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1. Introduction

Over a long period of time, considerable attention was paid to the experimental [1]-[6] and the-
oretical [7]-[17] investigations of the so-called forward-backward (FB) correlation in high-energy
pp and AA collisions - the correlation between multiplicities nF and nB of charged particles pro-
duced in two separated rapidity windows (“forward” and “backward”). The old problem in this
correlation analysis is the separation of the so-called “volume" contribution, originating from the
event-by-event fluctuation in the number of emitting sources [7].

In paper [15] it was suggested to use for this purpose the information on the event multiplicity
in an additional third rapidity window, but as discussed in [16] it complicates the interpretation
of obtained results. In present paper we argue that the investigation of the FB correlation between
multiplicities in windows separated both in rapidity and azimuth enables to find the full two-particle
correlation function C2 including its constant component (the common "pedestal"), responsible for
the long-range correlation effects [7] and containing the important physical information on the
magnitude of the event-by-event fluctuation in the number of emitting sources.

The connection between the FB multiplicity correlation coefficient b and the two-particle cor-
relation function C2 enables us a model independent way to find the general features of the depen-
dence of the correlation coefficient b on the acceptances of the observation windows. We show
that the traditional definition of the FB correlation coefficient leads to its strong dependence on the
acceptance of the windows, with the correlation coefficient going to zero with the acceptance.

Hence, the results obtained for the windows of different width can’t be compared directly. In
this connection we propose alternative suitable observables for the future FB correlation studies,
which values have nonzero limit when the acceptance goes to zero.

We also compare the FB correlation approach with the so-called di-hadron correlation analysis.
We see that the measurements of the FB correlation coefficient between multiplicities in two small
windows separated in rapidity and azimuth enable to find the two-particle correlation function C2

even when the particle distribution in rapidity is not flat, as e.g. in the case of pA interactions, and
when the correlation function depends not only on the difference of rapidities, ∆η = η1−η2, but
on both of them. That is when the traditional di-hadron correlation analysis, assuming from the
very beginning the dependence of two-particle correlation function only on the differences ∆η and
∆φ , is not applicable.

We note that even in a mid-rapidity region, where the application of the di-hadron correlation
approach is justified, the results obtained by this method depend on the details of track and/or event
mixing used in the approach for the imitation of the uncorrelated particle production, what leads to
the uncertainties in determination of the long-range correlation component of C2, important at the
analysis of the event-by-event fluctuation of the number of sources. We show that this long-range
component of C2 can be measured unambiguously, by the FB correlation approach, which does not
use any event mixture procedure, and hence avoids the associated uncertainties.

The paper is organized as follows.

In Sec.2 we discuss the different traditional versions of the definition of the FB correlation
coefficient and generalize this definition to the case of windows separated both in rapidity and
azimuth.
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In Sec.3 the connection of the FB correlation coefficient with the two-particle correlation func-
tion C2 is traced.

In Sec.4 basing on this connection we analyze a model independent way the general features
of the dependence of the correlation coefficient b on the acceptances of the observation windows
and the rapidity gap between them.

In Sec.5 we propose the suitable observables for the future FB correlation studies.
The Sec.6 is devoted to the comparison of the FB correlation approach in windows separated

both in rapidity and azimuth with the di-hadron correlation analysis.
Appendix A describes the calculation of integrals over rapidity and azimuth windows.

2. Definition of the FB correlation coefficient

Traditionally [1, 2, 4, 5] the FB correlation coefficient is defined as a coefficient b in linear
regression

〈nB〉nF
= a+bnF . (2.1)

In this case

b =
〈nFnB〉−〈nF〉〈nB〉

DnF

, (2.2)

where DnF
is the variance of the multiplicity in the forward window:

DnF
= 〈n2

F〉−〈nF〉2 . (2.3)

Clear that the value of such defined correlation coefficient changes, if one will change indepen-
dently the acceptances of the forward and/or backward windows. To avoid this trivial influence one
can go from nF and nB to the relative or scaled observables [20] νF = nF/〈nF〉 and νB = nB/〈nB〉.
In these observables 〈νB〉νF

= arel +brel νF and

brel =
〈νFνB〉−1
〈ν2

F〉−1
=
〈nF〉
〈nB〉

b , (2.4)

In some papers [3, 6] the following symmetrized form of (2.2) is also used,

bsym =
〈nFnB〉−〈nF〉〈nB〉√

DnF
DnB

. (2.5)

For this case one can prove that |bsym| ≤ 1. Note that in the case of symmetric windows, when
〈nF〉= 〈nB〉 and DnF

= DnB
, all these definitions lead to the same result

brel = bsym = b . (2.6)

In present paper we study the correlation between multiplicities nF and nB in windows sep-
arated both in rapidity and in azimuth. Denote by δηF , δφF and by δηB, δφB the width of the
forward and backward windows in rapidity and in azimuth, and by ηF , φF and ηB, φB - the posi-
tions of the centers of the windows. We’ll also use the following short notation for the acceptance
of forward and backward windows

δF ≡ δηFδφF/2π , δB ≡ δηBδφB/2π . (2.7)
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By
ηFB ≡ ηF −ηB , φFB ≡ φF −φB (2.8)

we denote the distance between the centers of the windows in rapidity and in azimuth.
These variables in an obvious way are connected with the so-called gaps ηgap and φgap between

window in rapidity and in azimuth:

ηFB =
δηF

2
+ηgap +

δηB

2
, φFB =

δφF

2
+φgap +

δφB

2
, (2.9)

or for symmetric windows, when δηF = δηB = δη and δφF = δφB = δφ :

ηFB = ηgap +δη , φFB = φgap +δφ . (2.10)

3. Connection with two-particle correlation function

One can express the FB correlation coefficient through the two-particle correlation function
C2(η1,η2;φ1,φ2). For this purpose, we introduce the ρ1(η ,φ) and ρ2(η1,φ1;η2,φ2) - the one- and
two-particle densities of charge particles:

ρ1(η ,φ) =
d2N

dη dφ
, ρ2(η1,φ1;η2,φ2) =

d4N
dη1 dφ1 dη2 dφ2

. (3.1)

If we integrate (3.1) over the forward acceptance interval, η∈δηF , φ ∈δφF , we have [21]:∫
δηF δφF

dηdφ ρ1(η ,φ) = 〈nF〉 , (3.2)

∫
δηF δφF

dη1dφ1

∫
δηF δφF

dη2dφ2 ρ2(η1,φ1;η2,φ2) = 〈nF(nF −1)〉 .

When we integrate over the forward, y1∈δηF , φ1∈δφF , and the backward, y2∈δηB, φ2∈δφB,
acceptance intervals, we have∫

δηF δφF

dη1dφ1

∫
δηBδφB

dη2dφ2 ρ2(η1,φ1;η2,φ2) = 〈nFnB〉 . (3.3)

The 〈nF〉 is an average multiplicity produced in the acceptance δηFδφF .
By (3.2) and (3.3) for windows of small acceptance in rapidity and azimuth we have

ρ1(ηF ,φF) =
〈nF〉

δηFδφF
, ρ2(ηF ,φF ;ηB,φB) =

〈nFnB〉
δηFδφFδηBδφB

, (3.4)

ρ2(ηF ,φF ;ηF ,φF) =
〈nF(nF −1)〉
(δηFδφF)2 . (3.5)

These formulae enable the experimental measurement of the one- and two-particle densities of
charge particles ρ1(η ,φ) and ρ2(η1,φ1;η2,φ2), and hence the two-particle correlation function C2,
which is introduced in a standard way:

C2(η1,η2;φ1,φ2) =
ρ2(η1,η2;φ1,φ2)

ρ1(η1,φ1)ρ1(η1,φ2)
−1 . (3.6)
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Substituting (3.4) in (3.6) we get for windows of small acceptance in rapidity and azimuth:

C2(ηF ,φF ;ηB,φB) =
〈nFnB〉−〈nF〉〈nB〉
〈nF〉〈nB〉

=
〈

nF

〈nF〉
nB

〈nB〉

〉
−1 . (3.7)

Important that by (3.7) the observation of multiplicity-multiplicity correlation with two small
(in azimuth and rapidity) windows, enables to measure the two-particle correlation function C2 in
accordance with the standard definition (3.6) even in the absence of the translation invariance in
rapidity and without using an event mixing procedure, usually applied in a di-hadron correlation
analysis (see the discussion in Section 6). Like this it is also valid for nonhomogeneous distribu-
tions, which take place for non-symmetric reaction, as pA scattering, and for symmetric reaction at
large rapidity gaps.

Note also that if in formula (3.7) we’ll mean by nF and nB the multiplicities of particles with
the certain transverse momenta belonging correspondingly to the intervals δ pTF and δ pTB, than
by (3.7) one can measure the two-particle correlation function C2 between particles belonging to
the different transverse momentum intervals, like in the so-called triggered di-hadron correlation
approach. In principle, this enables using the small δ pTF and δ pTB intervals to measure the whole
two-particle correlation function C2(pF ,pB) with the 3-momenta pF and pB being the centers of
the δηF δφF δ pTF and δηB δφB δ pTB intervals.

In general case the azimuth rotation invariance leads to some simplifications:

ρ1(η ,φ) = ρ1(η)/2π , ρ2(η1,φ1;η2,φ2) = ρ2(η1,η2;φ1−φ2)/(2π)2 (3.8)

and

C2(η1,η2;φ1−φ2) =
ρ2(η1,η2;φ1−φ2)

ρ1(η1)ρ1(η2)
−1 . (3.9)

In the case of windows of arbitrary widths by (3.2) and (3.3) we have

〈nFnB〉−〈nF〉〈nB〉= 〈nF〉〈nB〉IFB , (3.10)

DnF
= 〈nF〉+ 〈nF〉2IFF , (3.11)

where

〈nF〉=
δφF

2π

∫
δηF

dη ρ1(η) , (3.12)

IFB =
1

(2π)2〈nF〉〈nB〉

∫
δηF δφF

dη1dφ1

∫
δηBδφB

dη2dφ2 ρ1(η1)ρ1(η2)C2(η1,η2;φ1−φ2) , (3.13)

IFF =
1

(2π)2〈nF〉2
∫

δηF δφF

dη1dφ1

∫
δηF δφF

dη2dφ2 ρ1(η1)ρ1(η2)C2(η1,η2;φ1−φ2) . (3.14)

What gives for the correlation coefficient

brel =
〈nF〉
〈nB〉

b =
〈nF〉IFB

1+ 〈nF〉IFF
. (3.15)

Important that in the absence of correlation, when C2 = 0, we have IFB = IFF = 0 and simultane-
ously the poissonian multiplicity distribution in the forward window with DnF

= 〈nF〉, (3.11).
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Further simplification of the integrals (3.13) and (3.14) is discussed in Appendix A. Note
only that, for example, in the important case of FB windows separated only in rapidity (i.e. when
δφF = δφB = 2π), by (7.5) we have

〈nF〉=
∫

δηF

dη ρ1(η) , (3.16)

IFB =
1

〈nF〉〈nB〉

∫
δηB

dη1

∫
δηF

dη2 ρ1(η1)ρ1(η2)C2(η1,η2) , (3.17)

IFF =
1
〈nF〉2

∫
δηF

dη1

∫
δηF

dη2 ρ1(η1)ρ1(η2)C2(η1,η2) , (3.18)

where
C2(η1,η2) =

1
π

∫
π

0
dφ C2(η1,η2;φ) . (3.19)

For windows, which are small both in rapidity and in azimuth (within which one can consider
the C2(η1,η2;φ1−φ2) and ρ1(η) to be constant) we have

〈nF〉= ρ1(ηF)δF , 〈nB〉= ρ1(ηB)δB , (3.20)

IFB = C2(ηF ,ηB;φFB) , (3.21)

IFF = C2(ηF ,ηF ;0) , (3.22)

DnF
= 〈nF〉[1+ 〈nF〉C2(ηF ,ηF ;0)] , (3.23)

and

brel =
〈nF〉
〈nB〉

b =
〈nF〉C2(ηF ,ηB;φFB)

1+ 〈nF〉C2(ηF ,ηF ;0)
. (3.24)

Remember our short notations (2.7) and (2.8). We see that the correlation coefficient (2.4), even
defined in scaled variables, still depends through 〈nF〉 on the acceptance δF of the forward window,
that was observed earlier [18, 19] in a framework of a simple model.

In the case when both small FB windows are situated in the central region, where one can
suppose the translation invariance in rapidity:

ρ1(η) = ρ0 , C2(η1,η2;φ) = C2(η1− y2;φ) (3.25)

the formulae (3.20)–(3.24) admit further simplification:

〈nF〉= ρ0δF , 〈nB〉= ρ0δB , (3.26)

DnF
= 〈nF〉[1+δFρ0C2(0,0)] , (3.27)

brel =
δF

δB
b =

δFρ0C2(ηFB,φFB)
1+δFρ0C2(0,0)

. (3.28)

At last for large windows situated in the central rapidity region along with (3.25) and (3.26)
we must to use the formulae (3.11) and (3.15), with the following expressions for IFB and IFF :

IFB = (δηFδφFδηBδφB)−1
∫

δηF δφF

dη1dφ1

∫
δηBδφB

dη2dφ2C2(η1−η2;φ1−φ2) , (3.29)

IFF = (δηFδφF)−2
∫

δηF δφF

dη1dφ1

∫
δηF δφF

dη2dφ2C2(η1−η2;φ1−φ2) (3.30)

(further simplification of the integrals see in Appendix A).
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4. FB correlation coefficient dependence on the window acceptances

The connection, (3.15), between the correlation coefficient b and the two-particle correlation
function C2, discussed in previous section, enables a model-independent way to find the general
features of the dependence of the correlation coefficient b on the acceptance of the observation
windows, mentioned above after the formula (3.24). For simplicity we will trace this dependence
in the case of FB windows separated only in rapidity, i.e. when δφF = δφB = 2π , see formulae
(3.15)-(3.19).

As a first step, using these formulae and the general relation (3.11), we find the following
expression for the multiplicity variance in the forward window DnF

through the two-particle corre-
lation function C2(η1,η2):

DnF
= 〈nF〉+

∫
δηF

dη1

∫
δηF

dη2 ρ1(η1)ρ1(η2)C2(η1,η2) . (4.1)

In this formula the both integrations on η1 and η2 are performed over the forward window. The
expression (4.1) is exact and model independent. It confirms the well-known fact [7, 21], that the
multiplicity fluctuations in a given window are driven by intrinsic 2-particle correlations. Really, by
this expression we see that the two-particle correlation function C2(η1,η2) determines the deviation
of DnF

from 〈nF〉.
In the absence of correlations, when ρ2(η1,η2) = ρ1(η1)ρ1(η2) and C2(η1,η2) = 0, we have

the poissonian distribution for the multiplicity in any window, DnF
= 〈nF〉. To prove rigorously

this statement one has to consider the expressions for higher particle distributions similar to the
expression (3.2):∫

δηF

dη1

∫
δηF

dη2

∫
δηF

dη3 ρ3(η1,η2,η3) = 〈nF(nF −1)(nF −2)〉

and so on. Then in the absence of correlations, when ρ3(η1,η2,η3) = ρ1(η1)ρ1(η2)ρ1(η3) and so
on, one gets the poissonian relations between all moments of the multiplicity distribution.

In general case, using the relations (3.15)-(3.19), we have the following exact and model in-
dependent presentation for the FB correlation coefficient b through the two-particle correlation
function C2:

b =

∫
δηF

dη1
∫

δηB
dη2 ρ1(η1)ρ1(η2)C2(η1,η2)

〈nF〉+
∫

δηF
dη1

∫
δηF

dη2 ρ1(η1)ρ1(η2)C2(η1,η2)
(4.2)

(compare with formula (34) in [7]). Note that in the numerator the η1 integration is performed over
the forward window and η2 over the backward window in contrast with the denominator, where
both integrations are performed over the forward window.

In central rapidity region we can simplify the expressions (4.1) and (4.2) using that in this
case, as defined in (3.25) and (3.26), the ρ1(η) = 〈nF〉/δηF = 〈nB〉/δηB = ρ0 is constant and
the two-particle correlation function C2(η1,η2) depends only on the difference ∆η ≡ η1 − η2,
C2(η1,η2) = C2(∆η). In this case for brel we have

brel =
δηF

δηB
b =

〈nF 〉
δηF δηB

∫
δηF

dη1
∫

δηB
dη2C2(η1−η2)

1+ 〈nF 〉
δηF

2

∫
δηF

dη1
∫

δηF
dη2C2(η1−η2)

, (4.3)
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at that

DnF
= 〈nF〉+

〈nF〉2

δηF
2

∫
δηF

dη1

∫
δηF

dη2C2(η1−η2) . (4.4)

Important, that as shown in [7] the two-particle correlation function C2, along with the local
in rapidity short-range (SR) contribution (arising due to details of a single string decay, decay
of resonances and so on) contains also the constant (independent on η1 and η2) long-range (LR)
contribution - the "pedestal", arising due to fluctuation in the number of cut pomerons, or more
generally due to fluctuation in the number and characteristics of emitting sources (strings). So we
can write

C2(∆η) = CSR
2 (∆η)+CLR

2 . (4.5)

The SR contribution is local in rapidity, so at large ∆η we have CSR
2 (∆η)→ 0 and C2(∆η)→CLR

2 .
The LR contribution was used in paper [7] to evaluate the event-by-event fluctuation in number of
cut pomerons, n, through the relation CLR

2 = 〈n2〉/〈n〉2−1. It was found that these fluctuations are
far from poissonian especially in the case of AA scattering [26].

Note that the integrals in the formulae (4.3) and (4.4) can be simplified using that their inte-
grands depend only on the difference ∆η ≡ η1−η2 due to the translation invariance. Integrating
over η1 +η2 and substituting (4.5) in (4.1) we can find, for example, the SR and LR contributions
into the forward window multiplicity variance:

DnF
= 〈nF〉+

2〈nF〉2

δηF
2

∫
δηF

0
dη CSR

2 (η)(δηF −η)+ 〈nF〉2CLR
2 , (4.6)

see Appendix A for details.
The two-particle correlation function C2(∆η), (4.5), has the maximum at ∆η = 0 with value

C2(0) = CSR
2 (0)+CLR

2 (4.7)

and decreases to CLR
2 , when the ∆η is larger, then the typical correlation length η0, which is of

order of one rapidity unit:

C2(∆η)→CLR
2 at ∆η > η0 . (4.8)

Taking into account these very general considerations we find that for the neighbour and small
enough windows, when all distances η1−η2 entering the integrals in the numerator and denomi-
nator of (4.3) is smaller then the typical correlation length η0, ∆η < η0, we can use the following
evaluation for these integrals:∫

δηF

dη1

∫
δηB

dη2C2(η1−η2)≈ δηFδηBC2(0) ,
∫

δηF

dη1

∫
δηF

dη2C2(η1−η2)≈ (δηF)2C2(0) .

(4.9)
Restricting by the case of symmetric windows, δηF = δηB, we find the following evaluation for
the correlation coefficient b for the neighbour and small enough windows:

bsmall gap ≈ 〈nF〉C2(0)
1+ 〈nF〉C2(0)

=
δηF a

1+δηF a
, (4.10)

8
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at that
DnF

= 〈nF〉+ 〈nF〉2C2(0) = 〈nF〉(1+δηF a) , (4.11)

with a = ρ0C2(0), where ρ0 is defined in (3.25) and (3.26).
So we see a model-independent way that the dependence on the width of observation windows

in the case with small gap between them is described by one parametric formula (4.10). By (4.7)
we see that C2(0) and hence the parameter a in (4.10) includes the contribution from all (short- and
long-range) correlations. We would like also to emphasize that at small gaps the relation (4.10)
will fulfilled in any model. So the experimental observation of the dependence on δηF of this type
at small gaps can not be considered as an argument in favour of some specific model.

The other important case is a configuration with two small observation windows, δηF = δηB <

η0, but with a large gap between them, i.e. with a gap which is larger then the correlation length
η0. In this case the typical distances η1−η2, entering the integral in the numerator of (4.3), will
be also larger then the correlation length η0, and by (4.8) we can use the following evaluation for
this integral: ∫

δηF

dη1

∫
δηB

dη2C2(η1−η2)≈ δηFδηBCLR
2 . (4.12)

Whereas the evaluation for the integral in the denominator of (4.3), i.e. for the nF variance, remains
the same, see formulae (4.9) and (4.11). So we find the following evaluation for the correlation
coefficient b for small windows separated by a large rapidity gap:

blarge gap ≈ 〈nF〉CLR
2

1+ 〈nF〉C2(0)
=

δηF a′

1+δηF a
, (4.13)

with a′= ρ0CLR
2 . In this case we see the same type of the dependence of the correlation coefficient b

on the width of observation windows, as in (4.10), but with the smaller constant a′ in the numerator
of (4.13), because by (4.7) C2(0) = CSR

2 (0)+CLR
2 > CLR

2 and hence a > a′. By (4.10) and (4.13) we
find for the ratio of the correlation coefficients:

blarge gap

bsmall gap =
a′

a
=

CLR
2

C2(0)
=

CLR
2

CSR
2 +CLR

2
< 1 . (4.14)

These general dependencies of the correlation coefficient b on the width of observation win-
dows and on the value of the gap between them are experimentally observed in the preliminary
ALICE data on FB correlations in pp collisions at 0.9, 2.76 and 7 TeV at LHC, see e.g. Figs.5 and
6 in [27].

5. Alternative observables

On the base of above analysis we can discuss the introduction of more suitable observables for
the future FB correlation studies.

From the equations (3.20)–(3.24) we see that if the acceptance of small symmetric FB windows
goes to zero, δF = δB → 0, then all traditionally defined FB correlation coefficients b (2.2), brel
(2.4) and bsym (2.5) also go to zero. Recall that in this case b = brel = bsym (2.6). This unpleasant
dependence of the correlation coefficients on the width of the windows arises due to behavior of

9
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the variance DnF
in the denominator of (2.2). Really by (3.10) and (3.20)–(3.23) we see a model-

independent way that in this limit 〈nFnB〉− 〈nF〉〈nB〉 ∼ δFδB and DnF
∼ δF . We can rid of this

drawback if in the definition (2.2) we normalize the correlator 〈nFnB〉− 〈nF〉〈nB〉 by the product
〈nF〉〈nB〉 instead of the DnF

and introduce, as an observable, the modified correlation coefficient:

βmod ≡
〈nFnB〉−〈nF〉〈nB〉
〈nF〉〈nB〉

=
〈

nF

〈nF〉
nB

〈nB〉

〉
−1 . (5.1)

Then for windows, which are small both in rapidity and in azimuth, by (3.21) we have

βmod = C2(ηF ,ηB;φFB) (5.2)

In the case of the FB windows, which are small only in rapidity and large (δφF = δφB = 2π) in
azimuth

βmod = C2(ηF ,ηB) =
1
π

∫
π

0
dφ C2(ηF ,ηB;φ) , (5.3)

where we have take into account (3.16)–(3.19). We see that at small acceptances of windows the
βmod , (5.1), has the two-particle correlation function, as the finite limit at δF = δB→ 0, in contrast
to b, brel and bsym.

Note that the traditionally defined (2.2) correlation coefficient b, used above, is also propor-
tional to the two-particle correlation function C2(ηF ,ηB;φFB) (see (3.24)), but the proportionality
factor depends on the width of windows and goes to zero at δF = δB→ 0.

Another possibility, which follows from (3.23), is to use for the normalization in (2.5) the
differences DnF

−〈nF〉 and DnB
−〈nB〉 instead of DnF

and DnB
and to introduce another correlation

observable, defined as follows:

βrob ≡
〈nFnB〉−〈nF〉〈nB〉√

DnF
−〈nF〉

√
DnB
−〈nB〉

. (5.4)

Then again for windows, which are small both in rapidity and in azimuth, by (3.21) and (3.23) we
have

βrob =
C2(ηF ,ηB;φFB)√

C2(ηF ,ηF ;0)C2(ηB,ηB;0)
. (5.5)

For small windows in mid-rapidity region it reduces to

βrob =
C2(ηFB,φFB)

C2(0,0)
. (5.6)

In the case when the FB windows are δφF = δφB = 2π in azimuth and small in rapidity, we’ll
have

βrob =
C2(ηF ,ηB)√

C2(ηF ,ηF)C2(ηB,ηB)
, (5.7)

where C2(ηF ,ηB) is defined by (3.19) and

βrob =
C2(ηFB)

C2(0)
(5.8)

10
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at central region, where the translation invariance in rapidity holds. We see that the βrob, as the
βmod , has a finite limit at small acceptances of windows in contrast to the traditionally used b, brel
and bsym.

Note that the second definition (5.4) is closely connected with so-called robust variance [21,
22, 23]:

Rn =
Dn−〈n〉
〈n〉2

. (5.9)

By (5.1) and (5.4) we have

βrob =
βmod√
RnF

RnB

. (5.10)

So comparing the different definitions of the multiplicity correlation coefficient, we see that
the traditional definitions (2.2), (2.4) and (2.5) of the FB correlation coefficient lead to its strong
dependence on the acceptance of windows, with the correlation coefficient going to zero with
the window width. Hence, the results obtained for windows of different width can’t be compared
directly. In this connection it can be suitable to use in the future FB correlation studies the proposed
observables (5.1) and (5.4), which values have nonzero limits when the acceptance of windows goes
to zero.

6. Comparison with the untriggered di-hadron correlation approach

In practice, in di-hadron correlation analysis, the following alternative definition of the two-
particle correlation function C is in use [24, 25]:

C = S/B−1 , (6.1)

where

S =
d2N

d∆η d∆φ
. (6.2)

Here ∆η = η1−η2 and ∆φ = φ1− φ2 are the distances between two particles in rapidity and in
azimuth, and one takes into account all possible pair combinations of particles produced in given
event in some one large rapidity interval ∆η ∈ (Y1,Y2). The B is the same, but in the case of
uncorrelated particle production, obtained by the event mixing procedure.

In this definition in contrast with (3.9) one implies from the very beginning that the translation
invariance in rapidity takes place and the result depends only on ∆η = η1−η2 for any η1,η2 ∈
(Y1,Y2). (All the pairs with the same value of difference η1−η2 contribute to the same bin of the
multiplicity distribution, irrespective of the value of (η1 + η2)/2, see also the discussion in [16].)
This assumption is reasonable only in the central rapidity region at high energies. It means that we
suppose that in the interval (Y1,Y2):

ρ1(η) = ρ0 , ρ2(η1,η2;φ) = ρ2(η1−η2;φ) (6.3)

(see formula (3.25)).
In this case we have for the enumerator in (6.1):

S(∆η ,∆φ) =
∫ Y2

Y1

dη1dη2 ρ2(η1−η2;∆φ)δ (η1−η2−∆η) (6.4)

11
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or in the case of commonly used symmetric interval (−Y/2,Y/2):

S(∆η ,∆φ) = ρ2(∆η ;∆φ) tY(∆η) (6.5)

where the tY (∆η) is the "triangular" weight function (7.2), defined in Appendix A (see Fig.1).
In the denominator of (6.1) for mixed events we should replace the ρ2(η1,η2;∆φ) by the

product ρ1(η1)ρ1(η2), which due to the translation invariance in rapidity reduces simply to ρ2
0 .

Then
B(∆η ,∆φ) = ρ

2
0 tY(∆η) . (6.6)

Substituting into (6.1) we get

C(∆η ,∆φ) =
ρ2(∆η ;∆φ)

ρ2
0

−1 = C2(∆η ,∆φ) , (6.7)

where we have taken into account (3.9) and (3.25). We see that if the translation invariance in
rapidity takes place within the interval (Y1,Y2), then the definition (6.1) is equivalent to the standard
one (3.9).

The drawback of this approach is that it supposes from the very beginning the translation
invariance in rapidity and hence can’t be applied for an experimental determination of the two-
particle correlation function C2 for asymmetrical processes (such as e.g. the pA-interactions) and
even for symmetric reactions at large rapidity distances, when the translation invariance (3.25) is
not valid. At that by (3.24), (5.2) and (5.5) we see that the approaches based on the analysis of
the standard (2.2) or modified (5.1), (5.4) FB correlation coefficients with two remote windows of
small acceptance in rapidity and azimuth enable in any case to measure the correlation function
C2(η1,η2;φ1−φ2) without using of any event mixing procedure.

Note also that using of an event mixing procedure, applied in di-hadron correlation approach
(6.1) for the determination of the B, can lead to an uncertainty in the experimental determination
of the constant component of two-particle correlation function C(∆η ,∆φ) even in central region,
where the translation invariance in rapidity takes place and the definitions of the correlation func-
tions C(∆η ,∆φ) (6.1) and C2(∆η ,∆φ) (3.9) are equivalent to each other (6.7). Recall the im-
portance of the experimental determination of the constant component of two-particle correlation
function C2, which corresponds to the contribution of the long-range (LR) correlations, (4.5), as it
was mentioned in section 4 after the formulae (4.4) and (4.5).

The problem is that the two-particle correlation function C(∆η ,∆φ), obtained by the di-hadron
correlation approach (6.1), depends through B on the details of the event mixing procedure, used
for the imitation of uncorrelated particle production. Due to the uncertainties in the normaliza-
tion factor B one cannot measure correctly a value of the common pedestal, i.e. the long-range
component of C2.

The same effect also takes place if one uses some arbitrary, unjustified normalization proce-
dures for the experimental determination of S and/or B in formula (6.1), e.g. the normalization of S
by the number of pairs produced in the given event, or the normalization of B(∆η ,∆φ) by B(0,0).
As follows from the formulae (3.4)–(3.7), determining experimentally C2 one should not introduce
such additional normalization factors and has to take into account the contributions from different
events at given ∆η , ∆φ with the same weight.

12
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Note that this long-range component of C2 can be measured unambiguously in our approach
(3.7), based on the studies of the FB correlations between multiplicities in windows separated in
azimuth and rapidity, without using any event mixture procedure.

7. Conclusions

The connection between the FB multiplicity correlation coefficient b in windows separated in
azimuth and rapidity and the two-particle correlation function C2 is traced. Basing on this connec-
tion the general features of the dependence of the correlation coefficient b on the acceptances of
the observation windows are established a model independent way.

We have compared the different definitions of the multiplicity correlation coefficient and see
that the traditional definitions (2.2), (2.4) and (2.5) of the FB correlation coefficient lead to its
strong dependence on the acceptance of the windows, with the correlation coefficient going to
zero with the acceptance. Hence, the results obtained for the windows of different width can’t be
compared directly. In this connection we propose suitable observables (5.1) and (5.4) for the future
FB correlation studies, which values have nonzero limit when the acceptance goes to zero.

We compare the FB correlation approach with the so-called di-hadron correlation analysis. We
show a model independent way that the measurements of the FB correlation coefficient between
multiplicities in two small windows separated in rapidity and azimuth enable to find the two-particle
correlation function C2 even when the particle distribution in rapidity is not flat, as e.g. in the case
of pA interactions, and when the C2(η1,η2;∆φ) depends not only on the difference of rapidities,
∆η = η1−η2, but both on η1 and η2. That is in the cases, when the traditional di-hadron correlation
analysis, assuming from the very beginning the dependence of two-particle correlation function
only on the differences ∆η and ∆φ , is not applicable.

We note that even in a mid-rapidity region, where the application of the di-hadron correlation
approach is justified, the results obtained by this method depend on the details of track and/or
event mixing used in the approach for the imitation of the uncorrelated particle production, what
leads to the uncertainties in determination of the long-range correlation component (the common
"pedestal") of C2, (4.5), which value contains the important physical information on the magnitude
of the event-by-event fluctuation in the number of sources.

Important that this long-range component of C2 can be measured unambiguously, by the FB
correlation approach, (3.7), which does not use any event mixture procedure, and hence avoids the
associated uncertainties.

Appendix A. Calculation of the integrals over rapidity and azimuth windows.

For symmetric rapidity windows δηB = δηF = δη with the distance ηFB = ηF −ηB between
their centers one has∫

δηF

dη1

∫
δηB

dη2 f (|η1−η2|) =
∫

δη

−δη

dη f (|ηFB +η |) tδη(η) , (7.1)

where tδy(y) is the "triangular" weight function (see Fig.1):

tδy(y) = [θ(−y)(δy+ y)+θ(y)(δy− y)]θ(δy−|y|) . (7.2)
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Figure 1: The "triangular" weight function arising due to phase space at integration over non-periodical FB
windows (see Appendix A for details).

The formula (7.1) is valid for any distance between the centers of windows, in particular for coin-
ciding windows. In the last case ηFB = 0 and we have

∫
δηF

dη1

∫
δηF

dη2 f (|η1−η2|) =
∫

δη

−δη

dη f (|η |) tδη(η) = 2
∫

δη

0
dη f (|η |)(δη−η) (7.3)

The same formula ∫
δφF

dφ1

∫
δφB

dφ2 f (|φ1−φ2|) =
∫

δφ

−δφ

dφ f (|φFB +φ |) tδφ (φ) (7.4)

is valid for the integration over azimuthal windows, but in this case one has also to take into account
the periodicity: f (|φ |) = f (|φ + 2πk|). The last leads to significant simplification of the formula
(7.4) in the case of full, 2π , azimuth acceptance windows:

∫ 2π

−2π

dφ f (|φFB +φ |) t2π(φ) = 4π

∫
π

0
dφ f (|φ |) . (7.5)

So for large symmetric windows in the central rapidity region by (7.1)–(7.3) the formulae
(3.29) and (3.30) in general case can be written in the following form

IFB = (δηδφ)−2
∫

δη

−δη

dη

∫
δφ

−δφ

dφ tδη(η) tδφ (φ)C2(ηFB +η ,φFB +φ) , (7.6)

IFF = 4(δηδφ)−2
∫

δη

0
dη

∫
δφ

0
dφ (δη− y)(δφ −φ)C2(η ,φ) . (7.7)

The δη and δφ are the width of the observation windows in rapidity and in azimuth, and the ηFB

and φFB are the corresponding distances between their centers. We imply that C2(η ,φ) satisfies the
following conditions

C2(−η ,φ) = C2(η ,φ) , C2(η ,−φ) = C2(η ,φ) , C2(η ,φ +2πk) = C2(η ,φ) . (7.8)
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