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This note discusses the estimation of systematic uncertainties and their incorporation into upper
limit calculations. Two different approaches to reducing systematics and their degrading impact
on upper limits are introduced. An improved χ2 function is defined which is useful in comparing
Poisson distributed data with models marginalized by systematic uncertainties. Also, a technique
using profile likelihoods is introduced which provides a means of constraining the degrading impact
of systematic uncertainties on limit calculations.

I. INTRODUCTION

A typical search analysis is ultimately described by a final variable (or variables) chosen to be sensitive to a
parameter of the search system. The result of the search are distributions of this final variable for the signal process,
one or more modeled background processes, and the observation from data. These final variable distributions become
the input to a calculation of upper limits on the signal model search parameter[1].

The signal and background model predictions generally depend on a range of ingredients which are necessary for the
measurement, but are not of immediate interest. Examples of such parameters are integrated luminosities, efficiencies,
acceptences, and calculated cross sections. Referred to as “nuisance parameters”, the values of these ingredients are
important in the extraction of limits on the parameter of interest, and any uncertainty in these nuisance parameters
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will necessarily degrade sensitivity to the parameter of interest.
This note describes two techniques useful for reducing the impact of systematic uncertainties on limit calculations.

The utility of these techniques are certainly not limited to limit calculations, although this will be the context in
which the ideas will be introduced.

II. CONSTRAINTS ON SYSTEMATIC UNCERTAINTIES

Systematic uncertainties are, in general, estimated rather than measured (Sec.A 2). Thus, the values estimated
frequently correspond to an upper bound of the true value. This overestimation, although appropriately cautious,
neccessarily leads to the degredation of calculated limits. However, the magnitude of systematic uncertainties can be
constrained by comparing the predicted shape and rate of the final variable to what is observed in data. Physicists
routinely rely on the degree of agreement in the final variable to search for indications of improper analysis construc-
tion. To do so, they will calculate a χ2 for the final variable distribution, relying on the difference in observed and
predicted values, as well as the uncertainties on the predicted values:
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where pi is the predicted value, di is the observed data, σi is the uncertainty on the prediction, and ndof is the
number of degrees of freedom for the sample (generally taken to be the number of bins less one)[8]. The rule of thumb
is that values near unity indicate both good modeling and proper estimation of systematic uncertainties; values
below(above) unity indicate overestimated(underestimated) systematic uncertainties. This treatment is usually as
much as this useful tool is exploited. Fortunately, with a bit of reformulation, this tool can be expanded to provide
constraints on the size of systematic uncertainties via the statistical power inherent to the shape and rate of the final
variable distribution.

A. A More General χ2

The discussion in this subsection follows largely from [2]. An improved χ2 function has been proposed in statistical
discussions [3, 4]. The general argument begins with the relationship of the common χ2 function to the likelihood
function in the limit of Gaussian statistics where, ignoring systematics:
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where L0 correponds to a perfect fit, pi = di. This function, unfortunately, fails to describe properly all cases in which
Gaussian statistics does not apply. However, in these cases it is straight forward to reintroduce the Poisson statistical
likelihood function:
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Using this new definition, we can write the associated χ2 function as:
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The impact of systematic uncertainties can be introduced by a transformation of the predicted values:

p′i = pi

K
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where the p′i are the systematically varied prediction in bin i and the values f i
k describe the size of each of the K

nuisance parameters. The values Sk represent Gaussian constraints with zero mean and unit width.

B. Constraining Uncertainties

Given this improved χ2 function, we can now move toward an interpretation of the impact of systematic uncer-
tainties. We have constructed a χ2 function that is sensitive to fluctuations in the per-bin predictions. In fact, the
response of the χ2 function to the nuisance parameters provides a measure of the true variance associated with that
nuisance parameter[5]. Because the condition for minimizing the χ2 function is that the first partial derivative with
respect to each parameter (aj) vanish, we can expect that near a local minimum in any parameter, the χ2 function
can be described with a quadratic function of that parameter. Thus, the uncertainty of the parameter a in terms of
the curvature of the χ2 function in the region of the minimum is given by:
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It is worth noting that when using this improved χ2 function, the covariance matrix associated with the Gaussian
statistical treatment does not exist. Because equation 9 is derived assuming a curvature matrix, we must be somewhat
careful in interpreting this result. In particular, it is unsafe to assume the response of the χ2 function will be
symmetric. Thus, when extracting a variance using this approach, the positive and negative deviations should be
calculated independently.

Using this prescription, one may utilize the inherent information stored in the shape and rate of the observed final
variable to place an upper limit on the value of systematic uncertainties. This technique amounts to providing an
extended utility of the common technique of calculating the χ2 for a final variable.

III. REDUCING THE IMPACT OF SYSTEMATICS

As outlined in [6], the choice of test statistic which is used in a CLs confidence level calculation should be made
in an effort to optimize the separation of the signal (signal plus background, HS) and null (background-only, H0)
hypotheses. In general, an optimal solution is the likelihood ratio:

Q =
P (data|HS)

P (data|H0)
(10)

As has been noted above, the probabilities P (data|HS) and P (data|H0) are inherently senstive to how well the models
are specified. That is, systematic uncertainties have the effect of broadening the probability distribution functions
(PDFs) and thereby reducing all instantaneous probabilities and degrading the separation power of the likelihood
ratio.

For a given set of predictions, observations, and systematic uncertainties, it is common for an experiment to find the
“best-fit” model for the data. In such cases, the null hypothesis is adjusted such that the PDFs are maximized over
the space of all possible values of the systematic uncertainties. This procedure is generally referred to as the “profile
likelihood” technique. With this PDF maximization in mind, the optimal choice of test statistic can be redefined.
The technique of profiling thus has the benefit of reducing the degree to which the two model PDFs (P (data|HS) and
P (data|H0)) are smeared by the process of marginalization (i .e., fluctuation of predicted values as in equation 8).
For a more complete discussion of profiling and marginalization, the reader is referred to [7].
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A. The Best-Fit Model

Given a set of predictions, observations, and systematic uncertainties, one can define a model which represents the
best fit to the data observation within the constraints of the systematic uncertainties. A reliable means of performing
this fit is achieved by minimizing the χ2 function in equation 7. The input to the problem is the bestestimates for
each background source model and systematic uncertainty. To properly incorporate these best estimates, we must
modify equation 7:
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where the definitions of p′i and Sk are adopted from equation 8. In this way, the Sk can be fit to minimize equation 11.
To properly incorporate the profile likelihood approach into a limit calculation, the profile likelihood must be

recalculated each time a pseudoexperiment is simulated. This is equivalent to performing a best fit for each simulated
outcome of the experiment.

B. Application of the Profile Likelihood

The prescription for obtaining the profile likelihood outlined above is not, in general, complicated. However, the
application of this technique must be performed with care and several caveats exist. The author will admit that
making this technique fully generalizable is difficult, but a consistent treatment can be obtained with the following
considerations.

1. Signal Contamination

Although the issue of signal contamination can be generalized, there are instances in which specialized solutions
are advantageous. The general case should be discussed first.

To accommodate a signal of unspecified size and distribution, the profile likelihood must be generated separately
for the signal and null hypotheses, for each pseudoexperiment. In this way, the statistical treatment retains the full
dichotomy of hypotheses, i .e., each hypothesis is treated as true independently. Depending on the size and distribution
of the signal model, the resulting PDFs may vary significantly. This solution has the advantage of properly maintaining
any correlations in systematics present between signal and background models.

In cases in which the signal model is concentrated in a few bins of the final variable distribution, a side-band
fit technique can be used. In this case, one must choose a signal/background ratio cut-off above which bins will
be excluded from the fit. This solution has the advantages of requiring only one fit and rendering the fit partially
insensitive to the shape and size of the signal distribution.

2. Grouping of Uncertainties

To speed up computation time, uncertainties can be grouped according to their nature. For example, given several
systematics that each represent uncertainties about the overall rate (e.g ., luminosity), they can be grouped to one
value to be fit. However, this introduces an implicit correlation between the uncertainties and the uncorrelated values
cannot be easily extracted. In many instances this distinction is small, but care must be taken to ensure a consistent
treatment.

3. Distribution Binning

Clearly, the degree to which the shape of the final variable distribution can be used to constrain uncertainties is
determined by the binning of the distribution. To maximize the ability to constrain and reduce the noise of the system,
the binning should be chosen to reflect the experimental resolution of the final variable. By utilizing a binning that
is finer than the experimental resolution, any fit will be more susceptible to random fluctuations and noise, thereby
masking true sensitivity.
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IV. CONCLUSIONS

In this note, we have discussed two means of treating systematic uncertainties and their relationship to limit
calculations. These two methods are intended to place upper limits on the size of uncertainties and to reduce the
overall impact on limit calculations via profiling. These two techniques are intended to be generally useful for many
applications involving systematics uncertainties.

APPENDIX A: IMPACT AND ESTIMATION OF SYSTEMATICS

1. Impact of Uncertainties on Limit Calculations

As noted in [1], systematic uncertainties can be easily incorporated into a limit calculation by smearing the Poisson
probability distribution functions (PDFs) for the signal and background expectations. This treatment has the effect of
broadening the PDFs and reducing the implicit separation between the two hypotheses being tested: the background-
only and signal plus background hypotheses. The amount an upper limit will degrade under the influence of systematic
uncertainties depends primarily on the size of the parent distributions being modeled. As the limits are taken from
Poisson-distributed predictions of repeated experiments, the Poisson uncertainty associated with the central value is
always present. The size of the systematic uncertainties relative to this baseline width will determine their impact.
Thus, large systematics become increasingly important with increasing number of observed events.

There is a finite probability that Gaussian fluctuations of nuisance parameters will fall to negative values. This
behavior is unphysical and cannot be accommodated by the statistical technique described in [1]. The common solution
is to truncate these Gaussians at or very near zero. This treatment is generally unobtrusive until uncertainties reach
roughtly 30% of the nominal predicted value. Beyond this, any limit extracted will carry a bias from the truncation.
It is most desireable to discover a means to avoid this unwanted behavior.

2. Estimating Systematic Uncertainties

To say that systematic uncertainties are measured is rarely accurate. In truth, most systematic uncertainties are
only estimated by approximation. For example, the efficiency for selecting electrons with a given set of quality
requirements depends on whether the electron-selection algorithm is applied to data or Monte Carlo (MC) events.
To correct for this difference, a scaling factor can be supplied to convert between the two. This correction for a
measurement that is systematically mismeasured cannot be known to infinite precision, as it depends on a very large
number of varying factors: the uniformity of calorimeter calibrations, uniformity of tracking efficiency, accuracy of
MC modeling, etc. Thus, we introduce an uncertainty on the systematic correction factor that is large enough to
accommodate our relative lack of precise knowledge. This systematic uncertainty is thus an educated estimation of
an upper limit.

In very many instances, the true impact of this systematic uncertainty on an analysis is further estimated by
propagating the value through the analysis selection. Generally, the nominal value for a systematic correction is
varied by ±1σcorr to evaluate the ±1σ impact for the analysis. This technique often has the unfortunate drawback
of convoluting a systematic uncertainty with a binomial probability associated with a restriction (or cut) on that
variable. For example, uncertainties on the correction factor for the electron energy scale will move certain events in
and out of an analysis selection depending on the minimum electron energy requirement. Thus, the impact to the
analysis now depends upon the precise shape of the distribution from which the correction factor is drawn.

The uncertainty associated with a systematic correction generally depends on how it was evaluated. Many sys-
tematic corrections and their associated uncertainties are measured directly in data events. One drawback of this
approach arises when the statistical uncertainty on the correction being measured is the largest portion of the total
systematic uncertainty. However, systematic corrections to theoretical cross sections, for example, cannot generally
be compared to data and the uncertainty is related to the precision of the calculation. The degree to which such
calculations are compatible with data observations is then not factored into the value of the uncertainty.

These comments are not intended to suggest systematic uncertainties are poorly measured in general. However, to
assume any precision or accuracy for systematic uncertainties is rarely safe. It is worth noting the limitations of such
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estimates and their common upper-limit nature.

[1] Wade Fisher, “Calculating Limits for Combined Analyses”, DØ Note #4975.
[2] T. Junk, “Building a More General χ2”, CDF/DOC/STATISTICS/PUBLIC/7904.
[3] S. Baker and R. D. Cousins, “Clarification of the Use of Chi-Square and Likelihood Functions in Fits to Histograms”, Nucl.

Instrum. Meth. A221 437 (1984).
[4] T. Devlin, “Correlations from Systematic Corrections to Poisson-Distributed Data in Log-Likelihood Functions”,

CDF/DOC/JET/PUBLIC/3126.
[5] P. R. Bevington and D. K. Robinson, “Data Reduction and Error Analysis for the Physical Sciences”, 2nd Ed., ISBN

0-07-911243-9.
[6] A. L. Read, J. Phys. G 28, 435 (2002).

T. Junk, Nucl. Intrum. Meth. A 434, 435 (1999).
[7] T. Junk, “Sensitivity, Exclusion, and Discovery with Small Signals, Large Backgrounds, and Large Systematic Uncertain-

ties”, CDF/DOC/STATISTICS/PUBLIC/8128.
[8] In alternative formulations, the σi values can be defined as the square root of the data value in bin i.




