nf

2 vacua, which are nontrivial, strongly interacting SCFT.
The infrared degrees of freedom are relatively nonlocal set of monopoles and dyons,
carrying nonabelian charges.

In the case of USp(2nc) and SO(nc) gauge groups (with vanishing bare quark
masses), all of the confining vacua are of this special type (deformed SCFT).10)

Table I. Phases of SU(nc) gauge theory with nf flavors. ñc ≡ nf − nc.

label (r) Deg. Freed. Eff. Gauge Group Phase Global Symmetry

0 monopoles U(1)nc−1 Confinement U(nf )

1 monopoles U(1)nc−1 Confinement U(nf − 1) × U(1)

≤ [
nf−1

2
] NA monopoles SU(r) × U(1)nc−r Confinement U(nf − r) × U(r)

nf/2 rel. nonloc. - Confinement U(nf/2) × U(nf/2)

BR NA monopoles SU(ñc) × U(1)nc−ñc Free Magnetic U(nf )

Table II. Phases of USp(2nc) gauge theory with nf flavors with mi → 0. ñc ≡ nf − nc − 2.

Deg. Freed. Eff. Gauge Group Phase Global Symmetry

1st Group rel. nonloc. - Confinement U(nf )

2nd Group dual quarks USp(2ñc) × U(1)nc−ñc Free Magnetic SO(2nf )

W(φ, Q, Q̃) = µ TrΦ2 + miQ̃iQ
i, mi → 0.

§4. Why nonabelian monopoles are intrinsically quantum mechanical

It is clear, as in the results summarized above, that the presence of semi-
classically degenerate set of monopoles is not sufficient for us to conclude that there
are going to be nonabelian monopoles in the infrared. They are intrinsically quantum
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188 K. Konishi, S. Bolognesi and G. Marmorini

mechanical. In particular, the “unbroken” group H can break itself dynamically at
low energies. This happens, for instance, in the pure N = 2 SU(N) theories, where
all surviving monopoles are abelian. It turns out that the semiclassical classical r
vacua survive as such if r <

nf

2 ; they are replaced in the infrared by the r′ = nf − r
vacua if r >

nf

2 . The latter corresponds to the Seiberg’s dual theory, SU(nf − r).
Another important issue is that the nonabelian monopoles are multiplets of

the dual gauge group, H̃, and not of H itself. Certain difficulties found in the
quantization of semiclassical nonabelian monopoles can be attributed to this.

In order to illustrate these issues, we study now13) a wider class of models, U(N)
gauge theories with a chiral superfield Φ in the adjoint representation; Nf of quarks
superfields, and with a generic superpotential,

W = W (Φ) + Q̃a
i mi(Φ)b

a Qi
b :

i = 1, 2, . . .Nf a, b = 1, 2, . . .N are the color indices. The model has a global U(Nf )
symmetry in the limit, mi(Φ) → m(Φ). As in Ref. 10), we keep the quark mass
functions mi(Φ) generic and all different at first, and send them to equal value only
at the end. This allows us to keep track of the number of vacua, and as a consequence,
to allow us to conclude unambiguously what happens to each of the semiclassical
vacua, in the fully quantum mechanical limit.

§5. Classical vacua

Classical vacua are solutions of the equations

[Φ, Φ†] = 0 ; (5.1)

0 = Qi
a(Q

†)b
i − (Q̃†)i

aQ̃
b
i ; (5.2)

Qi
a

δmi(Φ)b
a

δΦd
c

Q̃b
i +

δW (Φ)
δΦd

c

= 0 ; (5.3)

mi(Φ)b
aQ

i
b = 0 (no sum over i) ; (5.4)

Q̃b
i mi(Φ)a

b = 0 (no sum over i). (5.5)

W (Φ) =
∑

k

ak Tr (Φk), [mi(Φ)]ab =
∑

k

mi,kΦ
k−1
ab .

We shall choose m(Φ) to be quadratic or higher, assume also that the equation

m(z) = 0

has more than one solutions,

z = v(1), v(2), v(3), . . . .

Note that
• (5.1) allows us to take Φ in a diagonal form, with diagΦ = (φ1, φ2, . . .); each

diagonal element φi is either the solution of
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Light Nonabelian Monopoles 189

• m(φi) = 0, satisfying

Qi
c = Q̃c

i =

√
−W ′(φ∗

c)
m′

i(φ∗
c)

�= 0;

• or of the solution of W ′(aj) = 0 implying

Qi
c = Q̃c

i = 0.

To be concrete, we consider the case in which r1 of the φi are the roots of
mi(x) = 0, close to v1 and r2 of the φi are the roots of mi(x) = 0, close to v2.
Other diagonal elements of Φ are taken to be various roots of W ′(Φ) = 0. In the
flavor-symmetric limit, we are thus considering a vacuum with unbroken SU(r1) ×
SU(r2) × U(1) × U(1) × . . . gauge symmetry. The classical VEVS of Φ and Q, Q̃ in
this vacuum are:

〈φ〉 =


v11r1

v21r2

a11N1

. . .
an1Nn

 ,

where
n∑

j=1

Nj + r1 + r2 = N,

and

Q =



d1

. . .
dr1

e1

. . .
er2


, Q̃ =



d̃1

. . .
d̃r1

ẽ1

. . .
ẽr2


,

where

dc = d̃c =

√
−W ′(v(1))

m′(v(1))
, ec = ẽc =

√
−W ′(v(2))

m′(v(2))
.

The multiplicity of the (r1, r2) vacua and symmetry breaking pattern are given by

N =
(

Nf

r1

)
×

(
Nf

r2

)
×

n∏
i=1

Ni, (5.6)

U(Nf ) → U(r1 − s) × U(s) × U(r2 − s) × U(Nf − r1 − r2 + s).
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190 K. Konishi, S. Bolognesi and G. Marmorini

Note that Eq. (8) does not imply a color-flavor locked form, in contrast to the cases
with W (Φ) = µ Φ2, mi(Φ) = mi (constant masses), studied earlier.10) The meson
VEVs are given by

Q̃Q =



−W ′(v(1))
m′(v(1))

1r1−s

−
(

W ′(v(1))
m′(v(1))

+ W ′(v(2))
m′(v(2))

)
1s

−W ′(v(2))
m′(v(2))

1r2−s

0
. . .

0


.

(5.7)

§6. Quantum vacua

The above semiclassical analysis is adequate if all the VEVs are large as com-
pared to the scale Λ of the theory. Otherwise, a quantum mechanical treatment
is required. To understand the fully quantum situation, it is necessary to appeal
to the recent work by Cachazo, Douglas, Seiberg and Witten,11) inspired by those
by Dijkgraaf and Vafa.12) They found a complete solution for the chiral composite
operator VEVs,

M = Q̃
1

z − Φ
Q; R(z) = − 1

32π2
Tr

Wα Wα

z − Φ
, (6.1)

where z is a complex variable. Equation (6.1) can be used as generating functions
of various gauge-invariant chiral condensates, or seen as the resolvent operators in
the chiral ring. The main result is the generalized (Konishi) anomaly equations:[

W ′(z)R(z)
]
− = R(z)2,[

(M(z)m(z))j
i

]
−

= R(z) δj
i ;

[
(m(z)M(z))j

i

]
−

= R(z) δj
i .

The solution for R(z) is (f related to 〈WW 〉i) :

2R(z) = W ′(z) −
√

W ′(z)2 + f(z)

N = 1 (matrix model) curve (a doubly sheeted complex plane):

y2 = W ′(z)2 + f(z), y = W ′(z) − 2R(z).

The classical poles in z of R become cuts by quantum effects! Various chiral operator
VEVs can be expressed as integrals over cycles in this double sheeted Riemann
surface. Let us take the quark mass function as

m(z) = diag [ C (z − v
(1)
i ) (z − v

(2)
i ) ],
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Light Nonabelian Monopoles 191

1
m(z)

=


1

C(z−v
(1)
1 )(z−v

(2)
1 )

. . .
1

C(z−v
(1)
Nf

)(z−v
(2)
Nf

)

 ,

where v
(1)
i → v(1), v

(2)
i → v(2) in the flavor symmetric limit. In the vacuum with

r1 + r2 poles in the physical sheet with r1 poles near v(1) and r2 poles near v(2), the
exact quantum for the meson resultant is given by

M(z) = R(z)
1

m(z)
−

r1+r2∑
i=1

R(q̃i)
z − zi

1
2πi

∮
zi

1
m(x)

dx −
2Nf−r1−r2∑

j=1

R(qj)
z − zj

1
2πi

∮
zj

1
m(x)

dx.

Symmetry breaking and the number of vacua are shown precisely to agree with the
semiclassical approximation. Exact quantum formula for the meson VEV 〈QQ̃〉 can
be easily read off and shown to reduce, in the classical limit, to (5.7).

There is a beautiful classical-quantum (r1, r2) vacuum correspondence: namely,
all of the classical vacua (r1, r2), (r1, Nf − r2), (Nf − r1, r2), and (Nf − r1, Nf − r2)
become in the infrared the (r1, r2) vacua! In particular, note that

• while rcl < min[Nf , Nc], rqu <
Nf

2 ;
• Total vacuum counting of classical versus quantum vacua gives the right answer;
• If the SU(r), Nf theory is infrared free in the ultraviolet, then it survives as

SU(r) theory in the infrared;
• If SU(r), Nf theory is asymptotic free in the ultraviolet, it gets replaced by the

Seiberg dual, SU(Nf − r), in the infrared.

§7. Dual group from vortex-monopole systems

The question of quantum nonabelian monopoles and of the dual group has been
recently considered from another viewpoint.14) Namely, we consider the systems with
a hierarchical gauge symmetry breaking in which monopoles and vortices appear
together.

• The system is characterized by

G
〈φ1〉�=0−→ H

〈φ2〉�=0−→ ∅.
• Assume exact HC+F broken neither by interactions nor by the VEVs;
• Vortices carry nonabelian flux. For instance, CPN−1 for G = SU(N + 1),

H = SU(N) × U(1)/ZN ; it corresponds to the unbroken SU(N)C+F , broken
only by a single vortex (as the translational invariance broken by a kink) !

• Monopoles live in π2(G/H); vortices in π1(H);
• If π1(G) = ∅ then clearly neither monopoles nor vortices are topologically stable;
• In fact, their fluxes match Fm(H) = Fv(H): in other words, nonabelian monopoles

are confined by the nonabelian vortices;
• This suggests that the dual group H̃ (seen in the magnetic variables) is to be

identified with HC+F (in the original theory).
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192 K. Konishi, S. Bolognesi and G. Marmorini

Fig. 1. A monopole-vortex system.

§8. Conclusion

This last observation is of fundamental importance: it implies that dual groups
(and related nonabelian monopoles) survive the quantum effects only if the theory
under consideration possesses an appropriate set of massless flavors. The latter plays
a dual role in the whole discussion: it is needed to render the dual group infrared-free
(or conformal), and to define the dual group itself!

The appearance of degenerate monopoles in a semiclassical treatment, therefore,
does not mean in itself that nonabelian monopoles appear in the system; even a
careful study of “semiclassical quantization” around such backgrounds, might lead
us astray. The point is that a semiclassical treatment makes sense where the original
“electric” theory is weakly-coupled; but there the dual magnetic theory is strongly
coupled, and concepts such as the number of components of a dual gauge multiplet
may not be well defined. Vice versa, the regime of a weakly coupled dual theory
where the concept of magnetic gauge groups is a well-defined one, can be reached
only when the original electric theory is strongly coupled, beyond the reach of a
traditional semiclassical approach.

This is why the exact results in the N = 2 (and more recent ones in the N = 1)
theories are of vital importance. As an illustration we have studied here a class of
N = 1 theories with the following characteristics:

• U(N) theory in the ultraviolet can be realized as SU(r1)×SU(r2)×. . .×∏
Ui(1)

in IR;
• Appropriate massless flavors needed;
• Appropriate superpotential (Q̃m(Φ)Q) required also;
• Light monopoles in (r1,1, . . .), (1, r1, . . .), etc., can appear as infrared degrees

of freedom;
• Another superpotential W (Φ) �= 0 leads to condensation of these monopoles;
• These systems represent dual nonabelian superconductor of new types;
• As a by-product we find a clear indication that Seiberg’s dual quarks are related

to the GNO monopoles.
We believe that understanding of confinement in QCD will involve closely related

issues.
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