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Abstract

We study the analytic continuation of Feynman integrals from the kite family, expressed in terms of ellip-
tic generalisations of (multiple) polylogarithms. Expressed in this way, the Feynman integrals are functions 
of two periods of an elliptic curve. We show that all what is required is just the analytic continuation of these 
two periods. We present an explicit formula for the two periods for all values of t ∈ R. Furthermore, the 
nome q of the elliptic curve satisfies over the complete range in t the inequality |q| ≤ 1, where |q| = 1 is at-
tained only at the singular points t ∈ {m2, 9m2, ∞}. This ensures the convergence of the q-series expansion 
of the ELi-functions and provides a fast and efficient evaluation of these Feynman integrals.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Precision calculations in high-energy particle physics require the evaluation of Feynman loop 
integrals. Within an analytical approach towards Feynman loop integrals one computes first the 
Feynman integrals in terms of a specific class of transcendental functions in a particular kine-
matic region (usually the Euclidean region). In a second step one studies the analytic continuation 
into the full kinematic region and the numerical evaluation of the transcendental functions. This 
procedure has been successful for a wide class of Feynman integrals, which evaluate to multiple 
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polylogarithms [1–4]. Numerical algorithms are available to evaluate multiple polylogarithms 
for arbitrary complex-valued arguments [5–10].

It is well-known that not all Feynman integrals can be expressed in terms of multiple polylog-
arithms. The simplest counter-example is given by the two-loop equal mass sunrise integral. By 
now, this integral has been studied extensively in the literature [11–30]. This is of course justi-
fied by the fact that the sunrise integral is the “first” Feynman integral which cannot be expressed 
in terms of multiple polylogarithms. Further examples of Feynman integrals not expressible in 
terms of multiple polylogarithms are discussed in [31–37]. In this paper we are interested in a 
larger family of Feynman integrals, the family of kite integrals [31–33]. By the term “family of 
Feynman integrals” we mean Feynman integrals which differ only in the powers of their propa-
gators, including the case, where one or more exponents are zero. In this case the corresponding 
propagator is absent and the Feynman integral reduces to a sub-topology. The kite integral con-
tains as a sub-topology the equal-mass sunrise integral. Like the sunrise integral, the kite integral 
cannot be expressed in terms of multiple polylogarithms. Both the kite integral and the sunrise 
integral are two-point functions, depending on a variable t = p2 equal to the incoming (or out-
going) momentum squared. In two recent publications we showed that the equal-mass sunrise 
integral [27] and the kite integral [33] can be expressed in a neighbourhood of t = 0 to all orders 
in the dimensional regularisation parameter ε in terms of elliptic generalisations of (multiple) 
polylogarithms. These generalisations are denoted as ELi-functions and are functions of several 
variables. Of particular interest is the dependence on one particular variable denoted by q . Feyn-
man integrals are related to periods of algebraic varieties [38,39]. In the case of the family of 
kite integrals the non-trivial algebraic variety which prohibits an evaluation in terms of multiple 
polylogarithms is an elliptic curve. The variable q is the nome of the elliptic curve. By the mod-
ularity theorem, every elliptic curve over Q has a modular parametrisation and in [29] one of 
the authors showed that one may express the family of kite integrals to all orders in the dimen-
sional regularisation parameter ε as iterated integrals of modular forms. The ELi-functions give 
the q-series expansion of these iterated integrals of modular forms. At t = 0 we have q = 0 and 
therefore |q| < 1 in a neighbourhood of t = 0. In this neighbourhood the ELi-functions provide 
a simple and convenient evaluation of the Feynman integrals of the kite family.

In this paper we consider the analytic continuation and the numerical evaluation of the inte-
grals of the kite family in the complete kinematic region t ∈R. We note that in a recent paper [40]
the analytic continuation of the ELi-functions has been discussed. It is one of the results of the 
present paper, that for the family of kite integrals the analytic continuation of the ELi-functions is 
not needed. The nome q is defined in terms of the two periods ψ1 and ψ2 of the elliptic curve by 
q = exp(iπψ2/ψ1). All what is needed is the analytic continuation of the two periods ψ1 and ψ2. 
We present an explicit formula for the two periods for all values of t ∈ R. It turns out that once the 
two periods ψ1 and ψ2 are properly defined, we have |q| ≤ 1 for all t ∈ R, and |q| = 1 is attained 
only at the singular points t ∈ {m2, 9m2, ∞}. As a second main result of this paper we show that 
the same expressions in terms of the ELi-functions which we found for the Feynman integrals of 
the kite family in the region around t = 0 hold for all t ∈R. The ELi-functions provide therefore 
a fast and efficient way to evaluate these integrals over the complete kinematic range.

Of course, Feynman integrals may also be evaluated by purely numerical methods [41–51]. 
A flexible numerical method to check Feynman integrals at individual kinematic points is given 
by sector decomposition [52–54]. We compare numerical results from the evaluation of the Feyn-
man integrals from the kite family expressed in terms of ELi-functions with numerical results 
from the SeCDec program [55–58]. We find perfect agreement in all kinematic regions, includ-
ing the regions close to the thresholds.
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As already mentioned, we only need to continue analytically the two periods ψ1 and ψ2. 
Taking Feynman’s i0-prescription into account, the two periods are continuous functions of t . 
We express them in terms of complete elliptic integrals of the first kind. The complete elliptic 
integral of the first kind K(z) has a branch cut in the variable z2 at [1, ∞[. If we cross this branch 
cut, we have to compensate the discontinuity of K(z) by taking into account the monodromy 
around z2 = 1.

This paper is organised as follows: In section 2 we briefly recall the conventions as arguments 
of functions approach a branch cut for mathematical software on the one hand and Feynman’s 
i0-prescription in physics on the other hand. In section 3 we study a family of elliptic curves Et

and their periods. We express the periods in terms of complete elliptic integrals of the first kind, 
such that the periods are continuous functions as t varies continuously. Equipped with the appro-
priate definition of the periods we discuss the analytic continuation of the Feynman integrals of 
the kite family in section 4. The correct definition of the periods requires to take a monodromy 
matrix at t = m2 into account. Section 5 is devoted to the derivation of this monodromy matrix. In 
section 6 we show numerical results for three Feynman integrals from the kite family. Finally, our 
conclusions are given in section 7. Appendix A gives information on our conventions regarding 
the roots of the cubic polynomial of the Weierstrass normal form. In Appendix B we summarise 
the definition of the ELi-functions and the definition of the E-functions, the latter being linear 
combinations of the former. Appendix C reviews the algorithm for the numerical computation of 
the complete elliptic integrals of the first kind based on the arithmetic–geometric mean.

2. Conventions

We will encounter mathematical functions of a complex variable z, like 
√

z or the complete 
elliptic integral K(z). These functions have branch cuts. Let us clarify, which values to assign 
to these functions on the branch cuts. The standard convention for mathematical software is as 
follows: Implementations shall map a cut so the function is continuous as the cut is approached 
coming around the finite endpoint of the cut in a counter clockwise direction [59]. With this 
convention, cuts on the positive real axis are continuous to the lower complex half-plane while 
cuts on the negative real axis are continuous to the upper complex half-plane.

However, this is not always what we want in physics. In physics the analytic continuation is 
dictated by Feynman’s i0-prescription, where we substitute a (real) variable t by t → t + i0. The 
symbol +i0 denotes an infinitesimal positive imaginary part. The small imaginary part overrides 
the mathematical convention above.

To give an example we have

√−t =
{

i
√|t |, t > 0,√|t |, t ≤ 0,

√−t − i0 =
{ −i

√|t |, t > 0,√|t |, t ≤ 0.
(1)

In the sequel we will always assume that a small positive imaginary part is added to the variable t .
Furthermore we will deal with equations of the form

y2 = (x − e1) (x − e2) (x − e3) (x − e4) , (2)

and we would like to express y as the square root of the right-hand side. The square root of the 
right-hand side may be viewed as a multi-valued function of x, taking two possible values which 
differ by a sign. We are interested in a single-valued (and continuous) function of x. Of course 
this cannot be done on the entire complex plane C, but only on the complex plane minus some 
cuts. Let us first assume that the roots e1, e2, e3 and e4 are real and ordered as
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e1 < e2 < e3 < e4. (3)

Let us choose the cuts to be given by the line segment from e1 to e2 and by the line segment from 
e3 to e4. Then we may choose y as a single-valued and continuous function on C\([e1, e2] ∪
[e3, e4]). It is not too difficult to show that one possible choice is given by

y = √
x − e1

√
x − e2

√
x − e3

√
x − e4, (4)

the other choice is given by

y = −√
x − e1

√
x − e2

√
x − e3

√
x − e4. (5)

These functions have branch cuts at

ei + λ, λ ∈R≤0. (6)

On the interval [e2, e3] we have a superposition of the branch cuts starting at e3 and e4, making 
the function continuous there. The same happens on the interval ] − ∞, e1], where we have a 
superposition of all four branch cuts. It is worth noting that the naive guess

y = √
(x − e1) (x − e2) (x − e3) (x − e4) (7)

does in general not give a single-valued continuous function of x on C\([e1, e2] ∪ [e3, e4]). The 
cuts of eq. (7) are in general algebraic functions of x and determined by

(x − e1) (x − e2) (x − e3) (x − e4) − λ = 0, λ ∈ R≤0. (8)

Finally, let us remove the assumption ei ∈ R and let us consider the general case ei ∈ C. We 
continue to denote by [ei, ej ] the line segment from ei to ej , now in the complex plane. Then we 
may express y as a single-valued and continuous function on C\([e1, e2] ∪ [e3, e4]) through

y = ± (e2 − e1) (e4 − e3)

√
x − e1

e2 − e1

√
x − e2

e2 − e1

√
x − e3

e4 − e3

√
x − e4

e4 − e3
. (9)

3. The elliptic curve

We consider a family of elliptic curves Et ⊂ P2(C) given in the chart z = 1 by the Weierstrass 
normal form

y2 = 4x3 − g2(t)x − g3(t), (10)

with

g2(t) = 1

12μ8

(
3m2 − t

)(
3m6 − 3m4t + 9m2t2 − t3

)
,

g3(t) = 1

216μ12

(
3m4 + 6m2t − t2

)(
9m8 − 36m6t + 30m4t2 − 12m2t3 + t4

)
. (11)

As discussed previously in the literature, this elliptic curve is associated with the equal-mass 
sunrise integral [22–29]. Eq. (10) is obtained by transforming the equation

F = 0, (12)

where

F = −x1x2x3t + m2 (x1 + x2 + x3) (x1x2 + x2x3 + x3x1) , (13)
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denotes the second graph polynomial of the equal-mass sunrise integral to the Weierstrass nor-
mal form. Graph polynomials are reviewed in [60]. We may factor the cubic polynomial on the 
right-hand side of eq. (10). We then obtain

y2 = 4 (x − e1) (x − e2) (x − e3) , with e1 + e2 + e3 = 0, (14)

where the roots are given by

e1 = 1

24μ4

(
−t2 + 6m2t + 3m4 + 3

(
m2 − t

) 3
2
(

9m2 − t
) 1

2
)

,

e2 = 1

24μ4

(
−t2 + 6m2t + 3m4 − 3

(
m2 − t

) 3
2
(

9m2 − t
) 1

2
)

,

e3 = 1

24μ4

(
2t2 − 12m2t − 6m4

)
. (15)

In Appendix A we discuss the motivation for defining the roots as in eq. (15).
The roots e1, e2 and e3 vary with t . This is shown in Fig. 1. At the singular points 

t ∈ {0, m2, 9m2, ∞} two of the three roots coincide. In detail we have

t 0 m2 9m2 ∞
Roots e2 = e3 e1 = e2 e1 = e2 e1 = e3

The modulus k and the complementary modulus k′ of the elliptic curve are defined by

k2 = e3 − e2

e1 − e2
, k′2 = 1 − k2 = e1 − e3

e1 − e2
. (16)

The modulus k and the complementary modulus k′ appear as arguments of the complete elliptic 
integral of the first kind K(k), defined by

K(k) =
1∫

0

dt√(
1 − t2

)√(
1 − k2t2

) . (17)

It is clear from the definition that K(k) is only a function of k2 and some authors prefer therefore 
the notation K(k2). In this paper we follow the standard conventions [61] and define K(k) as in 
eq. (17). The complete elliptic integral of the first kind K(k) has branch cuts on the real axis at 
] − ∞, −1] and [1, ∞[ in the complex k-plane. The function K̃(k2) = K(k) has then a branch 
cut at [1, ∞[ in the complex k2-plane.

Let us denote by δ1 and δ2 two cycles on the elliptic curve Et which generate the homology 
group H1(Et , Z). The differential forms

η1 = dx

y
, η2 = xdx

y
(18)

are generators of the cohomology group H 1
dR(Et ). The periods of the elliptic curve are

Pij =
∫
δi

ηj , i, j ∈ {1,2}. (19)

We are in particular interested in the periods ψ1 = P11 and ψ2 = P21, involving η1. These periods 
satisfy the differential equation
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Fig. 1. The variation of the roots e1, e2 and e3 of the elliptic curve y2 = 4(x − e1)(x − e2)(x − e3) with t . The roots e1
and e2 acquire an imaginary part for m2 < t < 9m2. At t = 0 the roots e2 and e3 coincide. At t = m2 and at t = 9m2 the 
roots e1 and e2 coincide. At t = ∞ the roots e1 and e3 coincide. In the interval m2 ≤ t ≤ 9m2 the real parts of the roots 
e1 and e2 coincide.[

d2

dt2
+

(
1

t
+ 1

t − m2
+ 1

t − 9m2

)
d

dt
+ 1

m2

(
− 1

3t
+ 1

4
(
t − m2

) + 1

12
(
t − 9m2

)
)]

ψi

= 0. (20)

(The periods P12 and P22 satisfy a slightly different differential equation.) Eq. (20) is called the 
Picard–Fuchs equation. We define the two cycles δ1 and δ2 such that the periods ψ1 and ψ2 are 
given for t < 0 by

ψ1 = 2

e3∫
e2

dx

y
, ψ2 = 2

e3∫
e1

dx

y
. (21)

We take

y = −2
√

x − e1
√

x − e2
√

x − e3. (22)
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Fig. 2. The path for the analytic continuation in the variable t . Feynman’s i0-prescription avoids the singular points at 0, 
m2 and 9m2 as shown in the figure.

The path of integration in x-space is such that we have an infinitesimal small negative imaginary 
part for x. In other words, the integration path is below all cuts. Working out the integrals one 
finds in the region t < 0

ψ1 = 4μ2(
m2 − t

) 3
4
(
9m2 − t

) 1
4

K (k) , ψ2 = 4iμ2(
m2 − t

) 3
4
(
9m2 − t

) 1
4

K
(
k′) . (23)

The periods ψ1 and ψ2 vary continuously with t . We study the variation of these periods along 
the path shown in Fig. 2. We divide the path into seven pieces: Four line segments and three 
small semi-circles. The line segments are characterised by

Region I : −∞ < Re(t) < 0,

Region II : 0 < Re(t) < m2,

Region III : m2 < Re(t) < 9m2,

Region IV : 9m2 < Re(t) < ∞.

(24)

The three semi-circles C0, C1 and C9 encircle the points 0, m2 and 9m2, respectively. Every-
where on the path we have Im(t) > 0. This implements Feynman’s i0-prescription. Of course, the 
path is equivalent to a straight line parallel to the real axis with a small imaginary part. However, 
it is advantageous to discuss the individual pieces separately, in particular the small semi-circles. 
We may extend the path to a (closed) path on the Riemann sphere by adding a semi-circle at 
infinity. As already mentioned, the periods ψ1 and ψ2 are continuous functions of t . In eq. (23)
we expressed the two periods for t in region I in terms of complete elliptic integrals of the first 
kind. The complete elliptic integral K(k) has branch cuts on the real axis. In terms of the variable 
k2 the branch cut is on the positive real axis given by the interval [1, ∞[. In Fig. 3 we sketch the 
path in the complex k2-space, as t varies along the path shown in Fig. 2. For t = −∞ + i0 we 
start in k2-space at k2 = 1 − i0, continuing below the real axis until we reach for t = m2 + i0 the 
point k2 = −∞ − i0. The small semi-circle C0 around t = 0 is harmless and can be deformed 
away. However, the semi-circle C1 around t = m2 is essential. It corresponds to a three-quarter 
circle in k2-space and crosses the branch cut [1, ∞[. The path continues in region III, where we 
have Re(k2) = 1/2. The semi-circle around t = 9m2 brings the path close to the real axis with 
Re(k2) > 1. In region IV the path continues at an infinitesimal distance below the real axis back 
to k2 = 1 − i0. The three-quarter circle in Fig. 3 corresponding to C1 is equivalent to the missing 
quarter-circle in the clockwise direction and a full circle in the anti-clockwise direction. In this 
way the monodromy of K(k) enters the expression for ψ1.

For ψ2 we study the path in k′2-space, as t varies along the path of Fig. 2. Due to the relation

k2 + k′2 = 1, (25)
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Fig. 3. The path in the complex k2-space, as t varies along the path of Fig. 2. In the regions IV, I and II the path in 
k2-space is at an infinitesimal distance below the real axis. The path crosses the branch cut [1, ∞] in the region C1. In 
region III we have Re(k2) = 1/2.

Fig. 4. The path in the complex k′2-space, as t varies along the path of Fig. 2. In the regions IV, I and II the path in 
k′2-space is at an infinitesimal distance above the real axis. In region III we have Re(k2) = 1/2.

the path in k′2-space is simply obtained from the path in k2-space by reflection on the point 1/2. 
The path in k′2-space is sketched in Fig. 4. Let us stress that the path in k′2-space does not cross 
the branch cut [1, ∞].

In expressing the periods ψ1 and ψ2 for all values of t along the path of Fig. 2 in terms of 
complete elliptic integrals of the first kind K(k) and K(k′) we have to take the monodromy at 
t = m2 into account. The monodromy relation is derived in section 5. The result is as follows: 
For all values of t ∈ R the periods ψ1 and ψ2 are expressed as
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(
ψ2 (t + i0)

ψ1 (t + i0)

)
= 4μ2(

m2 − t − i0
) 3

4
(
9m2 − t − i0

) 1
4

γt

(
iK

(
k′ (t + i0)

)
K (k (t + i0))

)
, (26)

where the 2 × 2 matrix γt is given by

γt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0
0 1

)
, −∞ < t < m2,

(
1 0

−2 1

)
, m2 < t < ∞,

(27)

and encodes the monodromy. Note that in region II the elliptic integral K(k′) is evaluated above 
the branch cut, while in region IV the elliptic integral K(k) is evaluated below the branch cut. In 
both cases we may use for k ∈]1, ∞[ the formula [61]

K (k ± i0) = 1

k

[
K

(
1

k

)
± iK

(√
1 − 1

k2

)]
. (28)

We note that this relation can also be used for an analytical continuation by fixing the constants in 
a small neighbourhood around the singular points [32,35]. However, we will pursue a different 
(and simpler) path here. Having defined the periods ψ1 and ψ2 in eq. (26), we introduce the 
standard definitions of the ratio of the two periods τ and the nome q of the elliptic curve:

τ = ψ2

ψ1
, q = eiπτ . (29)

In Fig. 5 we show the path in τ -space and in q-space as t varies along the path of Fig. 2. We have

τ(t = ±∞) = 0, τ (t = 0) = i∞, τ (t = m2) = −1, τ (t = 9m2) = −1

3
. (30)

For all values t along the path of Fig. 2 we have

Im(τ ) > 0, |q| < 1. (31)

We have

Im(τ ) = 0, |q| = 1, (32)

for t ∈ {m2, 9m2, ±∞}, i.e. without Feynman’s i0-prescription. There is a bijection between all 
points t on the path of Fig. 2 and the points τ on the path in τ -space of Fig. 5. In the direction 
t → τ the mapping is given by eq. (30)

τ = ψ2(t)

ψ1(t)
. (33)

In the reverse direction we have

t = −9m2
η (τ)4 η

(
3τ
2

)4
η (6τ)4

η
(

τ
2

)4
η (2τ)4 η (3τ)4

, (34)

where η(τ) denotes Dedekind’s eta function, defined by

η(τ) = e
iπτ
12

∞∏
(1 − e2πinτ ). (35)
n=1
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Fig. 5. The path in τ -space and in q-space, as t varies along the path of Fig. 2. The value t = −∞ corresponds to τ = 0
and q = 1, the value t = 0 corresponds to τ = i∞ and q = 0, the value t = m2 corresponds to τ = −1 and q = −1, the 
value t = 9m2 corresponds to τ = − 1

3 and q = 1
2 − i

√
3

2 .

We have checked numerically that eq. (34) is the inverse mapping to eq. (33) for all t on the path 
of Fig. 2.

4. Analytic continuation of Feynman integrals

In this section we discuss the analytic continuation of the Feynman integrals associated to 
the kite family, i.e. the kite integral and all sub-topologies, including in particular the equal mass 
sunrise integral. We will see that this is trivial, once the periods ψ1 and ψ2 are defined by eq. (26). 
The Feynman integrals of the kite family depend on the variable

t = p2. (36)

Feynman’s i0-prescription instructs us to add a small imaginary part t → t + i0 where neces-
sary. We are interested in the values of these integrals as t ranges over the real numbers. Using 
integration-by-parts identities [62,63] we may express all integrals from this family as linear 
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combinations of a few master integrals. For the kite family there are eight master integrals [32,
33], which we denote as �I = (I1, I2, ..., I8). We will follow the notation of [33], where the def-
inition of I1–I8 is given. The eight master integrals �I for the kite system satisfy a system of 
differential equations in t of Fuchsian type [64–72], which has singularities at{

0,m2,9m2,∞
}

. (37)

The system of differential equations reads

μ2 d

dt
�I =

[
μ2

t
A0 + μ2

t − m2
A1 + μ2

t − 9m2
A9

]
�I , (38)

where A0, A1 and A9 are 8 × 8-matrices with entries of the form a + bε, where a, b ∈ Q and ε
denotes the dimensional regularisation parameter. The explicit expressions are given in [33]. The 
system of differential equations in eq. (38) holds for all t ∈ C. In [33] we solved the system of 
differential equations in the Euclidean region (i.e. region I) by performing a change of variables 
from t to the nome q . For this change of variables the relation between t and τ is given by

t = f (τ), f (τ ) = −9m2
η (τ)4 η

(
3τ
2

)4
η (6τ)4

η
(

τ
2

)4
η (2τ)4 η (3τ)4

. (39)

The relation between τ and q is as usual q = exp(iπτ). In terms of the variable q the system of 
differential equations (40) becomes

q
d

dq
�I = (

g2,0A0 + g2,1A1 + g2,9A9
) �I , (40)

where g2,0, g2,1 and g2,9 are modular forms of modular weight 2 for the congruence subgroup 

0(12), defined in [29].

We have seen in eq. (34) that the validity of eq. (39) is not restricted to region I, but holds for 
all values t on the path of Fig. 2. Thus eq. (40) holds for all values of q on the path of Fig. 5. 
We already know a solution for this system of differential equations: In [33] we solved these 
differential equations in terms of ELi-functions in the region I. The solution extends to all values 
t on the path of Fig. 2. Furthermore from eq. (31) it follows that

|q| < 1 for t ∈ R\{m2,9m2,∞}. (41)

This ensures the convergence of the q-series, which we use to express our results.
Let us give an example: The first term of the Laurent expansion in the dimensional regulari-

sation parameter ε of the equal-mass sunrise integral in two space–time dimensions reads

S
(0)
111(2, t)

= 3ψ1

iπ

{
1

2
Li2 (r3) − 1

2
Li2

(
r−1

3

)
+ ELi2;0 (r3;−1;−q) − ELi2;0

(
r−1

3 ;−1;−q
)}

,

(42)

where r3 = exp(2πi/3) and the functions ELin;m(x, y, q) are defined by

ELin;m (x;y;q) =
∞∑ ∞∑ xj

jn

yk

km
qjk. (43)
j=1 k=1
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Eq. (42) holds for all values of t , the periods ψ1 and ψ2 (and in turn the nome q) are computed 
by eq. (26).

Let us summarise: With the definition of the periods ψ1 and ψ2 given in eq. (26) the differ-
ential equation (40) holds for all values of t ∈ R + i0. Thus any solution �I(t), originally defined 
in one particular region (say region I), extends to all values t ∈R + i0. Furthermore we have for 
t ∈ R + i0

|q| < 1, (44)

ensuring the convergence of the ELi-series. (At the singular points t ∈ {m2, 9m2, ∞} we have 
|q| = 1.) In other words: The analytic continuation of �I(t) could not be simpler!

5. Monodromy and the Picard–Lefschetz theorem

In this section we derive the monodromy relation of eq. (26) and eq. (27). This is a standard 
application of the Picard–Lefschetz theorem and we follow the textbooks [73,74]. We may de-
form the path C1 in Fig. 3 in k2-space into a quarter-circle in the clockwise direction and a small 
full circle around 1 in the anti-clockwise direction, as shown in Fig. 6. For the monodromy we 
have to study the contribution from the small full circle around 1. Let us set λ = k2. We recall 
that we may write the complete elliptic integral of the first kind equally well as

K(k) = 1

2

λ∫
0

dt√
t
√

λ − t
√

1 − t
. (45)

Thus, K(k) gives a quarter-period of the elliptic curve in Legendre form

Eλ : y2 = p(x), p(x) = x (x − λ) (x − 1) . (46)

The roots of the polynomial p(x) are

0, λ, 1, ∞. (47)

Let us now study the behaviour of K(k) as λ moves in a small circle around 1. It is slightly 
simpler to consider instead of the family of elliptic curves Eλ the family of elliptic curves Eϕ

given by

Eϕ : y2 = p(x,ϕ), p(x,ϕ) = x (x − e1(ϕ)) (x − e2(ϕ)) , (48)

where the roots are given by

e1(ϕ) = 1 − reiϕ, e2(ϕ) = 1 + reiϕ. (49)

We study this family for small positive r and ϕ ∈ [0, 2π ]. We consider the periods

P1(ϕ) =
∫
δ1

dx

y
, P2(ϕ) =

∫
δ2

dx

y
, y = −√

x
√

x − e1(ϕ)
√

x − e2(ϕ), (50)

where the two cycles δ1 and δ2 form a basis of H1(Eϕ, Z). The orientation of the two cycles is 
such that for ϕ = 0 we have

P1(0) = 2

e1(0)∫
dx

y
= −2

∞∫
dx

y
, P2(0) = 2

e1(0)∫
dx

y
, (51)
0 e2(0) e2(0)
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Fig. 6. Deformation of the path C1 in k2-space into a quarter-circle in the clockwise direction and a small full circle 
around 1 in the counter-clockwise direction.

where the path of integration in x-space is such that we have an infinitesimal small negative 
imaginary part for x. We note that

p(x,0) = p(x,π) = p(x,2π), (52)

and

e1(0) = e2(π) = e1(2π), e2(0) = e1(π) = e2(2π). (53)

Thus, under a half-turn the polynomial p(x, ϕ) transforms into itself, however the roots e1(ϕ)

and e2(ϕ) exchange their roles. Let us now discuss the effect of a half-turn on the periods P1(ϕ)

and P2(ϕ). As p(x, ϕ) transforms into itself, we may express the periods P1(π) and P2(π) as a 
linear combination of the periods P1(0) and P2(0). As ϕ ranges over the interval [0, π] the cycles 
of integration for the two periods transform as shown in Fig. 7. We recall that we may think of an 
elliptic curve as two copies of a Riemann sphere, each sphere with two cuts. The elliptic curve is 
obtained by gluing together the two spheres at the cuts with opposite orientations. From Fig. 7 it 
is clear that
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Fig. 7. The left picture shows the cycles δ1 and δ2 for ϕ = 0, the right picture shows the cycles δ1 and δ2 for ϕ = π . 
Solid lines corresponds to a path on one Riemann sheet, dashed lines to a path on the other Riemann sheet.

Fig. 8. Deformation of the cycle δ1(π). In the step from (c) to (d) we bring the closed path around e2(0) from one 
Riemann sheet to the other Riemann sheet. This changes the orientation. The last figure shows that δ1(π) = δ1(0) −δ2(0).

P2(π) = P2(0). (54)

We may deform the cycle of integration δ1(π) for P1(π) as shown in Fig. 8. Thus

P1(π) = P1(0) − P2(0). (55)

Eq. (55) is an application of the Picard–Lefschetz theorem. In the example above δ2 is a vanishing 
cycle. The Picard–Lefschetz theorem states that

δ1 (π) = δ1 (0) − (δ1 (0) · δ2 (0)) δ2 (0) , (56)

where (δa · δb) denotes the intersection number of the cycles δa and δb [73].
Combining two half-turns we obtain the monodromy relation of eq. (26) and eq. (27) from

P1 (2π) = P1 (0) − 2P2 (0) , P2 (2π) = P2 (0) . (57)
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Fig. 9. The kite graph. Solid lines correspond to massive propagators of mass m, dashed lines correspond to massless 
propagators.

Fig. 10. The Feynman graphs of the examples considered in this section. A dot on a propagator indicates, that this 
propagator is raised to the power two.

6. Numerical results

In this section we consider three examples of Feynman integrals from the family of kite inte-
grals. The family of kite integrals is given in D-dimensional Minkowski space by

Iν1ν2ν3ν4ν5

(
D,p2,m2,μ2

)
= (−1)ν12345

(
μ2

)ν12345−D

×
∫

dDk1

iπ
D
2

dDk2

iπ
D
2

1

D
ν1
1 D

ν2
2 D

ν3
3 D

ν4
4 D

ν5
5

, (58)

with the propagators

D1 = k2
1 − m2, D2 = k2

2, D3 = (k1 − k2)
2 − m2,

D4 = (k1 − p)2, D5 = (k2 − p)2 − m2 (59)

and ν12345 = ν1 + ν2 + ν3 + ν4 + ν5. The kite graph is shown in Fig. 9. The internal momenta 
are denoted by k1 and k2, the internal mass by m and the external momentum by p. We denote 
t = p2. In the following we will suppress the dependence of the integrals on the mass m and the 
scale μ and we write

Iν1ν2ν3ν4ν5(D, t) = Iν1ν2ν3ν4ν5(D, t,m2,μ2). (60)

The three examples which we consider in this section are the kite integral I11111 (4 − 2ε, t), 
the equal-mass sunrise integral in 2 − 2ε space–time dimensions I10101 (2 − 2ε, t) and the inte-
gral (“bubble squared”) I21012 (4 − 2ε, t). The Feynman graphs for these integrals are shown 
in Fig. 10. All three Feynman integrals start in the ε-expansion at O(ε0). In [33] we pre-
sented an algorithm to express all integrals from the kite family to all orders in the dimensional 
regularisation parameter in terms of ELi-functions, which are generalisations of (multiple) poly-
logarithms towards the elliptic case. For the kite integral and the sunrise integral the occurrence 
of ELi-functions is generic, the bubble integral squared may be expressed in terms of harmonic 
polylogarithms [75,76]. All polylogarithms occurring in the integrals from the kite family may 
be expressed in terms of ELi-functions. We include the trivial example of the bubble integral 



C. Bogner et al. / Nuclear Physics B 922 (2017) 528–550 543
squared to show explicitly that our method includes the case where the ELi-functions degenerate 
to multiple polylogarithms.

Expressed in terms of ELi-functions we have

I21012 (4 − 2ε, t) =
[
μ2

t
ln

(
1 − t

m2

)]2

+O (ε) (61)

= 9
μ4

t2

[
E1;0 (−1;1;−q) − E1;0 (r6;1;−q)

]2 +O (ε) ,

I10101 (2 − 2ε, t) = 3ψ1

π

[
Cl2

(
2π

3

)
+ E2;0 (r3;−1;−q)

]
+O (ε) ,

I11111 (4 − 2ε, t) = μ2

t

[
2G(0,1,1;y) − G(1,0,1;y) + π2

6
G(1;y)

+27Cl2

(
2π

3

)
E1;−1 (r3;1;−q) + 27E0,2;−2,0;2 (r3, r3;1,−1;−q)

]
+O (ε) .

The notation is as follows: We introduced the dimensionless variable y = t/m2. The symbol rn
denotes the n-th root of unity

rn = exp

(
2πi

n

)
. (62)

The E-functions are linear combinations of the ELi-functions. Both are defined in Appendix B. 
Cl2 denotes the Clausen function, defined by

Cl2 (ϕ) = 1

2i

[
Li2

(
eiϕ

)
− Li2

(
e−iϕ

)]
. (63)

The harmonic polylogarithms G(1; y), G(0, 1, 1; y) and G(1, 0, 1; y) may be expressed in terms 
of ELi-functions. We have

G(1;y) = 3
[
E1;0 (−1;1;−q) − E1;0 (r6;1;−q)

]
, (64)

G(0,1,1;y) = 9
[
E0,1;−1,0;4 (−1,−1;1,1;−q) − E0,1;−1,0;4 (−1, r6;1,1;−q)

−E0,1;−1,0;4 (r6,−1;1,1;−q) + E0,1;−1,0;4 (r6, r6;1,1;−q)
]

− 36
[
E0,0,1;−1,−1,0;2,2 (r3,−1,−1;−1,1,1;−q)

− E0,0,1;−1,−1,0;2,2 (r3,−1, r6;−1,1,1;−q)

− E0,0,1;−1,−1,0;2,2 (r3, r6,−1;−1,1,1;−q)

+E0,0,1;−1,−1,0;2,2 (r3, r6, r6;−1,1,1;−q)
]
,

G(1,0,1;y) = 9
[
E0,2;−1,1;2 (−1,−1;1,1;−q) − E0,2;−1,1;2 (−1, r6;1,1;−q)

−E0,2;−1,1;2 (r6,−1;1,1;−q) + E0,2;−1,1;2 (r6, r6;1,1;−q)
]

− 36
[
E0,0,1;−1,−1,0;2,2 (−1, r3,−1;1,−1,1;−q)

− E0,0,1;−1,−1,0;2,2 (−1, r3, r6;1,−1,1;−q)

− E0,0,1;−1,−1,0;2,2 (r6, r3,−1;1,−1,1;−q)

+E0,0,1;−1,−1,0;2,2 (r6, r3, r6;1,−1,1;−q)
]
.



544 C. Bogner et al. / Nuclear Physics B 922 (2017) 528–550
Fig. 11. The real and the imaginary parts of the ε0-term of the Feynman integrals I21012 (4 − 2ε, t), I10101 (2 − 2ε, t)

and I11111 (4 − 2ε, t) as y = t/m2 ranges over the interval [−5, 15]. The dashed vertical lines indicate the thresholds at 
t = m2 and t = 9m2.

In the following we set μ = m, express all integrals entirely in terms of ELi-functions and plot 
the real and the imaginary part of the ε0-term of

I21012 (4 − 2ε, t) , I10101 (2 − 2ε, t) , I11111 (4 − 2ε, t) (65)

as a function of y = t/m2. Note that the expressions in eq. (61) are valid over the complete 
kinematic range t ∈ R. The periods ψ1 and ψ2 (and in turn the nome q) are computed according 
to eq. (26). We compare our results to numerical results obtained from the SecDec-program 
[55–58]. The comparison is shown in Fig. 11 for y ∈ [−5, 15]. This range includes in particular 
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Fig. 12. The relative difference of the O(q20)-approximation with the O(q100)-approximation for the kite integral 
I11111. The left plot shows the relative difference on a linear scale, the right plot shows the relative difference on a 
logarithmic scale.

the thresholds t = m2 and t = 9m2. We find perfect agreement over the full range y ∈R.
The results for the bubble integral squared I21012 (i.e. the first two plots in Fig. 11) show 

that the numerical evaluation of this integral in terms of ELi-functions correctly reproduces 
the result of this integral, which alternatively may be expressed in terms of multiple polylog-
arithms.

We note that truncating the q-series at O(q20) gives already a very good approximation, 
including the thresholds. In order to quantify this, we show in Fig. 12 for the kite integral 
the relative difference of the O(q20)-approximation with the O(q100)-approximation, defined 
by ∣∣∣∣I

I

∣∣∣∣ =
∣∣∣∣∣ I11111 (4, t)|q20 − I11111 (4, t)|q100

I11111 (4, t)|q100

∣∣∣∣∣ . (66)

We evaluate the integral in the interval t/m2 ∈ [−5, 15] at steps δt/m2 = 0.02, excluding the sin-
gular points t = m2 and t = 9m2. Thus the closest points to the singular points are t = 0.98m2, 
t = 1.02m2, t = 8.98m2 and 9.02m2. We see that the relative difference is rather small over a 
wide range of t , taking a maximum |I/I | ≈ 5% around t = 9m2, where the kite integral is 
continuous. To see the behaviour at the threshold t = m2, we show in the right plot of Fig. 12
the relative difference on a log-scale. The relative difference around the threshold t = m2 is 
|I/I | ≈ 10−6. The integrals I21012 and I10101 show a similar behaviour. Again, the maximum 
of the relative difference for t/m2 ∈ [−5, 15] is reached around t = 9m2, being of the order of 
1%. The ELi-functions provide therefore a fast and efficient way to evaluate these integrals over 
the complete kinematic range with the exception of small neighbourhoods around the singular 
points t ∈ {m2, 9m2, ∞}, where |q| = 1.

7. Conclusions

In this paper we studied the analytic continuation and the numerical evaluation of Feynman 
integrals from the kite family. In previous publications we showed that these integrals can be 
expressed to all orders in the dimensional regularisation parameter ε in a neighbourhood of t = 0
in terms of elliptic generalisations of (multiple) polylogarithms, denoted as ELi-functions. In 
this paper we showed that these expressions hold in the full kinematic range t ∈ R after analytic 
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continuation of the two periods. The ELi-functions are power series in the variable q . Further-
more we showed that |q| ≤ 1 holds in the full kinematic range t ∈ R and |q| = 1 is attained only 
at the singular points t ∈ {m2, 9m2, ∞}. Therefore the q-series expansion of the ELi-functions 
provide a fast and efficient way to evaluate these integrals over a wide kinematic range. We com-
pared results from this method to numerical results from the SecDec program and found perfect 
agreement.
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Appendix A. Convention regarding the roots of the cubic equation

In section 3 we defined the roots e1, e2, e3 of the cubic polynomial 4x3 −g2x −g3 in eq. (15). 
The roots e1 and e2 were given by

e1 = 1

24μ4

(
−t2 + 6m2t + 3m4 + 3

(
m2 − t

) 3
2
(

9m2 − t
) 1

2
)

,

e2 = 1

24μ4

(
−t2 + 6m2t + 3m4 − 3

(
m2 − t

) 3
2
(

9m2 − t
) 1

2
)

. (67)

In this appendix we discuss the consequences of an alternative convention for the roots of the 
cubic equation, where e1 and e2 are replaced by

ẽ1 = 1

24μ4

(
−t2 + 6m2t + 3m4 + 3

√(
m2 − t

)3 (
9m2 − t

))
,

ẽ2 = 1

24μ4

(
−t2 + 6m2t + 3m4 − 3

√(
m2 − t

)3 (
9m2 − t

))
, (68)

respectively.
Let us first note that for t < m2 and 9m2 < t one finds that e1 agrees with ẽ1 and e2 agrees 

with ẽ2. Therefore the differences between the convention in eq. (67) and the one of eq. (68) are 
restricted to the region m2 < t < 9m2. Let us first consider e1 and e2. We recall that we assume 
that an infinitesimal small positive imaginary part is added to the variable t . We have

(
m2 − t − i0

) 3
2 = i

(
t − m2

) 3
2

for t > m2. (69)

Thus

Im (e1) > 0, Im (e2) < 0, for m2 < t < 9m2. (70)

Let us now consider ẽ1 and ẽ2. Working to first order in the infinitesimal small imaginary part 
one obtains√(

m2 − t − i0
)3 (

9m2 − t − i0
) =

√(
m2 − t

)3 (
9m2 − t

) − 4
(
m2 − t

)2 (
7m2 − t

)
i0.

Thus
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Im (ẽ1)

{
< 0, m2 < t < 7m2,

> 0, 7m2 < t < 9m2,
Im (ẽ2)

{
> 0, m2 < t < 7m2,

< 0, 7m2 < t < 9m2,
(71)

In the interval m2 < t < 7m2 one has ẽ1 = e2 and ẽ1 = e2. This just exchanges the roles of e1
and e2. However, at t = 7m2 the roots ẽ1 and ẽ2 are not continuous functions of t . For this reason 
it is better to use the definitions of the roots as given in eq. (67).

The discontinuity in t at 7m2 has the following origin: For 7m2 < t < 9m2 the imaginary part 
coming from (9m2 − t − i0) is larger and has opposite sign as the imaginary part coming from 
(m2 − t − i0).

Similar considerations apply to the algebraic prefactor in eq. (23), where we express the peri-
ods ψ1 and ψ2 in terms of complete elliptic integrals of the first kind. We defined the algebraic 
prefactor as

4μ2(
m2 − t

) 3
4
(
9m2 − t

) 1
4

, (72)

and not as

4μ2[(
m2 − t

)3 (
9m2 − t

)] 1
4

. (73)

Both definitions agree for t < m2, but the latter leads to spurious discontinuities in the analytic 
continuation.

Appendix B. Elliptic generalisations of polylogarithms

In this appendix we define the ELi-functions and the E-functions. The latter are just linear 
combinations of the ELi-functions. Let us start with the ELi-functions. These are functions of 
(2l + 1) variables x1, ..., xl , y1, ..., yl , q and (3l − 1) indices n1, ..., nl , m1, ..., ml , o1, ..., ol−1. 
For l = 1 we set

ELin;m (x;y;q) =
∞∑

j=1

∞∑
k=1

xj

jn

yk

km
qjk. (74)

For l > 1 we define

ELin1,...,nl;m1,...,ml;2o1,...,2ol−1 (x1, ..., xl;y1, ..., yl;q) =

=
∞∑

j1=1

...

∞∑
jl=1

∞∑
k1=1

...

∞∑
kl=1

x
j1
1

j
n1
1

...
x

jl

l

j
nl

l

y
k1
1

k
m1
1

...
y

kl

l

k
ml

l

qj1k1+...+jlkl

l−1∏
i=1

(jiki + ... + jlkl)
oi

. (75)

We have the relations

ELin1;m1 (x1;y1;q)ELin2,...,nl;m2,...,ml;2o2,...,2ol−1 (x2, ..., xl;y2, ..., yl;q) =
= ELin1,n2,...,nl;m1,m2,...,ml;0,2o2,...,2ol−1 (x1, x2, ..., xl;y1, y2, ..., yl;q) (76)

and
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q∫
0

dq ′

q ′ ELin1,...,nl;m1,...,ml;2o1,2o2,...,2ol−1

(
x1, ..., xl;y1, ..., yl;q ′) =

= ELin1,...,nl;m1,...,ml;2(o1+1),2o2,...,2ol−1 (x1, ..., xl;y1, ..., yl;q) . (77)

It will be convenient to introduce abbreviations for certain linear combinations, which occur quite 
often. We define a prefactor cn and a sign sn, both depending on an index n by

cn = 1

2

[
(1 + i) + (1 − i) (−1)n

] =
{

1, n even,

i, n odd,
sn = (−1)n =

{
1, n even,

−1, n odd.
(78)

For l = 1 we define the linear combinations

En;m (x;y;q) = cn+m

i

[
ELin;m (x;y;q) − sn+mELin;m

(
x−1;y−1;q

)]
. (79)

More explicitly, we have

En;m (x;y;q) =
⎧⎨
⎩

1
i

[
ELin;m (x;y;q) − ELin;m

(
x−1;y−1;q)]

, n + m even,

ELin;m (x;y;q) + ELin;m
(
x−1;y−1;q)

, n + m odd.
(80)

For l > 0 we proceed as follows: For o1 = 0 we set

En1,...,nl;m1,...,ml;0,2o2,...,2ol−1 (x1, ..., xl;y1, ..., yl;q) =
= En1;m1 (x1;y1;q)En2,...,nl;m2,...,ml;2o2,...,2ol−1 (x2, ..., xl;y2, ..., yl;q) . (81)

For o1 > 0 we set recursively

En1,...,nl;m1,...,ml;2o1,2o2,...,2ol−1 (x1, ..., xl;y1, ..., yl;q) =

=
q∫

0

dq ′

q ′ En1,...,nl;m1,...,ml;2(o1−1),2o2,...,2ol−1

(
x1, ..., xl;y1, ..., yl;q ′) . (82)

The E-functions are linear combinations of the ELi-functions with the same indices. More con-
cretely, an E-function of depth l can be expressed as a linear combination of 2l ELi-functions. 
We have

En1,...,nl;m1,...,ml;2o1,...,2ol−1 (x1, ..., xl;y1, ..., yl;q) = (83)

=
1∑

t1=0

...

1∑
tl=0

⎡
⎣ l∏

j=1

cnj +mj

i

(−snj +mj

)tj

⎤
⎦

× ELin1,...,nl;m1,...,ml;2o1,...,2ol−1

(
x

st1
1 , ..., x

stl
l ;yst1

1 , ..., y
stl
l ;q

)
.

Appendix C. The arithmetic–geometric mean

In this appendix we review the numerical evaluation of the complete elliptic integral of the first 
kind with the help of the arithmetic–geometric mean. Let a0 and b0 be two complex numbers. 
For n ∈N0 one sets

an+1 = 1
(an + bn) , bn+1 = ±√

anbn. (84)

2
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The sign of the square root is chosen such that [77]

|an+1 − bn+1| ≤ |an+1 + bn+1| , (85)

and in case of equality one demands in addition

Im

(
bn+1

an+1

)
> 0. (86)

The sequences (an) and (bn) converge to a common limit

lim
n→∞an = lim

n→∞bn = agm(a0, b0), (87)

known as the arithmetic–geometric mean. The complete elliptic integral of the first kind is given 
by

K (k) = π

2 agm (k′,1)
, k′ =

√
1 − k2. (88)
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