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I. A Survey of ideas for radio frequency acceleration 

A fixed field accelerator can accommodate at one time 
particles circulating at all energies between the injector 
and output energies. There thus becomes available a 
whole new class of accelerating mechanisms which appear 
to promise high intensity beams. Such high intensity, 
besides being of interest in a single accelerator, is of course 
essential for the operation of a double accelerator with 
interacting beams. These accelerating mechanisms are 
now being studied by analytic means as well as by the 
digital computer. In general, one is concerned with the 
energy gain of particles whose frequencies are a function 
of energy, as these particles are subject to various radio 
frequency accelerating gaps, whose voltages and frequencies 
may be secularly changed. Of the many possible 
arrangements, not all of which have been studied, the 

following seems to have particular promise. More calculations 
will have to be done before one can choose which 
of the following mechanisms or what combination of them 
is most efficient. 

(a) Conventional synchrotron acceleration at high repetition 
rate 

The most straightforward accelerating system is one 
which uses one or several synchronized accelerating gaps 
supplying a radio frequency voltage whose frequency is 
modulated as in conventional synchrotrons so as to accelerate 
a pulse of particles from the injection to the output 
energy. The only advantage of an FFAG magnet in this 
case is that the pulse repetition rate is now limited only 

Fig. 1. Frequency versus energy 
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by the r. f. system, and may, with reasonable requirements 
on the r. f. system be increased to perhaps several pulses 
per second as compared with one pulse every few seconds 
with pulsed magnetic field accelerators. 

A typical graph of frequency of revolution versus energy 
in an FFAG synchrotron is shown in fig. 1. The graph is 
drawn for a mean field index k = 82.5. The energy scale is 
in rest masses, and the frequency scale is in units of the 
frequency at transition where the frequency reaches its 
maximum value. The problem of accelerating through 
the transition energy will be discussed later. In general 
it appears that this problem is less difficult in an FFAG 
synchrotron than in a pulsed field alternating gradient 
accelerator. For reasons that we shall indicate, conventional 
synchrotron acceleration is far less efficient in 
terms of beam current that can be accelerated than is 
theoretically possible with other schemes. 

(b) Bucket lift 

If a radio frequency voltage is applied to an accelerating 
gap, then in the neighborhood of each energy for which 
the frequency of revolution of the particles is equal to the 
radio frequency or to any of its subharmonics, there 
is a region of particle energies and phases (a bucket) 
within which particles execute stable phase oscillations 
around the synchronous energy. If the radio frequency 
is modulated, buckets move up or down the energy scale. 
Under suitable conditions particles in any of the buckets 
can be accelerated by this system. Thus it is possible 
to accelerate a number of buckets of particles at a number 
of different energies simultaneously, with a single radio 
frequency accelerating voltage. As the frequency is 
modulated, each bucket can be filled by the injector when 
the energy corresponding to that bucket coincides with 
the injector energy. 

(c) Phase displacement mechanisms 

These are based on the observation that particles are 
accelerated if subject to a radio frequency gap which is 
initially at a frequency corresponding to an energy higher 
than that of the particles, and then the oscillator frequency 
is modulated to a frequency corresponding to an energy 
lower than that of the particles. Note that in this scheme 
the frequency is modulated in just the reverse direction 
from that used in conventional synchrotron acceleration, 
or in the bucket lift. The mechanism may be readily 
understood, for the oscillator carries virtual particles down 
in energy, and thus by Liouville's Theorem real particles 
occupying phase space at a lower energy must be forced 
upward in energy. 

In general, since the current accelerated by phase displacement 
equals the virtual current which could be carried 
down by the oscillator, phase displacement and bucket 
lifts are about equally efficient. The methods vary in the 
length of time necessary for transit of a given energy 
interval by any single particle, and as such each method 

has distinct advantages or diasvantages. It should be 
clear that the carrying of particles in buckets, and the phase 
displacement of particles not in buckets are complementary. 
For any proposed acceleration system involving 
buckets, one can envision a complementary system involving 
phase displacement, which is equally efficient if loss 
of particles to the walls, injector, and gas scattering are 
neglected. In general it appears that when particle loss is 
included, phase displacement acceleration is inferior to 
acceleration of particles in buckets. There are, however, 
certain situations in which phase displacement seems to 
have some advantages. In particular, if one is accelerating 
particles up to the transition energy with buckets, then 
there are empty buckets which simultaneously move down 
from high energy to the transition energy. These empty 
buckets may be employed to phase displace particles from 
the transition energy to the output energy of the accelerator, 
thus increasing particle acceleration efficiency. 

It is in any case important to understand the phase 
displacement process, since it always operates on particles 
outside of buckets whether one makes use of it or not. 

(d) Beam stacking 

Particles may be accelerated by a radio frequency cycle 
as described above, until they reach an energy E2. On 
successive cycles buckets full of particles are deposited 
at the energy E2. The particles already there are displaced 
by successive buckets, on the average downward in energy, 
to make room in phase space for the newly arriving particles 
according to Liouville's theorem. When a suitable 
number of buckets of particles has been stacked near the 
energy E2, a second radio frequency accelerator may 
accelerate the particles on to a new energy E3. If the bucket 
size for the second cycle is n times the bucket size for the 
first cycle, then n buckets can be stacked at E2 during the 
first cycle. These can then be picked up in a final bucket 
and carried to E3 in a single cycle of the second type. The 
advantage of this system is that the radio frequency schedule 
can be chosen in the most efficient way to capitalize on the 
bucket size vs. energy relation, which in turn depends 
upon the frequency of revolution vs. energy curve. Thus 
usually dΩ/dE, where Ω is the frequency of revolution, 
decreases with energy (see fig. 1). This has three consequences : 

1. For a given radio frequency voltage, the bucket 
size increases with energy and hence in the usual acceleration 
method the buckets are nearly empty when they arrive 
at the transition energy. By stacking at intermediate 
energies this can be corrected. 

2. For a given radio frequency voltage, the allowable 
rate of frequency modualtion noticeably decreases with 
increasing energy, and hence the repetition rate is limited. 
By stacking one can use a higher repetition rate with small 
buckets at lower energies, and a smaller repetition rate 
at higher energies, but with larger buckets, so that the 
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output current corresponds to the total injected current 
at the higher repetition rate. 

3. When stacking particles, the particles already at an 
energy E2 are displaced in energy by a succeeding bucket, 
by an amount proportional to the phase area occupied 
by the bucket. Digital computer studies have indicated 
the particles are not spread in energy by large amounts, 
but are kept fairly tightly bunched in energy, with a mean 
displacement depending only on the total area of the succeeding 
buckets. Thus if the bucket size is increasing 
with energy, the energy displacement of particles when 
one aπempts to stack will be very large. Consequently 
one wants to stack particles using buckets which are full 
of particles. This can be accomplished by decreasing 
the cavity voltage or increasing the frequency modulation 
rate. 

(e) Multiple oscillators 

Schemes have been proposed which involve several 
independent radio frequency accelerating voltages which 
act simultaneously on the particles being accelerated. 
The simplest such scheme, proposed by Darragh Nagle, 
utilizes a number N of identical oscillators operating 
simultaneously over the same frequency interval. Each 
oscillator follows a frequency modualtion cycle as in 
conventional synchrotron acceleration. The N frequency 
modulation cycles of the different oscillators are staggered 
so that each oscillator accelerates a pulse of particles, the 
N pulses following one another in energy from the injection 
to the output energy. The scheme depends upon 
the fact that particles are relatively unaffected by radio 
frequency voltages with which they are not in synchronism. 
More complicated schemes can be envisioned in 
which a given particle is accelerated by more than one 
oscillating voltage, perhaps simultaneously. One may for 
example use interlaced bucket lift schemes in which several 
oscillator frequencies are chosen so that their subharmonics 
are interlaced. 

It seems likely that very efficient accelerating schemes 
using multiple oscillators may be possible. However, too 
liπle is known theoretically about the behavior of particles 
under the action of multiple oscillators for us to be able to 
evaluate such schemes at present. 

(f) Scheduled and stochastic schemes 

Acceleration schemes may be classified as scheduled or 
stochastic. Scheduled schemes are those in which the 
radio frequency voltages are programmed in such a way 
that a particle is accelerated according to a planned schedule. 
Thus, for example, it is possible to choose the initial 
and final radio frequencies f1 and f2 in a bucket lift so that 
particles are passed from one bucket to another as they are 
accelerated. If, for example, for two integers h1, h2, we 
have f2/h1 = f1/h2, then during one frequency modulation 
cycle, a particle riding in a bucket at harmonic number h1 

is accelerated from an energy corresponding to a frequency 
of revolution f1/h1 to that corresponding to f2/h2. On 
the next FM cycle, the particle rides in a bucket of harmonic 
number h2 from the frequency of revolution f1/h2 = f2/h1 
to the frequency f2/h2. The total energy gain of the particle 
corresponds to a frequency ratio (f2/f1)2 whereas 
the oscillator is modulated only over the range f2/f1. It 
is not difficult to find matching systems of harmonic numbers 
such that particles can be carried in a scheduled way 
over frequency ranges of many octaves with oscillators 
modulated over a frequency ratio of a fraction of an 
octave. Such schemes not only reduce the demands on the 
rf circuitry with respect to frequency modulation, but 
they increase the efficiency of the rf system by allowing 
one rf voltage to accelerate many pulses of particles simultaneously. 

In stochastic, or unscheduled schemes, no aπempt is 
made to program the radio frequencies precisely, and the 
energy of an individual particle varies in an unpredictable 
or random way. Thus in an unscheduled bucket lift 
scheme, the initial and final frequencies f1 and f2 may bear 
no particular relationship to each other and may even vary 
in a random way from cycle to cycle. A particle at the 
beginning of an FM cycle may or may not find itself in a 
bucket depending upon whether its frequency of revolution 
is sufficiently close to f1/h for some h. If it is in a bucket, 
it is carried up in energy to a new energy corresponding 
to f2/h. If it is not, it will be phase displaced downward 
in energy by the buckets which pass it during the FM cycle, 
and it may at the beginning of the next cycle be caught in 
a bucket. It is convenient to define a mean free path as 
the average energy increment received by a particle, once 
caught, before it again has a chance of losing energy. A 
particle starting at the injection energy has a certain probability 
of reaching the output energy before being lost. 
Under certain circumstances, stochastic acceleration 
schemes yield output currents comparable to those of 
scheduled schemes, but at the expense of a greater duty 
factor for the injector. In general, the greater the mean 
free path in a stochastic scheme, the more efficient is the 
scheme from the point of view of injector duty factor, 
and the more rapidly is any given particle carried from the 
injection to the output energy. If there are no loss mechanisms 
(orbit instability, gas scaπering, etc.) between injector 
and output, then the time of transit does not affect 
the theoretical output current; if there are such loss mechanisms, 
then for long transit times (short mean free paths), 
the output current is reduced. Though less efficient in 
some ways, stochastic systems have the advantage of 
simplified rf circuitry. Various partially scheduled schemes 
are possible in which a particle once caught, may be 
carried in several successive buckets before being subject 
again to a chance of being caught or left behind. Recently, 
E. L. Burshtein, V. I. Veksler, and A. A. Kolomenski 1) 

have proposed a stochastic accelerator in which the accelerating 
voltage is essentially a random noise. Here, of 
course, the mean free path is simply the mean voltage 
across the accelerating gap. 
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(g) Intersecting beam experiments 

The proposal to achieve very high energy collisions by 
directing opposing accelerated beams against one another 
rests on the possibility of stacking successive pulses of 
particles in FFAG accelerators. Thus, if a circulating 
beam of particles has a sufficiently long lifetime against 
orbit instabilities, gas scaπering, etc., then very high 
circulating currents of high energy particles can be built 
up in this way. Successive pulses of particles may be 
stacked at the output energy, to built up an intense beam, 
or they may be stacked at an intermediate energy, and then 
carried up to the output energy simultaneously in one large 
bucket. The considerations involved have been discussed 
under (d) above. The detailed theory will be worked out 
later. 

II. Theory of radio frequency acceleration in fixed field 
accelerators 

(a) Frequency versus energy relationship 

It is convenient to characterize an equilibrium orbit 
in a fixed field accelerator by its equivalent radius R 
defined by 

L = 2 Π R , (1) 

where L is the length of the orbit. Each orbit R is traversed 
by particles of energy E (R). We define the momentum 
compaction parameter or mean field index k by 
either of the equivalent forms 

k = 
R dp 

- 1 = 
R d 

(2) k = p dR 
- 1 = dR' 

(2) 

where p is the momentum, and is the average magnetic 
field averaged along the orbit R. If k is constant, we have 

p/pl = (R/R1)k+1 (3) 

/ , = (R/R1)k (4) 

The frequency of revolution of a particle in an orbit R is 

ω = pc2/2π RE, (5) 

where E is the total energy, including the rest energy 
E0 = mc2. By squaring equation (5), differentiating, and 
rearranging, we obtain a formula for 

X = 
E dω 

= 
( k + 1)E0

2 - E2 

(6) X = ω dE 
= 

(k + 1) (E2-E0
2) (6) 

The transition energy is given by 

E t = √ ( k + 1 ) E 0 . (7) 

In a cyclotron x = 0 and equation (6) then defines k as 
a function of E. In a synchrotron, k is often constant, 
and we may then integrate equation (6) to obtain 

ω 
= [ √k+ 1 E0 ]( E

2-E0
2 

) 

k 
ω 

= [ √k+ 1 E0 ]( E
2-E0

2 

) 
2(k + 1), 

ωt 

= [ √k+ 1 
E ]( k E0

2 
) 

2(k + 1), 
ωt 

= [ √k+ 1 
E ]( k E0

2 
) 

where ωt is the frequency of revolution at the transition 
energy. The quantities x and ω/ωt are ploπed in fig. 1 
for a typical case (k = 82.5). 

(b) Canonical form for the acceleration equations 

We neglect coupling between betatron and synchrotron 
oscillations, and assume that a particle is always on an 
equilibrium orbit. A particle with energy E travels along 
an orbit of length 2πR(E); we will call R(E) the equivalent 
radius. We define an equivalent angular variable Θ 
along the orbit by 

dΘ = ds/R, (9) 

where ds is the element of arc length. Then if (Θ, 
R, t) is the electric field component along the orbit, we 
have 

dE/dt = eRΘ = 2πωRe (10) 

dΘ/dt = 2 π ω , (11) 

where ω (E) is the frequency of revolution for a particle 
of energy E. If the orbit is not circular, a small oscillatory 
term in Θ must be added to the right member of equation 
(11), but if the origin of Θ is properly chosen, this 
term has zero mean around the circumference, and we 
are here ignoring it. 

We consider the case when has the form 

= ( l / e R ) F (Θ,t) , (12) 

that is, we assume that the accelerating gaps are radial 
and have a voltage independent of radius. The case 
when the voltage varies with radius according to a factor 
r (R) can easily be treated by a slight modification of the 
method. We define a new energy variable W (E) as follows : 

w = 
E 

dE 
(13) w = 

∫ 
dE 

(13) w = 
∫ ω(E)' 

(13) w = 
E0 

ω(E)' 
(13) 

where E0 is arbitrary and may conveniently be taken as the 
rest energy if ω (E) is extrapolated to that point. We can 
now rewrite eqs. (10) and (11) in the form 

dW/dt = 2 Π F ( Θ , t ) , (14) 

dΘ/dt = 2Πω(W) , (15) 



48 New ideas for accelerating machines 

which are derivable from the Hamiltonian function 

H = - 2 π ∫ F ( Θ , t ) d Θ + 2 π E ( W ) . (16) 

The variables W, Θ are therefore canonical. It is convenient 
to think of W, Θ as coordinates in a cylindrical phase 
space. 

The advantage in writing the equations in canonical 
form is that we can apply certain useful general theorems. 
We have Liouville's theorem that a closed curve in the 
W, Θ - plane transforms under eqs. (14), (15) in such a 
way that the enclosed area remains constant. If the 
Hamiltonian function varies sufficiently slowly in time, we 
may apply the adiabatic theorem which is stated conveniently 
for our purpose in the form : A set of points which 
at time t1 lie along a curve H (t1) = constant in the W, Θ-space, 
will at a later time t2 be found to lie along a curve 
H (t2) = constant. In order to apply the theorem, it is 
necessary that H (t) does not change appreciably during 
the time required for a particle to traverse a typical sample 
of the curve H (t) = constant. 

(c) Application to beam stacking 

This result can be applied immediately to the problem 
of calculating the number of pulses of particles that can 
be stacked in any given region. Assume that we inject at 
an energy E1 where the frequency of revolution is ω1,  
and that the energy spread from the injector is ∆E1. A 
pulse of injected particles, injected for one or more full 
turns will then occupy an area 

A1 = 2Π∆W1 = 2 Π ∆ E 1 / ω 1 (17) 

in the W, Θ-space. If we wish to stack n pulses at an 
energy E2, then these pulses will occupy an area at least 
equal to 

A2 = n A1 = 2 Π ∆ E 2 / ω 2 , (18) 

so that 

∆E 2 /∆E 1 = nω1/ω2. (19) 

If we employ the mean field index defined in eq. (2), then 

∆R 
= 

1 E ∆ E 
(20) R = (k + 1) (E2 - E0

2) (20) 

Thus the minimum radial spread of the stacked beam is 

∆R2 

-
n ω1 

( 
∆E1 

) 
(E1E2) R2 

(21) 
∆R2 

-
n 

ω2 ( E1 ) (E2
2 - E0

2) k + 1 ' (21) 

where E0 is the rest energy, and E2 includes the rest energy. 

(d) Stationary buckets 

We now assume that we have several oscillators supplying 
radio frequency voltages at various accelerating 
gaps, so that 

F (Θ, t) = ∑ F j(Θ, t) cos (2π ∫ υjdt), (22) 
j 

where Fj, υj are slowly varying functions of t. We expand 
Fj in a Fourier series ; 

F j (Θ, t) = ∑ Ajl (t) sin (l Θ-βjl), (23) 

l 
so that 

H = 2ΠE (W) + ∑ πAjl {cos[lΘ - βjl - 2π ∫ υ jdt] H = 2ΠE (W) + ∑ l 
{cos[lΘ - βjl - 2π ∫ υ jdt] H = 2ΠE (W) + 

j , l 
l 

{cos[lΘ - βjl - 2π ∫ υ jdt] 

+ cos[lΘ - βjl + 2π ∫ υjdt]} (24) 

Let us suppose that ω = υj/h for some ΥJ and some harmonic 
number h. Then we introduce a rotating coordinate 
system on the W, Θ-cylinder : 

Θ* = Θ - 2π/h ∫ ΥJ dt - βjh/h. (25) 

For this purpose, we introduce the generating function 

S = W (Θ - 2π/h ∫ υ jdt - βjh/h), (26) 

which defines the canonical transformation W, Θ → W, Θ* 
through the equations 

Θ* = ∂S/∂W, (27) 

W = ∂S/∂Θ. 

The Hamiltonian becomes 

H* = H 
∂S 

= 2πE(W)- [ 2πυj + βjh ] w+ πA j h cosh Θ* H* = H 
∂t = 2πE(W)- [ h 

] w+ 
h 

cosh Θ* 

+∑ πAjl {cos[lΘ* - βj' + l βjh - 2π ∫ (υj' -
l 

υ j )d t ] +∑ l 
{cos[lΘ* - βj' + 

h 
βjh - 2π ∫ (υj' -

h 
υ j )d t ] 

j,l 
l 

{cos[lΘ* - βj' + 
h 

βjh - 2π ∫ (υj' -
h 

υ j )d t ] 

+ COS[l Θ* - β j ' 1 + 
l 

βjh + 2π ∫ (υj' + 
l υ

j
) dt]} + COS[l Θ* - β j ' 1 + 

h 
βjh + 2π ∫ (υj' + 

h 
υ
j
) dt]} 

(28) 

where the prime in the summation means that the first 
term in curly brackets is to be omitted in case j ' = j , l = h. 
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The terms in the summation are rapidly oscillating and may 
in many cases be neglected. We then have 

H* = 2 Π E ( W ) -
2Πυ 

W+ 
V 

cos h Θ*, (29) H* = 2 Π E ( W ) - h 
W+ 

h 
cos h Θ*, (29) 

where we have omitted the subscript j , have absorbed the 
small term βjh in υ, and have set 

2π 

V = π A j h = ∫ 
F j (Θ, t) sin (hΘ - βjh) dΘ. (30) 

0 

The maximum energy gain per turn is V, as we see from 
eqs. (30), (22) and (12), or from the equations 

dW = - ∂H* 
= V sin(h Θ*), (31) = -

∂Θ* = V sin(h Θ*), (31) 

dΘ* 
= 

∂H* 
= 2π(ω -

υ 

), (32) dt = ∂W 
= 2π(ω -

h ), (32) 

In the case of a single short accelerating gap at Θ = Θ0, 
we have 

βjh = hΘ0 - π/2, (33) 

F j (Θ , t) = Vδ(Θ - Θ0, (34) 

V = ∫ e m a x R d Θ , (35) 

Θ* in this case is the angular position relative to a particle 
which is synchronous with the oscillation and arrives at 
the accelerating gap at a moment the voltage is zero and 
decreasing. 

If υ and V are constant, then H* is a constant of the 
motion. We define the synchronous value Ws by 

ω(Ws) -
υ 

(36) ω(Ws) -
h 

(36) 

Fig. 2. Buckets W vs. Θ for h = 3. 

Fig. 3a. Stationary buckets k > 0 

and expand 

E = Es + ω sW*+ 1 ω s ' W * 2 + . . . , (37) E = Es + ω sW*+ 2 ω s ' W * 2 + . . . , (37) 

where the prime denotes a derivative with respect to W, and 

W* = W - W s . (38) 

If we neglect terms of order W*3, we have 

H* = πωS'W*2 + 
V 

cos hΘ*. (39) H* = πωS'W*2 + h 
cos hΘ*. (39) 

(The term ( 2 π h E s - 2 π υ W s ) has been omitted, since it 
does not contain W* nor Θ* and has no influence on the 
resulting canonical equations.) 

A plot of the curves H* = constant is given in fig. 2 for 
the case h = 3. If we set 

h Θ * = φ, (40) 

y=[ 2πh | ω's | ] 
1 

w*, (41) y=[ 2πh | ω's | ] 2 w*, (41) y=[ 2πh | ω's | ] w*, (41) y=[ V ] w*, (41) 

c = hH* (42) c = 
V' 

(42) 

then eq. (39) takes on the dimensionless form 

± ½y2 + cos φ = C, (43) 

where the positive sign applies if ω's > 0, and the negative 
sign if ω's < 0. We can write 
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Fig. 3b. Stationary buckets k < 0 

ω' = 
dω 

= ω 
dω 

= X 
ω2 

(44) ω' = dW = ω dE 
= X 

E, (44) 

where x is given by eq. (6). Curves of constant C according 
to eq. (43) are plotted in fig. 3. 

We see in fig. 3 the region of stability or "bucket" 
within which particles execute stable phase oscillations 
about the stable phase Φ = π(x > 0) or Φ = 0 (n < 0). 
There are h such buckets around the W, Θ cylinder at each 
W value for which ω = υ/h for some h, and the buckets 
revolve with frequency ω. Outside the buckets, the particles 
move around the cylinder out of synchronism with the 
buckets. The bucket boundary, or separatrix is given 
by eq. (43) with C = ± 1 : 

y = 2 
sin 

( 
φ 

) 

(45) y = 2 cos ( 2 ) 
(45) 

The half-height of the bucket is given by ym = 2, and the 
maximum energy deviation is 

E m - E s = ωW m * = [ 2 V ]½ (46) E m - E s = ωW m * = [ 
πh | X | E ]½ (46) 

The area of the buckets, in W, Θ space, counting all h 
buckets at a given harmonic is, (the area of a bucket-
shaped figure of half-dimensions a, b is 8 ab/π), 

A = 
8 [ 2VE ] 

½ (47) A = 
ω [ πhx ] (47) 

Near the stable point Φ = 0 or π, the curves C = constant 
are ellipses and the frequency of the phase oscillations 
around these ellipses is 

Vp = ω 
hxV ] ½ (48) Vp = ω 
2πE ] (48) 

The above formulas apply only when the contribution 
from all terms in the summation in eq. (28) may be neglected. 
In particular, these formulas fail for energies 
midway between two harmonics, and they certainly fail 
when the bucket dimensions calculated from eq. (46) are 
so large that the buckets for adjacent harmonics would 
overlap. If only one term from the summation is important, 
say the term j', l, it may be added to the approximate 
Hamiltonian (29), which now becomes periodic in the time 
with frequency ΥJ' - l ΥJ/h. If only one oscillator is present 
(j' = j), then all terms in the summation are periodic 
with frequency Υ/h. In such cases, the analytic techniques 
developed for studying motion under a periodic Hamilton. 

Fig. 4a. Scattered points 
about a bucket 
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Fig. 4b. Scaπered points with two oscillators 

ian are applicable. We find, indeed, that accurate 
numerical solution of the acceleration equations leads to 
agreement with these ideas. In particular, when high 
voltages are used, the buckets no longer agree exactly with 
the above equations, and we find at the bucket boundaries 
typical cases of scaπering of phase points, appearance of 
strings of pearls, etc., which arise in studying the nonlinear 
equations for alternating gradient orbits. An 
example is plotted in fig. 4a where we show results for a 
single accelerating gap at a very high voltage. (V= 10 Mev, 
Fs = 50 Mev, k = 99, h = 2.) The phase and energy 
are plotted at each revolution. For certain starting values, 
the points lie on invariant curves as drawn. In other cases 
the points scatter, and two typical sets of such points, each 
starting from a single initial point are shown. Fig. 4b 
shows a phase plot for a particle subject to two oscillators. 
(V1 = V2 = 100 Kev, h1 = h2 = 1, k = 99, oscillators 
on opposite sides of the accelerator.) The oscillators have 
frequencies which according to the preceding formulas 
would lead to the buckets shown, if a particle were subject 
to each oscillator alone. Three sets of points, corresponding 
to three different initial points are shown. In fig. 4c 

is shown a phase plot in the neighborhood of the 9th and 
10th subharmonics of a single oscillator. The abscissa 
is the oscillator phase when the particle crosses the gap. 
One notices the various other stable regions occuring 
between these harmonics. (In this case V1 = V2 = 20 Mev, 
k = 99, Es = 500 Mev. (h = 10), Es = 814 Mev (h = 9).) 

Fig. 4c. Sub-harmonics of one oscillator 
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(e) Adiabatic motion of buckets 

If now the parameters υ, V in the Hamiltonian (39) are 
varied slowly, we may apply the adiabatic theorem to 
determine the behaviour of the particles. A group of 
particles which at time t1 lie on a closed curve H*(t1) = 
constant, of area A1, inside the bucket, will at time t2, 
after adiabatic variation of υ, V lie on a closed curve 
H* (t2) = constant, with area A2; and now by Liouville's 
theorem A1 = A2. Thus the adiabatic theorem, together 
with Liouville's theorem enable us to conclude that a 
particle inside the bucket remains on a curve H* = constant, 
of constant area as the bucket shape or position 
changes adiabatically. 

If the variation of parameters is not adiabatic, Liouville's 
theorem still applies, so that a group of particles, 
initially on a closed curve H* (t1) = constant, will remain 
on a closed curve of constant area, but the curve at a later 
time t2 will not be of the type H* (t2) = constant. Since 
particles near the separatrix which bounds the bucket 
move around a curve with a frequency which approaches 
zero as the curve approaches the separatrix, the adiabatic 
theorem cannot be applied to such particles unless the rate 
of variation of parameters approaches zero. Hence the 
separatrix does not correctly represent the boundary of 
the bucket except when the parameters are constant. 
We will return to this point later. 

A particle outside the bucket, but far enough from all 
other harmonics so that neglect of the summation in 
eq. (28) is justified, will in the same way remain on a 
curve H* = constant, having a constant area beneath 
it on the W, Θ-cylinder. That is, the phase average 

= 1/2π 

2π 

W d Θ , (49) = 1/2π 
∫ 

W d Θ , (49) = 1/2π 

0 

W d Θ , (49) 

remains constant for a particle outside the bucket under 
adiabatic variation of parameters. Assume now that the 
frequency υ is varied so that the bucket approaches the 
particle from below. The particle then moves along 
curves which lie closer and closer to the separatrix. The 
frequency of revolution of the particle relative to the bucket 
approaches zero and the particle spends most of its time 
near the unstable fixed point. The rate of frequency 
modulation must approach zero as the particle approaches 
the separatrix in order for the adiabatic condition to be 
satisfied, and the bucket can never pass the particle adiabatically. 
However, if when the particle is nearly on the 
upper separatrix, and consequently spends nearly all its 
time just above the unstable fixed point, we suddenly 
change the frequency so as to move the bucket up slightly, 
the particle will almost certainly find itself just below 
the fixed point. It now moves just under the lower 
separatrix. The phase area beneath this curve differs 
from that beneath the original curve on which the particle 

lay by the area of the buckets. If we now move the buckets 
away adiabatically W as defined by eq. (49) will remain 
constant at a value below the initial value by an amount 

A = A/2Π, (50) 

where A is the area of the buckets. This is the process 
of phase displacement. 

In a similar fashion, we can discuss the adiabatic capture 
and loss of particles near the synchronous energy as 
the voltage V is increased or reduced. We can show that 
a group of particles lying in a band of width AW around 
the phase cylinder and centered on the synchronous value 
Ws, will, if the voltage V is increased adiabatically from 
zero, be captured into the buckets so that they lie within 
a closed curve H* = constant, of area 2 Π ∆ W . The 
converse process occurs when the voltage V is turned off 
adiabatically. 

(f) Transition energy 

At the transition energy x = 0, and we must keep 
terms to W*3 in eq. (37). By differentiating formula (6), 
we find at the transition energy 

E2 

( 
d2ω 

)t 
= -

2 
(51) 

ω ( dE2 )t 
= -

k (51) 

Hence, if we set 

E* = E - E t , W * = W - W t , (52) 

we have, near the transition energy, 

ω = ω t ( 1 -
E*2 

), (53) ω = ω t ( 1 -
kEt

2 ), (53) 

Fig. 5. Phase plane near transition Η = 2 
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Fig. 6. Phase plane near transition Η = ηc 

w* = E* 
( 1 + 

1 E*2 

), (54) w* = 
ωt ( 1 + 3k Et

2 ), (54) 

E* = ω t W * -
1 ωt

3W*3 

(55) E* = ω t W * -
3k Et2 (55) 

We introduce the dimensionless variables 

y = ( 
4π 

)⅓ ( 
hE t 

)⅓ 
ω t W * 

(56) y = ( k )⅓ ( V )⅓ E t 
(56) 

φ = h Θ* (57) 

Fig. 7. Phase plane near transition Η = 25 

Fig. 8. Phase plane at transition η = 0 

and the parameters 

η = (2π2k)⅓ (hEt/V)2/3 (1 - υ/hωt), (58) 

C = hH*/V. (59) 

we may then write the Hamiltonian (29) in the form 

- l / 6 y3 + ηy + cos φ = C, (60) 

where we have again omitted terms independent of φ, y. 
Graphs of eq. (60) for several values of C and η are 

shown in fig. 5, 6, 7, 8 and 9. We are particularly inter-

Fig. 9. Phase plane with frequency above the transition 
frequency Y vs Φ η = - 1 
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ested in the separatrices which bound the buckets. The 
unstable fixed points above and below the transition 
energy are given respectively by 

y = √2Η, φ = π, above, and 

y = - √2Η, φ = 0, below. (61) 

Hence the values of C on the separatrices are 

c-±[ 1 
(2η)3/2 - 1] (62) c-±[ 

.3 (2η)3/2 - 1] (62) 

For large values of YJ, we have separate buckets above and 
below the transition energy as shown in fig. 5. At the 
critical value 

ηc = 
1 (3)2/3 = 1.040, ( 6 3 ) ηc = 2 

(3)2/3 = 1.040, ( 6 3 ) 

the two values of C become equal, and we have the case 
shown in fig. 6 where the buckets just touch. For 
0<Η < 1.040, the phase plot is as shown in fig. 7. For Η = 0, 
when υ = hω t, the phase plot is shown in fig. 8. For 
η<0, there are no separatrices, as shown in fig. 9. The 
values y1, y2, y3, y4 and φ1 indicated on the figures are 
plotted in fig. 10. 

The bucket areas, that is, the areas around the stable 
fixed points and inside the separatrices can be calculated 
from the formula (W, Θ units) 

A1 = 
3√12 π2 

( 
kv ) l / 3 Et 

α1 (η), (64) A1 = 2 ( 4πhEt 

) l / 3 

ωt α1 (η), (64) 

where the function α1 (η) is plotted in fig. 11. Formula (64) 
gives the area of the h buckets on one side of the transition 
energy. The area of the region between the outer separatrix 
on either side and the transition energy is given by 

A2 = 
3√12 π2 

( 
kv )l/3 

α2 (η). (64) A2 = 
2 ( .4πhEt 

)l/3 

α2 (η). (64) 

Fig. 10. Bucket dimensions near transition 

Fig. 11. Bucket area parameters near transition 

The function α2 (Η) is also ploπed in fig. 11. 

By studying the figs. 5-11, we can predict the behavior 
of the phase points as the frequency is increased adiabatically 
through the transition frequency. (By adiabatic 
we mean here that v is small enough that the adiabatic 
theorem can be applied except in the immediate neighborhood 
of the separatrix.) As υ increases, Η decreases. 
As η → ΗC, it can be seen from figs. 5 and 11 that about 
half of the phase area between the buckets and the transition 
energy is phase displaced past the buckets and about half 
is absorbed into the outer region of the growing bucket. 
Between η = 2.1 and η = ηc, the bucket area increases 
about 30%, so that at η = ηc, the outer 30% of the bucket 
is populated with phase points which were originally 
between W = Wt and W = W t ± (A2 - A1)2π, where 
A2, A, are evaluated at η = 2. Beyond η = ηC, both 
A2 and A1 decrease, so that when υ = υt, Υ = 0, the 
outer 30% of the bucket area at η = ηC has been deposited 
outside the final separatrix on the same side from which 
the bucket came. Thus phase points initially between 
the buckets and the transition energy at η = 2.1 are left 
in the same region (though not necessarily at the same W) 
when η = 0. Phase points which were in the bucket 
below the transition energy at η = 2.1 are at η = 0 in 
the upper half of the region between the two separatrices 
(above the dashed curve in fig. 8), and in such a way that 
points originally nearer the center of the bucket are left 
nearer the upper separatrix. If the frequency υ is now 
modulated beyond υt, the curves along which the phase 
points move straighten out, so that points in the lower 
bucket at η = 2.1 are finally deposited in a band above 
the transition energy extending from W = W t to W = Wd 
where 

w d = A1t = 
3√12π 

( 
kV 

)⅓ 

Et (66) w d = 
2π 

= 
4 ( 4πhEt )⅓ ωt 

(66) 

Furthermore, points originally near the center of the bucket 
are deposited near Wd, so that if at a point η1 > 2.1, 
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the area of the bucket below the transition energy was 
Al, particles in the bucket at this time are left finally in 
a band Wd ≥ W ≥ Wd - (A1/2π). If the frequency were 
modulated adiabatically downward from above υt, the 
above process would take place in reverse. In order to 
accelerate the particles in the band Wd ≥ W ≥ Wd - A1/2π 
higher in energy, one may turn off the oscillator voltage, 
bring the frequency to a point synchronous with particles 
in this band, increase the voltage adiabatically to capture 
the band into a bucket in the usual way, and modulate 
the frequency downward to carry them higher in energy. 
We may notice that this second modulation program is 
not really necessary. If we simply repeat the original 
modulation program where the frequency is increased 
about half of the particles in the band Wd ≥ W ≥ Wt 
are accelerated by phase displacement. It is also possible 
to cross the transition in a non-adiabatic way by modulating 
the frequency more rapidly up to a value slightly greater 
than υt and then downward again. If the frequency 
overshoot is properly adjusted relative to the rate of 
frequency modulation, one can see from the figures that 
a fraction of the particles can be transferred from the 
lower to the higher energy buckets. 

It is of interest to calculate the frequency at the points 
Wc and Wd. At η = ηc, according to eq. (53) and fig. 10 
the frequency of revolution is 

ωc = ωt [ 1 - 2 . 0 8 ( 
v )⅔ -⅓ 

k ] , (67) ωc = ωt [ 1 - 2 . 0 8 ( 
4πhEt 

)⅔ -⅓ 

k ] , (67) 

and at Wd , it is 

ωd = ωt [ 1 - 3.23 ( 
V )2/3 

k-⅓ ] (68) ωd = ωt [ 1 - 3.23 ( 
4πhEt 

)2/3 

k-⅓ ] (68) 

It should be emphasized that the formulas in this section 
are correct only when higher order terms in E*/Et 
are neglected. The ratio of the next (cubic) to the quadratic 
term in formula (53) is 

E*3 d3ω 

= -
3k E* 

(69) 
6 dE3 

= -
3k E* 

(69) 
E*2 dE2 = - 5 k + 4 E t 

(69) 

2 d2ω 

= - 5 k + 4 E t 
(69) 

(g) Synchronous coordinate system 

When the oscillator frequency changes rapidly, the 
adiabatic theorem as applied in the preceding sections 
breaks down, particularly near the separatrices. Let us 
make a canonical transformation W, Θ* → W*, Θ* via 
the generating function 

S = Θ*(W-Ws), (70) 

where Ws (t) is defined by eq. (36) when the oscillation 
frequency is a specified function υ (t). The new canonical 
momentum 

W* = W-W s ( t ) (71) 

is then measured with respect to the value Ws for a synchronous 
particle. The Hamiltonian (29) becomes under 
transformation (70), 

H** = 2πE(W*) -
2πυ 

[W* + Ws(t)] + 
V 

cos h Θ* H** = 2πE(W*) -
h 

[W* + Ws(t)] + 
h 

cos h Θ* 

+ Ws Θ*, (72) 

where, by eq. (36), 

ws = υ 
= 

υEs 

(73) 
ws = 

h ωs' 
= 

hx sω s
2 (73) 

If we expand E (W*) as in eq. (37), and omit terms independent 
of W*, Θ*, we obtain 

H** = W sΘ* + 
V 

cos hΘ* + πω s 'W* 2 + 
π 

ω"sW*3 + ... H** = W sΘ* + 
h 

cos hΘ* + πω s 'W* 2 + 
3 

ω"sW*3 + ... 

(74) 

The quantities ω's, ω"s,... will be slowly varying, and if 
Ws and V are constant, or slowly varying, we can apply 
the adiabatic theorem to eq. (74), even when v is large. 

Let us neglect terms of order W*3 and make the substitutions 
(40), (41), (42), so that eq. (74) takes on the 
dimensionless form 

Fig. 12. Moving bucket γ = 0.5 
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± 1 y2 + cos φ + γ φ = C, (75) ± 2 y
2 + cos φ + γ φ = C, (75) 

with 

γ = 
W s 

= 
υ ES 

(76) γ = V = h xs ωs
2 V 

(76) 

The sign of y2 in eq. (75) is the same as the sign of x. 
Curves of constant C are plotted in fig. 12, for x > 0, 
γ = 0.5. Particles within the closed separatrix execute 
phase oscillations in a clockwise sense about the synchronous 
point Ws, Φs, where 

sin φs = γ. (77) 

At small amplitudes the frequency is 

υp = 
h | x | V√1 - γ2 

]½ ωs (78) υp = 
2 π E s ]½ ωs (78) 

Particles outside the separatrix move along curves which 
circle downward around the y, Φ cylinder, reversing 
direction of circling as they pass the bucket. 

The separatrix in fig. 12 is given by (for x > 0) 

y2 = 4sin2 φ / 2 - 2 γ φ (79) 

The values of y1, φs, φ1, φ2 as indicated in fig. 12 are plotted 
in fig. 13 as functions of γ. The area of the bucket is 

Fig. 13. 

Fig. 14. Bucket area parameters 

A = 
8 [ 2VEs ]½ 

α3 (γ), (80) A = 
ωs [ πh | xs | ]½ 

α3 (γ), (80) 

where the factor α3 (γ) is plotted in fig. 14. In analyzing 
bucket lift schemes, it is useful to see how A varies with 
energy for a given oscillator voltage and rate of frequency 
modulation. It is then convenient to rewrite eq. (80) in 
the form 

A = 8 √ 2 
V υ-½ α3 | γ |½ (81) A = 8 √ π V υ-½ α3 | γ |½ (81) 

The area A for a given oscillator varies as α3 | γ |½ as the 
parameters Es, Ws, xs, h change with energy. The quantity 
α3 | γ |½ is also plotted in fig. 14. It will be noted that 
the bucket area changes relatively little over a fairly wide 
range of y. 

It is of interest to calculate the energy change suffered 
by a particle outside of a moving bucket as the bucket goes 
by. We know the average change in W must agree with 
that calculated on the basis of Liouville's theorem in 
Section He. However it is clear from fig. 12 that a particle 
outside the bucket and near the separatrix will spend a 
long time in the neighborhood of the unstable fixed point, 
and hence will be carried along for a considerable distance 
by the bucket. There will therefore be fluctuations in the 
energy change about the average value. By eq. (31), we 
have for the change in W 

∆W = 

φ0 

V Sin φ d φ 

(82) 
∆W = 

∫ 
V Sin φ d φ 

(82) 
∆W = 

∫ φ (82) 
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We expand the right member of eq. (32), keeping only 
first order terms in W*, using φ = h Θ, to obtain 

φ = ω[ 
2 π h x V ]½ y. (83) φ = ω[ 

E 
]½ y. (83) 

If we take Φ0 to be the phase at which the curve (75) passes 
the bucket (y = 0), we obtain 

∆W = 
1 [ EV ]½ φ0 

sin φ d φ 

(84) 

∆W = 
1 [ EV ]½ 

∫ 

sin φ d φ 

(84) 

∆W = 
ω [ 4πhx ]½ 

∫ 

sin φ d φ 

(84) 

∆W = 
ω [ 4πhx ]½ 

∫ [cos φ0 - cos φ + γ (φ0 - φ)]½ 

(84) 

∆W = 
ω [ 4πhx ]½ 

φ 
[cos φ0 - cos φ + γ (φ0 - φ)]½ 

(84) 

The total change in W is twice the limiting value for 
φ → - ∞ : 

∆W = 
1 [ EV ]½ φ0 

sin φ d φ 

(85) 

∆W = 
1 [ EV ]½ 

∫ 

sin φ d φ 

(85) 

∆W = 
1 [ πhx ]½ 

∫ 

sin φ d φ 

(85) 

∆W = 
ω [ πhx ]½ 

∫ [cos φ0 - cos φ + γ (φ0 - φ)]½ 

(85) 

∆W = 
ω [ πhx ]½ 

— ∞ 

[cos φ0 - cos φ + γ (φ0 - φ)]½ 

(85) 

This integral must be evaluated numerically. 

(h) Phase flux 

A useful concept in the analysis of accelerating systems 
is the phase flux Φ (W) defined as the phase area per unit 
time which is accelerated past a given value of W. By 
Liouville's theorem, if there is some value of W at which 
the phase flux is zero, then the flux of area decelerated per 
unit time past any value of W must also be equal to Φ (W), 
that is, the net phase flux past any value of W is zero. 

If the phase area being accelerated is filled with an 
average density J (particles per unit area), then "the current 
of particles per unit time accelerated past the point W is 

I (W) = J Φ (W). (86) 

Since J can never exceed its value at injection (eq. (17)), 
the maximum output current which can be delivered by 
an accelerating scheme is J inj Φ min, where Φ min is the 
minimum phase flux between injection and output. Since 
any non-adiabatic mishandling of the particles, e.g. 
jitter in the frequency modulation or in the accelerating 
voltage V, will reduce the phase density J, in a well designed 
accelerating system, Φ should increase with W in proportion 
to the decrease in J. In FFAG synchrotrons, for a given 
maximum voltage V, Φ can be made much larger at high 
energies than at low energies because of the decrease in x. 
at high energies. The theoretical output currents from 
high energy FFAG synchrotrons calculated according 
to these principles are very large - comparable with 
synchrocyclotron currents. 

If η buckets per unit time of area A pass a given point 
per second, the phase flux is 

Φ = nA. (87) 

If, for example, an accelerating scheme, utilizing a single 
harmonic number h, accelerates particles from energy E1 
to E2 at constant γ, the repetition rate is 

n = 
ws = 

ΓV 
(88) n = 

∆W 
= 

(E 2 -E 1 ) 
(88) 

where co is a suitable average value. The phase flux is 
then, by formula (80) 

Φ = 8 √ 2 v 3 / 2 E½ 

α3 γ. (89) Φ = 8 √ π ω ( h | x | ) ½ (E 2 -E 1 ) 
α3 γ. (89) 

The quantity α3 γ is plotted in fig. 14. For a given V, 
the maximum phase flux at any given W is achieved by 
choosing υ so that γ = 0.4. The minimum phase flux Φ 
then occurs where | α2 x/E | is a maximum. This quantity 
is plotted in fig. 1 for k = 82.5. The repetition rate, and 
hence the phase flux can be increased somewhat by choosing 
υ (t) so that the bucket area A remains constant during 
acceleration. The maximum phase flux is then more 
difficult to calculate, but is usually not different in order 
of magnitude. If instead of γ, υ is held constant, the 
phase flux is 

Φ = 8 √ 2 | υ | ½ 

V α 3 | γ | ½ . (90) Φ = 8 √ π υ2 - υ1 
V α 3 | γ | ½ . (90) 

As a second example, in a bucket lift scheme which uses 
all harmonics, the number of harmonics per unit time 
which pass a given frequency ω is, if h is large, 

n = | dh/dt | = hυ/υ, (91) 

and the phase flux is 

Φ = 8 √ 2 V3/2 (h | x)½ 

α3 γ- (92) Φ = 8 √ π E1/2 α3 γ- (92) 

Again the maximum phase flux at any value of W is 
achieved by choosing υ so that γ = 0.4. We may also 
write eq. (92) in the form 

Φ = 8 √ 2 | υ |½ 

V α 3 | γ | ½ , (93) Φ = 8 √ π ω 
V α 3 | γ | ½ , (93) 

which shows that for a given oscillator, Φ is proportional 
to α3 | γ |½/ω at different energies. 

As an illustration of the concept of phase flux, we consider 
the following case. An accelerating system brings 
a phase flux Φ1 filled with particles at a mean density J1 
past a point W1 beyond which the particles are spilled out 
in any manner. A second accelerating system carries a 
phase flux Φ2 out of the region just beyond W1. If 
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Φ2 = Φ1, then it is in principle possible to synchronize the 
two systems in such a way that all of the current accelerated 
by the first system is picked up by the second. 
Suppose, however, that the systems are not synchronized, 
and that an equilibrium exists in which the region just 
beyond W1 including the region from which the second 
system buckets draw their area, is filled with uniform 
density J2. Then since the first system decelerates an equal 
phase flux, we have, by balancing currents, 

J1Φ1 = J 2 Φ 1 + J2Φ2 . (94) 

The phase density in the second bucket is therefore 

J2 = Φ1 
J 1 , (95) J2 = 

Φ1 + Φ2 
J 1 , (95) 

and the current accelerated by the second system is 

J2Φ2 = Φ2 

J 1 Φ 1 . (96) J2Φ2 = 
Φ1 + Φ2 

J 1 Φ 1 . (96) 

Such a random transfer of particles between systems can 
therefore be effected with an efficiency of about ½ if the 
phase fluxes are equal. Either the current efficiency or 
the phase density efficiency (but not both) can be made to 
approach unity by making the ratio Φ2/Φ1 sufficiently 
large or sufficiently small. 
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