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Abstract. Following recent studies which show that it is possible to localize gravity as well
as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate
the solution of the gauge hierarchy problem, the localization of fermion fields in this model,
the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction
between bulk fermions and gauge bosons localized in the brane, and confront the predicted
5D corrections to the photon mass with its upper experimental/observational bounds, finding
the model physically viable since it passes these tests. In order to achieve the latter aims we
first consider the Yukawa interaction term between the fermionic and the tachyonic scalar
fields MF (T )ΨΨ̄ in the action and analyze four distinct tachyonic functions F (T ) that lead
to four different structures of the respective fermionic mass spectra with different physics.
In particular, localization of the massless left-chiral fermion zero mode is possible for three
of these cases. We further analyze the phenomenology of these Yukawa interactions among
fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary
information to compute the corrections to Coulomb’s law coming from massive KK vector
modes in the non-relativistic limit. These corrections are exponentially suppressed due to
the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our
results we conclude that corrections to Coulomb’s law in the thin brane limit have the same
form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on
the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick
brane scenario which can be interpreted as 5D corrections to the photon mass. By performing
consistent estimations with brane phenomenology, we found that the predicted corrections to
the photon mass, which are well bounded by the experimentally observed or astrophysically
inferred photon mass, are far beyond its upper bound, positively testing the viability of our
tachyonic braneworld. Moreover, the 5D parameters that define these corrections possess
the same order, providing naturalness to our model, however, a fine-tuning between them is
needed in order to fit the corresponding upper bound on the photon mass.

Keywords: Cosmic strings, domain walls, monopoles, extra dimensions, cosmological appli-
cations of theories with extra dimensions
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1 Introduction

In recent decades, the emergence of phenomenological braneworld models [1]–[15] suggested
the existence of extra compact and extended dimensions. Within the framework of these
models it was possible to geometrically reformulate the gauge hierarchy problem [4]–[10],
to address the cosmological constant problem (see, [1, 16], for instance) and to localize the
known matter fields of the standard model in braneworld scenarios with a simple dimensional
reduction [17]–[40], among other issues.

With regard to the hierarchy problem, the models proposed in [4]–[6] make use of
a spacetime that constitutes the direct product of a (3+1)-dimensional manifold and a d-
dimensional torus. In this setup, the Standard Model particles are trapped in a 3-brane while
gravity can propagate in the whole bulk spacetime and the hierarchy between the Planck scale
and the fundamental scale of physics, M∗, can be very large if RM∗ ≫ 1, where R labels the
compactification radius of the extra dimensional torus. Thus, the hierarchy is explained in
terms of the size of the higher dimensional world. However, astrophysics and cosmology place
significant bounds on this models. A new family of models which makes use of a compact
hyperbolic manifold instead of a torus yields an exponential hierarchy between the Planck
and electroweak scales with coefficients of the same order as a consequence of the topology of
the extra space [7]–[9]. Within the framework of these models both particle physics and cos-
mology find a plausible description when confronted with experimental/observational data.

– 1 –
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Another kind of improvement within the braneworld paradigm was proposed by introducing
warped extra dimensions with Z2-symmetry. The orbifold nature of the underlying higher
dimensional manifold with consistent boundary conditions involves the introduction of delta
function thin branes at its singular points, reducing the number of needed extra dimensions
to a single one [10].

Afterwards, due to the intrinsic singularities that braneworld models possess at the
position of the branes, there were proposed several scenarios in which the fifth dimension
was modeled by bulk scalar fields, extending the idea of thin branes to thick brane configu-
rations [41]–[46]. Recently, thick brane models have been proposed in gravity minimally or
non-minimally coupled to scalar fields originating from supergravity theories which can be
modeled by sigma models, opening thereby the possibility of linking the phenomenology of
thick branes to more fundamental theories [47]. This research line pretends to understand the
standard model physics from a higher dimensional point of view in order to address, reformu-
late and/or solve several open problems such as the gauge hierarchy problem. As a primary
requirement of consistency, these models need to localize not only gravity, but also the matter
field content of the Standard Model, i.e. scalar, vector (gauge), and spinor fields on the brane.
Moreover, braneworld models are also required to yield the Newton and Coulomb laws, for
instance, in the respective weak field and non-relativistic limits, since we need to recover
the physical laws of our 4D world from the higher dimensional perspective as a correspon-
dence principle. Finally, once these braneworld configurations reproduce the experimentally
observed laws on the 3-brane we need to compute the corresponding corrections that they
get from the extra dimensional world and to confront them with experimental/observational
data that will tell us whether a given braneworld model is physically feasible or not. This
confrontation of predictions versus observations (or versus experimental data) constitutes an
stringent test on the viability of the braneworld paradigm.

In this work we will focus on i) the geometrical solution to the gauge hierarchy problem,
ii) the study of the localization of spin–1/2 fermions and iii) the computation of the 5D
corrections to the Coulomb’s law to confront them with observations/experimental data
within the context of a braneworld model generated by a bulk tachyonic condensate scalar
field along with 5D gravity (see [23, 24, 46] for braneworld models of this type).

The first objective will be reached by orbifolding the spacetime along the extra dimension
and placing two 3-branes at the fixed points of the orbifold. In one brane the 4D gravity
will be localized whereas in the second one the electro-weak interacting Standard Model
fields will be hosted. By further considering the fundamental Higgs field in the later 3-
brane, TeV mass scales can be derived from Planck mass scales by a symmetry breaking
mechanism which involves parameters with no large hierarchy among them. With regard
to the second goal, it will be afforded by using the conventional mechanism that employs a
Yukawa coupling between the fermion and the background scalar field, with the interaction
factor F (T (w)) restricted to be an odd function, and performing a suitable dimensional
reduction that leads to positive results. The third aim will be achieved by considering the
Yukawa interaction between 5D fermions and bosons, recovering the 4D Coulomb’s law and
computing the corrections to it coming from the higher dimensional world.

The localization of spin–1/2 fermion fields has been performed in several thick
braneworld configurations that make use of different scalar fields [25]–[36]. Noteworthy recent
works reported a new mechanism for localizing fermions with a different Yukawa interaction
between the background scalar fields and the bulk fermion, where the scalar function can
be an even function [35]–[36]. The action for the tachyonic scalar field which models the

– 2 –



J
C
A
P
0
5
(
2
0
1
6
)
0
2
6

fifth dimension of our work was originally proposed in [48] within the framework of string
theory. The introduction of this tachyonic field in the thin braneworld paradigm was pro-
posed in [23], however, the corresponding 5D spacetime possesses physical singularities at the
place where the branes are positioned. A further development of this model was presented
in [24], where it was shown that it is not possible to localize both gravity and matter fields
on the braneworld due to the shape of the used warp factor. A thick braneworld generaliza-
tion of this model was presented in [46] and it was shown that 4D gravity can be localized
on it. Moreover, it was proved that the relevant field configuration which gives rise to the
braneworld model is stable under the whole sector of small scalar fluctuations [49]. The scalar
curvature which corresponds to this model is positive definite and asymptotically approaches
a 5D Minkowski spacetime, in contrast with all of the models, to the best of our knowledge,
previously reported in the literature. Thus, this model is completely regular and asymptot-
ically flat, instead of (A)dS5. Quite recently it was also reported that in this braneworld
it is possible to localize different matter fields as gauge vector fields [38] and massive (self-
interacting) scalar fields [39]. In both of these cases the spectrum for the massive KK modes
presents a mass gap which allows us to study in a better way the physics of the massless
bound states, specially within the context of computing the higher dimensional corrections
to the Coulomb’s law that come from the interaction between fermions and gauge bosons
localized on the same brane. Thus, the present tachyonic scalar field braneworld turns out
to be interesting from the phenomenological viewpoint compared to previous works since
it allows us to localize gravity as well as massive scalars, gauge vector fields and fermions,
preparing the arena for a consistent treatment of the Standard Model fields within the thick
braneworld model generated by the interaction of gravity with a bulk tachyonic scalar field.

Another important issue related to the physics of the aforementioned braneworld con-
sists in confronting its extra dimensional predictions to observations and/or experimental
data. As mentioned above, once the matter fields are localized on the 3-brane, we must
recover the physical laws of our 4D world in certain limit. Here we show that the Coulomb
law is rendered by our model when considering a Yukawa interaction between bulk fermions
and gauge bosons localized on the 3-brane. We further compute the corrections to Coulomb
law that come from the massive KK gauge bosons and consider that they constitute correc-
tions to the photon mass. We then show that when confronting the predicted corrections
to the photon mass within the framework of our tachyonic braneworld model, they are far
beyond the upper bound established with the aid of experimental data and astrophysical
observations, yielding a viable model from the phenomenological point of view.

The paper is organized as follows: section 2 contains a brief review of the tachyonic
scalar field braneworld model [46]; section 3 shows that the gauge hierarchy problem can
be geometrically explained within this model; section 4 presents four cases where we discuss
the problem of fermion localization on the brane; in section 5 we compute corrections to
Coulomb’s law coming from the extra dimensional world for two point fermions interacting
with a gauge boson in the brane limit. We perform the same computation for a braneworld
with arbitrary thickness and confront our result with the upper bound on the photon mass
coming from several terrestrial/extraterrestrial experiments, and astrophysical observations
in section 6. Finally, we conclude in section 7 with a general discussion of our results.

– 3 –
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2 The thick tachyonic braneworld model

Here we shall give a brief motivation and a review of the derivation of our tachyonic scalar field
braneworld model. The effective action from which our model was inspired possesses a string
theory origin and was proposed for the first time in [48] as a supersymmetric version of the
Dirac-Born-Infeld action which describes the dynamics of tachyonic and massless modes on
the world-volume of a non-BPS D-brane within type II string theory in Minkowski spacetime
(for a clear construction of this action also see [50–52]). Within the context of string theory,
D-branes give rise to i) stable BPS states and ii) unstable objects such as brane-antibrane
configurations and non-BPS D-branes (for a review on this issue see [53, 54]). It turns out
that unstable non-BPS brane configurations in Type II string theories can decay to stable
D-branes through a condensation mechanism, namely, a non-BPS Dp-brane can condense
to a BPS D(p-1)–brane in particular. Moreover, the non-BPS Dp-branes living in type II
string theories are related to BPS D(p+1)-brane-antibrane systems by condensation of the
tachyon field hosted on this brane-antibrane configuration. Therefore, the tachyonic effective
field theory which describes the dynamics of a non-BPS D-brane in string theory possesses
a BPS D-brane that is physically viable, i.e. stable. It is remarkable that by studying the
world-volume theory of the massless modes on this BPS D-brane, it was established that the
world-volume action precisely adopts the Dirac-Born-Infeld form without higher derivative
corrections [55]. As it was mentioned above, this effective action was further considered
in the braneworld [23] and supergravity [47] realms motivated by the hope of relating the
phenomenology of these models to more fundamental theories like string theory, making it
physically interesting.

Thus, within the braneworld paradigm, the 5D action for the thick brane model gener-
ated by a tachyon condensate scalar field with the complicity of gravity reads

S =

∫

d5x
√−g

(

1

2κ25
R− Λ5

)

−
∫

d5x
√−gV (T (w))

√

1 + gAB∂AT (w)∂BT (w), (2.1)

where R is the 5D scalar curvature, Λ5 is the bulk cosmological constant, and κ25 = 8πG5

with G5 being the 5D Newton constant; T is a real tachyonic scalar field1 which depends
only on the extra dimension and V (T ) denotes its self-interaction potential. Here we use
the signature (− + + + +) and the Ricci tensor is defined upon contraction of the first and
third indices of the Riemann tensor RNQ = RM

NMQ, where M,N,P,Q = 0, 1, 2, 3, 5. The
corresponding Einstein equations with a cosmological constant in five dimensions are

GAB = −κ25 Λ5gAB + κ25 T
bulk

AB , (2.2)

where the bulk energy-momentum tensor is given by

T bulk

AB = −gABV (T )

√

1 + (∇T )2 + V (T )
√

1 + (∇T )2
∂AT∂BT. (2.3)

The 5D metric ansatz compatible with an induced flat FRW metric on the 3-brane has
the form

ds2 = e2f(w)
[

−dt2 + a2(t)
(

dx2 + dy2 + dz2
)

+ dw2
]

, (2.4)

1The tachyon scalar field considered in the braneworld action (2.1) is real in contrast to the complex
tachyon field hosted in the brane-antibrane configuration of the original string theory effective action.

– 4 –
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where e2f(w) and a(t) are the warp factor and the scale factor of the brane, respectively,
and w stands for the extended extra dimensional coordinate. Since the G05 component of
the Einstein tensor vanishes for this metric setup, we are led to the freedom of choosing a
tachyonic scalar field depending either on time or on the extra dimension. We have chosen
the latter dependence since we are interested in localizing universal fermion fields along the
fifth dimension on the considered braneworld model. Time-dependent field configurations
are interesting from the viewpoint of cosmology, however, we were unable to find solutions
even for this simplified metric ansatz of our model due to the highly non-linear character of
the field equations of the scalar tachyon.

On the other hand, here we would like to remark that since we are considering a metric
ansatz depending on time, we could, in principle, study more general braneworld models in
which the gww component of the 5D metric as well as the tachyonic scalar field T depend
on time. This metric ansatz is in the spirit of the one initially investigated in [56], where
an interesting braneworld cosmological solution with no separation of variables, intrinsically
different from standard cosmology, was constructed under the assumption that the extra
dimensional slice of the metric is not dynamical ∂tgww = 0.2 Motivated by this result, we shall
further impose this condition, corresponding to the case when the radion is not dynamical in
our model, and implying that the warp factor is a function of the extra coordinate alone f(w).

The matter field equation is obtained by variation of the 5D action (2.1) with respect
to the condensate tachyonic field. It is expressed as follows:

∂M

[√−gV (T )∂MT
√

1 + (∇T )2

]

−√−g
√

1 + (∇T )2∂V (T )

∂T
= 0. (2.5)

The solution for the metric coefficients in (2.4), i.e. for the scale and warp factor, respectively
reads [46]

a(t) = eH t, f(w) =
1

2
ln {s sech [H (2w + c)]} , (2.6)

indicating a de Sitter symmetry induced on the 3-brane and a warp factor which possesses
a decaying behavior and asymptotically vanishes; the tachyon condensate scalar field has
the form

T (w) = ± b arctanh





sinh
[

H (2w+c)
2

]

√

cosh [H (2w + c)]





= ± b arcsinh [tanh(Hw)] , (2.7)

and has a kink/antikink profile; while the tachyon condensate potential is given by

V (T ) = −Λ5 sech (T/b)

√

6 sech2 (T/b)− 1 =

−Λ5

√

(

1 + sech [H (2w + c)]
)

(

1 +
3

2
sech [H (2w + c)]

)

(2.8)

2In this braneworld cosmological solution the first Friedmann equation is generically related to an expres-
sion quadratic in the brane energy density instead of being linear in it as in standard cosmology, favoring
the accelerated expansion of the Universe. Moreover, the relevant dynamical equations that describe the
cosmological evolution in the brane do not contain the effective 4D Newton’s constant, but only on the 5D
Newton’s constant (i.e. the Planck mass scale of the fundamental theory) and are independent of the metric
on the bulk and in particular of the time evolution of gww, giving a consistent justification for the condition
∂tgww = 0.

– 5 –
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Figure 1. The profile of the tachyonic scalar field self-interaction potential V (T ). Here we have
set Λ5 = −3 and κ2

5
= 0.5 for simplicity. Due to the bounded character of the tachyonic field, the

potential is bounded from below as well.

and represents a positive definite potential with a maximum at the origin and possesses finite
minima at the boundaries of the 5D manifold, i.e. at w → ±∞ (see figure 1). It should be
stressed that in the original tachyonic effective string field theory the self-interaction potential
V (T ) is symmetric under T → −T and displays a maximum at T = 0 as for our solution,
but it possesses its minima at T = ±∞ where it vanishes. This latter feature is the only
difference between the properties of the tachyonic self-interaction potential of our solution
and the one of the effective string field theory.

In this solution H and c are integration constants, and we have set

s = − 6H2

κ25 Λ5
= 4b2H2 and b =

√

−3

2κ25 Λ5
(2.9)

with an arbitrary negative bulk cosmological constant Λ5 < 0.
The 5D curvature scalar of this braneworld field configuration is given by the expression

R = −14

3
κ25 Λ5 sech [H (2w + c)] , (2.10)

which is a positive definite invariant and asymptotically vanishes, yielding an asymptotically
5D Minkowski spacetime. By looking at the action (2.1) it is easy to see that the overall
effective cosmological constant of the 5D spacetime possesses two important contributions:
the negative bulk cosmological constant Λ5 and the tachyonic self-interaction potential V (T )
which asymptotically adopts the value −Λ5, yielding an asymptotically flat 5D spacetime,
i.e. a braneworld which interpolates between two 5D Minkowski spacetimes.

Thus, this non-trivial, completely regular braneworld configuration created by a coop-
erative work between the minimally coupled 5D gravity and the bulk tachyonic scalar field
possesses a 3-brane with de Sitter symmetry, i.e. a brane representing an accelerated expand-
ing universe that, in principle, can also model the inflating stages in the evolution of our
Universe.

It is worth mentioning that the scale factor that is responsible for the aforementioned
expansion or inflation of the brane universe plays a crucial role in the generation of the 5D
braneworld model since when it vanishes the whole field configurations blows up, indicating
that there is no consistent flat limit for the 3-brane. This is an interesting peculiarity of
our expanding braneworld model since being asymptotically flat along the fifth dimension,

– 6 –
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it contains a 3-brane with positive spatial curvature, a positive definite tachyon potential,
a negative bulk cosmological constant and constitutes a non-perturbative field configuration
with respect to a Minkowski 3-brane.

We would like to finally remark that the tachyonic effective action (2.1) has found
several interesting applications within the framework of braneworld cosmology [58] and string
cosmology [59–66]. In [62] some aspects of canonical quantization of this field theory coupled
to gravity were studied, where the tachyonic scalar field was used as the definition of time
within quantum cosmology. In [67] solar system constraints were imposed on its parameters
by considering this action as a scalar-tensor model. Moreover, recent studies of tachyon
inflation within the N -formalism, which considers a prescription for the small Hubble flow
slow-roll parameter ǫ1 as a function of a large number of e-folds, have lead to a consistent
analysis of observables in the light of the Planck 2015 data and show the viability of some
models of this class [68].

3 Geometrical reformulation of the gauge hierarchy problem

In this section we shall show that the gauge hierarchy problem can be geometrically solved by
orbifolding the extra dimension and introducing a thin 3-brane, where the Standard Model
fields live, located some distance away from another 3-brane where the 4D gravity is localized.
The known gauge hierarchy is generated by a symmetry breaking mass scale which relates
TeV to Planck masses with no large hierarchy among the parameters of the model.

Thus, once it has been proven that our thick tachyonic de Sitter braneworld model
supports the localization of 4D gravity, consistently recovering Newton’s law in the thin
brane limit [46], it is of physical relevance to address the issue of deriving physical TeV mass
scales from fundamental masses of the Planck scale order through a consistent mechanism
like the Randall-Sundrum one, for instance. In order to achieve this aim we shall impose
Z2-symmetry along the fifth dimension (given by the replacement w −→ |w|) and supplement
our braneworld model with a thin 3-brane in order to have two branes supporting (3+1)-
dimensional field theories, one located at the origin w = 0 and the other one at w = w0.
By performing such a procedure we are mathematically orbifolding the extra dimension to
a segment, where the 3-branes are located at the fixed points of the orbifold and represent
the boundaries of the 5D spacetime, reducing the original range of the locally non-compact
extra dimension −∞ ≤ w ≤ ∞ to the effective one 0 ≤ w ≤ w0.

Here we shall further consider that the thick Planck brane is positioned at the origin
of the extra dimension and localizes 4D gravity, whereas a thin TeV brane will be located
at a certain distance, w0, from the Planck brane and will host the electro-weak interacting
Standard Model fields. It is worth noticing that we could equally well consider that the
thick Planck brane is located at w0 and the Standard Model TeV brane is at the origin of
the fifth dimension. We call it TeV brane even when we know now that the Higgs mass is
approximately 125GeV.

By recalling the main result obtained Randall and Sundrum in [10] when considering the
4D effective action for the fundamental Higgs field, it turns out that any fundamental mass
parameter m0 of the higher-dimensional theory gives rise to the following 4D physical mass

m = ef(w0)m0 = 2Hb
√

sech (2Hw0) m0, (3.1)

– 7 –
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when measured in the TeV brane, located at w0, with the effective 4D metric that has been
rescaled according to its 4D conformal weight. Therefore, when ef(w0) = 2Hb

√

sech (2Hw0)
is of order 10−15 we obtain TeV physical mass scales from Planck ones within the framework
of our model.

Let us compute now the effective 4D Planck mass of our thick de Sitter tachyonic
braneworld. By integrating the action (2.1) over the fifth dimension and comparing the
curvature term to the canonical 4D Einstein-Hilbert action, it is easy to see that all we need
is to perform the following integration

M2
Pl =M3

∗

∫ ∞

−∞
e3f(w)dw =

M3
∗H

2 b3Γ
(

−1
4

)2

√
2π

≈ 9.6 M3
∗H

2 b3, (3.2)

which is finite along the whole fifth dimension, as expected. Thus, the effective 4D MPl

depends on the expansion parameter of the 3-brane H, besides the fundamental higher di-
mensional parameters M∗ and b. This implies that in order to properly derive the scale
of 4D gravitational interactions we can combine the values of these parameters in different
ways. In fact, there is more freedom when assigning certain values to these parameters when
comparing to the spatially flat braneworld case where the H parameter vanishes.

By further assigning to H the currently observed value of the Hubble parameter H ≈
10−60MPl and by considering TeV mass scales for the mass parameter M∗ ≈ 10−15MPl ∼
1TeV we obtain b−1 ≈ 2 × 10−55MPl from eq. (3.2) in order to recover the correct 4D
gravitational couplings on the thick brane.

Therefore, the physically relevant mass ratio which allows us to obtain TeV physical
mass scales from Planck ones

m

m0
= 10−15 (3.3)

can be achieved when

H w0 =
1

2
arccosh

[

(

2bH
m0

m

)2
]

≈ 1

2
arccosh

(

1020
)

≈ 23, (3.4)

since 2bH ≈ 10−5 and therefore we do not need a large hierarchy between the compactification
scale µc ≡ 1

w0
and the Hubble parameter H in order to generate the desired mass hierarchy

within the framework of our model.

We finally would like to remark that this geometric reformulation of the gauge hierarchy
problem leads to the question about the stability of the brane separation w0. It turns out
that the introduction of the TeV 3-brane some distance away from the Planck 3-brane in
order to achieve the desired hierarchy gives rise to a new fine-tuning on the position of the
TeV 3-brane, and therefore, to the need of stabilizing this brane separation. This issue can
successfully be addressed with the aid of the generalized Golberger-Wise mechanism proposed
by DeWolfe et al. in [41] by associating to the brane separation a canonical scalar field with
interaction terms on both 3-branes while taking into account the back-reaction of the TeV
brane. In this work it was shown that generically the brane separation w0 remains stable
when modeled by this canonical scalar field with a set of quartic self-interacting potentials,
obtaining the desired hierarchy from the Planck scale to TeV scale masses and resolving the
fine-tuning problem of the Higgs mass in a stable braneworld scenario.
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4 Localization of spin-1/2 fermion fields

In this section we shall investigate the localization of spin-1/2 fermion bulk matter fields on a
tachyon condensate de Sitter thick braneworld model by considering a very weak gravitational
interaction between gravity and the fermionic fields, so that the brane solution given in
the previous section remains valid even in the presence of generalized 5D bulk matter. As
a generic feature, the 5D profile of the fermion fields obey a Schrödinger equation when
assuming that the corresponding 4D Dirac equations are satisfied. The mass spectra of the
fermion fields on the de Sitter thick brane will also be discussed by analyzing the potential
of, and by analytically solving, the corresponding Schrödinger equation for their KK massive
modes related to the 4D fermionic fields in four different cases. These different situations
are constructed in order to analyze four mass fermionic spectra with an intrinsic different
structure that leads to a different behaviour of the KK fermionic massive modes that could,
in principle, affect the fermion physics of our 3-brane in a different way.

In 5D spacetime fermions are four-component spinors and their Dirac structure can be
described by ΓM = eM

M̄
ΓM̄ with eM

M̄
being the vielbein and {ΓM ,ΓN} = 2gMN . In this

section M̄, N̄ , · · · = 0, 1, 2, 3, 5 and µ̄, ν̄, · · · = 0, 1, 2, 3 denote the 5D and 4D local Lorentz
indices, respectively, and ΓM̄ are the gamma matrices in 5D flat spacetime. In our set-up,
the vielbein is given by

e M̄
M =

(

ef ê ν̄
µ 0

0 ef

)

, (4.1)

ΓM = e−f (êµν̄γ
ν̄ , γ5) = e−f (γµ, γ5), where γµ = êµν̄γ

ν̄ , γν̄ and γ5 are the usual flat gamma
matrices in the 4D Dirac representation. The generalized Dirac action of a spin-1/2 fermion
with a mass term can be expressed as [18]

S 1
2
=

∫

d5x
√−g

[

Ψ̄ΓM (∂M + ωM )Ψ−MΨ̄F (T )Ψ
]

. (4.2)

Here ωM is the spin connection defined as ωM = 1
4ω

M̄N̄
M ΓM̄ΓN̄ with

ωM̄N̄
M =

1

2
eNM̄

(

∂Me
N̄
N − ∂Ne

N̄
M

)

− 1

2
eNN̄

(

∂Me
M̄
N − ∂Ne

M̄
M

)

−1

2
ePM̄eQN̄

(

∂P eQR̄ − ∂QePR̄

)

e R̄
M , (4.3)

and F (T ) is an arbitrary general scalar function of the tachyon condensate scalar field.3

We will discuss about the properties of the scalar function F (T ) later in the context of the
localization of KK fermion modes. The non-vanishing components of the spin connection ωM

for the background metric (2.4) has the form

ωµ =
1

2
(∂wf)γµγ5 + ω̂µ, (4.4)

here ω̂µ = 1
4 ω̄

µ̄ν̄
µ Γµ̄Γν̄ is the spin connection derived from the metric ĝµν(x) = ê µ̄

µ (x)ê ν̄
ν (x)ηµ̄ν̄ .

Thus, the equation of motion corresponding to the variation of the action (4.2) whit respect
to Ψ̄ can be written as

[

γµ(∂µ + ω̂µ) + γ5 (∂w + 2∂wf)− efMF (T )
]

Ψ = 0, (4.5)

where γµ(∂µ + ω̂µ) is the 4D Dirac operator on the brane.

3The only condition that this function must satisfy in order to yield 4D chiral fermions upon dimensional
reduction is to be odd in w.
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Next, we will investigate the KK modes for the 5D Dirac equation (4.5), and write the
spinor in terms of 4D effective fields. On account of the fifth gamma matrix γ5, we anticipate
the left– and right-handed projections of the 4D part to behave differently. We shall consider
the following ansatz for the general chiral decomposition in (4.5):

Ψ = e−2f

(

∑

n

ΨLn(x)Ln(w) +
∑

n

ΨRn(x)Rn(w)

)

, (4.6)

where ΨLn(x) = −γ5ΨLn(x) and ΨRn(x) = γ5ΨRn(x) are the left-handed and right-handed
components of a 4D Dirac field, respectively. Further, we shall assume that ΨLn(x) and
ΨRn(x) satisfy the 4D Dirac equations. Therefore the KK modes Ln(w) and Rn(w) should
satisfy the following coupled equations:

(

∂w + efMF (T )
)

Ln(w) = mnRn(w), (4.7a)
(

∂w − efMF (T )
)

Rn(w) = −mnLn(w). (4.7b)

where mn is the fermionic 4D mass arising from the separation of variables (4.6). From
the above coupled equations, we can obtain the Schrödinger-like equations for the left– and
right-chiral KK modes of fermions:

(

− ∂2w + VL(w)
)

Ln = m2
nLn, (4.8)

(

− ∂2w + VR(w)
)

Rn = m2
nRn, (4.9)

where the corresponding left and right potentials read

VL(w) = e2fM2F 2(T )− eff ′MF (T )− efM∂wF (T ), (4.10a)

VR(w) = e2fM2F 2(T ) + eff ′MF (T ) + efM∂wF (T ). (4.10b)

We can perform a dimensional reduction on (4.2) in order to obtain the standard model
4D action for a massless fermion and a series of massive chiral fermions

S 1
2
=

∫

d5x
√−g Ψ̄

[

ΓM (∂M + ωM )−MF (T )
]

Ψ

=
∑

n

∫

d4x
√

−ĝ Ψ̄n [γ
µ(∂µ + ω̂µ)−mn] Ψn, (4.11)

where the following orthonormalization conditions for Ln and Rn need to be satisfied in order
to perform the dimensional reduction:

∫ +∞

−∞
LmLndw = δmn, (4.12)

∫ +∞

−∞
RmRndw = δmn, (4.13)

∫ +∞

−∞
LmRndw = 0. (4.14)
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It is easy to see that if one sets mn = 0 in the expressions (4.7a) and (4.7b), then one gets
an easy way to calculate the zero modes for the left– an right-chiral fermions

L0 ∝ e−M
∫
efF (T (w))dw, (4.15a)

R0 ∝ eM
∫
efF (T (w))dw. (4.15b)

In the next subsections we will investigate four different profiles of the function F (T ) in
order to localize the 4D fermions on the thick 3-brane. To achieve this goal we require
the effective potentials VL and VR to possess a minimum and to be symmetric with respect
to their position on the thick brane along the extra dimension. Therefore we will demand
the function F (T (w)) to be an odd function in w. Here we should point out that different
tachyonic coupling functions F (T ) lead to different KK massive spectra for the fermionic
fields, yielding a different physical behaviour of the fermions in the extra dimensional world.
These different mass spectra in the bulk will, in principle, affect in a different way the
physics of the 4D fermions localized on the 3-brane which represents our world. However,
their coupling to other bulk fields will render a different effective 4D physics on the 3-brane
depending on the physical properties of the latter fields.

Therefore, in what follows we shall consider a quantum field theory motivated Yukawa
interaction term between the bulk fermion fields and gauge bosons localized on the brane and
then we shall study the physics of four tachyonic coupling functions F (T ) that correspond to
four different mass spectra of the KK fermion fields when they are localized on the 3-brane.

4.1 Case I: F (T ) = T/b

In this case we shall investigate a simple interaction in the action (4.2) between the 5D
fermionic fields and the tachyon condensate scalar field by taking F (T ) = T/b, where we

divide the T field by b =
√

−3
2κ2

5 Λ5
in order to make the function F (T ) adimensional and

make the parameter M to encode all the relevant units for the interaction term of the 5D
action. For this field configuration we have the following potentials for Ln and Rn 5D Dirac
fermions

VL = MsH sech(Hw)

[

M

H

sech(Hw) arcsinh2[tanh(Hw)]

1 + tanh2(Hw)

+
1√
s

(

arcsinh[tanh(Hw)]
tanh(2Hw)

√

1 + tanh2(Hw)
− 1

)]

, (4.16a)

VR = MsH sech(Hw)

[

M

H

sech(Hw) arcsinh2[tanh(Hw)]

1 + tanh2(Hw)

− 1√
s

(

arcsinh[tanh(Hw)]
tanh(2Hw)

√

1 + tanh2(Hw)
− 1

)]

. (4.16b)

Both potentials have the same asymptotic behavior VR,L(w → ±∞) → 0, the critical value
(maximum and minimum) of the right and left potentials when w = 0 are, respectively,
VR(w = 0) =

√
sHM2 and VL(w = 0) = −√

sHM2. Both of the potentials have a very
complicated form and it is impossible to find an explicit solution for the Dirac fermion fields
when trying to analytically solve the Schrödinger equations (4.8)–(4.9). However, these
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Figure 2. The profile of the VL potential (solid black line) and the non-localized left-chiral zero mode
L0 (dashed black line) along the fifth dimension for the case I. Here we have set H = 1/2, M = 1 and
s = 1.
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w

1
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VR HwL, R0HwL

Figure 3. The profile of the VR potential (solid black line) and the non-localized right-chiral massless
fermion zero mode RO (dashed black line) along the extra dimension for the case I. Here H = 1/2,
M = 1 and s = 1 as well.

potentials do not allow us to localize the fermion zero modes, the form of the L0 can easily
be found numerically as show in figure 2. While the potential is of volcano type, which
allows, in principle, the existence of bound states, the zero mode is not localized on the
3-brane because it asymptotically tends to a positive definite constant, indicating that the
bottom of the volcano potential is not deep enough to localize fermion fields.

The shape of the potential VR predicts the lack of localized right bound states since it
constitutes a barrier potential. Figure 3 shows the shape of this potential and the massless
KK zero mode of the spectrum.

Thus, for the above analyzed case I there are no, neither left nor right, fermionic bound
states localized on the considered 5D braneworld model generated by gravity in complicity
with the bulk tachyonic scalar field. Therefore, we need to explore more complicated func-
tions F (T ) in order to achieve the desired fermion field localization on the aforementioned
braneworld model.

4.2 Case II: F (T ) = sinh(2T/b)

2[1−sinh
2(T/b)]

We shall now propose one case in which the left KK ground state is localized in our braneworld
model. Therefore, we shall consider a new F (T ) for which we obtain the following expressions
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for the left and right potentials

VL = MH2G[MG sinh2(Hw)− cosh(Hw)], (4.17a)

VR = MH2G[MG sinh2(Hw) + cosh(Hw)], (4.17b)

where G =
√

−6
κ2
5Λ5

=
√
s

H = 2b.

Both of these potentials have the same asymptotic behaviour VR,L(w −→ ±∞) −→ ∞,
giving rise to infinitely high well potentials, which means in turn that the mass spectra of
both left– and right-chiral fermions consists of an infinite set of discrete massive bound states
localized on the thick 3-brane. The critical values of the right and left potentials take place
when w = 0 and are given by VR(w = 0) = H2MG and VL(w = 0) = −H2MG, respectively.
Thus, both of the potentials possess a tower of discrete KK bound states, the only essential
difference is that the left-chiral KK fermionic ground state is massless (see figure 4), while
the right-chiral KK fermionic ground state is a massive one.

The general solution for both the left and right KK bound states can be expressed in
terms of confluent Heun functions as follows

Ln = eMG cosh(Hw)

[

K1HeunC

(

4MG,−1

2
,−1

2
, 2MG,Ωn− ,

1

2
+

1

2
cosh(Hw)

)

+

K2

√

2 + 2 cosh(Hw)HeunC

(

4MG,
1

2
,−1

2
, 2MG,Ωn− ,

1

2
+

1

2
cosh(Hw)

)]

, (4.18)

Rn = eMG cosh(Hw)

[

k1HeunC

(

4MG,−1

2
,−1

2
,−2MG,Ωn+ ,

1

2
+

1

2
cosh(Hw)

)

+

k2
√

2 + 2 cosh(Hw)HeunC

(

4MG,
1

2
,−1

2
,−2MG,Ωn+ ,

1

2
+

1

2
cosh(Hw)

)]

, (4.19)

where K1,K2, k1, k2 are arbitrary constants and Ωn± = (3±8MG)H2+8m2
n

8H2 .

Returning to our goal, we need to know, in particular, the explicit expression for the
left and right KK ground states. By proceeding to calculate these expressions as usual we get

L0 ∝ e−MG cosh(Hw), (4.20a)

R0 ∝ eMG cosh(Hw), (4.20b)

implying that just the massless left-chiral fermionic zero mode is localized on the 3-brane.

We must emphasize that the shape of the potential VR predicts the existence of an
infinite tower of discrete massive bound states localized on the brane along with the presence
of a non-localized massless zero mode. Figure 5 shows the shape of the right potential and
the delocalized massless zero mode from the brane.

4.3 Case III: F (T ) = arctanh[sinh(T/b)]√
2 sech2(T/b)−1 (1+arctanh

2[sinh(T/b)])

In general, the localization of spin–1
2 fermions is obtained in a more artisanal way when

compared to the localization of gravity, scalar and/or gauge vector fields. This is why we
shall undertake the task of finding field configurations with a little whimsical F (T ), like the
one considered here in case III, that allows us to localize fermion fields on the 3-brane. For
the configuration corresponding to case III we get again a left potential VL of volcano type

– 13 –
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Figure 4. The profile of the VL potential (solid black line) and the localized left-chiral zero mode
L0 scaled by a factor of 10 (dashed black line) along the fifth dimension for case II. Here we have set
H = 1, M = 1/2 and s = 1/2.
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Figure 5. The profile of the VR potential (solid black line) and the non-localized right-chiral zero
mode RO (dashed black line) along the extra dimension in case II. Here we have set H = 1.0,M = 1/2
and s = 1/2.

(see figure 6), while the shape for the right potential VR is conceived as a barrier potential
as shown in figure 7. The expression for both the left and right potentials reads

VL(w) =
2H2Mb

[

(2Mb+ 1)H2w2 − 1
]

(1 +H2w2)2
, (4.21a)

VR(w) =
2H2Mb

[

(2Mb− 1)H2w2 + 1
]

(1 +H2w2)2
. (4.21b)

These two potentials have the same vanishing asymptotic behavior VR,L(w −→ ±∞) = 0,
indicating the lack of a mass gap in their corresponding mass spectra; the critical values
(maximum and minimum) of the right and left potentials is achieved when w = 0 and are
respectively given by VR(w = 0) = 2H2Mb and VL(w = 0) = −2H2Mb. Only the left
potential supports a left-chiral zero mode L0 localized on the brane. The volcano potential
VL supports a tower of continuous KK massive modes non-localized on the 3-brane. On the
other hand, the right potential VR represents a barrier potential, a fact which indicates that
right-chiral fermions cannot be localized on the 3-brane.
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Figure 6. The profile of the VL potential (solid black line) and the localized left-chiral ground state
L0 (dashed black line) along the fifth dimension for case III. Here H = 1/2, M = 1 and s = 2.
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Figure 7. The profile of the VR potential (solid black line) and the non-localized right-chiral zero
mode R0 (dashed black line) along the extra dimension for case III. Here we have set H = 1, M = 1/2
and s = 1.

By making use of the relations given by (4.15) we can easily find expressions for the
massless zero modes R0 and L0 supported by the potentials (4.21)

L0 ∝ e
−M

∫ Hw
√

s

(1+H2w2)
dw

=
(

1 +H2w2
)−Mb

, (4.22a)

R0 ∝ e
M

∫ Hw
√

s

(1+H2w2)
dw

=
(

1 +H2w2
)Mb

. (4.22b)

Moreover, by solving the Schrödinger equation corresponding to the left potential
VL (4.21a) we can also obtain the general solution for the KK excitations with arbitrary
mass and see that the continuous spectrum of KK massive modes can be expressed in terms
of confluent Heun functions in the following form

Ln = C1

(

1 +H2w2
)1+Mb

HeunC

(

0,−1

2
, 1 + 2Mb,−1

4

m2
n

H2
, ηn,−H2w2

)

+

C2

(

1 +H2w2
)1+Mb

wHeunC

(

0,
1

2
, 1 + 2Mb,−1

4

m2
n

H2
, ηn,−H2w2

)

, (4.23)

where C1 and C2 are arbitrary constants, and the parameters ηn is given by ηn =
2(1+Mb)H2+m2

n

4H2 .
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We can conclude that case III yields a left-chiral massless fermion zero mode localized
on the 3-brane of our model, along with a continuum of massive KK fermionic excitations
delocalized from the brane, whereas all right-chiral KK fermionic modes are non-localized on
the brane.

4.4 Case IV: F (T ) = 2 tanh(T/b)√
1−sinh

2(T/b)

In this case we have for both the left and right potentials a modified Pöschl-Teller configu-
ration which has been carefully studied in several modern physics scenarios. This function
F (T ) allows us to have KK discrete and continuous mass spectra separated by a mass gap
from the massless zero mode. The size of these mass gaps largely depend on the value of 4D
and 5D parameters as shown by the following expressions:

VL(w) = M
[

Ms tanh2(2Hw)− 2H
√
s sech2(2Hw)

]

, (4.24a)

VR(w) = M
[

Ms tanh2(2Hw) + 2H
√
s sech2(2Hw)

]

. (4.24b)

By substituting the value of s in (4.24) and recalling that b =
√

−3
2κ2

5Λ5
according to (2.9), we

can recast the potentials VR,L as

VL(w) = 4MH2b
[

Mb tanh2(2Hw)− sech2(2Hw)
]

, (4.25a)

VR(w) = 4MH2b
[

Mb tanh2(2Hw) + sech2(2Hw)
]

. (4.25b)

The asymptotic behaviour for the potentials has the form VR,L(w −→ ±∞) = M2 s =
4M2H2b2 and is positive definite, a fact which in general ensures the existence of a mass gap
between the bound states of the corresponding mass spectra. The critical values (maximum
and minimum) of the right and left potentials when w = 0 are respectively VR(w = 0) =
4MH2b and VL(w = 0) = −4MH2b. The massless zero modes for both potentials can be
written as follows

L0 ∝ sechMb(2Hw), (4.26a)

R0 ∝ coshMb(2Hw). (4.26b)

From these expressions it is clear that just the left-chiral fermion field possesses a localized
zero mode on the 3-brane. The general solution for the Ln’s is given in terms of hypergeo-
metric functions 2F1 and reads

Ln ∝ cosh1+Mb(2Hw) 2F1

(

sn, rn;
1

2
;− sinh2(2Hw)

)

, (4.27)

for even n and

Ln ∝ cosh1+Mb(2Hw) sinh(2Hw) 2F1

(

sn +
1

2
, rn +

1

2
;
3

2
;− sinh2(2Hw)

)

, (4.28)

for odd n, where the parameters sn and rn are given by

sn =
1

2
(n+ 1), rn =Mb− 1

2
(n− 1). (4.29)

The number of bound states for the left-chiral fermion Ln is finite, they are labeled by
n = 0, 1, 2, . . . , < Mb and the corresponding KK mass spectrum is described by

m2
Ln

= 4H2 (Mb− n)n. (4.30)
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Figure 8. The profile of the VL potential (solid black line) and the localized left-chiral ground state
L0 (dashed black line) along the fifth dimension for case IV. Here we have set H = 1/4, M = 1 and
s = 1.

If we take into account that, by definition, b > 0, we can infer that when Mb < 1 there is a
single left-chiral bound state, the massless zero L0, as depicted in figure 8, and therefore it
is only possible to localize left-chiral fermions on the 3-brane. On the contrary, in order to
obtain a finite number of massive KK excited modes we must impose the condition Mb > 1.

For the potential of right-chiral fermions, as shown in (4.25b), it is not possible to localize
the massless zero mode. Thus, the only way to ensure the existence of a finite number of
localized bound states for the right-chiral massive fermions consists in imposing the condition
Mb > 1.

The general expression for the KK right-chiral bound states in this case is given by

Rn ∝ coshMb(2Hw) 2F1

(

1 + n

2
,Mb− 1 + n

2
;
1

2
;− sinh2(2Hw)

)

, (4.31)

for even n and

Rn ∝ coshMb(2Hw) sinh(Hz) 2F1

(

1 +
n

2
,Mb− n

2
;
3

2
;− sinh2(2Hw)

)

, (4.32)

for odd n.
It is worth emphasizing that the massless zero mode R0 given in (4.26b) is not a localized

fermionic bound state, therefore the ground state for right-chiral fermions corresponds to the
first massive bound state (with n = 0), as illustrated in figure 9, and is denoted by

Rm0 ∝ sechMb−1(2Hw), (4.33)

where the mass of the first right-chiral KK bound state obeys the following inequality m2
R0

=
4H2 (2Mb− 1) > 0.

The number of bound states for the right-chiral fermion fields inferred from the canonical
form of the VR potential is n = 0, 1, 2, . . . , < Mb− 1. For this set of eigenvalues we have the
following mass spectrum for the right-chiral fermions m2

Rn
= 4H2 [2Mb− (n+ 1)] (n+ 1).

We should finally mention that both of the potentials VR and VL have a continuous mass
spectrum that is achieved when mLn,Rn > 4M2H2b2 = M2 s, as it is evident from the
asymptotic behaviour of these potentials.

In figure 10 we present the profile of left and right-chiral KK massive modes respectively
for n = 1, 2 in the above studied case IV.
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Figure 9. The profile of the VR potential (solid black line), the localized right-chiral massive ground
state Rm0

(gray line), and the non-localized massless zero mode R0 (dashed black line) along the
extra dimension for case IV. Here we have also set H = 1/4, M = 1 and s = 1.
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Figure 10. The shape of the left– and right-chiral KK massive modes respectively for n = 1, 2 in
case IV. The parameters are set to M = 2, b = 4 and H = 1/4.

5 Corrections to Coulomb’s law in the thin brane limit

As we mentioned before, a natural and primary condition for a braneworld model to be
physically consistent is to render in certain limit the physical laws that we observe in our 4D
Universe. Moreover, once these laws are recovered, we must study the corrections they receive
from the higher dimensional world. Since we have studied the localization of fermionic fields
on the considered tachyonic thick braneworld in the previous section and the localization of
gauge bosons fields in this model was accomplished in [38], in this section we are in position to
recover the 4D Coulomb law on the 3-brane where we are supposed to live. Moreover, we shall
also be able to compute the Coulomb’s law modifications that come from the contribution
of the KK massive modes of the bulk gauge vector field and to see whether these corrections
are phenomenologically viable.
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Thus, in order to achieve this aim, we shall consider a Yukawa interaction between 5D
fermions and gauge bosons which constitutes a generalization of the 4D quantum interact-
ing potential given by LI = −eψ̄(x)γµAµ(x)ψ(x) with the vertex factor −ieγµ ([69], see
sections 4.7 and 4.8, pages 121–126).

Hence, the generalized 5D interaction between fermions and gauge boson reads [70]

SI = −e5
∫

d4xdw
√−g Ψ̄(x,w)ΓMAM (x,w)Ψ(x,w), (5.1)

where e5 is a 5D coupling constant and AM (x,w) represents the generalized 5D gauge vector
field that mediates the interaction between the fermion fields under the gauge condition
A5 = 0 and the KK vector modes decomposition

Aµ(x,w) =
∑

n

a(n)µ (x)ρn(w)e
−f/2, (5.2)

where ρn(w) is the profile of the massive gauge boson along the fifth dimension. We shall
suppose as well that the 4D fermions are associated to the left-chiral KK massless zero mode
L0 of the last three cases considered in the previous section. The zero mode of this gauge
field has recently been shown to be localized on our braneworld model given by (2.1)–(2.9)
in [38]. Then, by performing the dimensional reduction we can confirm the similarity between
the Newton potential for two point particles interacting with massive KK tensor modes and
the Coulomb potential for two point charges interacting with massive KK gauge vector field
modes. Let us tart by considering the following action:

SI ⊃
∑

∫

n

∫

d4xdw
√

−ĝ e5f (−e5)e−2f ψ̄0(x)L0(w)e
−fγµa(n)µ (x)e−f/2ρn(w)e

−2fψ0(x)L0(w)

= −e5
∑

∫

n

∫

dw e−f/2 ρn(w)L
2
0(w)

∫

d4x
√

−ĝ ψ̄0(x)γ
µa(n)µ (x)ψ0(x)

=

∫

d4x
√

−ĝ
{

− eψ̄0(x)γ
µa(0)µ (x)ψ0(x)−

∑

∫

n 6=0
enψ̄0(x)γ

µa(n)µ (x)ψ0(x)
}

, (5.3)

where the
∑
∫

n stands for summation or integration (or both) with respect to n, depending

on the respective discrete or continuous (or mixed) character of the a
(n)
µ (x) and en(w). By

taking into account the form of the gauge vector modes ρ0(w) and ρn(w) from [38]

ρ0(w) =

√
H(π/2)1/4

2Γ(5/4)
sech1/4(2Hw), (5.4)

ρn(w) =

[

∑

±
C±(σ)P

±iσ
1/4 (tanh(2Hw))

]

, (5.5)

where P±iσ
1/4 are associated Legendre functions of first kind of degree 1/4 and order ±i σ with

σ =
√

m2

4H2 − 1
16 , which imposes the condition m ≥ H/2, we find the next relations between

the couplings e, e5 and en(w) :

e = e5

∫

dw e−f/2 ρ0(w)L
2
0(w) = e5

(2π)1/4

Γ
(

1
4

)

b1/2

∫

dw L2
0(w) = e5

(2π)1/4

Γ
(

1
4

)

b1/2
, (5.6)
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where e is the usual 4D charge of the fermion localized on the brane and en’s are 4D effective
couplings defined as follows

en ≡ e5

∫

dw e−f/2 ρn(w)L
2
0(w) = e

Γ
(

1
4

)

b1/2

(2π)1/4

∫

dw e−f/2 ρn(w)L
2
0(w). (5.7)

In the non-relativistic limit the Coulomb potential (and its corrections) between two
charged fermions is determined by the KK photon exchange process and turns out to be

V (r) =
e2

4πr
+

∫ ∞

m0

dm
e2n
4πr

e−mr

=
1

4πr

[

e2 + e25

∫ ∞

m0

dm e−mr

(
∫

dw e−f(w)/2 ρn(w)L
2
0(w)

)2
]

, (5.8)

where m0 = H/2 is the first excited KK massive mode of the gauge vector field. In this
way it is easy to see that the Coulomb potential arises from the vector zero mode, while its
corrections come from the massive KK vector excitations.

If we pay attention to the formula (5.6) we realize that the existing relationship between
the 4D charge e and the coupling constant e5 does not depend on the form of the left-chiral
KK ground state L0 since it is normalized to unity. On the other hand, the integral in the
r.h.s. of the expression (5.8) for the extra dimensional corrections to the Coulomb potential
will always render a constant (which depends on the mass m of the KK gauge field) as far as
we suitably define a Dirac delta function with the aid of the left-chiral zero mode L0 in the
thin brane limit (see further subsections for concrete examples). Thus, under this definition
of the delta function, the squared integral with respect to w in (5.8), with the prefactor
e−f(w)/2 ρn(w) multiplying a Dirac delta function, will lead to the value ρn(0)

2 since the
Dirac delta function is located at the origin of the fifth dimension w = 0. This circumstance
makes us conclude, despite the heuristic proposals employed for the function F (T ), that the
corrections to Coulomb’s law associated with the massive KK gauge vector modes in the thin
brane limit do not depend on the explicit form of the function F (T ) and are, in this sense,
model independent as it will be shown in the following examples.

In the following subsections we will analytically compute the Coulomb potential V (r)
in the thin brane limit, which is not an easy analytical task, but is still affordable for the
three previously studied cases in which the left-chiral massless fermion localization on the
3-brane is feasible.

5.1 Corrections to Coulomb’s law in case II

In order to compute the Coulomb’s law corrections for the case II, let us begin by calculating
the 4D effective coupling constants en. To do that we shall make use of the fermionic
localization mechanism described above with the odd function F (T ) = sinh(2T/b)

1−sinh2(T/b)
. In this

case the normalized fermion zero mode reads

L0(w) =

(

H

K0 (2MG)

)
1
2

e−MG cosh(Hw), (5.9)

– 20 –



J
C
A
P
0
5
(
2
0
1
6
)
0
2
6

where K0 is the modified Bessel function of second kind. By substituting the warp factor (2.6)
and the expression for ρn(w) in (5.7) we obtain

en = e

√
H Γ

(

1
4

)

√
2 (2π)1/4K0 (2MG)

∫

dw cosh
1
4 (2Hw) e−2MG cosh(Hw) ×

[

∑

±
C±(σ)P

±iσ
1/4 (tanh(2Hw))

]

. (5.10)

By making use of the following definition of the Dirac delta function4 which corresponds to
the thin brane limit when H → ∞:

δ(w) = lim
H→∞

He−2MG cosh(Hw)

K0 (2MG)
, (5.11)

we finally get the following expression for the en’s

en = e
Γ
(

1
4

)

√
2H (2π)1/4

[

∑

±
C±(σ)P

±iσ
1/4 (0)

]

. (5.12)

Once we have these 4D effective couplings at hand we can write the Coulomb potential
as follows

V (r) =
e2

4πr



1 +

[

Γ
(

1
4

)]2

2H
√
2π

∫ ∞

m0

dm e−mr

∣

∣

∣

∣

∣

∑

±
C±(σ)P

±iσ
1/4 (0)

∣

∣

∣

∣

∣

2




=
e2

4πr



1 +

[

Γ
(

1
4

)]2

√
2πH

∫ ∞

m0

dm e−mr

∣

∣

∣

∣

∣

Γ (1 + iσ)

Γ
(

3
8 − iσ

2

)

Γ
(

9
8 − iσ

2

)

∣

∣

∣

∣

∣

2


 , (5.13)

where we have taken into account the fact that the normalization constants for the associated
Legendre functions are given by C±(σ) =

|Γ(1∓iσ)|√
2π

, as well as the following relation

Pµ
ν (0) =

2µ
√
π

Γ
(

1−ν−µ
2

)

Γ
(

1 + ν−µ
2

)

. (5.14)

Thus, the Coulomb potential can be written in the form

V (r) =
e2

4πr
[1 + ∆V ] , (5.15)

where the correction ∆V reads

∆V =

[

Γ
(

1
4

)]2

√
2π Γ

(

3
8

)2
Γ
(

9
8

)2

e−Hr/2

Hr

(

1 +O
(

1

Hr

))

. (5.16)

When performing this computation, in (5.13) we have expanded the prefactor that
multiplies the exponential function in the integrand with respect to m0 = H/2 (which corre-
sponds to σ = 0) since the corrections to the Coulomb potential are dominated by the sector
of small massive KK vector modes [71].

4It is straightforward to check that this definition possesses all the properties of the normalized to unity
delta distribution function.
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5.2 Corrections to Coulomb’s law in case III

We now will calculate the explicit form of the Coulomb potential V (r) following the same

procedure as in case II. Here F (T ) = arctanh[sinh(T/b)]√
2 sech2(T/b)−1 [1+arctanh2(sinh(T/b))]

and for this function

the normalizable left-chiral KK massless zero mode is

L0(w) =

[

H Γ (2Mb)√
π Γ
(

2Mb− 1
2

)

]
1
2
(

1 + w2H2
)−Mb

, Mb >
1

4
, (5.17)

where the inequality condition follows in order to render a convergent integral.
By taking into account the expressions for the warp factor (2.6) and the gauge function

ρn(w) (5.5) we can compute the expression for the coupling constants en’s (5.7) and get the
same result as in the previous case:

en = e
Γ
(

1
4

)

√
2H (2π)1/4

[

∑

±
C±(σ)P

±iσ
1/4 (0)

]

, (5.18)

when defining the Dirac delta function as shown below, in the thin brane limit, when H → ∞:

δ(w) = lim
H→∞

H Γ (2Mb)√
π Γ
(

2Mb− 1
2

)

(

1 + w2H2
)−2Mb

. (5.19)

By substituting the expression (5.18) into equation (5.8) we get the same form for the
Coulomb potential (5.15), where its correction is again defined as in (5.16), obtaining the
same result as in the above studied case II.

5.3 Corrections to Coulomb’s law for case IV

We shall further proceed to perform the analytical calculation of V (r) for case IV. Let us
compute first the 4D effective couplings en. In order to achieve this goal we shall make use
of the function F (T ) = 2 tanh(T/b)√

1−sinh2(T/b)
in the fermionic localization mechanism for which the

normalizable left-chiral zero mode reads

L0(w) =

[

2HΓ
(

1
2 +Mb

)

π1/2Γ (Mb)

]
1
2

sech(2Hw)Mb. (5.20)

By substituting the expression for the warp factor (2.6) and the expression for ρn(w)
in (5.7) we obtain

en = e
21/4

√
H Γ

(

1
4

)

Γ
(

1
2 +Mb

)

π3/4Γ (Mb)

∫

dw sech(2Hw)2Mb− 1
4

[

∑

±
C±(σ)P

±iσ
1/4 (tanh(2Hw))

]

= e
Γ
(

1
4

)

Γ
(

Mb− 1
8

)

Γ
(

1
2 +Mb

)

23/4π1/4
√
H Γ (Mb) Γ

(

3
8 +Mb

)

[

∑

±
C±(σ)P

±iσ
1/4 (0)

]

, (5.21)

where now we have applied the following definition for the normalized Dirac delta function

δ(w) = lim
H→∞

2HΓ
(

3
8 +Mb

)

π1/2Γ
(

Mb− 1
8

)sech(2Hw)2Mb− 1
4 , Mb >

1

8
(5.22)
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in the thin brane limit when H → ∞. The above result leads us to the following form of the
Coulomb potential

V (r) =
e2

4πr



1+
1

2
3
2
√
πH

(

Γ
(

1
4

)

Γ
(

Mb− 1
8

)

Γ
(

1
2+Mb

)

Γ(Mb)Γ
(

Mb+ 3
8

)

)2
∫ ∞

m0

dm e−mr

∣

∣

∣

∣

∣

∑

±
C±(σ)P

±iσ
1/4 (0)

∣

∣

∣

∣

∣

2




=
e2

4πr



1+
1√
2πH

(

Γ
(

1
4

)

Γ
(

Mb− 1
8

)

Γ
(

1
2+Mb

)

Γ(Mb)Γ
(

Mb+ 3
8

)

)2
∫ ∞

m0

dm e−mr

∣

∣

∣

∣

∣

Γ (1+iσ)

Γ
(

3
8− iσ

2

)

Γ
(

9
8− iσ

2

)

∣

∣

∣

∣

∣

2


. (5.23)

After replacing the integration constants |C±(σ)| and using the formula (5.14) in the expres-
sion for the Coulomb potential (5.23), it can be written in the form of (5.15), where the
correction ∆V now reads

∆V =
1√
2π

(

Γ
(

1
4

)

Γ
(

Mb− 1
8

)

Γ
(

1
2 +Mb

)

Γ (Mb) Γ
(

Mb+ 3
8

)

Γ
(

3
8

)

Γ
(

9
8

)

)2
e−Hr/2

Hr

(

1 +O
(

1

Hr

))

. (5.24)

Thus, for all the above considered cases, the corrections to Coulomb’s law are exponen-
tially suppressed in the thin brane limit H → ∞, making the tachyonic braneworld model
physically viable. This result is due to the existence of a mass gap in the spectrum of KK
gauge field excitations reported in [38]. If there was no such a mass gap, the corrections
were not exponentially suppressed, but polynomially suppressed. Notwithstanding they will
be still be very small according to the results obtained in the well-known Randall-Sundrum
model [11].

6 Corrections to Coulomb’s law in a thick brane scenario, case IV

At this point the corrections made for the different cases discussed above are valid only in the
limit of thin branes, in which we assumed that the first massive mode of the gauge bosons
m = H

2 predicted in [38] is very large. However, in some cases we can also analyze the
corrections to Coulomb’s law from another more realistic point of view, i.e. within another
valid approximation for thick brane scenarios.

Let us start by performing the integral (5.21) for en without the thin brane limit as-
sumption

en = e
21/4

√
H Γ

(

1
4

)

Γ
(

1
2 +Mb

)

π3/4 Γ (Mb)

∫

dw sech(2Hw)2Mb− 1
4

×
[

∑

±
C±(σ)P

±iσ
1/4 (tanh(2Hw))

]

. (6.1)

In order to facilitate this integration it is convenient to introduce the following variable
w = arctanh(x)

2H , which leads to

en = e
Γ
(

1
4

)

Γ
(

1
2 +Mb

)

√
H (2π)3/4 Γ (Mb)

∫

dx
(

1− x2
)Mb− 9

8

[

∑

±
C±(σ)P

±iσ
1/4 (x)

]

. (6.2)
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When we integrate over the entire fifth dimension using formula ET II 316(6) of the Grad-
shteyn and Ryzhik handbook [72], the expression for (6.2) results in

en = e
Γ
(

1
4

)

Γ
(

1
2 +Mb

)

√
H (2π)3/4 Γ (Mb)

∫ 1

−1
dx
(

1− x2
)Mb− 9

8

[

∑

±
C±(σ)P

±iσ
1/4 (x)

]

=

e
Γ
(

1
4

)

Γ
(

1
2 +Mb

)

√
H (2π)3/4 Γ (Mb)

(

∑

±
C±(σ)

π 2±iσΓ(2Mb− 1
4±iσ2 )Γ(2Mb− 1

4∓iσ2 )
Γ(2Mb− 3

8)Γ(2Mb+ 3
8)Γ(

3
8∓iσ2 )Γ(98∓iσ2 )

)

, (6.3)

where Mb > 1
8 . We then need to square the couplings en and integrate this expression over

all continuous KK massive modes along the lines of (5.8)
∫ ∞

m0

dm|en|2e−mr. (6.4)

Before making this calculation, we will perform the following change of variable m =
H
2

√
1 + 16σ2, then the above integral reads

e2
23/2 Γ

(

1
4

)2
Γ
(

1
2 +Mb

)2

π3/2 Γ (Mb)2

∫ ∞

0
dσ

e−
1
2
Hr

√
1+16σ2

√

1
σ2 + 16

×

∣

∣

∣

∣

∣

∑

±
C±(σ)

π 2±iσΓ(2Mb− 1
4 ± iσ2 )Γ(2Mb− 1

4 ∓ iσ2 )

Γ(2Mb− 3
8)Γ(2Mb+ 3

8)Γ(
3
8 ∓ iσ2 )Γ(

9
8 ∓ iσ2 )

∣

∣

∣

∣

∣

2

. (6.5)

It seems impossible to do this integral analytically, however, as we have previously assumed
when computing (5.16), we shall consider that the contribution to the mass integral (6.5)
is dominated by the first KK continuous excitation modes. Therefore we can expand the
prefactor of the exponential around σ = 0, using C±(σ) = |Γ(1∓iσ)|√

2π
, and we obtain the

following approximate result for the above integral

e2
23/2 Γ

(

1
4

)2
Γ
(

1
2 +Mb

)2

π3/2 Γ (Mb)2

∫ ∞

0
dσ
e−

1
2
Hr

√
1+16σ2

√

1
σ2 + 16

×

∣

∣

∣

∣

∣

∑

±
C±(σ)

π 2±iσ Γ(2Mb− 1
4±iσ2 )Γ(2Mb− 1

4∓iσ2 )
Γ(2Mb− 3

8)Γ(2Mb+ 3
8)Γ(

3
8∓iσ2 )Γ(98∓iσ2 )

∣

∣

∣

∣

∣

2

∼

e2

(

26 Γ
(

1
4

)2
Γ
(

1
2+Mb

)2
Γ
(

2Mb− 1
4

)4

(2π)
1
2Γ
(

3
8

)2
Γ
(

1
8

)2
Γ(Mb)2 Γ

(

2Mb− 3
8

)2
Γ
(

2Mb+ 3
8

)2

)

×

e−
1
2
Hr

Hr

(

1 +O
(

1

Hr

))

, (6.6)

finally the expression for the corrected Coulomb’s potential reads

V =
e2

4πr
[1 + ∆V ] , (6.7)

where the correction is given by

∆V = γ (Mb)
e−

1
2
Hr

Hr

(

1 +O
(

1

Hr

))

, (6.8)
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and the constant function γ(Mb) explicitly depends on the 5D parameters M and b and
possesses the form

γ (Mb) =

(

8 Γ
(

1
4

)

Γ
(

1
2 +Mb

)

Γ
(

2Mb− 1
4

)2

(2π)
1
4Γ
(

3
8

)

Γ
(

1
8

)

Γ (Mb) Γ
(

2Mb− 3
8

)

Γ
(

2Mb+ 3
8

)

)2

.

This result is particularly relevant when directly compared to the one obtained in the thin
brane limit (5.24), because the corrections to Coulomb’s law hold their shape for large and
small mass scales dictated by the Hubble parameter H since the first excited state possesses
m = H/2.

It is worth noticing that even when the 5D parameters are of the same order, providing
naturalness for our braneworld, i.e. a model without large hierarchies, we need to perform a
fine-tuning on these parameters, Mb = 3

16 ± ǫ, where ǫ is an infinitesimal parameter, in order
to achieve the value γ(Mb) ≈ 1 × 10−33, considering that in our epoch H0 ≈ 1 × 10−33 eV.
Thus, by making this assumption we have established a proportionality relationship between
the 5D metric parameter b (which depends on Λ5 and κ5) and the fermion coupling constant
M , simplifying indeed the potential as follows

V =
e2

4πr

(

1 +
e−

1
2
Hr

r

)

. (6.9)

We should mention as well that the corrections to this potential are still far beyond the
upper experimental bound observed on the photon mass, making the present braneworld
model phenomenologically viable. In fact, by confronting our result to actual experimental
observations, we can consider a realistic scenario by setting the Hubble parameter to its
present value H = H0 ≈ 1 × 10−33 eV, leading to an estimation for the photon mass of
the order mγ ≈ 5× 10−34 eV, while several estimates made until recent years [73]–[88] have
reported greater bounds on the photon mass. For instance, one of the most recent works [76]
reported an estimated upper bound for the photon mass of order mγ ≈ 1.6× 10−4 eV based
on the anomalous magnetic moment of the electron, whereas the most stringent estimation
made so far on the basis of galactic magnetic fields [82] reported an upper bound that goes
like mγ ≈ 3× 10−27 eV.

It must be emphasized as well that the mass corrections predicted by (6.9) resemble the
Proca mass term in the potential, however, our corrections go like r−2 instead of r−1 and
hence are not directly comparable to the corrections obtained within the electromagnetic
theory of Proca. In this sense we do not expect exactly the same results. In addition,
our upper bound for the mass of the photon is far from the one reported until now in the
literature. This is because in our braneworld model the predicted mass corrections to the
photon mass emerge in a picture where the Universe is in expansion and are determined
by the Hubble parameter. This places our prediction far from all bounds reported in the
literature so far.

Additionally to the experimental bounds on the photon mass, we can consider more
stringent astrophysical/cosmological bounds as well [78]–[88]. In both of these cases the 5D
parametersM and b remain the same order, but the aforementioned fine-tuning changes from
case to case as shown in table 1. Namely, it turns out that by fixing the upper bound on the
photon massmγ we determine the value of γ(M, b), sincemγ = γ(M, b)/2, which corresponds
to a certain relation between the fermion coupling constant M and the metric parameter b
that leaves them of the same order, but modifies the order of the needed fine-tuning.
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Type of measurement Author(s) Upper bound Mb

and year on mγ (eV)

Radio-wave interferometer Froome (1958) [78] 2.4×10−7 3
16 ± 2.72×10−5

Crab Nebula Pulsar Warner et al. (1969) [79] 2.9×10−8 3
16 ± 9.45×10−6

Pulsar Emission Bay et al. (1972) [80] 1.7×10−13 3
16 ± 2.29×10−8

Short pulses radiation Brown et al. (1972) [81] 7.9×10−1 3
16 − 2.30×10−2

Galactic magnetic field Chibisov (1976) [82] 3×10−27 3
16 ± 3.04×10−15

Torque on toroid balance Lakes (1998) [83] 1×10−17 3
16 ± 1.76×10−10

Gamma ray bursts Schaefer (1999) [84] 2.4×10−11 3
16 ± 2.72×10−7

(GRB980703)

Gamma ray bursts Schaefer (1999) [84] 3.4×10−6 3
16 ± 1.03×10−4

(GRB980703)

Torque on rotating Tu et al. (2006) [85] 1×10−19 3
16 ± 1.76×10−11

magnetized toroid

Magnetohydrodynamics Ryutov (2007) [86] 1×10−18 3
16 ± 5.57×10−11

of solar wind

Proca galactic field Aldelberger et al. (2007) [87] 1×10−26 3
16 ± 5.55×10−15

Electron anomalous Accioly et al. (2010) [76] 1.6×10−4 3
16 ± 7.02×10−4,

magnetic moment

Table 1. In this table we show different upper bounds on the photon mass obtained through distinct
experimental data and astrophysical/cosmological observations. These bounds modify the order of
the needed fine-tuning between the 5D parameters b and M , but leave them of the same order of
magnitude, providing naturalness for our model.

7 Conclusions and discussion

With this work we contribute to the program of constructing a consistent braneworld scenario
from both the high energy physics and cosmological points of view using the tachyonic de
Sitter thick braneworld constructed in [46]. We first started by addressing the gauge hierarchy
problem with a geometrical approach as in the Randall-Sundrum model and showed that
TeV mass scales can be produced from Planck mass scales through a symmetry breaking
mechanism that requires a hierarchy of order 20, namely, Hw0 ≈ 23 between these parameters
of the braneworld model. The second aim was to localize fermion fields in the 3-brane, as
part of the whole set of Standard Model matter fields, since gravity, scalar and gauge vector
fields were already localized in this expanding braneworld scenario. A third goal consisted
in computing the corrections to Coulomb’s law coming from the extra dimensional nature
of the KK massive gauge vector excitations. This task was accomplished for three different
cases in the thin brane limit as well as for a particular thick brane scenario. In the latter
case we were able to confront the corrections to the photon mass predicted by the model
with experimental and astrophysical/cosmological upper bounds previously established on
the photon mass. All of these objectives were successfully achieved.
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This work was carried out by considering four different functions F (T ), which establish
the concrete 5D Yukawa interaction between fermions and the tachyon condensate scalar
field. This coupling functions correspond to different Schrödinger potentials with different
asymptotic behaviour along the extra dimension. Moreover, they lead to different mass
spectra for the massive KK fermionic modes that influence in a different way the effective
physics of the fermionic zero modes localized on the 3-brane which represents our world.

In the first case we set F (T ) proportional to the field T . However, for this configu-
ration neither left– nor right-chiral fermions are localized in the 3-brane (although the left
Schrödinger potential is of volcano type) since the left-chiral zero mode asymptotically tends
to a positive constant and is therefore delocalized from it.

For case II we have field configurations endowed with left and right Schrödinger po-
tentials with infinitely high walls which have discrete mass spectra for the KK modes. The
left-chiral fermionic massless zero mode, as well as an infinite number of discrete massive
bound states are localized on the brane, whereas the right-chiral zero mode is delocalized
from it.

For the case III we found a Schrödinger potential of volcano type for left-chiral fermions,
where only the ground state corresponding to the KK massless zero mode is localized and
glued to the continuous KK massive spectrum. On the other hand, the corresponding right
Schrödinger potential does not localize any right-chiral fermions on the 3-brane.

In the case IV we got modified Pöschl-Teller potentials with mass gaps which allows
us to localize both left– and right-chiral fermions on the brane and to get discrete KK mass
spectra where the left-chiral massless zero mode is separated from the continuous massive
spectrum of KK excitations; for this scenario the right-chiral KK massless zero mode is
non-localized on the 3-brane.

As mentioned above, after localizing the fermion fields, our third objective was to make
use of the results presented here and in [38], which show that it is possible to localize
gauge fields in our braneworld model, in order to study the interaction between photons
and fermions localized on the brane. We further performed the computation of the correc-
tions to the Coulomb’s law coming from the massive gauge vector modes by considering the
aforementioned cases II, III and IV. The computed corrections to the Coulomb’s potential
exponentially decay due to the presence of a mass gap in the spectrum of the gauge vector
fields. Thus, these corrections decay much faster than 1/r due to the exponential function
that quickly removes all small contributions from the KK massive gauge vector modes in the
limit of thin branes.

Moreover, for case IV, it was possible to obtain a novel result that displays the correc-
tions to Coulomb’s law in a tachyonic de Sitter braneworld scenario of arbitrary thickness,
allowing us to get an idea of what would be the effects of the electromagnetic interaction
between localized fermions, due to non-localized massive gauge bosons. When confronting
the estimated correction to the Coulomb law in terms of the photon mass predicted by our
braneworld model with experimental and astrophysical/cosmological upper bounds on the
photon mass we find that our prediction is far away from being detected in the near future,
leaving the 5D parameters of the braneworld of the same order and providing naturalness to
the model itself. However, in order to recover the present value of the Hubble constant (mak-
ing the braneworld model realistic) we need to perform a fine-tuning on these parameters in
the above considered case.
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[42] C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on
thick branes, Nucl. Phys. B 581 (2000) 309 [hep-th/0001033] [INSPIRE].

[43] A. Herrera-Aguilar, D. Malagón-Morejón, R.R. Mora-Luna and U. Nucamendi, Aspects of thick
brane worlds: 4D gravity localization, smoothness and mass gap,
Mod. Phys. Lett. A 25 (2010) 2089 [arXiv:0910.0363] [INSPIRE].

[44] V. Dzhunushaliev, V. Folomeev and M. Minamitsuji, Thick brane solutions,
Rept. Prog. Phys. 73 (2010) 066901 [arXiv:0904.1775] [INSPIRE].

[45] A. Herrera-Aguilar, D. Malagón-Morejón and R.R. Mora-Luna, Localization of gravity on a
de Sitter thick braneworld without scalar fields, JHEP 11 (2010) 015 [arXiv:1009.1684]
[INSPIRE].

[46] G. Germán, A. Herrera-Aguilar, D. Malagón-Morejón, R.R. Mora-Luna and R. da Rocha, A
de Sitter tachyon thick braneworld and gravity localization, JCAP 02 (2013) 035
[arXiv:1210.0721] [INSPIRE].

[47] N.T. Yılmaz, Supergravity Induced Interactions on Thick Branes,
Chin. Phys. B 23 (2014) 040401 [arXiv:1403.6017] [INSPIRE].

[48] A. Sen, Supersymmetric world volume action for nonBPS D-branes, JHEP 10 (1999) 008
[hep-th/9909062] [INSPIRE].

[49] G. Germán, A. Herrera-Aguilar, A.M. Kuerten, D. Malagón-Morejón and R. da Rocha,
Stability of a tachyon braneworld, JCAP 01 (2016) 047 [arXiv:1508.03867] [INSPIRE].

[50] M.R. Garousi, Tachyon couplings on nonBPS D-branes and Dirac-Born-Infeld action,
Nucl. Phys. B 584 (2000) 284 [hep-th/0003122] [INSPIRE].

[51] E.A. Bergshoeff, M. de Roo, T.C. de Wit, E. Eyras and S. Panda, T duality and actions for
nonBPS D-branes, JHEP 05 (2000) 009 [hep-th/0003221] [INSPIRE].

[52] J. Kluson, Proposal for nonBPS D-brane action, Phys. Rev. D 62 (2000) 126003
[hep-th/0004106] [INSPIRE].

[53] A. Sen, Tachyon condensation on the brane anti-brane system, JHEP 08 (1998) 012
[hep-th/9805170] [INSPIRE].

[54] A. Sen, Non-BPS States and Branes in String Theory, in Advanced School on Supersymmetry
in the Theories of Fields, Strings and Branes, J.L.F. Barbon and J.M.F. Labastida eds., World
Scientific, Singapore (2001), pg. 307 [hep-th/9904207].

[55] A. Sen, Dirac-Born-Infeld action on the tachyon kink and vortex,
Phys. Rev. D 68 (2003) 066008 [hep-th/0303057] [INSPIRE].

– 30 –

http://dx.doi.org/10.1016/j.physletb.2014.02.004
http://arxiv.org/abs/1310.2147
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B731,131%22
http://dx.doi.org/10.1140/epjc/s10052-014-2770-1
http://arxiv.org/abs/1401.0999
http://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C74,2770%22
http://dx.doi.org/10.1007/s10714-014-1815-y
http://arxiv.org/abs/1407.0131
http://inspirehep.net/search?p=find+J+%22Gen.Rel.Grav.,46,1815%22
http://dx.doi.org/10.1140/epjc/s10052-014-3251-2
http://arxiv.org/abs/1406.2892
http://dx.doi.org/10.1103/PhysRevD.62.046008
http://arxiv.org/abs/hep-th/9909134
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D62,046008%22
http://dx.doi.org/10.1016/S0550-3213(00)00271-6
http://arxiv.org/abs/hep-th/0001033
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B581,309%22
http://dx.doi.org/10.1142/S0217732310033244
http://arxiv.org/abs/0910.0363
http://inspirehep.net/search?p=find+J+%22Mod.Phys.Lett.,A25,2089%22
http://dx.doi.org/10.1088/0034-4885/73/6/066901
http://arxiv.org/abs/0904.1775
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1775
http://dx.doi.org/10.1007/JHEP11(2010)015
http://arxiv.org/abs/1009.1684
http://inspirehep.net/search?p=find+J+%22JHEP,1011,015%22
http://dx.doi.org/10.1088/1475-7516/2013/02/035
http://arxiv.org/abs/1210.0721
http://inspirehep.net/search?p=find+J+%22JCAP,1302,035%22
http://dx.doi.org/10.1088/1674-1056/23/4/040401
http://arxiv.org/abs/1403.6017
http://inspirehep.net/search?p=find+J+%22Chin.Phys.,B23,040401%22
http://dx.doi.org/10.1088/1126-6708/1999/10/008
http://arxiv.org/abs/hep-th/9909062
http://inspirehep.net/search?p=find+J+%22JHEP,9910,008%22
http://dx.doi.org/10.1088/1475-7516/2016/01/047
http://arxiv.org/abs/1508.03867
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.03867
http://dx.doi.org/10.1016/S0550-3213(00)00361-8
http://arxiv.org/abs/hep-th/0003122
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B584,284%22
http://dx.doi.org/10.1088/1126-6708/2000/05/009
http://arxiv.org/abs/hep-th/0003221
http://inspirehep.net/search?p=find+J+%22JHEP,0005,009%22
http://dx.doi.org/10.1103/PhysRevD.62.126003
http://arxiv.org/abs/hep-th/0004106
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D62,126003%22
http://dx.doi.org/10.1088/1126-6708/1998/08/012
http://arxiv.org/abs/hep-th/9805170
http://inspirehep.net/search?p=find+J+%22JHEP,9808,012%22
http://arxiv.org/abs/hep-th/9904207
http://dx.doi.org/10.1103/PhysRevD.68.066008
http://arxiv.org/abs/hep-th/0303057
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D68,066008%22


J
C
A
P
0
5
(
2
0
1
6
)
0
2
6

[56] P. Binetruy, C. Deffayet and D. Langlois, Nonconventional cosmology from a brane universe,
Nucl. Phys. B 565 (2000) 269 [hep-th/9905012] [INSPIRE].

[57] P. Binetruy, C. Deffayet, U. Ellwanger and D. Langlois, Brane cosmological evolution in a bulk
with cosmological constant, Phys. Lett. B 477 (2000) 285 [hep-th/9910219] [INSPIRE].

[58] A. Mazumdar, S. Panda and A. Perez-Lorenzana, Assisted inflation via tachyon condensation,
Nucl. Phys. B 614 (2001) 101 [hep-ph/0107058] [INSPIRE].

[59] A. Sen, Rolling tachyon, JHEP 04 (2002) 048 [hep-th/0203211] [INSPIRE].

[60] A. Sen, Tachyon matter, JHEP 07 (2002) 065 [hep-th/0203265] [INSPIRE].

[61] A. Sen, Field theory of tachyon matter, Mod. Phys. Lett. A 17 (2002) 1797 [hep-th/0204143]
[INSPIRE].

[62] A. Sen, Time and tachyon, Int. J. Mod. Phys. A 18 (2003) 4869 [hep-th/0209122] [INSPIRE].

[63] G.W. Gibbons, Cosmological evolution of the rolling tachyon, Phys. Lett. B 537 (2002) 1
[hep-th/0204008] [INSPIRE].

[64] D. Choudhury, D. Ghoshal, D.P. Jatkar and S. Panda, On the cosmological relevance of the
tachyon, Phys. Lett. B 544 (2002) 231 [hep-th/0204204] [INSPIRE].

[65] D. Choudhury, D. Ghoshal, D.P. Jatkar and S. Panda, Hybrid inflation and brane-anti-brane
system, JCAP 07 (2003) 009 [hep-th/0305104] [INSPIRE].

[66] T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter,
Phys. Rev. D 66 (2002) 021301 [hep-th/0204150] [INSPIRE].

[67] N.C. Devi, S. Panda and A.A. Sen, Solar System Constraints on Scalar Tensor Theories with
Non-Standard Action, Phys. Rev. D 84 (2011) 063521 [arXiv:1104.0152] [INSPIRE].

[68] N. Barbosa-Cendejas, J. De-Santiago, G. Germán, J.C. Hidalgo and R.R. Mora-Luna, Tachyon
inflation in the Large-N formalism, JCAP 11 (2015) 020 [arXiv:1506.09172] [INSPIRE].

[69] M.E. Peskin and D.V. Schrodder, An Introduction to Quantum Field Theory, Addison-Wesley,
Boston U.S.A. (1995).

[70] P.Q. Hung and N.-K. Tran, Kaluza-Klein structure associated with fat brane,
Phys. Rev. D 69 (2004) 064003 [hep-ph/0309115] [INSPIRE].

[71] N. Barbosa-Cendejas, A. Herrera-Aguilar, M.A. Reyes Santos and C. Schubert, Mass gap for
gravity localized on Weyl thick branes, Phys. Rev. D 77 (2008) 126013 [arXiv:0709.3552]
[INSPIRE].

[72] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and Products, fifth edition,
Academic Press, Amsterdam The Netherlands (1994).

[73] A.S. Goldhaber and M.M. Nieto, Terrestrial and extra-terrestrial limits on the photon mass,
Rev. Mod. Phys. 43 (1971) 277 [INSPIRE].

[74] A.S. Goldhaber and M.M. Nieto, Photon and Graviton Mass Limits,
Rev. Mod. Phys. 82 (2010) 939 [arXiv:0809.1003] [INSPIRE].

[75] A.S. Goldhaber and M.M. Nieto, How to catch a photon and measure its mass,
Phys. Rev. Lett. 26 (1971) 1390 [INSPIRE].
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